

District: West Oregon

Date: February 25, 2025

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$1,174,948.08	\$9,784.08	\$1,184,732.16
		Project Work:	(\$71,864.00)
		Advertised Value:	\$1,112,868.16

District: West Oregon

Date: February 25, 2025

Timber Description

Location:

Stand Stocking: 60%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	28	0	96
Alder (Red)	19	0	97

Volume by Grade	2S	3S & 4S 6"- 11"	Camprun	Total
Douglas - Fir	1,970	294	0	2,264
Alder (Red)	0	0	127	127
Total	1,970	294	127	2,391

Comments: Pond Values Used: Local Pond Values, January 2025

Western hemlock and other Conifers Stumpage Price = Pond value minus logging costs: \$207.39/MBF = \$525/MBF - \$317.61/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$882.39 MBF = \$1200/MBF - \$317.61/MBF

Bigleaf Maple and Other Hardwoods Stumpage Price = Hardwood Pulp price using a conversion factor of 10 ton/MBF: = \$3.00/ton x 10 tons/MBF = \$30/MBF

PULP (Conifer and Hardwood Price) = \$3.00/TON

Other Costs (with Profit and Risk to be added) Artifical Tailhold Anchor: D7 dozer move-in cost = \$950 Total Other Costs (with Profit and Risk to be added) = \$950

Other Costs (No Profit and Risk to be added): Equipment Cleaning (Invasive Species): \$2500 Landing slash piling and firewood sorting: 8 Landings @ \$180/ Landing = \$1,080 Total Other Costs (No Profit and Risk) = \$3,580

ROAD MAINTENANCE Move-in:(Grader, Roller) \$1,900 Final Road Maintenance: \$11,576.32 Total Road Maintenance: \$13,476.32/2,415 MBF = \$5.58/MBF

SLASH DISPOSAL: Move-In: \$1,700 32 hrs for 18 acres @ \$175/hr = \$5,600 Total Slash Disposal = \$7,300

District: West Oregon

Date: February 25, 2025

	Logg	jing Conditions
Combination#: 1	Douglas - Fir Alder (Red)	85.00% 85.00%
Logging System:	Cable: Medium Tower >40 - <70	Process: Manual Falling/Delimbing
yarding distance: tree size:	Medium (800 ft) Mature / Regen Cut (900 Bft/tree), 3-5 l	downhill yarding: No ogs/MBF
loads / day:	9	bd. ft / load: 4700
cost / mbf:	\$188.61	
machines:	Log Loader (A) Tower Yarder (Medium)	
Combination#: 2	Douglas - Fir Alder (Red)	15.00% 15.00%
Logging System:	Shovel	Process: Feller Buncher
yarding distance: tree size:	Short (400 ft) Mature / Partial Cut (900 Bft/tree), 3-5 k	downhill yarding: No ogs/MBF
loads / day:	20	bd. ft / load: 4600
cost / mbf:	\$108.70	
machines:	Feller Buncher w/ Delimber	

District: West Oregon

Date: February 25, 2025

Logging Costs			
Operating Seasons: 2.00	Profit Risk: 10%		
Project Costs: \$71,864.00	Other Costs (P/R): \$950.00		
Slash Disposal: \$7,300.00	Other Costs: \$3,580.00		

Miles of Road		Road Maintenance: \$	5.58
Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	4.5
Alder (Red)	\$0.00	2.0	3.5

District: West Oregon

Date: February 25, 2025

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$176.62	\$5.80	\$3.67	\$96.29	\$0.40	\$28.28	\$3.05	\$2.00	\$1.50	\$317.61
Alder (Red	d)						-		
\$176.62	\$5.75	\$3.67	\$183.93	\$0.40	\$37.04	\$3.05	\$2.00	\$1.50	\$413.96

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$836.58	\$518.97	\$0.00
Alder (Red)	\$0.00	\$491.00	\$77.04	\$0.00

District: West Oregon

Date: February 25, 2025

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	2,264	\$518.97	\$1,174,948.08
Alder (Red)	127	\$77.04	\$9,784.08

Gross Timber Sale Value			
Recovery:	\$1,184,732.16		
Prepared By: Jeff Kuust	Phone: 541-929-9161		

SUMMARY OF ALL PROJECT COSTS

Sale Name:	Double Exposure		Date: Time:	Februai 8:01	ry 2025
Proiect #1 - Road	Improvement, Surfac	ce Rock Replacen	nent and Mainte	nance	
Road Segment		Length	Cost	<u></u>	
1 to 2		89.3 sta	\$22,960		
3 to 4		3.1 sta	\$4,277		
5 to 6		7.9 sta	\$6,899		
7 to 8		14.0 sta	\$23,489		
9 to 10		33.2 sta	\$1,928		
11 to 12		6.1 sta	\$63		
13 to 14		5.3 sta	\$63		
15 to 16		16.3 sta	\$4,308		
	TOTALS	175.2 sta	\$63,987		
Project #2 - Road	side Brushing and So		_		
		<u>Length</u>	Cost		
Brushing		2.1 mi	\$2,174		
Sod and Brush Re		2.1 mi	\$1,853	_	
	TOTAL		\$4,027		
Project #3 - Move	in		Cost		
Backhoe, C580 or			<u>\$500</u>		
Dozer, D-6 or equi	•		\$950 \$950		
Grader, Cat 14-G			\$950 \$950		
Vibratory roller			\$950 \$950		
Road Brusher			\$500		
	TOTAL		\$3,850	_	
			\$0,000		
			GRAND TOT	AL	\$71,864
Compiled by:	Jeff Kuust			Date	02/26/2025

SALE ROAD	Double Exposure 1 to 2	Project #	1					LENGTH	89.3 sta
EXCAVA Construc	ATION et landing (Sta. 83+45)	1 landing		@	<u>Rate</u> \$480.00	/ldg	=	\$480	
						TOT	AL EX	CAVATION =	\$480
IMPROV	'EMENT				Rate				
Re-open (w/ dozei	landing (Sta. 89+30) r)	0.5 hrs		@	\$140.00	/hr	=	\$70	
Shape si (w/ grade	urface	89.3 sta		@	\$22.69	/sta	=	\$2,026	
Process (w/ grade	Rock	89.3 sta		@	\$22.69	/sta	=	\$2,026	
Compact (w/ roller	surface	89.3 sta		@	\$17.50	/sta	=	\$1,563	
Process	turnout rock	0.5 sta		@	\$22.69	/sta	=	\$11	
•	t turnout rock	0.5 sta		@	\$17.50	/sta	=	\$9	
(w/ roller)					TOTAL	IMPF	ROVEMENT =	\$5,705
SURFAC	CING		Size		Rate				
	rock (2" lift) 00 to 18+90)	210 CY	1½"-0"	@	\$25.31	/CY	=	\$5,315	
Spot rocl		30 CY	3"-0"	@	\$23.96	/CY	=	\$719	
Spot rocl		120 CY	1½"-0"	@	\$25.31	/CY	=	\$3,037	
Surface	rock (2" lift) Sta. 89+30)	220 CY	1½"-0"	@	\$25.31	/CY	=	\$5,568	
	rock (Sta. 83+45, 89+30)	70 CY	Jaw-Run	@	\$22.95	/CY	=	\$1,607	
Turnout	rock	20 CY	3"-0"	@	\$23.96	/CY	=	\$479	
(Sta. 56+	-00)					тот	AL R	OCK COST =	\$16,725
SDECIA	L PROJECTS				Poto				
Clean ou	it culverts ad outlets)	2 culverts		@	<u>Rate</u> \$25	ea	=	\$50	
					TOTAL SPE	CIAL P	ROJE	CTS COST =	\$50

