

District: West Oregon Date: October 09, 2023

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$765,629.30	\$22,603.36	\$788,232.66
		Project Work:	(\$59,479.00)
		Advertised Value:	\$728,753.66

10/19/23

Timber Sale Appraisal Wolf of Haul Street

Sale WO-341-2024-W01093-01

District: West Oregon Date: October 09, 2023

Timber Description

Location: Portions of Sections 29 & 32, T11S, R8W, W.M., Lincoln County, Oregon

Stand Stocking: 40%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	16	0	98
Alder (Red)	12	0	97

Volume by Grade	28	3S & 4S 6"- 11"	Camprun	Total
Douglas - Fir	816	749	0	1,565
Alder (Red)	О	0	208	208
Total	816	749	208	1,773

Comments: Pond Values Used: Local Pond Values, Aug, 2023

Western Hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost: \$132.57/MBF = \$490/MBF - \$357.43/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$652.57 MBF = \$1160/MBF - (\$357.43/MBF + \$150/MBF(Extra Haul Cost))

Big leaf maple and Other Hardwoods Stumpage Price = Hardwood Pulp price using a conversion factor of 10 ton/MBF: = \$30.00/MBF

PULP (Conifer and Hardwood Price) = \$3/TON

Other Costs (with Profit & Risk to be added): Intermediate Support/Tail Trees: 6 supports @ \$100/support = \$600 TOTAL Other Costs (with Profit & Risk to be added) = \$600

Other Costs (No Profit & Risk added):

Equipment Cleaning (Invasive Species): \$2,000

Landing Slash Piling and sorting out firewood: 5 Landings @ \$180/Landing = \$900

TOTAL Other Costs (No Profit & Risk added) = \$2,900

ROAD MAINTENANCE Move-in: (Grader) \$875

Final Road Maintenance: \$13,949.19

TOTAL Road Maintenance: \$14,824.19/1,773MBF = \$8.36/MBF

SLASH DISPOSAL

Project Work: 10 hrs @ \$170/hr = \$1,700

Total Slash Disposal = \$1,700

Timber Sale Appraisal Wolf of Haul Street

Sale WO-341-2024-W01093-01

District: West Oregon Date: October 09, 2023

Logging Conditions

Combination#: 1 Douglas - Fir 37.00%

Alder (Red) 41.04%

yarding distance: Long (1,500 ft) downhill yarding: No

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF

loads / day: 8 bd. ft / load: 4500

cost / mbf: \$238.31

machines: Log Loader (A)

Tower Yarder (Large)

Combination#: 2 Douglas - Fir 40.11%

Alder (Red) 39.47%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF

loads / day: 9 bd. ft / load: 4500

cost / mbf: \$211.83

machines: Log Loader (A)

Tower Yarder (Large)

 Combination#: 3
 Douglas - Fir
 17.95%

 Alder (Red)
 17.40%

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF

loads / day: 11 bd. ft / load: 4500

cost / mbf: \$173.32

machines: Log Loader (A)

Tower Yarder (Large)

Combination#: 4 Douglas - Fir 4.93%

Alder (Red) 2.09%

Logging System: Shovel **Process:** Feller Buncher

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF

loads / day: 15 bd. ft / load: 4000

cost / mbf: \$166.67

machines: Feller Buncher w/ Delimber

10/19/23

District: West Oregon Date: October 09, 2023

Logging Costs

Operating Seasons: 2.00

Profit Risk: 10%

Project Costs: \$59,479.00

Other Costs (P/R): \$600.00

Slash Disposal: \$1,700.00

Other Costs: \$2,900.00

Miles of Road

Road Maintenance:

\$8.36

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load	
Douglas - Fir	\$0.00	3.0	4.5	
Alder (Red)	\$0.00	3.0	3.5	

District: West Oregon Date: October 09, 2023

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$212.49	\$8.53	\$4.95	\$94.44	\$0.34	\$32.08	\$0.96	\$2.00	\$1.64	\$357.43
Alder (Red	l)								
\$215.05	\$8.61	\$4.95	\$122.62	\$0.34	\$35.16	\$0.96	\$2.00	\$1.64	\$391.33

Specie	Amortization	Pond Value	Stumpage	Amortized		
Douglas - Fir	\$0.00	\$846.65	\$489.22	\$0.00		
Alder (Red)	\$0.00	\$500.00	\$108.67	\$0.00		

District: West Oregon Date: October 09, 2023

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total		
Douglas - Fir	1,565	\$489.22	\$765,629.30		
Alder (Red)	208	\$108.67	\$22,603.36		

Gross Timber Sale Value

Recovery: \$788,232.66

Prepared By: Zane Sandborg Phone: 541-929-9163

SUMMARY OF ALL PROJECT COSTS

Sale Name:	Wolf of Haul Street		Date: Time:	October 2023 9:56
Project #1 - Impro	vements			
Road Segment		<u>Length</u>	Cost	
1 to 2		231.0 sta	\$ <u>1,69</u> 1	
3 to 4		14.0 sta	\$2,195	
5 to 6		17.8 sta	\$31,206	
7 to 8		7.6 sta	\$1,845	
9 to 10		4.4 sta	\$5,376	
11 to 12		2.0 sta	\$2,496	
17 to 18		5.4 sta	\$83	
23 to 24		2.5 sta	\$39	
Fuel Cost Increase			\$4,493	<u> </u>
	TOTALS	284.7 sta	\$49,424	
Project #2 - Brush	ina	<u>Length</u>	Cost	
Brushing	<u>iiig</u>	2.5 mi	\$2,255	
Sod and Brush Rer	moval	2.5 1111	\$2,033	
Fuel Cost Increase			\$429	
1 401 0001 111010400	TOTAL		\$4,717	_
			4 1,1 11	
Project #3 - Move	<u>in</u>		Cost	
Excavator, C325 or	equiv.		\$1,450	
Dozer, D-6 or equiv	<i>'</i> .		\$875	
Grader, Cat 14-G o	r equiv.		\$875	
Vibratory roller			\$875	
Road Brusher			\$778	
Fuel Cost Increase	(10%)		\$485	<u>_</u>
	TOTAL		\$5,338	

GRAND TOTAL \$59,479

Compiled by: Zane Sandborg Date 10/19/2023

SALE Wo	olf of Haul Street o 2	Project #	1		LENGTH	impro	ove		231.0 sta
Shape subgra (Sta. 222+90	aste Area (w/ dozer) ade (w/ grader) to Pt. 2) grade (w/ roller)	0.5 hrs 8.1 sta 8.1 sta		@ @	Rate \$128.00 \$20.63 \$16.00	/sta /sta	= = = AL EXCA	\$64 \$167 \$130 VATION =	\$361
IMPROVEME Re-open road (Sta. 222+90 Process surfa (w/ grader) Compact surf	d (w/ dozer) to Pt. 2) ace	8.1 sta 3.0 sta 3.0 sta		@ @ @	Rate \$36.67 \$20.63 \$16.00	/sta /sta /sta	= = =	\$297 \$62 \$48	
(w/ roller)						OTAL	IMPROV	'EMENT =	\$407
SURFACING Spot rock		30 CY	<u>Size</u> 1½"-0"	@	·	/CY		\$848 G COST =	\$848
SPECIAL PR Clean out culv (inlets and ou	verts	3 culverts		@	Rate \$25	ea	=	\$75	φοιο
O constitution		7 0		TO	TAL SPEC	CIAL P	ROJECT	S COST =	\$75
Compiled by: Date:		Zane Sandborg Oct 19, 2023				GRAN	ND TOTA	L ====>	\$1,691

SALE ROAD	Wolf of Haul Street 3 to 4	Project #	1		LENGTH	l impr	ove		14.0 sta
IMPROVE	EMENT				Rate				
Re-open I (w/ grade	landing (Pt. 4) r)	0.5 hrs		@	\$ 114.0 0	/hr	=	\$57	
Process s (w/ grade		14.0 sta		@	\$20.63	/sta	=	\$289	
Compact (w/ roller)		14.0 sta		@	\$16.00	/sta	=	\$224	
					Т	OTAL	IMPRO	VEMENT =	\$570
SURFACE Spot rock Landing re	_	30 CY 30 CY	<u>Size</u> 1½"-0" Jaw-Run	@	Rate \$28.26 \$25.90	/CY	=	\$848 \$777	
					ТОТ	AL SU	IRFACI	NG COST =	\$1,625
Compiled	by:	Zane Sandborg				224	ID TOT		40.405
Date:		Oct 19, 2023				GRAI	ND TOT	AL ====>	\$2,195

