

District: West Oregon

Date: June 06, 2023

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$1,133,241.83	\$9,482.36	\$1,142,724.19
		Project Work:	(\$54,700.00)
		Advertised Value:	\$1,088,024.19

District: West Oregon

Date: June 06, 2023

Timber Description

Location: Portions of Sections 34 & 35, T11S, R9W, W.M., and Portions of Sections 1 & 2, T12S, R9W, W.M., Lincoln County, Oregon

Stand Stocking: 40%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	24	0	98
Alder (Red)	23	0	97

Volume by Grade	2S	3S & 4S 6"- 11"	3S 12"+	SM & Better	Camprun	Total
Douglas - Fir	1,900	316	13	8	0	2,237
Alder (Red)	0	0	0	0	74	74
Total	1,900	316	13	8	74	2,311

Comments: Pond Values Used: Local Pond Values, April, 2023

Other Conifers Stumpage Price = Pond Value minus Logging Cost: \$242.43/MBF = \$550/MBF - \$307.57/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$742.43/MBF = \$1200/MBF - (\$307.57/MBF + \$150/MBF(Extra Haul Cost))

Bigleaf maple and Other Hardwoods Stumpage Price = Hardwood Pulp price using a conversion factor of 10 ton/MBF: = \$60.00/MBF

PULP (Conifer and Hardwood Price) = \$6/TON

Other Costs (with Profit & Risk to be added): Intermediate Support/Tail Trees: 4 supports @ \$100/support = \$400 Artificial anchor (dead man): 2 anchors @ \$500/anchor = \$1,000 TOTAL Other Costs (with Profit & Risk to be added) = \$1,400

Other Costs (No Profit & Risk added): Equipment Cleaning (Invasive Species): \$2,000 Water Bar and Block Dirt Roads: 24 Stations @ \$15.96/Station = \$383 Brush Slashing: 120hrs @ \$55/hr = \$6,600 Landing Slash Piling: 10 Landings @ \$100/Landing = \$1,000 TOTAL Other Costs (No Profit & Risk added) = \$9,983

ROAD MAINTENANCE Move-in: (Grader & Vibratory Roller) \$875 x 2 = \$1,750 Final Road Maintenance: \$19,409.93 TOTAL Road Maintenance: \$21,159.93/2,311MBF = \$9.16/MBF

SLASH DISPOSAL Project Work: 13 hrs @ \$170/hr = \$2,210 Total Slash Disposal = \$2,210

District: West Oregon

Date: June 06, 2023

		Logging Conditions		
Combination#: 1	Douglas - Fir Alder (Red)	62.29% 68.81%		
Logging System: yarding distance:	Cable: Large Tower >=70 Short (400 ft)	Process: Manual Falling/Delimbing downhill yarding: No		
tree size:	Mature / Regen Cut (900 Bft/tre			
loads / day:	11	bd. ft / load: 4800		
cost / mbf:	\$162.49			
machines:	Log Loader (A) Tower Yarder (Large)			
Combination#: 2	Douglas - Fir Alder (Red)	21.86% 13.32%		
Logging System:	Cable: Large Tower >=70	Process: Manual Falling/Delimbing		
yarding distance: tree size:	Medium (800 ft) downhill yarding: No Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF			
loads / day:	8	bd. ft / load: 4800		
cost / mbf:	\$223.42			
machines:	Log Loader (A) Tower Yarder (Large)			
Combination#: 3	Douglas - Fir Alder (Red)	15.86% 17.86%		
Logging System:	Track Skidder	Process: Manual Falling/Delimbing		
yarding distance: tree size:	Short (400 ft) Mature / Regen Cut (900 Bft/tre	downhill yarding: No e), 3-5 logs/MBF		
loads / day:	16	bd. ft / load: 4800		
cost / mbf:	\$130.21			
machines:	Log Loader (B) Track Skidder			

District: West Oregon

Date: June 06, 2023

Logging Costs		
Operating Seasons: 2.00 Profit Risk: 10%		
Project Costs: \$54,700.00	Other Costs (P/R): \$1,400.00	
Slash Disposal: \$2,210.00	Other Costs: \$9,983.00	

Miles of Road		Road Maintenance:	\$9.16
Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	4.8
Alder (Red)	\$0.00	2.0	4.0

District: West Oregon

Date: June 06, 2023

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$170.69	\$9.34	\$3.80	\$88.55	\$0.61	\$27.30	\$0.96	\$2.00	\$4.32	\$307.57
Alder (Red	ł)								
\$164.84	\$9.43	\$3.80	\$160.94	\$0.61	\$33.96	\$0.96	\$2.00	\$4.32	\$380.86

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$814.16	\$506.59	\$0.00
Alder (Red)	\$0.00	\$509.00	\$128.14	\$0.00

District: West Oregon

Date: June 06, 2023

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	2,237	\$506.59	\$1,133,241.83
Alder (Red)	74	\$128.14	\$9,482.36

Gross Timber Sale Value		
Recovery:	\$1,142,724.19	
Prepared By: Zane Sandborg	Phone: 541-929-3266	

SUMMARY OF ALL PROJECT COSTS

Sale Name:	Doe A Deer		Date: Time:	June 2023 10:27
Project #1 - Const	ruction			
Road Segment		Length	Cost	
A to B		7.8 sta	\$15,814	
C to D		1.3 sta	\$951	
E to F		2.3 sta	\$1,621	
G to H		1.8 sta	\$966	
Fuel Cost Increase	(10%)		\$1,935	
	TOTALS	13.2 sta	\$21,287	_
Project #2 - Impro	vements			
Road Segment		<u>Length</u>	<u>Cost</u>	
1 to 2		215.0 sta	\$3,169	
2 to 3		55.4 sta	\$5,905	
4 to 5		13.9 sta	\$744	
6 to 7		6.8 sta	\$431	
8 to A		4.8 sta	\$883	
9 to 10		55.0 sta	\$6,483	
11 to 12		6.0 sta	\$888	
Fuel Cost Increase	(10%)		\$1,850	
	TOTALS	356.9 sta	\$20,353	
Project #3 - Brush	ing	Length	<u>Cost</u>	
Brushing		2.48 mi	\$2,530	
Sod and Brush Rer	noval		\$2,017	
Fuel Cost Increase	(10%)		\$455	
	TOTAL		\$5,002	
Project #4 - Move	<u>in</u>		<u>Cost</u>	
Excavator, C325 or	•		\$1,450	
(extra move-in cost)		\$1,000	
Dozer, D6			\$905	
(extra move-in cost			\$600	
Grader, Cat 14-G o	•		\$875	
(extra move-in cost)		\$171	
Vibratory roller			\$875	
(extra move-in cost)		\$500	
Road Brusher			\$778	
(extra move-in cost)		\$171	
Fuel Cost Increase			\$733	
	TOTAL		\$8,058	
			GRAND TOT	AL

\$54,700

Compiled by: Jeff Kuust

06/23/2023 Date

SALE ROAD	Doe A Deer A to B (Unsurfaced)	Project #	1		LENGTH	cons	t		7.8 sta
CLEARI	NG AND GRUBBING				Rate				
Road Clear Wa	aste Area #1 (100 x 100)	0.72 ac 0.23 ac		@ @	\$1,337.00 \$1,337.00			\$963 \$308	
				то	TAL CLEA	RING	AND C	GRUBBING =	\$1,271
EXCAVA Construc (w/ D6)	ATION ct "pioneer road"	7.8 sta		@	<u>Rate</u> \$36.67	/sta	=	\$286	
Road co	nstruction excavation	27 hrs		@	\$145.00	/hr	=	\$3,915	
• •	Sta. 7+00 to 7+80)	100 CY		@	\$2.36	/CY	=	\$236	
Construc	ing at Pt. B) ct landing (w/ D6) id Sta. 4+80)	2 Ldg		@	\$438.00	/Ldg	=	\$876	
Ènd-hau (expande	l excavation ed 30%)	2500 CY		@	\$3.00	/CY	=	\$7,500	
Shape si (w/ grade		7.8 sta		@	\$20.63	/sta	=	\$161	
Compac	t subgrade tory roller)	7.8 sta		@	\$16.00	/sta	=	\$125	
Create w	/aste area (WA1) t waste area	1 hr 2500 CY		@ @	\$145.00 \$0.45	/hr /CY	= =	\$145 \$1,125	
						ΤΟΤΑ	AL EX	CAVATION =	\$14,369
	L PROJECTS rea #1 seed and mulch	0.23 ac		@	<u>Rate</u> \$756.00	/acre	9 =	\$174	
(nana so				тс	OTAL SPEC	IAL PI	ROJE	CTS COST =	\$174
Compile Date:	d by:	Jeff Kuust Jun 23, 2023				GRAN	ND TO	TAL ====>	\$15,814

SALE ROAD	Doe A Deer C to D (Unsurfaced)	Project #	1		LENGTH	cons	t		1.3 sta
CLEARI Road	NG AND GRUBBING	0.14 ac		@	<u>Rate</u> \$1,337.00			\$187	¢407
EXCAVA Construc		1.3 sta		@	TAL CLEAI <u>Rate</u> \$214.00	_	and GR	\$278	\$187
(Pt. D)	et landing	1 Ldg		@	\$438.00	Ū		\$438	
•	-	1.3 sta 1.3 sta		@ @	\$20.63 \$16.00	/sta /sta	=	\$27 \$21	
(,						TOTA	AL EXCA	VATION =	\$764
Compileo Date:	d by:	Jeff Kuust Jun 23, 2023				GRAN		\L ====>	\$951

SALE ROAD	Doe A Deer E to F (Unsurfaced)	Project #	1		LENGTH	cons	t		2.3
CLEARII Road	NG AND GRUBBING	0.20 ac		@ TO	<u>Rate</u> \$1,337.00 TAL CLEA			\$267 GRUBBING =	\$267
EXCAVA Construc (w/ D6)		2.3 sta		@	<u>Rate</u> \$214.00	/sta	=	\$492	
Construc (Pt. F)	ct landing	1 Ldg		@	\$438.00	/Ldg	=	\$438	
Shape si (w/ grade		2.3 sta		@	\$20.63	/sta	=	\$47	
Compac	t subgrade tory roller)	2.3 sta		@	\$16.00	/sta	=	\$37	
						TOTA	AL EX	CAVATION =	\$1,014
SURFAC Transitio	-	10 CY	<u>Size</u> Jaw-Run	@	<u>Rate</u> \$32.21	/CY	=	\$322	
•	transition rock	0.5 sta		@	\$20.63	/sta	=	\$10	
Compac	t transition rock tory roller)	0.5 sta		@	\$16.00	/sta	=	\$8	
						тот	AL RO	DCK COST =	\$340
Compileo Date:	d by:	Jeff Kuust Jun 23, 2023				GRAN	ND TO	TAL ====>	\$1,621

SALE ROAD	Doe A Deer G to H (Unsurfaced)	Project #	1		LENGTH	const	t		1.8 sta
CLEARI Road	NG AND GRUBBING	0.16 ac		@ TO ⁻	<u>Rate</u> \$1,337.00 TAL CLEA			\$214 UBBING =	\$214
(Pt. H) Shape si (w/ grade Compac	et road et Landing ubgrade er) t subgrade	1.8 sta 1 Ldg 1.8 sta 1.8 sta		@ @ @ @	<u>Rate</u> \$138.00 \$438.00 \$20.63 \$16.00	/sta	=	\$248 \$438 \$37 \$29	•
(w/ vibra	tory roller)					ΤΟΤΑ	L EXCA	VATION =	\$752
Compile Date:	d by:	Jeff Kuust Jun 23, 2023				GRAN	ID TOTA	\L ====>	\$966

SALE ROAD	Doe A Deer 1 to 2 (Surfaced)	Project #	2		LENGTH	impro	ove		215.0 sta
SURFAC		100 CY	<u>Size</u> 1½"-0"	@	<u>Rate</u> \$28.03	/CY	=	\$2,803	
Shape si (w/ grade	urface	10 sta	172 -0	@	\$28.03 \$20.63	/sta	=	\$2,803 \$206	
Compact (w/ vibra	t surface tory roller)	10 sta		@	\$16.00	/sta	=	\$160	
						тот	AL ROC	CK COST =	\$3,169
Compileo Date:	d by:	Jeff Kuust Jun 23, 2023				GRAN		AL ====>	\$3,169

SALE ROAD	Doe A Deer 2 to 3 (Surfaced)	Project #	2		LENGTH	l impr	ove		55.4 sta
IMPROV Re-estal (w/ grade	blish ditch (Sta. 0+00 to 18+55)	18.6 sta		@	<u>Rate</u> \$44.00 T	/sta OTAL	= IMPR	\$818 OVEMENT =	\$818
Turnarou Landing Spot roc Process (w/ gradu Compac	rock (Sta. 18+85) und rock (Sta. 51+20) rock (Sta. 52+50) k surface	10 CY 10 CY 30 CY 80 CY 55.4 sta 55.4 sta	Size 3"-0" 3"-0" Jaw-Run 1½"-0"	@ @ @ @	<u>Rate</u> \$26.68 \$25.66 \$28.03 \$20.63 \$16.00	/CY /CY /CY /sta /sta	= = = =	\$267 \$267 \$257 \$2,242 \$1,143 \$886	
SPECIA	L PROJECTS ut culvert (Sta. 13+35)	1 culvert		@ TO	<u>Rate</u> \$25 TAL SPEC	ea	=	CCK COST = \$25 CTS COST =	\$5,062 \$25
Compile Date:	d by:	Jeff Kuust Jun 23, 2023				GRA)TAL ====>	\$5,905

SALE ROAD	Doe A Deer 4 to 5 (Surfaced)	Project #	2		LENGTH	impr	ove		13.9 sta
IMPROV Re-open	landing	0.5 hrs		@	<u>Rate</u> \$114.00	/hr	=	\$57	
(w/ grade Re-estat (w/ grade	olish ditch	13.9 sta		@	\$44.00 -	/sta	=	\$612	* ***
SPECIA	L PROJECTS				ا Rate	OTAL	IMPRC	OVEMENT =	\$669
	ut culverts	3 culverts		@	\$25	ea	=	\$75	
				TO	TAL SPEC	IAL P	ROJEC	TS COST =	\$75
Compile Date:	d by:	Jeff Kuust Jun 23, 2023				GRA		「AL ====>	\$744

SALE ROAD	Doe A Deer 6 to 7 (Surfaced)	Project #	2		LENGTH	impr	ove		6.8 sta
IMPROV	/EMENT				Rate				
Re-open (w/ grade	-	0.5 hrs		@	\$114.00	/hr	=	\$57	
Re-estat	olish ditch	6.8 sta		@	\$44.00	/sta	=	\$299	
(w/ grade	er)				Т	OTAL	. IMPRO	/EMENT =	\$356
SPECIA	L PROJECTS				Rate				
Clean ou	ut culverts	3 culverts		@	\$25	ea	=	\$75	
				то	TAL SPEC	IAL P	ROJECT	S COST =	\$75
Compile	d by:	Jeff Kuust							
Date:		Jun 23, 2023				GRA	ND TOT	\L ====>	\$431

SALE ROAD	Doe A Deer 8 to A (Unsurfaced)	Project #	2		LENGTH	impro	ove		4.8 sta
IMPROV	/EMENT				<u>Rate</u>				
Re-open	road	4.8 sta		@	\$36.67	/sta	=	\$176	
(w/ D6) Shape s (w/ grade	•	4.8 sta		@	\$20.63	/sta	=	\$99	
Compac	t subgrade	4.8 sta		@	\$16.00	/sta	=	\$77	
(w/ vibra	tory roller)				т	OTAL	IMPRC	VEMENT =	\$352
SURFAC	CING		<u>Size</u>		Rate				
Transitio (Sta. 0+(n rock)0 to 0+50)	20 CY	Jaw-Run	@	\$25.66	/CY	=	\$513	
Process (w/ grade	surface	0.5 sta		@	\$20.63	/sta	=	\$10	
Compac	t surface	0.5 sta		@	\$16.00	/sta	=	\$8	
(w/ vidra	tory roller)					тот	AL RO	CK COST =	\$531
Compile Date:	d by:	Jeff Kuust Jun 23, 2023				GRA	ND TOT	AL ====>	\$883

SALE ROAD	Doe A Deer 9 to 10 (Surfaced)	Project #	2		LENGTH	l impr	ove		55.0 sta
	/EMENT blish ditch (w/ grader) 00 to 38+50)	38.5 sta		@	<u>Rate</u> \$44.00 T	/sta OTAL	= IMPRC	\$1,694 DVEMENT =	\$1,694
SURFAC Spot roc (Sta_0+(10 CY	<u>Size</u> 1½"-0"	@	<u>Rate</u> \$34.58	/CY	=	\$346	
Spot roc Process (w/ grade	k surface	80 CY 45.3 sta	3"-0"	@ @	\$33.23 \$20.63	/CY /sta	= =	\$2,658 \$935	
Compac	t surface tory roller)	45.3 sta		@	\$16.00	/sta TOT	= AL RO	\$725 CK COST =	\$4,664
							/12/10		ф 1,00 I
Clean ou	L PROJECTS ut culverts nd outlets)	5 culverts		@	<u>Rate</u> \$25	ea	=	\$125	
,	,			TO	TAL SPEC	IAL P	ROJEC	TS COST =	\$125
Compile Date:	d by:	Jeff Kuust Jun 23, 2023				GRA		ΓAL ====>	\$6,483

SALE ROAD	Doe A Deer 11 to 12 (Unsurfaced)	Project #	2		LENGTH	impro	ove		6.0 sta
-	road landing ubgrade	6.0 sta 0.5 hour 6.0 sta 6.0 sta		@ @ @	Rate \$36.67 \$128.00 \$20.63 \$16.00	/sta /hr /sta /sta	= = =	\$220 \$64 \$124 \$96	
,	<i>,</i>				Т	OTAL	IMPRO\	/EMENT =	\$504
•	rock surface	10 CY 1.0 sta 1.0 sta	<u>Size</u> Jaw-Run	@ @ @	<u>Rate</u> \$32.21 \$20.63 \$16.00	/CY /sta /sta	= = =	\$322 \$21 \$16	
						тот	AL ROC	K COST =	\$359
	L PROJECTS ut culvert (Sta. 0+85)	1 culvert		@	<u>Rate</u> \$25	ea	=	\$25	
				то	TAL SPEC	IAL PI	ROJECT	S COST =	\$25

 Compiled by:
 Jeff Kuust

 Date:
 Jun 23, 2023
 GRAND TOTAL ====> \$888

SUMMARY OF BRUSHING COST

SALE ROAD	Doe A Deer All	(Surfaced/unsurfaced)	Project #	3		LENGTH maintain 2	2.48 Miles
LIGHT E Pt. 2 to F	BRUSHING Pt. 3	, , , , , , , , , , , , , , , , , , ,	1.05 mi		@	<u>Rate</u> \$800.00 /mi = \$840	
		TOTAL LENGTH =	1.05 mi			TOTAL LIGHT BRUSHING COST = \$	840
MEDIUN Pt. 9 to 1	I BRUSHING 10		1.04 mi		@	<u>Rate</u> \$1,100.00 /mi = \$1,144	
		TOTAL LENGTH =	1.04 mi			TOTAL HEAVY BRUSHING COST = \$1,	144
HEAVY Pt. 4 to F Pt. 6 to F			0.26 mi 0.13 mi		@ @	<u>Rate</u> \$1,400.00 /mi = \$364 \$1,400.00 /mi = \$182	
		TOTAL LENGTH =	0.39 mi			TOTAL HEAVY BRUSHING COST = \$	546
						BRUSHING GRAND TOTAL ====	==> \$2,530
	ID DEBRIS REM hing segments	IOVAL	2.48 mi		@	<u>Rate</u> \$813.12 /mi = \$2,017	
		TOTAL LENGTH =	2.48 mi			TOTAL SOD AND DEBRIS REMOVAL ====	==> \$2,017
Compile	d by:		Jeff Kuust				

. Date: Jeff Kuust Jun 23, 2023

SUMMARY OF MAINTENANCE COST

SALE	Doe A Deer		'Final log haul Maintenance Cost Estimat (Costed in appraisal, not in project costs)		
Move-in:	Grader		\$	875	
	Vibratory	Roller	\$	875	
Road Segment	Length	Cost/Sta		Cost	Mileage
1 to 2	215.0	\$36.63		\$7,875.45	4.07
2 to 3	55.4	\$36.63		\$2,029.30	1.05
9 to 10	55.0	\$20.63		\$1,134.65	1.04
Total	325.4			\$11,039.40	6.16

Maintenance Rock:

1½"-0"	Volume Cost/CY 230 \$28.03	Cost \$6,446.90
Fuel Cost Increase Grand Total	230	\$1,923.63 \$21,159.93
TS Volume	2,311 MBF	
Cost / MBF =		\$9.16

Rock Haul Cost Computation

ROAD NAME: E ROCK SOURCE	ooe A Deer - Unit 3 wurnt Woods-Harlan Rd Rickard wy 20, Burnt Woods-H		DATE: Jun 23, 2 CLASS: Medium 10 CY truck	023
TIME Computat	tion.			
Road speed t:				
1. 1.	55 MPH	MRT	0.0	minutes
2.	50 MPH 24.6	MRT		minutes
3.	45 MPH	MRT		minutes
4.	40 MPH	MRT	0.0	minutes
5.	35 MPH	MRT	0.0	minutes
6.	30 MPH	MRT	0.0	minutes
7.	25 MPH 15.6	MRT	37.4	minutes
8.	20 MPH	MRT	0.0	minutes
9.	15 MPH 10.4	MRT	41.6	minutes
10.	10 MPH	MRT	0.0	minutes
11.	05 MPH	MRT	0.0	minutes
	ad time per RT ling cycle time for t iciency)	this setting	0.50	
Operator eff	iciency correction	0.85	128 24	minutes
	cy correction	0.90		minutes
	Sy correction	0.00	112.17	MIII 4000
Truck capaci	ty (CY)	10.00	14.25	min/CY
-	, delay time per CY		0.25	min/CY
=	s) per cubic yard		14.50	min/CY
	computation ruck and operator per ruck and operator per		\$90.00 \$1.50	/hr. /min
Cost per CY			\$21.75	/CY
Spread and co	ompact Water truc	k, Grader & Roll	er \$1.50	/CY
		Cost Delivered	Cost Deliv	rered
	lost/Yd (Pit)	w/o processing	with proce	ssing
1½" - 0"	\$ 12.83	\$34.58	\$36.08	
3" - 0"	\$ 11.48	\$33.23	\$34.73	
	A 10 10	A A A A A	AAA 71	

3" - 0"\$ 11.48\$33.23Jaw-Run\$ 10.46\$32.21Pit-Run\$ 8.78\$30.53 \$33.71

\$32.03

TIME Computation:Road speed time factors:1. 55 MPHMRT0.0 minutes2. 50 MPH36.6 MRT43.9 minutes3. 45 MPHMRT0.0 minutes4. 40 MPHMRT0.0 minutes5. 35 MPHMRT0.0 minutes6. 30 MPHMRT0.0 minutes7. 25 MPHMRT0.0 minutes8. 20 MPHMRT0.0 minutes9. 15 MPH7.8 MRT31.2 minutes10. 10 MPHMRT0.0 minutes11. 05 MPHMRT0.0 minutes12. 00% efficiency0.8588.94 minutes0perator efficiency correction0.8588.94 minutes10. 10.09.88 min/CY					
Road speed time factors:1.55 MPHMRT0.0 minutes2.50 MPH36.6 MRT43.9 minutes3.45 MPHMRT0.0 minutes4.40 MPHMRT0.0 minutes5.35 MPHMRT0.0 minutes6.30 MPHMRT0.0 minutes7.25 MPHMRT0.0 minutes8.20 MPHMRT0.0 minutes9.15 MPH7.8 MRT31.2 minutes10.10 MPHMRT0.0 minutes11.05 MPHMRT0.0 minutes12.05 MPHMRT0.0 minutes10.10 MPHMRT0.0 minutes10.10 MPHMRT0.0 minutes10.0.0 PHMRT0.0 minutes10.00 sefficiency0.8588.94 minutes0.00 efficiency correction0.9098.82 minutes					
1. 55 MPH MRT 0.0 minutes 2. 50 MPH 36.6 MRT 43.9 minutes 3. 45 MPH MRT 0.0 minutes 3. 45 MPH MRT 0.0 minutes 4. 40 MPH MRT 0.0 minutes 5. 35 MPH MRT 0.0 minutes 6. 30 MPH MRT 0.0 minutes 7. 25 MPH MRT 0.0 minutes 8. 20 MPH MRT 0.0 minutes 9. 15 MPH 7.8 MRT 31.2 minutes 10. 10 MPH MRT 0.0 minutes 11. 05 MPH MRT 0.0 minutes 11. 05 MPH MRT 0.0 minutes 11. 05 MPH MRT 0.0 minutes 12. 05 MPH MRT 0.0 minutes 12. 05 MPH MRT 0.0 minutes 12. 05 MPH MRT 0.0 minutes 13. 05 MPH MRT 0.0 minutes 14. 05 MPH MRT 0.50 minutes <td< td=""></td<>					
2.50 MPH36.6 MRT43.9 minutes3.45 MPHMRT0.0 minutes4.40 MPHMRT0.0 minutes5.35 MPHMRT0.0 minutes6.30 MPHMRT0.0 minutes7.25 MPHMRT0.0 minutes8.20 MPHMRT0.0 minutes9.15 MPH7.8 MRT31.2 minutes10.10 MPHMRT0.0 minutes11.05 MPHMRT0.0 minutes12.10 MPHMRT0.0 minutes13.25 MPH7.8 MRT31.2 minutes10.10 MPHMRT0.0 minutes11.05 MPHMRT0.0 minutes12.05 MPHMRT0.0 minutes13.05 MPHMRT0.0 minutes14.05 MPH0.850.50 minutes15.0.9098.82 minutes10.0.9098.82 minutes					
3.45 MPHMRT0.0 minutes4.40 MPHMRT0.0 minutes5.35 MPHMRT0.0 minutes6.30 MPHMRT0.0 minutes7.25 MPHMRT0.0 minutes8.20 MPHMRT0.0 minutes9.15 MPH7.8 MRT31.2 minutes10.10 MPHMRT0.0 minutes11.05 MPHMRT0.0 minutes11.05 MPHMRT0.0 minutes0.00 efficiency0.850.50 minutes0perator efficiency correction0.8588.94 minutes0.9098.82 minutes98.82 minutes					
4.40 MPHMRT0.0 minutes5.35 MPHMRT0.0 minutes6.30 MPHMRT0.0 minutes7.25 MPHMRT0.0 minutes8.20 MPHMRT0.0 minutes9.15 MPH7.8 MRT31.2 minutes10.10 MPHMRT0.0 minutes11.05 MPHMRT0.0 minutes11.05 MPHMRT0.0 minutes0.0%efficiency75.60 minutes0perator efficiency correction0.8588.94 minutes0perator efficiency correction0.9098.82 minutes					
5.35 MPHMRT0.0minutes6.30 MPHMRT0.0minutes7.25 MPHMRT0.0minutes8.20 MPHMRT0.0minutes9.15 MPH7.8MRT31.2minutes10.10 MPHMRT0.0minutes11.05 MPHMRT0.0minutesDump or spread time per RT0.50minutesTotal hauling cycle time for this setting (100% efficiency)75.60minutesOperator efficiency correction0.8588.94minutesJob efficiency correction0.9098.82minutes					
6.30 MPHMRT0.0 minutes7.25 MPHMRT0.0 minutes8.20 MPHMRT0.0 minutes9.15 MPH7.8 MRT31.2 minutes10.10 MPHMRT0.0 minutes11.05 MPHMRT0.0 minutes0.00 spread time per RT0.50 minutesTotal hauling cycle time for this setting (100% efficiency)75.60 minutes0perator efficiency correction0.8588.94 minutes0.9098.82 minutes					
7.25 MPHMRT0.0 minutes8.20 MPHMRT0.0 minutes9.15 MPH7.8 MRT31.2 minutes10.10 MPHMRT0.0 minutes11.05 MPHMRT0.0 minutesDump or spread time per RTMRT0.50 minutesTotal hauling cycle time for this setting (100% efficiency)75.60 minutesOperator efficiency correction0.85 0.9088.94 minutes					
9.15 MPH7.8 MRT31.2 minutes10.10 MPHMRT0.0 minutes11.05 MPHMRT0.0 minutesDump or spread time per RT Total hauling cycle time for this setting (100% efficiency)0.50 minutesOperator efficiency correction Job efficiency correction0.85 0.9088.94 minutes					
10.10 MPHMRT0.0 minutes11.05 MPHMRT0.0 minutesDump or spread time per RT Total hauling cycle time for this setting (100% efficiency)0.50 minutesOperator efficiency correction Job efficiency correction0.85 0.9088.94 minutes 98.82 minutes					
11.05 MPHMRT0.0 minutesDump or spread time per RT Total hauling cycle time for this setting (100% efficiency)0.50 minutesOperator efficiency correction Job efficiency correction0.85 0.9088.94 minutes 98.82 minutes					
Dump or spread time per RT Total hauling cycle time for this setting (100% efficiency)0.50 minutesOperator efficiency correction Job efficiency correction0.85 0.9088.94 minutes 98.82 minutes					
Total hauling cycle time for this setting (100% efficiency)75.60 minutesOperator efficiency correction0.8588.94 minutesJob efficiency correction0.9098.82 minutes					
Job efficiency correction 0.90 98.82 minutes					
Truck capacity (CV) 10.00 9.88 min/CV					
Loading time, delay time per CY10.009.00min/crTIME (minutes) per cubic yard0.25min/CY10.13min/CY					
COST per CY computation\$90.00 /hr.Cost of truck and operator per hour\$90.00 /hr.Cost of truck and operator per minute\$1.50 /min					
Cost per CY \$15.20 /CY					
Spread and compact Water truck, Grader & Roller \$1.50 /CY					
Cost Delivered Cost Delivered					
Size Cost/Yd (Pit) w/o processing with processing					
1 ¹ / ₂ " - 0" \$ 12.83 \$28.03 \$29.53					
3" - 0" \$ 11.48 \$26.68 \$28.18					

 1/2
 0
 \$ 12.65
 \$ 29.55

 3" - 0"
 \$ 11.48
 \$ 26.68
 \$ 28.18

 Jaw-Run
 \$ 10.46
 \$ 25.66
 \$ 27.16

 Pit-Run
 \$ 8.78
 \$ 23.98
 \$ 25.48

TIMBER CRUISE REPORT

Doe A Deer (WO-341-2024-W00994-01) FY 2023

1. Sale Area Location: Portions of Sections 34 & 35, T11S, R9W, and Sections 1 & 2, T12S, R9W, W.M., Lincoln County, Oregon.