Compiled by: Date: Jeff Kuust Feb 26, 2025

GRAND TOTAL ====> \$22,960

SALE ROAD	Double Exposure 3 to 4	Project #	1					LENGTH	3.1 sta
IMPROV	/EMENT				Rate				
Re-open (w/ doze	road and landing	3.1 sta		@	\$41.00	/sta	=	\$127	
Shape so (w/ grade	ubgrade	3.1 sta		@	\$22.69	/sta	=	\$70	
	t subgrade	3.1 sta		@	\$17.50	/sta	=	\$54	
Process (w/ doze	rock	3.1 sta		@	\$22.69	/sta	=	\$70	
	t surface	3.1 sta		@	\$17.50	/sta	=	\$54	
)					TOTAL	IMPR	OVEMENT =	\$375
SURFAC	CING		Size		Rate				
	ck (8" lift)	140 CY	Jaw-Run	@	\$22.95	/CY	=	\$3,213	
(Sta. 0+0 Landing (Sta. 3+1		30 CY	Jaw-Run	@	\$22.95	/CY	=	\$689	
(Old. 5+	10)					тот	ALR	OCK COST =	\$3,902
Compile Date:	d by:	Jeff Kuust Feb 26, 2025				GRA	ND TC)TAL ====>	\$4,277

SALE ROAD	Double Exposure 5 to 6	Project #	1				LENGTH	7.9 sta
EXCAVA Construc	ATION ct landing (Sta. 5+10)	1 landing		@	<u>Rate</u> \$480.00	/ldg =	\$480	
						TOTAL EX	CAVATION =	\$480
IMPROV	/EMENT				Rate			
Re-open (w/grade	n road and landing	7.9 sta		@	\$41.00	/sta =	\$324	
Shape s	ubgrade	7.9 sta		@	\$22.69	/sta =	\$179	
(w/ grad Compac	er) t subgrade	7.9 sta		@	\$17.50	/sta =	\$138	
(w/ roller Process		7.9 sta		@	\$22.69	/sta =	\$179	
(w/ grade Compac	er) t surface	7.9 sta		@	\$17.50	/sta =	\$138	
(w/ roller				C			ROVEMENT =	ФО <u>Б</u> О
								\$958
	CING ck (4" lift) 00 to 7+90)	180 CY	<u>Size</u> 3"-0"	@	<u>Rate</u> \$23.96	/CY =	\$4,313	
Landing	rock	50 CY	Jaw-Run	@	\$22.95	/CY =	\$1,148	
(Sta. 5+'	10 & Sta. 7+90)					TOTAL R	OCK COST =	\$5,461
Compile Date:	d by:	Jeff Kuust Feb 26, 2025				GRAND TO	OTAL ====>	\$6,899

SALE ROAD	Double Exposure 7 to 8	Project #	1					LENGTH	14.0 sta
EXCAVA Remove (w/ back	tank trap	0.5 hrs		@	<u>Rate</u> \$96.00	/hr TOT/	=	\$48 CAVATION =	\$48
						1017	/(ψiö
	road and landings	14.5 sta		@	<u>Rate</u> \$41.00	/sta	=	\$595	
(w/ doze Shape si (w/ grade	ubgrade	14.5 sta		@	\$22.69	/sta	=	\$329	
	t subgrade	14.5 sta		@	\$17.50	/sta	=	\$254	
	base rock	14.0 sta		@	\$22.69	/sta	=	\$318	
•	base rock	14.0 sta		@	\$17.50	/sta	=	\$245	
	surface rock	14.0 sta		@	\$22.69	/sta	=	\$318	
Compact (w/ roller	t surface	14.0 sta		@	\$17.50	/sta	=	\$245	
	landing rock	0.5 sta		@	\$22.69	/sta	=	\$11	
	landing rock	0.5 sta		@	\$17.50	/sta	=	\$9	
						TOTAL	IMPR	OVEMENT =	\$2,324
SURFAC Base roc	ck (8" lift)	620 CY	<u>Size</u> Jaw-Run	@	<u>Rate</u> \$22.95	/CY	=	\$14,229	
Surface	00 to 14+00) rock (3" lift) 00 to 14+00)	230 CY	3"-0"	@	\$23.96	/CY	=	\$5,511	
Landing		60 CY	Jaw-Run	@	\$22.95	/CY	=	\$1,377	
						тот	AL R	OCK COST =	\$21,117
Compileo Date:	d by:	Jeff Kuust Feb 26, 2025				GRAM	ND TO)TAL ====>	\$23,489

SALE ROAD	Double Exposure 9 to 10	Project #	1					LENGTH	33.2 sta
IMPRO\	/EMENT				Rate				
	n landing	0.5 hrs		@	\$125.00	/hr	=	\$63	
(w/ grad Process (w/ grad	rock	33.2 sta		@	\$22.69	/sta	=	\$753	
Compac	t surface	33.2 sta		@	\$17.50	/sta	=	\$581	
(w/ rolle	r)				Т	OTAL	IMPRC	VEMENT =	\$1,397
SURFAC Patch ro		20 CY	<u>Size</u> 1½"-0"	@	<u>Rate</u> \$25.31	/CY	=	\$506	
(010 104	-70 and Sta. 20+30)					тот	AL RO	CK COST =	\$506
	L PROJECTS ulvert inlet/outlet (Sta 20+30)	1 culvert		@	<u>Rate</u> \$25	ea	=	\$25	
					TOTAL SPEC	CIAL PI	ROJEC	TS COST =	\$25
Compile	d bv:	Jeff Kuust							
Date:	~~~;.	Feb 26, 2025				GRAM	ND TOT	「AL =====>	\$1,928

SALE Double Expos ROAD 11 to 12	ure Project #	1				LENGTH	6.1 sta
IMPROVEMENT Re-open landing (w/ grader)	0.5 hrs	6	<u>Rate</u> ⊉ \$125.00		= MPRO'	\$63 VEMENT =	\$63
Compiled by: Date:	Jeff Kuust Feb 26, 2025			GRAN	р тот	AL ====>	\$63

	Double Exposure 13 to 14	Project #	1					LENGTH	5.3 sta
IMPROVE Re-open la (w/ grader)	Inding	0.5 hrs		@	<u>Rate</u> \$125.00	/hr	=	\$63	
Compiled b Date:	by:	Jeff Kuust Feb 26, 2025						OVEMENT = TAL =====>	\$63 \$63

SALE ROAD	Double Exposure 15 to 16	Project #	1					LENGTH	16.3 sta
IMPROV	/EMENT				Rate				
Process (w/ grade		16.3 sta		@	\$22.69	/sta	=	\$370	
Re-open (w/ grade	landing	0.5 hrs		@	\$125.00	/hr	=	\$63	
Process (w/ grade	surface rock er)	16.3 sta		@	\$22.69	/sta	=	\$370	
Compac (w/ roller		16.3 sta		@	\$17.50	/sta	=	\$285	
,	,					TOTAL	IMPR	OVEMENT =	\$1,088
SURFAC	CING		Size		Rate				
Spot Roo	ck 00 to 16+30)	100 CY	11/2"-0"	@	\$25.31	/CY	=	\$2,531	
Landing	rock	30 CY	Jaw-Run	@	\$22.95	/CY	=	\$689	
(Sta. 16-	+30)					тот	AL R	OCK COST =	\$3,220
Compile	d by:	Jeff Kuust							A 4 A A A
Date:		Feb 26, 2025				GRA	ND TC)TAL ====>	\$4,308

