

District: West Oregon

Date: January 25, 2024

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$725,122.65	\$810.56	\$725,933.21
		Project Work:	(\$55,594.00)
		Advertised Value:	\$670,339.21

District: West Oregon

Date: January 25, 2024

Timber Description

Location: Portions of Section 23 and 27, T11S, R9W, W.M.

Stand Stocking: 40%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	14	0	98
Alder (Red)	14	0	98

Volume by Grade	2S	3S & 4S 6"- 11"	Camprun	Total
Douglas - Fir	350	1,645	0	1,995
Alder (Red)	0	0	16	16
Total	350	1,645	16	2,011

Comments: Pond Values Used: local Pond Values, December 2023

Western Hemlock and other Conifers Stumpage Price = Pond value minus logging costs: \$112.89/MBF = \$545/MBF - \$432.11/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$693.89/MBF = \$1,276/MBF - (\$432.11/MBF + \$150/MBF(Extra Haul Cost))

Bigleaf Maple and Other Hardwoods Stumpage Price = Hardwood Pulp price using a conversion factor of 10 ton/MBF: = \$25.00/MBF PULP (Conifer and Hardwood Price) = \$2.50/TON

Other Costs (with Profit and Risk to be added) Intermediate Support/Tail Tree: 8 supports @ \$100/support = \$800 Artificial anchor (dead man): 2 anchors @ \$500/anchor = \$1000 TOTAL Other Costs (with Profit and Risk to be added) = \$1800

Other Costs (No Profit and Risk to be added): Equipment Cleaning (Invasive Species): \$2000 Water Bar and Block Dirt Roads: 10 Stations @ \$16.95/Station = \$169.50 Landing slash piling: 6 Landings @ \$100/Landing = \$600 Landing slash piling and firewood sorting: 6 Landings @ \$180/ Landing = \$1080 TOTAL Other Costs (No Profit and Risk) = \$3849

ROAD MAINTENANCE Move-in: Grader \$950 Final Road Maintenance: \$15,073.81 TOTAL Road Maintenance: \$15,073.81/2011 MBF = \$7.50/MBF

SLASH DISPOSAL Project Work: 52 hrs @ \$175/hr = \$9,100 Total Slash Disposal = \$9,100

District: West Oregon

Date: January 25, 2024

	Logging	Conditions				
Combination#: 1	Douglas - Fir Alder (Red)	21.00% 21.00%				
Logging System:	Cable: Medium Tower >40 - <70	Process: Manual Falling/Delimbing				
yarding distance:	Short (400 ft) downhill yarding: No					
tree size:	Small / Thinning 12in (130 Bft/tree), 12-17 log	Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF				
loads / day:	6	bd. ft / load: 4000				
cost / mbf:	\$332.42					
machines:	Log Loader (A) Tower Yarder (Medium)					
Combination#: 2	Douglas - Fir	47.00%				
	Alder (Red)	47.00%				
Logging System:	Shovel	Process: Feller Buncher				
yarding distance:	Short (400 ft)	downhill yarding: No				
tree size:	Mature Private Forest / Regen Cut (250 Bft/ti	ee), 6-11 logs/MBF				
loads / day:	14	bd. ft / load: 4200				
cost / mbf:	\$170.07					
machines:	Feller Buncher w/ Delimber					
Combination#: 3	Douglas - Fir	31.00%				
	Alder (Red)	31.00%				
Logging System:	Cable: Medium Tower >40 - <70	Process: Manual Falling/Delimbing				
yarding distance: tree size:	Short (400 ft) Mature Private Forest / Regen Cut (250 Bft/tr	downhill yarding: No ree), 6-11 logs/MBF				
loads / day:	9	bd. ft / load: 4200				
cost / mbf:	\$211.06					
machines:	Log Loader (A)					
	Tower Yarder (Medium)					
Combination#: 4	Douglas - Fir	1.00%				
	Alder (Red)	1.00%				
Logging System:	Wheel Skidder	Process: Feller Buncher				
yarding distance: tree size:	Short (400 ft) downhill yarding: No Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF					
loads / day:	8	bd. ft / load: 4000				
cost / mbf:	\$312.51					
machines:	Log Loader (B) Stroke Delimber (B)					
	Feller Buncher w/ Delimber Tire Skidder					

District: West Oregon

Date: January 25, 2024

Logging Costs		
Operating Seasons: 3.00 Profit Risk: 12%		
Project Costs: \$55,594.00	Other Costs (P/R): \$1,800.00	
Slash Disposal: \$9,100.00	Other Costs: \$3,849.00	

Miles of Road		Road Maintenance: \$7	7.50
Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	2.0	4.4
Alder (Red)	\$0.00	2.0	4.0
Other	\$0.00	0.0	0.0

District: West Oregon

Date: January 25, 2024

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$218.29	\$7.65	\$6.55	\$144.89	\$0.90	\$45.39	\$4.53	\$2.00	\$1.91	\$432.11
Alder (Rec	I)								
\$218.29	\$7.65	\$6.55	\$159.38	\$0.90	\$47.13	\$4.53	\$2.00	\$1.91	\$448.34

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$795.58	\$363.47	\$0.00
Alder (Red)	\$0.00	\$499.00	\$50.66	\$0.00

District: West Oregon

Date: January 25, 2024

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	1,995	\$363.47	\$725,122.65
Alder (Red)	16	\$50.66	\$810.56

	Gross Timber Sale Value		
	Recovery:	\$725,933.21	
Prepared By:	Steven Irving	Phone: 541-929-3266	

SUMMARY OF ALL PROJECT COSTS

Sale Name:	Salmon Forks Combo		Date:	Februa	ry 2024
			Time:	11:52	-
Project #1 - Const	ruction				
Road Segment		Length	<u>Cost</u>		
A to B		5.3 sta	\$12,949		
C to D		5.1 sta	\$11,095		
E to F		2.3 sta	\$1,137	_	
		12.7 sta	\$25,181	_	
Project #2 - Improv	vement				
Road Segment		Length	<u>Cost</u>		
1 to 2		243.0 sta	\$7,538		
3 to 4		6.5 sta	\$1,049		
5 to 6		5.5 sta	\$1,578		
7 to 8		21.2 sta	\$4,658		
9 to E		2.0 sta	\$503		
10 to 11		62.3 sta	\$8,920		
12 to 13		1.6 sta	\$1,817	_	
	TOTALS	342.1 sta	\$26,063		
Project #3 - Move	in		<u>Cost</u>		
Excavator, C325 or	equiv.		\$1,500		
Dozer, D-6 or equiv	<i>'</i> .		\$950		
Grader, Cat 14-G o	r equiv.		\$950		
Vibratory roller			\$950	_	
	TOTAL		\$4,350		
			GRAND TOTA	AL.	\$55,594
Compiled by:	Steven Irving			Date	02/08/2024

SUMMARY OF CONSTRUCTION COST

SALE ROAD	Salmon Forks Combo A to B (Surfaced)	Project #	1		LENGTH	const			5.3 sta
CLEARI	ING AND GRUBBING			_	Rate				
Road an	nd Landing	0.25 ac		@	\$1,470.00	/acre	=	\$ 368	
				тот	TAL CLEAR	ING AI	ND GRU	JBBING =	\$368
EXCAV	ATION				<u>Rate</u>				
Construe	ct Road	5.3 sta		@	\$152.00	/sta	=	\$806	
Construe	ct landing	1 ldg		@	\$480.00	/ldg	=	\$480	
Construe	ct turnaround	0.5 hrs		@	\$140.00	/hr	=	\$70	
Shape s	subgrade	5.3 sta		@	\$22.69	/sta	=	\$120	
(w/ grad	er)								
Compac (w/ roller	zt fill r)	6.0 sta		@	\$17.50	/sta	=	\$105	
Compac (w/ roller	r) r)	5.3 sta		@	\$17.50	/sta	=	\$93	
End hau	I excavation	140 CY		@	\$4.90	/cy	=	\$686	
(20 % 6)	xpansion)					TOTAL	EXCA	/ATION =	\$2,360
IMPRO\	/EMENT				Rate				
Process	surfacing rock	5.3 sta		@	\$22.69	/sta	=	\$120	
Compac	er) ct surface	5.3 sta		@	\$17.50	/sta	=	\$93	
(w/ roller	r)								
Process (w/ doze	landing rock er)	1.0 sta		@	\$22.69	/sta	=	\$23	
Compac (w/ roller	r)	1.0 sta		@	\$17.50	/sta	=	\$18	
Process	turnaround rock	0.5 sta		@	\$22.69	/sta	=	\$11	
(w/ doze	er)			_	.				
Compac (w/ roller	ct turnaround r)	0.5 sta		@	\$17.50	/sta	=	\$9	
,					тс	OTAL IN	MPROV	EMENT =	\$274
SURFA	CING		<u>Size</u>		Rate				
Base roo	ck (8" lift)	230 CY	Jaw-Run	@	\$32.97	/CY	=	\$7,583	
Turnaro	und rock (sta. 4+30)	10 CY	Jaw-Run	@	\$32.97	/CY	=	\$330	
Landing	rock (sta. 5+30)	60 CY	Jaw-Run	@	\$32.97	/CY TOTA	= L ROCł	\$1,978 < COST =	\$9,891
SPECIA	L PROJECTS				Rate				
Straw M	lulch	4 bales			\$14.00	/bale	=	\$56	
				тс	OTAL SPEC	IAL PR	OJECT	S COST =	\$56
Compile	ed by:	Steven Irving							
Date:		Feb 8, 2024				GRAN	D TOTA	\L ====>	\$12,949

SUMMARY OF CONSTRUCTION COST

SALE ROAD	Salmon Forks Combo C to D (Surfaced)	Project #	1		LENGTH	cons	t		5.1 s	ta
CLEARII Road an	NG AND GRUBBING d Landing	0.24 ac		@	<u>Rate</u> \$1,470.00) /acre	9 =	\$353		
				тот	TAL CLEAR	RING A	ND GI	RUBBING =	\$353	
EXCAVA Construc	ATION of Road	1.5 sta		@	<u>Rate</u> \$235.00	/sta	=	\$353		
Construc	th up to 2007 of Road	3.6 sta		@	\$152.00	/sta	=	\$547		
Construct (w/ doze	ct landing (Sta. 5+10) r)	1 ldg		@	\$480.00	/ldg	=	\$480		
Shape si (w/ grade	ubgrade er)	5.1 sta		@	\$22.69	/sta	=	\$116		
Compact (w/ roller	t subgrade)	5.6 sta		@	\$17.50	/sta	=	\$98		
` 	, 					ΤΟΤΑ	L EXC	AVATION =	\$1,594	
Process (w/ doze	EMENI surfacing rock r)	5.1 sta		@	<u>Rate</u> \$22.69	/sta	=	\$116		
Compact (w/ roller	t surfacing rock	5.1 sta		@	\$17.50	/sta	=	\$89		
Process (w/ doze	, landing rock r)	1.0 sta		@	\$22.69	/sta	=	\$23		
Compact (w/ vibration	Ílanding tory roller)	1.0 sta		@	\$17.50	/sta	=	\$18		
,	, ,				тс	OTAL I	MPRC	OVEMENT =	\$246	
SUDEAC			Size		Pate					
Base roo Landing	k (8" lift) rock (sta. 5+10)	230 CY 40 CY	Jaw-Run Jaw-Run	@ @	\$32.97 \$32.97	/CY /CY	= =	\$7,583 \$1,319		
						тоти	AL RO	CK COST =	\$8,902	
Compileo Date:	d by:	Steven Irving Feb 8, 2024				GRAN		TAL ====>	\$11,095	

SUMMARY OF CONSTRUCTION COST

SALE ROAD	Salmon Forks Combo E to F (Unsurfaced)	Project #	1		LENGTH	const			2.3 sta
CLEARII Road and	NG AND GRUBBING d Landing	0.14 ac		@	<u>Rate</u> \$1,470.00) /acre	=	\$206	
				TOT	AL CLEAF	RING AN	D GRL	JBBING =	\$206
EXCAVA	TION				Rate				
Construct (w/ dozen	et Road r)	2.3 sta		@	\$152.00	/sta	=	\$350	
Construc	t landing	1 ldg		@	\$480.00	/ldg	=	\$480	
Shape su (w/ grade	ubgrade er)	2.3 sta		@	\$22.69	/sta	=	\$52	
Compact (w/ roller	subgrade	2.8 sta		@	\$17.50	/sta	=	\$49	
(,					TOTAL	EXCA\	/ATION =	\$931

Compiled by: Date: Steven Irving Feb 8, 2024

GRAND TOTAL ====> \$1,137

SALE ROAD	Salmon Forks Combo 1 to 2 (Surfaced)	Project #	2		LENGTH	impro	ove		243.0	sta
EXCAVATION		5 bro		0	<u>Rate</u>	/br	_	0092		
		5 1115		œ	\$100.00	/111	=	\$000		
End haul fill		60 CY		@	\$4.90	/cv	=	\$294		
Fill compaction (w/ hand	tamper)	60 CY		@	\$0.90	/CY	=	\$54		
					тс	DTAL	EXCA	VATION =	\$ 1,148	
IMPROVEMENT					<u>Rate</u>					
Shape surface		12.0 sta		@	\$22.69	/sta	=	\$272		
(w/ grader)										
Compact surface (w/ roller)		12.0 sta		@	\$17.50	/sta	=	\$210		
Re-open turnaround (w/ grader)		0.5 hrs		@	\$125.00	/hr	=	\$63		
Compact turnaround		0.5 sta		@	\$17.50	/sta	=	\$9		
Compact Landing		1.0 sta		@	\$17.50	/sta	=	\$18		
(w/ roller)				0	•			4		
Process landing rock		1.0 sta		@	\$22.69	/sta	=	\$23		
(w/ dozer)					Т	OTAL	IMPR	OVEMENT =	\$595	5
			0.		Data					
SURFACING		50.01/	<u>Size</u>	0	Rate			¢4 707		
Spot rock	(0.000)	50 CY	1 ½ -0 2" 0"	e Ø	335.33 ¢22.00		=	\$1,767 ¢690		
Patch rock	00 anu sia. 100+00)	20 CT	3 -0 3"-0"	@	\$33.90 \$33.90		_	φ000 \$1.010		
(sta 186+40 190+80 a	nd 192+30)	30 01	J -0	e	ψ00.00	/01	-	ψ1,013		
Ditch Filter rock (sta 19	8+35)	10 CY	Jaw-Run	@	\$32.97	/CY	=	\$330		
Curve Widening rock (st	a. 230+80)	10 CY	3"-0"	@	\$33.98	/CY	=	\$340		
Turnaround rock (sta. 23	34+50)	10 CY	3"-0"	@	\$33.98	/CY	=	\$340		
Landing rock (243+00)	/	30 CY	Jaw-Run	@	\$32.97	/CY	=	\$989		
						тот	AL RO	OCK COST =	\$5,465	5
SPECIAL PROJECTS					Rate					
Install rock ditch filter		0 E b-		0	¢460	/h-*		00		
(W/ excavalor)		0.5 m		e Ø	\$100 ¢25	/11	=	\$80 \$100		
(inlets and outlets)		4 CUIVERIS		<i>w</i>	φΖΟ	ed	=	φ100		
(iniets and outlets)	r rock)	1 br		0	¢50	/br	_	¢50		
Culvert disposaal	TIOCK)	1 ea		@	\$100	ea	_	\$100		
Carron alopoodal		1 64		TO	TAL SPEC	IAL PI	ROJE	CTS COST =	\$33()
									<i>Q</i> CO	-
Compiled by: Date:		Steven Irving Feb 8, 2024				GRAN	ID TO)TAL ====>	\$7,538	B

SALE ROAD	Salmon Forks Combo 3 to 4 (Surfaced)	Project #	2		LENGTH	impr	ove		6.5 sta
IMPROV	EMENT				Rate				
Compact (w/ roller)	Landing	0.25 hr		@	\$99.00	/hr	=	\$25	
Process i (w/ dozer	rock)	0.25 hr		@	\$140.00	/hr	=	\$35	
,	,				т	OTAL	IMPR	OVEMENT =	\$60
SURFAC	ING		<u>Size</u>		Rate				
Landing r	rock (sta. 6+50)	30 CY	Jaw-Run	@	\$32.97	/CY	=	\$989	
					т	DTAL	IMPRC	OVEMENT =	\$989
Compileo	l by:	Steven Irving							

Date:

Steven Irving Feb 8, 2024

GRAND TOTAL ====> \$1,049

SALE ROAD	Salmon Forks Combo 5 to 6 (Unsurfaced)	Project #	2		LENGTH	impro	ove		5.5 sta
EXCAVA				0	Rate	<i>n</i> .		\$ 20	
Remove Construct	t turnout (w/ dozer)	0.5 nr 0.5 hr		@	\$160.00 \$140.00	/nr /hr	=	\$80 \$70	
						ΤΟΤΑΙ	LEXCA	VATION =	\$150
IMPROVE	EMENT				Rate				
Re-open (w/ dozer)	road	5.5 sta		@	\$41.00	/sta	=	\$226	
Process s	, surface	0.5 sta		@	\$22.69	/sta	=	\$11	
(w/ grade Shape su (w/ grade	r) bgrade r)	5.5 sta		@	\$22.69	/sta	=	\$125	
Compact (w/ roller)	subgrade	5.5 sta		@	\$17.50	/sta	=	\$96	
Brush cle	aring (w/ excavator)	4 hrs		@	\$160.00	/hr	=	\$640	
			C.		ТС	OTAL I	MPRO	/EMENT =	\$1,098
Transition	ING n Rock) to sta. 0+50)	10 CY	<u>Size</u> Jaw-Run	@	<u>Rate</u> \$32.97	/CY	=	\$330	
						TOTA	AL ROC	K COST =	\$330
Compiled	by:	Steven Irving							
Date:		Feb 8, 2024				GRAN	ID TOT	AL ====>	\$1,578

SALE ROAD	Salmon Forks Combo 7 to 8 (Surfaced)	Project #	2		LENGTH	impr	ove		21.2 sta
IMPROV	/EMENT				<u>Rate</u>				
Process	rock	7.0 sta		@	\$22.69	/sta	=	\$159	
(w/ grade	er)			-	.			.	
Process	rock	0.5 sta		@	\$22.69	/sta	=	\$11	
(w/ doze	r)			~	• · - - •			* (* *	
Compac	t surface	7.0 sta		æ	\$17.50	/sta	=	\$123	
(w/ roller	.) at law dia a	4 1-1-1		0	¢400.00	/ _ ~;		¢ 400	
Construc	ct landing			رب ه	\$480.00	/lag	=	\$480 ¢50	
Compac	t Landing	0.5 nr		W	\$99.00	/nr	=	\$ 2 0	
) turpout	0.5 cto		0	¢17 50	/cto	_	02	
(w/ grad		0.5 518		œ	φ17.50	/5la	-	φ9	
(w/ grau					т	ΙΑΤΟ		VEMENT =	\$832
						, , , <u>,</u>			\$602
SURFAC	CING		Size		Rate				
Landing	rock	30 CY	Jaw-Run	@	\$32.97	/CY	=	\$989	
Spot roc	k	50 CY	11⁄2"-0"	@	\$35.33	/CY	=	\$1,767	
Patch Ro	ock	20 CY	3"-0"	@	\$33.98	/CY	=	\$680	
(sta. 2+1	0 and sta. 5+00)								
Turnout	rock (sta. 18+80)	10 CY	3"-0"	@	\$33.98	/CY	=	\$340	
						TOT	AL RO	CK COST =	\$3,776
					Data				
SPECIA	LPROJECTS			0	Rate			.	
Clean ou	ut culverts	2 culverts		æ	\$25	ea	=	\$50	
(inlets ar	nd outlets)								
				то	TAL SPEC	IAL P	ROJE	CTS COST =	\$50
Compile	d hv:	Steven Irving							
Date:		Feb 8, 2024				GRA	ND TO	TAL ====>	\$4,658

SALE ROAD	Salmon Forks Combo 9 to E (Unsurfaced)	Project #	2		LENGTH	impro	ve		2.0 sta
IMPROVEME	NT				Rate				
Re-open road	(w/ dozer)	2.0 sta		@	\$41.00	/sta	=	\$82	
Compact subg	Irade	2.0 sta		@	\$17.50	/sta	=	\$35	
Process Rock (w/ grader)		0.5 sta		@	\$22.69	/sta	=	\$11	
Shape subgra (w/ grader)	de	2.0 sta		@	\$22.69	/sta	=	\$45	
					тс	DTAL II	MPROVEM	ENT =	\$173
SURFACING			Size		Rate				
Transition rock	< (sta. 0+00 to 0+50)	10 CY	Jaw-Run	@	\$32.97	/CY	=	\$330	
						ΤΟΤΑ	L ROCK C	OST =	\$330
Compiled by:		Steven Irving							¢500
Date:		Feb 8, 2024				GRAN	DIUTAL	====>	2003

SALE ROAD	Salmon Forks Combo 10 to 11 (Surfaced)	Project #	2		LENGTH	impr	ove		62.3 sta
EXCAVA	TION				Rate				
Cutslope	rounding	11.2 sta		@	\$54.00	/sta	=	\$605	
End haul	waste material	140 CY		@	\$4.90	/CY	=	\$686	
(Exp. 20	%)								
Compact	t waste area	140 CY		@	\$0.50	/CY	=	\$70	
Widen S	pur	2 hrs		@	\$160.00	/hr	=	\$320	
(w/ excav	vator)								
						TOTA	AL EXC	AVATION =	\$1,681
IMPROV	'EMENT				Rate				
Re-open	landing/spur (w/ dozer)	2 hrs		@	\$140.00	/hr	=	\$280	
Compact (w/ roller	t landing, spur, and TA)	2.5 hrs		@	\$99.00	/hr	=	\$248	
Process	surface	13.0 sta		@	\$22.69	/sta	=	\$295	
(w/ grade	er)								
Compact	t surface	13.0 sta		@	\$17.50	/sta	=	\$228	
(w/ roller)								
Process	TA rock	0.5 sta		@	\$22.69	/sta	=	\$11	
(w/ doze	r)								
Supplime	entary Hand Cutting								
(Jump up	o landings and cutslopes)	2 hrs		@	\$50.00	/hr	=	\$100	
Move an	d deck trees (w/ excavator)	1 hr		@	\$160.00	/hr	=	\$160	
					Т	OTAL	IMPRO	OVEMENT =	\$1,322
SURFAC	CING		Size		Rate				
Curve wi	dening rock (sta. 33+80)	10 CY	3"-0"	@	\$33.98	/CY	=	\$340	
Landing	Rock	80 CY	3"-0"	@	\$33.98	/CY	=	\$2,718	
(sta. 29+	30, 39+35, 51+20,								
52+80, 5	4+40, 59+10)			-	.				
Turnarou	und rock (sta. 62+30)	10 CY	3"-0"	@	\$33.98	/CY	=	\$340	
Spot rocl		60 CY	1½"-0"	@	\$35.33	/CY	=	\$2,120	
Iurnout	Rock (sta. 59+10)	10 CY	Jaw-run	a	\$32.97	/CY	=	\$330	
						тот	AL RO	CK COST =	\$5,848
SPECIA	L PROJECTS				Rate				
Grass Se	eed waste area	5 lbs		@	\$2.50	/lb	=	\$13	
Straw Mu	ulch	4 bales		@	\$14	ea	=	\$56	
				ТО	TAL SPEC	IAL PI	ROJEC	CTS COST =	\$69
Compileo	d by:	Steven Irving							
Date:		Feb 8, 2024				GRAM	ND TO	ΓAL ====>	\$8,920

SALE ROAD	Salmon Forks Combo 12 to 13 (Surfaced)	Project #	2		LENGTH	impro	ove		1.6 sta
IMPROVI	EMENT				<u>Rate</u>				
Shape su (w/ grade	ırface r)	1.6 sta		@	\$22.69	/sta	=	\$36	
Compact	surface	1.6 sta		@	\$17.50	/sta	=	\$28	
Process r (w/ dozer	rock)	0.5 hr		@	\$140.00	/hr	=	\$70	
Landing of (w/ roller)	compaction	0.5 sta		@	\$22.96	sta	=	\$11	
					Т	OTAL	IMPR	OVEMENT =	\$145
SURFAC	ING		<u>Size</u>		Rate				
Spot rock	(10 CY	1½"-0"	@	\$35.33	/CY	=	\$353	
Landing r	rock (sta. 1+60)	40 CY	Jaw-Run	@	\$32.97	/CY	=	\$1,319	

TOTAL ROCK COST = \$1,672

Compiled by: Date: Steven Irving Feb 8, 2024

GRAND TOTAL ====> \$1,817

SUMMARY OF MAINTENANCE COST

SALE	Salmon Fo	orks Combo (Costed i	Final log haul Maintenance Cost Estima d in appraisal, not in project costs)					
Move-in	Grader		\$ 950.00					
Road Segment	Length	Cost/Sta	Cost	Mileage				
A to B	5.3 sta	\$22.69	\$120.26	0.10				
C to D	5.1 sta	\$22.69	\$115.72	0.10				
1 to 2	243.0 sta	\$22.69	\$5,513.67	4.60				
3 to 4	6.5 sta	\$22.69	\$147.49	0.12				
7 to 8	21.2 sta	\$22.69	\$481.03	0.40				
10 to 11	62.3 sta	\$22.69	\$1,413.59	1.18				
12 to 13	1.6 sta	\$22.69	\$36.30	0.03				
Total	334.6		\$7,592.08	6.34				

Maintenance Rock:

1½"-0" 3"-0"	Volume Cost/CY 250 \$35.33 0 \$35.23	Cost \$8,832.50 \$0.00
Grand Total		\$ 17,374.58
TS Volume	2,011 MBF	
Cost / MBF =	8.64	
NOTES:		

SALE NAME:	Salmon Forks Co	ombo	DATE: Feb 8, 20	24
ROAD NAME:	All		CLASS: Medium	
ROCK SOURCE:	Rickard		10 CY truck	
Route:	Deer Creek and	Baber Ridge		
TIME Computat	cion:			
Road speed ti	me factors:			
1.	55 MPH	MRT	0.0	minutes
2	50 MPH	43.0 MRT	51.6	minutes
3	45 MPH	MRT	0.0	minutes
4.	40 MPH	MRT	0.0	minutes
5.	35 MPH	MRT	0.0	minutes
6.	30 MPH	MRT	0.0	minutes
7.	25 MPH	MRT	0.0	minutes
8.	20 MPH	MRT	0.0	minutes
9.	15 MPH	4.6 MRT	18.4	minutes
10.	10 MPH	4.6 MRT	27.6	minutes
11.	05 MPH	MRT	0.0	minutes
Dump or sprea	ad time per RT		0.50	minutes
Total haul	ing cycle time	for this setting		
(100% effi	ciency)		98.10	minutes
		0.05		
Operator effi	ciency correcti	on 0.85	115.41	minutes
Job efficienc	cy correction	0.90	128.23	minutes
			10.00	' /ou
Truck capacit	CY (CY)		12.82	min/CY
Loading time,	delay time per	CY	0.25	min/CY
TIME (minutes	s) per cubic yar	d	13.07	min/CY
COST per CY c	computation			
Cost of tr	ruck and operato	r per hour	\$100.00	/hr.
Cost of tr	ruck and operato	r per minute	\$1.67	/min
				1 -
Cost per CY			\$21.83	/CY
Concerd and as	www.a.a.t. Mata	n tunch Cucden (Delle	¢1 E0	/07/
spread and co	mpact wate	er truck, Grader & Rolle	¢r \$1.50	/CI
		Cost Delivered	Cost Deliv	reed
Size	Cost/Yd (Pit)	w/o processing	with proce	ssing
1½" - 0"	\$ 13,50	\$35.33	\$36.83	9
3" - 0"	\$ 12.15	\$33.98	\$35.48	
Jaw-Run	\$ 11.14	\$32.97	\$34 47	
Pit-Run	\$ 9.45	\$31 28	\$32 78	
	1 2.10	101.10	+ 52 • 7 0	

TIMBER CRUISE REPORT

Salmon Forks Combo (WO-341-2023-W01090-01) FY 2024

1. Sale Area Location: Portions of Sections 23 & 27, T11S, R9W, W.M. Lincoln County, Oregon.

2. Fund Distribution:

Fund	BOF	91%
	CSL	9%

3. Sale Acreage by Area:

a.