2. Fund Distribution:

a. Fund BOF 8% CSL 92%

3. Sale Acreage by Area:

Unit	Treatment	Gross Acres	Stream Buffers	Existing Roads	No Harvest - Slope	Harvest Not Required	Green Tree Area	Net Sale Acres	Acreage Comp. Method
1	Modified Clearcut	5	-	<1	-	-	-	5	GIS
2	Modified Clearcut	31	5	-		-	-	26	GIS
3	Modified Clearcut	31	7	2	<1	2	1	19	GIS
Total		67	12	2	<1	2	yanna	50	

- 4. Cruisers and Cruise Dates: The sale was cruised by Jeff Kuust, Zane Sandborg, Jason Hayzlett, Griffin Puls and Jacob Bergstrom in May 2023.
- 5. Cruise Method and Computation: The sale consists of 3 modified clearcut Units that were cruised using variable radius plot sampling. The timber sale area was cruised using a basal area factor of 40. Units 1 & 2 were cruised on a 4 x 2.5 chain grid and Unit 3 was cruised on a 2 x 2 chain grid. On Units 1 & 2, a total of 29 plots were taken: 21 measure plots and 8 count plots. On Unit 3, a total of 29 plots were taken: 15 measure plots and 14 count plots.

Measure plots were measured for DBH, height, form factor, grade, and defect. Data was entered into the Atterbury SuperACE cruise program to determine stand statistics and net board foot volume. Additional volume was removed to account for hidden defect and breakage and for interior Wildlife Trees.

Digital ortho photos, Lidar data, and GPS data were used to map the boundaries for the sale, and ArcMap GIS was used to determine gross and net acreage.

- 6. Measurement Standards: Tree heights were measured to the nearest foot, to a top diameter of 6 inches inside bark or to 40% of form factor. Diameters at breast height (DBH) were measured to the nearest inch, and a form point of 16 feet was used to calculate form factor. Form factors were measured or estimated on every tree. Most trees were graded in 40 foot log segments unless breakage, defect, or length to top of grade cruise diameter warranted otherwise.
- 7. Timber Description: Timber is primarily 61 year-old Douglas-fir in Unit 1, 76 year-old Douglas-fir in Unit 2 and 74 to 87 year-old Douglas-fir in Unit 3. Big-leaf maple and red alder are present in all units, Western hemlock is present in Units 1 and 3. The area designated as "Harvest Not Required" within Unit 3 is primarily sparse red

alder with a small amount of big-leaf maple and Douglas-fir. The average Douglas-fir to be removed for Units 1 and 2 is approximately 23 inches DBH with an average height of 79 feet to a merchantable top. The average timber to be removed for Unit 3 is approximately 24 inches DBH with an average height of 91 feet to a merchantable top. The average volume per acre to be harvested (net) is approximately 47.3 MBF for Units 1 and 2 and 44.4 MBF for Unit 3. Conifer trees other than Douglas-fir are reserved on all Units.

Unit	Target CV	Target SE	Actual CV	Actual SE
1&2	45%	9%	50.1%	9.5%
3	45%	9%	46.9%	8.9%

8. Statistical Analysis and Stand Summary: (See attached "Statistics").

Note: Percentages are for net board foot volume.

9. Total Volume (MBF) by Species and Grade: (See attached volume report "Species, Sort Grade – Board Foot Volumes - Project").

Unit	Species	Gross Cruise Volume	Cruised D & B	Cruised D & B (MBF)	Hidden D & B	Hidden D & B (MBF)	Net Sale Volume
1&2	DF	1,535	1.4%	(21)	5%	(76)	1,438
10.2	RA	46	34.8%	(16)	3%	(1)	29
3	DF	871	1.4%	(12)	7%	(60)	799
3	RA	48	2.1%	(1)	5%	(2)	45
Total		2,500	2.0%	(50)	5.7%	(139)	2,311

Unit	Ave. DBH	Species	Net Vol.	2-Saw	3-Saw	4-Saw	SM	Camp Run
100	- 22	DE	Grade%	86%	11%	3%		
1 & 2	1 & 2 23	DF	1,438	1,237	158	43		
1 0 0			Grade%					100%
1&2 24	RA	29					29	
~	3 24	D D	Grade%	83%	14%	2%	1%	
3		DF	799	663	112	16	8	
3 22		Grade%					100%	
	22	22 RA	45	~				45
Total All Units		2,311	1,900	270	59	8	74	

Attachments: Cruise Design Cruise Maps Species, Sort Grade – Board Foot Volumes Statistics Stand Table Summary Log Stock Table – MBF

Prepared by:	Date:
Unit Forester: Cody Uce Cody Valencia	Date: 6/23/23

CRUISE DESIGN WEST OREGON DISTRICT

Sale Name: Doe A Deer

 Harvest Type:
 MC
 Net BF
 Net BF

 Approx. Cruise Acres:
 50
 Estimated CV%
 45
 /Acre
 SE% Objective
 9
 /Acre

Planned Sale Volume: 2.072 MMBF Estimated Sale Area Value/Acre: \$ 18,500

A. <u>Cruise Goals</u>:

(a) Grade minimum <u>100</u> conifer and <u>0</u> hardwood trees:

- (b) Units 1 & 2: Sample <u>29</u> cruise plots (21 grade: 8 count) Unit 3: Sample <u>29</u> cruise plots (15 grade: 14 count)
- (c) Other goals X_ Determine log grades for sale value.

(Special cruising directions – leave trees etc.) Take plots as shown on map. Do not take plots in buffers.

DO NOT RECORD 12', 22' and 32' (for Hardwoods).

DO NOT RECORD 22' LENGTHS.

B. Cruise Design:

1. Plot Cruises:

<u>Units 1 & 2:</u>

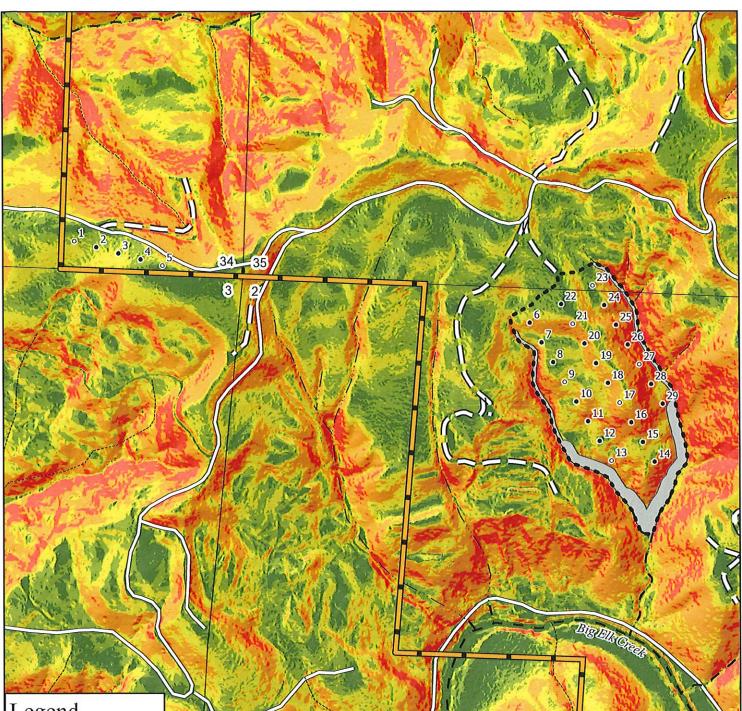
BAF <u>40</u> Full point Cruise Line Directions <u>Unit #1: 106/286; Unit #2: 150/330</u> Cruise Line Spacing <u>4/264</u> (chains) (feet) Cruise Plot Spacing <u>2.5/165</u> (chains) (feet) Grade/Count Ratio <u>1:1</u>

<u>Unit 3:</u>

BAF 40Full pointCruise Line Direction 74/254Cruise Line Spacing 2/132 (chains) (feet)Cruise Plot Spacing 2/132 (chains) (feet)Grade/Count Ratio 1:1

C. <u>Tree Measurements</u>:

- Diameter: Minimum DBH to cruise is <u>8</u> for conifers and <u>10</u> for hardwoods. Record dbh to nearest ½ for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.


- 3. Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>7</u>", <u>8</u>" for <u>hardwoods</u> or <u>40</u>% of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- 4. Form Factors (FF): (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area. Use these form factors to calculate average FF for the species on the cruise. Hardwood form factors are a standard 87.
- 5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. log segment. Do not use "double dash" (---) feature on the data recorder except for the top segment of the tree.
- Species, Sort, and Grade Codes: A. <u>Species</u>: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- 7. Deductions: Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: <u>Plot Type Cruises</u>: At each plot, tie <u>red</u> flagging above eye level near plot center and another <u>red</u> flagging around a sturdy wooden stake marking plot center. On <u>red</u> flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in <u>yellow</u> paint. In plot data, note leave trees with an "L" for leave. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark

trees measured and graded with yellow paint.

- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back), Compass, Data Recorder, Cruise Design, Cruise Map, Red Flagging, Yellow Paint.
- **10. Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by: <u>Jeff Kuust</u> Approved by: _____ Date: ____

.

Legend

Gross_E	Boundary_Prep	
	Gross_Boundary_Prep	
	StreamBuffers_Prep	
Roads		
	Surfaced Road	
=:	Unsurfaced road	
Streams		
••••••	Type F Stream	
···· ——	Type N Stream	Thi
	Unknown Stream	legal
	ODF Managed Lands	
CruiseP	lots	
o	Count	
•	Measure	

Doe A Deer Cruise Map Unit 1 and 2

SECTION 1, T12S, R09W, W.M., SECTIONS 34 AND 35, T11S, R09W, W.M., LINCOLN COUNTY, OREGON

Spacing 4 X 2.5 Chains (264' x 165') Bearings: Unit 1 = 106/286; Unit 2 = 150/330 BAF = 40

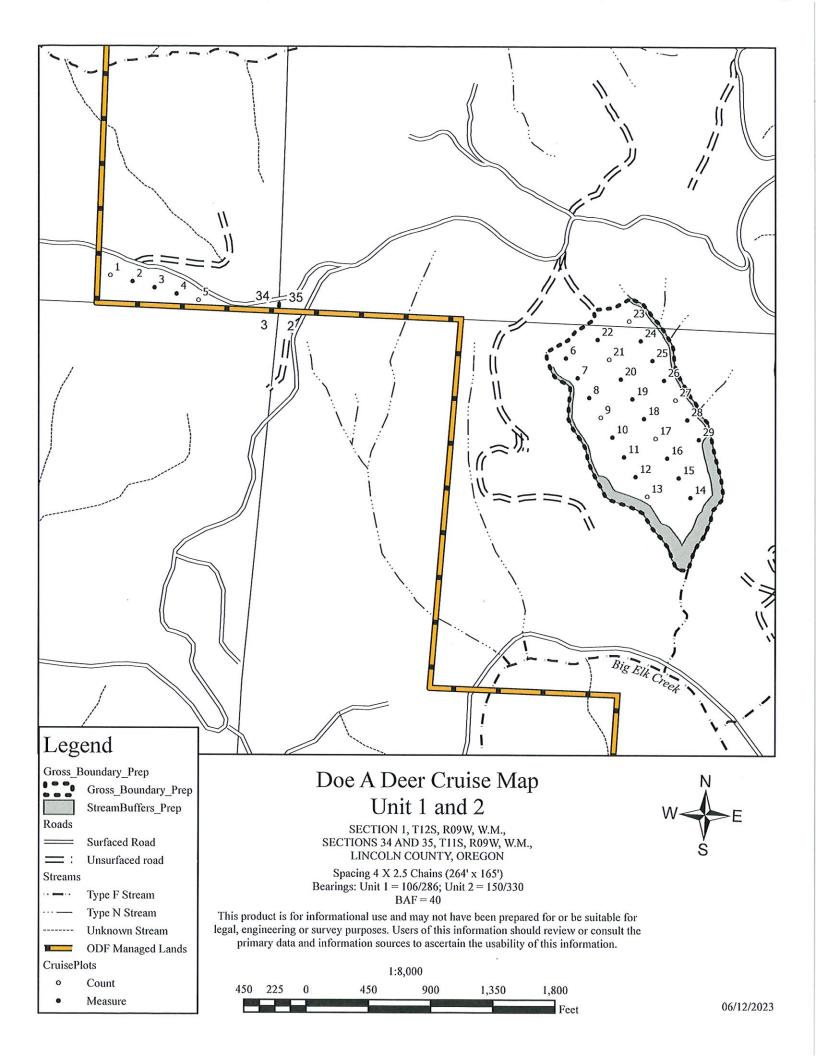
This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

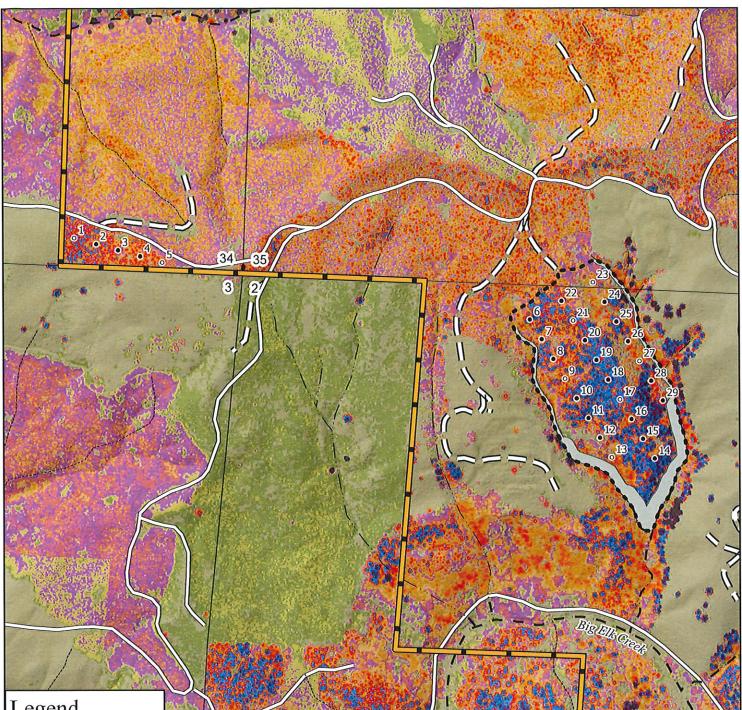
900

1,350

1,800

Feet


1:8,000


450

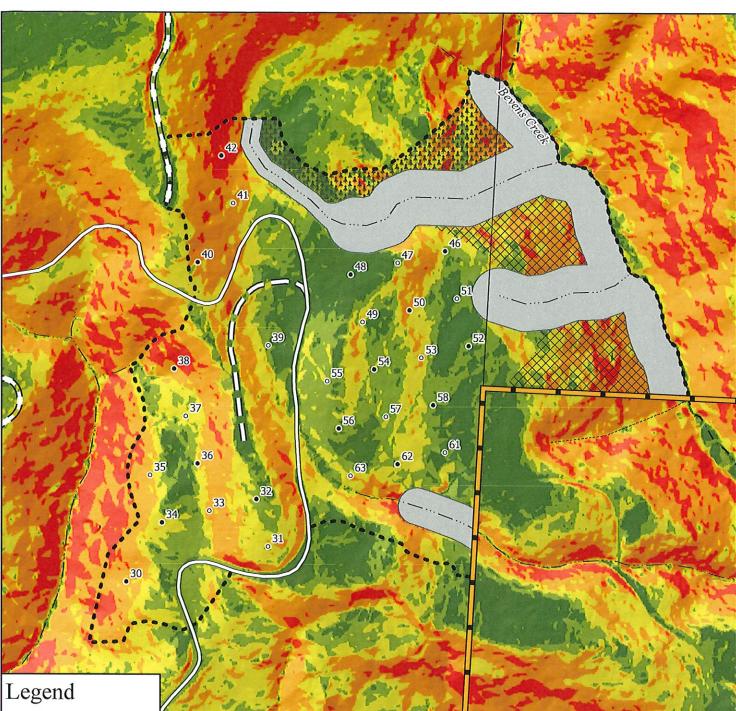
450

225

Legend

	U				
Gross_E	Boundary_Prep				
	Gross_Boundary_Prep				
	StreamBuffers_Prep				
Roads					
	Surfaced Road				
=:	Unsurfaced road				
Streams					
	Type F Stream				
	Type N Stream				
	Unknown Stream				
1	ODF Managed Lands				
CruiseP	lots				
0	Count				
•	Measure				

Doe A Deer Cruise Map Unit 1 and 2


SECTION 1, T12S, R09W, W.M., SECTIONS 34 AND 35, T11S, R09W, W.M., LINCOLN COUNTY, OREGON

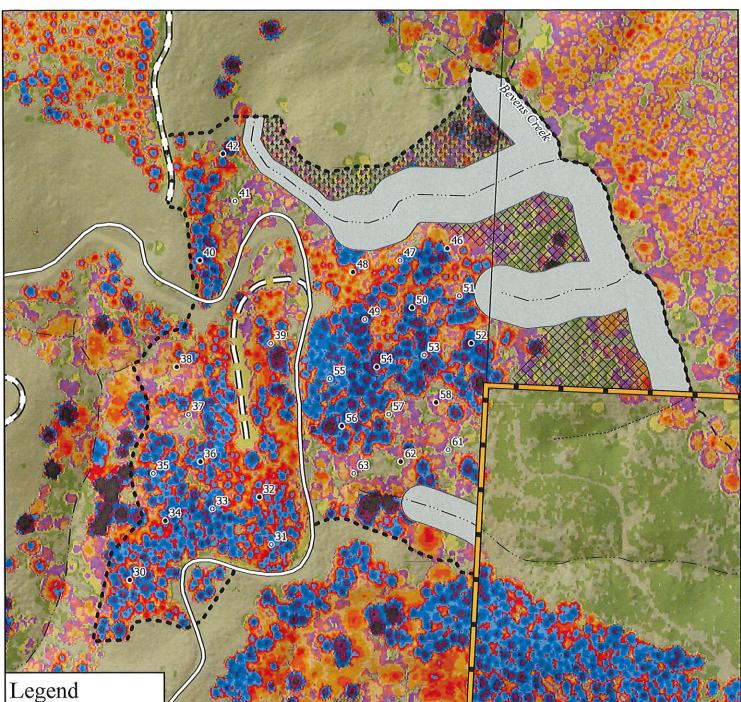
Spacing 4 X 2.5 Chains (264' x 165') Bearings: Unit 1 = 106/286; Unit 2 = 150/330 BAF = 40

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

1:8,000

Gross_I	Boundary_Prep	
	Gross_Boundary_Prep	l
	StreamBuffers_Prep	l
*****	GreenTreeAreas_Prep	l
Roads		l
=	Surfaced Road	l
=:	Unsurfaced road	l
Streams	•	l
••••••	Type F Stream	l
	Type N Stream	l
	Unknown Stream	l
1	ODF Managed Lands	l
CruiseP	lots	
0	Count	
•	Measure	


Doe A Deer Cruise Map Unit 3

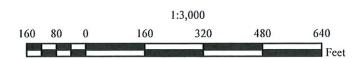

PORTIONS SECTIONS 1 AND 2, T12S, R09W, W.M., LINCOLN COUNTY, OREGON

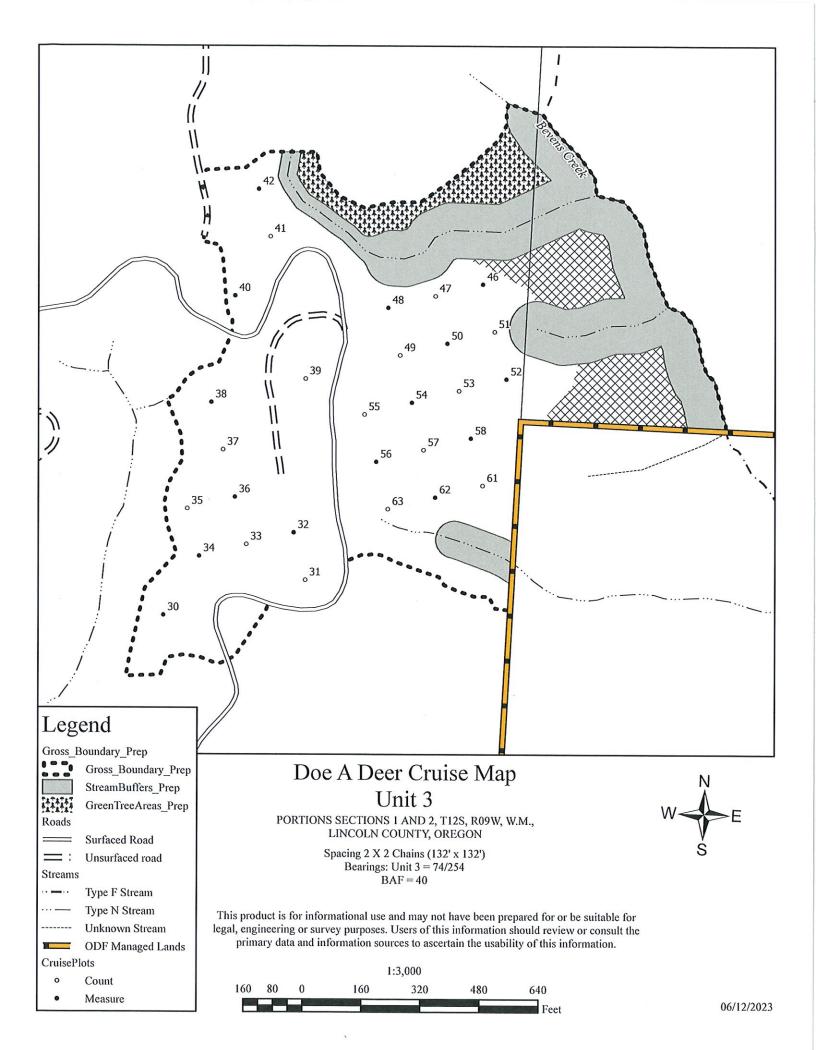
> Spacing 2 X 2 Chains (132' x 132') Bearings: Unit 3 = 74/254 BAF = 40

W

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

Legend


Gross_E	Boundary_Prep
	Gross_Boundary_Prep
	StreamBuffers_Prep
*****	GreenTreeAreas_Prep
Roads	
	Surfaced Road
=:	Unsurfaced road
Streams	
••••••	Type F Stream
	Type N Stream
	Unknown Stream
	ODF Managed Lands
CruiseP	lots
0	Count
•	Measure


