

Timber Sale Appraisal Thin Men Sale WO-341-2023-W01000-01

District: West Oregon Date: March 22, 2023

Cost Summary

	Conifer	Hardwood	Total		
Gross Timber Sale Value	\$229,114.08	\$0.00	\$229,114.08		
		Project Work:	(\$53,348.00)		
		Advertised Value:	\$175,766.08		

3/22/23

Timber Sale Appraisal Thin Men

Sale WO-341-2023-W01000-01

District: West Oregon Date: March 22, 2023

Timber Description

Location: Portions of Section 32 of T9S, R8W W.M. and portions of Sections 5 & 8 of T10S, R8W W.M. Polk County, Oregon and portions of Section 8 T10S, R8W, Lincoln County, Oregon.

Stand Stocking: 40%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	12	0	97

Volume by Grade	28	3S & 4S 6"- 11"	Total	
Douglas - Fir	16	920	936	
Total	16	920	936	

Comments: Pond Values Used: Local Pond Values, January, 2023

Other Conifers Stumpage Price = Conifer Pulp price using a conversion factor of 10 ton/MBF: = \$60.00/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$630.26/MBF = \$1300/MBF - (\$519.74/MBF + \$150/MBF(Extra Haul Cost))

Hardwoods Stumpage Price = Hardwood Pulp price using a conversion factor of 10 ton/MBF: = \$60.00/MBF

PULP (Conifer and Hardwood Price) = \$6/TON

Other Costs (with Profit & Risk to be added):
Intermediate Support/Tail Trees: 12 supports @ \$100/support = \$1,200
Artificial anchor (dead man): 6 anchors @ \$500/anchor = \$3,000
TOTAL Other Costs (with Profit & Risk to be added) = \$4,200

Other Costs (No Profit & Risk added):

Equipment Cleaning (Invasive Species): \$2,000

Water Bar and Block Dirt Roads: 74 Stations @ \$15.96/Station = \$1,181

Landing Slash piling: 6 Landings @ \$100/Landing = \$600

Landing Slash Piling and sorting out firewood: 10 Landings @ \$180/Landing = \$1,800

TOTAL Other Costs (No Profit & Risk added) = \$5,581

ROAD MAINTENANCE Move-in: (Grader) \$875

Final Road Maintenance: \$12,624.90

TOTAL Road Maintenance: \$13,499.90/936MBF = \$14.42/MBF

3/22/23

Timber Sale Appraisal Thin Men

Sale WO-341-2023-W01000-01

Date: March 22, 2023 District: West Oregon

Logging Conditions

Douglas - Fir 54.77% Combination#: 1

Logging System: Cable: Medium Tower >40 - <70 Process: Manual Falling/Delimbing

Medium (800 ft) yarding distance: downhill yarding: No

Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF tree size:

loads / day: bd. ft / load: 3700

cost / mbf: \$281.85

machines: Log Loader (A)

Tower Yarder (Medium)

Douglas - Fir 18.68% Combination#: 2

Cable: Small Tower <=40 Logging System: Process: Manual Falling/Delimbing

Short (400 ft) yarding distance: downhill yarding: No

tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF

loads / dav: bd. ft / load: 3700

cost / mbf: \$229.73

machines: Log Loader (A)

Tower Yarder (Small)

Combination#: 3 Douglas - Fir 15.67%

Logging System: Track Skidder Process: Feller Buncher

Medium (800 ft) yarding distance: downhill yarding: No

tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF

bd. ft / load: 3700 loads / day: 12

cost / mbf: \$168.93

machines: Log Loader (B)

Stroke Delimber (B) Feller Buncher w/ Delimber

Track Skidder

Douglas - Fir 10.88% Combination#: 4

Process: Feller Buncher Logging System: Track Skidder

Short (400 ft) downhill yarding: No yarding distance:

tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF

loads / day: bd. ft / load: 3700

cost / mbf: \$144.79

machines: Log Loader (B)

Stroke Delimber (B) Feller Buncher w/ Delimber

Track Skidder

3/22/23 3

Timber Sale Appraisal Thin Men Sale WO-341-2023-W01000-01

District: West Oregon Date: March 22, 2023

Logging Costs

Operating Seasons: 2.00

Profit Risk: 12%

Project Costs: \$53,348.00

Other Costs (P/R): \$4,200.00

Slash Disposal: \$0.00 Other Costs: \$5,581.00

Miles of Road

Road Maintenance:

\$14.42

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load		
Douglas - Fir	\$0.00	2.0	4.0		

3/22/23 4

Timber Sale Appraisal Thin Men

Sale WO-341-2023-W01000-01

District: West Oregon Date: March 22, 2023

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$239.51	\$14.85	\$37.16	\$160.94	\$4.49	\$54.83	\$0.00	\$2.00	\$5.96	\$519.74

Specie	Amortization	Pond Value	Stumpage	Amortized	
Douglas - Fir	\$0.00	\$764.52	\$244.78	\$0.00	

3/22/23 5

Timber Sale Appraisal Thin Men

Sale WO-341-2023-W01000-01

District: West Oregon Date: March 22, 2023

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	936	\$244.78	\$229,114.08

Gross Timber Sale Value

Recovery: \$229,114.08

Prepared By: Zane Sandborg Phone: 541-929-3266

3/22/23 6

SUMMARY OF ALL PROJECT COSTS

Sale Name:	Thin Men	Date: March		
D 1 4 114 O 4			Time:	13:48
Project #1 - Const	ruction	1 1	01	
Road Segment		<u>Length</u>	Cost	
A to B		2.7 sta	\$1,726	
C to D	(400()	2.2 sta	\$1,378	
Fuel Cost Increase		4.0 . ()	\$310	_
	TOTALS	4.9 sta	\$3,414	
Project #2 - Impro	vements			
Road Segment		Length	Cost	
1 to 2		202.0 sta	\$26,910	
3 to 4		124.0 sta	\$347	
5 to 6		3.8 sta	\$1,104	
7 to 8		14.6 sta	\$400	
9 to 10		53.8 sta	\$2,967	
11 to A		20.4 sta	\$1,084	
12 to 13		8.9 sta	\$931	
14 to 15		33.6 sta	\$3,352	
Fuel Cost Increase	(10%)		\$3,710	
	TOTALS	461.1 sta	\$40,805	_
Project #3 - Brush	ing	<u>Length</u>	Cost	
Brushing		1.8 mi	\$1,712	
Sod and Brush Ren	noval		\$1,431	
Fuel Cost Increase	(10%)		\$314	_
	TOTAL		\$3,457	
Project #4 - Move	in		Cost	
Excavator, C325 or			\$ 1,45 0	
(Extra move-in co	•		\$145	
Dozer, D-7 or equiv	'.		\$905	
(Extra move-in co	ost)		\$128	
Grader, Cat 14-G o	r equiv.		\$875	
Vibratory roller			\$875	
Road Brusher			\$778	
Fuel Cost Increase	(10%)		\$516	_
	TOTAL		\$5,672	

GRAND TOTAL \$53,348

Compiled by: Zane Sandborg Date 03/21/2023

SALE ROAD	Thin Men A to B	Project #	1	LENGTH const	2.7 sta
CLEARI Road & I	NG AND GRUBBING Landing	0.25 ac	@	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•
			TOTAL (CLEARING AND GRUBBING COST =	\$334
EXCAVA Construct (with doz	ct road	2.7 sta	@	<u>Rate</u> \$214.00 /sta = \$578	
•	ct landing	1 ldg	@	\$550.00 /ldg = \$550	
	ump removal	2 stmp	@	\$82.50 ea = \$165	
Shape so (with roa	ubgrade id grader)	2.7 sta	@	\$20.63 /sta = \$56	
Compac	t subgrade ratory roller)	2.7 sta	@	\$16.00 /sta = \$43	
				TOTAL EXCAVATION COST =	\$1,392
Compile Date:	d by:	Zane Sandborg Mar 21, 2023		GRAND TOTAL ====>	\$1,726

SALE Thin Men ROAD C to D	Project #	1		LENGTH	cons	t		2.2 sta
CLEARING AND GRUBBING				Rate				
Road & Landing	0.18 ac		@	\$1,337.00	/ac	=	\$241	
		ТОТ	AL CI	_EARING A	ND G	RUBBI	ING COST =	\$241
EXCAVATION				Rate				
Construct road	2.2 sta		@	\$138.00	/sta	=	\$304	
Construct landing	1 ldg		@	\$438.00	/ldg	=	\$438	
Shape subgrade (with road grader)	2.2 sta		@	\$20.63	/sta	=	\$45	
Compact subgrade (with vibratory roller)	2.2 sta		@	\$16.00	/sta	=	\$35	
				TOTAI	L EXC	AVATI	ION COST =	\$822
SURFACING		Size		Rate				
Transition rock (Sta. 0+00 to 0+50)	10 CY	3"-0"	@		/CY	=	\$297	
Shape surface (Sta. 0+00 to 0+50) (with road grader)	0.5 sta		@	\$20.63	/sta	=	\$10	
Compact surface (Sta. 0+00 to 0+50) (with vibratory roller)	0.5 sta		@	\$16.00	/sta	=	\$8	
(mai visitatory ronolly					ТОТ	AL RC	OCK COST =	\$315
Compiled by: Date:	Zane Sandborg Mar 21, 2023	C	SRAN	ID TOTAL :		:>		\$1,378

SALE Thin Men ROAD 1 to 2	Project #	2		LENGTH	impr	ove		202.0 sta
CLEARING AND GRUBBING Landing (Sta. 95+00, 161+60, 172+30, 184+50, 194+50)	0.07 ac		@	Rate \$1,337.00	/ac	=	\$94	
172+30, 104+30, 134+30)		TOTA	AL CL	EARING A	ND G	RUBE	BING COST =	\$94
EXCAVATION				Rate				
Construct Landing (Sta. 95+00, 161+60, 172+30, 184+50, 194+50)	5 ldgs		@	\$438.00	/ldg	=	\$2,190	
Round cutslope (Sta. 184+50 to 188+40)	3.9 sta		@	\$49.00	/sta	=	\$191	
End haul waste	50 CY		@	\$2.50	/CY	=	\$125	
Comapct waste	50 CY		@	\$0.80	/CY	=	\$40	
Shape Landing subgrade (with road grader)	2.5 sta		@	\$20.63	/sta	=	\$52	
Compact Landing subgrade (with vibratory roller)	2.5 sta		@	\$16.00	/sta	=	\$40	
(man vibratory rollor)				TOTA	L EXC	AVA ⁻	TION COST =	\$2,638
IMPROVEMENT				Rate				
Reestablish ditchline	3.9 sta		@	\$44.00	/sta	=	\$172	
(Sta. 184+50 to 188+40) Re-open landing (w/ grader)	0.5 hrs		@	\$114.00	/hr	=	\$57	
(Sta. 174+00 & 188+40)	0.0 1113		٣	ψι14.00	/111	-	ψυι	
Re-open landing (w/ d6) (Sta. 202+00)	0.5 hrs		@	\$128.00	/hr	=	\$64	
Daylight cutting	3 hrs		@	\$45.00	/hr	=	\$135	
Daylight road cleanup	2 hrs		@	\$145.00	/hr	=	\$290	
(Pts. 4 to 12, 9 to 2)								
Shape Landing surface (with dozer)	3 sta		@	\$20.63	/sta	=	\$62	
Compact Landing surface (with vibratory roller)	3 sta		@	\$16.00	/sta	=	\$48	
Shape road surface	30.0 sta		@	\$20.63	/sta	=	\$619	
(with road grader) Compact road surface	30.0 sta		@	\$16.00	/sta	=	\$480	
(with vibratory roller)				TOTAL I	MPRO	OVEN	IENT COST =	\$1,927
SURFACING		Size		Rate				
Landing rock	160 CY	Jaw-Run	@	\$28.69	/CY	=	\$4,590	
Spot rock (Pt. 1 to Pt. 5)	190 CY	1½"-0"	@	\$3.18	/CY	=	\$604	
Spot rock (Pt. 5 to Pt. 2	30 CY	1½"-0"	@	\$3.18	/CY	=	\$95	
Culvert bedding rock (Sta. 163+90)	20 CY	1½"-0"	@	\$3.18	/CY	=	\$64	
Base Rock	30 CY	3"-0"	@	\$29.71	/CY	=	\$891	
(Sta. 178+00) Culvert surface rock	20 CY	1½"-0"	@	\$3.18	/CY	=	\$64	
(Sta. 178+00)	20 01	1/2 -0	w	ψ5.10	/01	_	Ψ04	
Armor fill rock (Sta. 178+00)	20 CY	Pit-Run	@	\$27.01	/CY	=	\$540	
·					TOT	AL R	OCK COST =	\$6,848
								ψο,ο ιο
SPECIAL PROJECTS				Rate				
Excavate culverts	8 hrs		@	\$145.00	/hr	=	\$1,160	
(163+90 & 178+00)	15 tt		@	¢04.45	/ f +	_	\$00 F	
24"x45' cpp 72"x55'	45 ft 1 culvert		@ @	\$21.45 \$11,121	/ft ea	=	\$965 \$11,121	
Culvert installation	10 hrs		@	\$145.00		=	\$1,450	
Fill compaction	540 CY		@	\$0.80	/CY	=	\$432	
Culvert disposal	2 culverts		@	\$100.00	ea	=	\$200	
Culvert repair (Sat. 170+50)	1 culvert		@	\$25.00	ea	=	\$25	
Clean out culverts	2 culverts		@	\$25.00	ea	=	\$50	
(inlets and outlets)			ТО	TAL SPEC	IAL P	ROJE	ECTS COST =	\$15,403
Compiled by: Date:	Zane Sandborg Mar 21, 2023				GRAI	ND TO	OTAL ====>	\$26,910