SALE Wolf of Haul Street ROAD 5 to 6	Project #	1		LENGTH	impro	ove		17.8 sta
CLEARING AND GRUBBING Landing extension	0.13 ac		@	<u>Rate</u> \$1,337.00) /acre	e =	\$174	
			TO	TAL CLEA	RING	AND G	RUBBING =	\$174
EXCAVATION				Rate				
Remove tank trap (w/ C325) Extend Landing (Pt. 6) (w/ C325)	0.5 hrs 1.5 hrs		@	\$145.00 \$145.00		= =	\$73 \$218	
End haul waste material (Exp. 20%)	100 CY		@	\$4.00	/CY	=	\$400	
Compact waste material (Exp. 20%)	100 CY		@	\$0.45	/CY	=	\$45	
Shape subgrade (Pt. 5 to 7) (w/ grader)	15.7 sta		@	\$20.63	/sta	=	\$324	
Reshape subgrade (Pt. 7 to 6) (w/ dozer)	2.1 sta		@	\$20.63	/sta	=	\$43	
Compact subgrade (w/ roller)	17.8 sta		@	\$16.00	/sta	=	\$285	
					TOTA	AL EXC	CAVATION =	\$1,388
IMPROVEMENT				Rate				
Re-open road (w/ dozer)	2.1 sta		@	\$36.67	/sta	=	\$77	
Re-open landing (w/ dozer)	0.5 hrs		@	\$128.00	/hr	=	\$64	
Process surface (w/ dozer)	18.8 sta		@	\$20.63	/sta	=	\$388	
Process surface (w/ grader)	21.6 sta		@	\$20.63	/sta	=	\$446	
Compact surface (w/ roller)	40.4 sta		@	\$16.00	/sta	=	\$646	
(W) Tollory				Т	OTAL	IMPR	OVEMENT =	\$1,621
SURFACING Base rock (6" lift)	590 CY	<u>Size</u> Jaw-Run	@	<u>Rate</u> \$25.90	/CY	=	\$15,281	
(Pt. 5 to Pt. 6) Surface rock (4" lift)	350 CY	3"-0"	@	\$26.91	/CY	=	\$9,419	
(Pt. 5 to Pt. 7)								
Traction rock (2" lift) (Sta. 6+55 to Sta. 12+40)	60 CY	1½"-0"	@	\$28.26	/C Y	=	\$1,696	
Turnaround rock (Sta. 13+55) Landing rock (Pt. 6)	10 CY 50 CY	Jaw-Run Jaw-Run	@ @	\$25.90 \$25.90	/CY /CY		\$259 \$1,295	
				TOT	AL SU	RFAC	ING COST =	\$27,950
SPECIAL PROJECTS				Rate				
Grass seed (WA)	2 lbs		@	\$1.80	/lb	=	\$4	
Mulch Labor	2 bales 1 hrs		@	\$12.00 \$45.00	/bale /hr	=	\$24 \$45	
	1 1110						CTS COST =	\$73
Compiled by: Date:	Zane Sandborg Oct 19, 2023				GRAN	ND TO	TAL ====>	\$31,206

SALE ROAD	Wolf of Haul Street 7 to 8	Project #	1		LENGTH	impr	ove		7.6 sta
EXCAVA Shape su (w/ grade	ıbgrade	2 sta		@	<u>Rate</u> \$20.63	/sta	=	\$41	
	subgrade	2 sta		@	\$16.00	/sta	=	\$32	
Waterbar	and block (w/grader) 0 to Pt. 8)	1 hr		@	\$145.00	/hr	=	\$145	
(- · · · · · · · · · · · · · · · · · · ·					TOT	AL EXC	CAVATION =	\$218
IMPROVI	EMENT				Rate				
	surface (w/dozer) Sta. 2+00)	2.0 sta		@	\$20.63	/sta	=	\$41	
Compact	surface (w/ roller) Sta. 2+00)	2.0 sta		@	\$16.00	/sta	=	\$32	
`	,				Т	OTAL	IMPR	= TNAMAYC	\$73
SURFAC Base rock (Pt. 7 to 5		60 CY	<u>Size</u> Jaw-Run	@	<u>Rate</u> \$25.90	/CY	=	\$1,554	
(*)					TOT	AL SU	IRFAC	ING COST =	\$1,554
Compiled Date:	I by:	Zane Sandborg Oct 19, 2023				GRAI	ND TO	TAL ====>	\$1,845

SALE ROAD	Wolf of Haul Street 9 to 10	Project #	1		LENGTH	l impro	ove		4.4 sta
Widen c (w/ C325	urve (Pt. 11)	1 hr		@	<u>Rate</u> \$145.00	/hr	=	\$145	
•	I waste material	30 CY		@	\$3.00	/CY	=	\$90	
	t waste material	30 CY		@	\$0.45	/CY	=	\$14	
Shape s (w/ grade	ubgrade	4.4 sta		@	\$20.63	/sta	=	\$91	
	t subgrade	4.4 sta		@	\$16.00	/sta	=	\$70	
						TOTA	AL EXC	AVATION =	\$410
IMPROV	/EMENT				<u>Rate</u>				
Re-open	road (w/grader)	4.4 sta		@	\$15.40	/sta	=	\$68	
Re-open	landing (w/grader)	0.5 hrs		@	\$114.00	/hr	=	\$57	
Process (w/ doze		4.9 sta		@	\$20.63	/sta	=	\$101	
Compac (w/ roller	t surface r)	4.9 sta		@	\$16.00	/sta	=	\$78	
					Т	OTAL	IMPRO	OVEMENT =	\$304
SURFAC	CING		<u>Size</u>		Rate				
Base roo	ck (6" lift)	150 CY	Jaw-Run	@	\$25.90	/CY	=	\$3,885	
Landing		30 CY	Jaw-Run	@	\$25.90	/CY	=	\$777	
					ТОТ	AL SU	RFACI	NG COST =	\$4,662
Compile Date:	d by:	Zane Sandborg Oct 19, 2023				CDAN	ID TO	ΓAL ====>	\$5,376
Date.		OCI 19, 2023				GNAI	וטועו	AL ====>	ψυ,υ τ

SALE ROAD	Wolf of Haul Street 11 to 12	Project #	1		LENGTH	l impro	ove		2.0 sta
EXCAVA	ATION				<u>Rate</u>				
Shape so (w/ grade	_	2.0 sta		@	\$20.63	/sta	=	\$41	
	t subgrade	2.0 sta		@	\$16.00	/sta	=	\$32	
(1 1 1	,					TOTA	AL EXC	CAVATION =	\$73
IMPROV	'EMENT				Rate				
Process (w/ doze		2.5 sta		@	\$20.63	/sta	=	\$52	
Compact (w/ roller	t surface	2.5 sta		@	\$16.00	/sta	=	\$40	
(w/ roller	,				Т	OTAL	IMPR	OVEMENT =	\$92
SURFAC	CING		Size		Rate				
Base roo	ck (6" lift)	70 CY	Jaw-Run	@	\$25.90	/CY	=	\$1,813	
Landing	rock	20 CY	Jaw-Run	@	\$25.90	/CY	=	\$518	
					TOT	AL SU	RFACI	NG COST =	\$2,331
Compile	d by:	Zane Sandborg							
Date:		Oct 19, 2023				GRAN	ND TO	TAL ====>	\$2,496

SALE Wolf of Haul Street Project # 1 LENGTH improve 5.4 sta ROAD 17 to 18 **IMPROVEMENT** <u>Rate</u> Re-open road (w/grader) @ \$83 5.4 sta \$15.40 /sta = TOTAL IMPROVEMENT = \$83 Compiled by: Zane Sandborg Oct 19, 2023 Date: **GRAND TOTAL ====>** \$83