Doe A Deer Cruise Map Unit 3

PORTIONS SECTIONS 1 AND 2, T12S, R09W, W.M., LINCOLN COUNTY, OREGON

Spacing 2 X 2 Chains (132' x 132') Bearings: Unit 3 = 74/254BAF = 40

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

TC PSTATS					OJECT & OJECT		TICS ADEER			PAGE DATE	1 6/12/2023
WP RG	E S	C TRACT	']	YPE		AC	RES	PLOTS	TREES	CuFt	BdFt
12S 09	2	U12-MSTR	ז	viC			31.00	29	185	1	W
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL		29	185		6.4						
CRUISE DBH COUN REFOREST		21	134		6,4		2,718		4.9		
COUNT BLANKS 100 %		8	48		6.0						
				STA	ND SUMM	ARY					
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DF		125	77.9	23.2	79	47.3	227.6	49,551	48,843	10,831	10,831
R ALDER		3	5,0	23.7	68	3.1	15.2	1,476		396	396
BL MAPLE		4	3,5	20.8	47	1.8	8.3	729	645	219	219
SNAG		1	1.3	20.0		0.6	2.8		~~ /		P 10
DF LEAVE TOTAL		1 134	.1 87.7	55,0 23,1	124 76	0.2 53,1	1.4 255,2	427 52,183		79 11,525	79 11,525
CL 68.	68.1	COEFF	VOLUME WILL BE WITHIN THE SAMPLE E SAMPLE TREES - BF								
00,		COLLI			SAMPLI	TREES -	BF		# OF TREES R	EQ.	INF. POP.
<u>SD: 1.</u>		VAR.%	\$.E.%	L	SAMPLI OW	E TREES - AVG	BF HIGH		# OF TREES R 5	EQ. 10	
			6,0	L	OW 1,078	AVG 1,146	HIGH 1,215				
SD: 1, DF R ALDER	0	VAR.% 67.0 36.2	6.0 25.0	L	OW 1,078 125	AVG 1,146 167	HIGH 1,215 208				
SD: 1. DF R ALDER BL MAPLE	0	VAR.% 67.0	6,0	L	OW 1,078	AVG 1,146	HIGH 1,215				
SD: 1, DF R ALDER	0	VAR.% 67.0 36.2	6.0 25.0	L	OW 1,078 125	AVG 1,146 167	HIGH 1,215 208				
SD: 1, DF R ALDER BL MAPLE SNAG	0	VAR.% 67.0 36.2	6.0 25.0	L	OW 1,078 125	AVG 1,146 167	HIGH 1,215 208				1
SD: 1, DF R ALDER BL MAPLE SNAG DF LEAVE	0	VAR.% 67.0 36.2 81.5	6.0 25.0 46.6	L	OW 1,078 125 156 1,041	AVG 1,146 167 293	HIGH 1,215 208 429 <i>1,181</i>		5	10 53	1
SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL	01	VAR.% 67.0 36.2 81.5 73.1	6.0 25.0 46.6		OW 1,078 125 156 <i>1,041</i> SAMPLI	AVG 1,146 167 293 <i>1,111</i>	HIGH 1,215 208 429 <i>1,181</i>		5 213	10 53	1 2: INF. POP.
SD: 1,1 DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68, SD: 1,1 DF	01	VAR.% 67.0 36.2 81.5 7 <i>3.1</i> COEFF VAR.% 59.2	6.0 25.0 46.6 <i>6.3</i> <u>S.E.%</u> 5.3		OW 1,078 125 156 1,041 SAMPLI OW 230	AVG 1,146 167 293 <i>1,111</i> 5 TREES - AVG 242	HIGH 1,215 208 429 <i>1,181</i> CF HIGH 255		5 213 # OF TREES F	10 53 REQ.	1. 2.
SD: 1,1 DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68, SD: 1,1 DF R ALDER	0 1 0	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0	6.0 25.0 46.6 6.3 <u>5.E.%</u> 5.3 23.5		OW 1,078 125 156 1,041 SAMPLI OW 230 74	AVG 1,146 167 293 <i>1,111</i> 5 TREES - AVG 242 97	HIGH 1,215 208 429 <i>1,181</i> CF HIGH 255 120		5 213 # OF TREES F	10 53 REQ.	1 2 INF. POP.
SD: 1,1 DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68, SD: 1,1 DF R ALDER BL MAPLE	0 1 0	VAR.% 67.0 36.2 81.5 7 <i>3.1</i> COEFF VAR.% 59.2	6.0 25.0 46.6 <i>6.3</i> <u>S.E.%</u> 5.3		OW 1,078 125 156 1,041 SAMPLI OW 230	AVG 1,146 167 293 <i>1,111</i> 5 TREES - AVG 242	HIGH 1,215 208 429 <i>1,181</i> CF HIGH 255		5 213 # OF TREES F	10 53 REQ.	1 2 INF. POP.
SD: 1,1 DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68, SD: 1,1 DF R ALDER	0 1 0	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0	6.0 25.0 46.6 6.3 <u>S.E.%</u> 5.3 23.5		OW 1,078 125 156 1,041 SAMPLI OW 230 74	AVG 1,146 167 293 <i>1,111</i> 5 TREES - AVG 242 97	HIGH 1,215 208 429 <i>1,181</i> CF HIGH 255 120		5 213 # OF TREES F	10 53 REQ.	1 2: INF. POP.
SD: 1.1 DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER BL MAPLE SNAG	0 1 0	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0	6.0 25.0 46.6 6.3 <u>S.E.%</u> 5.3 23.5		OW 1,078 125 156 1,041 SAMPLI OW 230 74	AVG 1,146 167 293 <i>1,111</i> 5 TREES - AVG 242 97	HIGH 1,215 208 429 <i>1,181</i> CF HIGH 255 120		5 213 # OF TREES F	10 53 REQ.	1 2: INF. POP.
SD: 1.1 DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1.1 DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL	0	VAR.% 67.0 36.2 81.5 7 <i>3.1</i> COEFF VAR.% 59.2 34.0 82.3	6.0 25.0 46.6 6.3 <u>5.8</u> 5.3 23.5 47.0		OW 1,078 125 156 1,041 SAMPLI OW 230 74 50	AVG 1,146 167 293 <i>1,111</i> 5 TREES - AVG 242 97 95 238	HIGH 1,215 208 429 <i>1,181</i> CF HIGH 255 120 140		5 213 # OF TREES R 5	10 53 REQ. 10 43	1 2 INF. POP. 1
SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL	01	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0 82.3 65.8	6.0 25.0 46.6 6.3 <u>5.8</u> 5.3 23.5 47.0	Ŀ	OW 1,078 125 156 1,041 SAMPLI OW 230 74 50 225	AVG 1,146 167 293 <i>1,111</i> 5 TREES - AVG 242 97 95 238	HIGH 1,215 208 429 <i>1,181</i> CF HIGH 255 120 140		5 213 # OF TREES F 5 173	10 53 REQ. 10 43	1 2 INF. POP. 1 INF. POP.
SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68.	01	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0 82.3 65.8 COEFF	6.0 25.0 46.6 6.3 <u>S.E.%</u> 5.3 23.5 47.0 <i>5.7</i>	Ŀ	OW 1,078 125 156 1,041 SAMPLI OW 230 74 50 225 TREES/4 OW 66	AVG 1,146 167 293 1,111 TREES - AVG 242 97 95 238 ACRE AVG 78	HIGH 1,215 208 429 <i>1,181</i> CF HIGH 255 120 140 252 HIGH 89		5 213 # OF TREES F 5 173 # OF PLOTS F	10 53 REQ. 10 43 REQ.	1 2 INF. POP. 1 INF. POP.
SD: 1.1 DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER	0 1 0 	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0 82.3 65.8 COEFF VAR.% 78.2 234.8	6.0 25.0 46.6 5.3 5.3 23.5 47.0 5.7 5.7 5.7 5.7	Ŀ	OW 1,078 125 156 1,041 SAMPLI OW 230 74 50 225 TREES/4 OW 66 3	AVG 1,146 167 293 1,111 TREES - AVG 242 97 95 238 ACRE AVG 78 5	HIGH 1,215 208 429 <i>1,181</i> CF HIGH 255 120 140 252 HIGH 89 7		5 213 # OF TREES F 5 173 # OF PLOTS F	10 53 REQ. 10 43 REQ.	1 2 INF. POP. 1 INF. POP.
SD: 1.1 DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68, SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68, SD: 1. DF R ALDER BL MAPLE	0 1 0 	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0 82.3 65.8 COEFF VAR.% 78.2 234.8 272.6	6.0 25.0 46.6 5.3 23.5 47.0 5.7 5.7 5.7 5.7 5.7	Ŀ	OW 1,078 125 156 1,041 SAMPLI OW 230 74 50 225 TREES/2 OW 66 3 2	AVG 1,146 167 293 1,111 TREES - AVG 242 97 95 238 ACRE AVG 78 5 4	HIGH 1,215 208 429 <i>1,181</i> CF HIGH 255 120 140 252 HIGH 89 7 5		5 213 # OF TREES F 5 173 # OF PLOTS F	10 53 REQ. 10 43 REQ.	1 2 INF. POP. 1 INF. POP.
SD: 1.1 DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER BL MAPLE SD: 1. DF R ALDER BL MAPLE SNAG	0	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0 82.3 65.8 COEFF VAR.% 78.2 234.8 272.6 373.9	6.0 25.0 46.6 6.3 <u>S.E.%</u> 5.3 23.5 47.0 5.7 <u>5.7</u> <u>S.E.%</u> 14.8 44.3 51.5 70.6	Ŀ	OW 1,078 125 156 1,041 SAMPLI OW 230 74 50 225 TREES/4 OW 66 3	AVG 1,146 167 293 1,111 TREES - AVG 242 97 95 238 ACRE AVG 78 5	HIGH 1,215 208 429 <i>1,181</i> CF HIGH 255 120 140 252 HIGH 89 7		5 213 # OF TREES F 5 173 # OF PLOTS F	10 53 REQ. 10 43 REQ.	1 2 INF. POP. 1 INF. POP.
SD: 1.1 DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68, SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68, SD: 1. DF R ALDER BL MAPLE	0	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0 82.3 65.8 COEFF VAR.% 78.2 234.8 272.6	6.0 25.0 46.6 5.3 23.5 47.0 5.7 5.7 5.7 5.7 5.7	Ŀ	OW 1,078 125 156 1,041 SAMPLI OW 230 74 50 225 TREES/2 OW 66 3 2	AVG 1,146 167 293 1,111 TREES - AVG 242 97 95 238 ACRE AVG 78 5 4 1	HIGH 1,215 208 429 <i>1,181</i> CF HIGH 255 120 140 252 HIGH 89 7 5 2		5 213 # OF TREES F 5 173 # OF PLOTS F	10 53 REQ. 10 43 REQ.	1 2 INF. POP. 1 <i>1</i>
SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE SNAG	0	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0 82.3 65.8 COEFF VAR.% 78.2 234.8 272.6 373.9 538.5 62.8	6.0 25.0 46.6 5.3 5.3 23.5 47.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	Ŀ	OW 1,078 125 156 1,041 SAMPLI OW 230 74 50 225 TREES/4 OW 66 3 2 0 77	AVG 1,146 167 293 1,111 E TREES - AVG 242 97 95 238 ACRE AVG 78 5 4 1 0 88	HIGH 1,215 208 429 <i>I,181</i> CF HIGH 255 120 140 252 HIGH 89 7 5 2 0 98		5 213 # OF TREES F 5 173 # OF PLOTS F 5 163	10 53 REQ. 10 43 REQ. 10 41	1 2 INF. POP. 1 INF. POP. 1 INF. POP.
SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. CL 68. SD: 2. CL 68. SD: 3. CL 68. SD: 3. CL 68. SD: 4. CL 68. SD: 4. CL 68. SD: 4. CL 68. SD: 5. SD:	0	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0 82.3 65.8 COEFF VAR.% 78.2 234.8 272.6 373.9 538.5 62.8 COEFF	6.0 25.0 46.6 5.3 23.5 47.0 5.7 5.7 5.7 5.7 5.7 5.7 14.8 44.3 51.5 70.6 101.7 11.9	L	OW 1,078 125 156 1,041 SAMPLI OW 230 74 50 225 TREES/2 OW 66 3 2 0 77 BASAL 2	AVG 1,146 167 293 1,111 C TREES - AVG 242 97 95 238 ACRE AVG 78 5 4 1 0 88 AREA/AC	HIGH 1,215 208 429 <i>I,181</i> CF HIGH 255 120 140 252 HIGH 89 7 5 2 0 98 RE		5 213 # OF TREES F 5 173 # OF PLOTS F 5 163 # OF PLOTS F	10 53 REO. 10 43 REO. 10 41 REO.	1 2 INF. POP. 1 INF. POP. 1 INF. POP.
SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL	0	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0 82.3 65.8 COEFF VAR.% 78.2 234.8 272.6 373.9 538.5 62.8	6.0 25.0 46.6 5.3 5.3 23.5 47.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	L	OW 1,078 125 156 1,041 SAMPLI OW 230 74 50 225 TREES/4 OW 66 3 2 0 77	AVG 1,146 167 293 1,111 E TREES - AVG 242 97 95 238 ACRE AVG 78 5 4 1 0 88	HIGH 1,215 208 429 <i>I,181</i> CF HIGH 255 120 140 252 HIGH 89 7 5 2 0 98		5 213 # OF TREES F 5 173 # OF PLOTS F 5 163	10 53 REQ. 10 43 REQ. 10 41	1 2 INF. POP. 1 INF. POP. 1 INF. POP.
SD: 1.1 DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1.1 DF R ALDER BL MAPLE SNAG DF LEAVE SNAG DF LEAVE SNAG SD: 1.1 SNAG SD: 1.1 SNAG SD: 1.1 SNAG SD: 1.1 SD SD: 1.1 SD SD: 1.1 SD SDE SNAG SD: 1.1 SDE SDE SDE SDE SDE SDE SDE SDE SDE SDE	0	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0 82.3 65.8 COEFF VAR.% 78.2 234.8 272.6 373.9 538.5 62.8 COEFF VAR.%	6.0 25.0 46.6 5.3 23.5 47.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 14.8 44.3 51.5 70.6 101.7 11.9 5.E.%	L	OW 1,078 125 156 1,041 SAMPLI OW 230 74 50 225 TREES/2 OW 66 3 2 0 77 BASAL 2 OW	AVG 1,146 167 293 1,111 C TREES - AVG 242 97 95 238 ACRE AVG 78 5 4 1 0 88 AREA/AC AVG	HIGH 1,215 208 429 <i>I</i> ,181 CF HIGH 255 120 140 252 HIGH 89 7 5 2 0 98 RE HIGH		5 213 # OF TREES F 5 173 # OF PLOTS F 5 163 # OF PLOTS F	10 53 REO. 10 43 REO. 10 41 REO.	1 2 INF. POP. 1 INF. POP. 1 INF. POP.
SD: 1.1 DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1.1 DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68. SD: 1. DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL	0 1 0 1 0	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0 82.3 65.8 COEFF VAR.% 78.2 234.8 272.6 373.9 538.5 62.8 COEFF VAR.% 56.6 227.4 237.5	6.0 25.0 46.6 5.3 23.5 47.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 14.8 44.3 51.5 70.6 101.7 11.9 5.E.% 10.7 42.9 44.8	L	OW 1,078 125 156 1,041 SAMPLI OW 230 74 50 225 TREES/2 OW 66 3 2 0 77 BASAL 2 OW 203 9 5	AVG 1,146 167 293 1,111 C TREES - AVG 242 97 95 238 ACRE AVG 78 5 4 1 0 88 AREA/AC AVG 228 15 8	HIGH 1,215 208 429 <i>I,181</i> CF HIGH 255 120 140 252 HIGH 89 7 5 2 0 98 RE HIGH 252 22 12		5 213 # OF TREES F 5 173 # OF PLOTS F 5 163 # OF PLOTS F	10 53 REO. 10 43 REO. 10 41 REO.	1 2 INF. POP. 1 INF. POP. 1 INF. POP.
SD: 1, DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68, SD: 1, DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68, SD: 1, DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68, SD: 1, DF R ALDER BL MAPLE SNAG	0	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0 82.3 65.8 COEFF VAR.% 78.2 234.8 272.6 373.9 538.5 62.8 COEFF VAR.% 56.6 227.4 237.5 373.9	6.0 25.0 46.6 6.3 S.E.% 5.3 23.5 47.0 5.7 S.E.% 14.8 44.3 51.5 70.6 101.7 11.9 S.E.% 10.7 42.9 44.8 70.6	L	OW 1,078 125 156 1,041 SAMPLI OW 230 74 50 225 TREES/2 OW 66 3 2 0 77 BASAL 2 OW 203 9	AVG 1,146 167 293 1,111 C TREES - AVG 242 97 95 238 ACRE AVG 78 5 4 1 0 88 AREA/AC AVG 228 15 8 3	HIGH 1,215 208 429 <i>I,181</i> CF HIGH 255 120 140 252 HIGH 89 7 5 2 0 98 RE HIGH 252 22 12 5		5 213 # OF TREES F 5 173 # OF PLOTS F 5 163 # OF PLOTS F	10 53 REO. 10 43 REO. 10 41 REO.	1 2 INF. POP. 1 INF. POP. 1 INF. POP.
SD: 1, DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68, SD: 1, DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68, SD: 1, DF R ALDER BL MAPLE SNAG DF LEAVE TOTAL CL 68, SD: 1, DF R ALDER BL MAPLE SNAG	0	VAR.% 67.0 36.2 81.5 73.1 COEFF VAR.% 59.2 34.0 82.3 65.8 COEFF VAR.% 78.2 234.8 272.6 373.9 538.5 62.8 COEFF VAR.% 56.6 227.4 237.5	6.0 25.0 46.6 5.3 23.5 47.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 14.8 44.3 51.5 70.6 101.7 11.9 5.E.% 10.7 42.9 44.8	L	OW 1,078 125 156 1,041 SAMPLI OW 230 74 50 225 TREES/2 OW 66 3 2 0 77 BASAL 2 OW 203 9 5	AVG 1,146 167 293 1,111 C TREES - AVG 242 97 95 238 ACRE AVG 78 5 4 1 0 88 AREA/AC AVG 228 15 8	HIGH 1,215 208 429 <i>I,181</i> CF HIGH 255 120 140 252 HIGH 89 7 5 2 0 98 RE HIGH 252 22 12		5 213 # OF TREES F 5 173 # OF PLOTS F 5 163 # OF PLOTS F	10 53 REO. 10 43 REO. 10 41 REO.	1 2 INF. POP. 1 INF. POP. 1 INF. POP.

TC PSI	TATS				PROJECT		<u>STICS</u> EADEER			PAGE DATE	2 6/12/2023
ГWР	RGE	SC	TRACT	TYP	E	A	CRES	PLOTS	TREES	CuFt	BdFt
12S	09	2	U12-MSTR	MC			31.00	29	185	1	W
CL	68.1		COEFF	NET BF/ACRE				# OF PLOTS R	INF. POP.		
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DF			57.3	10.8	43,555	48,843	54,131				
R AL	DER		240.9	45.5	525	962	1,399				
BL MAPLE			245.5	46.4	346	645	944				
SNAG	3										
DF L	EAVE		538.5	101.7		324	653				
тот	AL		50.1	9.5	45,975	50,774	55,573		104	26	L
CL 68.1 COEFF		NET CUFT FT/ACRE			# OF PLOTS REQ.			INF. POP.			
SD:	. 1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	1;
DF			56.9	10.7	9,667	10,831	11,995				
R AL	DER		230.0	43.4	224	396	568				
BL M	IAPLE		246.1	46.5	117	219	321				
SNAG	3										
DF LI	EAVE		538.5	101.7		79	159				
TOT	AL		45.5	8.6	10,534	11,525	12,516		86	21	1

тс	PSPCSTGR		SI	pecies, S	ort Gra	de - Board F	oot V	⁷ olum	es (Pr	oject)								
TL	2S R09W S2 Ty	MC		31.00		Project: Acres	DC	DEAD 31,0		-						Page Date Time		1 12/202 18:57	:3
		%					Per	cent of ?	Vet Boar	d Foot	Volume					Aver	nge Log	ş	Logs
	S So Gr	Net		per Acre		Total		Log Sc	ale Dia.			Log	Length		Լո	Dia	Bđ	CF/	Per
Spp	T rt ad	DO 2M 86 1.4 42,900 4				Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lſ	/Acre
DF	DO 2M	86	1,4	42,900	42,320	1,312			24	76	2	3	1	94	38	18	526	2.84	80.5
DF	DO 3M	11	1,5	5,428	5,348	166		100			2	14	16	68	35	9	104	0.90	51.5
DF	DO 4M	3	3.9	1,223	1,176	36		100			55	45			20	7	26	0,47	44.9
DF	Totals	96	1.4	49,551	48,843	1,514		13	21	66	3	5	3	89	33	12	276	1,87	176,8
ВМ	DO CR	100	11.5	729	645	20		28	25	46	17		28	55	31	10	127	1,39	5.1
BM	Totals	1	11.5	729	645	20		28	25	46	17		28	55	31	10	127	1.39	5.1
RA	DO CR	100	34.8	1,476	962	30		83		17	7	33		60	30	10	97	1.31	9,9
RA	Totals	2	34.8	1,476	962	30		83		17	7	33		60	30	10	97	1,31	9,9
DFL	DO 3M	100	24.3	427	324	10				100				100	40	29	1290	7.88	.3
DFL	Totals	í	24.3	427	324	10			*****	100				100	40	29	1290	7.88	.3
Tota	ls		2.7	52,183	50,774	1,574		15	21	65	3	6	3	88	33	12	264	1.84	192.1

.

TC I	PSTNDSU	M				S	Stand T	able Sı	ımmary				Page Date:	1 6/12/2	023
T128 I	R09W S2	ТуМС		31.	00		Project	D	OEADEE	R			Time:	8:18:	58AM
							Acres		31.0	0			Grown Year	1	
				Tot	I			Average	Log		Net	Net			
5 5рс Т	DBH	Sample Trees		Av Hi	Trees/ Acre	BA/ Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF	9	2	86	38	8.242	3,64	4,12	9,0	30,0		37	124		1	1 4
DF	10	1	89	80	3.338	1.82	3.34	9.0	30.0		30	100) 3
DF	11	2	83	53	5,518	3.64	5.52	13.5	40.0		74	221		2	
DF	12 13	1 2	88 83	76 63	2.318 3.951	1.82 3.64	4.64 5.93	11.5 15.0	40.0 43.3		53 89	185 257		1 2	
DF DF	13	1	90	84	1,703	1,82	3,41	19.0	43.3		65	204		2	
DF	15	1	84	98	1.484	1.82	2.97	23.5	70.0		70	208		2	
DF	16	2	87	86	2.608	3,64	5,22	25,2	85,0		132	443		4	
DF	17	1	88	110	1.155	1.82	2.31 10,30	32.5	120.0 104.0		75 298	277		2	
DF DF	18 19	4 3	88 85	102 114	4.121 2.774	7.28 5.46	7.40	28.9 31,2	104.0		298	1,072 758		7	
DF	20	1	89	137	.835	1,82	2.50	38.0	156.7		95	392		2	
DF	21	2	83	123	1.514	3.64	4.54	36.8	130.0		167	590		5	
DF	22	1	88	[41	.690	1.82	2.07	45,3	190,0		94 596	393		2	
DF DF	23 24	7	86 88	120 124	4.417 3.477	12.74 10.92	12.62 9.85	46.5 53.0	187.0 216.5		586 522	2,360 2,133		18 16	
DF	25	. 3	88	137	1.068	3.64	3,20	58,8	253.3		189	812		5	
DF	26	12	87	132	5.926	21.85	17.28	61.8	263.7		1,069	4,558		33	1 141
DF	27	5	88	135	2.290	9,10	6,87	68,3	304,7		469	2,093		14	
DF	28	6	90	152	2.555	10.92	8.09	78.0	384.7		631	3,113		19	
DF DF	29 30	7 5	88 89	136 133	2.779 1.855	12.74 9.10	8.73 5.56	76.0 83.9	351.4 401.3		664 467	3,068 2,233		20 14	
DF	31	4	89	143	1.389	7.28	4.17	94.8	460.0		395	1,917		12	
DF	32	4	86	136	1,304	7,28	3.91	95,5	443,3		374	1,734	-	11	6 54
DF	33	8	83	144	2.452	14.57	7.36	97.5	472.5		717	3,476		22	
DF	34	4	85	132	1,155	7.28	3.47	102,7	466.7		356	1,617		11	
DF DF	35 36	4	87 87	144 123	1.090 1,030	7.28 7,28	3.27 3.09	120.0 101.5	589.2 505.8		392 314	1,927 1,563		12	2 60 7 48
Dr	37	6	87	144	1,650	10.92	4.63	125.9	652,6		583	3,024		18	
DF	38	4	90	140	.925	7.28	2.77	139.8	728.3		388	2,020		12	0 63
DF	39	2	86	121	.439	3,64	1.32	127.2	590.0		167	777			2 24
DF	41	4	86	141	.794	7.28 1,82	2.78 .57	134.1 164.3	680.0 836,7		373 93	1,891 475		11	6 59 9 15
DF DF	42 43	2	88 83	134 151	.189 .361	3.64	.57 1.08	104,5	830.7 850.0		93 192				9 15 9 29
DF	44	1	87	135	.172	1,82	.52	178.7	920,0		92				9 15
DF	45	2	84	[4]	.330	3.64	.99	187.2	918.3		185	908			7 28
DF	48	1	85	157	.145	1.82	.43	236.0	1203.3		103	523		3	2 16
DF	Totais	125	87	104	77.855	227.59	176.83	61.3	276.2		10,831	48,843		3,35	8 1,514
RA	17	1	86	96	3,209	5.06	6.42	32.0	115.0		205	738			4 23
RA	29	1	86 87	75 77	1.103	5.06	2.21	48,5	55.0		107 83	121 103			34 63
RA	38	1	87	77	.642	5.06	1.28	65.0	80.0		,				
RA	Totals	3	86	89 56	4.953	15.17	9,91	40.0	97.1		396	962 135		12	3 30 7 4
BM BM	14 21	1	86 87	56 68	1.935 .860	2.07 2.07	1.94 1.72	28.0 37.0	70.0 110.0		54 64	135			7 4 0 6
BM	32	1	87	83	.370	2.07	.74	104.0	315.0		77				s s 4 7
BM	33	1	86	61	.348	2,07	.70	35.0	125.0		24	87			8 3
вм	Totals	4	86	62	3.514	8.28	5,09	43.1	126.7		219	645			8 20
DFL	55	1	86	157	.084	1.38	.25	315.0	1290.0	.0	0 79	324	0	2	4 10
DFL	Totals	1	86	157	.084	1,38	,25	315.0	1290,0	0.	0 79	324	0	2	4 10
SN	20	1	86	57	1.264	2,76		[

TĊ	PSTNDSU	ли				5	Stand "	fable Su	ummary				Page Date:	2 6/12/2023
T1281	R09W S2	ТуМС		31,	00		Projec Acres	í D	OEADEE 31.0				Time: Grown Yea	8:18:58AM
Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Averago Net Cu.Ft.		Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ff. Acre	Tous	Totals Cunits MBF
SN	Totals	1	86	57	1,264	2,76								
Totais		134	87	101	87,671	255.17	192.08	60.0	264.3	.00	11,525	50,774	0	3,573 1,574

TC	PLOGSTVB

Т

						_									Daga		1
T12S R0	9W S2 TyM	C	31	.00		Proje Aeres		DOI	EADEEI 31	؟ 00.					Page Date Time		1 2/2023 [8:56AM
s	So Gr	Log	Gross	Def	Net	%				ne hv S	caling Dia1	neter	r in Inche	5			
- Spp Т		Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11 12-			16-19	20-23	24-29	30-39 40-
DF	DO 2M	12	1		1	.0						1					
DF	DO 2M	16			1	.1				1		1					
DF	DO 2M	18			2	.2						2					
DF	DO 2M	20		2.8	17	1.1						2			5	5	5
DF	DO 2M	24	9		9	.6						2	ĩ			7	
DF	DO 2M	26	1		1	.1						- 1					
DF	DO 2M	28	3	4.8	3	.2						3					
DF	DO 2M	30	29	2.9	28	1.8						2		2	7	16	
DF	DO 2M	32	13	1.2	13	.9						6	2	5			
DF	DO 2M	34	5		5	.3			ļ		1	5					1
DF	DO 2M	36	2		2	.1						2					
DF	DO 2M	40	1,246	1,3	1,230	81.2						77	132	369	335	279	38
DF	DO 3M	16	0		0	.0					0						
DF	DO 3M	18	1		1	.1					1						
DF	DO 3M	20	1		1	1				1	1						
DF	DO 3M	24	1		1	1,				1							
DF	DO 3M	26	1		1	.1					1						
df	DO 3M	28	7		7	.4			1	3	3					•	
DF	DO 3M	30	15	1.3	15	1.0				9	6						
DF	DO 3M	32	16		16	1.1			3	8	5						
DF	DO 3M	34	10		10	.6			1 1	4	5						
DF	DO 3M	36	10		10	.7			6	2	3						
DF	DO 3M	38	6		6	.4			1	3	3						
DF	DO 3M	40	99	2.3	97	6.4			6	20	71						
DF	DO 4M	12	2		2	1,			1	1	0						
DF	DO 4M				3	.2			2	1	1						
DF	DO 4M			12.6	4	.3	1		3	1							
DF	DO 4M				4	.3			4	0							
DF	DO 4M		6		6	.4			5	1							
DF	DO 4M	24	7	12.8	6	.4			4	2							
DF	DO 4M	26	3		3	.2			3								
DF	DO 4M	28	8		8	.5			8								
DF	Totals		1,536	1.4	1,514	96.2			46	57	99	104	135	376	347	307	42
ВМ	DO CR	12	. 0		0	1.1	1			0							
ВМ	DO CR	20	3		3	16.4			1					2			
BM	DO CR	32	. 1	20,0	0	2.3			0								
BM	DO CR	34	6	9.5	5	25.3						5					

тC	PLO	GSTVB							Log	Stock	Table -	MBF									
T12	S RO	9W S2	Тул	4C		31.0	5		Proje Acre		DOI	EADEE 31	R 1.00					Page Date Time	6/1	2 2/2023 18:56A	
	s	So G	r	Log	Gross	D	ef	Net	%		1	Net Volu	me by S	Scaling I	Diamete	r in Inch	es				
Spp	T	rt de	e	Len	MBF	9	6	MBF	Spe	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
ВМ		DO	CR	38		4		4	21,0			4									
ВМ		DO	CR	40		9	22.4	7	33.9									7			
вм		T	otals			23	11.5	20	1.3			5	0		5		2	7			
RA		DO	CR	18		2		2	6.6			1	t								
RA		DO	CR	28		5		5	16.7			5									
RA		DO	CR	30		21	76.2	5	16,7								5				
RA		DO	CR	40		18		18	60.0					18							
RA		Ť	otals			46	34.8	30	1.9			6	1	18			5				
DFL		DO	3М	40		13	24.3	10	100.0								1			9	
DFL		Т	otals			13 :	24.3	10	.6								1			9	
Total		All Sp	ecie	s	1,6	18	2.7	1,574	100.0			57	58	117	109	135	385	354	307	51	

.