Unit	Treatment	Gross Acres	Stream Buffers	Slope Buffers	Existing Roads	New Roads	Green Tree Retention Area	Thinning Optional Area	Net Sale Acres	Acreage Comp. Method
1	Modified Clearcut	80	11	1	4	1	1	-	62	GIS
2	Partial Cut	35	10	-	<1	-	-	-	25	GIS
3	Partial Cut	61	15	-	<1	-	-	4	42	GIS
Total		176	36	1	4	1	1	4	129	

- 4. Cruisers and Cruise Dates: This sale was cruised by Steven Irving and Zane Sandborg in October 2023 and utilized updated cruise data from the Little Elk Thin Timber Sale which was cruised by Matt McBride, Jon Long, and Evelyn Hukari in September of 2018.
- 5. Cruise Method and Computation: The sale consists of one Modified Clearcut, and two Partial Cut units that were cruised using variable radius plot sampling. Units 1 and 2 were cruised using a basal area factor of 20, on a 2 chain spacing cruise line originally established in the Little Elk Thin Timber Sale. Unit 3 was cruised using a basal area factor of 20, on a 5x5 chain cruise grid. On Unit 1, a total of 5 measure plots and 11 count plots were taken. On Unit 2, a total of 3 measure plots, and 7 count plots were taken. On unit 3, a total of 8 measure plots, and 7 count plots were taken.

Measure plots were measured for DBH, height, form factor, grade, and defect. Data was entered into the Atterbury Super ACE cruise program to determine stand statistics and net board foot volume. Volume was removed to account for hidden defect and breakage and in-unit wildlife trees.

In units 1 and 2, measure plots from the Little Elk Thin timber sale were re-measured to get a growth factor and that growth factor was applied to volumes. In Unit 1 trees in the original Little Elk Thin cruise that were labeled leave were added to the harvestable volume. The growth factor for Units 1 and 2 is 21.71%.

Digital ortho photos, Lidar data, and GPS data were used to map the boundaries for the sale, and ArcGIS Pro was used to determine gross and net acreage.

6. Measurement Standards: Tree heights were measured to the nearest foot, to a top diameter of 5 inches inside bark or to 40% of form factor. Diameters at breast height (DBH) were measured to the nearest inch, and a form point of 16 feet was used to calculate form factor. Form factors were measured or estimated on every tree. Most

trees were graded in 40 foot log segments unless breakage, defect, or length to top of grade cruise diameter warranted otherwise.

7. **Timber Description:** Timber is primarily 37-year-old Douglas-fir for Unit 1, 36-year-old Douglas-fir for unit 2, and 34-year-old Douglas-fir for unit 3. For Units 1 and 2 the average Douglas-fir to be removed is approximately 15 inches DBH, with an average height of 69 feet to a merchantable top, with a small amount of red alder with an average diameter of 14 inches, with an average height of 35 feet to a merchantable top. In unit 3, the average Douglas-fir to be removed is approximately 14 inches DBH, with an average height of 61 feet to a merchantable top. In unit 3, the average Douglas-fir to be removed is approximately 14 inches DBH, with an average height of 61 feet to a merchantable top. The average volume per acre to be harvested (net) is approximately 25.4 MBF for Unit 1, 7.4 MBF for Unit 2, and 6.0 MBF for unit 3. Laminated root rot is present in Units 1 and 3.

Unit	Target CV	Target SE	Actual CV	Actual SE
1	40%	13%	17.0%	6.9%
2	40%	13%	17.0%	6.9%
3	50%	15%	14.7%	3.9%

8. Statistical Analysis and Stand Summary: (See attached "Statistics").

Note: Statistics shown are for conifer and hardwood trees combined. Percentages are for net board foot volume.

9. Total Volume (MBF) by Species and Grade: (See attached volume report "Species, Sort Grade – Board Foot Volumes - Project").

Unit	Species	Gross Cruise Volume (MBF)	Cruised D & B	Cruised D & B (MBF)	R/W (MBF)	Hidden D & B	Hidden D & B (MBF)	Net Sale Volume
1	Douglas-fir	1,622	4.4%	71	25	1%	16	1560
1	Red Alder	18	4.4%	1	-	1%	1	16
2	Douglas-fir	195	4.4%	9	-	1%	2	184
3	Douglas-fir	272	6.7%	18	-	1%	3	251
Total		2,102	4.7%	99	25	1%	22	2011

Unit	Species	Avg. DBH	Tot. Net Vol.	2-Saw	3-Saw	4-Saw	Camp Run
1	Dauglas fin	15	Grade %	21%	63%	16%	0%
I	Douglas-fir	15	1,560	328	983	249	-
1	Ded Alden	14	Grade %	0%	0%	0%	100%
1	Ked Alder	14	16	-	-	-	16
2	Daualaa fir	15	Grade %	1%	82%	17%	0%
2	Douglas-IIr	15	184	2	151	31	-
2	Danalas fu	1.4	Grade %	8%	65%	27%	0%
3	Douglas-nr	14	251	20	163	68	-
Total			2,011	350	1,297	348	16

Attachments: -Cruise Design -Cruise Maps -Statistics -Species, Sort, Grade – Board Foot Volume -Stand Table Summary -Log Stock Table – MBF -Growth Factor Calculation

Prepared by: <u>Steven Irving</u>

Date: 2/8/2024

ule Unit Forester: Cody Valencia

Date: 2/9/24

Revised August, 2002

CRUISE DESIGN WEST OREGON DISTRICT

Sale Name: _____ Salmon Forks Combo _____ Unit ____

 Harvest Type: PC
 Net BF
 Net BF

 Approx. Cruise Acres:
 43.8
 Estimated CV% 50 /Acre
 SE% Objective 15 /Acre

 Planned Sale Volume:
 0.28
 MMBF
 Estimated Sale Area Value/Acre:
 \$ 2,450

A. <u>Cruise Goals</u>: (a) Grade minimum <u>42</u> conifer and <u>12</u> hardwood trees:
 (b) Sample <u>17</u> cruise plots (8 grade: 9 count); (c) Other goals <u>X</u> Determine log grades for sale value; <u>X</u> Determine take and leave tree species and sizes.

(Special cruising directions – leave trees etc.) <u>Take plots as shown on map. Do not take plots in</u> <u>buffers.</u>

DO NOT RECORD 12', 22' and 32' (for Hardwoods).

DO NOT RECORD 22' LENGTHS.

B. <u>Cruise Design</u>:

1. Plot Cruises: BAF <u>20</u> Full point

Cruise Line Direction(s) <u> </u>	70
Cruise Line Spacing	5	(chains) (feet)
Cruise Plot Spacing	5	(chains) (feet)
Grade/Count Ratio	<u>1:1</u>	

C. <u>Tree Measurements</u>:

- Diameter: Minimum DBH to cruise is <u>8</u> for conifers and <u>10</u> for hardwoods. Record dbh to nearest ½ for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- **2.** Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- **3.** Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>5</u>", <u>7</u>" for <u>hardwoods</u> or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4.** Form Factors: (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each

merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes: A. Species: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull ; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- 7. Deductions: Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: <u>Plot Type Cruises</u>: Mark cruise line beginning points with <u>red</u> flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie <u>red</u> flagging above eye level near plot center and another <u>red</u> flagging around a sturdy wooden stake marking plot center. On <u>red</u> flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in <u>vellow</u> paint. Mark leave trees with an L for leave.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back), Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Red Flagging, Yellow Paint.
- **10. Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by:	Steven Irving	
Approved by:		
Date:		

Unit 1 and 2 Volume Groth Factor Calculations

Plot Numbe	er	Little Elk Thin	Salmon Forks Combo	
		Net Vol	ume (BdFt)	
2	.04	17660	24441	
2	07	27732	29666	
2	11	20105	23217	
2	15	35379	34211	
3	01	17637	26151	
3	05	18649	25537	
3	09	13856	20578	
			· · · ·	Growth %
Sum		151018	183801	21.71

Little Elk	Thin Unit 2				
Salmon Forks	Total Vol (8dFt/ac)	BdFt/ac (Little Elk Thin)	Growth %	MBF/ac Salmon Forks Combo	New Volume (U1 Total MBF)
Take	952	6.1	121.7%	7.4	460.5
Leave	2194	14.1	121.7%	17.1	1061.3
Red alder	14	0.2	121.7%	0.3	16.8
R/W				24.5	28.9
Douglas Fir					1550.7
Red Alder					16.8
Little Elk	Thin Unit 3				
Salmon Forks	Combo Unit 2	(thus File		Tala MOCIA	New Velune (11)
	(BdFt/ac)	(Little Elk Thin)	Growth %	Salmon Forks Combo	Total)
Take	952	6.1	121.7%	7.4	185.7

FC PS7	TATS				PRO PRO	DJECT (DJECT	<u>STATIS'</u> SALN	<u>FICS</u> 4FORK			PAGE DATE	1 2/8/2024
WP	RGE	SC	TRACT	Т	YPE		ACI	RES	PLOTS	TREES	CuFt	BdFt
115	08	17	SF GROWTH	H N	IC .			1.00	7	73	۱	w
				· · · · · · · · · · · · · · · · · · ·	/	TREES	Ĕ	ESTIMATED TOTAL	PI S	ERCENT AMPLE		
			PLOTS	TREES	I	PER PLOT		TREES		TREES		
TOT	AL		7	73		10.4						
CRU	ISE		7	73		10.4		169		43,2		
DBH	COUNT											
REFO	DREST											
BLA	NKS											
100 9	6											
<u>.</u>					STAP	ND SUMM	ARY					
		S	AMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
			TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DF			73	168.9	15.0	69	53.8	208.6	27,474	26,257	7,768	7,768
TOT	AL		73	168.9	15.0	69	33.8	208.0	27,474	20,237	7,708	7,708
	6	8.1	TIMES OUT	OF 100 THE	VOLUME	WILL BE V	VITHIN TH	IE SAMPLE E	RKOR			
CL	68.1		COEFF			SAMPL	E TREES -	BF	#	OF TREES R	EQ.	INF. POP.
CL SD:	68.1 1.0		COEFF VAR.%	S.E.%	L	SAMPLI OW	E TREES - AVG	BF HIGH	. #	OF TREES R 5	EQ. 10	INF. POP. 15
CL SD: DF	68.1 1.0		COEFF VAR.% 48.3	S.E.% 5.7	L	SAMPLI OW 176	E TREES - AVG 187	BF HIGH 197	#	OF TREES R	EQ. 10	INF. POP. 15
CL SD: DF TOT	68.1 1.0 TAL		COEFF VAR.% 48.3 48.3	S.E.% 5.7 5.7	L	SAMPLI OW 176 176	E TREES - <u>AVG</u> 187 <i>1</i> 87	BF <u>HIGH</u> 197 <i>197</i>	#	OF TREES R 5 93	EQ. 10 23	INF. POP. 15 10
CL SD: DF TOI	68.1 1.0 CAL 68.1		COEFF VAR.% 48.3 48.3 COEFF	S.E.% 5.7 5.7	L	SAMPLI OW 176 176 SAMPLI	E TREES - AVG 187 <i>187</i> E TREES -	BF HIGH 197 197 CF	#	OF TREES R 5 93 OF TREES F	EQ. 10 23 EQ.	INF. POP. 15 10 INF. POP.
CL SD: DF TOT CL SD:	68.1 1.0 CAL 68.1 1.0		COEFF VAR.% 48.3 48.3 COEFF VAR.%	S.E.% 5.7 5.7 S.E.%	L	SAMPLI OW 176 176 SAMPLI OW	E TREES - AVG 187 <i>187</i> E TREES - AVG	BF HIGH 197 197 CF HIGH	#	OF TREES R 5 93 OF TREES R 5	EQ. 10 23 EO. 10	INF. POP. 15 10 INF. POP. 15
CL SD: DF TOT CL SD: DF	68.1 1.0 CAL 68.1 1.0		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8	<u>S.E.%</u> 5.7 5.7 <u>S.E.%</u> 5.2 5.2	L	SAMPL3 OW 176 176 SAMPL3 OW 52 52	E TREES - AVG 187 187 E TREES - AVG 55 55	BF HIGH 197 197 CF HIGH 58 58	#	OF TREES R 5 93 OF TREES F 5 80	EQ. <u>10</u> <u>23</u> SEO. <u>10</u> <u>20</u>	INF. POP. 15 10 INF. POP. 15 9
CL SD: DF TOT CL SD: DF TOT	68.1 1.0 CAL 68.1 1.0 FAL		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8 44.8	S.E.% 5.7 5.7 S.E.% 5.2 5.2	L	SAMPLI OW 176 176 SAMPLI OW 52 52 52	E TREES - AVG 187 187 E TREES - AVG 55 55 55	BF HIGH 197 197 CF HIGH 58 58	#	OF TREES R 5 93 OF TREES R 5 80	EQ. <u>10</u> 23 23 260. <u>10</u> 20	INF. POP. 15 10 INF. POP. 15 9 INF. POP
CL SD: DF TOT CL SD: DF TOT CL SD:	68.1 1.0 TAL 68.1 1.0 TAL 68.1		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8 COEFF VAR %	S.E.% 5.7 5.7 S.E.% 5.2 5.2 S.E.%		SAMPLI OW 176 176 SAMPLI OW 52 52 TREES/ OW	E TREES - AVG 187 187 E TREES - AVG 55 55 ACRE AVG	BF HIGH 197 197 CF HIGH 58 58 58	#	OF TREES R 5 93 OF TREES F 5 80 OF PLOTS F 5	EQ. <u>10</u> 23 EO. <u>10</u> 20 EEO. <u>10</u>	INF. POP. 15 10 INF. POP. 15 9 INF. POP. 15
CL SD: TOT CL SD: DF TOT CL SD: DF	68.1 1.0 CAL 68.1 1.0 TAL 68.1 1.0		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8 COEFF VAR.% 25.1	S.E.% 5.7 5.7 S.E.% 5.2 5.2 5.2 S.E.% 10.2	L	SAMPLI OW 176 176 SAMPLI OW 52 52 52 TREES/. OW 152	E TREES - AVG 187 187 E TREES - AVG 55 55 55 ACRE AVG 169	BF HIGH 197 197 CF HIGH 58 58 58 HIGH 186	#	OF TREES R 5 93 OF TREES R 5 80 OF PLOTS F 5	EQ. 10 23 EO. 10 20 EO. 10	INF. POP. 15 10 INF. POP. 15 9 INF. POP. 15
CL SD: DF TOT CL SD: CL SD: CL SD: DF TOT	68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8 COEFF VAR.% 25.1 25.1	S.E.% 5.7 5.7 S.E.% 5.2 5.2 S.E.% 10.2 10.2	L	SAMPLI OW 176 176 SAMPLI OW 52 52 52 TREES/ OW 152 152	E TREES - AVG 187 187 E TREES - AVG 55 55 55 ACRE AVG 169 169	BF HIGH 197 197 CF HIGH 58 58 58 HIGH 186 186	#	OF TREES R 5 93 OF TREES R 5 80 OF PLOTS F 5 29	EQ. <u>10</u> 23 EQ. <u>10</u> 20 EQ. <u>10</u> 7	INF. POP. 15 10 INF. POP. 15 9 INF. POP. 15 3
CL SD: DF TOT CL SD: DF TOT CL SD: DF TOT	68.1 1.0 TAL 68.1 1.0 TAL 68.1 1.0 TAL 68.1		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8 COEFF VAR.% 25.1 25.1 COEFF	S.E.% 5.7 5.7 5.2 5.2 5.2 S.E.% 10.2 10.2		SAMPL3 OW 176 176 SAMPL3 OW 52 52 TREES/ OW 152 152 BASAL	E TREES - AVG 187 187 E TREES - AVG 55 55 55 ACRE AVG 169 169 169 AREA/AC	BF HIGH 197 197 CF HIGH 58 58 58 HIGH 186 186 RE	#	OF TREES R 5 93 OF TREES F 5 80 OF PLOTS F 5 29 OF PLOTS F	EQ. <u>10</u> 23 3EO. <u>10</u> 20 3EO. <u>10</u> 7 REO. <u>7</u>	INF. POP. 15 10 INF. POP. 15 9 INF. POP. 15 3 INF. POP.
CL SD: DF TOT CL SD: DF TOT CL SD: CL SD:	68.1 1.0 CAL 68.1 1.0 TAL 68.1 1.0 TAL 68.1 1.0		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8 COEFF VAR.% 25.1 25.1 COEFF VAR.%	S.E.% 5.7 5.7 5.2 5.2 5.2 5.2 5.2 10.2 10.2 10.2 S.E.%	L	SAMPLI OW 176 276 SAMPLI OW 52 52 52 TREES/ OW 152 152 152 BASAL OW	E TREES - AVG 187 187 E TREES - AVG 55 55 55 ACRE AVG 169 169 169 AREA/AC AVG	BF HIGH 197 197 CF HIGH 58 58 58 HIGH 186 186 RE HIGH	#	OF TREES R 5 93 OF TREES R 5 80 OF PLOTS F 5 29 OF PLOTS F 5	EQ. 10 23 EQ. 10 20 REQ. 10 7 REQ. 10	INF. POP. 15 10 INF. POP. 15 9 INF. POP. 15 3 INF. POP. 15
CL SD: DF TOT CL SD: CL SD: CL SD: CL SD: CL	68.1 1.0 TAL 68.1 1.0 TAL 68.1 1.0 TAL 68.1 1.0		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8 COEFF VAR.% 25.1 25.1 COEFF VAR.% 19.1	S.E.% 5.7 5.7 5.7 5.2 5.2 5.2 S.E.% 10.2 10.2 S.E.% 7.8	L	SAMPL3 OW 176 176 SAMPL3 OW 52 52 TREES/ OW 152 152 BASAL OW 192	E TREES - AVG 187 187 E TREES - AVG 55 55 ACRE AVG 169 169 169 169 169 AREA/AC AVG 209 200	BF HIGH 197 197 CF HIGH 58 58 58 HIGH 186 186 RE HIGH 225	# #	OF TREES R 5 93 OF TREES R 5 80 OF PLOTS F 5 29 OF PLOTS F 5	EQ. 10 23 3EO. 10 20 20 20 20 20 20 20 20 20 20 20 20 20	INF. POP. 15 10 INF. POP. 15 9 INF. POP. 15 3 INF. POP. 15
CL SD: DF TOT CL SD: CL SD: DF TOT CL SD: DF TOT	68.1 1.0 YAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL 68.1 1.0 FAL FAL FAL FAL FAL FAL FAL FAL		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8 COEFF VAR.% 25.1 25.1 COEFF VAR.% 19.1 19.1	S.E.% 5.7 5.7 5.7 5.2 5.2 5.2 5.2 10.2 10.2 10.2 5.E.% 7.8 7.8		SAMPL3 OW 176 276 SAMPL3 OW 52 52 TREES/ OW 152 152 BASAL OW 192 192	E TREES - AVG 187 187 E TREES - AVG 55 55 55 ACRE AVG 169 169 169 169 209 209 209	BF HIGH 197 197 CF HIGH 58 58 58 58 HIGH 186 186 RE HIGH 225 225	#	OF TREES R 5 93 OF TREES F 5 80 OF PLOTS F 5 29 OF PLOTS F 5 17	EQ. 10 23 EO. 10 20 REO. 10 7 REQ. 10 4	INF. POP. 15 10 INF. POP. 15 9 INF. POP. 15 3 INF. POP. 15 2
CL SD: DF TOT CL SD: DF TOT CL SD: DF TOT CL SD: CL	68.1 1.0 CAL 68.1 1.0 TAL 68.1 1.0 TAL 68.1 1.0 TAL 68.1 1.0		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8 COEFF VAR.% 25.1 25.1 COEFF VAR.% 19.1 19.1 19.1 COEFF	S.E.% 5.7 5.7 5.2 5.2 5.2 5.2 5.2 10.2 10.2 10.2 7.8 7.8 7.8		SAMPLI OW 176 176 SAMPLI OW 52 52 TREES/ OW 152 152 BASAL OW 192 192 192 NET BF	E TREES - AVG 187 187 E TREES - AVG 55 55 55 ACRE AVG 169 169 169 169 209 209 209	BF HIGH 197 197 CF HIGH 58 58 58 58 HIGH 186 186 RE HIGH 225 225	#	OF TREES R 5 93 OF TREES R 5 80 OF PLOTS F 5 29 OF PLOTS F 5 17 OF PLOTS F	EQ. 10 23 EQ. 10 20 REO. 10 7 REQ. 10 4 REQ. 10	INF. POP. 15 10 INF. POP. 15 9 INF. POP. 15 3 INF. POP. 15 2 INF. POP.
CL SD: DF TOT CL SD: DF TOT CL SD: DF TOT CL SD: CL SD: CL SD: CL SD: CL	68.1 1.0 TAL 68.1 1.0 TAL 68.1 1.0 TAL 68.1 1.0 TAL 68.1 1.0		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8 COEFF VAR.% 19.1 19.1 19.1 COEFF VAR.%	S.E.% 5.7 5.7 5.7 5.2 5.2 5.2 S.E.% 10.2 10.2 7.8 7.8 7.8 5.E.%		SAMPLI OW 176 176 SAMPLI OW 52 52 TREES/ OW 152 152 BASAL OW 192 192 NET BF OW	E TREES - AVG 187 187 E TREES - AVG 55 55 ACRE AVG 169 169 169 169 169 209 209 209 209 209 209	BF HIGH 197 197 CF HIGH 58 58 58 HIGH 186 186 186 RE HIGH 225 225 225 HIGH	# # #	OF TREES R 5 93 OF TREES R 5 80 OF PLOTS F 5 29 OF PLOTS F 5 17 OF PLOTS F 5	EQ. 10 23 EQ. 10 20 20 20 20 20 20 20 20 20 2	INF. POP. 15 10 INF. POP. 15 9 INF. POP. 15 3 INF. POP. 15 2 INF. POP. 15 15 15 15 15 15 15 16 15 15 16 15 16 15 16 16 15 15 16 15 15 16 15 16 15 15 15 15 15 15 15 15 15 15
CL SD: DF TOT CL SD: DF TOT CL SD: DF TOT CL SD: CL SD: TOT	68.1 1.0 FAL 68.1 1.0 FAL		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8 COEFF VAR.% 19.1 19.1 19.1 COEFF VAR.% 17.0 17.0	S.E.% 5.7 5.7 5.7 5.2 5.2 5.2 5.2 5.2 10.2 10.2 10.2 5.E.% 7.8 7.8 7.8 5.E.% 6.9 6.9		SAMPL3 OW 176 276 SAMPL3 OW 52 52 TREES/. OW 152 152 BASAL OW 192 192 192 NET BF OW 24,436 24,436	E TREES - AVG 187 187 E TREES - AVG 55 55 ACRE AVG 169 169 169 169 209 209 209 209 209 /ACRE AVG 209 209	BF HIGH 197 197 CF HIGH 58 58 58 HIGH 186 186 186 RE HIGH 225 225 225 HIGH 28,079 28,079	# # # #	OF TREES R 5 93 OF TREES F 5 80 OF PLOTS F 5 29 OF PLOTS F 5 17 OF PLOTS F 5 17	EQ. 10 23 EO. 10 20 REO. 10 7 REQ. 10 4 REQ. 10 3	INF. POP. 15 10 INF. POP. 15 9 INF. POP. 15 3 INF. POP. 15 2 INF. POP. 15 2 INF. POP. 15
CL SD: DF TOT CL SD: DF TOT CL SD: DF TOT CL SD: CL SD: CL SD: CL SD: CL	68.1 1.0 CAL 68.1 1.0 TAL		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8 COEFF VAR.% 25.1 25.1 COEFF VAR.% 19.1 19.1 19.1 19.1 COEFF VAR.% 17.0 17.0	S.E.% 5.7 5.7 5.2 5.2 5.2 5.2 10.2 10.2 10.2 10.2 5.E.% 7.8 7.8 7.8 5.E.% 6.9 6.9		SAMPLI OW 176 176 SAMPLI OW 52 52 52 TREES/ OW 152 152 152 BASAL OW 192 192 192 NET BF OW 24,436 24,436	E TREES - AVG 187 187 E TREES - AVG 55 55 55 ACRE AVG 169 169 169 209 209 209 209 209 209 209 209 209 20	BF HIGH 197 197 CF HIGH 58 58 58 58 HIGH 186 186 186 186 225 225 225 HIGH 28,079 28,079	#	OF TREES R 5 93 OF TREES R 5 80 OF PLOTS F 5 29 OF PLOTS F 5 17 OF PLOTS F 5 13	EQ. 10 23 EO. 10 20 EO. 10 7 REQ. 10 4 REQ. 10 3 22 20 20 20 20 20 20 20 20 20 20 20 20	INF. POP. 15 10 INF. POP. 15 9 INF. POP. 15 2 INF. POP. 15 2 INF. POP. 15 1 INF. POP. 15 1 INF. POP.
CL SD: DF TOT CL SD: DF TOT CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL	68.1 1.0 TAL 68.1 1.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8 COEFF VAR.% 19.1 19.1 19.1 19.1 COEFF VAR.% 17.0 17.0 COEFF VAR.%	S.E.% 5.7 5.7 5.7 5.2 5.2 5.2 5.2 S.E.% 10.2 10.2 10.2 10.2 5.E.% 7.8 7.8 5.E.% 6.9 6.9 6.9		SAMPLI OW 176 276 SAMPLI OW 52 52 52 TREES/ OW 152 152 BASAL OW 192 192 192 NET BF OW 24,436 24,436 24,436	E TREES - AVG 187 187 E TREES - AVG 55 55 55 ACRE AVG 169 169 169 169 AREA/ACI AVG 209 209 209 209 209 209 209 209 209 209	BF HIGH 197 197 CF HIGH 58 58 58 HIGH 186 186 186 RE HIGH 225 225 225 HIGH 28,079 28,079 28,079 RE HIGH	# # #	OF TREES R 5 93 OF TREES R 5 80 P OF PLOTS F 5 29 P OF PLOTS F 5 17 F OF PLOTS F 5 13 F OF PLOTS F 5	EQ. 10 23 EO. 10 20 20 20 20 20 20 20 20 20 2	INF. POP. 15 10 INF. POP. 15 9 INF. POP. 15 3 INF. POP. 15 2 INF. POP. 15 1 INF. POP. 15
CL SD: DF TOT CL SD: DF TOT CL SD: SD: SD: DF TOT CL SD: CL SD: DF TOT	68.1 1.0 FAL 68.1 1.0 FAL		COEFF VAR.% 48.3 48.3 COEFF VAR.% 44.8 44.8 COEFF VAR.% 19.1 19.1 19.1 19.1 COEFF VAR.% 17.0 17.0 COEFF VAR.% 17.9	S.E.% 5.7 5.7 5.7 5.7 5.7 S.E.% 10.2 JO.2 S.E.% 7.8 7.8 S.E.% 6.9 6.9 S.E.% 7.3		SAMPL3 OW 176 276 SAMPL3 OW 52 52 TREES/ OW 152 152 BASAL OW 192 192 192 192 NET BF OW 24,436 24,436 XET CU OW 7,201	E TREES - <u>AVG</u> 187 187 E TREES - <u>AVG</u> 55 55 ACRE <u>AVG</u> 169 169 169 169 209 209 209 209 209 209 209 20	BF HIGH 197 197 CF HIGH 58 58 58 HIGH 186 186 186 186 225 225 225 HIGH 28,079 28,079 28,079 28,079	# # # #	OF TREES R 5 93 OF TREES R 5 80 OF PLOTS F 5 29 OF PLOTS F 5 17 OF PLOTS F 5 17 OF PLOTS F 5 13	EQ. 10 23 EO. 10 20 20 20 20 20 20 20 20 20 2	INF. POP. 15 10 INF. POP. 15 9 INF. POP. 15 3 INF. POP. 15 2 INF. POP. 15 1 INF. POP. 15

TC I	PSTNDSU	м				S	itand I	able Su	ummary				Page Date:	1 2/8/2	024	
THST	R08W S11	7 ТуМС		1.9	00		Project	S	ALMFOR	K			Time:	9:36	:07AM	
							Acres		1.0	0			Grown Yea	r:		
s				Tot				Average	e Log		Net	Net		Totals		
Spc T	DBH	Sample Trees	FF 16'	Av Ht	Trees/ Acre	BA / Acre	Logs Acre	Nel Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Cunits	MBF	
DF	10	3	88	92	15.715	8.57	31.43	8.7	35.0		272	1,100			3	i
DF	11	ì	84	102	4,329	2.86	8.66	13.0	45.0		113	390			1	0
DF	12	5	88	80	18.189	14.29	36.38	11.9	38.0		433	1,382			4	1
DF	13	10	87	87	30.997	28.57	61.99	15.4	49.0		952	3,038			10	3
DF	14	7	87	99	18.709	20,00	37.42	20.7	70.7		775	2,646			8	3
DF	15	5	87	96	11.641	14.29	25.61	20.0	65.5		512	1,676			5	2
DF	16	11	87	95	22.509	31.43	45.02	26.1	86.8		1,175	3,908			12	4
DF	17	8	88	100	14,501	22.86	32.63	27.9	97.8		912	3,190			9	3
DF	18	11	87	102	17.785	31,43	42.04	29.8	96.9		1,253	4,074			13	4
DF	19	1	89	110	1.451	2.86	4.35	28.7	100.0		125	435			1	0
DF	20	4	88	105	5.238	11,43	14.41	31.1	110.9		448	1,598			4	2
DF	21	4	87	105	4,751	11.43	11.88	38,8	133.0		401	1,380			5 1	2
DF	22	1	87	93	1.082	2.86	2.16	49.0	170.0		100	308			1 2	0 1
DF	23	2	87	107	1.981	5.71	4.95	47.0	176.0		233	0/1			<u> </u>	
DF	Totals	73	87	94	168.880	208.57	358.93	21.6	73,2		7,768	26,257			78	26
Totals		73	87	94	168,880	208.57	358.93	21.6	73.2		7,768	26,257			78	26

.