 SALE
 Wolf of Haul Street
 Project #
 1
 LENGTH improve
 2.5 sta

 IMPROVEMENT

 Re-open road (w/grader)
 2.5 sta
 @ \$15.40 /sta = \$39

TOTAL IMPROVEMENT = \$39

Compiled by: Zane Sandborg

Date: Oct 19, 2023 GRAND TOTAL =====> \$39

SUMMARY OF BRUSHING COST

SALE W ROAD AI	olf of Haul Street I (Surfaced	Project # l/unsurfaced)	2		LENGTH main	tain		2.50 Mile	es
Pt. 3 to Pt. 4 Pt. 5 to Pt. 6 Pt. 7 to Pt. 8 Pt. 9 to Pt. 1 Pt. 11 to Pt. Pt. 13 to Pt. Pt. 15 to Pt. Pt. 15 to Pt.	0 12 14 16	0.27 mi 0.34 mi 0.14 mi 0.08 mi 0.04 mi 0.19 mi 0.40 mi 0.49 mi		000000000	Rate \$800.00 /mi \$800.00 /mi \$800.00 /mi \$800.00 /mi \$800.00 /mi \$800.00 /mi \$800.00 /mi	= = = = = =	\$216 \$272 \$112 \$64 \$32 \$152 \$320 \$392		
	TOTAL LENGTH =	1.95 mi			TOTAL LIGHT B	RUSHIN	IG COST =	\$1,560	
MEDIUM BF Sta. 222+90 (Pt. 1 to Pt. 2 Pt. 17 to Pt. HEAVY BRU Pt. 21 to Pt. Pt. 23 to Pt.	to Pt. 2 2) 18 TOTAL LENGTH = JSHING 22	0.25 mi 0.05 mi		@	Rate \$1,100.00 /mi \$1,100.00 /mi TOTAL HEAVY B Rate \$1,400.00 /mi \$1,400.00 /mi	= =	\$350 \$70	\$275 \$420	
					BRUS	SHING (RAND TOTA	L ====>	\$2,255
SOD AND D All brushing	EBRIS REMOVAL segments	2.50 mi		@	<u>Rate</u> \$813.12 /mi	=	\$2,033		
	TOTAL LENGTH =	2.50 mi			TOTAL SOD AN	ID DEB	RIS REMOVA	L ====>	\$2,033

Compiled by: Zane Sandborg
Date: Oct 19, 2023

SUMMARY OF MAINTENANCE COST

SALE: Wolf of Haul Street Final log haul Maintenance Cost Estimate

(Costed in appraisal, not in project costs)

Move-in Grader \$ 875

Road Segment	Length	Cost/Sta	Cost	_ Mileage
1 to 2	232.1	\$20.63	\$4,788.22	4.40
3 to 4	14.0	\$20.63	\$288.82	0.27
5 to 6	17.8	\$20.63	\$367.21	0.34
7 to 8	2.0	\$20.63	\$41.26	0.04
9 to 10	4.4	\$20.63	\$90.77	0.08
11 to 12	2.0	\$20.63	\$41.26	0.04
Total	272.3		\$5,617.54	5.16

Maintenance Rock:

	Volume	Cost/CY	Cost
1½"-0"	190	\$28.26	\$5,369.40
3"-0"	60	\$26.91	\$1,614.60
Fue Cost Increase Grand Total			\$1,347.65 \$ 14,824.19
TS Volume	1,773	MBF	
Cost / MBF =			\$8.36

Rock Haul Cost Computation

				-	-			
SALE NAME:	Wolf of haul st	treet				DATE:	Oct 19, 2	2023
ROAD NAME:	Wolf Cabin Road	d				CLASS:	: Medium	
ROCK SOURCE	: Rickard Rock (Quarry				10 CY	truck	
Route:	Hwy 20, Harlan-	-Burnt	Woods	Rd.,	Burnt	Woods	Ridge Rd.,	
	Wolf Cabin Road	d						
TIME Comput	ation:							
Road speed	time factors:							
1	. 55 MPH		MRT				0.0	minutes
2	. 50 MPH	25.0	MRT				30.0	minutes
3	. 45 MPH		MRT				0.0	minutes
4	. 40 MPH		MRT				0.0	minutes
5	. 35 MPH	4.0	MRT				6.9	minutes
6	. 30 MPH		MRT				0.0	minutes
7	. 25 MPH		MRT				0.0	minutes
8	. 20 MPH	8.0	MRT				24.0	minutes
9	. 15 MPH		MRT				0.0	minutes
10	. 10 MPH	2.0	MRT				12.0	minutes
11	. 05 MPH		MRT				0.0	minutes
Total ha	ead time per RT uling cycle time ficiency)	for th	is se	tting			0.50 73.40	ı
Operator ef	ficiency correct.	ion	0	.85			86 35	minutes
=	ncy correction	1011		.90				minutes
OOD CITICIC	ncy correction		O	• 50			33.31	militaces
Truck capac	itv (CY)		10	.00			9.59	min/CY
-	e, delay time pe	r CY					0.25	•
	es) per cubic ya:						9.84	
,	, 1							
COST per CY	computation							
	truck and operate	or per	hour				\$90.00	/hr.
Cost of	truck and operate	or per	minut	е			\$1.50	/min
Cost per CY							\$14.76	/CY
Spread and	compact Wate	er truc	k, Gra	ader 8	& Roll	er	\$1.50	/CY
			Cost	Deliv	rered		Cost Deliv	vered
Size	Cost/Yd (Pit)			_	ssing		with proce	
1½" - 0"	\$ 13.50		\$28		9		\$29.76	
3" - 0"	\$ 12.15		\$26				\$28.41	
Jaw-Run	\$ 11.14		\$25				\$27.40	
Pit-Run	\$ 9.45		\$24				\$25.71	

TIMBER CRUISE REPORT

Wolf of Haul Street (WO-341-2023-W01093-01) FY 2024

- 1. Sale Area Location: Portions of Sections 29 & 32, T11S, R8W, W.M. Lincoln County, Oregon.
- 2. Fund Distribution:

a. Fund

BOF 100%

CSL 0%

3. Sale Acreage by Area:

Unit	Treatment	Gross Acres	Stream Buffers	Slope Buffers	Existing Roads	Green Tree Retention Area	Net Sale Acres	Acreage Comp. Method
1	Modified Clearcut	17	1	1	1	1	13	GIS
2	Modified Clearcut	62	6	<1	1	1	54	GIS
Total		79	7	1	2	2	67	

- 4. Cruisers and Cruise Dates: This sale was cruised by Zane Sandborg, Cody Valencia, Jeff Kuust and Jack Stout in July and August of 2023.
- 5. Cruise Method and Computation: The sale consists of two Modified Clearcut units that were cruised using variable radius plot sampling. Unit 1 was cruised using a basal area factor of 33.61 on a 2x3 chain cruise grid. Unit 2 was cruised using a basal area factor of 40 on a 3x3 chain cruise grid. On Unit 1, a total of 21 measure plots were taken. On Unit 2, a total of 56 plots were taken: 28 measure plots and 28 count plots.

Measure plots were measured for DBH, height, form factor, grade, and defect. Data was entered into the Atterbury Super ACE cruise program to determine stand statistics and net board foot volume. Volume was removed to account for hidden defect and breakage and in-unit wildlife trees.

Digital ortho photos, Lidar data, and GPS data were used to map the boundaries for the sale, and ArcGIS Pro was used to determine gross and net acreage.

- 6. Measurement Standards: Tree heights were measured to the nearest foot, to a top diameter of 6 inches inside bark or to 40% of form factor. Diameters at breast height (DBH) were measured to the nearest inch, and a form point of 16 feet was used to calculate form factor. Form factors were measured or estimated on every tree. Most trees were graded in 40 foot log segments unless breakage, defect, or length to top of grade cruise diameter warranted otherwise.
- 7. **Timber Description:** Timber is primarily 36 year-old Douglas-fir for Units 1 and 49 year-old to 81 year-old Douglas-fir for Unit 2. Unit 1 possesses a small amount of Western hemlock, grand fir, and red alder. Unit 2 possess a small amount of big-leaf maple and moderate amounts of red alder. For Unit 1 the average Douglas-fir to be removed is approximately 12 inches DBH, with an average height of 49 feet to a merchantable top. For Unit 2, the average Douglas-fir to be removed is approximately 17 inches DBH, with an average height of 65 feet to a merchantable top. The average volume per acre to be harvested (net) is approximately 20.7 MBF for Unit 1 and 27.9 MBF for Unit 2. Laminated root rot is present in Unit 1.