SALE Thin Men ROAD 3 to 4	Project #	2		LENGTH	l impr	ove		124.0 sta
IMPROVEMENT				Rate				
Shape surface (with road grader)	6.0 sta		@	\$20.63	/sta	=	\$124	
Compact surface (with vibratory roller)	6.0 sta		@	\$16.00	/sta	=	\$96	
				TOTAL	IMPRO	OVEMEN	T COST =	\$220
SURFACING Spot rock	40 CY	<u>Size</u> 1½"-0"	@	<u>Rate</u> \$3.18	/CY	=	\$127	
					ТОТ	AL ROC	K COST =	\$127
Compiled by: Date:	Zane Sandborg Mar 21, 2023				GRAN	ND TOTA	AL ====>	\$347

SALE Thin Men ROAD 5 to 6	Project #	2		LENGTH	l impr	ove		3.8 sta
IMPROVEMENT				Rate				
Re-open landing	0.5 hrs		@	\$114.00	/hr	=	\$57	
Shape surface (with road grader)	3.8 sta		@	\$20.63	/sta	=	\$78	
Compact surface (with vibratory roller)	3.8 sta		@	\$16.00	/sta	=	\$61	
				TOTAL	IMPRO	OVEMEN'	T COST =	\$196
SURFACING		<u>Size</u>		Rate				
Landing rock	10 CY	Jaw-Run	@	\$28.69	/CY	=	\$287	
Spot rock	20 CY	1½"-0"	@	\$31.06	/CY	=	\$621	
					тот	AL ROCI	K COST =	\$908
Compiled by:	Zane Sandborg							
Date:	Mar 21, 2023				GRA	ND TOTA	L ====>	\$1,104

SALE Thin Men ROAD 7 to 8	Project #	2	LENGTH improve	14.6 sta
CLEARING AND GRUBBING Landing	0.01 ac	@	Rate \$1,337.00 /ac = \$13	
		TOTAL C	LEARING AND GRUBBING COST =	\$13
EXCAVATION Construct landing	0.5 hr	@	Rate \$128.00 /hr = \$64	
(Sta. 2+50) Shape subgrade (with road grader)	0.5 sta	@	\$20.63 /sta = \$10	
Compact subgrade (with vibratory roller)	0.5 sta	@	\$16.00 /sta = \$8	
			TOTAL EXCAVATION COST =	\$82
IMPROVEMENT Shape surface (with road grader)	0.5 sta	@	<u>Rate</u> \$20.63 /sta = \$10	
(with road grader) Compact surface (with vibratory roller)	0.5 sta	@	\$16.00 /sta = \$8	
			TOTAL IMPROVEMENT COST =	\$18
SURFACING Landing rock	10 CY	<u>Size</u> Jaw-Run @	Rate \$28.69 /CY = \$287	
			TOTAL ROCK COST =	\$287
Compiled by: Date:	Zane Sandborg Mar 21, 2023		GRAND TOTAL ====>	\$400

SALE Thin Men ROAD 9 to 10	Project #	2		LENGTH	impro	ove		53.8 sta
CLEARING AND GRUBBING Road & Landing	0.14 ac		@	<u>Rate</u> \$1,337.00	/ac	=	\$187	
		TOTA	\L C	LEARING A	ND G	RUBBIN	NG COST =	\$187
EXCAVATION Extend road (Sta. 52+90 to 53+80)	0.9 sta		@	<u>Rate</u> \$138.00	/sta	=	\$124	
Construct landing	2 Ldg		@	\$438.00	/Ldg	=	\$876	
(Sta. 49+00 & Pt. 10) Shape subgrade	26.4 sta		@	\$20.63	/sta	=	\$545	
(with road grader) Compact subgrade (with vibratory roller)	26.4 sta		@	\$16.00	/sta	=	\$422	
				TOTA	L EXC	AVATIO	ON COST =	\$1,967
IMPROVEMENT				<u>Rate</u>				
Re-open road (w/ dozer) (Sta. 28+40 to 52+90)	8 sta		@	\$36.67	/sta	=	\$293	
Shape surface	3.5 sta		@	\$20.63	s /sta	=	\$72	
(with road grader) Compact surface (with vibratory roller)	3.5 sta		@	\$16.00) /sta	=	\$56	
				TOTAL I	MPRO	OVEME	NT COST =	\$421
SURFACING Spot rock (Sto. 0.100 to 28.140)	30 CY	<u>Size</u> 1½"-0"	@	<u>Rate</u> \$3.18	/CY	=	\$95	
(Sta. 0+00 to 28+40) Transition rock	10 CY	3"-0"	@	\$29.71	/CY	=	\$297	
(Sta. 28+40 to 28+90)					тот	AL RO	CK COST =	\$392
Compiled by: Date:	Zane Sandborg Mar 21, 2023				GRAN	ID TOT	AL ====>	\$2,967

SALE Thin Men ROAD 11 to A	Project #	2	LENGTH improve 20.4	1 sta
EXCAVATION			<u>Rate</u>	
Shape subgrade (with road grader)	20.4 sta		② \$20.63 /sta = \$421	
Compact subgrade (with vibratory roller)	20.4 sta		② \$16.00 /sta = \$326	
			TOTAL EXCAVATION COST = \$747	7
IMPROVEMENT			<u>Rate</u>	
Remove tank trap (Pt. 11)	0.25 hrs		② \$128.00 /hr = \$32	
Shape surface (with road grader)	0.5 sta		② \$20.63 /sta = \$10	
Compact surface (with vibratory roller)	0.5 sta		② \$16.00 /sta = \$8	
			TOTAL IMPROVEMENT COST = \$50)
SURFACING		<u>Size</u>	<u>Rate</u>	
Junction rock	10 CY	Jaw-Run	② \$28.69 /CY = \$287	
			TOTAL ROCK COST = \$287	7
Committed by	Zana Candhara			
Compiled by: Date:	Zane Sandborg Mar 21, 2023		GRAND TOTAL ====> \$1,084	ı

SALE Thin Men ROAD 12 to 13	Project #	2	LENGTH improve	8.9 sta
CLEARING AND GRUBBING Landing	0.03 ac	@	Rate \$1,337.00 /ac = \$40	
		TOTAL	CLEARING AND GRUBBING COST =	\$40
EXCAVATION Construct landing (w/ dozer) (Sta. 8+90)	0.5 hrs	@	<u>Rate</u> \$128.00 /hr = \$64	
Construct Turnaround (w/ dozer)	0.5 hrs	@	\$128.00 /hr = \$64	
(Sta. 7+90) Shape subgrade (with road grader)	0.5 sta	@	\$20.63 /sta = \$10	
Compact subgrade (with vibratory roller)	0.5 sta	@	\$16.00 /sta = \$8	
			TOTAL EXCAVATION COST =	\$146
IMPROVEMENT			<u>Rate</u>	
Re-open road	7.9 sta	@	\$15.40 /sta = \$122	
(Sta. 1+00 to 8+90) Shape surface (with road grader)	8.9 sta	@	\$20.63 /sta = \$184	
Compact surface (with vibratory roller)	8.9 sta	@	\$16.00 /sta = \$142	
			TOTAL IMPROVEMENT COST =	\$448
SURFACING Transition rock (Sta. 0+00 to 1+00)	10 CY	<u>Size</u> 3"-0" @	<u>Rate</u> \$29.71 /CY = \$297	
(5.2. 5700 to 1700)			TOTAL ROCK COST =	\$297
Compiled by: Date:	Zane Sandborg Mar 21, 2023		GRAND TOTAL =====>	\$931

SALE Thin Men ROAD 14 to 15	Project #	2		LENGTH	impro	ove		33.6 sta
EXCAVATION				<u>Rate</u>				
Create waste area (w/ dozer) (WA2 @ Sta. 16+40)	0.5 hr		@	\$128.00	/hr	=	\$64	
Pullback aggregate (Sta. 25+10 to 27+50)	2.4 sta		@	\$20.63	/sta	=	\$50	
Reconstruct road (w/ dozer) (Sta. 25+10 to 27+50)	1.5 hrs		@	\$128.00	/hr	=	\$192	
End haul material	170 CY		@	\$2.00	/cy	=	\$340	
Compact waste material	170 CY		@	\$0.80	/cy	=	\$136	
Shape subgrade	2.4 sta		@	\$20.63	/sta	=	\$50	
(with road grader)				4	,		4	
Compact subgrade (with vibratory roller)	2.4 sta		@	\$16.00	/sta	=	\$38	
				TOTA	L EXC	AVAT	ION COST =	\$870
IMPROVEMENT				Doto				
IMPROVEMENT	40 C ata		@	Rate	\/a4a		¢40 7	
Re-open road (Sta. 20+00 to 33+60)	13.6 sta		@	\$14.50) /sta	=	\$197	
Re-open landing	0.5 hrs		@	\$128.00) /hr	=	\$64	
(Sta. 33+60)	0.5 1115		<u>@</u>	ψ120.00	<i>)</i> /۱۱۱	_	Ψ04	
Shape surface (w/ grader)	5.0 sta		@	\$20.63	R /sta	=	\$103	
(Sta. 0+00 to 20+00)	0.0 314		•	Ψ20.00) /3ta	_	Ψ100	
Compact surface (w/ roller)	5.0 sta		@	\$16.00) /sta	=	\$80	
(Sta. 0+00 to 20+00)				*	,		4	
Shape surface (w/ grader)	13.6 sta		@	\$20.63	3 /sta	=	\$281	
(Sta. 20+00 to 33+60)								
Compact surface (w/ roller) (Sta. 20+00 to 33+60)	13.6 sta		@	\$16.00) /sta	=	\$218	
				TOTAL	IMPRO	OVEME	ENT COST =	\$943
CUREACING		0:		D-4-				
SURFACING	40.004	Size		Rate	/O\/		# 4 040	
Spot rock	40 CY	1½"-0"	@	\$31.06	/CY	=	\$1,242	
(Sta. 0+00 to 20+00) Transition rock	10 CY	2" N"	@	¢20.71	/CV	_	¢207	
(Sta. 20+00 to 20+50)	10 61	3"-0"	@	\$29.71	/CY	=	\$297	
(Sta. 20+00 to 20+30)					ТОТ	AL RO	OCK COST =	\$1,539
Compiled by:	Zane Sandborg							
Date:	Mar 21, 2023				GRAN	ND TO	TAL ====>	\$3,352

SUMMARY OF BRUSHING COST

SALE ROAD	Beaver Believe All		Project # d/unsurfaced)	3		LENGTH	mainta	iin		1.76 Mil	es
Pt. 7 to F Pt. 12 to Pt. 14 to	Pt. 13 Pt. 15	FNOTU	0.28 mi 0.17 mi 0.64 mi		@ @	Rate \$800.00 \$800.00 \$800.00	/mi /mi	= = =	\$224 \$136 \$512	0070	
HEAVY	BRUSHING	ENGTH =	1.09 mi			TOTAL LIG	יחו מא	USHIN	3 (05) =	\$872	
(Pt. 1 to	•		0.14 mi		@	\$1,400.00		=	\$196		
Sta. 28+ (Pt. 9 to	40 to 52+90 10)		0.46 mi		@	\$1,400.00	/mi	=	\$644		
	TOTAL L	ENGTH =	0.6 mi		•	TOTAL HEA	VY BR	USHIN	G COST =	\$840	
						١	BRUSH	HING G	RAND TOTA	L ====>	\$1,712
	ID DEBRIS REMO ning segments Pt. 6	OVAL	1.69 mi 0.07 mi		@	Rate \$813.12 \$813.12		= =	\$1,374 \$57		
	TOTAL L	ENGTH =	1.76 mi			TOTAL SO	DD AND	DEBR	RIS REMOVA	L ====>	\$1,431