SUMMARY OF BRUSHING COST

SALE ROAD	Double Exposure All	Project #	2				L	ENGTH	2.07 Mil	es
LIGHT E Pt. 9 to F Pt. 15 to Pt. 17 to Pt. 19 to	Pt. 16 Pt. 18	0.63 mi 0.31 mi 0.11 mi 0.16 mi		@ @ @	<u>Rate</u> \$880.00 \$880.00 \$880.00 \$880.00	/mi /mi /mi /mi	= = =	\$554 \$273 \$97 \$141		
	TOTAL LENGTH =	1.21 mi			TOTAL LIC	GHT BR	USHIN	IG COST =	\$1,065	
Pt. 3 to F Pt. 5 to F Pt. 7 to F Pt. 7 to F	Pt. 6 Pt. 8 Pt. 2 TOTAL LENGTH = BRUSHING Pt. 12 Pt. 14	0.06 mi 0.15 mi 0.27 mi 0.16 mi 0.64 mi 0.12 mi 0.10 mi		@ @ @ @	Rate \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 TOTAL HEA <u>Rate</u> \$1,550.00 \$1,550.00	/mi /mi	=	\$186 \$155	\$768	
	TOTAL LENGTH =	0.22 mi			TOTAL HE				\$341	*• • •
						BRUS	HING	GRAND TOTA	L =====>	\$2,174
	ID DEBRIS REMOVAL ning segments	2.07 mi		@	<u>Rate</u> \$894.96	/mi	=	\$1,853		
	TOTAL LENGTH =	2.07 mi			TOTAL S	OD AN	D DEB	RIS REMOVA	L =====>	\$1,853

TOTAL LENGTH = 2.07 mi

Compiled by: Jeff Kuust Feb 26, 2025 Date:

SUMMARY OF MAINTENANCE COST

'Final log haul Maintenance Cost Estimate

(Costed in appraisal, not in project costs)

SALE	Double Exposure								
Move-in	Grader Vibratory R	\$ \$	950 950						
Road Segment	Length	Cost/Sta	C	ost	Mileage				
1 to 2	89.3 sta	\$40.19	\$3,5	88.97	1.69				
3 to 4	3.1 sta	\$40.19	\$1	24.59	0.06				
5 to 6	7.9 sta	\$40.19	\$3	817.50	0.15				
7 to 8	14.0 sta	\$40.19	\$5	62.66	0.27				
<u>15 to 16</u>	16.3 sta	\$40.19	\$6	55.10	0.31				
Total	130.6		\$5,2	248.82	2.47				

Maintenance Rock:

	Volume	Cost/CY	Cost
1½"-0"	250	\$25.31	\$6,327.50
Grand Total			\$ 13,476.32
TS Volume	2,415	MBF	
Cost / MBF =			\$5.58

NOTES:

ROAD SEGMENT	1 to 2			POINT ⁻	TO POINT	Sta.	to Sta.			
			Depth of	1	to 2	0+00 te	o 89+30	TOTAL	TOTAL	
Application	Rock Size and Type	Location	Rock (inches)	Volume	e (CY) per	Num	ber of	VOLUME (CY)	VOLUME (TONS)	
Surface rock	1 1/2"-0"	0+00 to 18+90	2	11	Station	18.9	Stations	210	284	
Spot rock	1 1/2"-0"	18+90 to 69+10	n/a	10	Load	12	Loads	120	162	
Spot rock	3"-0"	18+90 to 69+10	n/a	10	Load	3	Loads	30	41	
Turnout rock	3"-0"	56+00	n/a	20	Turnout	1	Turnout	20	27	
Surface rock	1 1/2"-0"	69+10 to 89+30	2	11	Station	20.2	Stations	220	297	
Landing rock	Jaw-Run	83+45	n/a	40	Landing	1	Landing	40	54	
Landing rock	Jaw-Run	89+30	n/a	30	Landing	1	Landing	30	41	
Total Rock for Road	Segment	1 to 2						670	905	
	2 to 4					Cto	to Sta.			
ROAD SEGMENT	3 to 4				to 4			TOTAL	TOTAL	
Application	Rock Size and Type	Location	Depth of Rock (inches)		e (CY) per	0+00 to 3+10 Number of		VOLUME (CY)	TOTAL VOLUME (TONS)	
Base rock	Jaw-Run	0+00 to 3+10	8	44	Station	3.1	Stations	140	189	
Landing rock	Jaw-Run	3+10	n/a	30	Landing	1	Landing	30	41	
Total Rock for Road	Segment	3 to 4						170	230	
ROAD SEGMENT	5 to 6						to Sta.			
Application	Rock Size and Type	Location	Depth of Rock (inches)		to 6 e (CY) per		to 7+90	TOTAL VOLUME (CY)	TOTAL VOLUME (TONS)	
Base rock	3"-0"	0+00 to 7+90	4	22	Station	7.9	Stations	180	243	
Landing rock	Jaw-Run	5+10	n/a	20	Landing	1	Landing	20	27	
Landing rock	Jaw-Run	7+90	n/a	30	Landing	1	Landing	30	41	
Total Rock for Road	Segment	5 to 6						230	311	
ROAD SEGMENT	7 to 8					Sta	to Sta.			
	1.00				to 8		o 14+00	TOTAL	TOTAL	
Application	Rock Size and Type	Location	Depth of Rock (inches)				ber of	VOLUME (CY)	VOLUME (TONS)	
Base rock	Jaw-Run	0+00 to 14+00	8	44	Station	14	Stations	620	837	
Surface rock	3"-0"	0+00 to 14+00	3	16.5	Station	14	Stations	230	311	
Landing rock	Jaw-Run	6+80, 14+00	n/a	30	Landing	2	Landings	60	81	
Total Rock for Road	Segment	7 to 8						910	1229	

ROAD SEGMENT	9 to 10			POINT 1		Sta. t	o Sta.		
				9 t	o 10	0+00 to	0 33+20	TOTAL	TOTAL
Application	Rock Size and Type	Location	Depth of Rock (inches)	Volume	e (CY) per	Num	ber of	VOLUME (CY)	VOLUME (TONS)
Patch rock	1 1/2"-0"	13+70, 20+30	n/a	10	Load	2	Loads	20	27
Total Rock for Road	Segment	9 to 10						20	27
ROAD SEGMENT	15 to 16			POINT 1	FO POINT	Sta. t	o Sta.		
			Depth of	15	to 16	0+00 to	o 16+30	TOTAL	TOTAL
Application	Rock Size and Type	Location	Rock Rock (inches)	Volume	e (CY) per	Number of		VOLUME (CY)	VOLUME (TONS)
Spot rock	1 1/2"-0"	0+00 to 16+30	n/a	10	Load	10	Loads	100	135
Landing rock	Jaw-Run	16+30	n/a	30	Landing	1	Landing	30	41
Total Rock for Road	Segment	15 to 16			-			130	176
	ROCK C	ONVERSIO	N FACTORS	<u>6</u>					
Size	1 1/2"-0"	3"-0"	Jaw-Run						
Tons/CY	1.35	1.35	1.35						
Total Roo	ck Volumes	For Projects							
Rock Size	1 1/2"-0"	3"-0"	Jaw-Run						
Rock Totals CY	670	460	1000						
Rock Totals TONS	905	621	1350						

SALE NAME: ROAD NAME: ROCK SOURCE: Route:	Double Exposure Highway 20 Cutoff, ' Rickard Highway 20	Tower of Power	DATE: Feb 26, 2025 CLASS: Medium 10 CY truck
TIME Computat	cion:		
Road speed ti	ime factors:		
1.	. 55 MPH	MRT	0.0 minutes
2.	. 50 MPH 28.	2 MRT	33.8 minutes
3	. 45 MPH	MRT	0.0 minutes
4 .	. 40 MPH	MRT	0.0 minutes
5.	. 35 MPH	MRT	0.0 minutes
6	. 30 MPH	MRT	0.0 minutes
7.	. 25 MPH	MRT	0.0 minutes
8 .	. 20 MPH 1.	7 MRT	5.1 minutes
9			10.4 minutes
10.	. 10 MPH 0.	4 MRT	2.4 minutes
11.	. 05 MPH	MRT	0.0 minutes
	ad time per RT ling cycle time for t lciency)	his setting	0.50 minutes 52.20 minutes
Operator off	ciency correction	0.85	61.41 minutes
Job efficiend		0.85	68.23 minutes
JOD EIIICIEIK	ey correction	0.90	00.23 minutes
Truck capacit	су (СҮ)	10.00	6.82 min/CY
Loading time,	delay time per CY		0.25 min/CY
TIME (minutes	s) per cubic yard		7.07 min/CY
	computation ruck and operator per ruck and operator per		\$100.00 /hr. \$1.67 /min
Cost per CY			\$11.81 /CY
		Cost Delivered	