8. Statistical Analysis and Stand Summary: (See attached "Statistics").

Unit	Target CV	Target SE	Actual CV	Actual SE
1	40%	9%	41.0%	9.2%
2	60%	9%	49.1%	6.6%

Note: Statistics shown are for conifer and hardwood trees combined. Percentages are for net board foot volume.

9. Total Volume (MBF) by Species and Grade: (See attached volume report "Species, Sort Grade – Board Foot Volumes - Project").

Unit	Species	Gross Cruise Volume (MBF)	Cruised D & B	Cruised D & B (MBF)	Green Tree Retention (MBF)	Hidden D & B	Hidden D & B (MBF)	Net Sale Volume
1	Douglas- fir	264	2.1%	6	1	3%	8	249
1	Red Alder	15	2.3%	<1	0	7%	1	14
2	Douglas- fir	1408	.6%	8	43	3%	41	1316
2	Red Alder	199	.5%	1	0	2%	4	194
Total		1885	.8%	15	44	2.9%	54	1773

Unit	Species	Avg. DBH	Tot. Net Vol.	2-Saw	3-Saw	4-Saw	Camp Run
	5 1 6	10	Grade %	5%	76%	19%	-
	Douglas-fir	12	249	13	189	47	-
1	70 1 1 1 1	1	Grade %	-	-	-	100%
	Red Alder	16	14	_	-	-	14
	D 1 0	1.77	Grade %	61%	33%	6%	-
_	Douglas-fir	17	1316	803	434	79	-
2			Grade %	_	-	_	100%
	Red Alder	12	194	-	-	-	194
Total	Total		1773	816	623	126	208

Attachments: -Cruise Design	Attachments:	-Cruise	Design
-----------------------------	--------------	---------	--------

-Cruise Maps

-Statistics

-Species, Sort, Grade - Board Foot Volume

-Stand Table Summary -Log Stock Table – MBF

Prepared by: Zane Sandborg	Date: <u>010/19/2023</u>
Unit Forester: Cody Valencia	Date: 10/2-3/2-3

CRUISE DESIGN WEST OREGON DISTRICT

Sa	ale Name: Wolf of Haul Street Unit1_
Αŗ	Arvest Type: MC Oprox. Cruise Acres:13
	<u>Cruise Goals:</u> (a) Grade minimum <u>100</u> conifer and <u>0</u> hardwood trees: (b) Sample <u>21</u> cruise plots (21 grade: 0 count); (c) Other goals <u>X</u> Determine log grades for sale value.
	(Special cruising directions – leave trees etc.) <u>Take plots as shown on map. Do not take plots in buffers.</u>
	DO NOT RECORD 12', 22' and 32' (for Hardwoods).
	DO NOT RECORD 22' LENGTHS.
В.	Cruise Design: 1. Plot Cruises: BAF 33.61 Full point Cruise Line Direction(s) 90/270 Cruise Line Spacing 3/198 (chains) (feet) Cruise Plot Spacing 2/132 (chains) (feet) Grade/Count Ratio 1:0

C. Tree Measurements:

- **1. Diameter:** Minimum DBH to cruise is <u>8"</u> for conifers and <u>10"</u> for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- **2. Bole Length:** Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- **3.** Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>7"</u>, <u>8"</u> for <u>hardwoods</u> or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees ≤ 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each

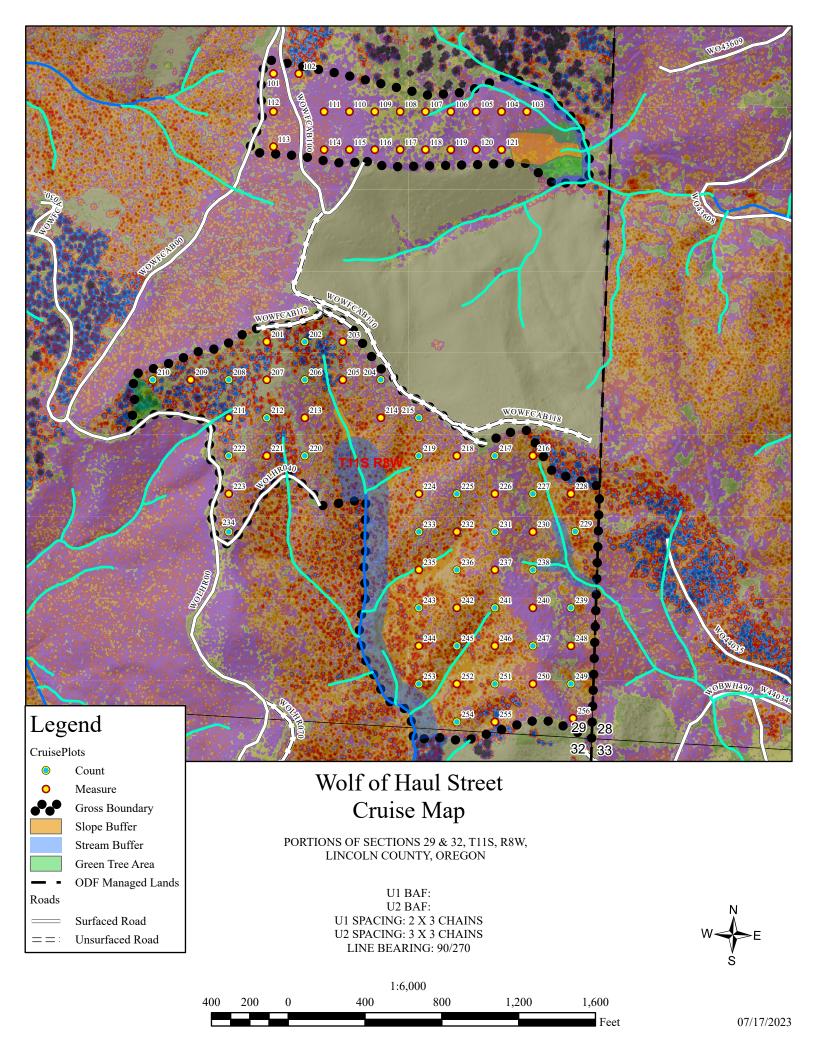
merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes: A. Species: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- **7. Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning points with red flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie red flagging above eye level near plot center and another red flagging around a sturdy wooden stake marking plot center. On red flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in yellow paint. Mark leave trees with an L for leave. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint.
- **9. Cruising Equipment:** Relaskop, Rangefinder or Laser, Logger's Tape (with dbh on back), Biltmore Stick, Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Yellow Paint.
- **10. Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by:	Zane Sandborg	
Approved by:		
Date:		

CRUISE DESIGN WEST OREGON DISTRICT

Sa	ale Name: Wolf of Haul Street Unit 2
	Arvest Type: MC Deprox. Cruise Acres:54
Pla	anned Sale Volume: 2.42 MMBF Estimated Sale Area Value/Acre: \$ 17,100
Α.	<u>Cruise Goals:</u> (a) Grade minimum <u>100</u> conifer and <u>0</u> hardwood trees: (b) Sample <u>56</u> cruise plots (28 grade: 28 count); (c) Other goals <u>X</u> Determine log grades for sale value.
	(Special cruising directions – leave trees etc.) <u>Take plots as shown on map. Do not take plots in buffers.</u>
	DO NOT RECORD 12', 22' and 32' (for Hardwoods).
	DO NOT RECORD 22' LENGTHS.
В.	Cruise Design: 1. Plot Cruises: BAF 40 Full point Cruise Line Direction(s) 90/270 Cruise Line Spacing 3/198 (chains) (feet) Cruise Plot Spacing 3/198 (chains) (feet) Grade/Count Ratio 1:1