TC	PSPCSTGR		Sp	ecies, So	ort Gra	de - Boar	d Fo	oot Vo	olume	es (Pro	ject))								
ΤI	S R08W S17 T	уMC		1.00		Project: Acres		SAI	LMFC 1.(DRK 10						 	Page Date Time	2/8 9:	1 3/2024 36:06	AM
		%						Perce	ent of N	let Board	Foot	Volume					Avera	ige Log	g .	Logs
	S So Gr	Net	Bd. Ft.	per Acre		Total		I	log Sca	ıle Dia,			Log l	ength		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	DO 2M	21	4.6	5,960	5,686		6			100		7			93	37	13	214	1.53	26
DF	DO 3M	63	5.1	17,454	16,567		17		100				l	8	91	39	8	101	0.76	164.
DF	DO 4M	16	1.4	4,060	4,004		4	94	6			24	27	17	32	24	5	24	0.36	164.
ÐF	Totals	100	4.4	27,474	26,257		26	14	64	22		5	4	8	82	32	7	74	0.69	355
Tota	15		4.4	27.474	26.257		26	14	64	22		5	4	8	82	32	7	74	0.69	355

TC TR	EESEGR								TREE	SEGM	ENT	VOL	UMES			_	Pa	age	1	
									Pro	ject:	SA	LMF	ORK				Da	ate	2/8/20	24
			80		ACT			TUD	F		OFF		prove		тык	FS	Свнеел) በልፐፍ	Cullt	BdFt
TWP 11S	RGI 08V	e: V	SC 17	SF	GROV	VTH		MC	Ľ	A	1.00	0	7	,	INE	73	12/1/20	23	1	W
	ree			c			T	Bole Tot		S					Dia	Dia	Gross	Net	Gross	Net
Plot	No PF	A	Spc S	T	DBH	FP FF	Ð	ligt Hg	PROV	r sg i	Len	FIFI	Bark	Ao	Butt	Тор	CuFt	CuFt	BdFt	BdFt
0204	0001	811	DF	l	17.0	4 88	F	72 9	90	113	40	1	.919	.505	16.59	11.00	46	46	180	180
					BA = 2	0.00		T/A = 12.	.688	214	30		.919	.505	11.00	5.51	13	13 50	30 210	30 210
	0002	B1 1	DF	1	14.0	487	F	64 8	37	113	38	2	.919	.505	13.75	9.05	29	29	110	100
					BA = 2	0.00		T/A = 18	.709	214	24		.919	.505	9.05	5.51	8	8	30	30
	0003	RE I	DF	1	18.0	4 88	4	90 E	14	112	40	2	.919	.505	17.70	12.46	52	52	200	190
	0005	511	Di		BA = 2	0.00	,	T/A = 11	.318	213	32	ĩ	.919	.505	12.46	8.51	21	21	70	60
[314	16		.919	.505	8.51	5.63	5	5 70	20	20
1	0004	119	DF	1	19 0	4 89	4	87 1	10	112	40	2	.919	.505	18.52	13.19	70 59	78 59	290	270
	0004	193 1	51		BA = 2	0.00	7	T/A = 10	.158	213	32	ī	.919	,505	13.19	8.69	23	23	70	60
										314	12		.919	.505	8.69	6.22	4	4	10	01
	ለሰሳፍ	יזם	DF	,	20 A	കണ	1	80 1	13	112	40	t	.919	.505	19.36	14.12	80 67	80 67	320 290	280
	0003	ធរា	DI	,	BA = 2		. 7	T/A ≔ 9.1	 167	213	34	2	.919	.505	14.12	9.19	29	29	100	90
										3 14	12		.919	.505	9.19	6.62	5	5	10	10
1	ለስስራ	יומ	DF	ĩ	21.0	A 86	А	82 6	03	112	40	2	.919	.505	20.90	13.86	101 67	101 67	400 240	230
	0000	ыц	Dr	1	BA = 2	20.00	, 4	T/A = 8.3	315	213	40	ĩ	.919	.505	13.86	6.64	24	24	60	60
																	91	91	300	290
	0007	B1 1	DF	1	12.0 PA - 1	491 2000	F	55 T/A = 24	78 465	1 13 2 14	40 14		.919	.505	11.38	7.55 5.34	21 4	21 4	70 10	70 10
-					ыл = .	.0,00		11N - 23		±14	17			.505	, <i></i>	5.51	25	25	80	80
	0008	в1 (DF	1	18.0	4 85	54	82 I	03	1 13	40	4	.919	.505	18.05	11.74	53	53	180	160
					BA = 3	20.00		T/A = 11	.318	214	40	I	.919	.505	11.74	5.62	18	18	40 226	40 200
1	0000	BI 1	DF	1	17.0	4 8	7 F	90 1	15	113	40	2	.919	.505	16.84	11.64	46	46	180	170
	0007	5,1			BA = 1	20.00	•	T/A = 12	2.688	213	32	Ĩ	.919	.505	11.64	7.99	17	17	60	50
										314	16		.919	.505	7.99	5.34	4	4	20	20 240
PLOT	ī 				BA = 18	30.00		T/A = 11	9.826								7,170	7,170	25,804	24,441
0207	0001	811	DF	1	17 (4 8	3 F	80 1	01	113	40	2	.919	.505	16.66	11.40	46	46	180	170
0207	0001	011		1	BA =	20.00	. 1	T/A = 12	2.688	214	38	2	.919	.505	11.40	5.51	17	17	40	40
1		_	_				. .					~	070	605	61.44	7.14	63	63	220	210
	0002	B1 1	l DF	1	11.(BA =) 48: 20.00	5 F	62 1 T/A = 34	02 0.305	1 13 2 14	40 20	2	.919	.505	7,16	7.16 5.51	21 5	21 5	70 20	70 20
					<u>ил</u> –	20.00		171 – M		4- L-T	*0	•					26	26	90	90
	0003	BI	DF	1	18.0) 49	14	84 1	06	112	38	1	.919	.505	17.26	12.88	50	50	190	180
					BA≈	20.00		T/A ≈ 11	1.318	213	32		.919 010	.505 505	12.88	8,34 5 81	21 A	21 4	70 10	10
										314	12		.919	.505	0.54	0.01	75	75	270	260
	0004	BL	1 DF	1	14.0) 48	5 F	76 1	06	113	40	3	.919	.505	14.05	9.19	34	34	120	110
					BA =	20.00		T/A = 1	8.709	214	34	2	.919	.505	9.19	5.51	12	12 46	40 160	30 140
	0005	B1	DF	1	15.0) 48	5 F	74	99	113	40	2	.919	.505	15.02	9.67	37	37	120	110
					BA =	20.00		T/A = 1	6.297	214	32	2	.919	.505	9.67	5.51	11	11	30	30
	_	-					, .		107	• • •			010	505	12.05	0 //	48	48 26	150	140
	0006	BI	I DF	1	I 13.0 BA ≕	୬ 4 8 20.00	υf	74 T/A = 2	1.698	113 214	40 32	. I	.919	.505	6 12.95 6 8.66	6.00 5.51	9	20	30	30
									-								35	35	120	120
	0007	B1	I DF	l	10.	0 4 8	7 F	52	91	113	38	1	.919	.505	9.84	6.57	' 14 `	14 2	60	60 10
					BA =	20.00		17A = 3	0.009	214	12		.919	.505	0.3/	3.31	3 17	3 17	70	70
	0008	ві	I DF	1	1 21.	049	04	86	109	112	40	1	.919	.505	5 20.31	14.70	1 71	71	290	280
					BA ≂	20.00		T/A = 8	.315	213	32	2	.919	.505	5 14.70	9.55	5 27	27	90	90
										314	12	!	.919	.505	9.55	6.71	5 103	5 103	10 390	10 380
	0009	BL	1 DF	ļ	17.	048	9 F	86	108	113	40	2	.919	.505	5 16.56	t1.70	5 46	46	180	170
		-			BA =	20.00		T/A = 1	2.688	213	32	2	.919	.505	5 11.76	7,62	17	17	60	60
										314	12	2	.919	.505	5 7.62	5.32	: 3 66	3 66	10 250	10 240
	0010) BI	1 DF	I	18.	048	6 I	74	92	113	40	2	.919	.505	5 17.85	11.40	i 49	49	180	170
		-			BA =	20.00		T/A = 1	1.318	214	32	2 8	.919	.505	5 11.46	5.51	[4	14	30	30
																	63	63	210	200

TC TF	REESEGR			TREE Pro	SEGN ject:	IENT S.	VOL ALMF	UMES ORK				P D	age ate	2 2/8/20	24
TWP 11S	RGE 08W	SC 17	TRACT SF GROWTH	ТҮРЕ МС	А	CRES	0	PLOT	s 7	TR	EES 73	CRUISE 12/1/20	D DATE)23	CuFt 1	BdFt W
T Plot	ree No PF A	Spc S	C T DBH FP FF	T Bole Tot. D Het He PRDVI	S SG	Len	FIFI	Bark	<u>۸</u> ۵	Dia Butt	Dia Ten	Gross	Net	Gross	Nel
0207	0011 B1 1	DF	1 17.0 4 90 BA = 20.00	F = 82 - 103 $T/A = 12.688$	113	40	1	.919	.505	16.41	11.72	46 18	46	180	180
PLOT			BA = 220.00	T/A = 192.694								<i>64</i> 8,681	64 8,681	220 30,766	220 29,666
0211	0001 BI 1	DF	1 17.0 4 88 ⊺ BA = 20.00	F 79 99 T/A = 12 688	113	40	1	.919	.505	16.65	11.36	46	46	180	180
						50			.000	11,50	5.50	63	63	220	220
	0002 B1 1	DF	1 21.0 4 87 4 BA = 20.00	4 84 106 T/A = 8 315	E 12 213	40 28	1	.919 919	.505	20.76	14.12 9.68	71 2.t	71	290	280
			DIT 20,00	1/11 0.515	314	12	U	.919	.505	9.68	6.95	24 5	24 5	10	10
	0003 011	DE.	1 60 4 95 1	5 72 01	1.1.2	10	~	010	-0-5		10.00	100	100	370	360
	111 2000	Dr	BA = 20.00	T/A = 14.324	214	40 30	2	.919	.505	15.87	10.23 5.51	39 12	39 12	150	140 30
												51	51	180	170
	0004 Bt 1	DF	1 20.0 4 86 4	4 76 95 T/A = 9 167	112	40 20	1	.919	.505	19.86	12.89	60	60	200	190
			DAT 20.00	1/// 2.10/	314	12	1	.919	.505	9.44	6.57	5	5	30 10	40 10
	0007 D1 1		1 12 6 1 00 1									79	79	260	240
	0000 BII	DF	BA = 20.00	T/A = 12.688	113 214	40 28	3	.919 .919	.505	16.32	11.09	46 12	46 12	180	170 30
					-••		-				0101	58	58	210	200
	0007 BI 1	DF	1 16.0 4 90 1 BA == 20.00	71 90 T/A = 14 324	113	40	i	.919	,505	15.38	10.58	39	39	150	150
			DA - 20.00	177	214	50		.919	.505	10.58	3.29	51	57	30 180	30 180
	0008 B1 1	DF	1 20.0 4 87	86 109	112	20		.919	.505	19.78	15.55	36	36	180	180
			BA = 20.00	T/A = 9.167	200	10	,	.919	.505	15.55	14.60	34		100	
					414	14	1	.919	.505	9.15	9.13 6.17	54 5	34 5	20	20
		DE	1 190 4 96	70 02	1.1.2	10		010		10.00		75	75	320	310
	0009 11 1	Dr	BA = 20.00	T/A ≈ 11.318	214	28	ı t	.919	.505	17.82	5.69	49	49 12	180	170 30
		V 4 V 4										61	61	210	200
	0010 81 1	DF	1 22.0 4 87 4 BA = 20.00	74 93 T/A = 7,576	112	40 32	1	.919 919	.505	21.66	14,21	75	75	290	280
						52		.,,,,	.505	14.21	7.04	23 98	2.5 98	350	340
PLOT			BA = 180.00	T/A = 99.568								6,672	6,672	24,035	23,217
0215	0001 B1 I	DF	1 16.0 4 86 F	72 93	113	40	1	.919	.505	15.87	10.23	39	39	150	150
			BA = 20.00	T/A = 14.324	214	30	1	.919	.505	10.23	5.51	12	12	30	30
	0002 B1 1	DF	1 23.0 4 88 4	79 99	112	40	2	.919	.505	22.52	15.37	57 83	57 83	7 <i>80</i> 360	180 340
			BA = 20.00	T/A = 6.932	213	38	2	.919	.505	15.37	7.15	30	30	70	60
	0003 B1 1	DF	1 16.0 4 85 F	73 95	113	40	2	.919	505	16.00	10 18	113 43	113 43	430	400
	•		BA = 20.00	$T/\Lambda = 14.324$	214	32	-	.919	.505	10.18	5.32	12	12	30	30
	0004 121 1	DF	166 4 06 -	60 00	1.15	40	2	010		16.07	10.00	55	55	180	170
	0004 B1 I	DL.	BA = 20.00	T/A = 14.324	113 214	40 28	2	.919 .919	.505 .505	15.85 10.07	10.07 5,30	39 11	39 11	150 30	140 30
	000- F	b. r-										50	50	180	170
	0005 B1 1	DF	1 18.0 4 86 4 BA = 20.00	$81 \ 102$ T/A = 11 318	113	40 ⊿∩	2 4	.919 010	.505	17.91 11.84	11.84	49	49	180	170
			20100	11.910	-14		.1	.719	.101	11.04	7.40	67	10 67	40 220	40 210
	0006 B1 I	DF	1 18.0 4 87 4	76 95	113	40	2	.919	.505	17.74	11.74	49	49	180	170
			PV = 50'00	1/A = 11.318	214	34	2	.919	.505	11,74	5.76	15 64	15 64	40	30
	0007 BI 1	DF	1 13.0 4 87 F	48 65	1 13	34	ť	.919	.505	12.60	7.97	20	20	60	60
			BA = 20.00	T/A = 21.698	214	12	2	.919	.505	7.97	5.51	3	3	10	10
	0008 B1 1	DF	1 13.0 488 F	64 90	113	38	1	.919	,505	12.69	8.60	23 25	23 25	70 80	70 80
			BA = 20.00	T/A = 21.698	214	24	-	.919	.505	8.60	5.51	7	7	30	30
	0089 811	DF	1 156 J 01 10	74 06	112	10	4	010	505	11.24	12.25	32	32	110	110
	7777 IN L	51	BA = 20.00	T/A = 16.297	200	8	4	.919	.505	14.54	11.63	19	19	90	70
					313	34	3	.919	.505	11.63	7.56	18	18	60	50
					414	12		.919	.505	7.56	5,32	3 40	3 11	10 160	10
												40	40	100	130

TC TR	EESEGR					TREE	SEGM	ENT	VOL	UMES				Pa	ige	3	1.4
						Proj	ect:	54	LAVIE	URK				D.		2/0/202	.4
тwр 11S	RGE 08W	SC 17	T) SI	RACT ? GROWTH		ТҮРЕ МС	A	CRES)	PLOTS 7		TRE	ES 73	CRUISED 12/1/20	DATE 23	CuFt 1	BdFt W
Т	ree		С		Т	Bole Tot.	S		5101			Dia	Dia	Gross	Net	Gross	Net
Plot 1	No PF A	Spc S	Т		F D		50	Len	FIFI	Dark	A0	Duc			21	2/0	240
0215	0010 B1 1	DF	1	21.0 4 8: BA = 20.00	54	80 101 T/A = 8.315	1 12 213	40 38	1 2	.919 .919	.505 .505	21.04 13.60	13.60 6.56	23	23	240 60	240 60
												17.01	10.22	94 50	94 62	<i>300</i>	300
	0011 B1 1	DF	1	18.0 4 9 BA = 20.00	14	77 97 T/A = 11.318	112 214	40 36	3	.919 .919	.505 .505	17,21 12,33	12.33 5.78	52 18	52 18	200 40	40
														70	70	240	220
	0012 BI I	i DF	1	16.0 4 80 ₩A == 20.00	6 F	74 96 T/A = 14.324	113 214	40 32	2	.919 .919	.505 .505	15.89	5.51	39 12	39 12	30	30
				B/1 20.00		Int those								51	51	180	170
	0013 BI I	DF	1	23.0 4 8	64	90 114 T/A = 6.032	112	40 32	1	.919 919	.505	22.95 15.56	15.56	83 32	83 32	360 120	350 110
				BA # 20.00		1/A = 0.932	314	14	2	.919	.505	10.63	7.51	7	7	20	20
								(5)		010	505	16.65	10.50	122	122	500	480
	0014 BI I	I DF	1	16.0 4 8 BA = 20.00	8 F	75 96 T/Λ = 14.324	113 214	40 32	0	.919	.505	10.59	5.71	12	12	30	30
				211 10000										51	51	180	180
PLOT				BA = 280.00		T/A = 187.445								10,226	10,226	36,042	34,211
0301	0001 B1	1 DF	i	18.0 4 8	64	88 [1]	112	40	1	.919	.505	17.95	12.11	52	52	200	190
				BA = 20.00		T/A = 11.318	213	32	1	.919	.505	12.11	8.08	21	21	70	60 10
							314	12	l	.919	.305	8.08	3.88	4 77	77	280	260
	0002 B1	1 DF	1	20.0 4 9	00 4	82 103	112	40	2	.919	.505	19.31	13.82	63	63	240	230
				BA = 20.00		T/A = 9.167	213	40	1	.919	,505	13.82	6.62	24 87	24 87	00 300	80 290
	0003 B1	1 DF	I	10.0 4 9	91 F	52 86	113	38		.919	.505	9.52	6.75	14	14	60	60
				BA = 20.00		T/A = 36.669	214	12		.919	.505	6.75	5.51	3	3	10	10
	0004 B1	i DF	1	12.0 4 9	90 F	52 74	113	38	I	.919	.505	11,44	7.50	20	20	70	70
1	0004 01	, DI		BA = 20.00		T/A = 25.465	214	12	2	.919	.505	7.50	5,51	3	3	10	10
										.919	,505	5.51	5.33	23	23	80	80
	0005 B1	1 DF		17.048	38 F	79 99	I 13	40	ı	.919	.505	16.65	11.36	46	46	180	180
				BA = 20.00		T/A == 12.688	214	38	i	.919	.505	11.36	5.30	17	17	40	40
	0006 B1	1 DF		1 12.0 4 8	88 F	1 54 108	113	40	2	.919	.505	11.79	8.28	23	23	220 90	80
	0000 21			BA = 20.00		T/A = 25.465	214	12		.919	.505	8.28	7.35	5	5	20	20
	0000 01	1 DF		1 150 4 5	86 1	78 104	113	40	5	.919	.505	14.93	9,93	28 34	28 34	120	100
	0008 81	I Dr		BA = 20.00	au 1	T/A = 16.297	214	36	5	.919	.505	9.93	5.51	12	12	40	40
								10		010	506	12.00	7.51	46	46 24	160 70	140 70
	0009 B1	I DF		1 13.0 4 3 BA = 20.00	85 1	T/A = 21.698	214	40	1	.919	.505	7.52	5.51	. 24	24	10	10
														27	27	80	80
	0010 Bi	1 DF		1 15.0 4 H	87 1	F 60 78	113	40	2	.919 919	.505	i 14.67 i 9.02	9.02 5.51	: 34 6	34	20	20
				BA - 20.00		177 - 10.277	217	10						40	40	140	130
	0011 BI	1 DF		1 12.0 4	86 1	F 56 83	113	40	1	.919	.505	5 11.86	7.35	5 21	21	70	70 10
				BA = 20.00		17A = 25.465	214	14		.919	.50.	, 1.55	5.51	25	25	80	80
	0012 B1	1 DF		1 16.0 4	85	P 74 96	113	40	3	.919	.505	5 16.01	10.22	2 43	43	150	140
				BA = 20.00		T/A = 14.324	214	32	2	.919	.505	5 10,22	5.51	12 55	12	30 180	30 170
PLOT	ſ			BA = 220.00		T/A = 214.854								7,802	7,802	27,356	26,151
0305	0001 BI	1 DF		1 15.0 4	89	F 77 101	113	4()	.919	.50	5 14.59	10.19	36	36	150	150
	D1			BA = 20.00		T/A = 16.297	200	8	3	.919	,50	\$ 10.19	9.30	S • • • •		**	
							314	28	3	.919	,50	9.36	n 5.34	+ 10 46	10 46	30 180	30 180
	0002 B1	1 DF		1 13.0 4	89	F 53 72	113	4()	.919	.50:	5 12.47	7.6	5 24	24	70	70
				BA = 20.00		T/A = 21.698	214	12	2	.919	.50	5 7.65	5.30) 3 ••	3	10	10 גע
	0003 111	1 DF		1 14.0 4	89	F 68 91	113	4() (.919	.50	5 13.57	9.2	1 31	31	120	110
1	0000 01			BA = 20.00		T/A = 18,709	214	- 26	5	.919	.50	5 9.21	5,5	1 9	9	30	30
	000.1 01	1 1512		1 160 4	80	F 76 07	113	135	86	.919	.50	5 15.54	10.9	40 6 38	40	150	140
	0004 B1	i Dr		BA ≈ 20.00	02	T/A = 14.324	214	30	5 1	.919	.50	5 10.90	5 5.5	l 14	14	40	40

•

TC	TREESEGR
----	----------

TREE SEGMENT VOLUMES Project: SALMFORK

Page Date 2/8/2024

4

TWP 11S	RGE 08W	8C 17	TRACT SF GROWTH	түре МС	А	CRES	; 10	PLOTS	s 7	TRI	EES 73	CRUISE 12/1/20	D DATE)23	CuFt 1	BdFt W
m			<u> </u>	F Dols T-f	6										
Plot)	No PF A	Spc S	T DBH FP FF	I BOR TOK.	S SG	Len	FIFI	Bark	Ao	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
0205		DD						÷				52	52	180	160
0303	0003 191 1	Dr	1 13.0 4 ۵۶ BA = 20.00	F 67 94 T/A∞21,698	113 214	40 26	2	.919 010	.505	12.61 8.63	8.63 5.36	26 8	26 8	90 30	80
			Dir Lotov	11/1 21,070	417	20		.717		0.05	0.00	0 }d	0 L{	30 120	50
	0006 B1 I	DF	1 18.0 4 89	4 88 111	112	40	1	.919	.505	17,55	12.53	52	52	200	190
			BA = 20.00	T/A = 11.318	213	32	2	.919	.505	12.53	8.36	21	21	70	60
					314	12		.919	.505	8.36	6.09	4	4	10	10
	0007 81.1	DF	1 160 4 89	° 75 06	112	40	1	010	505	15.53	10.00	77	77	280	260
	0007 01 1	Dr	BA = 20,00	T/A = 14,324	214	40 34	1	.919	.505	15.53	10,69	39 13	.39 13	150 40	150
						21	•			10.07	1000	15	52	700	40
	0008 B1 I	DF	1 12.0 4 89	7 41 56	114	40	2	.919	.505	11.43	5.51	18	18	40	40
			BA = 20.00	T/A = 25.465								18	18	40	40
	0009 BI 1	DF	1 16,0 4 89	7 81 104	113	40	6	.919	.505	15.57	10.95	39	39	150	130
			BA = 20.00	T/A = 14.324	214	40	2	.919	.505	10.95	5.33	16	16	40	40
												55	55	190	170
	0010 B1 I	DF	1 13.0 4 89	56 77	1 13	40	2	.919	.505	12.51	7.93	24	24	70	70
			BA = 20.00	I/A = 21.698	214	14		.919	.505	7.93	5.51	4	4	10	10
	0011 BL1	DF	1 18.0 4.89	1 82 103	112	40		010	505	17.51	12.20	28	28	80	80
		2.	BA = 20,00	T/A = 11.318	214	40	2	.919	.505	12.30	5.89	20	20	200 40	200
							_				2107	72	72	240	240
PLOT			BA = 220.00	T/A = 191.172								7,851	7,851	26,740	25,537
0309	0001 B1 I	DF	1 13.0 4 89 1	72 101	113	40	2	.919	.505	12.64	8,84	26	26	90	80
			BA = 20.00	T/A = 21.698	214	30	í	.919	.505	8.84	5.51	9	9	30	30
												35	35	120	110
	0002 BI 1	DF	1 13.0 4 88 1	70 99	113	40	1	.919	.505	12.73	8.68	26	26	90	90
			BA == 20,00	17A == 21.698	214	28		.919	.505	8.68	5.51	8	8	30	30
	0003 B1 1	DF	1 140 4 88 1	82 113	113	40	1	010	505	12.76	0.66	34	34	120	120
	0005 511	DI	BA = 20.00	T/A = 18,709	214	40	3 4	.919	.505	9.66	9.00 5.51	31 14	31	40	10
												45	45	160	150
	0004 BI 1	DF	1 13.0 4 88 1	62 87	113	40	4	.919	.505	12.67	8.29	26	26	90	80
			BA = 20.00	T/A = 21.698	214	20	2	.919	.505	8.29	5.51	6	6	20	20
	0006 51 1	DE										32	32	110	100
	0002 811	Dr	I 14,0 4 90 1 BA ≈ 20.00	78 105 T/A == 18 700	113	40	2	.919	.505	13.53	9.72	31	31	120	110
			DA 20,00	1/// ~~ 18.709	414	20	1	.919	.505	9.72	2'21	12	12	40	40
	0006 B1 I	DF	1 10.0 4 86 H	55 99	113	40		919	505	9 94	6.52	43	45	160	150
			BA = 20.00	T/A = 36.669	214	14		.919	.505	6.52	5.43	3	3	10	00 10
												18	18	70	70
	0007 BI 1	DF	1 14.0 4 87 I	64 87	113	38		.919	.505	13.75	9.05	29	29	110	110
			BA = 20.00	T/A = 18.709	214	24		.919	.505	9.05	5.51	8	8	30	30
	0000 01 1	DE	1 140 4 99 1	70 107	1.12	20	-	010	605	12.01		37	37	140	140
	0000 011	Dr	BA = 20.00	75 107 T/A = 18 709	214	38 38	ა ა	.919	.505	13.74	9.70	29	29	110	100
			2 20.00		-17	50	4	.717	05	2.10	5.51	13	13 13	40)(A	40
PLOT			BA = 160.00	T/A = 176.598								5,976	5,976	21,573	20,578
TYPE			BA - 208 57	T/I = 169.990								a a.o	0.040		