TC TR	EESEGR						TREE : Proj			VOLI DEAD						nge nte	1 6/12/2	023
TWP 12S	RGE 09W	SC 2	TR/ Ul2	ACT 2-MSTR		түре МС		А	CRES 31.0		PLOTS 25		TRI	EES 134	CRUISEE 5/1/202		CuFt 1	BdFt W
T	ree		с		т	Bole Tot.		S					Dia	Dia	Gross	Net	Gross	Net
Plot 1	No.PFA	Spe S	Т	DBH FF FF	7 D	Hgt Hg	PRDVT	SG	Len	FIFI	Bark	Ao	Bult	Тор	CuFt	CuFt	BdFt	BdFt
0001	0001 BI	1 DF Count	4	23.2 4 87 BA = 160.00	н	79 104 T/A = 54.73	5	1 xx	30						139 <i>139</i>	139 <i>139</i>	636 <i>636</i>	62' 62
PLOT			B.	A = 160.00		T/A = 54.73	5								7,615	7,615	34,836	34,33
0002	0001 B1	1 DF		24.0 4 89	н			1 12	40	L	.919		23.42	16.80	92	92	400	36
			1	BA = 40.00		T/A = 12.73	2	213 314	32 16		.919 .919		16.80 11.28	11.28 7.07	37 9	37 9	140 30	14 3
								5 14	10		.919	.550	11,20	7,07	138	138	570	53
	0002 B1	i DF	1	26.0 4 88	8 H	110 133		i 12	40	4	.919		25,68	18.66	111	111	530	48
]	BA = 40.00		T/A = 10,84	9	212	40		.919		18.66	13.15	59	59	240	24
								314	28		.919	.530	13.15	7.10	19 189	19 189	50 820	5
	0003 BI	1 DF	1	29,0 4 89) r	105 131		112	40		.919	530	28.42	20,99	138	139	700	70
	0005 B1	1 01		BA = 40,00		T/A = 8.720		212	40		.919		20.99	14.58	71	71	290	29
								3 14	24		.919	.530	14,58	8.63	19	19	40	4
															228	228	1030	103
	0004 B1	I DF	1		7 J			112	40		.919		33.79 23.89	23.89 16.00	186 88	186 88	940 360	94 30
			i	BA = 40.00		T/A = 6.344		212 314	40 24		.919 .919		16.00	8.47	21	21	40	
								214	24		.,,,,,	.550	10.00	0.77	295	295	1340	13-
	0005 BI	1 DF	1	34.0 4 8	8 N	113 153		112	40		.919	.530	33,66	24.89	192	192	1010	101
				BA = 40.00		T/A = 6.344	Ļ	212	40	4	.919		24.89	19.14	111	111	600	54
								312	30		.919	.530	19.14	12,87	45	45	150	15
PLOT			в	A = 200,00		T/A = 44.99	0								348 9,875	348 9,875	<i>1760</i> 44,803	170 43,31
							-								,			
0003	0001 B1	I DF	1	24.0 4 8	54			112	40	1	.919		24.04	16.76	97	97	400	3
				BA = 40,00		T/A = 12.73	2	213 314	40 20		.919 .919		16.76 11.55	11.55 7.59	46 11	46 11	180 30	1
								514	20		.919	.550	11.55	1.39	154	154	610	60
	0002 BI	1 DF	1	26.0 4 8	94	98 123		112	20		.919	,530	25.44	20.79	62	62	350	3
				BA=40.00		T/A = 10.84	9	200	25		.919		20.79	18,00				
								3 13	38	i	.919	.530		11,57	47	47	170	1
								4 14	12		.919	.530	11.57	8.51	7 116	7 116	20 540	5.
	0003 B1	1 DF	1	23.0 4 8	64	101 127		112	40		.919	.530	23.03	16,01	92	92	400	4(
				BA = 40.00		T/A = 13.86	i4	213	40		.919		16.01	10.82	43	43	150	1
								314	18		.919	.530	10.82	7.27	9	9	30	:
				00 0 I 0						-	010	620	00.00	14.00	144	144	580	5
	0004 BI	I DF		23.0 4 8 BA = 40.00	7 M	1 72 120 T/A = 13.80		112 213		5 1	.919 .919		22,83 16,03	16.03 11.95	87 34	87 34	400 130	3:
				DN - 10.00		111 - 15.00	,,	415	20	1		.550	10,05	11,75	121	121	530	4
PLOT			В	A ≈ 160.00		T/A = 51.30	9								6,893	6,893	29,014	28,0
0004	0001 B1	1 DF	1	32.0 4 8	44	95 119		1 12	40	2	,919	.530	32.47	21.49	168	168	760	7
				BA = 40.00		T/A = 7.162		212	40		.919		21.49		71	71	240	24
								3 14	12		.919	.530	13.56	9.88	10	10	30	
				1000 · -	۰ .	101 /0-					010		an /r	17.00	249	249	1030	9:
	0002 B1	I DF		23,0 4 8 BA = 40,00	o 4	101 127 T/A = 13.80		1 12 213	40 40		.919 .919		22.69 16.38	16.38 11.07	87 46	87 46	400 180	3 1
				DIE 10,00		1763 10.00		314	18		.919		11.07		10	10	30	
								- • •				*			143	143	610	6
	0003 B1	1 DF		26.0 4 8	64			112	40		.919		26.05	18,22	116	116	530	5
				BA = 40.00		T/A ≈ 10.84	19	212	40		.919		18.22		56	56	200	2
								314	24		.919	,530	12.77	7,75	14 186	14 786	40 770	7
	0004 B1	1 DF	Т	16,0 4 9	2 0	60 78		1 13	40		.919	,530	15,10	10,32	39	39	150	1
				BA = 40,00	5	T/A == 28.64		214	18		.919		10.32		8	8	20	
															47	47	170	1
	0005 B1	1 DF		23.0 4 8	54			1 12	40		.919		23.15		88	88	360	3
				BA = 40.00		T/A = 13.80	54	213	34		.919		15.53		34	34	130	1
								3 14	16		,919	.530	10.52	6.95	7 129	7 129	20 510	5
	0006 B1	1 DF	1	29,0 4 8	54	106 134		1 12	40		.919	.530	29.28	20.12	144	144	700	7
				BA = 40.00		T/A = 8,720		212	40		.919			14.21	71	71	290	2

TC TR	EESEGR					TREE Proj			VOLI OEAD						Page Date	2 6/12/2	023
Т₩Р 128	RGE 09W	8C 2	TRACT U12-MSTR		ТҮРЕ МС		A	CRES 31.0		PLOT: 2	s :9	TR	ees 134	CRUISE 5/1/20		CuF(1	BdFt W
	ree No.PFA	Spc S	C T DBH FF FF		Bole Tot. Hgt Hg	PRDVT	S SG	Len	FIFI	Bark	Ao	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
0004				-			314	24		.919		14.21	8.81	19	19	40	40
0004							J 14	24		.919		14.21	0.01	23.4	234	1030	40 1030
	0007 B1 1	DF	1 16.0 4 84 BA = 40.00	G	68 94 T/A = 28.643	8	1 13 214	40 26	3	.919 .919	.530 .530		10.13 6.43	43 11	43 11	150 30	140 30
			BA-40.00		177 - 20.040	0	214	20		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,550	10,15	0,45	54	54	180	170
	0008 BI 1	DF	1 27.0 4 86	4	87 109	•	112	40	l	.919		26.94	18.20	116	116	530	520
			BA = 40.00		T/A ≈ 10,060	U	212 314	28 16	1	.919 .919	.530	18.20 12.96	12.96 8.54	39 11	39 [1	140 30	130 30
							211					12.20	0.07	166	166	700	680
PLOT			BA = 320,00		T/A == 121.81	5								14,176	14,176	57,309	56,287
0005	0001 BI 1	DF Count	6 23.2 4 87 BA = 240.00	Н	79 104 T/A = 82.102	2	l xx	30						139 <i>139</i>	139 <i>139</i>	636 <i>636</i>	627 627
PLOT			BA = 240.00		T/A ≕ 82,102	2								11,422	11,422	52,254	51,507
0006	0001 B11	DF	1 19.0 4 83	G	96 126		[12	40		.919	,530	19,44	12,73	60	60	200	200
		-	BA = 40.00		T/A = 20.31	5	213		2	.919	.530	12,73	8.50	26	26	90	80
							3 14	12		,919	,530	8.50	6.60	4 90	4 90	10 300	10 290
	0002 B1 I	DF	1 37.0 4 88	4	104 131		112	40		.919	.530	36.53	26.49	227	227	1250	1250
			BA = 40.00		T/A = 5.357		212	40		.919	.530		18,40	116	116	530	530
							312	20		.919	.530	18.40	12,31	29 <i>372</i>	29 <i>372</i>	100 <i>1880</i>	100 <i>1880</i>
	0003 B11	DF	1 38.0 4 92	4	106 134		112	40		.919	.530	36.41	28,53	240	240	1460	1460
			BA=40.00		T/A = 5.079		212	40	3	.919		28,53	20.15	138	138	700	650
							312	24	2	,919	,530	20,15	12,49	39 417	39 417	120 2280	110 2220
	0004 B1 I	DF	1 36.0 4 90	к	91 109		112	40		.919	,530	34,86	25.39	205	205	1150	1150
			BA = 40.00		T/A = 5.659		212	32	2	.919	.530		16.76	82	82	320	300
							313	16		.919	.530	16.76	10.11	17 304	17 304	60 <i>1530</i>	60 1510
	0005 B1 1	DF	1 37.0 4 86	4	110 139		1 [2	40		.919		37,11	26,12	234	234	1250	1250
			BA = 40.00		T/A = 5.357		212 312	40 26	1	,919 ,919		26,12 18,99	18.99 12.01	116 37	116 37	530 130	520 130
							312	20		.717	.550	10,77	12.91	387	387	1910	1900
	0006 B11	DF	1 13.0 4 82	G	50 80	,	1 13	32		.919		13.24	8,39	23	23	70	70
			BA = 40.00		T/A = 43,390	6	214	16	4	.919	.530	8.39	6.43	5 28	5 28	20 90	10 80
	0007 B11	DF	1 32.0 4 82	4	101 127		1 12	40		.919	.530	32.98	21.23	168	168	760	760
			BA = 40.00		T/A = 7.162		212	40		.919		21.23	14.35	75	75	290	290
							314	18		.919	.530	[4.35	9,65	16 259	16 259	40 1090	40 1090
	0008 B11	DF	1 35.0 4 86	4			1 12	40		.919		35,11	24.75	206	206	1010	1010
			BA = 40.00		T/A == 5.987		212	40 20		.919		24.75	18.10	106	106	530	530
							313	28		.919	.530	18.10	11.06	37 <i>349</i>	37 349	120 1660	120 1660
	0009 B1 1	DF	1 37.0 4 88	4			112	40		.919		36.51	26.40	227	227	1250	1250
			BA = 40.00		T/A = 5.357		212 312	40 18		.919 .919		26.40 18.02	18.02 12,32	116 26	116 26	530 90	53(9(
							~ 14	10			.250	10,04		369	369	1870	1870
PLOT			BA = 360.00		T/A = 103.66	i9								16,869	16,869	78,304	77,195
0007	0001 B11	DF	1 26.0 4 88	4	104 131		112	40	4	.919	.530	25.67	18.61	111	[]]	530	480
			BA = 40.00		T/A = 10.849	9	212	40		.919		18.61	12.93	56	56	200	200
							314	20		.919	.530	12.93	8.65	13 180	13 <i>180</i>	40 770	4(72(
	0002 B1 I	DF	1 23.0 4 83	4			1 12	40	1	.919		23,47	15,01	88	88	360	350
			BA = 40.00		T/A = 13.864	ŧ	213	30		.919 010		15.01	10,43	30	30	110	11(2/
							3 14	16		.919	.530	10.43	6.77	7 125	7 125	20 490	2) 48)
	0003 BI 1	DF	1 13.0 4 85	G			I 13	32		.919	.530	12.54	6.43	17	17	50	5
			BA = 40.00		T/A = 43.396	5								. 17	17	50	5
	0004 B11	DF	1 45.0 4 82	4	100 126		1 12	40		.919	.530	46.37	29.81	332	332	1520	152
			BA = 40.00	-	T/A = 3.622		212	40		.919	.530	29.81	19.95	138	138	600	60
							3 12	18		.919	.530	19.95	13.16	29	29	110	11

TREE SEGMENT VOLUMES Project: DOEADEER

Page 3 6/12/2023

Date

128		SC 2	TRACT U12-MSTR	ТҮРЕ МС	AC	CRES 31.00)	PLOTS 29		TRE	EES 134	CRUISEI 5/1/202		CuFt 1	BdFt W
	ree No.PFA	Spc S	C T DBH FF FF	T Bole Tot. D Hgt Hg PRDV	S T SG I	Len	FIFI	Bark	Ao	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
			· · · · · · · · · · · · · · · · · · ·									-199	499	2230	2230
0007	0005 B11	DF	1 12.0 4 89		1 13	30		.919		11,57	8,50	18	18 5	60	60 20
			BA = 40.00	T/A = 50,930	214	16		.919	.530	8.50	6.43	5 23	23	20 <i>80</i>	20 <i>80</i>
	0006 B11	DF	1 11.0 4 86	G 37 65	113	36		.919	,530	10.77	6.43	16	16	60	60
			BA = 40,00	T/A = 60.610								16	16	60	60
	0007 B11	DF	1 39.0 4 85		112	40	2	.919		39.35	26.87	250	250	1250	1190
			BA == 40.00	T/A = 4.822	212 313	40 20		.919 .919		26,87 18,34	18.34 11.83	116 27	116 27	530 80	530 80
					515	20		.917	.550	10,54	11.05	393	393	1860	1800
	0008 B1 I	DF	1 11.0 4 81 BA = 40.00	G 25 40 T/A = 60.610	114	24	6	.919	.530	10.77	6,43	11 11	11 77	30 <i>30</i>	20 20
I															(0.0
	0009 B11 C	DF ount	1 23.2 4 87 BA = 40.00	H 79 104 T/A = 13.684	1 xx	30						139 <i>139</i>	139 <i>139</i>	636 <i>636</i>	627 627
PLOT			BA = 360.00	T/A == 262,386								12,837	12,837	52,600	50,899
0008	0001 B11	DF	1 14.0 4 90	G 59 84	113	40	6	.919	.530	13.44	9.11	31	31	120	100
			BA = 40,00	T/A = 37,418	214	18		.919	.530	9,11	6,25	7	7	20	20
			1 420 4 67	1 100 107	1.10	*0		010	620	40,74	28,81	38 272	38 272	<i>140</i> 1460	<i>120</i> 1460
	0002 BI I	Dr	1 41.0 4 87 BA=40.00	4 100 126 T/A = 4,363	112 212	40 40		.919 .919		28.81	19.28	132	132	600	600
					3 12	18		.919	.530	19.28	12.72	28	28	90	90
										10.00	10 - 1	432	432	2150	2150
	0003 B11	DF	1 18.0 4 88 BA = 40.00	G 88 114 T/A = 22.635	1 12 213	40 34		.919 .919		17.72 12.56	12.56 8,43	52 22	52 22	200 70	200 70
			DA - 40,00	1/7 22.035	314	12		.919	.530		6,25	4	4	10	10
												78	78	280	280
	0004 BII	DF	1 42.0 4 89		112	40 40	2	.919 .919		41.17 30,51	30.51 21,55	295 155	295 155	1640 760	1640 720
			BA = 40.00	T/A = 4,158	212 312	40 24	2	.919		21,55	13,35	43	43	150	150
					512	21			1000	51100	10,00	193	493	2550	2510
	0005 B11	DF	1 19.0 4 86	-	I 12	40	1	.919		18.94	12,70	56	56 22	200 60	190 60
			BA = 40.00	T/A = 20.315	213	40		.919	.530	12.70	6.44	22 78	78	260	250
	0006 B11	DF	1 15.0 4 84	G 68 98	113	40	2	.919	.530	15.15	9.62	37	37	120	110
			BA = 40.00	T/A ≈ 32,595	214	26		.919	.530	9,62	6,43	10	10	30	30
	0005 D1 1	DE	1 110 1 01	V 110 (20	1.10	20		010	520	41.68	30,99	47 151	47 151	150 820	140 780
	0007 BI I	DI	1 41.0 4 84 BA = 40.00	T/A = 4.363	1 2 212	20 40	1 3	.919 .919		30.99	24.08	172	172	1010	930
					3 12	32		.919	,530	24.08	15,52	75	75	280	280
					4 14	14		.919	.530	15.52	10.11	14	14	40	40
PLOT			BA = 280.00	T/A = 125.847								<i>412</i> 12,036	<i>412</i> 12,036	2150 51,109	2030 49,142
0009	0001 B11 C	DF Count	11 23.2 4 87 BA = 440.00	H 79 104 T/A = 150,520	1 _{XX}	30						139 <i>139</i>	139 <i>139</i>	636 <i>636</i>	627 627
PLOT			BA = 440.00	T/A = 150.520								20,940	20,940	95,798	94,430
0010	0001 BI 1	DF	1 38.0 4 91	4 120 152	1 12	40		.919	.530	36,78	28,75	240	240	1460	1460
			BA = 40.00	T/A = 5.079	212		3	.919		28.75	22.08	148	148	840	770
					3 12	36		.919	.530	22.08	13.02	68	68 (54	220	220
	0002 B11	DF	1 38.0 4 87	4 116 147	1 12	40		.919	.530	37,87	27,36	<i>456</i> 241	456 241	2520 1370	2450 1370
	DI	-•	BA = 40.00	T/A = 5.079	212		3	.919		27.36	20.60	132	132	700	650
					3 12	32		.919	.530	20.60	12,46	51	51	160	160
	0003 B1 I	ng	[18.0 4 87	G 64 82	113	40		.919	530	17.67	11.20	424 49	<i>424</i> 49	2230 180	2180 180
	V005 BI I	0f	BA = 40.00	T/A = 22.635	214	20		.919		11.20	6.96	49	10	20	20
1					300			.919		6.96	6,96				
	ARA - 1 -					10		010	***	26.00	14 10	59	59	200	200
	0004 BI 1	DF	1 25.0 4 86 BA = 40.00	4 104 131 T/A = 11,734	1 12 212	40 40		.919 .919		25.05 17.49	17.49 12.15	106 52	106 52	460 200	460 200
			DA - 40.00	1115 11.134	3 14	20		.919		12.15		13	13	40	40

TC TREESEC

TREE SEGMENT VOLUMES Project: DOEADEER

Page 4 Date 6/12/2023

ТWР 12S	RGE 09W	SC 2	TRACT UI2-MSTR	ТҮР МС	E	A	CRES 31.0		PLOTS 2		TRI	CES 134	CRUISE 5/1/20:		CuFt I	BdFt W
	ree No.PFA	Spc S	C T DBH FF FF	T Bole To D Hgt Hg		S SG	Len	FIFI	Bark	 Ao	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
		•											171	171	700	700
0010	0005 B1 I	DF	1 35.0 4 90	4 110 1	39	1 12	40		.919	.530	34.08	25,86	205	205	1150	1150
			BA = 40.00	T/A = 5.9		212	40		.919	.530	25.86	18.80	111	111	530	530
						3 13	28		.919	.530	18.80	11.27	37	37	120	120
	0004 101 1	50			<i>,</i> ,	1	10						353	353	1800	1800
	0006 B1 1	DF	1 33.0 4 91 BA = 40.00	4 114 1 T/A = 6,2		1 12 212	40 40		.919 .919		31.91 24.79	24.79 18.46	179 106	179 106	1010 530	1010 530
			DA 40,00	1111-0,	54	313	30		.919	.530	18.46	11.32	40	40	130	130
						- 15					10110	11,02	325	325	1670	1670
	0007 B1 1	DF	1 45.0 4 88			112	40		.919		44,56	33,00	338	338	1840	1840
			BA = 40.00	T/A = 3.6	522	212	40		.919		33.00	25,56	192	192	1150	1150
						312	40		.919	.530	25.56	14.21	94 624	94 624	290 <i>3280</i>	290 <i>3280</i>
PLOT			BA = 280.00	T/A = 60.	870								14,373	024 14,373	70,768	70,158
			20000										1,070	14,575	70,700	10,150
0011	0001 B11	DF Count	1 23.2 4 87 BA = 40.00	H 79 l T/A = 13		l xx	30						139 139	139 139	636 <i>636</i>	627 627
	0001 111 1	DE	1 41.0 4 85	4 130 1	5	110	40	2	010	530	d1 64	20.27	200	200	1600	1460
	0002 B11	Dr	1 41.0 4 85 BA = 40.00	4 150 m T/A = 4.3		112 212	40 40	2	.919 .919		41.54 29.27	29.27 23.37	288 160	288 160	1520 940	1450 940
			Dit 10.00	1,711 1,5	.05	3 12	30		.919		23.37	17,17	73	73	350	350
						4 12	16		.919		17.17	12.81	21	21	80	80
													542	542	2890	2820
	0003 B1 I	DF	1 29.0 4 86			1 12	40	L	.919		29.06	20.32	144	144	700	680
			BA = 40.00	T/A = 8.7	20	212	40		.919		20.32	14.24	71	71	290	290
						3 13	20		.919	.530	14.24	9.68	17 232	17 232	50	50
	0004 B11	DF	1 19.0 4 87	4 88 1	10	1 12	40	1	.919	530	18.82	13,00	232 56	232 56	<i>1040</i> 200	1020 190
	0001 151 1	01	BA = 40,00	T/A = 20		213	30	t	.919	.530	13.00	9.03	21	21	70	70
						3 14	14		.919	.530	9.03	6.29	5	5	20	20
													82	82	290	280
	0005 B11	DF	1 35.0 4 86			1 12	40	1	.919		35.16	25.03	213	213	1150	1120
			BA = 40.00	T/A = 5.9	87	212	40	2	.919		25.03	19.22	116	[16	600	570
						3 13	36		.919	.330	19.22	11.33	51 380	51 380	160 <i>1910</i>	160 <i>1850</i>
	0006 B11	DF	1 36.0 4 85	4 112 14	2	1 12	24		.919	.530	36.38	27.14	142	142	820	820
			BA == 40.00	T/A = 5.0	59	200	12		.919	.530	27.14	25.71				
						312	40		.919		25,71	19.33	116	116	600	600
						413	34		.919	.530	19.33	10.95	45	45	130	130
	0007 Bil	DF	1 18.0 4 87	G 70 5	90	113	40	i	.919	530	17.73	11,63	<i>303</i> 49	<i>303</i> 49	<i>1550</i> 180	<i>1550</i> 180
	000) DI I	51	BA = 40,00	T/A = 22		214	28		.919		11,63	6.43	14	14	30	30
													63	63	210	210
PLOT			BA = 280.00	T/A = 81,	363								13,373	13,373	61,238	60,071
0012	0001 B1 1	DF	1 34.0 4 86	4 97 L		112	40		.919	520	34.01	23,48	193	193	940	940
V012	OOOT DI I	Di	BA = 40.00	T/A = 6.3		212	40	L	.919		23.48	15.20	88	88	360	350
						3 14	14		.919		15.20	10.75	14	14	40	40
													295	295	1340	1330
	0002 B1 I	DF	1 36.0 4 84			112		1	.919		36.47	27.09	120	120	680	650
			BA = 40.00	T/A = 5.6	59	212	40	3	.919		27.09	19,35	127	127	600	550
						3 12	20		.919	,530	19.35	13,22	32 279	32 279	120 1400	120 1320
	0003 B11	DF	1 37.0 4 90	4 103 13	10	1 12	30	1	.919	.530	35.98	28,57	176	176	1400	1320
			BA = 40.00	T/A = 5.3		212	40	-	.919		28.57	21.08	143	143	760	760
						3 12	30		.919		21.08	12.24	51	51	150	150
										•.		.	370	370	2000	1960
	0004 B11	DF	1 39.0 4 88 BA = 40.00			112	40	4	.919		38.37	27.12	249	249	1370	1230
			BA = 40.00	T/A = 4.8	22	212 312	32 16		.919 .919		27.12	18,60	98 23	98 23	430	430
						31Z	10		.919	.530	18,60	12.18	23 370	23 370	80 1880	80 1740
PLOT			BA = 160.00	T/A = 22.	182							·	7,217	7,217	36,203	34,797
0013	0001 B11	DF	1 23.2 4 87	H 79 10		ł xx	30						139	139	636	627
0013		Dr Count	BA = 40.00	T/A = 13.		* 33	50						139	139	636 636	627
	0002 B11	BM	2 20.8 4 87	H 47 (2] XX	33						62	62	207	184

.