C. <u>Tree Measurements</u>:

- **1. Diameter:** Minimum DBH to cruise is _8" for conifers and _10" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- **2. Bole Length:** Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- **3.** Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>7"</u>, <u>8"</u> for <u>hardwoods</u> or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees ≤ 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each

merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes: A. Species: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- **7. Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning points with red flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie red flagging above eye level near plot center and another red flagging around a sturdy wooden stake marking plot center. On red flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in yellow paint. Mark leave trees with an L for leave. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint.
- **9. Cruising Equipment:** Relaskop, Rangefinder or Laser, Logger's Tape (with dbh on back), Biltmore Stick, Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Yellow Paint.
- **10. Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

by: Zane Sandborg	
	_
	by: Zane Sandborg

TC PSTATS											PAGE DATE	1 10/9/2023
TWP RO	GE	SC	TRACT	,	ГҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt
11S 08		29	U1		00MC			13.00	21	129	1	W
						TREES		ESTIMATED TOTAL		ERCENT AMPLE		
		F	PLOTS	TREES		PER PLOT		TREES	,	TREES		
			21 21	129 129		6.1 6.1		3,231		4.0		
100 %												
TWP RGE SC TR. 11S 08 29 U1 TOTAL 2 CRUISE 2 DBH COUNT REFOREST COUNT BLANKS 100 % SAMPLE TREES DF R ALDER SNAG GR FIR TOTAL 2 CL 68.1 CO SD: 1.0 VA DF 8 R ALDER 10 SNAG GR FIR 3 TOTAL 9 CL 68.1 CO SD: 1.0 VA DF 8 R ALDER 10 SNAG GR FIR 3 TOTAL 8 CL 68.1 CO SD: 1.0 VA DF 3 R ALDER 3 SNAG GR FIR 3 TOTAL 8 CL 68.1 CO SD: 1.0 VA DF 3 R ALDER 3 SNAG GR FIR 3 TOTAL 8 CL 68.1 CO SD: 1.0 VA DF 3 R ALDER 3 SNAG GR FIR 3 TOTAL 4 CL 68.1 CO SD: 1.0 VA DF 3 R ALDER 3 SNAG GR FIR 3 TOTAL 4 CL 68.1 CO SD: 1.0 VA DF 3 R ALDER 3 SNAG GR FIR 3 TOTAL 4 CL 68.1 CO SD: 1.0 VA DF 3 R ALDER 10 SNAG 22 GR FIR 3 TOTAL 4 CL 68.1 CO SD: 1.0 VA DF 3 R ALDER 10 SNAG 22 GR FIR 3 TOTAL 4 CL 68.1 CO SD: 1.0 VA DF 3 R ALDER 10 SNAG 22 GR FIR 3 TOTAL 4 CL 68.1 CO SD: 1.0 VA DF 3 R ALDER 10 SNAG 22 GR FIR 3 TOTAL 4 CL 68.1 CO SD: 1.0 VA DF 4 CR ALDER 10 SNAG 22 GR FIR 3 TOTAL 4 CL 68.1 CO SD: 1.0 VA DF 4 CR ALDER 10 SNAG 22 GR FIR 3 TOTAL 2 CL 68.1 CO SD: 1.0 VA DF 4 CR ALDER 10 SNAG 22 GR FIR 3 TOTAL 2 CL 68.1 CO SD: 1.0 VA DF 4 CR ALDER 10 SNAG 22 GR FIR 3 TOTAL 2 CL 68.1 CO SD: 1.0 VA DF 4 CR ALDER 10 SNAG 22 GR FIR 3 TOTAL 2 CL 68.1 CO SD: 1.0 VA DF 4 CR ALDER 10 SNAG 22 GR FIR 3 TOTAL 2 CL 68.1 CO SD: 1.0 VA DF 4 CR ALDER 10 SNAG 22 GR FIR 3 TOTAL 2 CL 68.1 CO SD: 1.0 VA DF 4 CR ALDER 10 SNAG 22 GR FIR 3 TOTAL 2 CL 68.1 CO SD: 1.0 VA DF 4 CR ALDER 10 SNAG 22 GR FIR 3 TOTAL 2 CL 68.1 CO SD: 1.0 VA DF 4 CR ALDER 10 SNAG 22 GR FIR 3 TOTAL 2 CL 68.1 CO SD: 1.0 VA DF 4 CR ALDER 10 SNAG 22 GR FIR 3 TOTAL 2 CL 68.1 CO SD: 1.0 VA DF 4 CR ALDER 10 SNAG 22 SN												
				TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
			110	210.9	12.4	49	50.1	176.1	20,262	19,843	5,632	5,632
			10	11.2	16.2	43	4.0	16.0	1,155	1,129	403	403
								9.6 4.8	559	559	165	165
								206.5	21,976	21,530	6,200	6,200
	68		TIMES OUT		VOLUME							
			COEFF						# (OF TREES R	-	INF. POP.
	1.0				I			HIGH		5	10	1
R ALDER			105.8	35.2		83	123	134 173				
GR FIR			34.8	24.1		121	160	199				
TOTAL			93.0	8.2		110	120	129		345	86	30
CL 68	3.1		COEFF			SAMPL	E TREES -	· CF	# (OF TREES R	EQ.	INF. POP.
	1.0		VAR.%	S.E.%	I		AVG	HIGH		5	10	1.
R ALDER			78.7 91.9	7.5 30.6		32 30	35 44	38 57				
			38.5	26.6		35	47	60				
TOTAL			83.2	7.3		32	35	37		276	69	3.
CL 68	3.1		COEFF			TREES/	ACRE		# (OF PLOTS R	EQ.	INF. POP.
SD: 1	1.0		VAR.%	S.E.%	I	OW	AVG	HIGH		5	10	1.
			56.4	12.6		184	211	238				
								15 26				
			342.0	76.4		10	23 4	36 7				
			42.4	9.5		225	249	272		75	19	
CL 68	3.1		COEFF			BASAL	AREA/AC	RE	# (OF PLOTS R	EQ.	INF. POP.
			VAR.%	S.E.%	I		AVG	HIGH		5	10	1
			46.7	10.4		158	176	194				
TWP		22										
								15 8				
								220		35	9	
	P RGE 5 08 OTAL RUISE BH COUNT EFOREST OUNT LANKS 00 % F ALDER NAG R FIR OTAL CONFIDENCE 68 L 68.1 D: 1.0 F ALDER NAG R FIR OTAL L 68.1 D: 1.0 F ALDER NAG R FIR OTAL L 68.1 D: 1.0 F ALDER NAG R FIR OTAL L 68.1 D: 1.0 F ALDER NAG R FIR OTAL L 68.1 D: 1.0 F ALDER NAG R FIR OTAL L 68.1 D: 1.0 F ALDER NAG R FIR OTAL L 68.1 D: 1.0 F ALDER NAG R FIR OTAL L 68.1 D: 1.0 F ALDER NAG R FIR OTAL L 68.1 D: 1.0 F ALDER NAG R FIR OTAL L 68.1 D: 1.0 F ALDER NAG R FIR OTAL L 68.1 D: 1.0 F ALDER NAG R FIR OTAL											DIE DOD
CL 68	3.1		COEFF			NET BF	/ACRE		# 9	OF PLOTS R	EQ.	INF. POP.
SD: 1			VAR.%			OW	AVG	HIGH	# 9	5 5	EQ. 10	INF. POP. 1
SD: 1			VAR.% 51.7	11.6		OW 17,549	AVG 19,843	HIGH 22,136 1,504	# 1			

TC PST	ATS				PROJECT	STATI	STICS			PAGE	2
					PROJECT	WO	LFHAUL			DATE	10/9/2023
TWP	RGE	SC	TRACT	TYP	E	A	CRES	PLOTS	TREES	CuFt	BdFt
11S	08	29	U1	00M0	2		13.00	21	129	1	W
CL	68.1		COEFF		NET B	F/ACRE			# OF PLOTS	S REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
TOTA	A L		41.0	9.2	19,557	21,530	23,504		71	18	8
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS RE	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DF			50.1	11.2	5,002	5,632	6,262				
R ALI	DER		152.9	34.2	266	403	541				
SNAC	ì										
GR FI	R		341.2	76.3	39	165	291				
TOTA	L		37.4	8.4	5,682	6,200	6,718		59	15	7