TC PST	ATS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u>PR</u> PR	OJECT S	STATIS SALM	<u>TICS</u> MFORK			PAGE DATE	1 2/5/2024
TWP	RGE	SC	TRACT	Ľ.	YPE		ACI	RES	PLOTS	TREES	CuFt	BdFt
115	09	27	SFU3	P	С			42.00	15	142	1	W
						TREES	ŀ	ESTIMATED TOTAL	P ;	PERCENT SAMPLE		
			PLOTS	TREES		PER PLOT		TREES		TREES		
тотл	AL.		15	142		9.5						
CRU	ISE		8	77		9.6		6,889		1.1		
DBH	COUNT											
REFO	DREST		_	. <u>.</u>								
COU	NT		7	65		9.3						
100 %	NK.S 6											
		<u> </u>			STA	ND SUMM.	ARY					
		s	AMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		~	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DF-L			50	105.3	15.0	67	33.4	129.3	15,776	15,189	4,511	4,511
DF-1	•		25	55.6	13.8	61	15.5	57.3	6,478	6,045	1,846	1,846
CHE	RRY		2	3.1	12.5	16	0.8	2.7	72	72	20	20
тот	AL		77	164.0	14.5	64	49.6	189.3	22,326	21,306	6,377	6,377
CO	NFIDENC	CE LIN 58.1	MITS OF THI TIMES OUT	E SAMPLE F OF 100 THE	VOLUME	WILL BE V	VITHIN TI	IE SAMPLE I	ERROR			
CL	68.1		COEFF			SAMPLI	E TREES -	BF		# OF TREES I	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%		.ow	AVG	HIGH		5	10	15
DF-1			38.7	5.5		155	164	173				
DF-1	Г		38.8	7.9		111	25	58				
	KRY FAL		41.4	5.0		139	146	153		77	19	9
			000000			CANDI	- TOFRO	<u>CE</u>		# OF TREES	PEO	INF POP
CL	68.1		VAD 9/	5 F %		SAMELI	AVG	нюн		s s	10	15
50: DE 1	<u> </u>		¥AK.76	5.1.76		46	49	51			<u>·</u>	
DF-	r T		33.4	6.8		34	36	39				
СНЕ	ERRY		[4].4	132.4			7	16				
то	ľAL		42.5	4.8		42	44	46		72	18	8
CL	68.1		COEFF			TREES/	ACRE			# OF PLOTS	REQ.	INF, POP.
SD:	1.0		VAR.%	S.E.%	1	LOW	AVG	HIGH		5	10	15
DF-	L.		15.3	4.1		101	105	110				
DF-	Т		55.1	14.7		47	56	64				
Сні	ERRY		387,3	103.4			3	6				
то	TAL		15.8	4.2		157	164	171		11	3	1
CL	68.1		COEFF			BASAL	AREA/AC	RE		# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%		LOW	AVG	HIGH		5	10	15
DF-	L		8.0	2.1		127	129	132				
DF	T		54,1	14.5		49	57	00 5				
CH	ERRY TAT		381.3	103.4 2 Q		182	د ۱۶۵	197		9	2	1
	1715		14.3	5.0		104					-	INE DOD
CL	68.1		COEFF			NET BF	ACRE	шен		# OF PLOTS	кеџ. 10	HNF, POP, 13
SD	1.0		VAR.%	S.E.%			AVG	15 401		<u> </u>	10	10
DF	ч. т		7.5 53.5	2.0		5,197	6.045	6.893				
CH	ERRY		387 3	103.4		-,	72	147				
	TAL		14.7	3,9		20,471	21,306	22,141		9	2)
	<i></i>		COPER	,		NET CI	IFT FT/A	CRE		# OF PLOTS	REO.	INF. POP.
CL en	68.1		VAD 04	SF%		LOW		HIGH		5	10	15
50	<u>. 1.0</u> -L		7.0	1.9		4,427	4,511	4,596				
DF	-T		52.1	13.9		1,589	1,846	2,103				
1.01	•					-						

TC PST	ATS				PROJECT project	<u>' STATI</u> Sai	<u>STICS</u> MFORK			PAGE DATE	2 2/5/2024
TWP	RGE	SC	TRACT	TYI	эЕ	A	CRES	PLOTS	TREES	CuFt	BdFt
118	09	27	SFU3	PC			42.00	15	142	1	W
CL	68,1		COEFF		NET C	UFT FT/AG	CRE		# OF PLOTS	REQ.	INF. POI
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
CHER	RY		387.3	103.4		20	4[
TOT.	AL.		15.3	4.1	6,116	6,377	6,639		10	3	1

тс	TSTN	DSUM						Stand '	Table St	immary						
								Projec	et	SALMFO	RK					
T118 Twp 118	5 R0 1 (19W SZ Rgc 09W	27 TPC Sec 27	Tract SFU3			T) P(ype C	A) Z	cres 12.00	Plots 15	Sample Tr 77	ees	T11S R09 Page: Date: Time:	9W S27 TP 1 02/05/202 10:10:24	C ,, AM
	s		Sample	FF	Av Ht	Trees/	BA/	Logs	Aver: Net	nge Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	Тс	otals	
Spc	т	DBH	Trees	16'	Tot	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	L	9	1	86	53	5.855	2.59	5.86	9.0	30.0		53	176		22	7
DF	L	12	4	85	86	13.174	10.35	26.35	11.6	40.0		306	1,054		129	44
DF	L	13	5	86	84	14.031	12.93	25.26	15.3	48.9		387	1,235		163	52
DF	L	14	6	87	98	14.518	15.52	29.04	19.3	66.7		561	1,936		236	81
DF	L	15	7	89	93	14.755	18,11	29.51	22.4	77.1		662	2,276		278	96
DF	L	16	11	87	93	20.378	28.45	40.76	24.9	85.5		1,015	3,483		426	146
DF	L	17	6	87	100	9.846	15.52	19.69	31.0	104.2		610	2,051		256	86
DF	L	18	3	88	93	4.391	7.76	8.78	27.5	91.7	1	242	805		101	34
DF	L	19	3	87	97	3.941	7.76	9.20	32.1	108.6		296	998		124	42
DF	L	20	1	85	99	1.186	2.59	2.37	42.0	110,0		100	261		42	11
DF	L	21	3	88	90	3.226	7.76	7.53	37.1	121.4		280	914		117	90
DF		Totals	50	87	90	105,301	129.33	204.33	22.i	74,3		4,511	15,189		1,895	638
DF	т	10	1	90	74	4.205	2.29	8.41	7.5	25.0		63	210		26	9
DF	Т	IJ	1	84	70	3,475	2.29	6.95	9.0	30.0		63	208		26	9
DF	Т	12	4	86	74	11.680	9.17	23.36	11.1	33.7		260	788		109	33
DF	т	13	2	87	87	4.976	4.59	9.95	16.0	52.5		159	522		67	22
DF	Т	14	6	87	90	12.872	13.76	25.74	18.3	59.2		472	1,523		198	64
DF	Т	15	5	87	90	9.344	11.47	20.56	19.0	62.7		391	1,289		164	54
DF	Т	16	4	88	91	6.570	9.17	13.14	22.4	75.0		294	985		123	41
DF	Т	18	1	88	87	1.298	2.29	2.60	30.5	105.0		19	213		55 17	10
DF	T	19	1	90	99	1.165	2.29	3.49	18.7	70.0		60	243		23	
DF		Totais	25	87	84	55.584	57.33	114.20	16.2	52.9	ļ	1,846	6,045	·	775	254
CH		12	ł	86	17	1.698	1.33		1							
СН		13	1	87	33	1.447	1.33	1.45	14.0	50.0		20	72		9	3
СН		Totals	2	86	24	3.144	2.67	1.45	14.0	50.0		20	72		9	3
Total	\$		77	87	87	164.029	189.33	319.98	19.9	66.6		6377	21,306		2,678	895

Т	rspc	STGR	L			Species	i, Sort G Project:	Frade - Board SAL	l Foo MFOR	t Vol K	umes (T	ype	:)					Pago Date Time	e 2 e 1	1 /5/2024 0:10:21	АМ
T11S Twj 11S	R09' p	W S2 R{ 09	27 TPC ge W	Sec 27 S	Tract FU3	***	Туре РС	Acre 42.	s 00	Plots 15	San	nple	Trees 77		C 1	uFt	TH Bdl W	IS R Ft	09W S2	7 TPC	
				%	1				Perc	ent Ne	t Board F	oot V	Volume	3			A	veraį	ge Log		Logs
Spp	S T	So rt	Gr ad	Net BdFt	Bd. Def%	Ft. per Acre Gross	Net	Total Net MBF	L 4-5	og Sca 6-11	ale Dia. 12-16-17	7+	Log 12-20	g Leng 21-30	gth 31-35	36-99	Ln Ft	Dia In	Bd Ft	CF/ Lf	Per /Acre
DF	ī	DO	2M	11	7.6	1.819	1,680	71			100			26		74	36	13	194	1.54	8.7
DF	L	DO	3M	68	2.7	10,733	10,438	438		95	5		1	3		96	38	9	117	0,85	89.5
DF	L	DO	4M	21	4.7	3,224	3,071	129	91	9			14	43	21	22	27	5	29	0.39	106.2
DF 1	LΤ	otals		71	3.7	15,776	15,189	638	18	67	15		4	14	4	78	32	7	74	0.68	204.3
DF	Т	DO	2M	8	2.2	533	522	22			100		100				17	13	93	1.27	5.6
DF	Т	DO	3M	65	6.1	4,172	3,918	165		100				2	4	93	39	8	94	0.72	41.9
DF	Т	DO	4M	27	9.5	1,773	1,605	67	73	27			31	27	20	22	22	5	24	0.38	66.7
DF	тт	otals		28	6.7	6,478	6,045	254	19	72	9		17	9	8	66	28	7	53	0.58	114.2
сн		DO	CR	100		72	72	3		100			100				20	9	51	0.70	1.4
сн	Тс	tals		0		72	72	3		100			100				20	9	50	0.70	1.4
Туре	Totals	ì			4.6	22,326	21,306	895	19	69	13		8	12	5	75	31	7	67	0.65	320.0

TC TRI	EESEGR								1	REE (Proje	SEGME ect:	NT V SAI	VOL LMIF	UMES ORK				Pa Da	ge te	1 2/5/202	4
тwp 11S	RGE 09W		SC 27		TR/ SFU	аст J3			ТУРЕ РС		АC	RES 42.00		plots 15		TRE	ES 77	CRUISED 10/1/202	DATE 23	CuFt 1	BdFt W
T,	ત્રક				с			Т	Bole Tot.		S					Dia	Dia	Gross	Net	Gross	Net
Plot N	No PF .	A.	Spc S		Т	DBH FP	FF	D	Hgt Hg	PRDVT	SG L	en	FIFI	Bark	Ao	Butt	Тор	(.111			144
0001	0001 H	C	DF ount	L	7	15.0 4 BA = 140.9	87 00	F	67 90 T/A = 113.98	6	l xx	33						43 43	43 43	150	144
	0002 E	n t C	DF ount	Т	3	13.8 4 BA = 60.0	6 88 0	F	61 84 T/A = 58.169		l xx	28						33 33	33 <i>33</i>	117 117	109 109
PLOT					в	A = 200.0)		T/A = 172.15	5								6,815	6,815	23,857	22,768
0002	0001 E	81.1	DF	L	1	17.0	1 88	F	83 105		113	40 40	2	.919 919	.505	16.67 11.53	11.53	46 18	46 18	180 40	170 40
						BA ≌ 20.0	0		17A - 12,086		214	40		.,,,,		11.55	5171	64	64	220	210
	0002 F	31-1	DF	L	j	17.0	\$ 82	F	78 101		113	40	3	.919	.505	17.41	10.63	46	46 14	150 40	140 40
						BA = 20.0	0		17A ≈ 12.688	5	214	30		.919	,505	10.05	5.51	60	60	190	180
	0003 H	311	DF	T	1	16.0	4 88	F	73 93		112	20		.919	.505	15.64	12.51	23	23	100	100
						BA = 20.0	0		T/A = 14.324	ţ	200	10		,919 010	.505	12.51	5 72	18	18	40	40
											514	40	1	.919	.505	11.57	5.14	41	41	140	140
	0004 I	31-1	DF	L	1	17.0	4 90	F	82 103	_	113	40	2	.919	.505	16.41	11.72	46	46	180	170
						BA = 20.0	90		T/A = 12.688	8	214	40	ł	.919	.505	11.72	3,31	10 64	64	220	210
	0005 1	BI 1	DF	Т	i	13.0	4 89	F	63 88		113	40		.919	.505	12.58	8.42	26	26	90	90
						BA = 20.0)0		T/A = 21.69	8	214	20		.919	.505	8.42	5.67	6	· 6	20	20 110
	0006	B1 1	DF	ī.	1	13.0	4 89	F	65 91		113	40	2	.919	.505	12.60	8.53	26	26	90	80
	0000	511		2	•	BA = 20.0	ю		T/A = 21.69	8	214	24		.919	.505	8.53	5.36	7	7	30	30
	0005		00	Ţ		12.0	4 00	r	66 06		113	40	1	919	505	11.56	813	33 23	33 23	90 90	90
	0007 :	131 1	DF	L	I	BA = 20.0	4 90)0	r	T/A = 25.46	5	214	24		.919	.505	8.13	5.51	7	7	30	30
-															605	12 20	0.10	30	30	120	120
	0008	B1 I	DF	Т	1	14.0 RA = 201	488 na	F	74 101 T/A = 18 70	9	113	40 32	4	.919	.505	9,39	9.39 5.51	31 []	11	30	30
						511 20.	00											42	42	150	130
	0009	BI 1	DF	L	1	12.0	4 86	F	61 91	F	113	40 20	1	.919	.505	11.90	7.63 5.39	21	21	70 20	70 20
						BA = 20.	00		1/A = 23.46	3	214	20		.713		7.05	1.54	26	26	90	90
PLOT	w]	BA = 180.0	00		T/A = 165.42	23								6,595	6,595	23,143	22,172
0004	0001	B1 1	СН		1	13.0 BA = 20.	487 00	J	20 33 T/A = 21.69	8	1 IK	20		.940	.545	12.75	9.04	14 14	14 14	50 50	50 50
	0002	B1 3	СН		1	12.0 BA = 20.	487 00	ł	1 12 17 T/A = 25.46	5	100	12		.940	.545	11.77	10.30				
	0003	יים	DE	Ţ	5	15.0	4 89	r	87 100		113	40	I	.919	.505	14.73	10.27	36	36	150	150
1	6000	D1 I	DF	Ц	,	BA = 20.	00	. 1	T/A = 16.29	07	214	40	•	.919	.505	5 10.27	5.51	16	16	40	40
		-		_							1 4 2	40		010	504	1667	11.07	52 AK	52 46	190 180	190
	0004	B1 1	l DF	L	I	17.0 BA = 20.	488 .00	1	T/A = 12.68	38	214	40 34		.919	.505	5 11.27	5.73	15	15	40	40
1																		61	61	220	220
	0005	B 1	I DF	L	1	21.0 BA = 20	490 00		72 84 T/A = 8314	5	112	40 30	4	.919 .919	.505	5 20.13 5 13.55	13.55	67 . 17	67 17	240 30	30
						DA - 20			170 = 0.51	~	-17		-					84	84	270	250
	0006	B1	1 DF	L	1	9.0 BA ≕ 20	4 86 .00	5 I	F 30 53 T/A = 45.27	71	114	30		.919	,503	5 8.68	5.37	1 9 9	9 9	30 30	30 <i>30</i>
								, .			1.1.5			010	504	ר וגיי	10.49	2 20	10	150	150
1	0007	B1	1 DF	L	1	16.0 BA = 20	481 .00	/ 1	T/A = 14.32	24	113 214	40 32	1 2	.919	.50	5 10.48	5.71	, 39 I 12	12	30	30
						20												51	51	180	180
	0008	B1	I DF	L	1	14.0 BA = 22	4 82	7	F 75 103	00	113 214	40 32	1	.919 919	.50	5 13.83 5 9.34	9.34	a 31 5 11	31 11	120 30	30
D. C	r					BA = 20	.00		TIX = 10.7		214	54		., 17	,50,		5.50	42 4 5 4 7	42 4.547	150	140 15.607
PLO	ı 					BA = 160	.00		17A = 162.7	107							wv—	/ דר _נ ר	1,571		
0005	0001	₿l	l DF	L	;	16,0	4 8	3	F 73 96		113	40	2	.919	.50	5 16.25	5 9.9	7 40	40	120	110

TREE SEGMENT VOLUMES Project: SALMFORK

Page 2 Date 2/5/2024

тwр 115	RGE 09W	SC 27	TRACI SFU3			ТҮРЕ РС		Λ	CRES 42.0	0	PLOT; 1	s 5	TR	EES 77	CRUISE 10/1/20	D DATE D23	CuFt 1	BdFt W
Т	ree		С		Т	Bole Tot.		s					Dia	Dia	Gross	Net	Gross	Net
Plot	No PF A	Spc S	T DBF	FP FF	D	Hgt Hg P	RDVT	SG	Len	FIFI	Bark	Ao	Butt	Тор	CuFt	CuFt	BdFt	BdFt
			BA =	20.00		T/A = 14.324		214	30	2	.919	.505	9.97	5.70	10	10	30	30
0005	0002 B1 1	DF L	1 15	.0 4 91	F	69 89		113	40	6	.919	.505	14.30	10.00	34	34	120	140
			BA =	20.00		T/A = 16.297		214	26	2	.919	.505	10.00	5.72	9 (1)	9 42	30	30
	0003 BI 1	DF L	1 16	.0 4 89	F	70 89		1 1 3	40	L	.919	.505	15.49	10.42	39	43 39	150	150
			BA =	20.00		T/A = 14.324		214	28		.919	.505	10.42	5.51	11	11	30	30
	0004 B1 J	DF L	1 16	.0 4 88	F	71 9t		I 13	40	1	.919	.505	15.62	10.38	30	30 39	180	180
			BA =	20.00		T/A = 14.324		214	28	l	.919	.505	10.38	5.73	11	11	30	30
	0005 BI 1	DF T	1 14	.0 4 90	F	68 91		1 13	40	I	.919	.505	13,46	9.30	30 31	30 31	180	180
			BA =	20.00		T/A = 18.709		214	26		.919	.505	9.30	5.51	9	9	30	30
	0006 B1 1	DF L	1 13	0 4 88	F	66 93		i 13	40		.919	.505	12.70	8.50	40 26	40 26	<i>150</i> 90	140 90
			BA =	20.00		T/A = 21.698		214	24		.919	.505	8.50	5,51	7	7	30	30
	0007 B1 I	DF T	1 14	0 4 87	F	65 88		113	40	ł	.919	.505	13.76	8.88	<i>33</i> 29	33 29	120	120
			BA =	20.00		T/A = 18.709		214	24	-	.919	.505	8.88	5.34	7	7	30	30
	0008 B11	DF L	1 16	0 4 85	F	60 77		113	40	2	010	505	15.99	0.31	36 37	36	120	120
			BA =	20.00	•	T/A = 14.324		214	18	4	.919	.505	9.31	5.51	6	6	20	20
PLOT			$\mathbf{B}\mathbf{A} = 1$	60.00		T/A = 132.709									43 5 602	43	140	130
				00.00		101 - 152.705									3,603	3,003	19,410	18,011
0006	0001 B1 1 Co	DF L ount	6 15. BA =	0 4 87 120.00	F	67 90 T/A ≈ 97.702		1 xx	33						43 <i>43</i>	43 <i>43</i>	150 <i>150</i>	144 144
	0002 B1 I Co	DF T Sunt	2 13. BA =	8 4 88 40.00	F	61 84 T/A = 38.779		l xx	28						33 33	33 33	117 117	109 <i>109</i>
PLOT			BA = 1	60.00		T/A = 136.482									5,474	5,474	19,157	18,310
0007	0001 B1 1	DF T	1 12.	0 4 85	F	51 75		l 13	36	1	.919	.505	11.90	7.39	19	19	60	60
			BA =	20.00		T/A = 25.465		214	12		.919	.505	7.39	5.67	3	3	10	10
	0002 B11	DF T	1 11.	0 4 85	F	45 70		113	32	1	.919	.505	10.87	7.02	15	15	60	50
			BA =	20.00		T/A = 30.305		214	12	3	.919	.505	7.02	5.37	3	3	10	10
	0003 811 1	DF L	1 17.	0 4 87	F	77 97		113	40	i	.919	.505	16.76	11.15	46	78 46	180	00 180
			BA =	20,00		T/A = 12,688		214	34	3	.919	.505	11.15	5.72	15	15	40	30
	0004 B1 I I	DF T	1 15.	0487	F	62 81		113	40		.919	.505	14.69	9.18	67 34	61 34	220 120	210 120
			BA =	20.00		T/A = 16.297		214	20		.919	.505	9.18	5.51	7	7	20	20
	0005 B1 1 1	DF L	1 19.) 486	4	75 94		113	40		.919	.505	18.86	12.19	41 56	41 56	140 200	140 200
			BA ==	20.00		T/A = 10.158		214	32		.919	.505	12.19	6.25	17	17	50	50
	0006 B1 F I	DF L	1 13,) 4 88	Н	40 67		113	40	1	.919	.505	12.52	7.18	7 <i>3</i> 24	73 24	250 70	250 70
			BA =	20.00		T/A = 21.698									24	24	70	70
	0007 B11 I	DF L	1 17.	3 4 89	F	78 98		1 1 3	40	t	.919	.505	[6.51	11.43	46	46	180	180
			BA ==	20.00		T/A ≕ 12.688		214	36	-	.919	.505	11,43	5.51	16	16	40	40
	0008 B11 F	DF L	1 16.) 4 90	F	74 94		113	40	1	.919	.505	15.40	10.75	62 30	62 30	220	220
		_	BA 🏎	20.00	-	T/A = 14,324		214	32	1	.919	.505	10.75	5.51	12	12	30	30
	0009 B11 T)F Т	[184) 4 89	F	71 87		113	40		010	505	17.41	11.62	51	51	180	180
		•	BA =	20.00	•	T/A = 11.318		214	28		.919	.505	11.62	5.79	49	49	30	180 30
	0010 131 1 7	ЪБ Т	1 124	00 1 6	P	57 01		112	40		010	<i>co</i> -	11.72	n - A	61	61	210	210
		×1 ⁻ 1	I 12.0 BA ™	, 4 88 20.00	r	ده ۲/A = 25,465	:	113 214	40 14	1	.919 .919	.505 .505	11.68 7.52	7.52 5.66	21 4	21 4	70 10	70 10
	0011 011 5	117 m	1 10		F	03 (00									25	25	80	80
		JE I	i 15,0 BA =	, 489 20.00	r	δ2 108 T/A = 16.297		1 1 3 2 1 4	40 40	1 1	.919 .919	.505 .505	14.61 10.37	10.37 5.51	36 16	36 16	150 40	150 40
															52	52	100	100

TC TRI	EESEGR					TREE Pr	C SEGN oject:	MENT S/	VOL ALMF	UMES ORK				P: D:	ige ate	3 2/5/202	24
TWP 11S	RGE 09W	SC 27		г гаст SFU3		түре РС		ACRES 42.0	0	PLOTS		TRE	ÆS 77	CRUISED 10/1/20	DATE 23	CuFt 1	BdFt W
Ti Piot 1	ree No PE A	Spc S	(C T DBH FP FF	т D	Bole Tot. Het He PRDV	S T SG	i Len	FIFI	Bark	Ao	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
0007	0012 B1 1	DF 1	L	1 16.0 4 90 BA = 20.00	F	82 105 T/A == 14.324	113	40 40	2	.919 .919	.505 .505	15.46 11.10	11.10 5.51	42 18	42 18	180 40	170 40
PLOT				BA = 240.00		T/A = 211.028								60 8,361	60 8,361	<i>220</i> 29,067	210 28,494
0008	0001 B1 1 C	DF ount	L	7 15.0 4 87 BA ≈ 140.00	F	67 90 T/A = 113.986	l xx	33						43 <i>43</i>	43 <i>43</i>	150 150	144 <i>144</i>
	0002 B11 C	DF ount	Ť	3 13.8 4 88 BA = 60.00	F	61 84 T/A = 58,169	l xx	28						33 <i>33</i>	33 33	117 117	109 <i>109</i>
PLOT				BA = 200.00		T/A = 172.155				<u> </u>				6,815	6,815	23,857	22,768
0009	0001 B11 C	DF count	L	7 15.0 4 87 BA = 140.00	F	67 90 T/A = 113.986	l xx	33						43 <i>43</i>	43 <i>43</i>	150 150	144 <i>144</i>
	0002 B1 I C	DF Count	Т	3 13.8 4 88 BA = 60.00	F	61 84 T/A = 58.169	1 xx	28						33 33	33 <i>33</i>	117 117	109 <i>109</i>
PLOT				BA == 200.00		T/A = 172.155								6,815	6,815	23,857	22,768
0010	0001 B1 i	DF	r	1 10.0 4 91 BA = 20.00	F	46 74 T/A = 36.669	1 14 214	1 32 1 12	1	.919 .919	.505 .505	9.47 6.96	6.96 5.51	12 3 / 5	12 3 15	50 10	40 10 50
	0002 Bil	DF	L	1 15.0 4 90 BA = 20.00	F	72 94 T/A = 16.297	1 13 214	3 40 4 30	1	.919 .919	.505 .505	14.44 10.06	10.06 5.51	36 12	36 12	150 30	150 30
	0003 B1 1	DF	L	i 14.0 4 86 BA = 20.00	F	64 87 T/A = 18.709	1 1: 214	3 38 4 24	1 1	.919 .919	.505 .505	13.86 8.96	8.96 5.51	43 27 7	48 27 7	80 30	80 20
	0004 B1 1	DF	Т	1 15.0 4 88 BA = 20.00	F	65 85 T/A = 16.297	1 1: 214	3 38 4 24	1 2	.919 .919	.505 .505	14.61 9.73	9,73 5.72	34 32 8	34 32 8	110 110 30	110 20
	0005 B1 I	DF	L	1 13.0 4 85 BA = 20.00	F	57 81 0 T/A = 21.698) 11. 21-	3 40 4 14	2 1	.919 .919	.505 ,505	12.93 7.76	7.76 5.68	40 24 4	40 24 4	70 10	730 70 10
	0006 BI 1	DF	Т	i 13.0 4 86 BA = 20.00	F	61 86 T/A = 21.698	1] 21-	3 40 4 20	2	.919 .919	.505 .505	12.86 8.09	8.09 5.36	28 26 5 6	28 26 6	80 90 20	80 80 20
	0007 B1 I	DF	L.	1 14.0 4 89	F	69 93 T/A - 18 700	11	3 40 4 26	2	.919 919	.505	i 13.58	9.26 5.68	32 5 31 9	32 31 9	110 120 30	100 110 30
	0008 BI 1	DF	L	BA - 20.00	ŀ	63 86	1[3 38	1	.919	.505	5 13.96	8.83	40 27	40 27	150 80	140 80
	0009 81 1	DF	1.	BA = 20.00	F	T/A = 18.709	21	4 24 0 8	;	.919	.503	5 8.83 5 15.66	5.34	1 / 34	7 34	30 110	30 110
	0009 511	Di		BA = 20.00		T/A = 14.324	21 31	3 40 4 26) 1 5 L	.919 .919	.50 .50	5 13.93 5 9.71	9.71 5.51	31 9 40	31 9 40	120 30 150	110 30 140
	0010 B1 I	DF	L	l 16.0 4 89 BA = 20.00	F	5 76 97 T/A = 14.324	1 I 21	3 40 4 34) 1 2	.919 .919	.50 .50	5 15.54 5 10.74	10.74	4 39 1 13	39 13	150	150 30
	0011 BI 1	DF	т	1 12.0 4 88 BA = 20.00	ł	5 55 80 T/A = 25.465	1 2	3 40 4 14) 1	.919 .919	.50: .50:	5 11.66 5 7.38	7.38 5.36	52 8 21 5 4	21 4	70 10	70 10
PLOT				BA = 220.00		T/A = 222.899								25 7,261	25 7,261	80 25,368	80 23,960
0011	0001 BI 1	DF Count	L	6 15.0 4 87 BA = 120.00	F	7 67 90 T/A = 97.702	Lx	x 33	3					43 <i>43</i>	43 <i>43</i>	150 150	144 144
	0002 B1 I	DF Count	Т	3 13.8 4 88 BA = 60.00	I	F 61 84 T/A = 58.169	1 x	x 28	8					33 33	33 <i>33</i>	117 117	109 <i>109</i>
PLOT	ſ			BA = 180.00		T/A = 155.871								6,117	6,117	21,417	20,419
0012	0001 B1	DF	L	1 21.0 4 90		1 74 93	11	2 30	0 6	.919	.50	5 20.21	15.5	1 56	56	270	210