Zane Sandborg

Mar 21, 2023

Compiled by:

Date:

SUMMARY OF MAINTENANCE COST

SALE Thin Men Final log haul Maintenance Cost Estimate

(Costed in appraisal, not in project costs)

Move-in Grader \$ 875

Road Segment	Length	Cost/Sta	Cost	Mileage
Pt. 1 to Pt. 2	202.0 sta	\$20.63	\$4,167.26	3.83
Pt. 3 to Pt. 4	124.0 sta	\$20.63	\$2,558.12	2.35
Pt. 5 to Pt. 6	3.8 sta	\$20.63	\$78.39	0.07
Pt. 7 to Sta. 2+50	2.5 sta	\$20.63	\$51.58	0.05
(Pt. 7 to Pt. 8)				
9 to Sta. 28+40	28.4 sta	\$20.63	\$585.89	0.54
(Pt. 9 to Pt. 10)				
Pt. 14 to Sta. 20+00	20.0 sta	\$20.63	\$412.60	0.38
(Pt. 14 to Pt. 15)				
Total	380.7 sta	_	\$7,853.84	7.21

Maintenance Rock:

	Volume	Cost/CY	Cost	Source
1½"-0"	40	\$3.18	\$127.20	Stockpile 1
1½"-0"	110	\$31.06	\$3,416.60	Commercial
Fuel Cost Increase			\$ 1,227.26	
Grand Total			\$ 13,499.90	
TS Volume	936	MBF		
Cost / MBF =			\$14.42	

NOTES:

	Roc	k Haul Cost C	omputation				
ROAD NAME:	Pt. 4 Stockpile Beaver Creek Rd.	rish Hatchery Fall Creek CLASS					
TIME Computa	tion:						
Road speed t							
1.		MRT		0.0	minutes		
2.	50 MPH	MRT		0.0	minutes		
3.	45 MPH	MRT		0.0	minutes		
4.	40 MPH	MRT		0.0	minutes		
5.	35 MPH	MRT		0.0	minutes		
6.	30 MPH	MRT		0.0	minutes		
7.	25 MPH	MRT		0.0	minutes		
8.	20 MPH	MRT		0.0	minutes		
9.	-	2.5 MRT			minutes		
10.		MRT			minutes		
11.	05 MPH	MRT		0.0	minutes		
= =	ad time per RT ling cycle time f	for this setti	na	0.50	minutes		
(100% eff			J	10.50	minutes		
Operator eff	iciency correction	on 0.85		12.35	minutes		
=	cy correction	0.90		13.72	minutes		
Truck capaci	ty (CY)	10.00		1.37	min/CY		
Loading time	, delay time per	CY		0.75	min/CY		
TIME (minute	s) per cubic yard	d		2.12	min/CY		
COST per CY	computation						
Cost of truck and operator per hour \$90.00 /hr.							
Cost of t	ruck and operator	per minute		\$1.50	/min		

		Cost Delivered	Cost Delivered
Size	Cost/Yd (Pit)	w/o processing	with processing
1½" - 0"	\$ -	\$3.18	\$4.68

Spread and compact Water truck, Grader & Roller \$1.50 /CY

\$3.18 /CY

Stockpile Note: 430 CY 1½"-0"

Cost per CY

Rock Haul Cost Computation

SALE NAME: Thin Men DATE: Mar 21, 2023
ROAD NAME: Hatchery Fall Creek Road CLASS: Medium
ROCK SOURCE: Rickard Rock Quarry 10 CY truck

Route: Hwy 20, Blodgett-Eddyville HWY, Logsden Rd,

Rudder Road, Beaver Creek Rd., Hatchery Fall Extension Rd.

TIME Computation:

TIME Computation	n:				
Road speed time	factors:				
1.	55 MPH	12.6	MRT	13.7	minutes
2.	50 MPH		MRT	0.0	minutes
3.	45 MPH		MRT	0.0	minutes
4.	40 MPH		MRT	0.0	minutes
5.	35 MPH	33.6	MRT	57.6	minutes
6.	30 MPH		MRT	0.0	minutes
7.	25 MPH		MRT	0.0	minutes
8.	20 MPH	4.0	MRT	12.0	minutes
9.	15 MPH		MRT	0.0	minutes
10.	10 MPH	1.2	MRT	7.2	minutes
11.	05 MPH		MRT	0.0	minutes
Dump or spread t	cime per RT			0.50	minutes
Total hauling	g cycle tim	e for thi	s setting		
(100% efficie	ency)			91.00	minutes
Operator efficie	ency correc	tion	0.85	107.06	minutes
Job efficiency of	correction		0.90	118.96	minutes
Truck capacity	(CY)		10.00	11.90	, -
Loading time, de	elay time p	er CY		0.25	
TIME (minutes) p	per cubic y	ard		12.15	min/CY
COST per CY comp	putation				
Cost of truc	k and opera	tor per h	iour	\$90.00	/hr.
Cost of truc	k and opera	tor per m	ninute	\$1.50	/min
Cost per CY				\$18.23	/CY
Spread and compa	act Wa	ater trucl	k, Grader & Roller	\$1.50	/CY

		Cost Delivered	Cost Delivered
Size	Cost/Yd (Pit)	w/o processing	with processing
1½" - 0"	\$ 12.83	\$31.06	\$32.56
3 " - 0 "	\$ 11.48	\$29.71	\$31.21
Jaw-Run	\$ 10.46	\$28.69	\$30.19
Pit-Run	\$ 8.78	\$27.01	\$28.51

QuarryNote: Pit costs April 1, 2022 Rickard

Rock Haul Cost Computation

SALE NAME: Thin Men DATE: Mar 21, 2023

ROAD NAME: Hatchery Fall Creek Road CLASS: Medium ROCK SOURCRickard Rock Quarry 18 CY truck

Route: Hwy 20, Blodgett-Eddyville HWY, Logsden Rd,

Rudder Road, Beaver Creek Rd., Hatchery Fall Extension Rd.

TIME Computation:

Road	speed	time	factors:
------	-------	------	----------

~ ~		01110 10		~ .				
	1.	55	MPH		12.6	MRT	13.7	minutes
	2.	50	MPH			MRT	0.0	minutes
	3.	45	MPH			MRT	0.0	minutes
	4.	40	MPH			MRT	0.0	minutes
	5.	35	MPH		33.6	MRT	57.6	minutes
	6.	30	MPH			MRT	0.0	minutes
	7.	25	MPH			MRT	0.0	minutes
	8.	20	MPH		4.0	MRT	12.0	minutes
	9.	15	MPH			MRT	0.0	minutes
	10.	10	MPH		1.2	MRT	7.2	minutes
	11.	05	MPH			MRT	0.0	minutes

Dump	or	spread	time	per	RT	
------	----	--------	------	-----	----	--

_	_	_					
Total	hauling	cycle	time	for	this	setting	
(100%	efficier	ncy)					

Operator efficiency correction Job efficiency correction	0.85	
Truck capacity (CY)	18.00	

Loadi	ng	time,	delay	time	per	СҮ
TIME	(mi	nutes)	per	cubic	yard	b

COST E	per CY	computation
--------	--------	-------------

Cost	of	truck	and	operator	per	hour
Cost	of	truck	and	operator	per	minute

Cost	per	CY
COSC	Ьет	CI

Spread and compact	Water	truck,	Grader	&
--------------------	-------	--------	--------	---

\$114.00	/hr.
\$1.90	/min

0.50 minutes

91.00 minutes

107.06 minutes 118.96 minutes

6.61 min/CY0.25 min/CY6.86 min/CY

\$13.	.03	/CY

& ROTTEL \$1.30 /CI	&	Roller	\$1.50	/CY
---------------------	---	--------	--------	-----

		Cost Delivered	Cost Delivered
Size	Cost/Yd (Pit)	w/o processing	with processing
1½" - 0"	\$ 12.83	\$25.86	\$27.36
3" - 0"	\$ 11.48	\$24.51	\$26.01
Jaw-Run	\$ 10.46	\$23.49	\$24.99
Pit-Run	\$ 8.78	\$21.81	\$23.31

QuarryNote: Pit costs April 1, 2022 Rickard

TIMBER CRUISE REPORT

Thin Men (WO-341-2023-W01000-01) FY 2023

- 1. Sale Area Location: Portions of Section 32, T9S, R8W and portions of Sections 5 & 8 T10S, R8W, W.M. Polk County, and portions of Section 8 T10S, R8W W.M. Lincoln County, Oregon.
- 2. Fund Distribution:

a. Fund

BOF 100%

CSL 0%

3. Sale Acreage by Area:

Unit	Treatment	Gross Acres	Stream Buffers	Wetland Buffers	Existing Roads	Non- Thinnable Acres	Net Sale Acres	Acreage Comp. Method
1	Partial Cut	76	11	-	2	1	62	GIS
2	Partial Cut	50	1	2	1	2	44	GIS
3	Partial Cut	38	4	-	<1	-	34	GIS
4	R/W	<1	-	-	-	-	<1	GIS
Total		164	16	2	3	3	140	

- 4. **Cruisers and Cruise Dates:** This sale was cruised by Zane Sandborg, Aaron McEwen, David Bailey and Jacob Bergstrom in January and February of 2023.
- 5. Cruise Method and Computation: The sale consists of three Partial Cut units that were cruised using variable radius plot sampling. The timber sale area was cruised using a basal area factor of 20. Plots were spaced on a 4x6 chain grid for all Units. On Unit 1, a total of 23 plots were taken: 12 measure plots and 11 count plots. On Unit 2, a total of 19 plots were taken: 11 measure plots and 8 count plots. On Unit 3, a total of 17 plots were taken: 9 measure plots and 8 count plots.

Measure plots were measured for DBH, height, form factor, grade, and defect. Data was entered into the Atterbury Super ACE cruise program to determine stand statistics and net board foot volume. Volume was removed to account for hidden defect and breakage. Volume was added to account for tree removal in Rights-of-Way and Cable Corridors.

Digital ortho photos, Lidar data, and GPS data were used to map the boundaries for the sale, and ArcGIS Pro was used to determine gross and net acreage.

- 6. Measurement Standards: Tree heights were measured to the nearest foot, to a top diameter of 6 inches inside bark or to 40% of form factor. Diameters at breast height (DBH) were measured to the nearest inch, and a form point of 16 feet was used to calculate form factor. Form factors were measured or estimated on every tree. Most trees were graded in 40 foot log segments unless breakage, defect, or length to top of grade cruise diameter warranted otherwise.
- 7. **Timber Description:** Timber is primarily 34 year-old Douglas-fir for Units 1 and 2 and 37-year old Douglas-fir for Unit 3. All Units possess small amounts of red alder and Western red cedar, Unit 1 possesses a small amount of Western hemlock. For Unit 1 the average Douglas-fir to be removed is approximately 11 inches DBH, with an

average height of 37 feet to a merchantable top. For Unit 2, the average Douglas-fir to be removed is approximately 12 inches DBH, with an average height of 41 feet to a merchantable top. For Unit 3, the average Douglas-fir to be removed is approximately 13 inches DBH, with an average height of 61 feet to a merchantable top. The average volume per acre to be harvested (net) is approximately 5.3 MBF for Unit 1, 6.4 MBF for Unit 2, and 9.6 MBF for Unit 3. Conifer trees other than Douglas-fir are reserved from cutting, unless present in yarding corridors, Landings or between R/W tags. Swiss needle cast is present in Units 1 and 2.

8. Statistical Analysis and Stand Summary: (See attached "Statistics").

Unit	Target CV	Target SE	Actual CV	Actual SE
1	40%	15%	30.9%	6.6%
2	40%	15%	31.0%	7.3%
3	40%	15%	20.3%	5.1%

Note: Statistics shown are for conifer and hardwood trees combined. Percentages are for net board foot volume.