		Cost Delivered
Size	Cost/Yd (Pit)	w/o processing
1½" - 0"	\$ 13.50	\$25.31
3" - 0"	\$ 12.15	\$23.96
Jaw-Run	\$ 11.14	\$22.95

TIMBER CRUISE REPORT

Double Exposure (WO-341-2025-W01172-03) FY 2025

1. Sale Area Location: Portions of Sections 15, 22, and 23, T11S, R08W, W.M., Lincoln, Oregon.

2. Fund Distribution:

- **a. Fund** BOF 100%
- 3. Sale Acreage by Area:

Unit	Treatment	Gross Acres	Stream Buffers	Slope Buffer	Existing Roads	Green Tree Reserve Area	Net Sale Acres	Acreage Comp. Method
1	Clearcut	86	21	0	3	2	60	GIS
	Total	86	21	0	3	2	60	GIS

- 4. Cruisers and Cruise Dates: The sale was cruised by Steven Irving and Isabelle Doan in October and November of 2024.
- 5. Cruise Method and Computation: The sale consists of one unit. Unit 1 is a clearcut that was cruised using variable radius plot sampling on a 4 x 4 chain grid using a 40 BAF prism factor. A total of 45 plots were taken in Unit 1 with 23 grade plots and 22 count plots.

Measure plots were measured for DBH, height, form factor, grade, and defect. Data was entered into the Atterbury SuperACE cruise program to determine stand statistics and net board foot volume. Additional volume was removed to account for hidden defect and breakage.

Digital ortho photos, Lidar data, and GPS data were used to map the boundaries for the sale, and ArcPro GIS was used to determine gross and net acreage.

- 6. Measurement Standards: Tree heights were measured to the nearest foot, to a top diameter of 5 inches inside bark or to 40% of dob at 16' form point. Diameters at breast height (DBH) were measured to the nearest inch, and a form point of 16 feet was used to calculate form factor. Form factors were measured or estimated on every tree. Most trees were graded in 40-foot log segments unless breakage, defect, or length to top of grade cruise diameter warranted otherwise.
- 7. **Timber Description:** Timber in Unit 1 includes 60 acres of predominately 83-year-old Douglas-fir with some scattered bigleaf maple and red alder. The average Douglas-fir to be removed is approximately 28 inches DBH, with an average height of 99 feet to a merchantable top. The average red alder is approximately 19 inches with an average height of 57 feet to a merchantable top. The average bigleaf maple is approximately 15 inches DBH, with an average height of 52 feet to a merchantable top. The average volume per acre to be harvested in the stocked areas of Unit 1 is approximately 40.3 MBF/Acre (net).
- 8. Statistical Analysis and Stand Summary: (See attached "Statistics").

Unit	Target CV	Target SE	Actual CV	Actual SE
1	55%	9%	39.1	5.8

Note: Statistics shown are for conifer and hardwood trees combined. Percentages are for net board foot volume.

9. Total Volume (MBF) by Species and Grade: (See attached volume report "Species, Sort Grade – Board Foot Volumes - Project").

Unit	Species	Gross Cruise Volume	Cruised D & B	Cruised D & B (MBF)	Hidden D & B	Hidden D & B (MBF)	Net Sale Volume
	Douglas- fir	2365	1.3%	(31)	3%	(70)	2264
1	Red Alder	132	1.1%	(1)	3%	(4)	127
	Bigleaf Maple	25	-	-	3%	(1)	24
Totals		2522	1.3%	32	3%	75	2415

Unit	Species	Ave. DBH	Net Vol.	2-Saw	3-Saw	4-Saw	Camp Run
	Douglas-	28	Grade %	87%	11%	2%	-
	fir	28	2264	1970	249	45	-
1	Ded Alden	10	Grade %	-	-	-	100%
	Red Alder	19	127	-	-	-	127
	Bigleaf	15	Grade %	-	-	-	100%
	Maple	15	24	-	-	-	24
Totals			2415	1970	249	45	151

Attachments: Cruise Design

Cruise Maps Statistics Species, Sort Grade - Board Foot Volumes Stand Table Summary Log Stock Table - MBF

Prepared by: _____ Jeff Kuust

Date: 2/12/2025

Unit Forester: Cody Valencia Date: 2/20/25

Revised August, 2002

CRUISE DESIGN WEST OREGON DISTRICT

Sale Name: ____ Double Exposure _____ Area ___ All ____

 Harvest Type: MC
 Net BF: 2,600,000

 Approx. Cruise Acres:
 65
 Estimated CV%
 55
 /Acre
 SE% Objective
 9
 /Acre

Planned Sale Volume: 2.6 MMBF Estimated Sale Area Value/Acre: <u>\$ 20,000</u>

A. <u>Cruise Goals</u>: (a) Grade minimum <u>100</u> conifer and <u>hardwood trees</u>:
 (b) Sample <u>45</u> cruise plots (23 grade: 22 count); (c) Other goals <u>X</u> Determine log grades for sale value; <u>Determine take and leave tree species and sizes</u>.

(Special cruising directions – leave trees etc.) <u>Take plots as shown on map. Do not take plots in buffers.</u>

DO NOT RECORD 12', 22' and 32' (for Hardwoods).

DO NOT RECORD 22' LENGTHS.

B. <u>Cruise Design</u>:

1. Plot Cruises: BAF 40 Full point

Cruise Line Direction(s)90, 270	
Cruise Line Spacing	4, 264	(chains) (feet)
Cruise Plot Spacing	4, 264	(chains) (feet)
Grade/Count Ratio	1:1	

C. Tree Measurements:

- Diameter: Minimum DBH to cruise is <u>8</u>" for conifers and <u>10</u>" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- **2.** Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- **3.** Top Cruise Diameter (TCD): Minimum top inside bark for conifer is <u>5</u>", <u>7</u>" for <u>hardwoods</u> or <u>40</u> % of dob at 16' form point. Generally, use 6" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4.** Form Factors: (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for

hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes: A. <u>Species</u>: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.)
 - B. <u>Sort</u>: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull ; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- 7. Deductions: Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: <u>Plot Type Cruises</u>: At each plot, tie <u>red</u> flagging above eye level near plot center and another <u>red</u> flagging around a sturdy wooden stake marking plot center. On <u>red</u> flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in <u>yellow</u> paint.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back), Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Red Flagging, Yellow Paint.
- **10. Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by:	Steven Irving	
Approved by:		
Date: <u>10/31</u>	/2024	