TREE SEGMENT VOLUMES Project: SALMFORK

 Page
 4

 Date
 2/5/2024

TWP	RGE	SC		T	RACT		1	TYPE		1	ACRES		PLOT	s	TR	EES	CRUISE	D DATE	CuFt	BdFt
115	09W	27		SI	FU3		Ŧ	°С			42.0	0	1	15		77	10/1/20	023	1	w
1	Ince			С		Т	Bole	Tot.		S					Dia	Dia	Gross	Net	Gross	Net
Plot	No PF A	Spc 1	3	Ŧ	DBH FP FF	D	Hgt	Hg	PRDVT	SG	Len	FIFI	Bark	Ao	Butt	Тор	CuFt	CuFt	BdFt	BdFt
					BA = 20.00		T/A =	= 8.315		213	28	2	.919	.505	15.51	10.48	28	28	100	90
0012										314	14		.919	.505	10,48	6.65	6	6	20	20
	0002 B1 I	DF	Ł	ł	18.0 4 90	F	78	3 96		112	40	1	Q1Q	505	1734	1215	90 50	90 50	390	320
					BA = 20.00	-	T/A =	= 11.31	8	214	36	•	.919	.505	12.15	5.51	18	18	40	40
			_														70	70	240	230
	0003 811	DF	Т	1	15.0 4 87 BA = 20.00	F	66 	5 87 - 16 20	7	113	40	2	.919	.505	14.73	9.45	34	34	120	110
					20.00			10.27	,	217	24		.519	.505	7.40	5.51	42	0 42	50	0C 140
	0004 B1 I	DF	L	ł	12.0 4 83	F	52	. 79		114	12	4	.919	.505	12.10	9.43	9	9	30	20
					BA = 20.00		T/A =	= 25.46	5	200	10		.919	.505	9.43	8.62				
										314 400	12	4	.919	.505	8.62 7 44	7.44	5	5	20	10
											••				1.11	5.05	14	14	50	30
	0005 B1 1	DF	Τ	1	14.0 4 87	F	71	97		113	40		.919	.505	13.80	9.18	31	31	120	120
					BA = 20.00		1/A =	18.70	9	214	28		.919	.505	9.18	5.67	10	10	30	30
	0006 BI I	DF	L	ì	15.0 4 90	F	75	98		1 13	40	ı	.919	.505	14.46	10.20	47 36	41 36	150	150
					BA = 20.00		T/A =	16.29	7	214	32		.919	.505	10.20	5.70	12	12	30	30
	0007 01 1	DE	T	1	160 4 90	r	70	00		112	10						48	48	180	180
	0007 BT I	Dr	L	1	BA = 20.00	r	/0 ≖ T/A	: 89 : 14.324	4	214	40 28	E	.919	.505	15.49	10.42	39 11	39	150	150
																0.01	50	50	180	180
	0008 BI I	DF	L	1	15.0 4 89	F	68	89	_	113	40		.919	.505	14.52	9.75	34	34	120	120
					BA = 20.00		T/A =	16.293	7	214	26		.919	.505	9.75	5.51	9	9	30	30
PLOT				E	BA = 160.00		T/A =	127.02	3								4 <u>3</u> 5,548	43 5,548	20,440	19.072
							······											-1		
0013	0001 B11	DF	L	7	$15.0 \ 4 \ 87$ BA = 140.00	F	67 T/A =	90	26	I xx	33						43	43	150	144
	```	Joant			DA - 140.00		1/A	113.90	20								43	43	150	144
	0002 BI I	DF	Т	2	13.8 4 88	F	61	84		l xx	28						33	33	117	109
	(	Count			BA = 40.00		T/A =	38.779	)								33	33	117	109
PLOT				F	3A = 180.00		T/A =	152 76	5								6 171	6 171	21 507	20.650
									-								5,171	0,111	21,377	20,037
0014	0001 B1 I	DF	Т	1	19.0 4 91	F	82	99		112	14		.919	.505	18.18	15.99	24	24	120	120
					BA = 20.00		1/A =	10.158	s	200	12	3	.919	.505	15.99	15.20	15	16	20	<b>70</b>
										400	12	4	.919	.505	13.74	13.74	1.5	13	70	00
										514	34	2	.919	.505	12.14	5.25	17	17	40	30
	0002 B1 1	DF	т	1	14.0 4 90	F	58	76		113	. 40	6	919	505	13.36	8 61	56 20	56 10	230	210
					BA = 20.00	-	T/A =	18.709	)	214	16	ĩ	.919	.505	8.61	5.51	5	29	20	20
						_	-	<b></b> -									34	34	110	90
	0003 B1 I	DF	L	1	15.0 4 88 BA = 20.00	F	61 T/4 –	79	,	113	18	1	.919 .010	.505	14.57	11.84	18	18	80	70
					40.0U		и <b>л</b> =	10.271		414	40	~	.919	.000	11.04	J./4	4V 18	18 74	40 120	40 110
	0004 Bl 1	DF	Т	1	14.0 4 86	F	62	84		100	8		.919	.505	13.84	12.08	50	50	120	110
					BA = 20.00		T/A =	18.709	•	214	40	I	.919	.505	12.08	7.59	24	24	70	70
										3 14	12		.919	.505	7.59	5.51	3	3	01 02	10
	0005 B1 I	DF	L	1	19.0 4 88	F	74	90		113	40		.919	.505	18,54	12.27	56	56	200	200
					BA = 20.00		T/A =	10.158		214	32		.919	.505	12,27	5.51	16	16	30	30
	0006 81 1	DE	т		15.0 4 88	F	60	٩n		1.00	0		010	505	EI KA	12.00	72	72	230	230
			•	•	BA = 20.00	•	T/A =	16.297		214	12	4	.919	.505	13.08	11.72	11	11	40	30
										313	30	2	.919	.505	11.72	8.32	18	18	60	50
										414	16	4	.919	.505	8.32	5.51	5	5	20	10
	0007 B1 l	DF	Т	1	16.0 4 89	F	75	96		E13	40	2	.919	.505	15.53	10.69	34 . 39	<i>54</i> 39	120	90 [40
					BA = 20.00		T/A =	14.324		2]4	32	t	.919	.505	10.69	5,72	12	12	30	30
	0008 611	DE	т	1	160 1 00	Б	10	07		1.10	10		010	c0+	15.01	10.00	51	51	180	170
	110 0000	υr	1	ł	BA = 20.00	I,	өз Т/А =	ه، 14.324		112 200	18 [2		.919 .919	.505 .505	10.84 12.38	12.38 11.19	21	21	90	90
										314	36	1	.919	.505	11.19	5.51	16	16	40	40
																	37	37	130	130

TC TRE	EESEGR						,	TREE Proj	SEGM ect:	ENT SA	VOL ALMF	UMES ORK				Pa Da	ige ite	5 2/5/202	24
TWP 11S	RGE 09W	- 	ю 17		TRACT SFU3		ТҮРЕ РС		A	CRES 42.00	6	PLOTS 15	5	TRE	ES 77	CRUISEÐ 10/1/20	DATE 23	CuFt 1	BdFt W
	-ce				C	т	Bole Tot.		S					Dia	Dia	Gross	Net	Gross	Net
Plot N	λο PF A	s	ipe S		T DBH FP FF	Ð	Hgt Hg	PRDVT	SG	Len	FIFI	Bark	Ao	Butt	Тор	CuFt	CuFt	BdFt	BdFt
0014	0009 B1	) [	)F	L	[ [8.0 4 88 BA = 20.00	3 F	76 94 T/A = 11,315	8	l 12 200	24 8	I	.919 .919	.505 .505	17.59 13.68	13.68 12.79	34	34	150	140
									3 14	40		.919	.505	12.79	6.00	20	20	40	40
	0010 D				1 210 1 24	( F	77 02		112	40	L	919	505	20.82	13.36	54	54 67	240	240
	0010 B1	11	JF	L	1 21.0 4 80 BA = 20.00	) r	T/A = 8.315		214	34	1	.919	.505	13.36	5.82	19	19	40	40
					B/1 20.00		5.515									86	86	280	280
1	0011 BI	11	DF	L	1 19.0 4 88	8 F	88 107		l 12	40		.919	.505	18.65	12.97	56	56	200	200
					BA = 20.00		T/A = 10.15	8	213	24		.919	.505	12.97	9.66	17	17	60	60
									3 [4	20		.919	.505	9,66	5.74	7	7	20	20
							<b>00</b> 00			10		010	505	20.02	12.04	80 64	80 64	200	280
	0012 BI		DF	L	1 20.0 4 8	5 F	82 99 T/A 0 167	,	214	40 ፈስ	4	.919	.505	12.91	5.51	20	20	40	40
					BA = 20.00		1/A ~ 9.107		414	40		.,,,,,	,505	12.71	0.01	84	84	240	220
PLOT					BA = 240.00		T/A = 157.9.	34								7,752	7,752	26,102	24,433
														10.07	10.14		in .		
0016	0001 B	11	DF	L	1 13.0 4 8	6 F	62 88		100	14		.919	.505	12.87	10.44	0	G	40	30
					BA = 20.00		T/A = 21.69	8	214	10	4	.919	505	0.10	5.20	11	ú	30	30
									314	32	,	.919	.505	9.10	J.20	20	20	70	60
	0002 B	т 1	DF	I.	1 14.0 4 9	1 1	68 129		1 13	38		.919	.505	13.50	10.41	32	32	140	140
	0002 1	• •		1)	BA = 20.00	• •	T/A = 18.70	19	213	26		.919	,505	10.41	8.44	14	14	50	50
																46	46	190	190
	0003 B	11	DF	L	1 16.0 4 8	5 F	72 93		113	40	1	.919	.505	16.00	10.13	39	39	150	150
					BA = 20.00		T/A = 14.32	24	214	30		.919	.505	10.13	5.51	12	12	.10	30 180
											•	010	505		0.05	51	51	180	70
	0004 B	11	DF	T	1 12.0 4 8	7 F	40 56		114	12	2	,919	.505	11.51	9.93	9	g	30	20
					BA = 20.00		17A - 23.40		417	20	0			5.50	0101	17	17	60	40
	0005 B	11	DF	т	1 16.0 4 9	ю F	69 87		113	40	6	.919	.505	15.36	10.46	39	39	150	130
	0005 D		51	•	BA = 20.00	• •	T/A = 14.32	24	214	28		.919	.505	10.46	5.28	11	11	30	30
																50	50	180	160
	0006 B	11	DF	L	1 18.0 4 8	87 F	73 90		1 00	12		.919	.505	17.70	14.89			120	100
1					BA = 20.00		T/A = 11.3	18	213	40		.919	.505	14.89	9.67	34	34	120	120
									314	20	1	.919	.505	9.67	5.26		1	20	20 140
	0007 5		DP	т	1 150 4 9	20 T	. 72 04		1.12	40	2	010	505	14.55	9.97	34	34	120	110
	0007 B	11	Dľ	ட	BA = 20.00	1 51	T/A = 16.20	97	214	30	4	.919	.505	9.97	5.51	10	10	30	30
1																44	44	150	140
	0008 B	11	DF	L	1 12.0 4 8	85 I	52 77	r	113	38		.919	.505	11.91	7.23	20	20	70	70
	_				BA = 20.00		T/A = 25.4	65	214	12		.919	.505	7.23	5.51	3	3	10	10
																23	23	80	80
1	0009 B	11	DF	L	1 14,0 4 8	35 1	65 89	>	113	40		.919	.505	) 13.98 ; 0.22	8.72	: 29 : 7	29	30	90 30
					BA = 20.00		T7A ≈ 18.7	09	214	24		.919	.505	0.72	. 3,33	, , , , , , , , , , , , , , , , , , , ,	36	120	120
PLOT					BA = 180.00		T/A = 166 3	308								5,615	5,615	20,069	18,894
					BA - 180.00		<i>m</i> = 100.												
0017	0001 E	н 1 с	DF 'ount	L	7 15.0 4 BA = 140.00	87 I	F 67 90 T/A = 113.	) 986	1 x x	33						43 <i>43</i>	43 <i>43</i>	150 150	144 <i>144</i>
	nno r	n i	DE	т	2 13.8 4	88 1	F 61 84	1	x v	28	3					33	33	117	109
	0002 1	 	ount	3	BA = 40.00		T/A = 38.7	79	• • • •							33	33	117	109
PLOT					BA = 180.00		T/A = 152.	765								6,171	6,171	21,597	20,659
TADE					BA = 120 21		T/A = 1644	029								6,377	6,377	22,326	21,306
FIGE	•				DW - 192'22		104.0	~~/								1 /			<i>.</i>

				ST PROJEC	ATISTI F E	CS ELKTHIN		I I	DATE 1	0/6/2023
TWP RGE	SECT TRA	ACT		түре	ACR	ES	PLOTS	TREES	CuFt	BdFt
11S 09W	23 AL	L		THIN		156.00	49	462	1	W
**********			T	REES	E 1	STIMATED OTAL	P1 Sz	ERCENT AMPLE		
	PLOTS	TREES	I	ER PLOT		TREES	T	REES		
TOTAL	49	462		9.4						
CRUISE DBH COUNT	20	138		6.9		28,837		.5		
COUNT BLANKS	29	267		9.2						
			STAN	D SUMM	ARY					
	SAMPLE	TREES	AVG DBH	BOLE	REL DFN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DEL	INCES	1111		521	22.7	108.0	14 200	14 066	4.127	4.127
DF-L DF T	8U 55	112.5 71 A	19.3	30 48	167	58.8	6.126	6,103	1,745	1,745
Dr-1	1	1.0	12.5	38	0.4	1.6	92	92	34	34
R ALDER-L	(10	1.0	12.7	50	510	188 6	20 418	20.262	5 906	5 906
CONFIDENCE 68.1	LIMITS OF THI TIMES OUT OF	E SAMPLE F 100 THE VC	OLUME WIL	L BE WIT	HIN THE S	AMPLE ERR	OR	OF TREES	250	INF POP
CONFIDENCE 68.1 CL: 68.1 %	LIMITS OF THI TIMES OUT OF COEFF	E SAMPLE F 100 THE VC	DLUME WIL	L BE WIT	HIN THE S	AMPLE ERR	OR #	OF TREES I	REO.	INF. POP.
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0	LIMITS OF THI TIMES OUT OF COEFF VAR.%	E SAMPLE F 100 THE VC	DLUME WIL	L BE WIT	HIN THE S <b>TREES</b> - AVG	BF HIGH	OR ħ	OF TREES I	REQ. 10	INF. POP. 15
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DE-T	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4	E SAMPLE F 100 THE VC S.E.% 5.1 6.6	DLUME WIL	L BE WIT SAMPLE DW 137 92	HIN THE S <b>TREES -</b> <u>AVG</u> 144 98	BF HIGH 151	OR #	OF TREES I	REQ. 10	INF. POP. 15
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7	E SAMPLE F 100 THE VC S.E.% 5.1 6.6 11.5	DLUME WIL	L BE WIT SAMPLI DW 137 92 53	HIN THE S <b>E TREES -</b> <u>AVG</u> 144 98 60	AMPLE ERR BF HIGH 151 105 67	OR	OF TREES F	REQ. 10	INF. POP. 15
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 51.2	E SAMPLE F 100 THE VC S.E.% 5.1 6.6 11.5 4.4	LUME WIL	L BE WIT SAMPLI DW 137 92 53 118	HIN THE S <b>E TREES -</b> <u>AVG</u> 144 98 60 <i>124</i>	AMPLE ERR BF HIGH 151 105 67 /29	OR #	OF TREES F 5 105	REQ. 10 26	INF. POP. 15 12
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 %	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 51.2 COEFF	E SAMPLE F 100 THE VC 5.1 6.6 11.5 4.4	LUME WIL	L BE WIT SAMPLI DW 137 92 53 118 TREES/A	HIN THE S <b>E TREES</b> - <u>AVG</u> 144 98 60 124 ACRE	AMPLE ERRO BF HIGH 105 67 129	OR # 	0 OF TREES F 5 105 0 OF PLOTS F	REO. 10 26 REQ.	INF. POP. 15 12 INF. POP.
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 <i>51.2</i> COEFF VAR.%	E SAMPLE F 100 THE VC S.E.% 5.1 6.6 11.5 4.4 S.E.%	DLUME WIL	L BE WIT SAMPLI DW 137 92 53 118 TREES/A DW	HIN THE S <b>E TREES -</b> <u>AVG</u> 144 98 60 124 ACRE AVG	BF HIGH 151 105 67 129 HIGH	OR #	OF TREES F 5 105 4 OF PLOTS F 5	26 10 26 REQ. 10	INF. POP. 15 12 INF. POP. 15
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 <i>51.2</i> COEFF VAR.% 12.2	E SAMPLE F 100 THE VC 5.1 6.6 11.5 4.4 S,E.% 1.7	LUME WIL	L BE WIT SAMPLI DW 137 92 53 118 TREES/A DW 110 (5)	HIN THE S <b>E TREES</b> - <u>AVG</u> 144 98 60 <u>124</u> ACRE <u>AVG</u> 112 21	AMPLE ERR BF HIGH 151 105 67 129 HIGH 114 77	OR #	0F TREES F 5 105 4 OF PLOTS F 5	REQ. 10 26 REQ. 10	INF. POP. 15 12 INF. POP. 15
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T DF-T D ALDER L	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 51.2 COEFF VAR.% 12.2 58.3 346.4	E SAMPLE F 100 THE VC 5.1 6.6 11.5 4.4 S.E.% 1.7 8.3 49.4	LUME WIL	L BE WIT SAMPLE DW 137 92 53 118 TREES/A DW 110 65 1	HIN THE S <b>E TREES</b> - <u>AVG</u> 144 98 60 124 ACRE <u>AVG</u> 112 71 2	AMPLE ERR BF <u>HIGH</u> 151 105 67 <i>129</i> <u>HIGH</u> 114 77 2	OR #	0 OF TREES I 5 105 0 OF PLOTS I 5	REO. 10 26 REO. 10	INF. POP. 15 12 INF. POP. 15
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 51.2 COEFF VAR.% 12.2 58.3 346.4 14.8	E SAMPLE F 100 THE VC 5.1 6.6 11.5 4.4 S.E.% 1.7 8.3 49.4 2.1		L BE WIT SAMPLI DW 137 92 53 118 TREES/A DW 110 65 1 181	HIN THE S <b>E TREES</b> - <u>AVG</u> 144 98 60 <i>124</i> <b>ACRE</b> <u>AVG</u> 112 71 2 <i>185</i>	AMPLE ERR BF 151 105 67 729 HIGH 114 77 2 789	OR #	9 OF TREES F 5 105 4 OF PLOTS F 5	REO. 10 26 REO. 10 2	INF. POP. 15 12 INF. POP. 15
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 %	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 51.2 COEFF VAR.% 12.2 58.3 346.4 14.8 COEFF	E SAMPLE F 100 THE VC 5.1 6.6 11.5 4.4 S.E.% 1.7 8.3 49.4 2.1	LUME WIL	L BE WIT: SAMPLE DW 137 92 53 118 TREES/ DW 110 65 1 181 BASAL	HIN THE S <b>C TREES</b> - <u>AVG</u> 144 98 60 124 ACRE <u>AVG</u> 112 71 2 185 AREA/AC	AMPLE ERR BF <u>HIGH</u> 151 105 67 <i>129</i> <u>HIGH</u> 114 77 2 <i>189</i> RE	OR #	9 9 9 9 9 9 9 9 9 9 105 105 105 105 105 105 105 105	REO. <u>10</u> <u>26</u> REO. <u>10</u> <u>2</u> REO.	INF. POP. 15 12 INF. POP. 15 1 INF. POP.
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 51.2 COEFF VAR.% 12.2 58.3 346.4 14.8 COEFF VAR.%	E SAMPLE F 100 THE VC 5.1 6.6 11.5 4.4 S.E.% 1.7 8.3 49.4 2.1 S.E.%		L BE WIT SAMPLE DW 137 92 53 118 TREES/A DW 110 65 1 181 BASAL OW	HIN THE S <b>E TREES</b> - <u>AVG</u> 144 98 60 124 ACRE <u>AVG</u> 112 71 2 185 AREA/AC AVG	AMPLE ERR BF HIGH 105 67 129 HIGH 114 77 2 189 RE HIGH	OR #	9 OF TREES F 5 105 7 OF PLOTS F 5 9 7 OF PLOTS F 5	REO. 10 26 REO. 10 2 REO. 10	INF. POP. 15 12 INF. POP. 15 1 INF. POP. 15
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 51.2 COEFF VAR.% 12.2 58.3 346.4 14.8 COEFF VAR.% 9.0	E SAMPLE F 100 THE VC 5.1 6.6 11.5 4.4 S.E.% 1.7 8.3 49.4 2.1 S.E.% 1.3		L BE WIT SAMPLI DW 137 92 53 118 TREES/ DW 110 65 1 181 BASAL DW 127	HIN THE S <b>E TREES</b> - <u>AVG</u> 144 98 60 <i>124</i> <b>ACRE</b> <u>AVG</u> 112 71 2 <i>185</i> <b>AREA/AC</b> <u>AVG</u> 128	EAMPLE ERRO BF HIGH 151 105 67 729 HIGH 114 77 2 789 RE HIGH 130	OR #	2 OF TREES F 5 2 OF PLOTS F 5 9 2 OF PLOTS F 5	REO. <u>10</u> <u>26</u> REO. <u>10</u> <u>2</u> REO. <u>10</u>	INF. POP. 15 12 INF. POP. 15 INF. POP. 15
CONFIDENCE $68.1$ CL: $68.1$ SD: $1.0$ DF-L         DF-T         R ALDER-L         TOTAL         CL: $68.1$ %         SD: $1.0$ DF-T         R ALDER-L         DF-T         R ALDER-L         TOTAL         CL: $68.1$ %         SD: $1.0$ DF-L         DF-L         DF-T         R ALDER-L         TOTAL	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 <i>51.2</i> COEFF VAR.% 12.2 58.3 346.4 <i>14.8</i> COEFF VAR.% 9.0 56.2	E SAMPLE F 100 THE VC S.E.% 5.1 6.6 11.5 4.4 S.E.% 1.7 8.3 49.4 2.1 S.E.% 1.3 8.0		L BE WIT SAMPLI DW 137 92 53 118 TREES/ DW 110 65 1 181 BASAL OW 127 54	HIN THE S <b>E TREES</b> - <u>AVG</u> 144 98 60 124 ACRE <u>AVG</u> 112 71 2 185 AREA/AC <u>AVG</u> 128 59 2	EAMPLE ERRO BF HIGH 151 105 67 729 HIGH 114 77 2 789 RE HIGH 130 63	OR #	2 OF TREES F 5 105 2 OF PLOTS F 9 2 5 5 5	REO. 10 26 REO. 10 2 REO. 10	INF. POP. 15 12 INF. POP. 15 1 INF. POP. 15
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 51.2 COEFF VAR.% 12.2 58.3 346.4 14.8 COEFF VAR.% 9.0 56.2 338.9	E SAMPLE F 100 THE VC S.E.% 5.1 6.6 11.5 4.4 S.E.% 1.7 8.3 49.4 2.1 S.E.% 1.3 8.0 48.4		L BE WIT: SAMPLE DW 137 92 53 118 TREES/A DW 110 65 1 181 BASAL OW 127 54 1 189	HIN THE S <b>E TREES</b> - <u>AVG</u> 144 98 60 124 ACRE <u>AVG</u> 112 71 2 185 <b>AREA/AC</b> <u>AVG</u> 128 59 2 189	AMPLE ERR BF HIGH 151 105 67 129 HIGH 114 77 2 189 RE HIGH 130 63 2 189	OR #	<pre> # OF TREES I 5  # OF PLOTS I 5  # OF PLOTS I 5  # OF PLOTS I 5 </pre>	REO. 10 26 REO. 10 2 REO. 10 10	INF. POP. 15 12 INF. POP. 15 1 INF. POP. 15
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 %	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 <i>51.2</i> COEFF VAR.% 12.2 58.3 346.4 <i>14.8</i> COEFF VAR.% 9.0 56.2 338.9	E SAMPLE F 100 THE VC S.E.% 5.1 6.6 11.5 4.4 S.E.% 1.7 8.3 49.4 2.1 S.E.% 1.3 8.0 48.4		L BE WIT SAMPLI DW 137 92 53 118 TREES/. DW 110 65 1 181 BASAL. DW 127 54 1 189 NET BE	HIN THE S 2 TREES - AVG 144 98 60 124 ACRE AVG 112 71 2 185 AREA/AC AVG 128 59 2 189 /ACRE	AMPLE ERR BF HIGH 151 105 67 729 HIGH 114 77 2 789 RE HIGH 130 63 2 189	OR #	<ul> <li>Ø OF TREES F</li> <li>5</li> <li>105</li> <li>4 OF PLOTS F</li> <li>5</li> <li>9</li> <li>4 OF PLOTS F</li> <li>5</li> <li>5</li> </ul>	REO. 10 26 REO. 10 2 REO. 10 REO.	INF. POP. 12 12 INF. POP. 15 1 INF. POP. 15 1 INF. POP.
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 %	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 51.2 COEFF VAR.% 12.2 58.3 346.4 14.8 COEFF VAR.% 9.0 56.2 338.9	E SAMPLE F 100 THE VC S.E.% 5.1 6.6 11.5 4.4 S.E.% 1.7 8.3 49.4 2.1 S.E.% 1.3 8.0 48.4 S.E.%		L BE WIT: SAMPLE DW 137 92 53 118 TREES/. DW 110 65 1 181 BASAL. DW 127 54 1 189 NET BF OW	HIN THE S <b>C TREES</b> - <u>AVG</u> 144 98 60 124 ACRE <u>AVG</u> 112 71 2 185 AREA/AC <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u>	AMPLE ERR BF HIGH 151 105 67 129 HIGH 114 77 2 189 RE HIGH 130 63 2 189 HIGH	OR #	<pre> 4 OF TREES F 5  105 4 OF PLOTS F 9 4 OF PLOTS F 5 4 4 OF PLOTS F 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	REO. 10 26 REO. 10 REO. 10 REO. 10	INF. POP. 12 12 INF. POP. 15 1 INF. POP. 15
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-T R ALDER-L TOTAL CL: 68.1 %	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 51.2 COEFF VAR.% 12.2 58.3 346.4 14.8 COEFF VAR.% 9.0 56.2 338.9 COEFF VAR.% 10.9	E SAMPLE F 100 THE VC S.E.% 5.1 6.6 11.5 4.4 S.E.% 1.7 8.3 49.4 2.1 S.E.% 1.3 8.0 48.4 S.E.% 1.6		L BE WIT SAMPLI DW 137 92 53 118 TREES/A DW 110 65 1 181 BASAL OW 127 54 1 189 NET BF OW 13,848	HIN THE S <b>E TREES</b> - <u>AVG</u> 144 98 60 124 <b>ACRE</b> <u>AVG</u> 112 71 2 185 <b>AREA/AC</b> <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 14,066	AMPLE ERR BF HIGH 105 67 129 HIGH 114 77 2 189 RE HIGH 130 63 2 189 HIGH 14,285	OR #	9 4 OF PLOTS 1 5 9 4 OF PLOTS 2 5 4 OF PLOTS 2 5 5	REO. 10 26 REO. 10 2 REO. 10 REO. 10	INF. POP. 12 12 INF. POP. 15 1 INF. POP. 15 INF. POP. 15