9. Total Volume (MBF) by Species and Grade: (See attached volume report "Species, Sort Grade – Board Foot Volumes - Project").

Unit	Species	Gross Cruise Volume (MBF)	Cruised D & B	Cruised D & B (MBF)	Corridor Removal Acres	Corridor Removal Volume (MBF)	R/W Removal Volume	Hidden D & B	Hidden D & B (MBF)	Net Sale Volume
1	Douglas- fir	299	4.1%	(12)	4	46	-	2%	(7)	326
2	Douglas- fir	226	2.3%	(5)	5	66	2	2%	(6)	283
3	Douglas- fir	241	2.9%	(7)	5	95	1	1%	(3)	327
Total		766	3.1%	(24)		207	3	2.1%	(16)	936

Unit	Species	Avg. DBH	Tot. Net Vol.	2-Saw	3-Saw	4-Saw
1	Douglas fir	11	Grade %	-	63%	37%
1	Douglas-fir	11	326	-	205	121
2	Douglas-fir	12	Grade %	-	81%	19%
2			283	-	229	54
3	Dougles fin	13	Grade %	5%	77%	18%
3	Douglas-fir	15	327	16	252	59
Total	Total		936	16	686	234

Attachments: -Cruise Design

-Cruise Maps

-Statistics

-Species, Sort, Grade - Board Foot Volume

-Stand Table Summary

-Log Stock Table – MBF

Prepared by: Zane Sandborg Date: 03/20/2023

Unit Forester: Cody Valencia

Date: 3/23/23

Page 2 of 2

March 22, 2023

CRUISE DESIGN WEST OREGON DISTRICT

Sa	le Name: Thin Men Unit1
Aр	prox. Cruise Acres: 64 Estimated CV% 40 /Acre SE% Objective 15 /Acre
	Anned Sale Volume:852 MMBF
	(Special cruising directions – leave trees etc.) <u>Take plots as shown on map. Do not take plots in buffers.</u>
	DO NOT RECORD 12', 22' and 32' (for Hardwoods).
	DO NOT RECORD 22' LENGTHS.
В.	Cruise Design: 1. Plot Cruises: BAF _20 Full point

C. <u>Tree Measurements</u>:

- **1. Diameter:** Minimum DBH to cruise is 8" for conifers and 10" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- **3.** Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>7</u>", <u>8</u>" for <u>hardwoods</u> or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees ≤ 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each

merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes: A. Species: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- 7. Deductions: Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning points with red flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie red flagging above eye level near plot center and another red flagging around a sturdy wooden stake marking plot center. On red flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in yellow paint. Mark leave trees with an L for leave. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint.
- Cruising Equipment: Relaskop, Rangefinder or Laser, Logger's Tape (with dbh on back), Biltmore Stick, Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Yellow Paint.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Gruise Design	by: Zane Sandborg	
Approved by:		
Date:		

CRUISE DESIGN WEST OREGON DISTRICT

Sa	ale Name:Thin MenUnit2
	Arvest Type: PC Oprox. Cruise Acres: 44 Estimated CV% 40 /Acre SE% Objective 15 /Acre
Pla	anned Sale Volume: .852 MMBF Estimated Sale Area Value/Acre: \$ 1,800
Α.	<u>Cruise Goals</u> : (a) Grade minimum <u>40</u> conifer and <u>0</u> hardwood trees: (b) Sample <u>19</u> cruise plots (11 grade: 8 count); (c) Other goals <u>X</u> Determine log grades for sale value; <u>X</u> Determine take and leave tree species and sizes.
	(Special cruising directions – leave trees etc.) <u>Take plots as shown on map. Do not take plots in buffers.</u>
	DO NOT RECORD 12', 22' and 32' (for Hardwoods).
	DO NOT RECORD 22' LENGTHS.
В.	Cruise Design: 1. Plot Cruises: BAF _20 Full point
C.	 Tree Measurements: Diameter: Minimum DBH to cruise is 8" for conifers and 10" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
	2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.

4. Form Factors: (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; Hardwood form factors are a Standard 87.

40% of dob @ FP for trees > 18" dbh.

5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each

3. Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>7", 8" for hardwoods</u> or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and

merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes: A. Species: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning points with red flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie red flagging above eye level near plot center and another red flagging around a sturdy wooden stake marking plot center. On red flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in yellow paint. Mark leave trees with an L for leave. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint.
- **9. Cruising Equipment:** Relaskop, Rangefinder or Laser, Logger's Tape (with dbh on back), Biltmore Stick, Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Yellow Paint.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

ruise Design	by: Zane Sandborg	<u>g</u>	
Approved by:			
Date:			

CRUISE DESIGN WEST OREGON DISTRICT

Sa	Name: Thin Men Unit 3	
	est Type: PC ox. Cruise Acres:34	
Pla	ned Sale Volume: .852 MMBF Estimated Sale Area Value/Acre: \$1,800	
Α.	ruise Goals: (a) Grade minimum <u>36</u> conifer and <u>0</u> hardwood trees: b) Sample <u>17</u> cruise plots (9 grade: 8 count); (c) Other goals <u>X</u> Determine log grades for all evalue; <u>X</u> Determine take and leave tree species and sizes.	or
	Special cruising directions – leave trees etc.) <u>Take plots as shown on map. Do not take plots i</u> uffers.	<u>n</u>
	O NOT RECORD 12', 22' and 32' (for Hardwoods).	
	O NOT RECORD 22' LENGTHS.	
В.	ruise Design: Plot Cruises: BAF <u>20</u> Full point Cruise Line Direction(s) <u>0/180</u> Cruise Line Spacing <u>4/264</u> (chains) (feet) Cruise Plot Spacing <u>6/396</u> (chains) (feet) Grade/Count Ratio <u>1:1</u>	

C. <u>Tree Measurements</u>:

- **1. Diameter:** Minimum DBH to cruise is <u>8</u>" for conifers and <u>10</u>" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- **3.** Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>7</u>", <u>8</u>" for <u>hardwoods</u> or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees ≤ 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each

merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes: A. Species: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning points with red flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie red flagging above eye level near plot center and another red flagging around a sturdy wooden stake marking plot center. On red flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in yellow paint. Mark leave trees with an L for leave. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint.
- Cruising Equipment: Relaskop, Rangefinder or Laser, Logger's Tape (with dbh on back), Biltmore Stick, Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Yellow Paint.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by: ,	Zane Sandborg	
Approved by:		
Date:		_