TC	PSPCSTGR		Sı	pecies, S	ort Gra	de - Boa	rd F	oot V	olum	es (Pr	oject)								
Т1	1S R08W S29 T	y00MC		13.00		Project Acres	:	W	OLFH 13.0								Page Date Time		1 /9/202 :49:45	23
		%						Perc	ent of I	Net Boar	rd Foot	Volume						age Log		Logs
	S So Gr	Net		per Acre	**	Total				ale Dia.				ength		Ln			CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	DO 2M	5	5.2	1,210	1,147		15			61	39				100	40	14	272	1.78	4.
DF	DO 3M	76	2.1	15,417	15,099		196		100				1	18	81	37	8	82	0.62	183.
DF	DO 4M	19	1.1	3,636	3,597		47		100			64	32	3		18	6	22	0.36	164
DF	Totals	92	2.1	20,262	19,843		258		94	4	2	12	7	15	67	28	7	56	0.56	351.
RA	DO CR	100	2.3	1,155	1,129		15		87		13	6		26	68	34	8	86	0.91	13.
RA	Totals	5	2.3	1,155	1,129		15		87		13	6		26	68	34	8	86	0.91	13.
GF	DO 3M	82		462	462		6		100					35	65	36	10	122	0.98	3.
GF	DO 3M DO 4M	18		462 96	462 96		0 1		100			72	28	33	0.5	18	7	25	0.98	3.
GF	Totals	3		559	559		7		100			12	5	29	54	27	8	74	0.81	7.
Tota	ıls		2.0	21,976	21,530		280		94	3	3	11	6	16	67	29	7	58	0.58	372.

TC PSTNDSUM		Stand Table Summary	Page Date:	1 10/9/2023
T11S R08W S29 Ty00MC	13.00	Project WOLFHAUL	Time:	8:49:46AM
		Acres 13.00	Grown Year:	

S		Sample	FF	Tot Av	Trees/	BA/	Logs	Average Net	Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.		Totals		
Spc T	DBH	Trees	16'	Ht	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	N	1BF
DF	8	3	90	27	13.755	4.80	13.76	4.7	16.7		64	229			8	3
DF	9	8	88	67	28.982	12.80	28.98	10.9	47.5		315	1,377			41	18
DF	10	7	87	87	20.541	11.20	35.21	9.7	39.2		340	1,379			44	18
DF	11	12	86	89	29.102	19.21	46.08	12.8	45.3		589	2,086			77	27
DF	12	12	86	89	24.453	19.21	46.87	12.8	43.9		601	2,058			78	27
DF	13	22	87	88	38.200	35.21	72.93	16.1	55.0		1,176	4,011		1	53	52
DF	14	14	86	85	20.960	22.41	37.43	19.4	64.0		726	2,395			94	31
DF	15	12	87	85	15.650	19.21	31.30	20.4	69.2		639	2,165			83	28
DF	16	10	86	89	11.463	16.00	22.93	24.2	83.0		556	1,903			72	25
DF	17	3	90	94	3.046	4.80	6.09	30.3	111.7		185	680			24	9
DF	18	2	88	100	1.811	3.20	3.62	34.0	115.0		123	417			16	5
DF	19	2	88	95	1.626	3.20	3.25	37.3	117.5		121	382			16	5
DF	22	1	88	87	.606	1.60	1.21	47.5	155.0		58	188			7	2
DF	28	1	85	121	.374	1.60	1.12	65.0	263.3		73	296			9	4
DF	30	1	89	106	.326	1.60	.65	100.5	425.0		66	277			9	4
DF	Totals	110	87	81	210.895	176.05	351.43	16.0	56.5		5,632	19,843		7	32	258
RA	13	2	87	68	3.473	3.20	3.47	26.0	70.0		90	243			12	3
RA	14	1	87	57	1.497	1.60	1.50	28.0	60.0		42	90			5	1
RA	15	1	86	62	1.304	1.60	1.30	34.0	90.0		44	117			6	2
RA	16	1	86	70	1.146	1.60	2.29	23.0	80.0		53	183			7	2
RA	17	2	86	62	2.031	3.20	3.05	29.0	83.3		88	254			11	3
RA	18	1	87	55	.906	1.60	.91	40.0	90.0		36	82			5	1
RA	25	1	86	33	.470	1.60										
RA	30	1	86	68	.326	1.60	.65	76.0	245.0		50	160			6	2
RA	Totals	10	87	62	11.152	16.00	13.17	30.6	85.7		403	1,129			52	15
GF	13	1	86	80	1.736	1.60	3.47	15.5	50.0		54	174			7	2
GF	16	1	89	79	1.146	1.60	2.29	22.0	85.0		50	195			7	3
GF	18	1	86	91	.906	1.60	1.81	33.5	105.0		61	190			8	2
GF	Totals	3	87	82	3.788	4.80	7.58	21.8	73.7		165	559			21	7
SN	8	1	98	60	4.585	1.60										
SN	9	5	99	79	18.114	8.00										
SN	Totals	6	99	75	22.699	9.60										
Totals		129	88	80	248.535	206.46	372.18	16.7	57.8		6,200	21,530		8	806	280

 TC
 PLOGSTVB
 Log Stock Table - MBF

 T11S R08W S29 Ty00MC
 13.00
 Project: WOLFHAUL Acres
 Page 1 Date 10/9/2023 Time 8:49:44AM

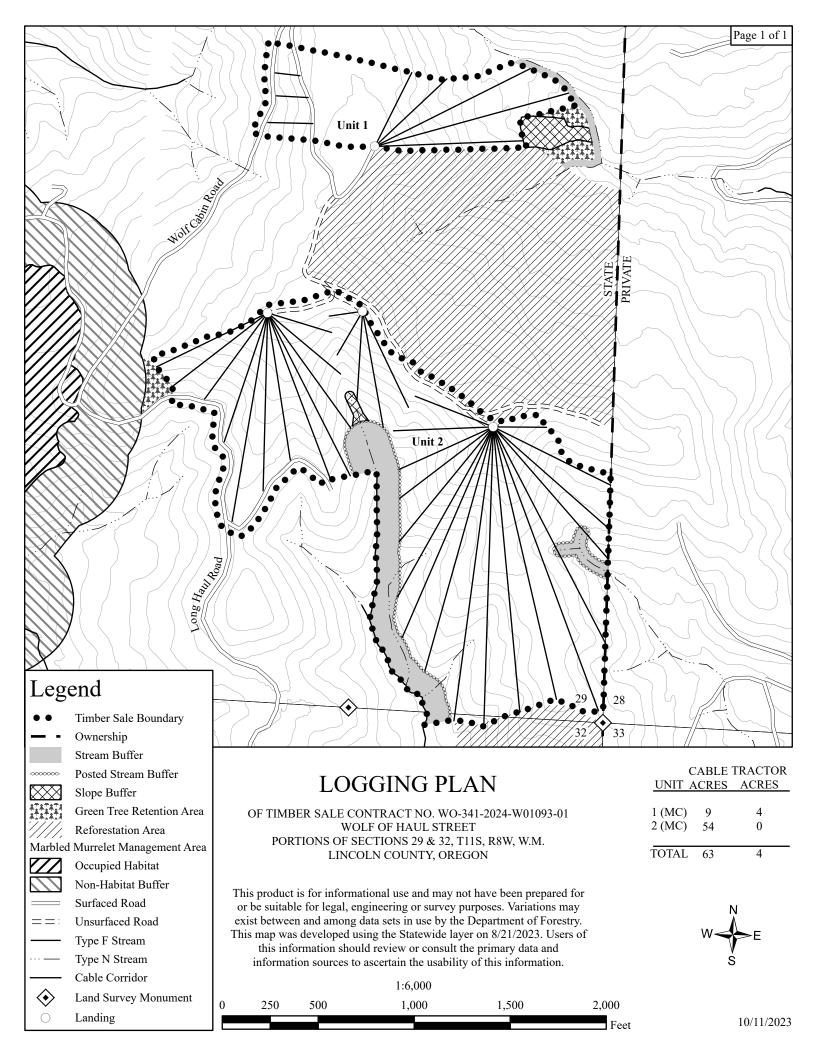
S	So Gr	Log	Gross	Def	Net	%		I	let Volu	me by S	caling l	Diamete	r in Inc	hes					
Spp T	1	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-1	9	20-23	24-29	30-39	40+
DF	DO 2M	1 40	16	5.2	15	5.8						7	:	2 :	3	3			
DF	DO 3M	1 28	0		0	.2			0										
DF	DO 3M	1 30	1		1	.5				1									
DF	DO 3M	1 32	29	5.3	27	10.6			14	13									
DF	DO 3M	1 34	9		9	3.5			9										
DF	DO 3M	1 36	16	3.0	15	5.9			8	7									
DF	DO 3M	1 38	14	3.5	13	5.2			10	4									
DF	DO 3M	1 40	131	1.3	130	50.3			25	70	35	; 							
DF	DO 4M	1 12	4		4	1.7			4	1									
DF	DO 4M	1 14	7	2.1	7	2.6			7										
DF	DO 4M	1 16	8		8	3.2			8										
DF	DO 4M	1 18	5		5	2.0			5										
DF	DO 4M	1 20	5		5	2.0			4	2									
DF	DO 4M	1 24	4		4	1.7			4										
DF	DO 4M	1 26	3		3	1.3			3										
DF	DO 4M	1 28	4		4	1.7			4										
DF	DO 4M	1 30	3		3	1.3			3										
DF	DO 4M	1 32	2	20.0	1	.6			1										
DF	Total	s	263	2.1	258	92.2			112	97	35	7	1	2 :	3	3			
RA	DO CF	R 14	0		0	1.8			0										
RA	DO CF	R 16	0		0	3.0			0										
RA	DO CF	R 18	0		0	.9			0										
RA	DO CF	32	4	3.8	4	25.8					4	ļ							
RA	DO CF	38	1	14.3	1	8.0			1										
RA	DO CF	R 40	9		9	60.5			3	4				2	2				
RA	Total	S	15	2.3	15	5.2			5	4	4	ļ			2				
GF	DO 3M	1 32	2		2	28.7					2	2							
GF	DO 3M	1 36	2		2	24.9				2									
GF	DO 3M	1 40	2		2	29.2					2								
GF	DO 4M	1 14	0		0	6.2			0										
GF	DO 4M	1 16	0		0	6.2				0									
GF	DO 4M	1 28	0		0	4.9			0										
GF	Total	s	7		7	2.6			1	2	4								
Total	All Specie	PS.	206	2.0	280	100.0			117	103	43	7	<u> </u>	2 :	5	3			
. Jui	I An Specia		286	2.0	280	100.0	1		I 11/	103	4.5	, /	Ι -	ے :	ر)		l	