TREE SEGMENT VOLUMES Project: DOEADEER

 Page
 5

 Date
 6/12/2023

TWP 12S	RGE 09W	SC 2		RACT 12-MSTR		TYPE MC	AC	CRES 31.00)	PLOTS 25		TRE	ES 134	CRUISEI 5/1/202		CuFt 1	BdFt W
Tr	ee		С			Bole Tot.	S					Dia	Dia	Gross	Net	Gross	Net
Plot N	No.PF A	Spc S	T	DBH FF FF	D	Hgt Hg PRDVT	SG 1	Len	FIFI	Bark	Ao	Bult	Төр	CuFt	CuFt	BdFt	BdFt
	1	Count		BA = 80.00		T/A = 33.972								62	62	207	184
0013	0003 B1 i	RA Count	3	23.7 4 87 BA = 120.00	Н	68 89 T/A = 39,176	l xx	30						80 80	80 <i>80</i>	298 <i>298</i>	194 <i>194</i>
PLOT			Ŧ	BA = 240.00		T/A = 86.832								7,154	7,154	27,432	22,430
0014	0001 B11	DF	1	37.0 4 83	4	123 156	1 12	40		.919	.530	38,00	25,62	227	227	1150	1150
				BA = 40.00		T/A = 5.357	212	40		.919		25.62	19.93	116	116	600	600
							313	40	2	.919	.530	19.93	11.29	56	56	180	170
	0002 Bil	DØ	1	25.0 4 92	4	112 142	1 12	40	ı	.919	\$30	23,98	18,94	<i>399</i> 101	<i>399</i> 101	<i>1930</i> 530	<i>1920</i> 520
	0002 61	Dr	•	BA = 40.00	4	T/A = 11.734	212	40	1	.919		18.94	13.94	59	59	240	240
							313	30	-	.919		13.94	8,23	22	22	60	60
							- 12							182	182	830	820
	0003 B1 I	DF	1	28.0 4 94	4	115 146	1 12	40		.919		26.47	21.75	131	131	760	760
				BA=40.00		T/A = 9.354	212	40		.919		21,75	16,29	83	83	400	400
							313	32		.919	.530	16,29	9.68	32	32	90 1250	90 1350
	0004 014	DE		200 4 01		117 130	1 12	40		.919	520	27.09	21.11	<i>246</i> 137	246 137	<i>1250</i> 760	<i>1250</i> 760
	0004 BI I	DF	1	28.0 4 91 BA = 40.00	4	117 148 T/A = 9.354	212		1	.919		21.09	15.98	79	137	360	350
				1377 - 40.00		177 - 9.334	313	34	1	.919		15.98	9,37	31	31	100	100
							515	PC		.,,,,,	,550	13.50	7,37	247	247	1220	1210
	0005 B11	BM	1	21,0 4 87	н	55 68	11K	34	2	.953	.558	21.25	13,92	61	61	210	190
				BA = 40.00		T/A = 16.630	21K	20	1	.953	.558	13.92	7.19	13	13	30	30
														74	74	240	220
	0006 B1 I	l DF	1	33.0 4 89	4	116 147	112	40		.919		32.41	24.30	185	185	1010	1010
				BA = 40.00		T/A = 6,734	212	40	1	.919		24,30	18,30	106	106	530	520
							313	32		.919	.530	18,30	11,07	42	42	[40	140
	0007 B1		1	18.0 4 92	C	96 123	112	40		.919	530	17.22	13.32	333 55	<i>333</i> 55	1680 240	<i>1670</i> 240
	VV07 DI 3	I DF	1	BA = 40.00	0	T/A = 22,635	213	40		.919		13.32	8.71	29	29	90	240
							3 14	14		,919	,530		6,25	5	5	20	20
DI OT														89	89	350	350
PLOT				BA ≈ 280.00		T/A = 81.800								14,373	14,373	66,412	65,747
0015	0001 B1	l DF Count	1	23.2 4 87 BA = 40.00	H	79 104 T/A = 13.684	1 xx	30					,	139 139	139 <i>139</i>	636 <i>636</i>	627 627
	0002 B1	l DF	1	38.0 4 90	4	101 127	1 12	40	1	.919	.530	36.93	27.68	233	233	1370	1330
				BA = 40.00		T/A = 5,079	212	40	5	.919	.530	27.68	18,71	122	122	530	470
							3 12	18		.919	.530	18.71	12.57	26	26	90	90
														381	381	1990	1890
	0003 B1	I DF	1	44.0 4 87	4		1 12	40	,	.919		43.79	31.29	321	321	1780	1780
				BA = 40.00		T/A = 3.788	212 312	40 24	1	.919 .919		31,29 22,27	22,27 14,07	167 48	167 48	840 170	810 170
							212	24		,717	,550	£2,21	14,07	48 536	40 536	2790	2760
	0004 B1	1 DF	1	33.0 4 86	4	114 144	1 12	40		.919	.530	33.12	23.43	186	186	940	2700 940
				BA = 40.00		T/A = 6,734	212	40		,919		23.43	17.45	96	96	460	460
							3 13	32		.919	,530	17.45	10,16	37	37	120	120
														319	319	1520	1520
	0005 B1	1 DF	1	32,0 4 91	4		112	40		.919		30.96	24.10	172	172	1010	1010
				BA = 40.00		T/A = 7.162	212	40	I	.919		24.10	18,14	106	106	530	520
							3 13	34		.919	.530	18.14	10.43	42 <i>320</i>	42 320	130 1670	130 1660
	0006 B1	I DF	1	31.0 4 90	1	118 149	1 12	40		.919	.530	30,22	23,14	320 166	166	3070 940	7000 94(
	0000 D1		•	BA = 40.00	"	T/A = 7.631	212	40	1	.919		23.14	17.60	96	96	460	450
							3 13	36		.919		17.60	10.00	42	42	140	140
				D L _ 0 10 00		T/A (1 070								304	304	1540	1530
DI AT				BA = 240,00		T/A = 44,079								12,629	12,629	63,334	62,440
PLOT				NIA 1 0 2	- a	101 127	1 12	40	1	.919	,530	35,04	22.56	194	194	840	810
ріот 0016	0001 B1	I DF	1	34.0 4 82	. 4												
	0001 B1	I DF	1	34.0 4 82 BA ≈ 40.00	. 4	T/A = 6.344	212	40		.919		22.56	15,25	83	83	360	
	0001 B1	I DF	ł		. 4			40 18		.919 .919		22.56 15.25	15,25 10,25	18	18	60	60
	0001 B1					T/A = 6.344	212	18	2		.530						360 60 1230 660

				Pı	oject:	D	OEAD	EER					ate	6/12/2	023
түүр	RGE	sc	TRACT	TYPE	А	CRES		PLOTS	8	TRI	EES	CRUISE	D DATE	CuFt	BdFt
128	09W	2	U12-MSTR	MC		31.0	0	2	9		134	5/1/20	23	1	W
	ree No.PFA	Spc S	C T DBH FF FF	T Bole Tot. D Hgt Hg PRDV	S T SG	Len	FIFI	Bark	Ao	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
0016					313	40		,919	,530	18.52	10.14	50	50	150	150
	0000 51 1	DE	1 010 1 00	1 0C 100		10		010				277	277	1390	1330
	0003 B11	DF	1 24.0 4 88 BA = 40.00	4 86 107 T/A = 12.732	1 12 213	40 40		.919 .919		23.59 16.51	16.51 8,84	92 37	92 37	400 90	40) 91
			10.00	114 ** 12.752	215	40		.717	.550	10.51	0,04	129	129	490	49
	0004 B11	DF	1 27.0 4 88	4 111 140	112	40		.919	.530	26,69	19,53	121	121	600	60
			BA == 40,00	T/A = 10.060	212	40		.919		19.53	14.29	67	67	290	29
					313	28		.919	.530	14.29	8,73	22 210	22 210	50 <i>940</i>	5
	0005 B11	DF	1 26.0 4 85	4 116 147	1 12	40		.919	.530	26,29	18.29	116	116	530	94 53
			BA = 40.00	T/A = 10.849	212	40		.919		18.29	13.77	59	59	240	24
					3 1 3	32		.919	.530	13.77	8.33	23	23	70	7
	0007 D1 1	DF	1 220 1 02	1 OC 101	1.10	40		010	600	<u></u>	16.06	198	198	840	84
	0006 B1 1	Dr	1 23.0 4 92 BA ≈ 40.00	4 96 121 T/A = 13,864	1 12 213	40 40		.919 .919		21.99 16.96	16.96 10.84	83 43	83 43	400 150	40 15
			BII 40.50	1/11 15,604	314	14		.919		10.84	7.53	-15	-,3	20	2
								,				133	133	570	57
	0007 B11	DF	1 43.0 4 84		1 12	40	1	.919		43.77	29.74	305	305	1520	148
			BA = 40.00	T/A == 3.966	212	40		.919		29.74	21.89	149	149	760	76
					3 12	28		.919	.530	21.89	13,62	50 504	50 504	170 2450	17 241
	0008 B1 I	DF	1 43.0 4 83	4 126 160	1 12	40	1	.919	.530	44.17	29.86	314	314	1520	148
			$BA \approx 40.00$	T/A = 3.966	212	40	1	.919	.530	29.86	23.50	160	160	940	92
					312	40		.919	.530	23.50	14.00	84	84	290	29
PLOT			BA = 320.00	T/A = 69.414								<i>558</i> 15,945	558 15,945	2750 71,937	269 70,89
0017	0001 B11	DF Count	6 23.2 4 87 BA ≕ 240.00	H 79 104 T/A = 82,102	1 xx	30						139 <i>139</i>	139 139	636 <i>636</i>	62 <i>62</i>
PLOT			BA = 240.00	T/A = 82.102								11,422	11,422	52,254	51,50
0018	0001 B11	DF	1 17.0 4 88	G 83 110	1 13	40		.919	530	16.72	11.76	46	46	180	18
0010	0001 D11	DI	BA = 40,00	T/A == 25,377	213	40		.919		11.76	6,61	19	19	60	6
												65	65	240	24
	0002 B1 1	DF	1 33.0 4 50		100	15		.919		41.81	15.32				
			BA = 40.00	T/A == 6.734	212	40	5	.919		15.32 12.31	12.31	45	45	200	7
					313	40		.919	.530	12,31	7,78	24 69	24 69	70 270	7 14
	0003 B1 1	DF	1 32.0 4 89	K 120 150	112	40		.919	.530	31.44	23.64	173	173	940	94
			BA = 40.00	T/A = 7.162	212	40		.919	.530	23.64	18,03	101	101	530	53
					3 13	38		.919	.530	18.03	9.85	44	44	110	11
	0004 B11	DE	27.0 4 88	H 120 144	1 12	40		.919	520	26.70	19,61	318	318	1580	158
	0004 DI I	Dr	BA = 40,00	T/A = 10.060	212	40		.919		19.61	19.01	121 67	121 67	600 290	60 29
					3 13	38		,919		14.62	7.11	28	28	70	7
												216	216	960	96
	0005 B11	DF	1 26.0 4 88		1 12	40		.919		25.63	18.37	111	111	530	53
			BA = 40.00	T/A = 10.849	212	34 3		.919		18.37	13,06	50	50	210	21
					300	э		.919	.550	13.06	12,48	161	161	740	74
	0006 B1 I	DF	1 33.0 4 88	J 115 139	112	40		,919		32,62	23,84	179	179	940	94
			BA = 40.00	T/A = 6.734	212	40		.919		23.84	[7.33	96	96	460	46
					313	32		.919	.530	17.33	9.19	35	35	90 1.000	9
	0007 BI 1	DF	1 31.0 4 90	J 115 141	1 12	40		.919	.530	30.19	22.94	<i>310</i> 161	<i>310</i> 161	1490 840	149 84
			BA = 40.00	T/A = 7.631	212	40		.919		22,94	16,80	87	87	400	40
					3 13	32		.919	,530	16,80	9.19	32	32	90	9
	4000 F	DE			4						10.00	280	280	1330	133
	0008 BI 1	DF	1 26.0 4 91 BA = 40.00	H 125 151 T/A = 10.849	112 212	40 40		.919 .919		25,16 19,65	19.65 15.01	116 70	116 70	600 360	60 36
			DA - 40,00	112 - 10'943	313	40 40		.919		19.65	15.01 7.81	70 32	32	300 70	30 7
					515	10		.713			7.01	218	218	1030	103
	0009 B1 I	DF	1 28.0 4 92		112	40		.919		26.93	21.61	131	131	760	76
			BA=40.00	T/A = 9.354	212	40		.919		21.61	17.17	87	87	460	46
					312	32 14		.919		17.17	12.14	42		160	16 31
					414	[4		.919	.530	12.14	9,19	10	10	30	2

TREE SEGMENT VOLUMES

Page 6

1

TREE SEGMENT VOLUMES Project: DOEADEER

7 6/12/2023

Page

Date

тwр 128	RGE 09W	SC 2		ACT 2-MSTR			ТҮРЕ МС		A	CRES 31.0		PLOTS 29		TRE	EES 134	CRUISEI 5/1/202		CuFt 1	BdF1 W
'n	ree		с			Т	Bole Tot.		S					Dia	Dia	Gross	Net	Gross	Net
Plot 1	No.PF A	Spc S	Т	DBH FF	FF	D	Hgt Hg	PRDVT	SG	Len	FIFI	Bark	Ao	Butt	Тор	CuFt	CuFt	BdFt	BdFt
0.010	0010 01			22.0 4	00		110 [4]		1 12	40	<u>^</u>	.919	620	21.75	15.92	270 79	270 79	1410 360	14. 34
0018	0010 BI	I DF	1	22.0 4 BA ≈ 40,00		н	T/A = 15.15	3	213	40	2	.919		15.92	15.92	42	42	180];];
									314	28		.919	.530	11.67	7.17	15	15	50	
PLOT			F	3A = 400.00			T/A = 109.9	∩ <i>4</i>								136 19,487	/36 19,487	<i>590</i> 90,399	5 89,2
501				SA - 400.00			17A - 109.9	04								17,407	17,407	10,377	07,2
0019	0001 B1	1 DF	1	21.0 4 BA = 40.00		4	91 114 T/A = 16.63	in.	1 12 2 13	40 36		.919 .919		21.44 13,81	13.81 8.91	71 26	71 26	240 80	2
				Б <u>Л</u> — 40.00			1/A - 10.03	10	3 14	12		.919	.530	8,91	6.41	20 4	20 4	10	
										•						101	101	330	3
	0002 B1	1 DF	i	9,0 4 BA = 40.00		G	29 58 T/A = 90,54		114	28		.919	.530	8.83	6.43	9 9	9 9	30 <i>30</i>	
	0002 01	1 DF		26.0 4	95	đ	110 139		i 12	40		.919	520	26,27	18.14	116	116	530	5
	0003 B1	ı Dr	1	26.0 4 BA = 40.00		4	T/A = 10,84		212	40		.919		20,27 18.14	13.14	59	59	240	2
									3 13	28		.919		13.19	7.91	19	19	50	
					-											194	194	820	ł
	0004 B1	1 DF	1	23.0 4 BA = 40.00		4	97 122 T/A = 13.86		1 12 213	40 40		.919 .919		23.18 15.70	15,70 10,16	88 39	88 39	360 150	3
				Б А = 40,00	,		1 <i>11</i> 1	/**	213 314	40 14		.919		15,70	7.19	39 7	39 7	20	1
									- 11							134	134	530	-
	0005 B1	1 DF	1	24.0 4		4	117 148		112	40		.919		23,40	17,90	96	96	460	4
				BA = 40.00)		T/A = 12.73	32	212	40		.919		17.90	13.54	55	55	240 60	:
									3 13	34		.919	.530	13.54	7.94	22 [73	22 173	60 760	
	0006 B1	I DF	1	21.0 4	85	4	104 131		1 12	40	1	,919	.530	21.19	14.52	75	75	290	:
				BA = 40.00)		T/A = 16.63	30	213	40		.919		14.52	10,09	36	36	150	
									3 14	20		.919	,530	10.09	6,75	9 120	9 120	20 460	
	0007 B1	1 DF	1	28.0 4	88	4	125 159		1 12	40		.919	.530	27.74	20,60	132	132	700	-
				BA = 40.00			T/A = 9.35		212	40		.919		20,60	16,15	78	78	400	4
									3 13	40		.919	.530	16,15	9.47	40	40	120	
	0008 BI	1 DF	1	28.0 4	88	А	123 156		1 12	40		.919	530	27.73	20,55	250 132	250 132	<i>1220</i> 700	1.
	0000 D1	1 121	1	BA == 40.00		т	T/A = 9.35		212	40		.919		20.55	15.99	75	75	360	:
									3 13	40		.919	.530	15.99	9.06	37	37	120	
	0000 D1	1 00		20.0 4	07	,	107 126		1.10	10		010	620	20.06	20.62	244 138	244	1180 700	1.
	0009 B1	I DF	1	29,0 4 BA ≈ 40.00		4	107 135 T/A = 8.720		112 212	40 40		.919 .919		28.86 20.62	20.62 14.68	138	138 71	290	
				Dit 10.00			1771 0.125		313	24		.919		14.68	9.27	21	21	60	
																230	230	1050	I
	0010 B1	1 DF	1			4	124 157		1 12	40		.919		48.24		393 212	393 212	2000 1250	2) 11
				BA = 40.00	,		T/A = 3.18	J	212 312	40 40		.919 .919		34.47 26.92		103	103	360	1.
									~ 14						10.00	708	708	3610	3
	0011 BI	I DF	1	28.0 4		4	110 139		112	40		.919		27.47	20.46	132	132	700	
				BA = 40.00			T/A = 9.35	4	212 313	40 28		.919 .919		20.46 14.87	14.87 8.91	71 22	71 22	290 50	
									دا د	20		.717		17.0/	0,71	225	225	10-10	I
	0012 BI	1 DF	1			4	110 139		112	40		.919		30.87		161	161	840	1
				BA = 40.00)		T/A = 7.63	1	212	40		.919		22.14		87 18	87 19	400	
									313	26		.919	,530	16.09	10,18	28 276	28 276	90 1330	L
PLOT]	BA = 480.00)		T/A = 208.8	45								23,747		104,751	104,
0020	0001 B1	1 DF	I	26.0 4	89	Н	105 127		112	40		.919	,530	25.46	18.71	111	111	530	:
				BA = 40.00)		T/A = 10.8	49	212	40		.919		18,71		56	56	200	:
									3 14	24		.919	.530	12.60	6.80	13 <i>180</i>	13 180	30 760	
	0002 B1	1 DF	1	30.0 4	90	J	105 129		112	40		.919	.530	29.17	21,91	149	149	760	
	191			BA = 40.00			T/A = 8.14		212	40		.919		21.91	15.02	79	79	360	:
									314	24		.919	.530	15.02	8.58	21	21	40	
	0003 BI	I DF	1	10.0 4	80	G	40 80		114	20		.919	520	9.66	7,87	249 9	249 9	1160 30	1
	10 000	1 DI.	1	BA = 40,04		U	40 au T/A = 73.3		200	18		.919		7.87		,	,	<i>V</i> ¢	
																9	9	30	

TREE SEGMENT VOLUMES Project: DOEADEER

 Page
 8

 Date
 6/12/2023

TWP 12S	RGE 09W	SC 2	TRACT U12-MSTR		TY) MC		, A	CRES 31.0		PLOTS 29		TRI	EES 134	CRUISE 5/1/202		CuFt 1	BdFt W
T	ree		с	· Т	Bole To	nt	s					Dia	Dia	Gross	Net	Grøss	Net
	No.PF A	Spc S	T DBH FF FF				-	Len	FIFI	Bark	Ao	Butt	Тор	CuFt	CuFt	BdFt	BdFt
0020	0004 B1	1 DF	1 37.0 4 91	0	135	79	1 12	40		.919	.530	35,91	28.53	233	233	1460	140
			BA == 40,00		T/A ¤ 5,	357	212	40		.919		28.53	23.50	154	154	940	94
							312	40		.919		23.50	16.43	92	92	400	40
							412	12		.919	.530	16.43	13.55	16 495	16 495	70 2870	282
	0005 B1	1 DF	1 30.0 4 89	I.	100	32	1 12	40		.919	530	29.40	21.74	149	495 149	2870 760	20. 70
	0000 51		BA = 40,00		T/A = 8.		212	40		.919		21.74	15.17	79	79	360	30
							313	18		.919	.530	15.17	10.77	18	18	60	
														246	246	1180	118
	0006 BI	I DF	1 36.0 4 90		115		112	30		.919		35.00	27.80	171	171	1030	103
			BA = 40.00		T/A = 5.	659	200	6		.919		27.80	26.92		101	(00	~
							312 413	40 36		.919 .919		26.92 19.11	19.11 7.35	121 40	121 40	600 60	60 6
							415	50		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.550	19.11	1.55	332	332	1690	169
	0007 BI	1 DF	1 29.0 4 88	н	100	18	112	40		.919	.530	28.56	20.35	138	138	700	70
			BA = 40.00		T/A = 8.	720	212	40		.919	,530	20,35	12,60	64	64	200	20
							314	18		.919	.530	12.60	7.01	11	11	30	3
	0000	1 55	1 410 4 20			4.4	1	10		010		10 **	00.00	213	213	<i>930</i>	93
	0008 BI	1 DF	1 41.0 4 88 BA = 40.00		115 I T/A = 4.		1 12 212	40 40		.919 .919		40.55 29.78	29.78 22.16	279 154	279 154	1520 840	152 84
			1325 - 40.00		117 - 3.	505	3 12	32		.919		22.16	12.87	58	58	160	10
							512	52		.,,,,,	,250	22.10	12.07	491	-191	2520	252
PLOT			BA = 320.00		T/A = 12	4,584								15,177	15,177	73,556	73,55
0021	0001 BI	1 DF Count	9 23.2 4 87 BA = 360.00		79 1 T/A = 12		1 xx	30						139 <i>139</i>	139 <i>139</i>	636 <i>636</i>	62 62
PL.OT		count	BA == 360.00		T/A ≈ 12									17,133	17,133	78,380	77,2
0022	0001 B1	I DF	1 26.0 4 87		100		1 12	40	4	.919		25.82	18.14	111	111	530	4
			BA = 40.00		T/A = 10	0.849	213	40		.919		18.14	11.66	53	53	180	12
							3 14	18		.919	,330	11,66	7.07	10 174	10 174	30 740	6
	0002 BI	1 DF	1 30.0 4 91	J	110 1	35	1 12	40		,919	,530	28.97	22.31	148	148	840	84
			BA = 40.00		T/A = 8,	149	212	40		.919		22.31	15.88	83	83	360	3(
							3 13	28		.919	.530	15.88	8.90	24	24	50	:
														255	255	1250	12:
	0003 B1	1 DF	1 20.0 4 90		104 1		1 12	40		.919		19.47	14.74	67	67	290	29
			BA = 40.00		T/A = 13	5.333	213	40		.919		14,74	10,58	36 11	36	150 30	15
							314	24		.919	.330	10,58	6,83	11	11 114	-470	3 42
	0004 BI	1 DF	1 30.0 4 88	J	105 1	30	112	40		.919	.530	29.61	21.45	149	149	760	70
			BA = 40.00		T/A = 8.		212	40		.919		21.45	14.80	75	75	290	29
							314	24		.919	.530	14.80	8.61	19	19	40	ć
PLOT			BA = 160.00		T/A = 45	.491								<i>243</i> 8,036	<i>243</i> 8,036	<i>1090</i> 35,714	109 35,17
0023	0001 BI	1 RA	2 23.7 4 87		68		1 xx	30						80	80	298	19
		Count	BA == 80.00		T/A ≕ 26									80	80	298	19
PLOT			BA = 80.00		17/A = 26	.117								2,087	2,087	7,784	5,03
0024	0001 Bl	1 RA	1 38.0 4 87		70		001	20		.953		38.67	30,57				
			BA ≈ 40.00		T/A = 5.	079	21K	30	8	.953		30.57	19.93	109	109	450	1.
							3 IK	18		.953	.558	19.93	7.62	21	21	30 180	2 10
	0002 B1	1 DF	1 35.0 4 88	I	120 1	43	1 12	40		.919	530	34.61	25.39	<i>130</i> 205	<i>130</i> 205	<i>480</i> [150	10 115
	0002 D1		BA = 40.00		T/A = 5.		212	40		.919		25,39	18.81	111	111	530	53
							313	38		.919		18,81	8,86	42	42	80	i
	0003 B1	I SN	1 20.0 4 87		45			-		26,000	,500			358	358	1760	17
			BA ≈ 40.00		T/A ≕ 18	5.555											
PLOT			BA = 120.00		T/A = 29	.400								2,804	2,804	12,975	11,34
0025	0001 B1	I DF	1 27.0 4 91	4	113 1	43	1 12	40		.919		26.11		126	126	700	70
			BA = 40.00		T/A = 10	0.060	212	40		,919	.530	20.25	15.00	71	71	290	2