CONFIDENCE 68.1  CL: 68.1 %  SD: 1.0  DF-L  DF-T  R ALDER-L  TOTAL  CL: 68.1 %  SD: 1.0  DF-L  DF-T  R ALDER-L  TOTAL  CL: 68.1 %  SD: 1.0  DF-L  DF-T  R ALDER-L  TOTAL  CL: 68.1 %  SD: 1.0  DF-L  DF-T  R ALDER-L  TOTAL  CL: 68.1 %  CL: 68.1 %	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 51.2 COEFF VAR.% 12.2 58.3 346.4 14.8 COEFF VAR.% 9.0 56.2 338.9 COEFF VAR.% 10.9 58.2	E SAMPLE F 100 THE VC S.E.% 5.1 6.6 11.5 4.4 S.E.% 1.3 8.0 48.4 S.E.% 1.6 8.3		L BE WIT SAMPLI DW 137 92 53 118 TREES/A DW 110 65 1 181 BASAL OW 127 54 1 189 NET BF OW 13,848 5,596	HIN THE S <b>E TREES</b> - <u>AVG</u> 144 98 60 124 <b>ACRE</b> <u>AVG</u> 112 71 2 185 <b>AREA/AC</b> <u>AVG</u> 128 59 2 189 / <b>ACRE</b> <u>AVG</u> 128 59 2 189 / <b>ACRE</b> <u>AVG</u> 128 59 2 189 / <b>ACRE</b> <u>AVG</u> 128 59 2 189 / <b>ACRE</b> <u>AVG</u> 128 59 2 189 / <b>ACRE</b> <u>AVG</u> 128 59 2 189 / <b>ACRE</b> <u>AVG</u> 128 59 2 189 / <b>ACRE</b> <u>AVG</u> 128 59 2 189 / <b>ACRE</b> <u>AVG</u> 128 59 2 189 / <b>ACRE</b> <u>AVG</u> 128 59 2 189 / <b>ACRE</b> <u>AVG</u> 128 59 2 189 / <b>ACRE</b> <u>AVG</u> 138 59 2 189 / <b>ACRE</b> <u>AVG</u> 144 59 2 189 / <b>ACRE</b> <u>AVG</u> 138 59 2 189 / <b>ACRE</b> <u>AVG</u> 149 59 2 189 / <b>ACRE</b> <u>AVG</u> 149 59 2 189 / <b>ACRE</b> <u>AVG</u> 149 59 2 189 / <b>ACRE</b> <u>AVG</u> 140 59 2 189 / <b>ACRE</b> <u>AVG</u> 140 59 2 189 / <b>ACRE</b> <u>AVG</u> 140 59 140 59 140 59 140 59 140 59 140 59 140 59 140 59 140 59 140 59 140 59 140 59 140 59 140 50 140 50 50 140 50 50 50 50 50 50 50 50 50 5	AMPLE ERR BF HIGH 151 105 67 129 HIGH 114 77 2 189 RE HIGH 130 63 2 189 HIGH 14,285 6,609	OR #	9 4 OF PLOTS P 5 4 OF PLOTS P 5 4 OF PLOTS P 5 4 OF PLOTS P 5	REO. 10 26 REO. 10 REO. 10 REO. 10	INF. POP. 15 12 INF. POP. 15 1 INF. POP. 15 INF. POP. 15
CONFIDENCE $68.1$ SD: $1.0$ DF-L $0$ DF-T $68.1$ R ALDER-L $0$ DF-L $68.1$ SD: $1.0$ DF-L $68.1$ SD: $1.0$ DF-L $68.1$ DF-T $68.1$ SD: $1.0$ DF-L $68.1$ DF-L $68.1$ DF-L $68.1$ DF-L $68.1$ DF-L $1.0$ DF-L $0$ <	LIMITS OF THI TIMES OUT OF COEFF VAR.% 45.8 49.4 16.7 51.2 COEFF VAR.% 12.2 58.3 346.4 14.8 COEFF VAR.% 9.0 56.2 338.9 COEFF VAR.% 10.9 58.2 340.2	E SAMPLE F 100 THE VC S.E.% 5.1 6.6 11.5 4.4 S.E.% 1.3 8.0 48.4 S.E.% 1.3 8.0 48.4 S.E.% 1.6 8.3 48.6		L BE WIT SAMPLI DW 137 92 53 118 TREES/A DW 110 65 1 181 BASAL 0W 127 54 1 189 NET BF OW 13,848 5,596 48	HIN THE S <b>E TREES</b> - <u>AVG</u> 144 98 60 124 <b>ACRE</b> <u>AVG</u> 112 71 2 185 <b>AREA/AC</b> <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 144 98 60 124 <b>AVG</b> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 129 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 128 59 2 189 /ACRE <u>AVG</u> 144 59 2 189 /ACRE <u>AVG</u> 144 59 2 189 /ACRE <u>AVG</u> 144 59 2 189 /ACRE <u>AVG</u> 144 59 2 189 /ACRE (103 92 2	AMPLE ERR BF HIGH 151 105 67 129 HIGH 114 77 2 189 RE HIGH 130 63 2 189 HIGH 14,285 6,609 137	OR #	<pre> # OF TREES F 5  # OF PLOTS F 5 </pre>	REO. 10 26 REO. 10 REO. 10 REO. 10	INF. POP. 12 12 INF. POP. 1 INF. POP. 15 INF. POP. 15

TC PSPCSTGR

#### Species, Sort Grade - Board Foot Volumes (Project)

T11S R09W S23 T	yTHIN	1	56.00		Project: Acres	EL	КТНІ 156.(	N 00							Page Date Time	10, 10	1 /6/202 :52:06	3 5AM
	%					Рего	ent of N	vet Boa	rd Foot	Volume					Avera	ige Log		Logs
S So Gr	Nct	Bd. Ft.	per Acre		Total		Log Sca	ale Dia.			Log L	cngth		Ln	Dia	Bd	CF/	Per
Spp Trtad	BdFi	Det%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DE L DO 2M	16		2,340	2.340	365		39	61				32	68	37	12	185	1.36	12.6
DF L DO 3M	71	1.1	10,133	10,023	1,564		100					24	76	37	8	88	0.70	113.3
DF L DO 4M	13	1.3	1,726	1,703	266	3	97			80	15	4		18	6	23	0.38	75.5
DF Tetals	69	.9	14,200	14,066	2,194	0	89	10		10	2	23	65	30	7	70	0.68	201.4
DF T DO CU														7	8		0.00	2.2
DF T DO 2M	1		95	95	15		100					100		32	11	140	1.16	.7
DF T DO 3M	82	.5	5,012	4,989	778		100			0	4	27	68	36	7	75	0.59	66.2
DF T DO 4M	17		1,019	1,019	159	3	97			52	48			20	6	25	0.36	41.5
DF Totals	30	.4	6,126	6,103	952	0	100			9	12	24	56	30	7	55	0.53	110.6
RA L DOCU RA L DOCR	100		92	92	14		100				37		63	6 35	[2 7	58	0.00 0.61	.5 1,6
RA Totals	0		92	92	14		100				37		63	28	8	44	0.58	2.1
Totals		0.8	20,418	20,262	3,161	0	93	7		9	5	23	62	30	7	65	0.63	314.1

						_											Page		1	
THS	R0	9W S23	ТуТН	IIN	156.0	10		Proje Acres	et:	ELK	THIN 156.	00					Date Time	10/ 10:	6/2023 52:03A	М
	s	So G	r L	02	Gross	Def	Net	%		j	yet Volun	ie by S	caling Di	ameter	· in Inc	hes				
Spp	т	rt de	, L	en	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11 1	2-13	14-15	16-19	20-23	24-29	30-39	40
DF	L	DO	2M	32	48		48	2.2						48						
DF	L	DO	2M	34	69		69	3.1					45	24						
DF	L	DO	2M	40	248		248	11.3					97	124	2	.7				
DF	L	DO	3M	32	3[4	3.0	305	13.9			74	230								
DF	L	DO	3M	34	76	2.7	74	3.4			49		24							
DF	L	DO	3M	36	119		119	5.4			35	84								
DF	L	DO	3M	38	8		8	,3			8									
DF	L	DO	3M	40	1,064		1,059	48.2			175	488	395							
DF	L	DO	4M	16	144		144	6.6			139	5	<b>_</b>							
DF	L	DO	4M	18	35		35	1.6			35									
DF	L	DO	4M	20	35		35	1.6			22	13								
DF	L	DO	4M	24	30		30	1.4		7	23									
DF	L	DO	4M	28	4		4	.2			4			I						
DF	L	DO	4M	30	6		6	.3			6									
DF	L	DO	4M	34	15	23.4	12	.5			12								<u> </u>	
DF			Fotals		2,215		2,194	69.4		7	582	820	561	196		27				
DF	T	DO	2M	32	15		15	1.6					15						<u> </u>	
DF	T	DO	3M	16	. 4		4	4			4									
DF	T	DO	3M	22	2 11		11	1.1				11								
DF	Т	DO	3M	28	3 14		14	1.4	,				14							
DF	T	DO	3M	30	) []	16.7	ç					9								
DF	1	DO	3M	32	2 152	1.2	151	1 15.8	3		93	41	17							
DF	1	DO	3M	34	<b>\$</b> 60		60	6.3	1		43		18							
DF	1	DO	3M	30	5 27		2	/ 2.0	3		27						1			
DF	1	DO	3M	38	8 14		[4	4 I.:	5			[4	1							
DF	1	DO 1	3M	39	9 11		1	1 1.									1			
DF	-	ou n	3M	41	0 479		47	9 50.3	<u>'</u>		158	247			-		_			
DF		oa 1	4M	14	1 12		1:	2 1.	3		12									
DF		г ро	4M	[+	6 47		4	7 5.	D		47									
DF		r do	4M	1	8 4			4 .	4		4								1	
DF		r do	4M	2	0 20		2	0 2.	1		20									
DF		r do	4M	2	2 5			5,	6		, 5								1	
DF	•	T DO	4M	2	4 18		-	8 1.	"		4 14									
DF		r do	4M	2	6 23		2	3 2.	4		23									
DF		r do	4M	2	8 6			۰ V	<u>′</u>				1		ł				I.	

тс	PLC	<b>IGSTVB</b>					Log S	Stock	Table -	MBF								
TI	IS R	09W S23 Ty	THIN		156.00		Proj Acre	ect: s	ELÞ	THIN 150	5.00				Page Date Time	10/ 10:	2 6/2023 52:03A	м
	s	So Gr	Log	Gross	Def	Net	%		۲	<u>let Volu</u>	me by §	Scaling Diamete	er in Inch	es				
Spp	T	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11 12-13	14-15	16-19	20-23 2	24-29	30-39	40+
DF		Totals		95	56	952	30.1		4	490	322	136						
RA	L	DO CR	30		5	5	37.5			5								
RA	L	DO CR	38		5	5	33.0			5								
RA	Լ	DO CR	40		4	4	29.5			4								
RA		Totals		1	.4	14	.5			14					<u> </u>			
Total		All Species	3	3,18	5	3,161	100.0	-	11	1087	1142	697 196	27					

,

TC TR	EESEGR					ן	FREE S Proje	SEGM	ENT El	VOLI KTH	JMES IN				P; D;	ige ite	1 10/6/2	023
<b>т</b> 115	RGE 09W	SC 23		TRACT ALL		TYPE THIN		A	CRES 156.00	)	PLOTS 49		TRE	EES 173	CRUISEE 9/1/201	) DATE 8	CuFt 1	BdFt W
1 Plot	iree	Sne S		C I T DBH FF FF T	r }	Bole Tot. Het Ho	PRDVT	S SG	Len	FIFI	Bark	Ao	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
0101	0001 B1	I DF	L	6 14.5 4 87 C	3	56 82		lxx	31						37	37	126	125
	0002 B1	Count	т	BA = 120.00 1 12.3 4 87 (	3	48 78	0	l xx	31						25	25	86	86
PLOT		Count		BA = 20.00		T/A = 24.144	<u>^</u>								25 4 458	25 4.458	86	86 15.247
				BA = 140.00		1/// - 129.30	0				· · ·				4,450	1,150	15,500	
0102	0001 BI	l DF Count	L	7 14.5 4 87 0 BA = 140.00	3	56 82 T/A = 122.68	1	1 xx	31						37 37	37 37	126 126	125 125
	0002 BI	l DF Count	T	5 12.3 4 87 0 BA = 100.00	3	48 78 T/A = 120.72	22	1 xx	31						25 25	25 25	86 <i>86</i>	86 86
PLOT				BA = 240.00		T/A = 243.40	3								7,477	7,477	25,934	25,749
0103	0001 BI	l DF Count	L	6 14.5 4 87 ( BA = 120.00	G	56 82 T/A == 105.15	55	1 xx	31						37 37	37 37	126 126	125 125
	0002 BI	1 DF Count	T	3 12.3 4 87 4 BA = 60.00	G	48 78 T/A = 72 433	1	l xx	31						25 25	25 25	86 86	86 86
PLOT		Count		BA = 180.00		T/A = 177.58	88								5,645	5,645	19,549	19,400
1 0104	0001 DI	1 DF	;	15.0 4 80 4	<u></u>	60 84		613	40		919	505	14 49	9.53	34	34	120	120
0104	0001 101	1 121	L	BA = 20.00	G	T/A = 16.29	7	214	18		.919	.505	9.53	6.43	7	7	20	20
	0002 81	1 DF	T.	1 14.0 4 86	G	57 85		113	40		.919	.505	13.84	8.64	41 29	41 29	140 90	140 90
	0002 01	1 01	2	BA = 20.00		T/A = 18.70	9	214	16		.919	.505	8.64	6.27	5	5	20	20
	0003 BI	LDF	т	1 13.0 4 86	G	44 67		1 13	40		.919	.505	12.72	6.98	<i>34</i> 22	34 22	110 60	60
-	0005 177		•	BA = 20.00	~	T/A = 21.69	8		·						22	22	60	60
	0004 B1	I DF	L	1  16.0  4  86  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  16.0  1	G	62 85 T/A = 14.32	4	113 214	40 20		.919 .919	.505 .505	15,83 9,90	9.90 6.43	37	37 8	[28 20	120 20
				171 10,00											45	45	140	140
	0005 BI	I DF	L	1  15.0  4  86	G	56 79 T/A == 16 29	7	113	40	1	.919	.505	14.79 8.97	8.97 6.03	31 5	31 5	90 20	90 20
				BA - 20.00		IIA ** 10.23	,							0.00	36	36	110	110
	0006 BI	1 DF	T	1 13.0 4 89	G	51 77	0	113	32	2	.919	.505	12.51	8.94	21	21	70 20	60 20
				BA = 20.00		1/A = 21.69	8	214	10		.919	.505	0.94	0.00	26	26	20 90	20 80
	0007 B1	I DF	т	1 12.0 4 86 BA = 20.00	G	30 44 T/A = 25.46	5	1 14	28		.919	.505	11.54	6.72	14 <i>14</i>	14 14	30 30	30 <i>30</i>
	0008 BI	1 DF	L	1 14.0 4 86	G	<b>60</b> 90		113	40		.919	.505	13.87	8.84	29	29	90	90
ļ				BA = 20.00		T/A = 18.70	19	214	18		.919	.505	8.84	6.43	6	6	20	20
	0009-141	I DF	Ι.	1 14.0 4 92	G	58 82		113	40		.919	.505	13.21	9.13	35 31	35 31	120	110
			5	BA = 20.00	3	T/A = 18.70	19	214	16		.919	.505	9.13	6.43	6	6	20	20
PLO	r			BA = 180.00		T/A = 171.9	06								37 5,281	37 5,281	140 16,834	140 16,617
0105	0001 B1	I DF Count	L	7 14.5 4 87 BA = 140.00	G	56 82 T/A = 122.6	181	1 xx	31						37 37	37 <i>37</i>	126 126	125 125
	0002 BI	1 DF Count	r	3 12.3 4 87 BA = 60.00	G	48 78 T/A = 72.43	13	l xx	31						25 25	25 25	86 86	86 86
PLO	г			BA = 200.00		T/A = 195.1	14								6,290	6,290	21,765	21,595
0106	0001 B1	l 1 DF Count	L	6 14.5 4 87 BA = 120.00	G	56 82 T/A = 105.1	55	l xx	31						37 37	37 37	126 126	125 125
	0002 BI	II DF	T	4 12.3 4 87	G	48 78		l xx	31						25	25	86	86

TC TREESEGR

<u> </u>	ALESEAIK			·····			TREE Proj	SEGI ect:	MENT	VOL LKTH	UMES IN				P D	'age late	2 10/6/2	.023
<b>тw</b> р 11S	RGE 09W	SC 23	T A	TRACT ALL		TYPE THIN		1	ACRES	: 10	PLOTS 4	s 19	TR	EES 173	CRUISE 9/1/20	D DATE	CuF( i	BdFt W
T Piot	Tree No.PF A	Spc S	С Т	C DBH FF FF	T D	Bole Tot. Hgt Hg	PRDYT	S SG	Len	FIFI	Bark	Ao	Dia Butt	Día Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
		Count		BA = 80.00		T/A = 96.57	7								25	25	86	86
PLOT				BA = 200.00		T/A = 201.7.	33								6,239	6,239	21,634	21,477
0107	0001 B1 I	DF 1 Count	. 6	5 14.5 4 87 BA = 120.00	G	56 82 T/A = 105.1	55	1 xx	31						37 37	37 37	126 126	125 125
	0002 BI I	DF Count	r 2	2 12.3 4 87 BA = 40.00	G	48 78 T/A = 48.28	9	1 xx	31						25 25	25 25	86 <i>86</i>	86 <i>86</i>
PLOT				BA = 160.00		T/A = 153.44	14								5,052	5,052	17,465	17,324
0108	0001 B1 1	DF I	- 1	15.0 4 86 BA ≈ 20.00	G	61 87 T/A = 16.29	7	l 13 214	40 20		.919 .919	.505 .505	14.85 9.36	9.36 6.25	34 8	34 8	120 20	120 20
	0002 B1 I	DF I	. 1	18.0 4 89	G	66 85		1 12	32		.919	.505	17.40	12.68	42 42	<i>42</i> 42	140 160	140 160
				BA = 20.00		T/A = 11,31	8	213	32	2	.919	.505	12.68	6.43	17 50	17	50 110	40
	0003 B1 1	ÐF I	. 1	15.0 4 86	G	58 82		1 13	40	i.	.919	.505	14.82	9,14	34	34	120	110
				BA = 20.00		T/A = 16.29	7	214	16	1	.919	.505	9.14	6.43	6	6 10	20 140	20
	0004 BI I	DF I	. 1	15.0 4 89	G	58 80		1 13	40		.919	.505	14.47	9.36	34	34	120	120
				BA = 20.00		T/A = 16.29	7	214	16		.919	.505	9.36	6.43	6	6 40	20	20
	0005 B1 1	DF I	. 1	11.5 4 86 BA = 20.00	G	37 62 T/A = 27.72	7	113	36		.919	.505	11.20	6.43	40 18 18	40 18 18	60 60	60 60
	0006 B1 1	DF 1	1	15.0 4 86	G	58 82		113	40		.919	.505	14.82	9.14	34	34	120	120
				BA = 20.00		T/A = 16.29	7	214	16		.919	.505	9.14	6.43	6	6	20	20
	0007 BII	DF 1	. 1	15.0 4 89	G	60 84		1 13	40	1	.919	.505	14.49	9.53	40 34	40 34	140	140 110
				BA = 20.00		T/A = 16,29	7	214	18		.919	.505	9.53	6.43	7	7	20	20
	0008 B1 1	DF T	' i	10.0 4 89 BA = 20.00	G	33 64 T/A = 36.669	•	113	32		.919	.505	9.53	6.43	41 12 12	41 12 12	140 50 50	730 50 50
Ē	0009 BI 1	DF 1	· 1	13.0 4 89	G	55 84		1 13	38	1	.919	.505	12.56	8.51	25	25	80	80
				BA = 20.00		T/A = 21.698	8	214	16		.919	,505	8.51	6.28	5	5	20	20
	0010 BI I	DF L	, 1	17.0 4 90	G	66 86		112	32		.919	.505	16.31	12.16	<i>30</i> 39	30 39	100 160	100
				BA = 20.00		T/A = 12.688	8	213	32		.919	.505	12.16	6.43	17	17	50	50
	0011 B1 1	DF T	· 1	11.0 4 89	G	48 87		113	32		.919	.505	10.64	7.80	56 15	<i>56</i> 15	210 60	210 60
				BA = 20.00		T/A = 30.305	5	214	16		.919	.505	7.80	6.22	5	5	20	20
	0012 BI I	DF 1	· 1	11.0 4 90	G	48 86		113	32		919	505	10.55	7 86	20	20	80 60	80 60
		-		BA = 20.00	-	T/A = 30.305	5	214	16		.919	.505	7.86	6.21	5	5	20	20
PLOT				BA = 240.00		T/A = 252.19	8								20 7,489	20 7,489	<i>80</i> 26,965	80 26,526
0109	0001 B11 C	DF L Count	. 6	14.5 4 87 BA = 120.00	G	56 82 T/A = 105.15	5	l xx	31						37 37	37 37 -	126 126	125 125
	0002 B1 I C	DF T Count	1	12.3 4 87 BA = 20.00	G	48 78 T/A = 24.144		1 xx	31						25 25	25 25	86 86	86 86
	0003 B1 I	RA L	1	12.0 4 87 BA == 20.00	Н	31 53 T/A = 25.465		IIК	30	1	.953	.545	F1.95	7.62	16 16	16 16	50 50	50 50
PLOT				BA = 160.00		T/A = 154.76	4								4,866	4,866	16,653	16,520
0110	0001 BH I C	DF L. Count	7	14.5 4 87 BA = 140.00	G	56 82 T/A = 122.68	1	l xx	31						37 37	37 37	126 126	125 125
	0002 B1 1 C	DF T Count	2	12.3 4 87 BA == 40.00	G	48 78 T/A = 48.289		l xx	31						25 25	25 25	86 86	86 86

TC TRI	EESEGR					TRE P	E SEGM roject:	ENT EL	VOLU KTHI	JMES IN				Pa Da	ge te	3 10/6/20	23
TWP 11S	RGE 09W	SC 23	1 /	FRACT ALL		TYPE THIN	AC	CRES	)	PLOTS 49	•	TRE	ES 173	CRUISED 9/1/2013	DATE 3	CuFt 1	BdFt W
Ti Plot 1	ree √o.PF A	Spc S	( 1	C T DBH FF FF	T P D	Bole Tot. Hgt Hg PRD	S VT SG	Len	FIFI	Bark	Ao	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
PLOT		<u></u>		BA = 180.00		T/A = 170.970								5,696	5,696	19,681	19,519
0112	0001 BI 1	DF	L	1 17.0 4 80 BA = 20.00	5 G	70 94 T/A = 12.688	1 13 214	40 30		.919 .919	.505 .505	16.87 10.91	10.91 6.03	43 13	43 13	150 40	150 40
	0002 B1 I	DF	L	I 12.0 4 89 BA = 20.00	9 G	50 82 T/A = 25.465	1 13 214	32 16		.919 .919	.505 .505	11.58 8.38	8.38 6.43	56 19 5	50 19 5	70 20	790 70 20
	0003 B1 I	DF	L	$1  12.0  4  89 \\ BA = 20.00$	9 G	50 82 T/A = 25.465	113 214	32 16		.919 .919	.505 .505	11.58 8.38	8.38 6,43	24 19 5	24 19 5	<i>90</i> 70 20	90 70 20
	0004 B1 I	DF	L	1 13.0 4 8 BA = 20.00	9 G	55 84 T/A = 21.698	1 13 214	36 16		.919 .919	.505 .505	12.56 8.73	8.73 6.58	24 23 5	24 23 5	<i>90</i> 80 20	90 80 20
	0005 BI	I DF	Т	1 9.0 4 8 BA = 20.00	9 G	32 64 T/A = 45,271	I 13	32		.919	.505	8.70	6.37	28 11 11	28 11 11	100 50 50	100 50 50
	0006 BI	1 DF	L	i i 3.0 4 8 BA = 20.00	9 G	55 84 T/A = 21.698	1 13 214	36 16		.919 .919	.505 ,505	12.56 8.73	8.73 6.58	23 5	23 5	80 20	80 20
	0007 B1	I DF	L	1 [3.0 4 8 BA = 20.00	6 G	55 87 T/A = 21.698	1 13 214	36 16		.919 .919	.505 .505	12.87 8.52	8.52 6.57	28 23 5	28 23 5	100 80 20	100 80 20
	0008 B1	I DF	Т	1 12.0 4 8 BA = 20.00	6 G	50 85 T/A == 25.465	1 13 214	32 16		.919 .919	.505 .505	11.87 8.17	8.17 6.43	28 19 5	28 19 5	100 70 20	100 70 20
PLOT				BA == 160.00		T/A = 199.447								<i>24</i> 4,865	24 4,865	<i>90</i> 18,059	90 18,059
0114	0001 BI	I DF Count	L	6 14.5 4 8 BA = 120.00	87 G	56 82 T/A = 105.155	J xx	31						37 37	37 37	126 126	125 125
	0002 B1	l DF Count	Т	1 12.3 4 8 BA = 20.00	87 G	48 78 T/A = 24.144	l xx	31						25 25	25 25	86 <i>86</i>	86 <i>86</i>
PLOT				BA = 140.00		T/A = 129.300								4,458	4,458	15,380	15,247
0115	0001 B1	1 DF Count	L	6 I4.5 4 8 BA = 120.00	37 G	56 82 T/A = 105.155	1 xx	31						37 37	37 <i>37</i>	126 126	125 125
	0002 Bt	1 DF Count	Т	3 12.3 4 8 BA = 60.00	87 G	48 78 T/A = 72.433	I xx	31						25 25	25 25	86 <i>86</i>	86 86
PLOT				BA = 180.00		T/A = 177.588								5,645	5,645	19,549	19,400
0116	0001 BI	1 DF	T	1 12.0 4 BA = 20.00	89 C	45 72 T/A = 25.465	113	40		.919	.505	11.51	7.03	21 21	21 21	70 70	70 70
	0002 BI	1 DF	т	i 9.0 4 a BA = 20.00	89 C	28 56 T/A = 45.271	114	30		,919	.505	8.61	6.16	10 10	10 10	40 <i>40</i>	40 <i>40</i>
	0003 B1	I DF	L	1 13.0 4 BA = 20.00	86 C	50 78 T/A = 21.698	113 214	32 16		.919 .919	.505 .505	5 12.81 5 8.66	8.66 6.43	21 5	21 5	70 20 90	70 20 00
	0004 BI	l DF	L	i 14.0 4 BA = 20.00	86 C	3 55 81 T/A = 18.709	I 13 214	36 16		.919 .919	.505 .505	5 13.82 5 8.98	8.98 6.60	26	26 5	80 20	80 20
	0005 B1	1 DF	Т	l 10.0 4 BA = 20.00	86 C	34 68 T/A = 36.669	113	34		.919	,505	5 9.82	6.33	37 13 13	13 13 13	50 50	50 50
	0006 B1	I DF	Т	1 12.0 4 BA = 20.00	86 (	3 45 75 T/A = 25.465	113	40		.919	.505	5 11.81	6.97	19 19	19 <i>19</i>	60 60	60 60
	0007 BI	1 DF	т	1 t1.0 4 BA = 20.00	86 (	G 40 73 T/A = 30.305	[ 13	40	I	.919	.50	5 10.81	6.31	17 17	17 17	60 60	60 <i>60</i>

0006 BI1 DF L I I3.0 4 86 G

0007 B11 DF T 1 16.0 4 89 G

BA = 20.00

42 63

62 84

T/A = 21.698

113

113

40

40

.919

.919

.505 12.68

.505 15.45 10.16

6.63

22

22

39

22

22

39

60

60

150

60

-60

150

#### TREE SEGMENT VOLUMES Page 4 Project: ELKTHIN Date 10/6/2023 TWP RGE SC TRACT TYPE ACRES PLOTS TREES CRUISED DATE CuFt BdFt 11S 09W 23 ALL THIN 156.00 49 173 9/1/2018 1 W Tree С T Bole Tat. S Dia Dia Gross Net Gross Net Plot No. PF A Spc S T DBH FF FF D Hgt Hg PRDVT SG Len FIFI Bark Ao Butt Тор CuFt CuFt BdFt BdFt 12.0 4 86 G 0116 0008 B11 DF T 1 45 75 113 40 .505 11.81 .919 6.97 19 19 60 60 BA = 20.00 $T/\Lambda = 25.465$ 19 19 60 60 0009 B11 DF L 1 13.0 4 86 G 50 78 113 32 .919 .505 12.81 8.66 21 21 70 70 BA = 20.00 T/A = 21.698 214 .919 16 .505 8.66 6.43 5 5 20 20 26 26 90 90 0010 BII DF L 1 13.0 4 86 G 50 78 113 32 010 .505 12.81 8.66 21 21 70 70 BA = 20.00T/A = 21.698 214 16 .919 .505 8.66 6.43 5 20 5 20 26 26 90 90 0011 BI1 DF L 1 12.0 4 86 G 45 75 113 40 .919 .505 11.81 6.97 19 19 60 60 BA = 20.00 T/A == 25,465 19 19 60 60 0012 BI I DF L 1 16.0 4 86 G 68 94 113 40 .919 .505 15.88 10.28 39 39 150 150 BA = 20.00 T/A = 14.324 .919 214 16 .505 10.28 8.07 9 9 30 30 48 48 180 180 0013 BLI DF L I 13.0 4 86 G 50 78 32 113 .919 .505 12.81 8 66 21 21 70 70 BA = 20.00T/A = 21.698 214 16 .919 .505 8.66 6.43 5 5 20 20 26 26 90 90 PLOT BA = 260.00T/A = 333,929 6,955 24,089 6,955 24.089 0117 0001 B11 DF L 6 14.5 4 87 G 56 82 31 1 xx37 37 126 125 Count BA = 120.00 T/A == 105.155 37 37 126 125 0002 BIIDF T 3 12.3 4 87 G 48 78 31 1 xx 25 25 86 86 BA = 60.00 Count T/A = 72.433 25 25 86 86 0003 BI1 RA L I 14.0 4 87 G 45 62 110 6 953 .545 14.09 13.00 .545 13.00 BA = 20.00 T/A = 18,709 21K 38 2 .953 6.67 21 21 60 60 21 21 60 60 PLOT BA = 200.00 T/A = 196.297 6.038 20,672 6,038 20.523 0118 0001 BIIDF L 7 14.5 4 87 G 56 82 31 I xx 37 37 126 125 Count BA = 140.00T/A = 122.68137 37 126 125 0002 BII DF T 4 12.3 4 87 G 48 78 31 1 xx 25 25 86 86 Count BA = 80.00 T/A = 96.577 25 25 86 86 PLOT BA = 220.00T/A = 219.258 6,883 6.883 23,850 23,672 0119 0001 BI I DF L 5 14.5 4 87 G 56 82 31 i xx 37 37 126 125 Count BA = 100.00T/A = 87.629 37 37 126 125 0002 B11 RA L 1 13.7 4 87 H 38 56 35 1 88 22 22 58 58 Count BA = 20.00 T/A = 19,499 22 22 58 58 PLOT BA = 120.00 T/A = 107.1293,640 3.640 12.212 12,108 0120 0001 B11 DF L 1 14.0 4 83 G 60 93 40 113 919 .505 14.20 8.63 31 31 90 90 BA = 20.00T/A = 18.709 214 16 .919 .505 8.63 6.70 5 5 20 20 36 110 110 36 0002 B11 DF L 1 12.0 4 86 G 40 65 113 40 .919 .505 11,72 6.26 19 19 60 60 BA = 20.00 T/A = 25.465 19 19 60 60 0003 BI I DF L 1 18.0 4 83 G 60 79 113 40 .919 ,505 [8.16 10.37 50 50 150 150 BA = 20.00T/A = 11.318 214 18 .919 .505 10.37 6.43 -8 8 20 20 58 170 58 170 0004 BI1 DF L 1 19.0 4 86 G 70 90 40 .919 112 .505 18.83 11.99 53 53 180 180 T/A = 10.158BA = 20.00214 28 .919 .505 11.99 6.43 14 14 30 30 67 67 210 210 0005 B1 1 DF T 1 13.0 4 86 G 45 69 .505 12.74 E13 40 .919 7.13 24 24 70 70 BA = 20.00 T/A = 21,698 24 24 70 70

IC TRE	ESEGR					TREE ; Proje	SEGMI ect:	ENT ' EL	VOLU KTHI	IMES N				Pa Da	ige ite	5 10/6/20	)23