TC PST	ΓATS					OJECT OJECT		STICS LFHAUL			PAGE DATE	1 10/19/202
ГWР	RGE	SC	TRACT		ГҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt
11S	08	29	U2	(00MC			54.00		296	1	W
						TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
]	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA	AL		56	296		5.3						
CRUI	ISE		27	135		5.0		8,652		1.6		
DBH	COUNT											
	DREST											
COU			28	161		5.8						
BLAN 100 %			1									
					STA	ND SUMM	ARY					
		SA	AMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		,	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DF			104	101.1	17.3	65	39.8	165.7	26,077	25,916	6,683	6,683
R AL	DER		25	51.2	11.8	38	11.3	38.6	3,687	3,667	1,118	1,113
SNA	G		3	5.9	12.4	37	1.4	5.0				
BL M	IAPLE		3	2.0	14.2	37	0.6	2.1	168	165	56	5
TOT	AL		135	160.2	15.6	55	53.6	211.4	29,932	29,748	7,857	7,852
CON			IITS OF THE	E SAMPLE Γ OF 100 THE	VOLUME	WILL BE V	WITHIN TH	HE SAMPLE E	ERROR			
CL	68.1		COEFF	S.E.W	т	SAMPLI OW	E TREES -		#	OF TREES R	•	INF. POP.
SD: DF	1.0		VAR.% 113.2	S.E.% 11.1	L	418	AVG 470	HIGH 523		5	10	
R AL	DER		39.4	8.0		71	77	83				
SNA	G											
BL M	IAPLE		57.4	39.7		68	113	158				
TOT	AL		131.0	11.3		336	379	422		685	171	
CL	68.1		COEFF		_		E TREES -		#	OF TREES R	-	INF. POP.
SD:	1.0		VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	
DF	DED		93.0 39.1	9.1 8.0		103 22	113 24	124 26				
R AL SNA			39.1	8.0		22	24	20				
	IAPLE		59.4	41.1		26	44	62				
TOT			107.9	9.3		84	93	101		465	116	
CI	60.1		COEFE			TDEEC	A CDE			A OE DI OTC D	EO	INIE DOD
CL SD:	68.1		COEFF VAR.%	S.E.%	ī	TREES/A	ACKE AVG	HIGH	Ŧ	FOF PLOTS R	EQ. 10	INF. POP.
DF	1.0		80.9	10.8		90	101	112		<u> </u>	10	
R AL	DER		175.1	23.4		39	51	63				
SNA			359.9	48.1		3	6	9				
	IAPLE		526.6	70.3		1	2	3				
TOT			55.0	7.3		148	160	172		121	30	
CL	68.1		COEFF			BASAL .	AREA/AC	RE	#	FOF PLOTS R	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	
DF			67.6	9.0		151	166	181				
R AL			176.8	23.6		29	39	48				
SNAC			307.5	41.1		3	5	7				
TOT.	IAPLE AL		424.1 42.6	56.6 5.7		1 199	2 211	3 223		73	18	
CL	68.1		COEFF			NET BF			#	OF PLOTS R		INF. POP.
SD:	1.0		VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	
DF			68.0	9.1		23,564	25,916	28,269				
R AL	DER		178.3	23.8		2,794	3,667	4,540				
SNA												
BL M	IAPLE		452.5	60.4		65	165	265				

TC PST	ATS				PROJECT	Γ STATI	STICS			PAGE	2		
	TWP RGE 11S 08 CL 68.1 SD: 1.00 TOTAL CL 68.1				PROJECT	WO	LFHAUL			DATE	10/19/2023		
TWP	RGE	SC	TRACT	TYP	E	A	CRES	PLOTS	TREES	CuFt	BdFt		
11S	08	29	U2	00M0	C	54.00		56	296	1	W		
11S 08 29 U2 00 CL 68.1 COEFF SD: 1.00 VAR. S.E.% TOTAL 49.1 6.6					NET B	F/ACRE			# OF PLOTS	REQ.	INF. POP.		
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15		
TOTA	A L		49.1	6.6	27,799	29,748	31,698		96	24	11		
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS RE	EQ.	INF. POP.		
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15		
DF			67.0	8.9	6,085	6,683	7,281						
R ALI	DER		178.2	23.8	852	1,118	1,384						
SNAC	j												
BL M	APLE		429.2	57.3	24	56	88						
TOTA	A L		46.2	6.2	7,372	7,857	8,342		85	21	9		

тс	PSPCSTGR		\mathbf{S}_{l}	pecies, S	ort Gra	de - Board F	oot V	olum	es (Pr	oject)								
T1	1S R08W S29 T	y00MC		54.00		Project:	W	OLFH								Page Date	10	1 0/19/20	
						Acres		54.0	UU							Time	9:	:04:48	SAM
		%					Per	cent of N	Net Boa	rd Foot	Volume					Avera	ige Log	g	Logs
	S So Gr	Net	Bd. Ft	. per Acre		Total		Log Sca	ale Dia.			Log l	ength		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	DO 2M	61	.7	16,168	16,058	867			64	36	0	1	2	97	40	14	331	1.94	48.5
DF	DO 3M	33	.5	8,408	8,365	452		97	0	2	0	3	10	87	38	8	96	0.75	87.2
DF	DO 4M	6	.5	1,501	1,493	81		100			46	52	2		21	6	25	0.40	59.7
DF	Totals	87	.6	26,077	25,916	1,399		37	40	23	3	5	4	88	33	9	133	1.04	195.4
BM	DO CR	100	1.5	168	165	9		100			5	40		56	29	8	70	0.81	2.4
BM	Totals	1	1.5	168	165	9		100			5	40		56	29	8	70	0.81	2.4
RA	DO CR	100	.5	3,687	3,667	198		100			9	13	16	62	31	7	59	0.58	62.2
RA	Totals	12	.5	3,687	3,667	198		100			9	13	16	62	31	7	59	0.58	62.2
Tota	ls		0.6	29,932	29,748	1,606		45	35	20	4	6	6	85	32	9	114	0.93	260.0