TC PSTATS			PROJECT STATISTICS PROJECT THINMEN							PAGE DATE	1 3/6/2023	
TWP RGE		SC TRACT	ŗ	ГҮРЕ		ACI	RES	PLOTS	TREES	CuFt		
09S 08		32 U1	(00PC			62.00	23	216	1	W	
					TREES	I	ESTIMATED TOTAL		ERCENT SAMPLE			
		PLOTS	TREES		PER PLOT		TREES		TREES			
TOTAL		23	216		9.4							
CRUISE		12	112		9.3		14,372		.8			
DBH COUNT	Γ											
REFOREST												
COUNT		11	104		9.5							
BLANKS 100 %												
100 %				STA	ND SUMM.	A D V						
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET	
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC	
DF-L		69	111.8	13.6	51	30.5	112.2	12,003	11,513	3,427	3,42	
DF-T		37	89.5	10.8	37	17.2	56.5	4,827	4,630	1,378	1,37	
SNAG		2	10.2	11.9	74	2.3	7.8					
R ALDER		3	7.9	12.7	36	2.0	7.0	643	643	194	19	
WHEMLOCK	ζ.	1	12.5	8.0	22	1.5	4.3	249	249	75	7	
TOTAL		112	231.8	12.2	44	53.8	187.8	17,723	17,035	5,075	5,07.	
CL 68.1		COEFF				TREES -		#	OF TREES R	-	INF. POP.	
SD: 1.0		VAR.%	S.E.%	L	OW	AVG	HIGH	#	OF TREES R	EQ.		
SD: 1.0 DF-L		VAR.% 134.7	16.2	L	OW 115	AVG 137	HIGH 159	#		-		
SD: 1.0 DF-L DF-T		VAR.%		L	OW	AVG	HIGH	#		-	INF. POP.	
SD: 1.0 DF-L		VAR.% 134.7	16.2	L	OW 115	AVG 137	HIGH 159	#		-		
SD: 1.0 DF-L DF-T SNAG)	VAR.% 134.7 57.4	16.2 9.4	L	OW 115 57	137 62	HIGH 159 68	#		-	INF. POP.	
SD: 1.0 DF-L DF-T SNAG R ALDER)	VAR.% 134.7 57.4	16.2 9.4	L	OW 115 57	137 62	HIGH 159 68	#		-		
SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK	ζ	VAR.% 134.7 57.4 55.7	16.2 9.4 38.5	L	OW 115 57 61 94	AVG 137 62 100	HIGH 159 68 139 122		5	10		
SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK	(VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.%	16.2 9.4 38.5		OW 115 57 61 94	137 62 100 108 2 TREES -	HIGH 159 68 139 122		5 784	10		
SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L	(VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6	16.2 9.4 38.5 13.2 S.E.%		OW 115 57 61 94 SAMPLE OW 34	137 62 100 108 2 TREES - AVG 39	HIGH 159 68 139 122 CF HIGH 44		5 784 OF TREES R	10 196 EQ.	INF. POP.	
DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T	(VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.%	16.2 9.4 38.5 13.2		OW 115 57 61 94 SAMPLE	137 62 100 108 2 TREES -	HIGH 159 68 139 122 CF HIGH		5 784 OF TREES R	10 196 EQ.	INF. POP.	
SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG	(VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4		OW 115 57 61 94 SAMPLE OW 34 17	137 62 100 108 2 TREES - AVG 39 19	HIGH 159 68 139 122 CF HIGH 44 21		5 784 OF TREES R	10 196 EQ.	INF. POP.	
SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T) ζ	VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6	16.2 9.4 38.5 13.2 S.E.%		OW 115 57 61 94 SAMPLE OW 34	137 62 100 108 2 TREES - AVG 39	HIGH 159 68 139 122 CF HIGH 44		5 784 OF TREES R	10 196 EQ.	INF. POP.	
SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER) ζ	VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4		OW 115 57 61 94 SAMPLE OW 34 17	137 62 100 108 2 TREES - AVG 39 19	HIGH 159 68 139 122 CF HIGH 44 21		5 784 OF TREES R	10 196 EQ.	INF. POP.	
SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL) (()	VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1 52.8 104.6	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4 36.5		OW 115 57 61 94 SAMPLE OW 34 17 19 28	AVG 137 62 100 108 CTREES - AVG 39 19 30 31	HIGH 159 68 139 122 CF HIGH 44 21 41	#	5 784 OF TREES R 5	196 EQ. 10	INF. POP.	
SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK WHEMLOCK WHEMLOCK WHEMLOCK WHEMLOCK WHEMLOCK) (VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1 52.8	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4 36.5	L	OW 115 57 61 94 SAMPLE OW 34 17	AVG 137 62 100 108 CTREES - AVG 39 19 30 31	HIGH 159 68 139 122 CF HIGH 44 21 41	#	5 784 OF TREES R 5	196 EQ. 10	INF. POP.	
SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1) (VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1 52.8 104.6 COEFF	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4 36.5	L	OW 115 57 61 94 SAMPLE OW 34 17 19 28 TREES/A	AVG 137 62 100 108 CTREES - AVG 39 19 30 31	HIGH 159 68 139 122 CF HIGH 44 21 41 34	#	784 OF TREES R 5 437 OF PLOTS R	196 EQ. 10	INF. POP.	
DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T) (VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1 52.8 104.6 COEFF VAR.% 19.2 93.9	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4 36.5 9.9 S.E.% 4.1 20.0	L	OW 115 57 61 94 SAMPLE OW 34 17 19 28 TREES/A OW 107 72	AVG 137 62 100 108 CTREES - AVG 39 19 30 31 ACRE AVG	HIGH 159 68 139 122 CF HIGH 44 21 41 34 HIGH 116 107	#	784 OF TREES R 5 437 OF PLOTS R	196 EQ. 10	INF. POP.	
DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-L SNAG) (VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1 52.8 104.6 COEFF VAR.% 19.2 93.9 200.4	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4 36.5 9.9 S.E.% 4.1 20.0 42.7	L	OW 115 57 61 94 SAMPLE OW 34 17 19 28 TREES/A OW 107 72 6	AVG 137 62 100 108 CTREES - AVG 39 19 30 31 ACRE AVG 112 89 10	HIGH 159 68 139 122 CF HIGH 44 21 41 34 HIGH 116 107 15	#	784 OF TREES R 5 437 OF PLOTS R	196 EQ. 10	INF. POP.	
DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 DF-T SNAG R ALDER UNDER	(((((((((((((((((((VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1 52.8 104.6 COEFF VAR.% 19.2 93.9 200.4 200.9	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4 36.5 9.9 S.E.% 4.1 20.0 42.7 42.8	L	OW 115 57 61 94 SAMPLE OW 34 17 19 28 TREES/A OW 107 72 6 5	AVG 137 62 100 108 CTREES - AVG 39 19 30 31 ACRE AVG 112 89 10 8	HIGH 159 68 139 122 CF HIGH 44 21 41 34 HIGH 116 107 15 11	#	784 OF TREES R 5 437 OF PLOTS R	196 EQ. 10	INF. POP.	
SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL WHEMLOCK TOTAL WHEMLOCK TOTAL WHEMLOCK TOTAL WHEMLOCK TOTAL WHEMLOCK TOTAL WHEMLOCK WHEMLOCK WHEMLOCK	(((((((((((((((((((VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1 52.8 104.6 COEFF VAR.% 19.2 93.9 200.4 200.9 238.5	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4 36.5 9.9 S.E.% 4.1 20.0 42.7 42.8 50.8	L	OW 115 57 61 94 SAMPLE OW 34 17 19 28 TREES/A OW 107 72 6 5 6	AVG 137 62 100 108 CTREES - AVG 39 19 30 31 ACRE AVG 112 89 10 8 12	HIGH 159 68 139 122 CF HIGH 44 21 41 34 HIGH 116 107 15 11 19	#	5 784 OF TREES R. 5 437 OF PLOTS R. 5	196 EQ. 10 109 EQ. 10	INF. POP.	
SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL	(C)	VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1 52.8 104.6 COEFF VAR.% 19.2 93.9 200.4 200.9 238.5 37.0	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4 36.5 9.9 S.E.% 4.1 20.0 42.7 42.8	L	OW 115 57 61 94 SAMPLE OW 34 17 19 28 TREES/A OW 107 72 6 5 6 214	AVG 137 62 100 108 CTREES - AVG 39 19 30 31 ACRE AVG 112 89 10 8 12 232	HIGH 159 68 139 122 CF HIGH 44 21 41 34 HIGH 116 107 15 11 19 250	#	5 784 OF TREES R. 5 437 OF PLOTS R. 5	196 EQ. 10 109 EQ. 10	INF. POP.	
DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1	(VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1 52.8 104.6 COEFF VAR.% 19.2 93.9 200.4 200.9 238.5 37.0 COEFF	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4 36.5 9.9 S.E.% 4.1 20.0 42.7 42.8 50.8 7.9	L	OW 115 57 61 94 SAMPLE OW 34 17 19 28 TREES/A OW 107 72 6 5 6 214 BASAL A	AVG 137 62 100 108 CTREES - AVG 39 19 30 31 ACRE AVG 112 89 10 8 12 232 AREA/ACE	HIGH 159 68 139 122 CF HIGH 44 21 41 34 HIGH 116 107 15 11 19 250	#	784 OF TREES R 5 437 OF PLOTS R 5 57 OF PLOTS R	196 EQ. 10 109 EQ. 10	INF. POP.	
SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 CL 68.1 SD: 1.0 CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 CL 68.1	(VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1 52.8 104.6 COEFF VAR.% 19.2 93.9 200.4 200.9 238.5 37.0 COEFF VAR.%	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4 36.5 9.9 S.E.% 4.1 20.0 42.7 42.8 50.8 7.9	L	OW 115 57 61 94 SAMPLE OW 34 17 19 28 TREES/A OW 107 72 6 5 6 214 BASAL A OW	AVG 137 62 100 108 CTREES - AVG 39 19 30 31 ACRE AVG 112 89 10 8 12 232 AREA/ACE AVG	HIGH 159 68 139 122 CF HIGH 44 21 41 34 HIGH 116 107 15 11 19 250 RE HIGH	#	5 784 OF TREES R. 5 437 OF PLOTS R. 5	196 EQ. 10 109 EQ. 10	INF. POP.	
DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER	(VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1 52.8 104.6 COEFF VAR.% 19.2 93.9 200.4 200.9 238.5 37.0 COEFF VAR.% 11.7	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4 36.5 9.9 S.E.% 4.1 20.0 42.7 42.8 50.8 7.9 S.E.% 2.5	L	OW 115 57 61 94 SAMPLE OW 34 17 19 28 TREES/A OW 107 72 6 5 6 214 BASAL A OW 109	AVG 137 62 100 108 CTREES - AVG 39 19 30 31 ACRE AVG 112 89 10 8 12 232 AREA/ACR AVG 112	HIGH 159 68 139 122 CF HIGH 44 21 41 34 HIGH 116 107 15 11 19 250 RE HIGH 115	#	784 OF TREES R 5 437 OF PLOTS R 5 57 OF PLOTS R	196 EQ. 10 109 EQ. 10	INF. POP.	
SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 CL 68.1 SD: 1.0 CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 CL 68.1	(VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1 52.8 104.6 COEFF VAR.% 19.2 93.9 200.4 200.9 238.5 37.0 COEFF VAR.%	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4 36.5 9.9 S.E.% 4.1 20.0 42.7 42.8 50.8 7.9	L	OW 115 57 61 94 SAMPLE OW 34 17 19 28 TREES/A OW 107 72 6 5 6 214 BASAL A OW	AVG 137 62 100 108 CTREES - AVG 39 19 30 31 ACRE AVG 112 89 10 8 12 232 AREA/ACE AVG	HIGH 159 68 139 122 CF HIGH 44 21 41 34 HIGH 116 107 15 11 19 250 RE HIGH	#	784 OF TREES R 5 437 OF PLOTS R 5 57 OF PLOTS R	196 EQ. 10 109 EQ. 10	INF. POP.	
DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER	(((((((((((((((((((VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1 52.8 104.6 COEFF VAR.% 19.2 93.9 200.4 200.9 238.5 37.0 COEFF VAR.% 11.7 96.4	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4 36.5 9.9 S.E.% 4.1 20.0 42.7 42.8 50.8 7.9 S.E.% 2.5 20.5	L	OW 115 57 61 94 SAMPLE OW 34 17 19 28 TREES/A OW 107 72 6 5 6 214 BASAL A OW 109 45	AVG 137 62 100 108 2 TREES - AVG 39 19 30 31 ACRE AVG 112 89 10 8 12 232 AREA/ACE AVG 112 57	HIGH 159 68 139 122 CF HIGH 44 21 41 34 HIGH 116 107 15 11 19 250 RE HIGH 115 68	#	784 OF TREES R 5 437 OF PLOTS R 5 57 OF PLOTS R	196 EQ. 10 109 EQ. 10	INF. POP.	
DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER WHEMLOCK TOTAL CL 68.1 SD: 1.0 DF-L DF-T SNAG R ALDER	(VAR.% 134.7 57.4 55.7 140.1 COEFF VAR.% 98.6 57.1 52.8 104.6 COEFF VAR.% 19.2 93.9 200.4 200.9 238.5 37.0 COEFF VAR.% 11.7 96.4 200.0	16.2 9.4 38.5 13.2 S.E.% 11.9 9.4 36.5 9.9 S.E.% 4.1 20.0 42.7 42.8 50.8 7.9 S.E.% 2.5 20.5 42.6	L	OW 115 57 61 94 SAMPLE OW 34 17 19 28 TREES/A OW 107 72 6 5 6 214 BASAL A OW 109 45 4	AVG 137 62 100 108 2 TREES - AVG 39 19 30 31 ACRE AVG 112 89 10 8 12 232 AREA/ACR AVG 112 57 8	HIGH 159 68 139 122 CF HIGH 44 21 41 34 HIGH 116 107 15 11 19 250 RE HIGH 115 68 11	#	784 OF TREES R 5 437 OF PLOTS R 5 57 OF PLOTS R	196 EQ. 10 109 EQ. 10	INF. POP.	

TC	PSTA	TS

PROJECT STATISTICS

PAGE

2 PROJECT DATE 3/6/2023 THINMEN RGE SC **TYPE** TWP TRACT ACRES **PLOTS** TREES CuFt BdFt 23 1 \mathbf{W} 09S 32 U1 00PC 62.00 216 08 COEFF NET BF/ACRE # OF PLOTS REQ. INF. POP. CL68.1 SD: VAR.% S.E.% LOW AVG HIGH 10 1.0 15 DF-L 17.7 3.8 11,080 11,513 11,946 DF-T 101.8 21.7 3,626 4,630 5,633 SNAG R ALDER 205.4 43.8 362 643 925 WHEMLOCK 238.5 50.8 123 249 376 TOTAL 30.9 6.6 15,912 17,035 18,158 40 10 4 # OF PLOTS REQ. COEFF NET CUFT FT/ACRE INF. POP. CL 68.1 SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 15 DF-L 16.0 3.4 3,311 3,427 3,544 DF-T 102.0 21.7 1,079 1,378 1,678 ${\bf SNAG}$ 206.9 44.1 109 194 280 R ALDER WHEMLOCK 238.5 50.8 37 75 113 TOTAL 39 10 30.4 6.5 4,746 5,075 5,404 4

TC PSPCSTGR Species, Sort Grade - Board Foot Volumes (Project)																			
T09S R08W S32 T	y00PC		62.00		Project:		TH	IINMI 62.								Page Date Time		1 6/2023 :24:5	3
S So Gr	% Net	Bd. Ft.	per Acre		Percent of Net Board Foot Volume Total Log Scale Dia.						Volume		Avera					g CF/	Logs Per
Spp T rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5	6-11	12-16	17+	12-20	21-30		36-99	Ln Ft	In	Ft	Lf	/Acre
DF L DO 2M DF L DO 3M DF L DO 4M	12 72 16	3.5 4.6 1.9	1,456 8,735 1,813	1,405 8,330 1,778		87 516 110		100 100	73	27	22 1 62	10 7 34	23	68 69 4	28 36 19	13 8 6	195 81 23	1.61 0.68 0.38	7.2 102.7 75.9
DF Totals	68	4.1	12,003	11,513		714		88	9	3	13	11	16	59	29	7	62	0.63	185.8
DF T DO 3M DF T DO 4M	63 37	2.2 7.2	3,016 1,811	2,948 1,681		183 104		100 100			51	12 35	27 14	61	36 21	7 6	67 25	0.56 0.35	44.2 67.2
DF Totals	27	4.1	4,827	4,630		287		100			19	20	22	39	27	7	42	0.46	111.4
WH DO 4M	100		249	249		15		100			100				20	6	20	0.30	12.5
WH Totals	1		249	249		15		100			100				20	6	20	0.30	12.5
RA DO CR	100		643	643		40		100			5	33	32	30	29	8	69	0.72	9.4
RA Totals	4		643	643		40		100			5	33	32	30	29	8	69	0.72	9.4
Totals		3.9	17,723	17,035	1	1,056		92	6	2	16	14	18	52	28	7	53	0.57	319.0