10 151	ATS			I	STA PROJECT		'ICS double e	,		PAGE DATE	1 2/25/2025
TWP	RGE	SECT TI	RACT		TYPE		RES	PLOTS	TREES	CuFt	BdFt
11S	08W	22 UI	NIT 1		0MC		60.00	45	206	1	W
		PLOTS	TREES		EES R PLOT		ESTIMATED FOTAL TREES		PERCENT SAMPLE TREES		
TOTA	L	45	206		4.6						
CRUIS	SE COUNT REST IT	23	103		4.5		3,000		3.4		
100 %											
				STANE	SUMMA	RY					
		SAMPLE TREES	TREES /ACRE			REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DF		87	35.2	28.0	99	28.5	151.1	39,393	38,897	8,011	8,011
R ALC		9	10.6	19.2	57	4.9	21.3	2,201	2,177	689	689
D-WIL		5	.3	57.7	120	0.7	5.3	1,569		278	278
BL MA		2 103	3.9 50.0	14.5 25.8	52 86	1.2 35.8	4.4 182.2	418 <i>43,580</i>		143 <i>9,121</i>	143 <i>9,121</i>
					00	55.0	102.2	+3,300	+2,33/	7,141	7,121
CONF		E LIMITS OF TIMES OUT (ILL BE W	ITHIN	THE SAMPL	E ERROR			
CL:	68.1 %	COEFF		S	AMPLE 1	REES	- BF	ī	# OF TREES	S REQ.	INF. POP.
SD:	1.0	VAR.%	S.E.%	LOW		VG	HIGH		5	10	15
DF R ALD	ED	54.5 76.5	5.8 27.0	1,48		579 264	1,671 336				
D-WIL		24.5	12.2	4,78		42 142	6,103				
BL MA	APLE	47.1	44.1	· · · ·		05	151				
TOTA	L	78.4	7.7	1,49	98 1,6	23	1,749		246	61	27
CL: (COEFF		S	AMPLE T	REES	CF				INF. POP.
				0.			- Cr	+	# OF TREES	S REQ.	INF. POP.
	1.0	VAR.%	S.E.%	LOW		/G	HIGH		# OF TREES	5 REQ. 10	
DF		46.1	4.9	LOW 29	9 3	/G	HIGH 330			-	
	ER			LOW 29	99 3 53	/G 14 80	HIGH			-	
DF R ALD D-WILI BL MA	ER DLI APLE	46.1 61.5 26.5 17.4	4.9 21.7 13.2 16.3	LOW 29 6 87 3	99 3 53 75 1,0	VG 514 80 908 37	HIGH 330 97 1,140 42		5	10	15
DF R ALD D-WILI BL MA TOTA	ER DLI APLE L	46.1 61.5 26.5 17.4 <i>69.9</i>	4.9 21.7 13.2	LOW 29 6 87	99 3 53 75 1,0	/G 14 80 008	HIGH 330 97 1,140			-	15
DF R ALD D-WILJ BL MA TOTA CL: (ER DLI VPLE L 58.1 %	46.1 61.5 26.5 17.4 69.9 COEFF	4.9 21.7 13.2 16.3 <i>6.9</i>	LOW 29 6 87 3 30 7	993 33751,0 91 0033 REES/AC	VG 14 80 008 37 22 RE	HIGH 330 97 1,140 42 344		5 195 ‡ OF PLOTS	10 49 5 REQ.	15 22 INF. POP.
DF R ALD D-WILJ BL MA TOTA CL: 6 SD:	ER DLI APLE L	46.1 61.5 26.5 17.4 69.9 COEFF VAR.%	4.9 21.7 13.2 16.3 <i>6.9</i> S.E.%	LOW 29 6 87 3 30 T LOW	99 3 53 55 1,0 10 <i>3</i> REES/AC AV	VG 514 80 008 37 22 RE /G	HIGH 330 97 1,140 42 344 HIGH		5 195	<u>10</u> 49	15 22 INF. POP.
DF R ALD D-WILJ BL MA TOTA CL: 6 SD:	ER DLI APLE L 58.1 % 1.0	46.1 61.5 26.5 17.4 69.9 COEFF	4.9 21.7 13.2 16.3 <i>6.9</i>	LOW 29 6 87 3 30 T LOW	29933 33751,0 1033 REES/AC AV 2	VG 14 80 008 37 22 RE	HIGH 330 97 1,140 42 344		5 195 ‡ OF PLOTS	10 49 5 REQ.	15 22 INF. POP.
DF R ALD D-WILJ BL MA TOTA) CL: (SD: DF R ALD D-WILJ	ER DLI APLE L 58.1 % 1.0 ER DLI	46.1 61.5 26.5 17.4 69.9 COEFF VAR.% 57.2 200.9 270.5	4.9 21.7 13.2 16.3 6.9 S.E.% 8.5 29.9 40.3	LOW 29 6 87 3 30 T LOW 3	29933 33 751,0 31 003 REES/AC 2 7 0	/G 114 80 008 37 22 RE /G 35 11 0	HIGH 330 97 1,140 42 344 HIGH 38 14 0		5 195 ‡ OF PLOTS	10 49 5 REQ.	15 22 INF. POP.
DF R ALD D-WILJ BL MA TOTAJ CL: (SD: DF R ALD DF R ALD D-WILJ BL MA	ER DLI PLE L 58.1 % 1.0 ER DLI PLE	46.1 61.5 26.5 17.4 69.9 COEFF VAR.% 57.2 200.9 270.5 344.7	4.9 21.7 13.2 16.3 6.9 S.E.% 8.5 29.9 40.3 51.3	LOW 29 6 87 3 36 T LOW 3	29 3 33 75 1,0 10 3 REES/AC 2 7 0 2	/G 114 80 008 37 22 RE /G 35 11 0 4	HIGH 330 97 1,140 42 344 HIGH 14 0 6		5 195 # OF PLOTS 5	10 49 3 REQ. 10	15 22 INF. POP. 15
DF R ALD D-WILJ BL MA TOTAL CL: (SD: DF R ALD DF R ALD D-WILJ BL MA TOTAL	ER DLI PLE L 68.1 % 1.0 ER DLI PLE L	46.1 61.5 26.5 17.4 <i>69.9</i> COEFF VAR.% 57.2 200.9 270.5 344.7 <i>55.8</i>	4.9 21.7 13.2 16.3 6.9 S.E.% 8.5 29.9 40.3	LOW 29 6 87 3 30 T LOW 3	99 3 33 75 1,0 10 3 REES/AC AV 2 7 0 2 6	/G 114 80 008 37 22 RE /G 35 11 0 4 50	HIGH 330 97 1,140 42 344 HIGH 38 14 0 6 54	#	5 195 \$ OF PLOTS 5 124	10 49 9 REQ. 10 31	15 22 INF. POP. 15 14
DF R ALD D-WILI BL MA TOTAI CL: (SD: DF R ALD D-WILI BL MA TOTAI	ER DLI PLE L 58.1 % 1.0 ER DLI PLE L	46.1 61.5 26.5 17.4 69.9 COEFF VAR.% 57.2 200.9 270.5 344.7 55.8 COEFF	4.9 21.7 13.2 16.3 6.9 S.E.% 8.5 29.9 40.3 51.3 8.3	LOW 29 6 87 3 30 T LOW 3 4 B	29 3 33 75 1,0 31 1 1 30 3 3 REES/AC AV 2 7 0 2 6 ASAL AR	/G 114 80 008 37 22 RE 7G 35 11 0 4 50 EA/AC	HIGH 330 97 1,140 42 344 HIGH 38 14 0 6 54 CRE	#	5 <i>195</i> <i>4</i> OF PLOTS 5 <i>124</i> <i>4</i> OF PLOTS	10 49 7 REQ. 10 31 REQ.	15 22 INF. POP. 15 14 INF. POP.
DF R ALD D-WILI BL MA TOTAI CL: (SD: DF R ALD D-WILI BL MA TOTAI CL: (SD:	ER DLI PLE L 68.1 % 1.0 ER DLI PLE L	46.1 61.5 26.5 17.4 <i>69.9</i> COEFF VAR.% 57.2 200.9 270.5 344.7 <i>55.8</i>	4.9 21.7 13.2 16.3 6.9 S.E.% 8.5 29.9 40.3 51.3	LOW 29 6 87 3 30 T LOW 3	29 3 33 75 1,0 10 3 REES/AC AV 2 7 0 2 6 4 ASAL AR AV	/G 114 80 008 37 22 RE 7G 35 11 0 4 50 EA/AC	HIGH 330 97 1,140 42 344 HIGH 38 14 0 6 54	#	5 195 \$ OF PLOTS 5 124	10 49 9 REQ. 10 31	15 22 INF. POP. 15 14 INF. POP.
DF R ALD D-WILI BL MA TOTA) CL: (SD: DF R ALD DF CL: (SD: DF R ALD DF R ALD	ER DLI PLE L 58.1 % 1.0 ER DLI PLE L 58.1 % 1.0 ER	46.1 61.5 26.5 17.4 69.9 COEFF VAR.% 57.2 200.9 270.5 344.7 55.8 COEFF VAR.% 48.2 202.3	4.9 21.7 13.2 16.3 6.9 S.E.% 8.5 29.9 40.3 51.3 8.3 S.E.% 7.2 30.1	LOW 29 6 87 3 36 T LOW 3 4 LOW 14 14	99 3 33 1 75 1,0 11 1 10 3 REES/AC AV 2 7 0 2 6 AV 0 15	/G 114 80 008 37 22 RE 7/G 35 11 0 4 50 EA/AC 7/G 51 21	HIGH 330 97 1,140 42 344 HIGH 38 14 0 6 54 CRE HIGH 162 28	#	5 <i>195</i> <i>4</i> OF PLOTS 5 <i>124</i> <i>4</i> OF PLOTS	10 49 7 REQ. 10 31 REQ.	15 22 INF. POP. 15 14 INF. POP.