TC PSTNDS	JM		Stand Tal	ole Summary	Page Date		
					Date	e: 10/19/2023	
T11S R08W S	9 Ty00MC	54.00	Project	WOLFHAUL	Tim	e: 9:04:50AM	
			Acres	54.00	Gro	wn Year:	


				Tot				Average	e Log		Net	Net				
Spc T	DBH	Sample Trees	FF 16'	Av Ht	Trees/ Acre	BA // Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Totals Cunits	N	1BF
DF	9	3	87	48	10.820	4.78	10.82	8.0	26.7		87	289			47	16
DF	10	6	87	63	17.529	9.56	17.53	12.5	46.7		219	818		1	118	44
DF	12	2	88	100	4.058	3.19	8.12	14.0	50.0		114	406			61	22
DF	13	1	86	89	1.729	1.59	3.46	15.5	55.0		54	190			29	10
DF	14	3	87	93	4.472	4.78	8.94	18.3	63.3		164	566			89	31
DF	15	6	87	103	7.791	9.56	15.58	23.6	86.7		367	1,350		1	198	73
DF	16	5	87	95	5.706	7.97	11.41	25.2	90.0		288	1,027		1	155	55
DF	17	7	88	100	7.076	11.15	15.16	28.9	103.3		438	1,567		2	236	85
DF	18	9	88	108	8.115	14.34	18.03	33.4	120.0		602	2,164		3	325	117
DF	19	9	87	103	7.283	14.34	16.19	35.8	123.0		579	1,991		3	312	108
DF	20	4	86	112	2.921	6.37	8.03	33.5	117.3		269	942		1	145	51
DF	21	11	88	106	7.287	17.53	18.55	39.2	145.4		727	2,696		3	393	146
DF	22	6	88	106	3.622	9.56	7.85	50.0	190.0		392	1,491		2	212	81
DF	23	2	88	140	1.105	3.19	3.31	50.0	211.7		166	701			89	38
DF	24	3	87	115	1.522	4.78	4.06	51.1	201.2		207	817		1	112	44
DF	25	9	88	116	4.207	14.34	11.69	54.5	221.2		637	2,585		3	344	140
DF	26	2	85	130	.864	3.19	2.16	70.8	286.0		153	618			83	33
DF	27	4	88	123	1.603	6.37	4.41	67.2	285.5		296	1,258		1	160	68
DF	28	4	88	130	1.491	6.37	4.47	70.0	320.8		313	1,435		1	169	77
DF	29	2	87	145	.695	3.19	1.74	76.2	350.0		132	608			71	33
DF	30	1	86	150	.325	1.59	.97	88.7	406.7		86	396			47	21
DF	34	1	89	146	.253	1.59	.76	116.3	600.0		88	455			48	25
DF	35	1	84	130	.238	1.59	.72	86.3	443.3		62	317			33	17
DF	39	1	90	166	.192	1.59	.77	129.2	705.0		99	542			54	29
DF	48	1	83	121	.127	1.59	.38	168.3	790.0		64	301			35	16
DF	52	1	86	139	.108	1.59	.32	246.3	1193.3		80	387			43	21
DF	Totals	104	87	93	101.137	165.71	195.42	34.2	132.6		6,683	25,916		3,6	509	1,399
RA	10	7	87	69	19.801	10.80	22.63	14.0	51.2		317	1,160		1	171	63
RA	11	5	86	70	11.689	7.71	14.03	15.3	53.3		215	748		1	116	40
RA	12	3	86	72	5.893	4.63	5.89	21.7	63.3		128	373			69	20
RA	13	3	86	84	5.021	4.63	8.37	18.8	64.0		157	536			85	29
RA	14	2	87	64	2.887	3.09	2.89	29.5	80.0		85	231			46	12
RA	15	4	86	69	5.029	6.17	7.54	24.0	71.7		181	541			98	29
RA	18	1	86	56	.873	1.54	.87	40.0	90.0		35	79			19	4
RA	Totals	25	86	71	51.194	38.57	62.22	18.0	58.9		1,118	3,667		(504	198
BM	10	1	86	62	1.310	.71	1.31	14.0	50.0		18	65			10	4
BM	18	1	86	69	.404	.71	.81	27.5	90.0		22	73			12	4
BM	23	1	87	52	.248	.71	.25	62.0	110.0		15	27			8	1
BM	Totals	3	86	62	1.961	2.14	2.37	23.6	69.9		56	165			30	9
SN	8	1	99	18	4.775	1.67										
SN	23	2	99		1.155	3.33										
SN	Totals	3	99	43	5.930	5.00										
Totals		135	87	83	160.222	211.43	260.01	30.2	114.4		7,857	29,748		4,2	243	1,606

 Log Stock Table - MBF

 T11S R08W S29 Ty00MC
 54.00
 Project: WOLFHAUL Acres
 WOLFHAUL 54.00
 Date 10/19/2023 Time 9:04:48AM

<u> </u>			I			1								1 ime	9:0	04:48AM
S				Def Net	%			let Volu	ne by S	caling l	Diamete	r in Inch	es			ı
Spp T	rt de	Len	MBF	% MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
DF	DO 2M	I 12	1	1	.0						1					
DF	DO 2M			1	.0							1				
DF	DO 2M			10											10	
DF	DO 2M			4							4					
DF	DO 2M			9									9			
DF	DO 2M			10							4		6			
DF	DO 2M	I 40	839	833	59.5						275	175	249	78	31	24
DF	DO 3M	1 20	1	1	.1				1							
DF	DO 3M	I 26	4	4	.3				3				2			
DF	DO 3M	I 28	6	6	.4			6								
DF	DO 3M	I 30	3	4.9 2	.2				1	1						
DF	DO 3M	I 32	37	37	2.6			7	22	8						
DF	DO 3M	I 34	9	9	.7			9								
DF	DO 3M	I 36	54	54	3.9			35	11	5				4		
DF	DO 3M	I 38	19	19	1.4			9	10							
DF	DO 3M	I 40	320	318	22.7			55	95	162					7	
DF	DO 4M	I 12	9	9	.6			8	1							
DF	DO 4M	I 14	5	5	.3			4	1							
DF	DO 4M	I 16	6	6	.4			4	1							
DF	DO 4M	I 18	11	11	.8			10	1							
DF	DO 4M	I 20	7	7	.5			6	1							
DF	DO 4M	I 24	6	6	.4			5	1							
DF	DO 4M	I 26	2	2	.2			2								
DF	DO 4M	1 28	19	19	1.3			19								
DF	DO 4M	I 30	15	15	1.1			15								
DF	DO 4M	I 34	2	20.0	.1			2								
DF	Total	s	1,408	1,399	87.1			196	148	176	284	176	266	83	48	24
BM	DO CR	14	0	0	4.9			0								
BM	DO CR	30	4	4	39.6			4								
BM	DO CR	36	3	3	39.1					3						
BM	DO CR	40	2	8.3	16.5				1							
BM	Totals	s	9	1.5 9	.6			4	1	3						
RA	DO CR	12	6	6	2.9			6								
RA	DO CR	16	6	6	3.3			6								
RA	DO CR	18	3	3	1.4			3								
RA	DO CR	20	4	4	1.9			4								

TC PLO	ЭG	STVB					Log S	Stock T	Table -	MBF								
T11S R	T11S R08W S29 Ty00MC 54.00				4.00	Project: WOLFHAUL									Page Date Time	10/	2 /19/2023 04:48AM	
Spp T	1	So Gr rt de	Log Len	Gross MBF	Def %	Net MBF			4-5	Net Volum 6-7	es 16-19	20-23	24-29 30-39		40+			
RA	T	DO CR	R 24	12		12	6.2			12								
RA		DO CR	30	14		14	7.0				14							
RA		DO CR	32	23	4.6	22	11.1			22								
RA		DO CR	34	9		9	4.6			9								
RA		DO CR	36	22		22	11.3			22								
RA		DO CR	38	21		21	10.4			21								
RA		DO CR	R 40	79		79	39.8			34	45							
RA		Total	s	199		198	12.3			140	58							
Total		All Specie	es	1,616		1,606	100.0			339	208	179 284	176	266	83	48	24	