TC PSTNDSUM		Stand Table Summary	Page Date:	1 3/6/2023
T09S R08W S32 Ty00PC	62.00	Project THINMEN	Time:	11:24:57AM
		Acres 62.00	Grown Year:	

c				Tot				Average	e Log		Net	Net		
Spc T	DBH	Sample Trees	FF 16'	Av Ht	Trees/ Acre	BA // Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Totals Tons Cunits	MBF
DF L	9	1	86	62	3.680	1.63	3.68	10.0	40.0		37	147	23	9
DF L	10	2	87	78	5.961	3.25	5.96	14.0	55.0		83	328	52	20
DF L	11	6	88	77	14.780	9.75	17.24	15.0	51.4		259	887	160	55
DF L	12	11	86	75	22.769	17.88	37.26	13.3	45.0		495	1,677	307	104
DF L	13	10	87	76	17.637	16.26	31.75	14.9	45.0		473	1,429	293	89
DF L	14	9	87	77	13.687	14.63	24.33	18.0	59.4		438	1,445	272	90
DF L	15	12	87	86	15.897	19.51	30.47	20.7	64.8		629	1,974	390	122
DF L	16	5	87	83	5.822	8.13	11.64	22.3	76.0		260	885	161	55
DF L	17	7	88	84	7.220	11.38	14.44	26.8	90.0		387	1,300	240	81
DF L	18	3	90	89	2.760	4.88	5.52	29.5	105.0		163	580	101	36
DF L	20	1	94	89	.745	1.63	1.49	38.5	140.0		57	209	36	13
DF L	22	1	95	98	.616	1.63	1.23	52.0	205.0		64	252	40	16
DF L	34	1	88	139	.258	1.63	.77	107.7	520.0		83	402	52	25
DF L	Totals	69	87	79	111.832	112.17	185.79	18.4	62.0		3,427	11,513	2,125	714
DF T	8	3	88	41	13.129	4.58	13.13	5.7	20.0		74	263	46	16
DF T	9	5	86	54	17.289	7.64	17.29	9.0	32.0		156	553	96	34
DF T	10	6	87	71	16.805	9.17	19.61	11.6	41.4		227	812	141	50
DF T	11	9	85	74	20.833	13.75	27.78	11.7	38.3		326	1,065	202	66
DF T	12	3	86	68	5.835	4.58	7.78	15.0	47.5		117	370	72	23
DF T	13	5	88	79	8.286	7.64	13.26	16.2	53.8		215	713	134	44
DF T	14	3	87	81	4.287	4.58	8.57	17.0	58.3		146	500	90	31
DF T	15	1	88	74	1.245	1.53	1.24	31.0	90.0		39	112	24	7
DF T	17	1	88	64	.969	1.53	1.94	20.5	65.0		40	126	25	8
DF T	19	1	86	70	.776	1.53	.78	50.0	150.0		39	116	24	7
DF T	Totals	37	87	65	89.454	56.52	111.37	12.4	41.6		1,378	4,630	855	287
RA	10	1	87	56	4.252	2.32	4.25	14.0	50.0		60	213	37	13
RA	14	1	87	68	2.169	2.32	2.17	31.0	90.0		67	195	42	12
RA	17	1	86	60	1.471	2.32	2.94	23.0	80.0		68	235	42	15
RA	Totals	3	87	60	7.892	6.96	9.36	20.8	68.7		194	643	121	40
WH	8	1	89	44	12.456	4.35	12.46	6.0	20.0		75	249	46	15
WH	Totals	1	89	44	12.456	4.35	12.46	6.0	20.0		75	249	46	15
SN	11	1	99	116	5.929	3.91								
SN	13	1	99	118	4.245	3.91								
SN	Totals	2	99	117	10.175	7.83								
Totals		112	88	73	231.807	187.83	318.98	15.9	53.4		5,075	17,035	3,146	1,056

 TC
 PLOGSTVB
 Log Stock Table - MBF

 T09S R08W S32 Ty00PC
 62.00
 Project: THINMEN Acres
 Page 1 Date 3/6/2023 Time 11:24:55AM

<u> </u>																111110	11.	24:33A	1111
	s	So Gr	Log	Gross	Def	Net	%		1	let Volu	me by S	caling]	Diamete	r in Inch	es				
Spp	Т	rt de	Len		%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	L	DO 2M	1 16	7	20.0	6	.8						6						
DF	L	DO 2M	1 18	7	7.7	7	1.0							7					
DF	L	DO 2M	1 20	7	10.0	6	.9						6						
DF	L	DO 2M	1 24	9		9	1.2						9						
DF	L	DO 2M	1 40	60		59	8.3						22	13	7		16		
DF	L	DO 3M	1 20	7		7	.9					7	,						
DF	L	DO 3M	1 26	1		1	.2					1							
DF	L	DO 3M	1 28	6		6	.9				6								
DF	L	DO 3M	1 30	30	8.7	27	3.8				27								
DF	L	DO 3M	1 32	64	6.8	60	8.4			11	49								
DF	L	DO 3M	1 34	58	2.7	56	7.9			13	36	8	3						
DF	L	DO 3M	1 36	27	10.3	25	3.4			16	8								
DF	L	DO 3M	1 38	42	2.6	41	5.8			4	37								
DF	L	DO 3M	1 40	305	4.1	292	41.0			88	112	93	i						
DF	L	DO 4M	1 12	1		1	.1			1									
DF	L	DO 4M	1 16	57		57	8.0			57									
DF	L	DO 4M	1 18	3		3	.5			3									
DF	L	DO 4M	1 20	7		7	1.0			7									
DF	L	DO 4M	1 24	17		17	2.4			17									
DF	L	DO 4M	1 26	7		7	1.0			7									
DF	L	DO 4M	1 30	13		13	1.9			13									
DF	L	DO 4M	1 36	7	33.3	4	.6			4									
DF		Total	s	744	4.1	714	67.6			243	275	109	43	20	7		16		
DF	Т	DO 3M	1 30	23	5.2	22	7.6			16	6								
DF	T	DO 3M	1 32	38	5.4	36	12.4			29		7	,						
DF		DO 3M				13	4.7				13								
DF		DO 3M				17					17								
DF		DO 3M				34				17	10	7	,						
DF	Т	DO 3M	1 40	61		61	21.3			45	16								
DF	T	DO 4M	1 14	5		5	1.9			5									
DF	Т	DO 4M	1 16	30		30	10.6			26	4								
DF	Т	DO 4M	1 18	7		7	2.6			7									
DF	T	DO 4M	1 20	12	14.4	10	3.6			10									
DF	T	DO 4M	1 24	6		6	2.2			6									
DF	Т	DO 4M	1 26	6		6	2.2			6									
DF	T	DO 4M	1 28	18	15.4	15	5.2			15									

TC	PLO	GSTVE	3					Log S	Stock	Table -	MBF									
Т09	S R	08W S3	32 Ty	00PC	6	2.00		Proje Acre		ТНІ	NMEN 62	2.00					Page Date Time		2 /2023 24:55A	M
	s	So (Fr	Log	Gross	Def	Net	%		1	let Volu	ne by S	caling I	Diamete	r in Inch	es				
Spp	Т	rt d	le	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	T	DO	4M	30	9		9	3.0			9									
DF	T	DO	4M	32	7	20.0	6	2.0			6									
DF	T	DO	4M	34	11	20.0	9	3.0			9									
DF		-	Γotals		299	4.1	287	27.2			206	67	14							
WH		DO	4M	20	15		15	100.0			15									
WH		ŗ	Γotals		15		15	1.5			15									
RA		DO	CR	12	2		2	4.6			2									
RA		DO	CR	28	13		13	33.1			13									
RA		DO	CR	32	13		13	32.0					13							
RA		DO	CR	40	12		12	30.4				12								
RA			Γotals		40		40	3.8			15	12	13							
Total		All S	pecie	s	1,099	3.9	1,056	100.0			480	354	136	43	20	7		16		