TC TREESEGR

TREE SEGMENT VOLUMES Project: DOEADEER

Page 9 Date 6/12/2023

т ₩Р 128	RGE 09W	SC 2	TRACT UI2-MST	ſR		ТҮРЕ МС		A	CRES 31.0		PLOTS 2		TRI	æs 134	CRUISE 5/1/202		CuFt 1	BdFt W
	ee	g, 9	С Т ДВН	PE EE		Bole Tot.	PRDVT	S SG	T	FIFI	Bark		Dia	Dia	Gross CuFt	Net	Gross BdFt	Net BdFt
	No.PFA	Spc S		FF FF		Hgt Hg				FIFI		Ao	Butt	Тор		CuFt		
0025								313	30		.919	.530	15.00	9.03	26 223	26 223	70 1060	70 1060
	0002 BI I	BM	1 14,0	4 87	Н	38 56		1 IK	38		.953	,558	14.02	7,36	28	28	70	70
			BA = 4	0.00		T/A = 37.418									28	28	70	70
	0003 BI 1	DF	1 30.0	4 91	4	111 140		112	40		.919		29,00	22,44	148	148	840	840
			BA ⇔4	10.00		T/A ≈ 8,149		212	40		.919		22.44	16.42	87	87	400	400
								313	28		.919	.530	16.42	10.04	30 265	30 265	100 <i>1340</i>	100 <i>1340</i>
	0004 B1 t	DF	1 27.0	4 89	4	110 139		112	40		.919	.530	26.49	19.73	121	121	600	600
			BA = d	0.00		T/A = 10.060		212	40	1	.919		19,73	14.34	67	67	290	280
								313	28		.919	.530	14.34	8,60	22 210	22 210	50 940	50 <i>930</i>
	0005 B1 I	DF	1 33.0	4 83	4	106 134		1 12	40	1	.919	.530	33.80	22.35	180	180	940 840	930 810
			BA =			T/A = 6.734		212	40	·	.919	.530		15,79	83	83	360	360
								3 1 3	24		.919	.530	15,79	9.79	22	22	60	60
	0004 011	DP	1 30 4	یہ پر		110 140		110	40		010	500	20.00	<u>)</u> (, , ,	285	285	1260	1230
	0006 B1 1	DF	1 29.0 BA = 4	4 91 10.00	4	112 142 T/A = 8.720		112 212	40 40	1	.919 .919		28.03 21.73	21.73 15,99	143 79	143 79	760 360	760 350
			511	0.00		0.720		313	30	•	.919		15.99	9.45	28	28	70	70
															250	250	1190	1180
	0007 B1 1	DF	1 9.0		G	[4] 17		100	14		.919	.530	8.63	7.37				
			BA = c	10.00		T/A = 90.542												
	0008 B1 I	DF	1 26,0	4 86	4	99 125		1 12	40		.919	.530	26,02	18.03	116	116	530	530
			BA = 4		•	T/A = 10,849		213	40	1	.919	.530		11.94	53	53	180	180
								3 14	16		.919	.530	11.94	8.22	10	10	30	30
PLOT			BA = 32	0.00		T/A = 182.532	`								<i>179</i> 13,605	179 13,605	740 60,550	740 60,160
			BA-32	.0.00		1/// - 102.557	4								15,005	13,005		00,100
0026	0001 B1 I	BM	1 33.0	4 87	J	53 61		1 00	20		.953	.558	33.22	26.25				
			BA = 4	0.00		T/A = 6.734		21K	20		.953		26.25	17.85	57	57	230	230
								3 I K	12		.953	.558	17.85	8,63	13 70	13 70	20 250	20 250
	0002 B[]	RA	1 29.0	4 87	J	62 75		100	12		.953	.558	29,48	24,92	70	70	250	250
			BA≃∙	10.00		T/A = 8,720		21K	30	8	.953	.558	24.92	17.57	77	77	350	70
								31K	18		.953	.558	17.57	9.53	20	20	40	40
PLOT			BA = 80	.00		T/A = 15.455									97 1,317	97 1,317	<i>390</i> 5,085	110 2,643
															-,	-,	-,	_,
0027	0001 BI I			4 87	Н	68 89		l xx	30						80	80	298	194
		Count	BA =	120.00		T/A = 39.176									80	80	298	194
	0002 B11	SN	1 20.0	4 87	н	45 57		1 xx										
		Count	BA =		••	T/A = 18.335		- 121										
NOT																		
PLOT			BA = I6	60,00		T/A = 57,511									3,130	3,130	11,675	7,609
0028	0001 B11	l DF	1 33.0	4 91	к	130 160		1 12	40		.919	.530	31.97	25.14	185	185	1150	1150
			BA = 4	10.00		T/A = 6.734		212	40		.919		25,14	19,81	116	116	600	600
								3 12	34		.919		19,81	13.27	54	54	210	210
								4 14	12		.919	,530	13.27	10.11	10 365	10 365	40 2000	40 2000
	0002 B11	I DF	1 26.0	4 89	н	110 133		1 12	40		.919	.530	25.48	18.86	111	111	530	530
			BA =	10.00		T/A = 10.849	•	212	40		.919		18.86	13,26	59	59	240	240
								3 14	28		,919	,530	13.26	7,09	19 189	19 189	50 820	50 <i>820</i>
	0003 B11	I DF	1 33.0	4 89	J	120 145		1 12	40		.919	.530	32.40	24,26	189	189	820 1010	820 1010
		~-	BA = 4			T/A = 6.734		212	40		.919		24.26	18.11	105	106	530	530
								3 13	38		.919	,530	18.11	8.89	42	42	80	80
	0004 011	1.02	1	1 00	c	116 131		110	10		010	200	22.00	17 10	333	333	1620	1620
	0004 B1 I	i Dř	t 24.0 BA ≔4		U	110 131 T/A = 12,732		1 2 213	40 40		.919 .919		23.69 17.19	17.19 11.97	96 49	96 49	460 180	460 180
			2			_, 10,/ <i>0</i> 2		314	28		.919		11.97	6.19	14	14	30	30
															159	159	670	670
	0005 B1 I	DF		4 92	J			112	40		.919		27.89	22.35	142	142	840	840
			BA = A	10.00		T/A = 8.720		212	40		.919	.530	22,35	17.67	92	92	460	460

TC TRE	EESEGR			TREE	SEGM	IENT	VOL	UMES				Р	age	10	
				Ргој	eet:	D	OEAD	EER				D	late	6/12/2	023
TWP	RGE	SC	TRACT	TYPE	A	CRES		PLOTS	;	TRI	EES	CRUISE	D DATE	CuFt	BdFt
128	09W	2	UI2-MSTR	MC		31.0	0	29	9		134	5/1/202	23	1	W
Tr	ee		C i	Bole Tot.	S					Dia	Dia	Gross	Net	Gross	Net
Plot N	lo.PF A	Spc S	T DBH FF FF I	D Hgt Hg PRDVT	SG	Len	FIFI	Bark	Aə	Butt	Тор	CuFt	CuFt	BdFt	BdFt
0028					3 12	32		.919	.530	17.67	12.34	42	42	160	160
					414	14		.919	.530	12.34	9.19	10	10	30	30
												286	286	1490	1490
	0006 B11	DF	1 24.0 4 89 F		112	40		.919		23,46	17,01	96	96	460	460
			BA = 40.00	T/A = 12.732	213	40		.919		17.01	10.44	46	46	150	150
					314	12		.919	.530	10.44	7.35	6	6	20	20
												148	148	630	630
PLOT			BA = 240.00	T/A = 58,503								13,154	13,154	62,821	62,821
0029	0001 B11	DFL	1 55.0 4 86 4	124 157	113	40	6	.919	.530	55.28	39.67	514	514	2800	1960
			BA == 40.00	T/A ≈ 2,424	213	40	3	.919	,530	39,67	31.35	286	286	1780	1460
					313	40	6	.919	,530	31,35	18,97	145	145	530	450
												945	945	5110	3870
	0002 B11	RA	1 17.0 4 87 H	i 69 96	1 1 K	40		.953		17.43	11.76	49	49	180	180
			BA = 40.00	T/A = 25.377	21K	28		.953	.558	11.76	7.43	15	15	50	50
												64	64	230	230
	0003 B11	BM	1 32.0 4 87 H		11K	40	9	.953		32.65	21.02	168	168	760	590
			BA = 40.00	T/A = 7,162	21K	32	3	,953	.558	21,02	6.98	40	40	50	40
												208	208	810	630
PLOT			BA = 120.00	T/A = 34.963								5,405	5,405	24,027	19,731
түре			BA = 255.17	T/A = 87.671								11,525	11,525	52,183	50,774

IC PSTATS					DJECT S DJECT		TICS ADEER			PAGE DATE	1 6/12/2023
WP RGI	E S	SC TRACT	1	TYPE		AC	RES	PLOTS	TREES	CuFt	BdFt
128 09	(01 U3-A	מ	АC			19.00	29	164	1	W
					TREES		ESTIMATED TOTAL		ERCENT SAMPLE		
		PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL		29	164		5,7						
CRUISE DBH COUN REFOREST	т	15	86		5.7		1,397		6.2		
COUNT BLANKS 100 %		14	78		5.6						
				STAI	ND SUMM.	ARY					
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DF		73	61,3	23,9	91	39.0	190.3	45,841	45,179	9,869	9,869
R ALDER		5	8.0	21.8	64	4.4	20.7	2,508	2,490	743	743
SNAG		4	3.7	16.5	87	1,4	5.5		1.170		
DF LEAVE		2 2	.2	67.2 34.6	128 55	0.5 0.5	4.1 2.8	1,214 249	1,162 223	222 74	222 74
BL MAPLE TOTAL		2 86	.4 73.5	34.6 23.6	55 88	0,5 46,0	2.8 223.4	249 49,812	49,054	10,908	74 10,908
CL 68. SD: 1.0		COEFF VAR.%	S.E.%	L	SAMPLI OW	E TREES - AVG	BF HIGH	ł	OF TREES F	EQ. 10	INF. POP. 1
			S.E.% 8.0	L				#		-	
SD: 1.0		VAR.%	8.0 19.3	L	OW 1,196 276	AVG	HIGH 1,404 408			-	
SD: 11 DF R ALDER SNAG DF LEAVE	0	VAR.% 68.5 38.8 40.4	8.0 19.3 37.8	L	OW 1,196 276 4,691	AVG 1,300 342 7,545	HIGH 1,404 408 10,399			-	INF. POP. 1
SD: 1.1 DF R ALDER SNAG DF LEAVE BL MAPLE	0	VAR.% 68.5 38.8 40.4 9.3	8.0 19.3 37.8 8.7	L	OW 1,196 276 4,691 489	AVG 1,300 342 7,545 535	HIGH 1,404 408 10,399 581	+	5	10	1
SD: LI DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL	0	VAR.% 68.5 38.8 40.4 9.3 103.6	8.0 19.3 37.8	L	OW 1,196 276 4,691 489 1,165	AVG 1,300 342 7,545 535 1,311	HIGH 1,404 408 10,399 581 <i>1,458</i>		5 429	<u>10</u> 107	1
SD: 1.0 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68,	01	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF	8.0 19.3 37.8 8.7 11.2		OW 1,196 276 4,691 489 1,165 SAMPLJ	AVG 1,300 342 7,545 535 1,311 3 TREES -	HIGH 1,404 408 10,399 581 1,458 • CF		5 429 ¥ OF TREES F	10 107 REQ.	1 4 INF. POP.
SD: 1.0 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.0	01	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.%	8.0 19.3 37.8 8.7 11.2 S.E.%		OW 1,196 276 4,691 489 1,165 SAMPLI OW	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG	HIGH 1,404 408 10,399 581 <i>1,458</i> • CF HIGH		5 429	<u>10</u> 107	1
SD: 1.1 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68,	01	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF	8.0 19.3 37.8 8.7 11.2		OW 1,196 276 4,691 489 1,165 SAMPLJ	AVG 1,300 342 7,545 535 1,311 3 TREES -	HIGH 1,404 408 10,399 581 1,458 • CF		5 429 ¥ OF TREES F	10 107 REQ.	1 4 INF. POP.
SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68. SD: 1.4 DF R ALDER SNAG DF LEAVE	01 0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3	8.0 19.3 37.8 8.7 <i>11.2</i> S.E.% 7.1 17.4 44.3		OW 1,196 276 4,691 489 1,165 SAMPLJ OW 253 84 817	AVG 1,300 342 7,545 535 1,377 3 TREES - AVG 272 102 1,467	HIGH 1,404 408 10,399 581 <i>1,458</i> • CF HIGH 292 120 2,117		5 429 ¥ OF TREES F	10 107 REQ.	1 4 INF. POP.
SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68. SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE	01 0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4	8.0 19.3 37.8 8.7 11.2 S.E.% 7.1 17.4 44.3 22.8		OW 1,196 276 4,691 489 <i>1,165</i> SAMPLJ OW 253 84 817 139	AVG 1,300 342 7,545 535 1,377 3 TREES - AVG 272 102 1,467 180	HIGH 1,404 408 10,399 581 1,458 • CF HIGH 292 120 2,117 221		5 429 4 OF TREES F 5	10 107 REQ. 10	1 4 INF. POP. 1
SD: 1.4 R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68. SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL	01_0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4 94.5	8.0 19.3 37.8 8.7 <i>11.2</i> S.E.% 7.1 17.4 44.3		OW 1,196 276 4,691 489 1,165 SAMPLJ OW 253 84 817 139 247	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG 272 102 1,467 180 275	HIGH 1,404 408 10,399 581 <i>1,458</i> • CF HIGH 292 120 2,117	<u> </u>	5 429 4 OF TREES F 5 356	10 107 REQ. 10 89	1 1 1 1 1 4
SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68,	0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4 94.5 COEFF	8.0 19.3 37.8 8.7 11.2 S.E.% 7.1 17.4 44.3 22.8 10.2	L	OW 1,196 276 4,691 489 1,165 SAMPLJ OW 253 84 817 139 247 TREES/	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG 272 102 1,467 180 275 ACRE	HIGH 1,404 408 10,399 581 1,458 • CF HIGH 292 120 2,117 221 304	<u> </u>	5 429 4 OF TREES F 5 356 4 OF PLOTS F	10 107 EEQ. 10 89 REQ.	1 4 INF. POP. 1 INF. POP.
SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4	0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4 94.5 COEFF VAR.%	8.0 19.3 37.8 8.7 11.2 S.E.% 7.1 17.4 44.3 22.8 10.2 S.E.%	L	OW 1,196 276 4,691 489 1,165 SAMPLJ OW 253 84 817 139 247 TREES/ OW	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG 272 102 1,467 180 275 ACRE AVG	HIGH 1,404 408 10,399 581 1,458 • CF HIGH 292 120 2,117 221	<u> </u>	5 429 4 OF TREES F 5 356	10 107 REQ. 10 89	4 INF. POP. 1 INF. POP.
SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68,	0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4 94.5 COEFF	8.0 19.3 37.8 8.7 11.2 S.E.% 7.1 17.4 44.3 22.8 10.2	L	OW 1,196 276 4,691 489 1,165 SAMPLJ OW 253 84 817 139 247 TREES/	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG 272 102 1,467 180 275 ACRE	HIGH 1,404 408 10,399 581 1,458 • CF HIGH 292 120 2,117 221 304 HIGH	<u> </u>	5 429 4 OF TREES F 5 356 4 OF PLOTS F	10 107 EEQ. 10 89 REQ.	4 INF. POP. 1 INF. POP.
SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 4 CL 68, DF LEAVE BL MAPLE TOTAL	0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4 94.5 COEFF VAR.% 93.0	8.0 19.3 37.8 8.7 11.2 S.E.% 7.1 17.4 44.3 22.8 10.2 S.E.% 17.6	L	OW 1,196 276 4,691 489 1,165 SAMPLJ OW 253 84 817 139 247 TREES/ OW 51 5 1	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG 272 102 1,467 180 275 ACRE AVG 61 8 4	HIGH I,404 408 10,399 581 <i>1,458</i> CF HIGH 292 120 2,117 221 304 HIGH 72 11 6	<u> </u>	5 429 4 OF TREES F 5 356 4 OF PLOTS F	10 107 EEQ. 10 89 REQ.	4 INF. POP. I INF. POP.
SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 DF R ALDER SNAG DF LEAVE	0 1 0 1 0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4 94.5 COEFF VAR.% 93.0 218.6 380.4 309.2	8.0 19.3 37.8 8.7 11.2 S.E.% 7.1 17.4 44.3 22.8 10.2 S.E.% 17.6 41.3 71.8 58.4	L	OW 1,196 276 4,691 489 1,165 SAMPLJ OW 253 84 817 139 247 TREES/ OW 51 5 1 0	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG 272 102 1,467 180 275 ACRE AVG 61 8 4 0	HIGH 1,404 408 10,399 581 1,458 • CF HIGH 292 120 2,117 221 304 HIGH 72 11 6 0	<u> </u>	5 429 4 OF TREES F 5 356 4 OF PLOTS F	10 107 EEQ. 10 89 REQ.	4 INF. POP. I INF. POP.
SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE BL MAPLE	0 1 0 1 0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4 94.5 COEFF VAR.% 93.0 218.6 380.4 309.2 379.7	8.0 19.3 37.8 8.7 11.2 S.E.% 7.1 17.4 44.3 22.8 10.2 S.E.% 17.6 41.3 71.8 58.4 71.7	L	OW 1,196 276 4,691 489 1,165 SAMPLJ OW 253 84 817 139 247 TREES/ OW 51 5 1 0 0 0	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG 272 102 1,467 180 275 ACRE AVG 61 8 4 0 0 0	HIGH I,404 408 10,399 581 <i>1,458</i> CF HIGH 292 120 2,117 221 304 HIGH 72 11 6 0 1	<u> </u>	5 429 4 OF TREES F 5 356 4 OF PLOTS F 5	10 107 EEQ. 10 89 REQ. 10	INF. POP.
SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68. SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68. SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL	0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4 94.5 COEFF VAR.% 93.0 218.6 380.4 309.2 379.7 70.4	8.0 19.3 37.8 8.7 11.2 S.E.% 7.1 17.4 44.3 22.8 10.2 S.E.% 17.6 41.3 71.8 58.4	L	OW 1,196 276 4,691 489 1,165 SAMPLI OW 253 84 817 139 247 TREES/ OW 51 5 1 0 0 64	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG 272 102 1,467 180 275 ACRE AVG 61 8 4 0 0 74	HIGH 1,404 408 10,399 581 1,458 • CF HIGH 292 120 2,117 221 304 HIGH 72 11 6 0 1 83	3	5 429 4 OF TREES F 5 356 4 OF PLOTS F 5 205	10 107 REQ. 10 89 REQ. 10 51	INF. POP.
SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 CL 68, SD: 3.4 CL 7.4 CL 7	0 1 0 1 0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4 94.5 COEFF VAR.% 93.0 218.6 380.4 309.2 379.7 70.4 COEFF	8.0 19.3 37.8 8.7 11.2 S.E.% 7.1 17.4 44.3 22.8 10.2 S.E.% 17.6 41.3 71.8 58.4 71.7 13.3	L	OW 1,196 276 4,691 489 1,165 SAMPLJ OW 253 84 817 139 247 TREES/ OW 51 5 1 0 0 64 BASAL	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG 272 102 1,467 180 275 ACRE AVG 61 8 4 0 0 74 AREA/AC	HIGH 1,404 408 10,399 581 1,458 • CF HIGH 292 120 2,117 221 304 HIGH 72 11 6 0 1 83 RE	3	5 429 40F TREES F 5 356 40F PLOTS F 205 40F PLOTS F	10 107 REQ. 10 89 REQ. 10 51 REQ.	4 INF. POP. I INF. POP.
SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 CL 68, SD:	0 1 0 1 0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4 94.5 COEFF VAR.% 93.0 218.6 380.4 309.2 379.7 70.4 COEFF VAR.%	8.0 19.3 37.8 8.7 11.2 S.E.% 7.1 17.4 44.3 22.8 10.2 S.E.% 17.6 41.3 71.8 58.4 71.7 13.3 S.E.%	L	OW 1,196 276 4,691 489 1,165 SAMPLJ OW 253 84 817 139 247 TREES/ OW 51 5 1 0 0 64 BASAL OW	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG 272 102 1,467 180 275 ACRE AVG 61 8 4 0 0 74 AREA/AC AVG	HIGH 1,404 408 10,399 581 1,458 • CF HIGH 292 120 2,117 221 304 HIGH 72 11 6 0 1 83 RE HIGH	3	5 429 4 OF TREES F 5 356 4 OF PLOTS F 5 205	10 107 REQ. 10 89 REQ. 10 51	4 INF. POP. I INF. POP.
SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL	0 1 0 1 0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4 94.5 COEFF VAR.% 93.0 218.6 380.4 309.2 379.7 70.4 COEFF VAR.%	8.0 19.3 37.8 8.7 11.2 S.E.% 7.1 17.4 44.3 22.8 10.2 S.E.% 17.6 41.3 71.8 58.4 71.7 13.3 S.E.% 11.0	L	OW 1,196 276 4,691 489 1,165 SAMPLJ OW 253 84 817 139 247 TREES/ OW 51 5 1 0 0 64 BASAL OW 169	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG 272 102 1,467 180 275 ACRE AVG 61 8 4 0 0 74 AREA/AC AVG 190	HIGH 1,404 408 10,399 581 1,458 CF HIGH 292 120 2,117 221 304 HIGH 72 11 6 0 1 83 RE HIGH 211	3	5 429 40F TREES F 5 356 40F PLOTS F 205 40F PLOTS F	10 107 REQ. 10 89 REQ. 10 51 REQ.	4 INF. POP. I INF. POP.
SD: 1.4 CL 68, SDF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 CL 68, SD:	0 1 0 1 0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4 94.5 COEFF VAR.% 93.0 218.6 380.4 309.2 379.7 70.4 COEFF VAR.% 58.3 216.9	8.0 19.3 37.8 8.7 11.2 S.E.% 7.1 17.4 44.3 22.8 10.2 S.E.% 17.6 41.3 71.8 58.4 71.7 13.3 S.E.% 11.0 41.0	L	OW 1,196 276 4,691 489 1,165 SAMPLJ OW 253 84 817 139 247 TREES/ OW 51 5 1 0 0 64 BASAL OW	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG 272 102 1,467 180 275 ACRE AVG 61 8 4 0 0 74 AREA/AC AVG	HIGH 1,404 408 10,399 581 1,458 • CF HIGH 292 120 2,117 221 304 HIGH 72 11 6 0 1 83 RE HIGH	3	5 429 40F TREES F 5 356 40F PLOTS F 205 40F PLOTS F	10 107 REQ. 10 89 REQ. 10 51 REQ.	4 INF. POP. I INF. POP.
SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL CL 68, SD: 1.4 DF R ALDER SNAG DF LEAVE BL MAPLE TOTAL	0 1 0 1 0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4 94.5 COEFF VAR.% 93.0 218.6 380.4 309.2 379.7 70.4 COEFF VAR.%	8.0 19.3 37.8 8.7 11.2 S.E.% 7.1 17.4 44.3 22.8 10.2 S.E.% 17.6 41.3 71.8 58.4 71.7 13.3 S.E.% 11.0	L	OW 1,196 276 4,691 489 1,165 SAMPLJ OW 253 84 817 139 247 TREES/ OW 51 5 1 0 0 64 BASAL OW 169 12	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG 272 102 1,467 180 275 ACRE AVG 61 8 4 0 0 74 AREA/AC AVG 190 21	HIGH 1,404 408 10,399 581 1,458 • CF HIGH 292 120 2,117 221 304 HIGH 72 11 6 0 1 83	3	5 429 40F TREES F 5 356 40F PLOTS F 205 40F PLOTS F	10 107 REQ. 10 89 REQ. 10 51 REQ.	4 INF. POP. 1 INF. POP. 1 INF. POP.
SD: 1.4 CL 68, SD: 1.	0 1 0 1 0	VAR.% 68.5 38.8 40.4 9.3 103.6 COEFF VAR.% 60.5 35.0 47.3 24.4 94.5 COEFF VAR.% 93.0 218.6 380.4 309.2 379.7 70.4 COEFF VAR.% 58.3 216.9 319.8	8.0 19.3 37.8 8.7 11.2 S.E.% 7.1 17.4 44.3 22.8 10.2 S.E.% 17.6 41.3 71.8 58.4 71.7 13.3 S.E.% 11.0 41.0 60.4	L	OW 1,196 276 4,691 489 1,165 SAMPLJ OW 253 84 817 139 247 TREES/ OW 51 5 1 0 0 64 BASAL OW 169 12 2	AVG 1,300 342 7,545 535 1,311 3 TREES - AVG 272 102 1,467 180 275 ACRE AVG 61 8 4 0 0 74 AREA/AC AVG 190 21 6	HIGH 1,404 408 10,399 581 1,458 • CF HIGH 292 120 2,117 221 304 HIGH 72 11 6 0 1 83 RE HIGH 211 29 9	3	5 429 40F TREES F 5 356 40F PLOTS F 205 40F PLOTS F	10 107 REQ. 10 89 REQ. 10 51 REQ.	1 4 INF. POP. 1 INF. POP. 1 2

TC PSI	TATS				PROJECT PROJECT		<u>STICS</u> EADEER			PAGE DATE	2 6/12/2023
TWP	RGE	SC	TRACT	TYF	ΥE	A	CRES	PLOTS	TREES	CuFt	BdFt
128	09	01	U3-A	МС			19.00	29	164	1 1	W
CL	68.1		COEFF		NET B	F/ACRE			# OF PLOTS I	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH			10	. 15
DF			58.4	11.0	40,196	45,179	50,161				
R AL	DER		219.3	41.4	1,459	2,490	3,521				
SNAG	3										
DF L	EAVE		299.6	56,6	\$05	1,162	1,820				
BL M	IAPLE		376.2	71.0	65	223	382				
тот	AL		46.9	8.9	44,710	49,054	53,398		91	23	10
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS I	REQ.	INF. POP.
SD;	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DF			58.9	11.1	8,772	9,869	10,966				
R AL	DER		218.6	41,3	436	743	1,050				
SNAC	3										
DF L	EAVE		299.8	56.6	97	222	348				
BL M	IAPLE		373.9	70,6	22	74	126				
тот	AL		44.2	8.3	9,998	10,908	11,818		81	20	2

•

.

--

TC PSPCSTGR

۰.