DF R ALD D-WILL BL MA TOTAI CL: (SD: DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF	ER DLI .PLE L 58.1 % 1.0 ER DLI FRLE L 58.1 % 1.0 ER DLI	46.1 61.5 26.5 17.4 69.9 COEFF VAR.% 57.2 200.9 270.5 344.7 55.8 COEFF VAR.% 48.2 202.3 257.8	4.9 21.7 13.2 16.3 6.9 S.E.% 8.5 29.9 40.3 51.3 8.3 S.E.% 7.2 30.1 38.4	LOW 29 6 87 3 30 T LOW 3 3 4 4 B. LOW 14	29 3 33 3 15 1,0 30 3 REES/AC AV 2 7 0 2 6 4 AV 0 5 3	VG 114 80 108 37 22 RE VG 35 11 0 4 50 EA/AC VG 51 21 5	HIGH 330 97 1,140 42 344 HIGH 38 14 0 6 54 CRE HIGH 162 28 7	#	5 <i>195</i> <i>4</i> OF PLOTS 5 <i>124</i> <i>4</i> OF PLOTS	10 49 7 REQ. 10 31 REQ.	15 22 INF. POP. 15 14 INF. POP.
DF R ALD D-WILL BL MA TOTA) CL: (SD: DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF	ER DLI .PLE L 58.1 % 1.0 ER DLI PLE L 58.1 % 1.0 ER DLI PLE	46.1 61.5 26.5 17.4 69.9 COEFF VAR.% 57.2 200.9 270.5 344.7 55.8 COEFF VAR.% 48.2 202.3 257.8 344.4	4.9 21.7 13.2 16.3 6.9 S.E.% 8.5 29.9 40.3 51.3 8.3 S.E.% 7.2 30.1 38.4 51.3	LOW 29 6 87 3 30 T LOW 3 3 4 4 B. LOW 14	29 3 33 3 15 1,0 10 3 REES/AC AV 2 7 0 2 6 AV 0 1 5 3 2	VG 114 80 108 37 22 RE VG 35 11 0 4 50 EA/AC VG 51 5 4	HIGH 330 97 1,140 42 344 HIGH 14 0 6 54 CRE HIGH 162 28 7 7 7	#	5 <i>195</i> <i>5</i> <i>124</i> FOF PLOTS 5	10 49 3 REQ. 10 31 REQ. 10	15 22 INF. POP. 15 14 INF. POP. 15
DF R ALD D-WILJ BL MA TOTAJ CL: (SD: DF R ALD D-WILJ BL MA TOTAJ DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF	ER DLI .PLE L 68.1 % 1.0 ER DLI PLE L 58.1 % 1.0 ER DLI PLE L	46.1 61.5 26.5 17.4 69.9 COEFF VAR.% 57.2 200.9 270.5 344.7 55.8 COEFF VAR.% 48.2 202.3 257.8 344.4 34.2	4.9 21.7 13.2 16.3 6.9 S.E.% 8.5 29.9 40.3 51.3 8.3 S.E.% 7.2 30.1 38.4	LOW 29 6 87 3 30 T LOW 3 3 4 B LOW 14 1	29 3 33 75 1,0 31 1 1 30 3 3 REES/AC AN 2 7 0 2 6 ASAL AR AN 0 1 5 3 2 3 Ja	/G 114 80 108 37 22 RE 7G 35 11 0 4 50 EA/AC 7G 51 21 5 4 82	HIGH 330 97 1,140 42 344 HIGH 38 14 0 6 54 CRE HIGH 162 28 7	#	5 <i>195</i> <i>4</i> OF PLOTS 5 <i>124</i> <i>47</i>	10 49 7 REQ. 10 31 REQ. 10 12	15 22 INF. POP. 15 14 INF. POP. 15 5
DF R ALD D-WILI BL MA TOTA) CL: (SD: DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF CL: (SD: DF R ALD DF R ALD DF R ALD CL: (SD: CL: (SD) CL:	ER DLI .PLE L 58.1 % 1.0 ER DLI PLE L 58.1 % ER DLI PLE L L 58.1 %	46.1 61.5 26.5 17.4 69.9 COEFF VAR.% 57.2 200.9 270.5 344.7 55.8 COEFF VAR.% 48.2 202.3 257.8 344.4 34.2 COEFF	4.9 21.7 13.2 16.3 6.9 S.E.% 8.5 29.9 40.3 51.3 8.3 S.E.% 7.2 30.1 38.4 51.3 5.1	LOW 29 6 87 3 36 T LOW 3 3 4 LOW 14 1 17 17	99 3 33 75 1,0 10 3 3 REES/AC AV 2 7 0 2 6 AV 0 1 5 3 2 3 3 Ja ET BF/AC	/G 114 80 008 37 22 RE 7G 35 11 0 4 50 EA/AC 7G 51 21 5 4 82 CRE	HIGH 330 97 1,140 42 344 HIGH 38 14 0 6 54 CRE HIGH 162 28 7 7 192	#	5 <i>195</i> <i>4</i> OF PLOTS 5 <i>124</i> <i>47</i> <i>47</i> <i>47</i>	10 49 3 REQ. 10 31 REQ. 10 12 REQ.	15 22 INF. POP. 15 14 INF. POP. 5 INF. POP.
DF R ALD D-WILL BL MA TOTAI CL: 6 SD: DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF CL: 6 SD: DF R ALD SD: CL: 6 SD: CL: 6 SD: SD: SD: SD: SD: SD: SD: SD: SD: SD:	ER DLI .PLE L 68.1 % 1.0 ER DLI PLE L 58.1 % 1.0 ER DLI PLE L	46.1 61.5 26.5 17.4 69.9 COEFF VAR.% 57.2 200.9 270.5 344.7 55.8 COEFF VAR.% 48.2 202.3 257.8 344.4 34.2	4.9 21.7 13.2 16.3 6.9 S.E.% 8.5 29.9 40.3 51.3 8.3 S.E.% 7.2 30.1 38.4 51.3	LOW 29 6 87 3 30 T LOW 3 3 4 B LOW 14 1	99 3 33 75 1,0 10 3 3 REES/AC AV 2 7 0 2 6 AV 0 1 5 3 2 3 3 Ja ET BF/AC AV	/G 114 80 108 37 22 RE /G 35 11 0 4 50 EA/AC /G 51 21 5 4 82 CRE /G	HIGH 330 97 1,140 42 344 HIGH 14 0 6 54 CRE HIGH 162 28 7 7 7	#	5 <i>195</i> <i>4</i> OF PLOTS 5 <i>124</i> <i>47</i>	10 49 7 REQ. 10 31 REQ. 10 12	15 22 INF. POP. 15 14 INF. POP. 5 INF. POP.
DF R ALD D-WILI BL MA TOTAI CL: 6 SD: DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD R	ER DLI .PLE 58.1 % 1.0 ER DLI PLE L 58.1 % 1.0 ER DLI PLE L 58.1 % 1.0 ER DLI PLE L S8.1 %	46.1 61.5 26.5 17.4 69.9 COEFF VAR.% 57.2 200.9 270.5 344.7 55.8 COEFF VAR.% 48.2 202.3 257.8 344.4 34.2 COEFF VAR.% 49.8 205.8	4.9 21.7 13.2 16.3 6.9 S.E.% 8.5 29.9 40.3 51.3 8.3 S.E.% 7.2 30.1 38.4 51.3 5.1 S.E.% 7.4 30.6	LOW 29 6 87 3 30 T LOW 3 3 4 4 B LOW 14 1 17 17 NI LOW 36,01 1,51	29 3 33 1 10 3 REES/AC AV 2 7 0 2 6 AV 0 1 5 3 2 3 3 16 ET BF/AC AV 3 38,8% 0 2,1"	VG 14 80 108 37 22 RE VG 35 11 0 4 50 EA/AC VG 51 21 5 4 82 ERE VG 97 77	HIGH 330 97 1,140 42 344 HIGH 14 0 6 54 CRE HIGH 162 28 7 7 192 HIGH 41,781 2,844	#	5 <i>195</i> <i>4</i> OF PLOTS 5 <i>124</i> <i>47</i> <i>47</i> <i>47</i>	10 49 3 REQ. 10 31 REQ. 10 12 REQ.	15 22 INF. POP. 15 14 INF. POP. 5 INF. POP.
DF R ALD D-WILI BL MA TOTAI CL: (SD: DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF CL: (SD: DF R ALD DF CL: (SD: DF R ALD DF R ALD DF CL: (SD: CL: (SD: (SD	ER DLI .PLE 58.1 % 1.0 ER DLI .PLE L 58.1 % 1.0 ER DLI PLE L	46.1 61.5 26.5 17.4 69.9 COEFF VAR.% 57.2 200.9 270.5 344.7 55.8 COEFF VAR.% 48.2 202.3 257.8 344.4 34.2 COEFF VAR.% 49.8	4.9 21.7 13.2 16.3 6.9 S.E.% 8.5 29.9 40.3 51.3 8.3 S.E.% 7.2 30.1 38.4 51.3 5.1 S.E.% 7.4	LOW 29 6 87 3 30 T LOW 3 30 4 LOW 14 14 1 17 17 17 NI LOW 36,01	99 3 33 1 10 3 REES/AC AV 2 7 0 2 6 AV 0 1 5 3 2 3 3 1 5 3 3 3 0 2,1 3 1,5	VG 14 80 108 37 22 RE VG 35 11 0 4 50 EA/AC VG 51 21 5 4 82 ERE VG 97 77	HIGH 330 97 1,140 42 344 HIGH 14 0 6 54 CRE HIGH 162 28 7 7 192 HIGH 41,781	#	5 <i>195</i> <i>4</i> OF PLOTS 5 <i>124</i> <i>47</i> <i>47</i> <i>47</i>	10 49 3 REQ. 10 31 REQ. 10 12 REQ.	15 22 INF. POP. 15 14 INF. POP. 15 5