TC PSTATS					OJECT : OJECT		TICS IMEN			PAGE DATE	1 3/6/2023
TWP RGE	SC	TRACT	ŗ	ГҮРЕ		ACI	RES	PLOTS	TREES	CuFt	BdFt
10S 08	05	U2		00PC			44.00	19	175	1	W
					TREES	Ι	ESTIMATED TOTAL		ERCENT AMPLE		
		PLOTS	TREES		PER PLOT		TREES	•	TREES		
TOTAL		19	175		9.2						
CRUISE		10	84		8.4		8,909		.9		
DBH COUNT											
REFOREST											
COUNT		9	91		10.1						
BLANKS 100 %											
100 /0				STA	ND SUMM.	ARV					
	,	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DF-L		55	108.7	13.8	57	30.6	113.7	13,323	13,118	3,799	3,799
DF-T		19	73.6	11.6	41	15.8	53.7	5,137	5,017	1,450	1,450
R ALDER		6	11.9	12.7	37	3.0	10.5	851	807	280	280
SNAG		3	5.9	9.9	48	1.0	3.2				
BL MAPLE		1	2.3	13.0	22	0.6	2.1	91	91	30	30
TOTAL		84	202.5	12.9	49	51.0	183.2	19,402	19,034	5,558	5,558
	68.1	TIMES OUT	O1 100 111L	OLUME	WILL DE V		E SAMPLE E	idion			
CL 68.1		COEFF			SAMPLE	TREES - 1	BF	# (OF TREES R	EQ.	INF. POP.
CL 68.1 SD: 1.0		COEFF VAR.%	S.E.%	L	SAMPLE OW	AVG	BF HIGH	# (OF TREES R 5	EQ. 10	
SD: 1.0 DF-L		VAR.% 41.8	5.6	L	OW 130	AVG 137	HIGH 145	# (-	
SD: 1.0 DF-L DF-T		VAR.% 41.8 62.1	5.6 14.6	L	OW 130 69	AVG 137 81	HIGH 145 93	# (-	
SD: 1.0 DF-L DF-T R ALDER		VAR.% 41.8	5.6	L	OW 130	AVG 137	HIGH 145	# (-	INF. POP.
SD: 1.0 DF-L DF-T		VAR.% 41.8 62.1	5.6 14.6	L	OW 130 69	AVG 137 81	HIGH 145 93	# (-	
SD: 1.0 DF-L DF-T R ALDER SNAG		VAR.% 41.8 62.1	5.6 14.6	L	OW 130 69	AVG 137 81	HIGH 145 93	# (-	
SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL		VAR.% 41.8 62.1 33.0	5.6 14.6 14.7	L	OW 130 69 63 107	AVG 137 81 73	HIGH 145 93 84 121		5 123	31	:
SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE		VAR.% 41.8 62.1 33.0	5.6 14.6 14.7		OW 130 69 63 107	AVG 137 81 73	HIGH 145 93 84 121		5	31	<u> </u>
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9	5.6 14.6 14.7 6.0 S.E.%		130 69 63 107 SAMPLE OW	AVG 137 81 73 114 2 TREES - 4 AVG 40	HIGH 145 93 84 121 CF HIGH 42		5 123 OF TREES R	31 EQ.	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTA CL 68.1 SD: 1.0 DF-L DF-L		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6		130 69 63 107 SAMPLE OW 38 20	AVG 137 81 73 114 CTREES - 4 AVG 40 24	HIGH 145 93 84 121 CF HIGH 42 27		5 123 OF TREES R	31 EQ.	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9	5.6 14.6 14.7 6.0 S.E.%		130 69 63 107 SAMPLE OW	AVG 137 81 73 114 2 TREES - 4 AVG 40	HIGH 145 93 84 121 CF HIGH 42		5 123 OF TREES R	31 EQ.	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6		130 69 63 107 SAMPLE OW 38 20	AVG 137 81 73 114 CTREES - 4 AVG 40 24	HIGH 145 93 84 121 CF HIGH 42 27		5 123 OF TREES R	31 EQ.	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6		130 69 63 107 SAMPLE OW 38 20	AVG 137 81 73 114 CTREES - 4 AVG 40 24	HIGH 145 93 84 121 CF HIGH 42 27		5 123 OF TREES R	31 EQ.	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8 42.5	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6 18.9		0W 130 69 63 107 SAMPLE 0W 38 20 21 32	AVG 137 81 73 114 CTREES - 4 AVG 40 24 26 34	HIGH 145 93 84 121 CF HIGH 42 27 31	# (5 123 OF TREES R 5	31 EQ. 10	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8 42.5 52.4 COEFF	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6 18.9	L	130 69 63 107 SAMPLE OW 38 20 21 32 TREES/A	AVG 137 81 73 114 CTREES - AVG 40 24 26 34 ACRE	HIGH 145 93 84 121 CF HIGH 42 27 31	# (5 123 OF TREES R 5 109 OF PLOTS R	31 EQ. 10	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8 42.5	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6 18.9	L	0W 130 69 63 107 SAMPLE 0W 38 20 21 32	AVG 137 81 73 114 CTREES - 4 AVG 40 24 26 34	HIGH 145 93 84 121 CF HIGH 42 27 31	# (5 123 OF TREES R 5	31 EQ. 10	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SO: 1.0 CL 68.1		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8 42.5 52.4 COEFF VAR.%	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6 18.9	L	OW 130 69 63 107 SAMPLE OW 38 20 21 TREES/A	AVG 137 81 73 114 CTREES - AVG 40 24 26 34 ACRE AVG	HIGH 145 93 84 121 CF HIGH 42 27 31 35	# (5 123 OF TREES R 5 109 OF PLOTS R	31 EQ. 10	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8 42.5 52.4 COEFF VAR.% 16.9 81.9 146.4	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6 18.9 5.7 S.E.% 4.0	L	OW 130 69 63 107 SAMPLE OW 38 20 21 TREES/A	AVG 137 81 73 114 CTREES - AVG 40 24 26 34 ACRE AVG 109	HIGH 145 93 84 121 CF HIGH 42 27 31 35 HIGH 113	# (5 123 OF TREES R 5 109 OF PLOTS R	31 EQ. 10	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8 42.5 52.4 COEFF VAR.% 16.9 81.9 146.4 366.7	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6 18.9 5.7 S.E.% 4.0 19.3 34.5 86.4	L	OW 130 69 63 107 SAMPLE OW 38 20 21 TREES/A OW 104 59 8 1	AVG 137 81 73 114 CTREES - 6 AVG 40 24 26 34 ACRE AVG 109 74 12 6	HIGH 145 93 84 121 CF HIGH 42 27 31 35 HIGH 113 88 16 11	# (5 123 OF TREES R 5 109 OF PLOTS R	31 EQ. 10	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE DF-T R ALDER SNAG BL MAPLE		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8 42.5 52.4 COEFF VAR.% 16.9 81.9 146.4 366.7 299.5	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6 18.9 5.7 S.E.% 4.0 19.3 34.5 86.4 70.6	L	OW 130 69 63 107 SAMPLE OW 38 20 21 TREES/A OW 104 59 8 1 1 1	AVG 137 81 73 114 CTREES - 4 AVG 40 24 26 ACRE AVG 109 74 12 6 2	HIGH 145 93 84 121 CF HIGH 42 27 31 35 HIGH 113 88 16 11 4	# (5 123 OF TREES R 5 109 OF PLOTS R 5	31 EQ. 10 27 EQ. 10	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL DF-L DF-T R ALDER SNAG BL MAPLE TOTAL		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8 42.5 52.4 COEFF VAR.% 16.9 81.9 146.4 366.7 299.5 32.0	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6 18.9 5.7 S.E.% 4.0 19.3 34.5 86.4	L	OW 130 69 63 107 SAMPLE OW 38 20 21 TREES/A OW 104 59 8 1 1 187	AVG 137 81 73 114 CTREES - AVG 40 24 26 ACRE AVG 109 74 12 6 2 202	HIGH 145 93 84 121 CF HIGH 42 27 31 35 HIGH 113 88 16 11 4 218	# (5 123 OF TREES R 5 109 OF PLOTS R 5	31 EQ. 10 27 EQ. 10	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8 42.5 52.4 COEFF VAR.% 16.9 81.9 146.4 366.7 299.5 32.0 COEFF	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6 18.9 5.7 S.E.% 4.0 19.3 34.5 86.4 70.6 7.5	L	OW 130 69 63 107 SAMPLE OW 38 20 21 TREES/A OW 104 59 8 1 1 187 BASAL A	AVG 137 81 73 114 CTREES - AVG 40 24 26 ACRE AVG 109 74 12 6 2 202 AREA/ACR	HIGH 145 93 84 121 CF HIGH 42 27 31 35 HIGH 113 88 16 11 4 218	# (123 OF TREES R 5 109 OF PLOTS R 5	31 EQ. 10 27 EQ. 10 11 EQ.	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8 42.5 52.4 COEFF VAR.% 16.9 81.9 146.4 366.7 299.5 32.0 COEFF VAR.%	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6 18.9 5.7 S.E.% 4.0 19.3 34.5 86.4 70.6 7.5 S.E.%	L	OW 130 69 63 107 SAMPLE OW 38 20 21 32 TREES/A OW 104 59 8 1 1 187 BASAL A OW	AVG 137 81 73 114 CTREES - 6 AVG 40 24 26 ACRE AVG 109 74 12 6 2 202 AREA/ACR AVG	HIGH 145 93 84 121 CF HIGH 42 27 31 35 HIGH 113 88 16 11 4 218 RE HIGH	# (5 123 OF TREES R 5 109 OF PLOTS R 5	31 EQ. 10 27 EQ. 10	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8 42.5 52.4 COEFF VAR.% 16.9 81.9 146.4 366.7 299.5 32.0 COEFF VAR.% 14.4	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6 18.9 5.7 S.E.% 4.0 19.3 34.5 86.4 70.6 7.5 S.E.% 3.4	L	OW 130 69 63 107 SAMPLE OW 38 20 21 32 TREES/A OW 104 59 8 1 1 187 BASAL A OW 110	AVG 137 81 73 114 CTREES - 6 AVG 40 24 26 34 ACRE AVG 109 74 12 6 2 202 AREA/ACR AVG 114	HIGH 145 93 84 121 CF HIGH 42 27 31 35 HIGH 113 88 16 11 4 218 RE HIGH 118	# (123 OF TREES R 5 109 OF PLOTS R 5	31 EQ. 10 27 EQ. 10 11 EQ.	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-L DF-L DF-L DF-L DF-L DF-L DF-L		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8 42.5 52.4 COEFF VAR.% 16.9 81.9 146.4 366.7 299.5 32.0 COEFF VAR.% 14.4 80.5	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6 18.9 5.7 S.E.% 4.0 19.3 34.5 86.4 70.6 7.5 S.E.% 3.4 19.0	L	OW 130 69 63 107 SAMPLE OW 38 20 21 1 32 TREES/A OW 104 59 8 1 1 187 BASAL A OW 110 43	AVG 137 81 73 114 CTREES - 6 AVG 40 24 26 ACRE AVG 109 74 12 6 2 202 AREA/ACR AVG 114 54	HIGH 145 93 84 121 CF HIGH 42 27 31 35 HIGH 113 88 16 11 4 218 RE HIGH 118 64	# (123 OF TREES R 5 109 OF PLOTS R 5	31 EQ. 10 27 EQ. 10 11 EQ.	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8 42.5 52.4 COEFF VAR.% 16.9 81.9 146.4 366.7 299.5 32.0 COEFF VAR.% 14.4 80.5 146.7	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6 18.9 5.7 S.E.% 4.0 19.3 34.5 86.4 70.6 7.5 S.E.% 3.4 19.0 34.6	L	OW 130 69 63 107 SAMPLE OW 38 20 21 32 TREES/A OW 104 59 8 1 1 187 BASAL A OW 110	AVG 137 81 73 114 CTREES - 6 AVG 40 24 26 34 ACRE AVG 109 74 12 6 2 202 AREA/ACR AVG 114	HIGH 145 93 84 121 CF HIGH 42 27 31 35 HIGH 113 88 16 11 4 218 RE HIGH 118	# (123 OF TREES R 5 109 OF PLOTS R 5	31 EQ. 10 27 EQ. 10 11 EQ.	INF. POP.
DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T R ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T C ALDER SNAG BL MAPLE TOTAL CL 68.1 SD: 1.0 DF-L DF-T CL 68.1 SD: 1.0 DF-L DF-T CL 68.1 SD: 1.0 DF-L DF-L DF-L DF-L DF-L DF-L DF-L DF-L		VAR.% 41.8 62.1 33.0 55.4 COEFF VAR.% 38.9 61.8 42.5 52.4 COEFF VAR.% 16.9 81.9 146.4 366.7 299.5 32.0 COEFF VAR.% 14.4 80.5	5.6 14.6 14.7 6.0 S.E.% 5.2 14.6 18.9 5.7 S.E.% 4.0 19.3 34.5 86.4 70.6 7.5 S.E.% 3.4 19.0	L	OW 130 69 63 107 SAMPLE OW 38 20 21 32 TREES/A OW 104 59 8 1 1 187 BASAL A OW 110 43 7	AVG 137 81 73 114 CTREES - 6 AVG 40 24 26 ACRE AVG 109 74 12 6 2 202 AREA/ACR AVG 114 54 11	HIGH 145 93 84 121 CF HIGH 42 27 31 35 HIGH 113 88 16 11 4 218 RE HIGH 118 64 14	# (123 OF TREES R 5 109 OF PLOTS R 5	31 EQ. 10 27 EQ. 10 11 EQ.	INF. POP.

TC PSTATS

PROJECT STATISTICS PROJECT THINMEN

PAGE

2

				PROJECT	TH	INMEN			DATE	3/6/2023
RGE	SC	TRACT	TYPI	E	A	CRES	PLOTS	TREES	CuFt	BdFt
08	05	U2	00PC			44.00	19	175	5 1	W
68.1		COEFF		NET B	F/ACRE			# OF PLOTS I	REQ.	INF. POP.
1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
		21.1	5.0	12,465	13,118	13,771				
		82.9	19.5	4,037	5,017	5,997				
ER		146.7	34.6	528	807	1,086				
APLE		299.5	70.6	27	91	156				
L		31.0	7.3	17,642	19,034	20,425		41	10	5
68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS I	REQ.	INF. POP.
1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
		19.3	4.5	3,626	3,799	3,971				
		82.4	19.4	1,168	1,450	1,731				
ER		147.3	34.7	183	280	378				
APLE		299.5	70.6	9	30	51				
L		29.8	7.0	5,167	5,558	5,949		38	9	4
,	08 68.1 1.0 ER APLE L 68.1 1.0	08 05 68.1 1.0 ER APLE L 68.1 1.0 ER	08 05 U2 68.1 COEFF 1.0 VAR.% 21.1 82.9 ER 146.7 APLE 299.5 L 31.0 68.1 COEFF 1.0 VAR.% 19.3 82.4 ER 147.3 APLE 299.5	08 05 U2 00PC 68.1 COEFF 1.0 VAR.% S.E.% 21.1 5.0 82.9 19.5 ER 146.7 34.6 APLE 299.5 70.6 L 31.0 7.3 68.1 COEFF 1.0 VAR.% S.E.% 19.3 4.5 82.4 19.4 ER 147.3 34.7 APLE 299.5 70.6	RGE SC TRACT TYPE 08 05 U2 00PC 68.1 COEFF NET BI 1.0 VAR.% S.E.% LOW 21.1 5.0 12,465 82.9 19.5 4,037 EER 146.7 34.6 528 APLE 299.5 70.6 27 L 31.0 7.3 17,642 68.1 COEFF NET C 1.0 VAR.% S.E.% LOW 19.3 4.5 3,626 82.4 19.4 1,168 34.7 183 APLE 299.5 70.6 9	RGE SC TRACT TYPE ACC 08 05 U2 00PC 68.1 COEFF NET BF/ACRE 1.0 VAR.% S.E.% LOW AVG 21.1 5.0 12,465 13,118 82.9 19.5 4,037 5,017 ER 146.7 34.6 528 807 APLE 299.5 70.6 27 91 L 31.0 7.3 17,642 19,034 68.1 COEFF NET CUFT FT/AC 1.0 AVG 19.3 4.5 3,626 3,799 82.4 19.4 1,168 1,450 ER 147.3 34.7 183 280 APLE 299.5 70.6 9 30	RGE SC TRACT TYPE ACRES 08 05 U2 00PC 44,00 68.1 COEFF NET BF/ACRE LOW AVG HIGH 1.0 VAR.% S.E.% LOW AVG HIGH 82.9 19.5 4,037 5,017 5,997 ER 146.7 34.6 528 807 1,086 APLE 299.5 70.6 27 91 156 L 31.0 7.3 17,642 19,034 20,425 68.1 COEFF NET CUFT FT/ACRE 1.0 VAR.% S.E.% LOW AVG HIGH 19.3 4.5 3,626 3,799 3,971 82.4 19.4 1,168 1,450 1,731 ER 147.3 34.7 183 280 378 APLE 299.5 70.6 9 30 51	RGE SC TRACT TYPE ACRES PLOTS 08 05 U2 00PC 44.00 19 68.1 COEFF NET BF/ACRE LOW AVG HIGH 21.1 5.0 12,465 13,118 13,771 82.9 19.5 4,037 5,017 5,997 ER 146.7 34.6 528 807 1,086 APLE 299.5 70.6 27 91 156 L 31.0 7.3 17,642 19,034 20,425 68.1 COEFF NET CUFT FT/ACRE 1.0 VAR.% S.E.% LOW AVG HIGH 19.3 4.5 3,626 3,799 3,971 82.4 19.4 1,168 1,450 1,731 ER 147.3 34.7 183 280 378 APLE 299.5 70.6 9 30 51	RGE SC TRACT TYPE ACRES PLOTS TREES 08 05 U2 00PC 44.00 19 175 68.1 COEFF NET BF/ACRE # OF PLOTS D 1.0 VAR.% S.E.% LOW AVG HIGH 5 21.1 5.0 12,465 13,118 13,771 5,997 182.9 19.5 4,037 5,017 5,997 5,997 1,086 <td>RGE SC TRACT TYPE ACRES PLOTS TREES CuFt 08 05 U2 00PC 44.00 19 175 1 68.1 COEFF LO NET BF/ACRE # OF PLOTS REQ. 10</td>	RGE SC TRACT TYPE ACRES PLOTS TREES CuFt 08 05 U2 00PC 44.00 19 175 1 68.1 COEFF LO NET BF/ACRE # OF PLOTS REQ. 10