Species, Sort Grade - Board Foot Volumes (Project)

T12	28 R09W S01 T	уМС		19.00		Prøjcet: Acres	•	DO	EADI 19.(Page Date Time		1 12/202 17:39	3
		%						Perc	ent of N	let Boar	d Foot	Volume					Aver	age Lop	g	Logs
	S So Gr	Net	Bd. Ft.	per Acre		Total		I	Log Sca	le Dia.			Log I	.ength		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lſ	/Acre
DF	DO 2M	83	1.4	38,339	37,819		719			26	74	1	1	2	96	39	18	531	2,82	71.2
DF	DO 3M	14	2.1	6,395	6,260		119		88	3	9	2	10	6	82	36	8	103	0.81	60.7
DF	DO 4M	2	,8	664	658	· ·	13		100			74	26			18	7	26	0.45	25.1
DF	DO SM	1		443	443		8	ļ			100				100	40	39	2800	12.85	.2
ÐF	Totals	92	L.4	45,841	45,179	859	-858		14	22	65	2	2	3	93	35	12	287	1.82	157.2
RA	DO CR	100	.7	2,508	2,490		47		29	52	18	3	5		92	31	10	156	1,49	15.9
RÁ	Totals	5	.7	2,508	2,490		47		29	52	18	3	5		92	31	10	156	1,49	15,9
BM	DO CR	100	10.4	249	223		4		8		92	50			50	27	15	265	3.29	.8
вм	Totals	0	10,4	249	223		4		8		92	50			50	27	15	265	3.29	.8
DFL DFL		76 24	5,6	938 277	886 277		17 5				100 100	3	9	100	88	30 32	29 41	1570 2540	9.91 14.91	.6 .1
ĐFL	Totals	2	4.3	1,214	1,162		22				100	3	7	24	67	31	31	1727	10,75	.7
Tota	ls		1.5	49,812	49,054		932		14	23	63	2	3	3	92	34	12	281	1,83	174.7

ТС Р	PSTNDSU	М				5	Stand T	fable Sı	mmary				Page Date:	1 6/12/		
T125 R	R09W S03	і ТуМС		19.(00		Project Acres	D	OEADEE 19.0				Time: Grown Year		:40AM	
Spc T	DBH	Sample Trees	FF 16'	Tot Áv Ht	Trees/ Acre	BA/ Acre	Logs Acre	Averago Net Cu.Ft.	: Log Net Bd.F1.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	T e t a l s Cunits	MBF	
DF	9	1	87	72	5.902	2,61	5,90	12.0	60.0		71	354			13	7
DF	10	1	86	106	4,781	2.61	9.56	11.0	40.0		105	382			20	7
DF	11	1	84	116	3.951	2.61	7.90	13.0	45.0		103	356			20	7
DF	14	2	89	106	4.878	5.21	9.76	20,7	72.5		202 112	707 448			38 21	13 9
DF	16 17	1 1	91 89	107 129	1.867 1.654	2.61 2.61	3,73 4.96	30.0 26,7	120.0 103.3		132	448 513			21	10
DF DF	18	1	90	108	1,476	2,61	2.95	37.0	130.0		109	384			21	7
DF	19	1	92	127	1.324	2.61	3,97	34,7	140.0		138	556			26	11
DF	21	4	86	136	4,336	10.43	13.01	40.3	157,5		525	2,049		1	00	39
DF	22	1	86	125	.988	2.61	2,96	42.0	180.0		124	533			24	10
DF	23	1	82	126	.904	2.61 13,04	2.71	45.0 56.9	176.7 250.7		122 709	479		,	23 35	9 59
DF	24 25	5 1	89 88	143 155	4.150 .765	2.61	12,45 2,29	66.0	230.7		151	3,121 681		1	29	13
DF DF	26	3	86	155	2.122	7,82	7,07	61.7	277.0		436	1,959			83	37
DF	27	5	87	135	3.279	13.04	9.84	66.7	288.7		656	2,840		I	125	54
DF	28	3	87	144	1.829	7,82	6.10	70.3	324.0		429	1,976			81	38
DF	29	6	88	148	3.411	15.64	10.80	81,9	394.7		885	4,263			168	81
DF	30	5 3	86 86	143 133	2,656 1,492	13.04 7.82	7.97 4.48	86.7 87.3	397.3 386.7		691 391	3,166 1,731		1	131 74	60 33
DF DF	31 32	5	80 87	142	2,801	15.64	4.40 8.40	98,3	469.4		826				157	75
DF	34	6	86	150	2.481	15,64	7.44	115.8	558,3		862	4,156			164	79
DF	37	1	85	136	.349	2.61	1.05	124.3	596.7		130	625			25	12
DF	38	2	83	151	,662	5.21	1.99	142.0	698,3		282	,			54	26
DF	39	2	88	149	.629	5.21	2.20	131.1	651.4		289				55 77	27 40
DF	40 41	3 2	90 86	133 145	.896 .569	7.82 5,21	2.69 1.71	150,4 164.7	774.4 833,3		405 281				53	40 27
DF DF	42	1	83	136	.305	2.61	.81	153.0	703,3		124				24	11
DF	44	1	89	131	.247	2.61	.74	178.0	940.0		132	696			25	13
DF	46	1	88	159	.226	2.61	.68	226.3	1186.7		153	804			29	15
DF	49	1	88	157	.199	2.61	.60	256.0	1390.0		153				29	16
DF	55	1	85	146	.158	2.61	.47	296,0	1533.3		140	727			27	14
DF	Totals	73	87	125	61,254	190,34	157.20	62.8	287.4		9,869	45,179		1,	875	858
RA	18	1	87	72	2.342	4.14	4,68	30.0	100.0		140	468			27	9
RA	21	1	87		1.720	4.14			180.0		177				34	12
RA	22	1	86		1.568	4.14			170.0		155				29 24	10 7
RA	23 29	1	87 87		1.434 .902	4.14 4.14		ł	130.0 275.0		128 143				24 27	, 9
RA	ļ							ļ		ļ						47
RA	Totals	5	87	80	7,966	20.69			156.3	<u> </u>	743	2,490			141	
DFL	59 80	1 1	82 82		.109 .059	2.07 2.07			1347.5 2425.0	1	00 106 00 116		0		20 22	11 11
DFL																
DFL	Totals	2	82	151	.168	4,14		-	1727.1		01 222		0		42	22
BM	32	1	86		.247	1.38			250.0 285.0		37 37				7 7	2 2
BM	38	1	86		.175	1.38										
BM	Totals	2	86	61	,422	2,76		87.4	264,5		74	223			14	4
SN	10	1	98		2.529	1.38										
SN	22	1	98 98		.523	1.38 1,38										
SN SN	24 34	1	98 99		.4.39	1,38										
	Totals															
SN	 Lotals 	4	98	110	3.709	5.52		1		1						

••

TC	PSTNDSU	м		······································		Ş	Stand 7	fable S	ummary				Page Date:	2 6/12/	
T12S I	R09W S0	1 ТуМС		19.0	00		Projec Acres	t D	OEADEE 19.0				Time: Grøwn Year		:40AM
S Spc Т	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.		Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
Totals		86	88	119	73.519	223.45	174.65	62,5	280.9	.01	10,908	49,054	0	2,0'	73 9

TC PLOC	GSTVB					Log S	Stock 'I	l'able -	MBF								
T128 R09	9W S01 T	уМС]	9.00		Proje Acre		DOI	CADEE 1	R 9.00					Page Date Time		1 2/2023 17:39AM
s	So Gr	Log	Gross	Def	Net	%		1	Xet Voli	ime by S	scaling 1	Diamete	r in Inche	<u>s</u>			
Spp T	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
DF	DO 21	vi 12	1		i	.1						1					
DF	DO 21			25.0	1	.2								1			
DF	DO 21				4	.5							1			3	
DF	DO 21				4	.5						1				3	
DF	DO 21				2	.2						2					
DF	DO 21				8	.9						1			6		
DF	DO 21				7	.8						_			7		
DF	DO 2				1	l. •						1					
DF	DO 21				2	.3						2	94	195	206	177	35
DF	DO 2	ví 40	697	1.2	688	80.2						42	94	185	200	127	35
DF	DO 3	vi 20	2		2	.2				1	1	l					
DF	DO 31	M 24	3		3	.4				2	2	2			1		
DF	DO 3	M 26	1		1	.2				1	1	l					
DF	DO 3	VI 28	3		3	.3					1	2					
DF	DO 3	VI 30	4		4	.5				2	3	3					
DF	DO 3	M 32	7		6	8,				4	2	2		j			
DF	DO 3	M 34	1		1	.1						1					
DF	DO 3.				14				12	[l					
DF	DO 3.		17		16				1 7			2					
DF	DO 3	M 40	69	2,2	68	7.9			\ <u>`</u>	18	28	3	2	2		10	
DF	DO 4.	M 12	0	•	0	.0				0							
DF	DO 4	M 14	1		1	.1											
DF	DO 4	м 16	6		6	.7				1							
DF	DO 4	M 18	j		1	i.			1								
DF	DO 4	M 20	1	7.3	1	.1			1	ĩ					1		
DF	DO 4	M 24	3	•	3	.3				;	1						
DF	DO 4	M 26	1		1	,1				1							
DF	DO S	M 40	8	1	8	1.0											8
DF	Tota	als	871	1.4	858	92.1			38	38	4	2 50	96	189	219	143	43
RA	DO C	R 12	1		1	1.9	Ι			l	1				1		
RA	DO C	R 14	1		1	1.2											
RA	DO C	R 24	1		1	1.4			:	l							
RA	DO C	R 28	1		1	3.1			:	l							
RA	DO C	R 38	2	2	2	4.8				2							
RA	DO C	R 40	42	! 	41	87.5						8 7	18	9			
RA	Tot	als	48		47	5.1				5		8 7	18	9			

TC 1	PLO	GSTVE							Log S	Stock	Table -	MBF									
T125	5 R0	9W S0	l Ty	мс		19.00			Proje Acre		DOI	EADEEI 19	R .00					Page Date Time	6/1	2 2/2023 17:39A1	<u>—</u> м
	s	So (Fr	Log	Gross	De	f	Net	%		1	set Volu	ne by S	Scaling]	Diamete	r in Inch	¢5				
Spp	т	rt d		Len	MBF	%		MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
ВМ		DO	CR	12		0		0	1,6			0									
вм		DO	CR	16		2 1	12.0	2	48.7										2		
ВМ		DO	CR	38		0 1	14.3	0	6.6			0									
ВМ		DO	CR	40		2	8.3	2	43.1								2				
ВМ		1	fotals			5 10).4	4	.5			0					2		2		
DFL		DO	3M	12		0		0	.9								0				
DFL		DO	3M	16		0		0	1.7								0				
DFL		DO	3M	30		1		1	6.7									1			
DFL		DO	3M	40		6	6,3	15	66.9										1	4	9
DFL	ſ	DO	SM	32		5		5	23.8												5
DFL		1	fotals		1	3	4.3	22	2,4								1	1	1	4	15
Total		All S	pecies	s	9,	6	1,5	932	100,0	-		44	38	50	57	114	200	221	146	47	15

TC TR	EESEGR							TREE S Proje			VOLI)EAD						ige ite	1 6/12/2)23
т w р 12S	RGE 09W	SC 01	TR. U3-	ACT -A			чре 1С		Á	CRES 19.00)	PLOTS 29		TRE	ES 86	CRUISEE 5/1/202		CuFt 1	BdFt W
	ree		С	DBH FF	T FF D	Boie		PRDVT	S SG	Len	FIFI	Bark	Ao	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
Piot	No, PF A	Spc S	1			-		PROVI			1.11.1								
0030	0001 BI	1 DF	1	29.0 4 BA = 40.00	88 4		43 =8.720		1 12 2 12	40 40		.919 .919		28.68 21.04	21.04 15.58	143 79	143 79	760 360	76 36
									3 13	30		.919	.530	15,58	9.38	28	28	70	7
										•0		010	620	20.21	00.00	250 144	250 144	1190 700	119 70
	0002 B1	1 DF	1	29.0 4 BA = 40.00	85 4		3 143 = 8,72 0		1 12 2 12	40 40		.919 .919		29.31 20.32	20.32 15.05	75	75	360	36
									3 13	30		.919	.530	15,05	9.06	28	28	70	7
																247	247	1130	113
	0003 B1	I DF	1	32,0 4 BA = 40.00	87 4		1 140 = 7.162		1 12 2 12	40 40	3	.919 .919		31.87 22,89	22.89 16.74	167 87	167 87	840 400	84 37
				DA - 40,00		077-	- 7.102		313	28	5	.919		16.74	10.23	30	30	100	10
																284	28-1	1340	131
	0004 Bi	1 DF	1	34.0 4	86 4		5 134		1 (2	40		.919		34.08 23.86	23,86 16.85	193 92	193 92	940 400	94 40
				BA = 40,00		1/A =	= 6.344	ł	212 313	40 24		.919 .919		16.85	10.45	26	26	400 90	
									515	2.4			.550	10,00	10.10	311	311	1430	143
	0005 BI	i DF	1	14.0 4	87 C		120		113	40	1	.919		13.90	9,75	31	31	120	11
				BA = 40.00		T/A =	= 37,41	18	213	38		.919	.530	9.75	6.43	14 45	14 45	60 180	6 17
PLOT			В	A = 200.00		T/A =	68,36	5								10,025	10,025	45,636	45,04
0031	0001 BI	l DF Count	9	23,9 4 BA = 360.00			1 (25 = 115,8	149	l xx	34						161 <i>161</i>	161 161	748 748	7: 7:
PLOT			E	BA = 360.00		T/A =	= 115.8	49								18,665	18,665	86,698	85,4
0032	0001 B1	1 DF	1	21,0 4	86 4	10	8 136		112	40		.919	.530	21.06	14,78	75	75	290	2
				BA = 40.00		T/A =	= 16,63	30	213	40		.919		14.78	10.60	36	36	150	1:
									314	24		.919	.530	10.60	6.82	11 122	11 122	30 -170	4
	0002 B1	1 DF	ĩ	22.0 4	87 8	L 9	9 125		1 12	40		.919	.530	21.86	15,43	79	79	360	31
	0002 131	1 124	1	BA = 40.00			= 15,1		213	40		.919		15.43	10.22	39	39	150	1:
									3 14	16		.919	,530	10.22	7.04	8	8	30	
	0003 B1	1 DE	I	29.0 4	00 /	1 12	0 152		1 12	40		.919	530	28.28	21.70	126 143	<i>126</i> 143	540 760	5-
	0003 81	I Dr	1	BA = 40.00			= 8,72		212			.919		21.70	16,66	83	83	400	4
									3 13	38		.919	.530	16.66	9,36		38	110	1
					97		5 119		5.10	40		.919	\$20	27.00	18.57	264 116	264 116	1270 530	12: 5:
	0004 B1	I DF	1	27.0 4 BA = 40.00			עור כ ≈ 10.0		1 12 212		4	.919		18,57	16.17	29	29	160	12
									313			.919	.530	16.17	8,54	34	34	80	1
										10		010			00.00	179	179	770	7.
	0005 B1	1 DF	l	27.0 4 BA = 40.00			5 146 = 10.04		1 12 212			.919 .919		25.92 20.53	20.53 15.38		121 75	700 360	70
						1114	10.0	. •	313			.919		15,38	9.13		30	90	_
														A A = ¹		226	226	1150	11
	0006 BI	1 DF	1	21.0 4 BA = 40.00			9 125 = 16.6		l 12 213		1	.919 .919		20.71 14,90	14.90 9.87		71 34	290 120	2
				1925 - 40.00		±1A	10.0		3 14		1	.919	.530		6.79		6	20	
																111	Ш	430	4
	0007 B1	1 DF	1	29.0 4			7 135		112			,919		29.28			144 71	700 290	7
				BA = 40.00		17A	= 8,72	v	212 313			.919 .919		20.15 14.34			21	290	2
									515	27			,000		2100	236	236	1050	10
	0008 BI	1 DF	1				0 126		1 12		1	.919		23.53			88	360	3
				BA = 40.00)	T/A	m 13.8	64	213			.919 .919		15.42 10.32			39 8	150 30	1
									3 14	10		.919		19.52	1,23	135	135	540	5
	0009 BI	1 DF	1	24.0 4	89	4 10	0 126	;	112			.919		23.50		96	96	460	4
				BA = 40.00)	T/A	≕ [2.7	32	213			.919		17.25			49	180	1
									314	16		.919	.530	11,55	8.09	10 155	10 155	30 670	6
PLOT	r		1	BA = 360.00		T/A	= 112,:	570								18,064	18,064	78,713	77,6
0033	0001 BI	1 DF	7	23.9 4	87	4 0	01 125	;	1 xx	34						161	161	748	7
	2014111 144	1 1 1 1 1	7	£3.7 4				,	- IXX							101	101	1.40	

TC TR	REESEGR					TREE Proj			VOL OEAD						Page Date	2 6/12/2	023
TWP 12S	RGE 09W	SC 01	TRACT U3-A		ТҮРЕ МС		A	CRES 19.0		PLOT	s 29	TR	EES 86	CRUISE 5/1/20	D DATE	CuFt 1	BdFt W
	ree		с	77 D.I					_								
	No.PF A	Spc S	T DBH FF FF	T Bole D Hg	t Hg	PRDVT	S SG	Len	FIFI	Bark	Ao	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
PLOT			BA = 280.00	T/A	≈ 90,10	5								14,517	14,517	67,432	66,459
0034	0001 B11	DF	1 24.0 4 89	4 1	10 139		1 12	40		.919	.530	23,54	17.54	96	96	460	460
			BA = 40.00	T/A	= 12.73	2	212	40		.919		17.54	12,75	52	52	200	200
							313	28		.919	.530	12.75	7,64	17 165	17 165	50 710	51 71
	0002 B1 1	DF	1 31.0 4 89	4 1	95 132		1 12	40		.919	.530	30,38	22.48	165	161	840	840
			BA = 40.00	T/A	= 7.631		212	40		.919	.530	22,48	15.75	83	83	360	36
							313	20		.919	.530	15,75	10.71	20	20	70	7
	0003 B1 I	DF	1 30.0 4 90	4 1	15 146		t 12	40		.919	530	29.24	22.32	<i>264</i> 154	264 154	<i>1270</i> 840	127 84
		2.	BA = 40.00		= 8.149		212	40		.919		22.32	16,71	87	87	400	40
							3 1 3	32		.919	.530	16.71	9,93	32	32	90	9
	0004 B11	DE	1 21.0 4 85	3 51	02 128		1.10	40		010	570	21.10	11.47	273	273	1330	133
	0004 011	DF	BA = 40.00		= 16.63	0	1 12 213	40 40		.919 .919		21.19 14.47	14.47 9.88	75 34	75 34	290 120	29 12
							314	18		.919	.530	9.88	6.75	7	7	20	2
														116	116	-130	-43
	0005 B11	DF	1 24.0 4 89 BA = 40.00		22 155 = 12,73	2	[12	40		.919		23.59	17,80	96	96	460	46
			BA-40.00	17A	= 12,73	Z	212 313	40 40		.919 .919		17.80 13.79	13.79 7.66	55 26	55 26	240 70	24 7
							515	40		.919	.550	13.79	7.00	177	177	770	77
	0006 B11	DF	1 30.0 4 86		23 156		112	40		.919	,530	30,15	21.52	155	155	760	76
			BA = 40.00	T/A	= 8.149		212	40		.919		21.52	[6.74	83	83	400	40
							313	40		.919	.530	16.74	9.48	40 278	40	120	12
	0007 B11	DF	I 17.0 4 90	G	07 129		112	40		.919	.530	16.53	12,41	∡78 49	278 49	<i>1280</i> 200	128 20
			BA = 40.00		= 25.37	7	213	40		.919	.530	12,41	8.48	26	26	90	-0
							314	14		.919	.530	8.48	6.43	5	5	20	20
PLOT			BA = 280.00	T/A	= 91.401	L								<i>80</i> 14,818	80 14,818	310 64,822	31) 64,822
0035	0001 B11	DF Count	5 23.9 4 87 BA = 200.00		01 125	1	1 _{XX}	34						161	161	748	73
PLOT	,	Joun	BA = 200.00		= 64.36									161	161	748	732
					= 64.361						····			10,369	10,369	48,166	47,47
0036	0001 B1 I	DF	1 24.0 4 88		8 136	•	112	40		.919		23,71	17.29	96	96	460	460
			BA = 40.00	I/A	= 12.73	2	212 314	40 24		.919 .919		17.29	12.39	52	52	200	200
							514	24		.919	.530	12.39	7.97	14 162	14 <i>162</i>	40 700	40 701
	0002 B11	DF	1 26.0 4 84	4 12	0 152		112	40	1	.919	.530	26.50	18.16	116	116	530	52
			BA=40.00	T/A	= 10.84	9	212	40		.919		18.16	13.94	59	59	240	24
							313	38		.919	.530	13.94	7.83	25	25	70	71
	0003 Bf 1	DF	1 31.0 4 81	4 10	2 128		112	40	2	.919	.530	32.19	20.36	200 162	200 162	<i>840</i> 700	83) 660
			BA = 40.00		= 7.631		212	40	-	.919		20.36	13,89	67	67	240	24(
							314	20	1	.919	.530	13.89	8,96	15	15	40	4(
	0004 B11	DF	1 21.0 4 88	4 12	1 153		112	40		010	500	20.72	16.20	244	244	980 260	940
	0004 DEL	1)T	BA = 40.00		= 16.63	0	1 12 213	40 40	2	.919 .919		20.79 15.38	15.38 11.86	75 42	75 42	360 180	360 170
							313	38	-	.919		11.86	6,79	18	18	60	60
		au. 41												135	135	600	59(
	0005 B1 I	DF	1 29.0 4 94 BA == 40.00		9 164		112	40 40		,919		27.47	22.87	142	142	840 520	840
			DA = 40,00	t/A	= 8.720		212 312	40 30		.919 .919		22.87 18.20	18.20 13.28	96 45	96 45	530 180	53(18(
							4 14	16		.919		13,28	9.80	43	45 13	40	4(
														296	296	1590	1590
		DF	1 25.0 4 88		2 155		112	40		.919		24.76	18.33	106	106	530	530
	0006 B1 I			17A	= [1.734	ł	212	40	1	.919 .919		18.33	14.20 7.89	63 29	63 29	290	290
	0006 B1 I		BA == 40,00		,		312										
	0006 BI I		BA ∾ 40,00		,		313	40	1	.919	,530	14.20	1.07	198		70 <i>890</i>	7(89(
PLOT	0006 B1 I		BA == 240.00		= 68.297		313	40	1	,717	.300	14.20	1.62		198 13,244	70 <i>890</i> 59,792	70 890 59,212

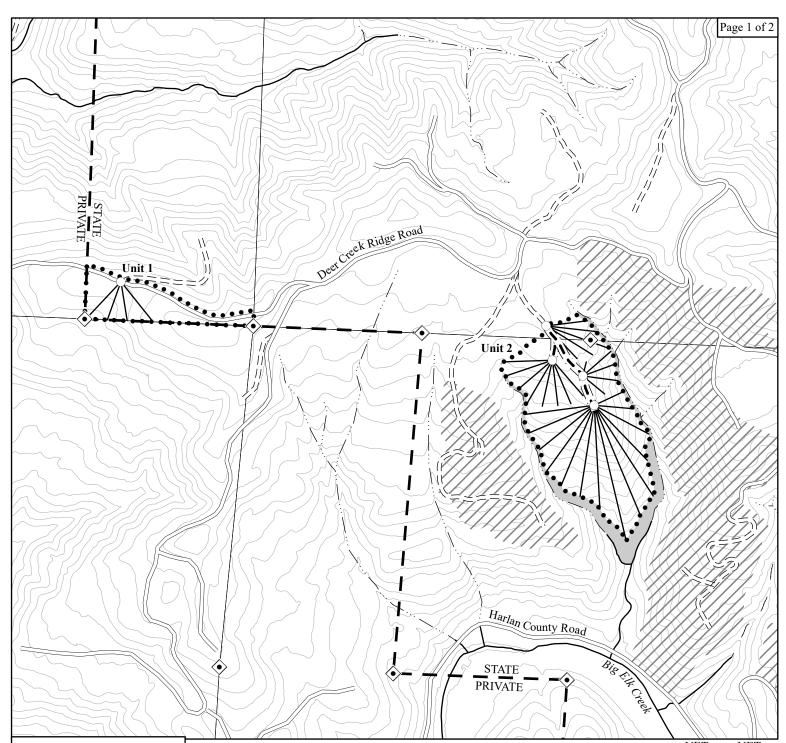
TC TRE	ESEGR				ʻ1	`REE Proj	SEGMI ect:		VOL) DEAD						nge ate	3 6/12/2	023
TWP 12S	RGE 09W	SC 01	TRACT U3-A		түре МС			RES 19.00)	PLOTS 29		TRE	ES 86	CRUISED DATE 5/1/2023		CuFt 1	BdFt W
Tro Plot N		Spc S	C T DBH FF FF		Bole Tot. Hgt Hg	PRDVT	S SG L	en	FIFI	Bark	Ao	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
0037	0002 B1 i	DF Count	2 23.9 4 87 BA = 80.00	4	91 125 T/A = 25.744		1 xx	34						161 <i>161</i>	161 161	748 748	738 738
PLOT			BA = 120.00		T/A = 41,145									5,584	5,584	24,115	23,802
0038	0001 B11	RA	L 23.0 4 87 BA = 40.00	н	56 67 T/A = 13.864		i 1K 21K	40 14	1 1	.953 .953		23.27 13.50	13,50 7.62	80 9 <i>89</i>	80 9 <i>89</i>	240 20 <i>260</i>	240 20 <i>260</i>
PLOT			BA = 40.00		T/A = 13.864									1,234	1,234	3,605	3,605
0039	0001 B11 (DF Count	6 23.9 4 8 BA ≃ 240.00	4	91 125 T/A = 77.233		1 xx	34						161 <i>161</i>	161 <i>161</i>	748 748	738 738
PLOT		_	BA = 240.00		T/A = 77.233									12,443	12,443	57,799	56,965
0040	0001 B11	DF	1 14.0 4 9 BA = 40.00	G	64 91 T/A = 37.418		1 13 214	38 24	6 1	.919 .919	.530 .530	13.38 9,71	9.71 6.43	29 9 <i>38</i>	29 9 38	110 30 140	90 30 120
	0002 Bii	DF	1 11.0 4 8 BA = 40.00	5G	58 116 T/A = 60,610	I	1 13 214	40 16	I	.919 .919	.530 .530	11.07 7.44	7.44 6.43	21 5 26	21 5 26	70 20 90	74 21 91
	0003 B1 1	DF	1 16.0 4 9. BA = 40.00	2 G	80 107 T/A = 28.648		113 213	40 38	1	.919 .919		15.25 1 1 .49	11.49 6.43	42 18 60	42 18 60	180 60 240	18 6 24
	0004 B11	DF	1 9.0 4 8 BA = 40.00	7 G	36 72 T/A = 90,542		113	36		.919	.530	8,93	6,39	12. 12	12 /2	60 60	6 6
	0005 BI 1	DF) 10.0 4 8 BA = 40.00	5 G	53 106 T/A = 73.339)	113 214	36 16	1	.919 .919	.530 .530	10.02 7.14	7.14 6.38	17 5 22	17 5 22	60 20 <i>80</i>	6 2 8
	0006 B1 1	DF	1 44.0 4 9 BA = 40.00	04	104 131 T/A = 3.788		1 12 212 3 12	40 40 20		.919 .919 .919	.530	42.79 32.21 22.38	32.21 22.38 14.97	320 173 41	320 173 41	1840 840 140	184 84 14
PLOT			BA = 240.00		T/A = 294.34	4								534 9,439	<i>534</i> 9,439	2820 39,551	282 38,80
0041	0001 B1 I	RA Count	3 21,8 4 8 BA = 120,00	7 H	64 80 T/A = 46.201		1 xx	31						93 <i>93</i>	93 93	315 <i>315</i>	31 <i>31</i>
PLOT			BA = 120.00		T/A = 46.201									4,310	4,310	14,545	14,44
0042	0001 B1 I	DF	[40.0 4 9 BA ≃ 40.00	24	94 118 T/A = 4,584		1 12 212 3 12	40 40 12		.919 .919 .919	.530	38.22 29.36 18.27			263 133 18	1520 530 70	152 53 7
	0002 BI	ВМ	1 38.0 4 8 BA = 40.00	7 H	54 59 T/A = 5.079			40	3 1	.953 .953		38.16 19,67	19.67 7.62		<i>414</i> 197 14	<i>2120</i> 600 20	212 55 2
	0003 B1 1	i DF	1 40.0 4 8 BA = 40.00	94	106 134 T/A = 4,584		[12 212	40 40		.919 .919	,530	39.21 29.05		144	271 271 144	620 1520 700	57 152 70
	0004 BI	I RA	1 18.0 4 8	7 H		-	3 12 1 1K	24 40		.919 .953	,558	20.52 18.27	12.72 11.09 7.92	454 53	39 <i>454</i> 53 7	120 <i>2340</i> 180 20	12 23 18
	0005 B1	l DF	BA = 40.00 1 49.0 4 8	94		3	21K 112 213	12 40		.953 ,919 ,919	.530	48.18 36.41	36.41	60 410	60 410 240	20 200 2310 1460	20 23 140
PLOT			BA = 40.00		T/A = 3,055 T/A = 39,936		212 313	40 40		.919		28,44			240 118 768 8,754	400 4170 40,856	40,60
	0001 133	1 125	BA = 200.00	4 4			1 12	٥Ŀ	2	.919	520	42.73	28,88		289	1460	13
0046	0001 B1	i Dř	1 42.0 4 8 BA = 40.00	-1 4	108 + 36 T/A = 4.158		212 300		2	.919 .919 .919	.530	28.88 24.34	24.34	97		610	5:

TC TR	EESEGR								TREE Proj			VOL						Page Date	4 6/12/2	023
TWP 12S	RGE 09W	SC 01		RACT 3-A				YPE IC		1	ACRES 19.0		PLOTS 2		TR	EES 86	CRUISE 5/1/20		CuFt 1	BdFt W
Т	ree		С			т	Bole	Tot.		S					Dia	Dia	Gross	Net	Gross	Net
Plot	No.PF A	Spc S	Т	DBH 1	FF FF	D	Hgt	Hg	PRDVT	SG	Len	FIFI	Bark	٨o	Butt	Тор	CuFt	CuFt	BdFt	BdFt
PLOT			I	BA ≈ 40,0	0		T/A =-	4.158									<i>459</i> 1,908	<i>459</i> 1,908	2260 9,396	211 8,77
0047	0001 B1	DF Count	7	23.9 BA = 280	487 0.00	4	91 T/A =	125 90.105	5	łxx	34						161 <i>161</i>	161 <i>161</i>	748 748	73 73
PLOT			ł	BA = 280.0	00		T/A = !	90.105	i								14,517	14,517	67,432	66,45
0048	0001 B11	DF	1	34.0	4 84	4	112	142		1 12	40		.919	.530	34.61	23.51	193	193	940	94
				BA = 40.	.00		T/A =	6.344		212	40		.919		23.51	17.31	96	96	460	46
										3 13	30		.919	.530	17.31	10.22	35 <i>324</i>	35 <i>324</i>	110	11
	0002 B11	DF	1	38.0	4 85	4	117	148		t 12	40		.919	.530	38.44	26.76	3 <i>24</i> 242	324 242	<i>1510</i> 1250	157 125
				BA = 40,			T/A =			212	40		.919		26,76	20,25	126	126	700	70
										313	34		.919	.530	20.25	11,87	51	51	150	1:
	0002 01 1	DE		20.0	1 00	,	100	107									419	419	2100	210
	0003 BI I	DF	1	28.0 BA = 40.	488 £0	4	108 T/A =	136		1 12 212	40 40	1.	.919 .919		27.66 20.17	20.17 14,46	132 71	132	700	7(
				DA - 40.	.00		IIA-	2.334		313	24	1 -	.919		14.46	9,30	21	71 21	290 60	28
										515	24		.919	.550	14.40	9,50	21	21	1050	10-
	0004 B1 I	DF	1	41.0	4 84	4	108	136		l 12	40		.919	.530	41,71	28.19	280	280	1460	140
				BA = 40.	00		T/A =	4,363		212	40	I	.919	.530	28.19	20.21	138	138	700	6
										312	24		.919	.530	20.21	13.00	41	41	150	1:
	0005 B11	DE	1	10.0	4 90	0	0.1	100		1.10	10		010	620	10.10	10.75	459	459	2310	22:
	0003 B11	Dr	1	BA = 40.4		u	84 T/A =	108 22.635		1 12 213	40 40	1	.919 .919		17.42 12.67	12.67 6,83	52 22	52 22	200 60	20
				1011 101			.,,,	22.000	<i>.</i>	215	77	•	.,,,,,,		12.07	0,85	74	22 74	260	20
PLOT			E	BA = 200.0	00		T/A = 4	\$7.776									9,956	9,956	46,031	45,85
0049	0001 B1 1	DF Count	7	23.9 BA = 280	4 87 3.00	4	91 T/A = 1	125 90,105	;	l xx	34						161 161	161 <i>161</i>	748 748	73 73
PLOT			E	BA = 280.0	00		T/A = 9	90,105									14,517	14,517	67,432	66,45
0050	0001 B11	DF	1	34.0	4 90	4	124	157		1 12	40		.919	530	33.18	25.55	198	198	1150	115
				BA = 40.			T/A =			212	40		.919		25,55	19,96	116	116	600	60
										313	40		.919	.530	19.96	11.51	56	56	180	18
																	370	370	1930	193
	0002 B1 I	DF		32.0		4		122		112	34		.919		31.78	23,21	147	147	800	78
				BA = 40.0	00		T/A ≕ '	7,162		212 313	40 20	Z,	.919 .919		23.21 15.91	15.91	88	88	360	34
										313	20		.919	.550	15.91	10.23	20 255	20 255	70 1230	119
	0003 B11	DF	1	27.0	4 91	4	104	131		112	40	1	.919	.530	26.06	19.99	121	121	600	51
				BA ≔ 40.0	00		T/A =	10.060)	212	40		.919		19,99	13,89	63	63	240	24
										313	20		.919	.530	13,89	9.29	16	16	50	5
	0004 BI I	DE	1	28.0	4 90	4	100	127		1.10			010	600	00.00	10.40	200	200	890	87
	0004 BII	Dr		28.0 BA ≈40.0		4	108 T/A = 9			112 212	40 40	1	.919 .919		28.28 19.48	19.48 13.97	132 63	132 63	600 240	58 24
										314	26		.919		13.97	8,51	19	03 19	240 50	24
																0, 0 E	214	214	890	87
	0005 B1 I	DF		19.0		4	101			112	40	1	.919		18,19	14.15	63	63	290	28
				BA = 40.0	00		T/A ≂ 2	20,315		213	40		.919		14,15	9.56	34	34	120	12
										314	18		.919	.530	9,56	6.43	7	7	20	2
	0006 B[1	DF	1	39.0	4 89	4	115	146		1 [2	40	1	.919	530	38,29	28.69	<i>104</i> 256	104 256	<i>-130</i> 1460	<i>42</i> 142
				BA = 40.0			T/A = 4			212	20		.919		28.69	25.37	85	250	570	54
										312	40		.919		25.37	16.35	102	102	400	40
										412	12		.919		16,35	12.43	15	15	60	e
	0000	DE		20.0	1.00		100	100					<i></i>			A	458	458	2490	242
	0007 B1 I	DF		30.0 BA = 40.0		4	102 T/A = 8			1 12	40 40		.919		30.05	20.92	150	150	700	70
				57-40.0			17A = 8	3.147		212 314	40 20	з	.919 .919		20.92 14.28	14.28	71	71	290	29
										J 14	20	J	.919	.550	14.Zð	9.20	17 238	17 238	50 1040	4 103
	0008 B1 I	SN	1	34.0 BA == 40.0			153 T/A = 6	153					26.000	.500			190		1770	105

26.000 .500

0009 B11 SN

1 24.0 4 99 4 81 81


TC TRI	EESEGR					TREE : Proj			VOLU DEAD						nge nte	5 6/12/2)23
TWP 12S	RGE 09W	SC 01	TRACT U3-A		ТҮРЕ МС		АС	CRES 19.00)	PLOTS 29		TREES 86		CRUISEI 5/1/202		CuFt 1	BdFt W
Tr Plot N	ee ∜o,PFA	Spc S	C T DBH FF FF		Bole Tot. Hgt Hg	PRDVT	S SG J	.en	FIFI	Bark	Ao	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
		-	BA = 40.00		T/A = 12.73	2											
PLOT			BA = 360,00		T/A = 85,28	3								14,448	14,448	67,549	66,252
0051	0001 B1 1	1 1512	6 23,9 4 87		91 125		1 xx	34						161	161	748	738
0051		Count	BA = 240,00		T/A = 77.23	3	1 44	54						161	161	7-18	738
PLOT			BA = 240.00	,	T/A = 77.23	3								12,443	12,443	57,799	56,965
0052	0001 B1	I DF	1 34.0 4 89		123 156		112	40	3	.919		33,42	25.24	198	198	1150	1060
			BA = 40.00		T/A = 6.344	ļ	212	40		.919		25.24	19.63	116	116	600 180	600 180
							313	40		.919	.530	19.63	11.12	56 370	56 370	1930	1840
	0002 BI	i DF	1 32.0 4 88	4	121 153		112	40	2	.919	.530	31.68	23.44	173	173	940	89
			BA = 40.00		T/A ≈ 7,162	2	212	40		.919	.530	23,44	18.08	101	101	530	53
							3 [3	38		.919	.530	18.08	10.35	47 321	47 321	140 <i>161</i> 0	14 156
	0003 B1	T DF	1 32.0 4 87	4	111 140		112	32	1	.919	.530	31.87	23.82	139	139	750	73
			BA = 40.00		T/A ≈ 7,162		212	40	1	.919	.530	23.82	18.17	101	101	530	52
							313	36	1	.919	.530	18,17	10,23	45	45	140	13
	0004 101	1 1315	1 32.0 4 86		107 135		112	40	1	.919	520	32.08	22.49	285 173	285 173	<i>1420</i> 840	/38 81
	0004 B1	I DF	BA = 40.00		T/A = 7.162		212	40	1	.919		22.49	16.01	87	87	400	40
						-	313	24		.919	.530	16.01	10.12	26	26	90	9
														286	286	1330	130
	0005 B1	l DF	1 39,0 4 87		119 151		1 12	40	7	.919	.530		28.18	256	256 143	1460 760	120 76
			BA = 40.00		T/A = 4.822	2	212 312	40 36		.919 .919	.530	28.18 21.54	21.54 12.47	143 61	14.3 61	180	18
							512	50		,919	.550	21.54	32.47	460	460	2400	21-
	0006 BI	1 DF	1 38.0 4 83	4	121 153		112	40	1	.919	,530		26.25	250	250	1250	122
			BA = 40.00		T/A = 5.079	9	212	40		.919	.530	26.25	20.25	126	126	700	70
							313	38		.919	.530	20.25	11.59	57 <i>433</i>	57 433	170 2120	17 209
	0007 B1	DF	1 27.0 4 84	4	104 131		112	40	2	.919	,530	27,45	18.45	122	122	530	51
			BA = 40.00		T/A = 10,0		212	40		.919	.530	18,45	12,82	56	56	200	20
							3 14	20		.919	.530	12.82	8,57	13	13	40	4
	0009 131	1 130	1 40.0 4 89		115 146		112	40	1	.919	520	39.27	29.42	<i>191</i> 271	<i>191</i> 271	770 1520	7. 148
	0008 BI	I Dr	1 40.0 4 89 BA = 40.00	4	T/A = 4.58		212	40	i	.919		29.42	22.04	154	154	840	84
			211 10100				3 12	32		.919		22.04	13.09	61	61	190	19
														486	486	2550	25.
PLOT			BA == 320.00		T/A = 52.37	5								17,302	17,302	85,245	82,02
0053	0001 B1	I DF Count	5 23.9 4 87 BA = 200.00	4	91 125 T/A = 64.3		l xx	34						161 <i>161</i>	161 <i>161</i>	748 748	73
	0002 BI	1 DFL	1 67.2 4 82	R	128 151		l xx	31						1322	1322	7218	690
		Count	BA = 40.00	•	T/A = 1.620	6								1322	1322	7218	690
The l	0003 B1	+	ot match on specie. 2	s, st	latus or dt	h											
PLOT			BA = 240.00		T/A ≈ 65.98	37								12,519	12,519	59,906	58,70
0054	0001 B1	1 DF	1 26.0 4 88	4	129 164		1 12	40		.919		25,77			116	600	6
			BA = 40,00		T/A = 10.8	49	212	40		.919		19.20			70	360	3
							313 414	30 16		.919 .919		15.28 11.14	11.14 8,22	32 10	32 10	130 30	13
							714	10					<i>Q,<i>LL</i></i>	228	228	1120	11.
	0002 B1	1 DF	1 28.0 4 90	4	127 161		1 12	40		.919		27.34			137	760	7
			BA = 40.00		T/A = 9.35	4	212	40		.919		21.10	16.67	83	83	400	4
							313 414	32 12		.919 .919		16.67 11,61	11.61 9.05	37 8	37 8	140 30	1
							7 14	14		.717	,550	.1,01	2.00	265	265	1330	13
		1 DE	1 22.0 4 00		126 160		1.10	10		010	620	21.22	2.6.07		179	1010	10
	0003 B1	1 Dr	1 32.0 4 90	4	125 159 T/A = 7.16		1 12 212	40	ι	.919 .919		31,23 24.07			106	530	5

TC TR	EESEGR							TREE Proj			VOL OEAI						Page Date	6 6/12/2	023
TWP 12S	RGE 09W	SC 01	TRACT U3-A				YPE 1C		,	CRES		PLOTS 29		TR	EES 86	CRUISE 5/1/20		CuFt I	BdFt W
	'ree No,PFA	Spc S	C T DBH	नन नव		Bole Hot		PRDVT	s so	Len	FIFI	Bark	Ao	Dia Butt	Dia Top	Gross CuFt	Net CuFt	Gross BdFt	Net BdFt
		- opo 0																	
0054									313	40		.919	.530	18.88	11.07	53 338	53 338	180 <i>1720</i>	180 <i>1710</i>
	0004 B11	DF		4 82	4		147	^	112		1	.919		27,90	18.32	122	122	530	520
			BA = 4	0.00		UA =	10.06	v	212 313	40 32		.919 .919		18.32 13.80	13.80 8.34	59 23	59 23	240 70	240 70
													,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10.00	0.01	204	204	840	830
	0005 B1 1	DF	1 29.0 BA = 4	4 87	4	121 T/A =	153		112	40		.919		28.92	21.00	143	143	760	760
			DA=4	0.00		1/A ==	6,720		212 313	40 38		,919 .919		21.00 16.20	16.20 9.27	83 38	83 38	400 110	400 110
									5 (5	50			.550	10.20	<i>J.</i> 27	264	264	1270	1270
	0006 B11	DF	1 30.0		4		147		112	40		.919		31.22	20,11	156	156	700	700
			BA = 4	0.00		T/A =	8.149		212	40 21		.919		20.11	15.14	75	75	360	360
									313	32		.919	.550	15.14	9.16	30 261	30 261	90 1150	90 1150
PLOT			BA = 240	0.00		T/A =	54.295	5								13,855	13,855	65,807	65,635
0055	0001 B11 (DF Count	6 23.9 BA = 2	4 87 40.00	4	91 T/A =	125 77.233	3	1 xx	34						161 <i>161</i>	161 <i>161</i>	748 <i>74</i> 8	738 738
PLOT			BA = 240).00		T/A =	77.233									12,443	12,443	57,799	56,965
0056	0001 BII	DF	1 34.0	4 85	4	122	155		1 12	40	1	.919	.530	34.41	24,08	199	199	1010	980
			BA = 4			T/A =			212	40	-	.919		24,08	18,65	106	106	530	530
									3 13	40		.919	.530	18,65	10.37	50	50	150	150
	0002 B1 1	DF	1 41.0	4 88	đ	121	153		1 12	40		.919	520	40.59	30,03	355 287	<i>355</i> 287	<i>1690</i> 1640	1660
	0002 BI I	Dr	BA=4		4	T/A =			212	40	I	.919	.530		23.16	166	166	1840 940	1640 840
									312	38		.919	.530	23.16	13.26	76	76	230	230
											_			· ·		529	529	2810	2710
	0003 B1 I	DFL	1 80.0 BA = 4	482 200	ĸ	137 T/A=	158		1 13 213	40 40	5 2	.919 .919		82.75 55.05	55.05 43.58	1084 555	1084 555	5660 3490	4960 3310
			Dir 4			in a	1.140		313	40	r	.919		43.58	26.56	282	282	1250	1250
									413	12		,919		26.56	19.72	37	37	180	180
	0004 B11	SN	1 10.0 BA = 4	499).00	4	84 T/A =	84 73,339)				26,000	.500			1958	1958	10580	9700
	0005 B1 1	DF	1 26.0	4 88	á	109	138		1 12	40		.919	530	25,69	18,76	111	111	530	530
			BA = 4		•	T/A =)	212	40		.919		18.76	13.54	59	59	240	240
									3 13	26		.919	.530	13,54	8.41	19	19	50	50
	0006 BI 1	DF	1 24.0	A 01	.*	124	157		I 12	40		.919	520	23.25	18,24	<i>189</i> 101	<i>189</i> 101	820	820
	0000 B11	DF	BA = 40		4	T/A =		2	212	40		.919		23.23 18,24	16,24	63	63	530 290	530 290
									313	40		.919		14.24	8.21	31	31	90	90
	0007 D1 1	DE		1 00			1.00		1.40			<u></u>				195	195	910	910
	0007 B1 I	DF	1 31.0 BA = 4		4	111 T/A ≕	140 7.631		1 12 212	40 40		.919 .919		30.19 22.94	22.94 16.78	161 87	161 87	840 400	810 360
									313	28	•	.919		16.78	10.26	30	30	100	100
																278	278	1340	1270
	0008 B1 I	DF	I 34.0 BA = 40	4 85	4	122 T/A =	155 6 344		1 12 2 12	40 40	1	.919 .919		34.41	24.08	199	199	1010	1010
			DA=4			1/W =	0.544		212 313	40 40	1	.919		24.08 18.65	18.65 10.37	106 50	106 50	530 150	520 150
															- 4.57	355	355	1690	1680
	0009 B11	DF	1 30.0		4		136		112	40		.919		29.64	21.61	149	149	760	760
			BA = 40	.00		T/A =	8,149		212 313	40 24	1	.919 .919		21.61 15.49	15.49 9.97	79 22	79 22	360	350
									513	24		.919	0	13.49	9.97	22	22 250	60 1180	60 1170
PLOT			BA = 360	.00		T/A =	130.89	7								17,748	17,748	86,151	83,837
0057	0001 B11 C	DF Count	2 23.9 BA = 80		4	91 T/A ≖	125 25,744	ļ	l xx	34						161 <i>161</i>	161 <i>161</i>	748 7√8	738 <i>738</i>
PLOT			BA ≈ 80,	00		T/A = 2	25.744									4,148	4,148	19,266	18,988
0058	0001 B11	DFL	1 59.0	4 82	Р	123	147		1 1D	32		.919	.530	60.97	41.75	477	477	2540	2540
			BA = 40			T/A =			213	40		.919		41.75	33.01	319	319	1960	1960
									313	30		.919			23,63	141			

TC TR	REESEGR					TREE Proj			VOL) OEAD						'age late	7 6/12/2	023
TWP 12S	RGE 09W	SC 01	тглст U3-А		түре МС		A	CRES 19.0		PLOTS 29		TRI	EES 86	CRUISE 5/1/202		CuFt 1	BdFt W
	ree		с		Bole Tot.		S					Dia	Dia	Gross	Net	Gross	Net
Plot	No.PF A	Spc S	T DBH FF FF	D	Hgt Hg	PRDVT	SG 1	len	FIFI	Bark	Ao	Bult	Тор	CuFt	CuFt	BdFt	BdFt
0058							413	16		.919	.530	23.63	17.06	39 <i>976</i>	39 976	180 5390	L 53
	0002 B1	t sn	1 22.0 4 99 BA = 40.00	4	80 80 T/A = 15.153	3				26.000	.500			270	<i>)</i> /0	5570	
	0003 BI	1 RA	1 21.0 4 87	Н	79 100		1 IK	40		.953	.558	21,55	14.69	75	75	290	2
			BA = 40.00		T/A = 16.63	0	21K	38		.953	.558	14.69	7,36	28	28	70	
	0004 BI	1 84	1 22.0 4 87	ц	69 85		1.12			052	***	22.47	14.72	103	103	360	
	JUNA DI	i NA	BA = 40.00	п	T/A = 15.15	3	1 IK 21K	40 28		.953 .953		22.47 14.63	14.63 7.27	79 20	79 20	290 50	:
						-		20		,,,,,,,	.000	11.05	1.21	20 99	20 99	340	
PLOT			BA = 160.00		T/A ≈ 49,042	2								5,269	5,269	22,495	22,
0061	0001 BI	l RA Count	I 21.8 4 87 BA = 40,00	Н	64 80 T/A = 15.400	0	l xx	31						93 <i>93</i>	93 <i>93</i>	315 315	:
	0002 B1	I DF Count	3 23.9 4 87 BA = 120.00	4	91 125 T/A = 38.610	5	l xx	34						161 161	161 <i>161</i>	748 748	
PLOT			BA == 160,00		T/A = 54.017	,								7,658	7,658	33,748	33,2
0062	0001 BJ	l DF	1 55.0 4 86	4	115 146		1 ID	40		.919	.530	55.21	39.09	514	514	2800	28
			BA = 40.00		T/A = 2,424		213	40	2	.919		39.09	29,28	271	271	1520	14
							3 13	32	2	.919	.530	29.28	17.39	103	103	370	:
	0002 B1		1 32.0 4 87		56 (3	1	1.17							888	888	4690	4
	0002 BI	I DIVI	1 32.0 4 87 BA = 40.00	п	56 63 T/A = 7.162		1 IK 21K	16 38	2 3	,953 ,953		32.25 26.28	26,28 7.62	80 69	80 69	500 70	
							211	20	5		,556	20.20	7.02	149	149	570	
	0003 B1	I DF	1 37.0 4 85	4	108 136		112	40		.919	,530	37.37	25.74	227	227	1150	1
			BA = 40.00		T/A = 5.357		212	40		.919	.530	25.74	18.46	111	111	530	
					÷		313	26		.919	.530	18.46	11.24	35	35	110	
	0004 B1	RA	1 29.0 4 87	н	66 76		1 IK	40	2	.953	552	29,49	18.31	<i>373</i> 133	<i>373</i> 133	<i>1790</i> 530	1:
			BA = 40.00		T/A = 8.720		21K	24	4	.953		18.31	7.62	25	25	530 40	:
														158	158	570	
	0005 B1	l DF	1 46.0 4 89	4	125 159		112	40	1	.919		45.23	34.22	364	364	2000	19
			BA == 40.00		T/A == 3,466		213	40		.919		34.22	26.83	212	212	1250	12
							313	40		.919	.530	26,83	15.74	103 679	103	360	2
PLOT			BA = 200.00		T/A = 27.130	l								8,949	<i>679</i> 8,949	3610 42,525	3 <u>:</u> 41.4
0063	0001 B1 I	RA Count	5 21.8 4 87 BA = 200.00	Н	64 80 T/A = 77,002	2	1 xx	31						93 93	93 93	315 <i>315</i>	3
PLOT			BA = 200.00		T/A = 77.002									7,183	7,183	24,241	24,0

•

.

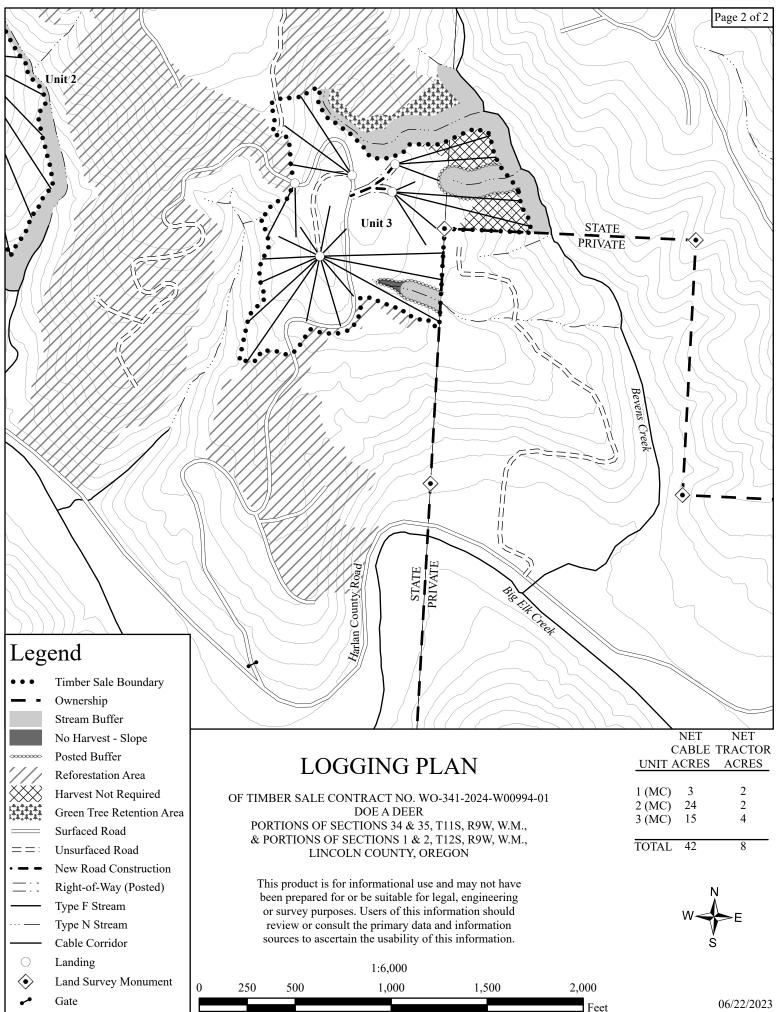
Legend

• • •	Timber Sale Boundary
	Ownership
	Stream Buffer
///	Reforestation Area
	Surfaced Road
\equiv \equiv :	Unsurfaced Road
•	New Road Construction
\equiv	Right-of-Way (Posted)
	Type F Stream
···· <u> </u>	Type N Stream
	Cable Corridor
\bigcirc	Landing
\diamond	Land Survey Monument

LOGGING PLAN

OF TIMBER SALE CONTRACT NO. WO-341-2024-W00994-01
DOE A DEER
PORTIONS OF SECTIONS 34 & 35, T11S, R9W, W.M.,
& PORTIONS OF SECTIONS 1 & 2, T12S, R9W, W.M.,
LINCOLN COUNTY, OREGON
This product is for informational use and may not have

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.



NET NET CABLE TRACTOR UNIT ACRES ACRES

1 (MC)	3	2
2 (MC)	24	2
3 (MC)	15	4
TOTAL	42	8

06/22/2023