TWP 11S	RGE SC 09W 23	:	TRACT ALL			TYPE THIN	AC	CRES 156.00	i	plots 49		TRE	ES 173	CRUISED 9/1/201	DATE 8	CuFt l	BdFt W
Tre Piot N	ee lo,PFA Spe	= S	C T DBH	FF FF	T D	Bole Tot. Hgt Hg PRDVT	S SG I	Len	FIFI	Bark	Ao	Dîa Butt	Dia Top	Gross CuF1	Net CuFt	Gross BdFt	Net BdFt
			BA =	= 20.00		T/A = 14.324	214	20		.919	.505	10.16	6.43	9	9	20	20
0120	0008 BI I DI	ι	1 18	.0 4 83	G	70 93	112	34	1	.919	.505	18.26	11.83	48 45	48 45	170	170
			BA •	≈ 20.00		T/A = 11.318	213	34		.919	.505	11.83	6.43	17	17 62	50 200	50 200
	0009 B11 DI	εL	1 17	.0 4 86	G	68 91	112	34		.919	.505	16.86	11.52	39	39	150	150
			BA =	= 20.00		T/A = 12.688	213	32		.919	.505	11.52	6.43	16	16	50	50
		а <b>т</b>	3 12	0 4 86	G	54 93	113	32		.919	.505	11.91	8.33	55 19	55 19	200 70	200
		. 1	BA	= 20.00	G	T/A = 25.465	214	20		.919	.505	8.33	6.43	7	7	20	20
														26	26	90 10.000	90 10.001
PLOT			BA =	200.00		17A = 172.840								0,242	0,242	19,992	17,772
0201	0001 B1 L DI Cou	FL nt	7 14 BA -	1.5 4 87 = 140.00	G	56 82 T/A = 122.681	l xx	31						37 37	37 37	126 126	125 125
	0002 B1 I D Cou	FT nt	4 12 BA	2.3 4 87 = 80.00	G	48 78 T/A = 96.577	l xx	31						25 25	25 25	86 <i>86</i>	86 86
PLOT			BA =	220.00		T/A == 219.258								6,883	6,883	23,850	23,672
0202	0001 B11 D Cou	F L nt	6 14 BA	4.5 4 87 	G	56 82 T/A = 105.155	1 xx	31						37 37	37 37	126 126	125 125
	0002 131   D Cou	F T Int	3 12 BA	2.3 4 87 = 60.00	G	48 78 T/A = 72.433	l xx	31						25 25	25 25	86 <i>86</i>	86 <i>86</i>
PLOT			BA =	180.00		T/A = 177.588								5,645	5,645	19,549	19,400
0203	0001 B11 D Cou	FL mt	7 1- BA	4.5 4 87 == 140.00	G	56 82 T/A ≔ 122.681	1 xx	31						37 37	37 37	126 126	125 125
	0002 B11 D Cou	oF T int	4 I BA	2.3 4 87 = 80.00	G	48 78 T/A = 96.577	l xx	31						25 25	25 25	86 <i>86</i>	86 86
PLOT			BA =	220.00		T/A = 219.258								6,883	6,883	23,850	23,672
0204	0001 B11 D	FL	1 1	6.0 4 86	G	62 85	113	40		.919	.505	15.83	9.90	37	37	120	120
			BA	= 20.00		T/A = 14.324	214	20		.919	.505	9.90	6.43	8	8	20	20
		FI	1 1	70486	G	72 97	113	40		.919	.505	16.89	11.02	43 46	43 46	180	140
	0002 DT I L	., L	BA	= 20.00	J	T/A = 12.688	213	32		.919	.505	11.02	6.04	16	16	50	50
		_								010		17 00	(1.55	62	62 40	230 100	230
	0003 Bi 1 D	OF L		8.0 4 86 = 20 00	G	75 99 T/A ≕ 11318	112	40 34		.919 .919	.505	17.89	6.23	49 17	49 17	180	50
			DA	20.00		1121	215	21		*			0.20	66	66	230	230
	0004 BI I E	DF L	. 1 [	9.0 4 86	G	75 96	112	40		.919	.505	18.87	12,29	56	56	200	200
			BA	= 20.00		T/A = 10.158	214	34		.919	.505	12.29	6.20	19	19	20 250	25/
	000533117	)F I	. 1 2	0.0 4 86	G	77 97	112	40		.919	.505	19.87	12.98	60	60	200	200
			BA	= 20.00		1'/A = 9.167	213	36		.919	.505	12.98	6.18	20	20	60	60
		_					•			010	505			80	80	260	260
	0006 B1 1 E	JF L	. 1 I na	2.0 4 86	G	>> >> >> T/A = 25 465	113 214	40 16		.919	.505	7.73	6,11	5	5	20	20
			DA	20,00			~14							26	26	90	90
	0007 B1 I E	DF T	• I I	7.0 4 86	G	75 101	113	40		.919	.505	16.91	11.16	46	46	180	180
			BA	= 20.00		T/A = 12.688	213	34		.919	.505	11.16	6.25	17 43	17	50 730	51
PLOT			BA =	= 140.00		T/A ≈ 95.808								5,135	5,135	17,660	17,660
								 							27	172	10
0205	0001 B1 [ I Co	DF L unt	. 5 1 BA	4.5 4 87 .≈100.00	C	56 82 T/A = 87.629	l xx	31						37	37 37	126	12:
PLOT		•	BA =	= 100.00		T'/A = 87.629								3,220	3,220	11,080	10,97
0206	0001 B11 I	DF I	. 7	14.5 4 87	C	3 56 82	1 x x	31						37	37	126	12:

TC T	REESEGR								TREE	SEGI	MENT	VOL	UMES				F	age	6
									Proj	ect:	E	LKTH	IIN				E	Date	10/6/
TWP 11S	RGE 09W	<b>SC</b> 23		TI Al	ract LL			TYPE THIN			ACRES 156.0	5 00	PLOT:	<b>s</b> 19	TR	EES 173	CRUISE 9/1/20	D DATE 18	CuI 1
Plot	Tree No, PF A	Spc	s	C T	DBH FF	, FF I	T D	Bole Tot. Het He	PRDVT	S SG	Len	FIFI	Bark	Án	Dia Butt	Dia	Gross	Net	Gross
		Count			PA - 140.04	<u></u>		T/A 122 69											
		count			DA 140.0	0		17A - 122,00	• 1								37	37	120
0206	0002 B1	I DF Count	Т	3	12.3 4 BA = 60.00	87 (	3	48 78 T/A = 72.433	L	Тxx	31						25 25	25 25	86 86
PLOT				1	BA = 200.00			T/A = 195.11	4								6,290	6,290	21,765
0207	0001 B1	1 DF	Т	1	15.0 4	85 (	3	70 102		1]3	34		.919	.505	15.04	10.28	34	34	130
					BA = 20.00			T/A == 16.297	,	213	34		.919	.505	10,28	6.43	15	15	50
	0001 01			,	11.0 (	97 7	~	12 20									49	49	180
	0002 B1	I DF	L	1	BA = 20.00	80 (	t	42 /8 T/A = 30.305	i	113	40		.919	,505	10.84	6.54	17 17	17 17	60 60
	0003 BI	I DF	L	ι	16,0 4	86 C	3	75 105		143	40		.919	505	15 93	10.60	30	19	150
					BA = 20.00			T/A = 14.324	ļ	213	34		.919	.505	10.60	6.27	15	15	50
																	54	54	200
	0004 B1	1 DF	L	1	14.0 4	86 <b>(</b>	3	62 93		113	40		.919	.505	13.89	8.96	29	29	90
					BA = 20.00			T/A = 18.709	1	214	20		.919	.505	8.96	6.43	7	7	20
	0005 01	I DE	r		14.0 4	oc 7		65 00			10		010	<b>ca</b> <i>c</i>			36	36	110
	0003 61	I DF	г	1	14.0 4 BA = 20.00	80 C	ľ	50 CO T/A ⊯ 18 7A9		214	40 24		.919	.505	13.91	9.11	31	31	120
					2.1 20.00			10.70		214	2.1		.,,,,,	.505	2.11	0.50	2 40	10	30
	0006 BI	1 DF	L	ſ	14.0 4	86 (	3	63 95		113	40		.919	.505	13.90	9.01	31	31	120
1					BA = 20.00			T/A = 18.709	F	214	24		.919	.505	9.01	6.00	8	8	30
																	39	39	150
	0007 B1	1 DF	Т	ł	13.0 4	86 C	3	58 92		113	40		.919	.505	12.89	8.29	26	26	90
					BA = 20.00			T/A = 21.698		213	16		.919	.505	8.29	6.43	5	5	20
	0008 81	1 02	т	1	10.0 /	96 6	2	34 69		112	24		010	605	0.00	( 1)	31	31	110
	0000 11	1 03		1	BA = 20.00	00 C	, ,	T/A = 36.669		115	14		.919	.303	9.82	0.33	13	13	50 50
	0009 BI	I DF	т	1	13.0 4	86 C	3	60 96		113	40		.919	505	12 91	8.40	26	26	00
			-	-	BA = 20.00			T/A = 21.698		214	20		.919	.505	8.40	6.19	20 7	7	20
																	33	33	110
1	0010 B1	1 DF	L	1	15.0 4	86 C	}	74 108		113	40		.919	.505	14.95	10.01	36	36	150
					BA = 20.00			T/A = 16.297		213	32		.919	.505	10.01	6.43	14	[4	50
	6011 D1	I DE				9/ 0		76 100			10		<b></b>				50	50	200
	OUL DI	I DF	L	1	10.0 4 BA = 20.00	au C	,	/0 100 T/A ≕ 14 374		÷13 214	40	6	.919	.305	15.94	10,64 6 4 3	39	39	150
					DIN 20.00			171 19.524		<i>2</i> 17	54	U	.919	.505	10.04	0,45	13 54	54	200
PLOT				E	BA = 220.00		]	Г/A = 227.74(	}								7,693	7,693	28,019
0208	0001 BI	I DF	L	7	14.5 4	87 G	;	56 82		1 xx	31						37	37	126
		Count			BA = 140.00	i		T/A = [22.68	l								37	37	126
	0002 B1	1 DF	т	3	12.3 4	87 G	ì	48 78		l xx	31						25	25	86
		Count			BA = 60.00	_		T/A = 72.433			-						25	25	86
1																			

10/6/2023

CuFt BdFt 

W

Net

BdFt

21,595

TC TREESEGR

28,019 27,732 PLOT BA = 200.00T/A = 195.114 6,290 6,290 21,765 21,595 0001 BII DF L 3 14.5 4 87 G 56 82 1 xx 31 Count BA = 60.00T/A = 52.578 PLOT BA == 60.00 T/A = 52.578 1,932 1,932 6,648 6,585 0001 B1 I DF L 1 16.0 4 86 G 64 88 .919 .505 15,85 10.04 BA = 20.00 T/A = 14.324 .919 .505 10.04 6.040002 B11 DF L 1 19.0 4 86 G 78 101 .919 .505 18.90 12.45 BA = 20.00 T/A = 10.158 .919 .505 12.45 6.43 0003 BI1 DF T 1 15.0 4 86 G 58 82 .919 .505 14.82 9.14 BA = 20.00T/A = 16.297 .919 .505 9.14 6.43 0004 BII DF L 1 18.0 4 86 G 75 99 .919 .505 17.89 11.73 BA = 20.00 T/A = 11.318.919 .505 11.73 6.23 

TC TR	EESEGR					TREE Pro	SEGN iject:	IENT EI	VOLI .KTH	JMES IN			·	Pa Da	ige ite	7 10/6/2(	)23
<b>тwр</b> 118	RGE 09W	SC 23		TRACT ALL		TYPE THIN	А	CRES 156.0	D	plots 49	ŧ	TRE	ES 173	CRUISED 9/1/201	DATE 8	CuFt 1	BdFt W
Ti Plot 1	ree No,PFA	Spc S		C T DBH FF FF	T D	Bole Tot. Hgt Hg PRDVI	S F SG	Len	FIFI	Bark	Ao	Dìa Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
[						****								66	66	230	230
0211	0005 BI I	DF	L	1  16.0  4  86 BA = 20.00	G	65 90 T/A = 14 324	1 13 214	40 24		.919 .919	.505 .505	15.85 10.10	10.10 6.24	39 11	39 11	150 30	150 30
				1/1 20.00										50	50	180	180
	0006 BI I	DF	L	1 18.0 4 86	G	76 100 T/L = 11 218	112	34 40		.919	.505	17.90 12.44	12.44 6.43	45 22	45 22	170 60	170 60
				BA = 20.00		1/A - 11.516	215	70		.,,,,	.565	12.11	0.15	67	67	230	230
1	0007 BI I	DF	L	1 15.0 4 86	G	60 85	113	40		.919	.505	14.84	9.29	34	34	120	120
				BA = 20.00		T/A = 16.297	214	18		.919	.505	9.29	0.43	41	41	20 140	20 140
	0008 B1 1	DF	т	1 17.0 4 86	G	72 97	112	32		.919	.505	16.89	11.88	37	37	140	140
				BA = 20.00		T/A = 12,688	213	40		.919	.505	11.88	6.04	19	19	60 200	60 200
PLOT				BA = 160.00		T/A = 106.724								5,740	5,740	20,105	20,105
0212	0001 BI I	DF Count	L	7 14.5 4 87 BA = 140.00	G	56 82 T/A = 122.681	1 xx	31						37 37	37 37	126 126	125 125
	0002 B1 1	l DF Count	т	6 12.3 4 87 BA = 120.00	G	48 78 T/A = 144.866	l xx	31						25 25	25 25	86 <i>86</i>	86 <i>86</i>
PLOT				BA = 260.00		T/A == 267.547								8,071	8,071	28,019	27,825
0213	0001 B1 I	I DF Count	L	7 14.5 4 87 BA = 140.00	G	56 82 T/A = 122.681	1 xx	31						37 37	37 37	126 126	125 125
	0002 BI I	1 DF Count	Т	7 12.3 4 87 BA = 140.00	G	48 78 T/A = 169.010	ł xx	31						25 25	25 25	86 86	86 <i>86</i>
PLOT				BA = 280.00		T/A == 291.692								8,664	8,664	30,103	29,902
0214	0001 BI	I DF Count	L	6 14.5 4 87 BA = 120.00	G	56 82 T/A = 105.155	l xx	31						37 37	37 37	126 <i>126</i>	125 125
	0002 B1	1 DF Count	т	2 12.3 4 87 BA = 40.00	G	48 78 T/A = 48.289	l xx	31						25 25	25 25	86 <i>86</i>	86 <i>86</i>
PLOT				BA = 160.00		T/A = 153,444								5,052	5,052	17,465	17,324
0215	0001 BI	1 DF	Т	1 15.0 4 86	G	62 89	113	3 40		.919	.505	14.86	9.43	34	34	120	120
				BA = 20.00		T/A = 16.297	214	¥ 20		.919	.505	9,43	0.43	8 42	8 42	20 140	20 140
	0002 B1	1 DF	L	1 21.0 4 86	G	84 105	112	2 40	I	.919	.505	20.91	13.92	67	67	240	240
1				BA = 20.00		T/A = 8.315	213	3 40	I	.919	.505	13.92	6.91	24 07	24 07	60 200	60 101
	0003 BI	I DF	т	1 16.0 4 86	G	68 94	113	3 40	•	.919	.505	5 15.88	10.28	39	39	150	150
				BA == 20.00	-	T/A = 14.324	214	\$ 26	I	.919	.505	5 10.28	6.43	11	11	30	30
	0004 191	1 DF	1	1 160 4 84	6	65 90	113	3 40	1	.919	.505	5 15.85	10.10		50 39	180	180
	0004 BI		<b>L</b> .	BA = 20.00	, u	T/A = 14.324	214	4 24	ļ	.919	.505	5 10.10	6.24	11	11	30	30
			ŗ			<i>ca</i> ••				010	604	1 1 00		50	50 26	180	180
	0005 B1	1 DF	L	1 13.0 4 86 BA = 20.00	b G	57 - 91 T/A = 21.698	214	5 40 4 16	i	.919 .919	.50	5 8.24	6,30	20	20	20	20
								_						31	31	110	110
	0006 BI	I DF	L	1 17.0 4 80 BA = 20.00	ίG	73 98 T/A = 12 688	11:	3 40 3 30	) !	.919 .919	.50	> 16.90 5 11.07	11.07 II.07	46	46 16	180 50	180
				BU 7000		1	-1.							62	62	230	230
	0007 B1	1 DF	Т	1 16.0 4 80	ίG	65 90	11:	3 40 4 24	) 1	.919	.50	5 15.85 5 10.10	i 10.10	39	39 11	150	150 30
				BA = 20.00		17A = 14,324	214	4 Z4		.717	,50.	. 10.10	. 0.24	50	50		180
	0008 B1	1 DF	Т	1 13.0 4 80	5 6	i 56 89	11	3 40	)	.919	.50	5 12.88	8.17	26	26	90	90
1				BA = 20.00		T/A = 21.698	21	4 10	)	.919	.50	5 8.17	6.10	, 5 स	5 31	20 110	20 110
	0009 BI	1 DF	Т	1 13.0 4 80	6 C	56 89	11	3 40	)	.919	.50	5 12.88	8 8.17	26	26	90	90
				BA = 20.00		T/A = 21.698	21	4 10	5	.919	.50	5 8.17	6.10	5 5	5	20	20
														JI	31	110	170

#### TREE SEGMENT VOLUMES Project: ELKTHIN

Page 8 Date 10/6/2023

TWP 11S	RGE SC 09W 23	TRACT ALL	TYPE THIN	ACR 15	ES 6.00	PLOTS 49	; 9	TRI	EES 173	CRUISE 9/1/20	D DATE 18	CuFt I	BdFt W
1	free	СЛ	' Bole Tot,	S				Dia	Dia	Gross	Net	Gross	Net
Plot	No.PF A Spc S	T DBH FF FF D	Hgt Hg PRDVT	SG Ler	ı FIFI	Bark	Ao	Butt	Тор	CuFt	CuFt	BdFt	BdFt
0215	0010 BI 1 DF 1	, 1 19.0 4 86 C BA = 20.00	F 80 103 T/A = 10.158	1 12 213	40 38	.919 .919	.505 .505	18.91 12.54	12.54 6.43	56 21	56 21	200 60	200 60
-	0011 B11 DF 1	1 15.0 4 86 C BA = 20.00	63 90 T/A = 16.297	1 13 214	40 24	.919 .919	.505 .505	14.87 9.49	9.49 5.91	77 34 8	77 34 8	260 120 30	260 120 30
	0012 BII DF L	I 17.0 4 86 0	74 100	1 13	40	.919	.505	16.90	11.12	42 46	<i>42</i> 46	150 180	150 180
	0013 B11 DF T	1 14.0 4 86 C	60 90	113	40	.919	.505	13.87	8.84	62 29	62 29	230 90	50 230 90
	0014 B11 DF L	BA = 20.00	T/A = 18.709 86 106	214	20 40	.919	.505	8.84 21.91	6.13 14.62	7 36 75	7 36 75	20 110 290	20 110 290
		BA = 20,00	T/A ≈ 7.576	213	40	.919	.505	14.62	7.42	29 104	29 104	70 360	70 360
PLOT		BA = 280.00	T/A ≈ 210.795							10,109	10,109	35,379	35,379
0216	0001 B11 DF L Count	7 14.5 4 87 G BA ≈ 140.00	56 82 T/A = 122.681	1 xx	31					37 37	37 37	126 126	125 125
	0002 B11 DF T Count	6 12.3 4 87 G BA = 120.00	48 78 T/A = 144.866	1 xx 3	31					25 25	25 25	86 <i>86</i>	86 86
PLOT		BA = 260.00	T/A = 267.547							8,071	8,071	28,019	27,825
0217	0001 BIIDF L Count	6 14.5 4 87 G BA = 120.00	56 82 T/A = 105.155	Ixx :	31					37 37	37 37	126 126	125 125
	0002 B11 DF T Count	4 12.3 4 87 G BA = 80.00	- 48 78 T/A ≕ 96.577	lxx i	31					25 25	25 25	86 <i>86</i>	86 86
PLOT		BA = 200.00	T/A = 201.733							6,239	6,239	21,634	21,477
0301	0001 BIIDF L	1 15.0 4 92 G BA = 20.00	52 70 T/A = 16.297	1 13 3 214 1	34 2 16	.919 .919	,505 ,505	14.15 10.02	10.02 6.43	31 7	31 7	130 20	120 20
	0002 B11 DF L	1 I6.0 4 89 G	<b>63</b> 85	113 4	10	.919	.505	15.46	10.24	38 39	<i>38</i> 39	150 150	140 150
		BA = 20.00	T/A = 14.324	214 2	20	.919	.505	10.24	6,65	9 18	9 10	20	20
	0003 B11 DF L	1 19.0 4 86 G	62 79	112 4	ю	.919	.505	18.73	11,33	53	53	180	180
		BA = 20.00	T/A = 10.158	214 2	20	.919	.505	11.33	6.43	10 63	10 63	20 200	20 200
	0004 BIIDF T	i 10.0 4 86 G BA = 20.00	27 50 T/A ≕ 36.669	114 2	26	.9[9	.505	9.62	6.43	10 10	10 70	30 30	30 30
	0005 BI1 DF L	1 11.0 4 86 G BA = 20.00	32 54 T/A = 30.305	113 3	32	.919	.505	10.61	6,25	14 14	14 14	50 .50	50 50
	0006 B11 DF L	1 16.0 4 86 G BA = 20.00	60  82 T/A = 14.324	I 13 4 214 1	i0 .8	.919 .919	.505 .505	15.80 9.74	9.74 6.43	37 7	37 7	120 20	120 20
	0007 BII DF T	1 12.0 4 86 G	31 46	114 3	0	.919	.505	11.54	6.43	<i>44</i> 15	44	140 40	140 40
		BA == 20.00	T/A = 25.465							15	15	40	40
	0008 B11 DF L	1 14.0 4 86 G BA = 20.00	48 70 T/A = 18.709	1 13 3 214 1	2 6	.919 .919	.505 .505	13.73 9.01	9.01 6.01	25 6	25 6	90 20	90 20
	0009 B11 DF I.	1 12.0 4 86 G	41 67	113 4	0	.919	505	1 74	6 42	31	31 10	110 60	110
		BA = 20.00	T/A = 25.465		~		,,,,,,	.1./7	U.4J	19	19	60	60
	0010 BIIDF T	1 11.5 4 86 G BA = 20.00	36 59 T/A = 27.727	113 3	6	.919	.505	11.17	6.26	18 18	18 18	60 60	60 60
PLOT		BA = 200.00	T/A = 219.443							5,313	5,313	17,800	17,637
0302	0001 B11 DF L	6 14.5 4 87 G	56 82	1 xx 3	1					37	37	126	125

TC TRE	ESEGR					TREE Pro	SEGN ject:	IENT EL	VOL) KTH	UMES IN				Pa Da	ige ite	9 10/6/2(	)23
TWP 11S	RGE 09W	SC 23	1	FRACT ALL		TYPE THIN	٨	CRES 156.00	)	plots 49	)	TRE	ES 173	CRUISED 9/1/201	DATE 8	CuFt 1	BdFt W
Tr Plot N	ee Ro.PFA	Spc S	(	C T DBH FF FF	T D	Bole Tot. Hgt Hg PRDVI	s SG	Len	FIFI	Bark	Ao	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFi	Net BdFt
		Count		BA = 120.00		T/A = 105.155								37	37	126	125
0302	0002 BI	I DF Count	т	1 12.3 4 87 BA ≈ 20.00	G	48 78 T/A = 24.144	1 xx	31						25 25	25 25	86 86	86 <i>86</i>
PLOT				BA = 140.00		T/A = 129.300								4,458	4,458	15,380	15,247
0303	0001 BI	I DF Count	L	7 14.5 4 87 BA = 140.00	G	56 82 T/A = 122.681	l xx	31						37 37	37 37	126 126	125 125
	0002 BI	1 DF Count	Т	2 12.3 4 87 BA = 40.00	6	48 78 T/A = 48.289	l xx	31						25 25	25 25	86 <i>86</i>	86 86
PLOT				BA ≕ 180.00		T/A = 170.970								5,696	5,696	19,681	19,519
0304	0001 BI	DF Count	L	6 14.5 4 87 BA ≈ 120.00	G	56 82 T/A == 105.155	1 xx	31						37 <i>37</i>	37 37	126 126	125 125
	0002 BI	t DF Count	Т	2 12.3 4 87 BA = 40.00	G	48 78 T/A = 48.289	l xx	31						25 25	25 25	86 86	86 <i>86</i>
PLOT				BA = 160.00		T/A = 153.444								5,052	5,052	17,465	17,324
0305	0001 BI	l DF	Т	1 13.0 4 89 BA = 20.00	G	46 68 T/A = 21.698	113	40		.919	.505	12.44	7.35	24 24	24 <i>24</i>	70 70	70 70
	0002 B1	I DF	L	1 12.0 4 89 BA = 20.00	G	44 70 T/A = 25.465	113	40		.919	.505	11.49	6.90	19 19	19 19	60 60	60 60
	0003 B1	I DF	Т	1 15.0 4 86 BA = 20.00	G	50 69 T/A = 16.297	1 13 210	28		.919 .919	.505	14.71 10.25	10.25 9.34	26	26	100	100
							514	14		.919	.505	7.54	0.45	31	31	120	120
	0004 BI	IDF	L	1 17.0 4 86 BA = 20.00	G	60 80 T/A = 12.688	1 13 214	40 1 18	2	.919	.505 .505	10.77	6.43	43 8	43	20	20
	0005-111	1 DF	T	1 160 4 86	G	58 79	[]1	40		.919	.505	15.78	9.57	51 37	<i>51</i> 37	170 120	760 120
	0000 101	I DI	L	BA = 20.00	0	T/A = 14.324	214	16		,919	.505	9.57	6.43	6	6	20	20
	0006 BI	I DF	T	1 12.0 4 83 BA = 20.00	G	36 59 T/A = 25.465	1 13	3 36		.919	.505	11.93	6.25	43 [8 18	43 18 18	140 60 60	60 60
	0007 BI	1 DF	L	1 15.0 4 83	G	50 71	113	3 32	2	.919	.505	15.06	9.39	30	30	90	70
				BA = 20.00		T/A = 16.297	214	4 16	1	.919	.505	9.39	6.43	6 36	6 36	20 110	20 90
	0008 BI	I DF	Т	1 I2.0 4 86 BA = 20.00	G	42 69 T/A = 25.465	113	3 40		.919	.505	11.76	6.59	19 79	19 19	60 <i>61</i> )	60 60
	0009 BI	1 DF	L	1 17.0 4 86	G	60 80	11:	3 40		.919	.505	16,77	10.20	43	43	150	150
				BA = 20.00		1/A ™ 12.088	214	1 18		.919	.505	10.20	0.43	° 51	51	170	170
	0010 BI	I I DF	L.	1 15.0 4 86	H	50 77 T/A = 16 207	11	3 32	4	.919 919	.505	14.78 0.07	9.97 7 3 5	27 7	27 7	90 30	70 30
				BA = 20.00		1/A = 10.297	214	- 10		212	,505	9.91	,	34	, 34	120	100