TC TST	TATS				PI	STAT ROJECT	ISTICS DOUBI	LE E		PAGE DATE	2 2/25/2025
TWP	RGE	SECT	TRAG	CT	T	YPE	ACRES	PLOTS	TREES	CuFt	BdFt
115	08W	22	UNIT	<u>[] 1</u>	00	MC	60.00	45	206	1	W
CL:	68.1%	CO	EFF		N	NET CUFT FT/ACRE			# OF PL	OTS REQ.	INF. POP.
SD:	1.0	VA	R.	S.E.%	LOW	AVC	6 HIGH		5	10	15
CL:	68.1 %	CO	EFF		NI	ET CUFT I	T/ACRE		# OF PLOT	S REQ.	INF. POP.
SD:	1.0	VA	R.%	S.E.%	LOW	AVG	HIGH		5	10	15
DF		48	.7	7.3	7,43	0 8,01	8,591				
R AL	DER	203	.1	30.2	48	1 68	9 898				
D-WI	LDLI	260	.4	38.8	17	0 27	3 386				
BL M	IAPLE	346	.4	51.6	6	9 14	3 217				
ТОТ	AL	36.	.1	5.4	8,63.	2 9,12	9,611		52	13	6

T	TSPCSTGR Species, Sort Grade - Board Foot Volumes (Type) Project: DOUBLE E														Pag Date Tim	e 2	1 2/25/20 0:13:0			
T11S Twj 11S		ge	Sec	Tract JNIT 1		Туре 00М			Plot 45		-	le Tree	s	C 1	uFt	T1 Bd W		R08W	S22 T	00MC
			%					Per	rcent l	Vet B	oard Fo	oot Vol	ume			A	verag	Logs		
Spp	_			Bd. Def%	Ft. per Ac Gross	re Net	Total Net MBF	Log Scale Dia. 4-5 6-11 12-16 17+			Log Length 12-20 21-30 31-35 36-99				Ln Ft		Bd Ft	CF/ Lf	Per /Acre	
DF	DO	2M	87	1.4	34,650	34,180	2,051		0	11	89	0	1	2	97	39	20	687	3.36	49.7
DF	DO	3M	11	.6	4,100	4,074	244		67	28	5	0	14	24	61	34	10	143	1.22	28.5
DF	DO	4M	2		643	643	39	25	63	12		33	37	24	6	23	7	35	0.52	18.3
DF	Totals		90	1.3	39,393	38,897	2,334	0	8	12	79	1	3	4	92	35	15	403	2.39	96.6
RA	DO	CR	100	1.1	2,201	2,177	131	2	43	30	25	6	6	12	76	30	9	111	1.18	19.7
RA	Totals		5	1.1	2,201	2,177	131	2	43	30	25	6	6	12	76	30	9	111	1.18	19.7
DFW	DO	2M	44	2.7	693	675	40				100				100	40	35	2275	9.96	.3
DFW	DO	3M	55	5.1	861	817	49			4	96		6	4	91	37	29	1519	7.95	.5
DFW	DO	4M	1		14	14	1				100	100				16	21	300	3.81	.0
DFW	Total	8	4	4.0	1,569	1,506	90			2	98	1	3	2	94	37	30	1707	8.59	.9
ВМ	DO	CR	100		418	418	25		100			10			90	32	7	70	0.74	6.0
BM	Totals		1		418	418	25		100			10			90	32	7	70	0.74	6.0
Туре Т	otals			1.3	43,580	42,997	2,580	0	11	13	76	1	3	5	91	34	13	349	2.19	123.1