	0011 BI	I I DF	L	I 13.0 4 89 BA = 20.00	0	43 63 T/A = 21.698	11:	3 40		.919	.505	12.39	6.86	22 22	22 22	60 60	60 60
PLOT				BA == 220.00		T/A = 208.383								5,980	5,980	19,428	18,649
0306	0001 B	I I DF Count	L	7 14.5 4 87 BA = 140.00		56 82 17A = 122.681	1 x:	x 31						37 37	37 37	126 126	125 125
	0002 B	1 1 DF Count	Т	3 12.3 4 87 BA = 60.00		5 48 78 T/A = 72.433	ĺχ	x 31						25 25	25 25	86 86	86 86
PLOT				BA = 200.00		T/A = 195.114								6,290	6,290	21,765	21,595

TC	TREESEGR
----	----------

TWP RGE

Tree

09W

11S

#### TREE SEGMENT VOLUMES Page Project: ELKTHIN Date TRACT TYPE SC ACRES PLOTS TREES CRUISED DATE 23 ALL THIN 156.00 49 173 9/1/2018 С T Bole Tot. S Dia Dia Gross Net

10

1

Gross

10/6/2023

CuFt BdFt

W

Net

Plot	No. PF A Spc S		T DBH FF FF	D	Hgt Hg I	PRDVT	SG	Len	FIFI	Bark	٨٥	Butt	Тор	CuFt	CuFi	BdFt	BdFt
0307	0001 B11 DF L Count		6 14.5 4 87 BA = 120.00	G	56 82 T/A = 105.155	5	1 xx	31						37 37	37 37	126 126	125 125
	0002 B11 RA L		l 16.0 4 87 BA = 20.00	G	42 53 T/A = 14.324		1 1K	40		.953	.545	15.94	7.07	32 32	32 <i>32</i>	70 70	70 70
PLOT			BA = 140.00		T/A = 119.479									4,323	4,323	14,298	14,173
0308	0001 B11 DF L Count		7 14.5 4 87 BA = 140.00	G	56 82 T/A ∞ 122.681	l	I xx	31						37 37	37 37	126 126	125 125
	0002 B11 DF T Count		3 12.3 4 87 BA = 60.00	G	48 78 T/A = 72.433		1 xx	31						25 25	25 25	86 86	86 86
PLOT			BA = 200.00		T/A = 195.114									6,290	6,290	21,765	21,595
0309	0001 B11 DF L		t 13.0 4 92 BA = 20.00	G	58 87 T/A = 21.698		1 13 214	40 16		.919 .919	.505 .505	12.28 8.67	8.67 6.43	26 5	26 5	90 20	90 20
	0002 BII DF T		1 13.0 4 89	G	47 70		1 13	30	I	.919	.505	12.45	8.95	<i>31</i> 20	<i>31</i> 20	110 60	110 50
			BA = 20.00		T/A = 21.698		214	16	I	.919	.505	8.95	6.24	5	5	20	20
	0003 BIIDF T		l 9.5 4 86 BA = 20.00	G	27 54 T/A = 40.631		i 14	26		.919	.505	9.23	6.43	25 10 10	25 10 10	30 30 30	70 30 30
	0004 B11 DF L		1 13.0 4 89	G	48 72		113	32		.919	.505	12.47	8.76	21	21	70	70
ſ			BA = 20.00		T/A ≈ 21.698		214	16		.919	.505	8.76	6.06	5	5	20	20
	0005 B11 DF L		1 11.0 4 89	G	35 58		113	34		.919	.505	10.48	6.43	26 15	26 15	90 50	90 50
			BA = 20.00		T/A = 30.305			•			1000	10.10	0.15	15	15	50	50
	0006 BIIDF L		1 12.0 4 89 BA = 20.00	1	21 34 T/A = 25.465		] ] 4	20		.919	.505	11.43	8.27	12 12	12 <i>12</i>	40 <i>40</i>	40 <i>40</i>
	0007 B11 DF L		13.0 4 89	G	50 75		1 13	32		.919	.505	12.50	8.88	21	21	70	70
			BA = 20.00		T/A = 21.698		214	16		.919	.505	8,88	6.43	5	5	20	20
	0008 BIIDF L		1 12.0 4 89	G	48 78		113	32		.919	.505	11.55	8.27	20 19	∠o 19	90 70	90 70
			BA = 20.00		T/A = 25.465		214	16		.919	.505	8.27	6.14	5	5	20	20
PL.OT			BA = 160.00		T/A = 208.657									24 4,121	24 4,121	90 14,073	90 13,856
0310	0001 B1 1 DF L Count	•	5 14.5 4 87 BA = 120.00	G	56 82 T/A = 105.155		1 xx	31						37 37	37 <i>37</i>	126 126	125 125
	0002 BIIDF T	1	2 12.3 4 87	G	48 78		1 xx	31						25	25	86	86
DI OT	Count		DA ~ 40.00		17A - 48.289									25	25	80	86
PLOI			BA = 160.00		$T/\Lambda = 153.444$									5,052	5,052	17,465	17,324
0311	0001 BI 1 DF L Count		$14.5  ext{ 4 87}$ BA = 20.00	G	56 82 T/A = 17.526		1 xx	31						37 <i>37</i>	37 <i>37</i>	126 126	125 125
	0002 B1 I DF T	l	15.0 4 88 BA = 20.00	G	65 92 T/A = 16 297		113	40 24		.919 919	.505	14.65	9,78 6.26	34 9	34	120	120
											1000	200	0.20	43	43	150	150
	0003 B11 DF L Count	1	I4.5 4 87 BA = 20.00	G	56 82 T/A = 17.526		l xx	31						37 37	37 37	126 126	125 125
	0004 BI 1 DF L Count	1	14.5 4 87 BA = 20.00	G	56 82 T/A = 17,526		1 xx	31						37 ∄7	37 37	126 126	125 125
	0005 D11 DF		110 1 00	c	E) 01			22		010		10.77					
	UUUD BIIDF T	1	11.0 + 4 + 89 BA = 20.00	G	51 94 T/A = 30.305		113 214	32 16		.919 .919	.505 .505	10.67 7.91	7,91 6.53	15 5	15 5	60 20	60 20
													-	20	20	80	80

TC TRE	BESEGR		TREE Proj	SEGMENT VOL ect: ELKTH	UMES IIN	Page Date	11 10/6/2023
TWP 11S	RGE SC 09W 23	TRACT ALL	TYPE THIN	ACRES 156.00	PLOTS TREES 49 173	CRUISED DATE 9/1/2018	CuFt BdFt 1 W
Tr Plot N	ee Ko.PFA SpcS	C T T DBH FF FF E	Bole Tot. Hgt Hg PRDVT	S SG Len FIFI	Dia Dia Bark Ao Butt Toj	Gross Net CuFt CuFt	Gross Net BdFt BdFt
0311	0006 B11 DF I Count	, [ 14.5 4 87 ( BA = 20.00	56 82 T/A = 17.526	1xx 31		37 37 37 37 37 37	126 125 126 125
	0007 BH DF I Count	L 1 14.5 4 87 C BA = 20.00	G 56 82 T/A = 17.526	Lxx 31		37 37 37 37	126 125 126 125
	0008 BII DF I Count	_ 1 14.5 4 87 C BA = 20.00	G 56 82 T/A = 17.526	1 xx 31		37 37 37 37	126 125 126 125
1	0009 B11 DF	1 13.0 4 89 0 BA = 20.00	60  93 T/A = 21,698	113 40 214 18	.919 .505 12.61 8 .919 .505 8.60 6	60 26 26 43 6 6	90 90 20 20
	0010 B11 DF Count	Г I I2.3 4 87 ( ВА = 20.00	3   48   78 T/A = 24.144	i xx 31		32 32 25 25 25 25	110 110 86 86 86 86
PLOT	Count	BA = 200.00	$T/\Lambda = 197.600$			6,459 6,459	22,636 22,503
0312	0001 BII DF	F 1 12.0 4 89 0 BA = 20.00	G 58 97 T/A = 25.465	1 13 40 2 14 16	.919 .505 11.65 8 .919 .505 8.05 6	.05 23 23 .43 5 5	90 90 20 20
	0002 BI 1 DF Count	L 1 14.5 4 87 6 BA = 20.00	G 56 82 T/A = 17.526	lxx 31		28 28 37 37 37 37	110         110           126         125           126         125
	0003 B1 I DF Count	L   14.5 4 87 0 BA = 20.00	G 56 82 T/A ≈ 17.526	1 xx 31		37 37 37 37	126 125 126 125
	0004 BII DF Count	L 1 14.5 4 87 6 BA = 20.00	G 56 82 T/A = 17.526	1 xx 31		37 37 37 37	126 125 126 125
	0005 B11 DF	T 1 11.0 4 89 BA = 20.00	G 45 81 T/A = 30.305	113 40	.919 .505 10.61 6	.87 17 17 17 17	60 60 60 60
	0006 B11 DF Count	L 1 14.5 4 87 BA = 20.00	G 56 82 T/A = 17.526	1xx 31		37 37 37 37	126 125 126 125
	0007 BLI DF Count	L [ 14.5 4 87 BA = 20.00	G 56 82 T/A = 17.526	1 xx 31		37 37 37 37	126 125 126 125
	0008 B11 DF	T 1 13.0 4 89 BA ≈ 20.00	G 60 93 T/A = 21.698	113 40 214 18	.919 .505 12.61 8 .919 .505 8.60 6	3.60 26 26 5.43 6 6	5 90 90 5 20 20
	0009 B11 DF Count	L 1 14.5 4 87 BA = 20.00	G 56 82 T/A == 17.526	1 xx 31		32 32 37 37 37 37	2 110 110 2 126 125 7 126 125
	0010 B1 1 DF Count	L 1 14.5 4 87 BA = 20.00	G 56 82 T/A = 17.526	1 xx 31		37 37 37 37	7 126 125 7 126 125
PLOT		BA = 200.00	T/A = 200.149			6,431 6,431	22,518 22,372
0313	0001 B11 DF Count	L 1 14.5 4 87 BA = 20.00	G 56 82 T/A = 17.526	Lxx 31		37 31 37 3)	7 126 125 7 <i>126 125</i>
	0002 B1 1 DF Count	L I 14.5 4 87 BA = 20.00	G 56 82 T/A = 17.526	1 xx 31		37 31 37 31	7 126 125 7 <i>126 125</i>
	0003 B1 I DF Count	L 1 14.5 4 87 BA = 20.00	G 56 82 T/A = 17.526	1 xx 31		37 3' 37 3.	7 126 125 7 <i>126 125</i>
	0004 B11 DF	T I I3.0 4 89 BA = 20.00	G 64 100 T/A ≈ 21.698	1 13 40 214 22	.919 .505 12.64 .919 .505 8.80	8.80 26 20 5.43 7	5 90 90 7 30 30
	0005 BII DF	T 1 12.0 4 89 BA = 20.00	G 56 93 T/A = 25.465	113 22 210 8	.919 .505 11.64 .919 .505 9.36	33 3. 9.36 14 14 8.77	3 <i>120 120</i> 4 50 50
	0006 B1 1 DF	I. I. 145 4 87	G 56 82	3 [4 24 15	1 .919 .505 8.77	6,43 8 2 22 2 37 3	8 30 30 2 80 80 7 126 125

#### TREE SEGMENT VOLUMES Project: ELKTHIN

Page 12 Date 10/6/2023

TWP 11S	RGE 09W	SC 23		te Ai	ract LL		TYPE THIN	ار	ACRES	0	PLOTS 4	5 9	TRI	EES 173	CRUISEI 9/1/201	D DATE 8	CuFt i	BdFt W
T Plot i	ree No.PF A	Spe	s	C T	DBH FF FF	T D	Bole Tot. Hgt Hg PRDVI	S SG	Len	FIFI	Bark	Ao	Día Butt	Dia Top	Gross CuF1	Net CuFt	Gross BdFt	Net BdFt
		Count			BA = 20.00		T/A = 17.526								37	37	126	125
0313	0007 B1	1 DF Count	Ł	1	14.5 4 87 BA = 20.00	G	56 82 T/A = 17.526	1 xx	31						37 37	37 37	126 126	125 125
	0008 B1	I DF	Т	i	13.0 4 89 BA = 20.00	G	64 100 T/A = 21.698	1 13 214	40 20		.919 .919	.505 .505	12.64 8.80	8.80 6.67	26 7	26 7	90 20	90 20
	0009 BI	1 DF Count	L	t	14.5 4 87 BA = 20.00	G	56 82 T/A = 17.526	l xx	31						33 37 37	33 37 37	110 126 126	110 125 125
	0010 B1	1 DF Count	L	1	14.5 4 87 BA = 20.00	G	56 82 T/A = 17.526	l xx	31						37 37	37 37	126 126	125 125
PLOT				F	3A ≕ 200.00		T/A = 191.542								6,501	6,501	22,539	22,393
0314	0001 BI	l DF Count	L	I	14.5 4 87 BA = 20.00	G	56 82 T/A = 17.526	l xx	31						37 37	37 37	126 126	125 125
	0002 B1	1 DF Count	L	1	14.5 4 87 BA = 20.00	G	56 82 T/A = 17.526	l xx	31						37 37	37 37	126 <i>126</i>	125 125
	0003 B1	I DF	Т	1	16.0 4 89 BA = 20.00	G	66 89 T/A == 14.324	1 13 213	32 32		.919 .919	.505 .505	15.49 11.40	11.40 6.43	34 16	34 16	140 50	140 50
	0004 BI	l DF	Т	1	14.0 4 89 BA = 20.00	H	40 61 T/A ≈ 18.709	113	39		.919	.505	13,34	7.35	30 26 26	30 26 26	70 70	70 70 70
	0005 BI	l DF Count	L	1	14.5 4 87 BA = 20.00	G	56 82 T/A = 17.526	l xx	31						37 37	37 37	126 <i>126</i>	125 125
	0006 B1	1 DF Count	L	1	14.5 4 87 BA = 20.00	G	56 82 T/A = 17.526	1 xx	31						37 37	37 37	126 126	125 125
	0007 BI	l DF Count	L	1	14.5 4 87 BA = 20.00	G	56 82 T/A = 17.526	1 xx	31						37 37	37 37	126 126	125 125
	0008 BI	1 DF Count	L	1	14.5 4 87 BA = 20.00	G	56 82 T/A = 17.526	1 xx	31						37 37	37 37	126 <i>126</i>	125 125
	0009 B1	I DF Count	L	1	14.5 4 87 BA = 20.00	G	56 82 T/A = 17.526	1 xx	31						37 37	37 37	126 126	125 125
PLOT			·	B	BA = 180.00		T/A = 155.714								5,711	5,711	19,543	19,397
0315	0001 BI	I DF	Т	1	14.0 4 89 BA = 20.00	G	73 109 T/A = 18.709	l 13 213	40 32		.919 ,919	.505 .505	13.64 9.69	9.69 6.30	31 12	31 12	120 50	120 50
	0002 B1	l DF Count	L	l	14.5 4 87 BA = 20.00	G	56 82 T/A = 17.526	1 xx	31						43 37 37	43 37 37	170 126 126	170 125 125
	0003 BI	1 DF Count	L	1	14.5 4 87 BA = 20.00	G	56 82 T/A = 17.526	l xx	31						37 37	37 37	126 126	125 125
	0004 BI	I DF Count	L	1	14,5 4 87 BA ≈ 20.00	G	56 82 T/A = 17.526	l xx	31						37 37	37 37	126 126	125 125
	0005 B1	I DF	Т	1	12.0 4 89 BA = 20.00	G	56 93 T/A = 25.465	1 13 214	40 14		.919 .919	.505 .505	11.64 7.95	7.95 6.43	21 4	21 4	70 20	70 20
	0006 B1	I DF Count	L	1	14.5 4 87 BA = 20.00	G	56 82 T/A = 17.526	I xx	31						25 37 37	25 37 37	90 126 126	90 125 125
	0007 BI 1	l DF Count	L	l	14.5 4 87 BA ≈ 20.00	G	56 82 T/A = 17.526	1 xx	31						37 37	37 37	126 126	125 125

TC TR	EESEGR									TREE : Proj	SEGN ect:	4ENT Ei	VOLU LKTH	JMES IN				P: D	age ate	13 10/6/2	023
TWP 11S	RGE 09W	SC 23	Т А	RACT LL				TY TH	'PE IIN		A	ACRES 156.0	0	PLOTS 4	9	TRF	EES 173	CRUISEI 9/1/201	D DATE 8	CuFt 1	BdFt W
T: Plot J	ree No.PF A	Spc S	С Т	DBH	FF F	F	Г I D	Bole T Hgt H	'ot. Ig	PRDVT	S SG	Len	FIFI	Bark	Ae	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdF1
0315	0008 B1	1 DF T	1	11.0	4 {	39	 G	57	107		214	14		.919	.505	7.59	6.51	4	4	20	20
				BA = 2	0.00			T/A = 3	30.30	5	113	40		.919	.505	10.72	7.59	19 23	19 23	70 90	70 90
	0009 BI	1 DF T Count	j	12.3 BA = 2	4 8 0.00	37 -	G.	48 T/A ≈ 2	78 24.14	4	l xx	31						25 25	25 25	86 86	86 86
	0010 BI	I DF L Count	1	14.5 BA = 2	4 8 20.00	37	G	56 T/A = 1	82 17.52	6	l xx	31						37 <i>37</i>	37 37	126 126	125 125
PLOT				BA = 20	0.00		1	[/A = 2	203.7	78								6,596	6,596	23,580	23,447
TYPE				BA = 18	8.57		-	T/A = 1	84.8	55								5,906	5,906	20,418	20,262





Created By: Jon Long jon.d.long@oregon.gov Date: 09/27/2018





Created By: Jon Long jon.d.long@oregon.gov Date: 09/27/2018





Revised August, 2002

#### CRUISE DESIGN WEST OREGON DISTRICT

 Sale Name:
 Salmon Forks Combo
 Area
 1

 Harvest Type:
 MC
 Net BF
 Net BF

 Approx. Cruise Acres:
 Estimated CV% _40
 /Acre
 SE% Objective _ 13
 /Acre

Planned Sale Volume: 1.38 MMBF Estimated Sale Area Value/Acre: \$ 8050

A. <u>Cruise Goals</u>: (a) Grade minimum _____40 ____ conifer and _____ hardwood trees:
 (b) Sample ___17 ___ cruise plots ( 4 grade: 13 count); (c) Other goals _X ____ Determine log grades for sale value; ____ Determine take and leave tree species and sizes.

(Special cruising directions – leave trees etc.) <u>Take plots as shown on map. Do not take plots in buffers.</u>

DO NOT RECORD 12', 22' and 32' (for Hardwoods).

DO NOT RECORD 22' LENGTHS.

#### B. <u>Cruise Design</u>:

- 1. Plot Cruises: BAF <u>20</u> Full point
  - Cruise Line Direction(s)2.8Cruise Line Spacingn/a(chains) (feet)Cruise Plot Spacing2Grade/Count Ratio1:3

#### C. <u>Tree Measurements</u>:

- Diameter: Minimum DBH to cruise is <u>8</u>" for conifers and <u>10</u>" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- **2.** Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- **3.** Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>5</u>", <u>7</u>" for <u>hardwoods</u> or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4.** Form Factors: (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for

hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes: A. <u>Species</u>: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.)
  - B. <u>Sort</u>: Use code "1" (Domestic).
  - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull ; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- 7. Deductions: Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: <u>Plot Type Cruises</u>: Mark cruise line beginning points with <u>red</u> flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie <u>red</u> flagging above eye level near plot center and another <u>red</u> flagging around a sturdy wooden stake marking plot center. On <u>red</u> flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in <u>yellow</u> paint. Mark leave trees with an L for leave.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back), Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Red Flagging, Yellow Paint.
- **10. Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by:	Steven Irving	
Approved by:		
Date:		

hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes: A. <u>Species</u>: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.)
  - B. <u>Sort</u>: Use code "1" (Domestic).
  - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull ; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- 7. Deductions: Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: <u>Plot Type Cruises</u>: Mark cruise line beginning points with <u>red</u> flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie <u>red</u> flagging above eye level near plot center and another <u>red</u> flagging around a sturdy wooden stake marking plot center. On <u>red</u> flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in <u>yellow</u> paint. Mark leave trees with an L for leave.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back), Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Red Flagging, Yellow Paint.
- **10. Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by: _	Steven Irving	
Approved by:		
Date:		

Revised August, 2002

#### CRUISE DESIGN WEST OREGON DISTRICT

 Harvest Type:
 PC (Pick one)
 Net BF
 Net BF

 Approx. Cruise Acres:
 26
 Estimated CV%
 40
 /Acre
 SE% Objective
 13
 /Acre

Planned Sale Volume: 0.182 MMBF Estimated Sale Area Value/Acre: <u>\$ 2450</u>

A. <u>Cruise Goals</u>: (a) Grade minimum <u>29</u> conifer and <u>hardwood trees</u>:
 (b) Sample <u>10</u> cruise plots ( 3 grade: 7 count); (c) Other goals <u>X</u> Determine log grades for sale value; <u>Determine take and leave tree species and sizes</u>.

(Special cruising directions – leave trees etc.) <u>Take plots as shown on map. Do not take plots in buffers.</u>

DO NOT RECORD 12', 22' and 32' (for Hardwoods).

DO NOT RECORD 22' LENGTHS.

#### B. <u>Cruise Design</u>:

- 1. Plot Cruises: BAF 20 Full point
  - Cruise Line Direction(s) <u>61</u> Cruise Line Spacing <u>n/a</u> (chains) (feet) Cruise Plot Spacing <u>2</u> (chains) (feet) Grade/Count Ratio <u>1:3</u>

#### C. <u>Tree Measurements</u>:

- Diameter: Minimum DBH to cruise is <u>8</u>" for conifers and <u>10</u>" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- **2.** Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- **3.** Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>5</u>", <u>7</u>" for <u>hardwoods</u> or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4.** Form Factors: (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for



- Ownership
- Area Retention Area
- Stream Buffer
- Slope Buffer
- Type F Stream
- ··· Type N Stream
- = Surfaced Road
- = = Unsurfaced Road
- □ : : Right-of-Way
- New Road Construction
- —— Cable Corridors
- O Landing

#### Land Survey Monument

0

OF TIMBER SALE CONTRACT NO. WO-341-2024-W01090-01 SALMON FORKS COMBO PORTIONS OF SECTION 23 AND 27 TOWNSHIP 11S, RANGE 9W, W.M. LINCOLN COUNTY, OREGON

LOGGING PLAN

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Variations may exist between and among data sets in use by the Department of Forestry. This map was developed using the Statewide layer on 8/21/2023. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

# AREA ACRES ACRES 1 (MC) 36 26 2 (PC) 2 23 3 (PC) 0 42 TOTAL 38 91

TRACTOR CABLE

#### 1:6,000





#### Legend Timber Sale Boundary LOGGING PLAN Ownership OF TIMBER SALE CONTRACT NO. WO-341-2024-W01090-01 TRACTOR CABLE Stream Buffer SALMON FORKS COMBO AREA ACRES ACRES PORTIONS OF SECTION 23 AND 27 Marbled Murrelet Management Area TOWNSHIP 11S, RANGE 9W, W.M. Occupied Habitat 1 (MC) 36 26 LINCOLN COUNTY, OREGON 2 (PC) 23 2 Non-Habitat Buffer 3 (PC) 0 42 This product is for informational use and may not have been prepared for Type F Stream or be suitable for legal, engineering or survey purposes. Variations may 91 Type N Stream TOTAL 38 exist between and among data sets in use by the Department of Forestry. This map was developed using the Statewide layer on 8/21/2023. Users Surfaced Road of this information should review or consult the primary data and Cable Corridors information sources to ascertain the usability of this information. Ν Ο Landing 1:6,000 $\bigotimes$ Land Survey Monument 1,000 0 500 2,000 Feet



#### Legend

- ••• Timber Sale Boundary
- Ownership
- Stream Buffer
- Thinning Not Required
- Type F Stream
- ··· Type N Stream
- === Surfaced Road
- Cable Corridors
- O Landing
- Land Survey Monument

## LOGGING PLAN

#### OF TIMBER SALE CONTRACT NO. WO-341-2024-W01090-01 SALMON FORKS COMBO PORTIONS OF SECTION 23 AND 27 TOWNSHIP 11S, RANGE 9W, W.M. LINCOLN COUNTY, OREGON

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Variations may exist between and among data sets in use by the Department of Forestry. This map was developed using the Statewide layer on 8/21/2023. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

#### 1:6,000



TRACTOR CABLE

ACRES

26

23

42

91

AREA ACRES

36

2

0

38

Ν

1 (MC)

2 (PC)

3 (PC)

TOTAL