TC TS	TNDSUN	Л					Stan	d Table	Summa	iry					
							Proj	ect	DOUB	LE E				mary Distance	
T11S Twp 11S	R08W Rge 08W	S22 T(Sec 22	00MC Trac UNI	t			Гуре 00МС		cres 0.00	Plots 45	Sample T 103		T11S R Page: Date: Time:	08W S22 T00N 1 02/25/20/ 10:14:35AN	
s		Sample	FF	Av Ht	Trees/	BA/	Logs	Aver: Net	age Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	Т	otals	
Spc T		-	16'	Tot	Acre	Acre	Acre		Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	9	1	86	59	3.932	1.74	3.93	9.0	30.0		35	118		21	
DF	15	1	87	67	1.415	1.74	2.83	17.5	55.0		50	156		30	
DF	17	1	86	102	1.102	1.74	3.31	21.3	80.0		71	264		42	1
DF	18	1	86	115	.983	1.74	2.95	26.3	93.3		78	275		47	1
DF	19	1	88	99	.882	1.74	1.76	38.5	120.0		68	212		41	1
DF	20	1	91	109	.796	1.74	2.39	33.7	133.3		80	318		48	1
DF	22	2	87	124	1.316	3.47	3.95	42.0	171.7		166	678		99	4
DF	24	4	88	124	2.212	6.95	6.63	50.8	214.2		337	1,421		202	8
DF	25	4	87	131	2.038	6.95	6.11	58.1	248.3		355	1,518		213	9
DF	26	3	88	139	1.413	5.21	4.24	62.6	282.2		265	1,197		159	7
DF	27	2	87	141	.874	3.47	2.62	71.3	316.7		187	830		112	5
DF	28	2	87	140	.812	3.47	2.44	74.3	325.0		181	792		109	4
DF	29	3	88	143	1.136	5.21	3.41	83.6	396.7		285	1,352		171	8
DF	30	5	88	144	1.769	8.68	5.31	90.6	432.0		481	2,293		289	13
DF	31	7	88	139	2.320	12.16	6.96	92.8	441.9		646	3,075		388	18
DF	32	6	88	152	1.866	10.42	5.91	100.5	495.8		594	2,930		356	17
DF	33	6	87	143	1.755	10.42	5.26	106.0	507.8		558	2,673		335	16
DF	34	10	88	149	2.755	17.37	8.26	117.7	596.0		972	4,926		583	29
DF	35	6	89	144	1.560	10.42	4.68	122.8	637.2		575	2,982		345	17
DF	36	2	89	155	.491	3.47	1.47	132.5	683.3		195	1,007		117	6
DF	37	4	88	151	.930	6.95	2.79	130.8	692.5		365	1,933		219	11
DF	38	8	88	148	1.764	13.90	5.51	137.9	724.4		760	3,994		456	24
DF	41	2	90	158	.379	3.47	1.33	157.6	882.9		209	1,171		125	7
DF	45	1	90	163	.157	1.74	.63	162.2	905.0		102	569		61	3
DF	46	2	89	160	.301	3.47	1.05	196.9	1098.6		207	1,157		124	6
DF	47	1	86	150	.144	1.74	.43	188.3	1036.7		81	448		49	2
DF	50	1	91	156	.127	1.74	.38	277.7	1590.0		106	608		64	3
DF	Totals	87	88	126	35.230	151.11	96.56	83.0	402.8		8,011	38,897		4,806	2,33
RA	15	1	86	83	1.932	2.37	3.86	22.5	65.0		87	251		52	1:
RA	16	1	86	82	1.698	2.37	3.40	26.0	85.0		88	289		53	11
RA	17	1	87	38	1.504	2.37	1.50	26.0	50.0		39	75		23	:
RA	19	1	87	67	1.204	2.37	2.41	31.5	100.0		76	241		46	14
RA	20	2	87	78	2.173	4.74	4.35	39.3	122.5		171	532		102	32
RA	21	1	86	60	.985	2.37	1.97	34.5	100.0		68	197		41	12
RA	26	1	87	69	.643	2.37	1.29	57.0	200.0		73	257		44	1:
RA	31	1	87	82		2.37	.90	96.5	370.0		87	335		52	20
RA	Totals	9	87	70	10.591		19.68	35.0	110.6		689	2,177		414	13
OFW	45	1	90	150	.097	1.07	.29	205.7	1113.3		60	323		36	19
OFW	61	1	87	166	.053	1.07	.16	408.3	2240.0		64	353		39	2
OFW	62	1	87	142	.051	1.07	.15	377.3	2093.3		58	320		35	19
OFW	64	1	88	155	.048	1.07	.14	282.0	1676.7		40	240		24	14
OFW	65	1	85	142	.046	1.07	.14	406.0	1946.7		56	270		34	16
OFW	Totals	5	88	151	.294	5.33	.88	315.5	1706.9		278	1,506		167	90
BM	14	1	86	86	2.079	2.22	4.16	20.5	70.0		85	291		51	1′
BM	15	1	87	56	1.811	2.22	1.81	32.0	70.0		58	127		35	8
	l														
BM	Totals	2	86	72	3.890	4.44	5.97	24.0	70.0		143	418		86	25

тс т	LOGST	VB					og Sto oject:	ck Ta		MBF UBLF									
T11S	R08V	N S2	22 T0	0MC											T1	IS R08	W S22	T00M	
Twp 11S	Rge 08W		Sec 22				Туре 00М	С	Acres 60.00		Plots 45	Sample Trees 103			J	Page Date Fime	1 2/25/2025 10:15:46AM		[
	So G	r I	Jog	Gross	%	Net	%												
Spp T	rt d	e I	Jen	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	DO			10		10	.4									10		10	
DF DF	DO DO			12 25	2.6	12 24	.5 1.0								14		10	12	
DF	DO	2M	34	11	.9	10	.4						2		8				
DF DF	DO DO			34 40	1.9	34 39	1.5 1.7						2	7	17 23	1	15		
DF	DO			40 1,948	1.9	39 1,921	82.3					3	29	7 94	23 494		661	128	
DF –	DO	3M	12	1		1	.0						1						
DF	DO	3M	24	6	6.1	5	.2				3	3							
DF DF	DO DO			5 12	1.2	5 12	.2 .5				1	3	2 2	5					
DF	DO			12	1.4	. 12	.5				5	8	2	5					
DF	DO	3M 3	32	41	.3	41	1.7				11	15	6		8				
DF DF	DO DO			19 28		19 28	.8 1.2				7 13	12 15							
DF		3M 3		33	1.1	32	1.4			3		13	10		6				
DF	DO			89	.7	89	3.8				7		21	8	12				
DF	DO			4		4	.2			1			1	1					
DF DF	DO DO			1		1	.1 .0			1									
DF	DO -			1		1	.0 .0			1									
DF		4M 2		6		6	.2		1	2	3								
DF DF	DO DO			1 6		1 6	.1 .3		1	3	2	2							
DF	DO -			3		3	.1			1									
DF	DO -			4		4	.2				4								
DF DF	DO 4	4M 3 4M 3		9 2		9 2	.4 .1		7		2		2						
DF		Totals			1.2		.1 90.5		10	13		118	79	114	582	521	696	140	
RA	DO			2,364	1.3	2,334	90.5		10	13		110	/9	114	582	531	686	140	
RA	DO 0			1 1		1 1	.1 .9		1	1									
RA	DO (CR 1	16	1		1	1.0			1									
RA RA	DO 0 DO 0			4 2		4 2	3.3 1.5			4 2									
RA RA	DO 0			2		2	1.5 .9		1	Z									
RA	DO (CR 3	30	5		5	3.5			5									
RA RA	DO 0 DO 0			16 11	1.7	15 11	11.8 8.1			1			11		14				
RA RA	DO (90	1.3	89	67.9				13	28	29			19			
RA	1	Fotals		132	1.1	131	5.1		2	15	13	28	39		14	19			
DFW	DO 2	2M 4	0	42	2.7	40	44.8										6	11	23
DFW	DO 3	3M 3	0	3	9.2	3	3.0									3			
DFW	DO 3	3M 3	2	2		2	2.1								2				
DFW	DO 3			47	5.1	44	49.1									3	4	18	20
DFW	DO 4			1		1	1.0									1			
DFW		otals		94	4.0	90	3.5								2	7	10	29	43
	DO O DO O			2 23		2	10.0 90.0			2 8	15								
BM	DU (л 4	۲ I	23		23	90.0			8	15								

TC TL	.OGST	VB					0	ek T	able -		_									
						Pr	oject:		DO	UBLE	E									
T11S	R08V	v sz	22 T	00MC											T11S R08W S22 T00M					
Twp Rge Sec Tract 11S 08W 22 UNIT 1						Туре 00МС	C	Acres 60.(Plots 45	Sample Trees 103		es	1	Page Date Fime	2 2/25/2 10:15	2025 :46AN	1		
S	So G	ir]	Log	Gross	s %	Net	%	Net Volume by Scaling Diameter in Inches												
Spp T	rt d	e]	Len	MBI	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+	
BM		Tota	ls	2	5	25	1.0			10	15									
Total All	Specie	s		2,61	5 1.3	2,580	100.0		12	38	88	146	119	114	599	557	696	169	43	