TC PSPCSTGF			Species, S	ort Gra	de - Board	Foot V	Volum	es (Pr	oject	:)								
T10S R08W S	05 Ty00PC		44.00		Project: Acres	TI	HINM!								Page Date Time		1 6/2023 :26:1	3
	%					Per	rcent of l	Net Boar	rd Foot	Volume					Avera	age Log	g	Logs
S So Gr	Net	Bd. I	t. per Acre		Total		Log Sc	ale Dia.			Log l	Length		Ln	Dia	Bd	CF/	Per
Spp T rt a	d BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
RA DO C	R 100	5.2	851	807	36	;	100			4	13	34	49	31	7	59	0.66	13.6
RA Totals	4	5.2	851	807	36	;	100			4	13	34	49	31	7	59	0.66	13.6
DF L DO 21	и 8	1.0	1,154	1,143	50			100					100	40	12	204	1.28	5.6
DF L DO 31	1 76	1.8	10,093	9,911	436	;	100				3	8	89	38	8	95	0.72	104.0
DF L DO 41	1 16	.6	2,076	2,064	91		100			50	48	2		20	6	24	0.38	86.3
DF Totals	69	1.5	13,323	13,118	577		91	9		8	10	7	76	30	7	67	0.64	195.9
DF T DO 31	1 81	2.5	4,217	4,113	181		100				9	12	80	37	7	71	0.56	57.8
DF T DO 41	1 19	1.7	920	904	40)	100			28	72			21	6	26	0.35	35.3
DF Totals	26	2.3	5,137	5,017	221		100			5	20	9	65	31	7	54	0.51	93.1
BM DO C	R 100		91	91	4	ļ	100			100				20	8	40	0.65	2.3
BM Totals	0		91	91	2		100			100				20	8	40	0.65	2.3
Totals		1.9	19,402	19,034	837	,	94	6		7	13	8	72	31	7	62	0.60	304.9

TC PSTNDS	ľΜ		Stand Tab	ole Summary	Pa	age	1
					D	ate:	3/6/2023
T10S R08W S0	5 Ty00PC	44.00	Project	THINMEN	Ti	ime:	11:26:17AM
			Acres	44.00	G	Frown Year:	

_															
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF L	8	1	88	48	5.921	2.07	5.92	6.0	20.0		36	118		1	5 5
DF L	11	3	86	69	9.396	6.20	9.40	16.3	56.7		153	532		6	8 23
DF L	12	6	88	95	15.791	12.40	28.95	14.5	53.6		421	1,553		18	5 68
DF L	13	10	87	81	22.425	20.67	42.61	15.1	50.0		641	2,130		28	2 94
DF L	14	10	88	91	19.335	20.67	38.67	18.7	64.0		723	2,475		31	8 109
DF L	15	11	87	92	18.528	22.74	37.06	21.9	75.5		810	2,796		35	5 123
DF L	16	2	88	94	2.961	4.13	5.92	25.5	92.5		151	548		6	5 24
DF L	17	6	89	89	7.868	12.40	14.42	30.1	105.5		434	1,521		19	1 67
DF L	18	4	88	90	4.679	8.27	9.36	31.2	106.2		292	994		12	9 44
DF L	20	1	85	87	.947	2.07	1.89	37.5	115.0		71	218		3	1 10
DF L	21	1	92	78	.859	2.07	1.72	38.0	135.0		65	232		2	9 10
DF L	Totals	55	88	85	108.710	113.68	195.92	19.4	67.0		3,799	13,118		1,67	1 577
DF T	8	1	91	50	8.094	2.83	8.09	7.0	30.0		57	243		2	5 11
DF T	10	3	85	61	15.541	8.48	15.54	12.0	46.7		186	725		8	2 32
DF T	11	5	89	69	21.407	14.13	25.69	13.8	50.0		355	1,284		15	5 57
DF T	12	2	86	77	7.195	5.65	7.20	20.0	65.0		144	468		6	3 21
DF T	13	5	89	73	15.327	14.13	24.52	16.2	51.3		398	1,257		17	5 55
DF T	14	1	85	105	2.643	2.83	5.29	21.0	70.0		111	370		4	9 16
DF T	17	1	87	105	1.793	2.83	3.59	32.0	120.0		115	430		5) 19
DF T	18	1	86	72	1.599	2.83	3.20	26.0	75.0		83	240		3	7 11
DF T	Totals	19	88	69	73.599	53.68	93.11	15.6	53.9		1,450	5,017		63	3 221
RA	11	2	86	55	5.317	3.51	5.32	14.5	50.0		77	266		3	4 12
RA	12	1	87	75	2.234	1.75	2.23	24.0	70.0		54	156		2	4 7
RA	14	2	86	70	3.282	3.51	4.92	20.7	53.3		102	263		4	5 12
RA	17	1	86	63	1.113	1.75	1.11	43.0	110.0		48	122		2	1 5
RA	Totals	6	86	63	11.946	10.53	13.59	20.6	59.4		280	807		12	3 36
BM	13	1	86	28	2.284	2.11	2.28	13.0	40.0		30	91		1	3 4
BM	Totals	1	86	28	2.284	2.11	2.28	13.0	40.0		30	91		1	3 4
SN	8	1	99	49	3.016	1.05									
SN	10	1	98	51	1.930	1.05									
SN	14	1	99	40	.985	1.05									
SN	Totals	3	99	48	5.930	3.16									
Totals		84	88	76	202.469	183.16	304.90	18.2	62.4		5,558	19,034		2,44	5 837

 TC
 PLOGSTVB
 Log Stock Table - MBF

 T10S R08W S05 Ty00PC
 44.00
 Project: THINMEN Acres
 Page 1 Date 3/6/2023 Time 11:26:15AM

	s	So Gr	Log	Gross	Def	Net	%		N	let Volu	ne by S	caling I	Diamete	r in Inch	ies				
Spp	Т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11		14-15	16-19	20-23	24-29	30-39	40+
RA		DO CR	14	1		1	4.1			1									
RA		DO CR	24	5		5	13.2			5									
RA		DO CR	32	14	10.7	12	34.0			7	5								
RA		DO CR	40	18	2.7	17	48.8			12	5								
RA		Total	S	37	5.2	36	4.2			25	10								
DF	L	DO 2M	1 40	51	1.0	50	8.7						50						
DF	L	DO 3M	1 30	13		13	2.2				13								
DF	L	DO 3M	1 32	22	4.6	21	3.6			7	14								
DF	L	DO 3M	1 34	15		15	2.6			8	7								
DF	L	DO 3M	1 36	15	9.1	14	2.4			7	7								
DF	L	DO 3M	1 38	21		21	3.7			21									
DF	L	DO 3M	1 40	358	1.6	353	61.1			29	229	95							
DF	L	DO 4M	1 12	3		3	.5			3									
DF	L	DO 4M	1 14	4		4	.7			4									
DF	L	DO 4M	1 16	16		16	2.8			16									
DF	L	DO 4M	1 18	5		5	.9			5									
DF	L	DO 4M	1 20	17		17	3.0			17									
DF	L	DO 4M	1 24	19		19	3.2			19									
DF	L	DO 4M	1 26	8		8	1.5			8									
DF	L	DO 4M	1 28	5		5	.9			5									
DF	L	DO 4M	1 30	11		11	1.9			11									
DF	L	DO 4M	1 32	3	20.0	2	.4			2									
DF		Total	s	586	1.5	577	68.9			162	270	95	50						
DF	T					8					8								
DF	T				14.3	8					8								
DF	- 1	DO 3M				9				9									
DF	- 1	DO 3M				11				11									
DF	- 1	DO 3M				18				18									
DF	- 1	DO 3M DO 3M			2.7	114				11	20	2.4							
DF	1	אנ טע	1 40	117	2.7	114	51.8			55	36	24							
DF	- 1	DO 4M				1	.6			1									
DF	- 1	DO 4M			13.6	4				4									
DF	- 1	DO 4M				5				5									
DF	- 1	DO 4M				18				18									
DF	- 1	DO 4M				3				3									
DF	T	DO 4M	1 30	8		8	3.4			8									

TC F	LO	GSTVB					Log S	Stock	Table -	MBF						
T10S	R0	8W S05 T	y00PC		44.00		Proje Acres		THI	NMEN 44	1.00			Page Date Time	2 3/6/2023 11:26:15AM	
	s	So Gr	Log	Gross	Def	Net	%		N	let Volu	me by S	caling Diamete	r in Inches			
Spp	T	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11 12-13	14-15 16-19	20-23 24	1-29 30-39 4	-0+
DF		Total	s	220	5 2.3	221	26.4			145	52	24				
BM		DO CI	R 20	.2	4	4	100.0				4					
BM		Total	s	4	4	4	.5				4					
Total		All Speci	es	854	4 1.9	837	100.0			332	336	119 50				

TC PST	CATS				OJECT OJECT		STICS NMEN			PAGE DATE	1 3/6/2023
WP	RGE	SC TRACT	ſ	TYPE		AC	RES	PLOTS	TREES	CuFt	BdFt
10S	08	08 U3		00PC			34.00	17	159	1	W
					TREES		ESTIMATED TOTAL		ERCENT SAMPLE		
		PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA	AL	17	159		9.4						
CRUI	SE	9	89		9.9		4,774		1.9		
DBH	COUNT										
REFO	DREST										
COUN		8	70		8.8						
BLAN											
100 %)			CTA	ND CLIMA	4 D37					
		SAMPLE	TREES	AVG	ND SUMM BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DF-L		60	79.6	17.3	78	31.1	129.4	19,465	19,067	5,249	5,249
DF-T		29	60.8	13.2	57	15.9	57.6	7,071	6,867	1,968	1,968
TOT	AL	89	140.4	15.6	69	47.3	187.1	26,536	25,934	7,218	7,218
CL	68.1	COEFF				E TREES -		#	OF TREES R	=	INF. POP.
SD:	1.0	VAR.%		L	OW	AVG	HIGH		5	10	1
DF-L		24.5	3.2		244	252	259				
							1.40				
DF-T		43.6 38.7	8.2		121 204	132	143 221		60	15	
TOTA	AL	38.7	4.1		204	212	221		60	15	
TOT/	68.1	38.7 COEFF	4.1	Ī	204 SAMPLE	212 E TREES -	221 CF	#	OF TREES R	EQ.	INF. POP.
CL SD:	68.1 1.0	38.7 COEFF VAR.%	4.1 S.E.%	L	204 SAMPLI OW	212 E TREES - AVG	221 CF HIGH	#			INF. POP.
TOTA CL	68.1 1.0	38.7 COEFF	4.1	L	204 SAMPLE	212 E TREES -	221 CF	#	OF TREES R	EQ.	INF. POP.
CL SD: DF-L	68.1 1.0	38.7 COEFF VAR.% 23.8	4.1 S.E.% 3.1	L	204 SAMPLI OW 67	212 E TREES - AVG 70	221 CF HIGH	#	OF TREES R	EQ.	INF. POP.
CL SD: DF-L DF-T	68.1 1.0	38.7 COEFF VAR.% 23.8 44.5	3.1 8.4 4.0	L	204 SAMPLI OW 67 35	212 E TREES - AVG 70 38 59	221 CF HIGH 72 41		OF TREES R	EQ. 10	INF. POP.
CL SD: DF-L DF-T	68.1 1.0	38.7 COEFF VAR.% 23.8 44.5 37.6	S.E.% 3.1 8.4 4.0		204 SAMPLI OW 67 35 57	212 E TREES - AVG 70 38 59	221 CF HIGH 72 41		OF TREES R 5	EQ. 10	INF. POP.
CL SD: DF-L DF-T TOTAL SD: DF-L	68.1 1.0 AL 68.1 1.0	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8	3.1 8.4 4.0 S.E.% 2.7		204 SAMPLE OW 67 35 57 TREES/E OW 77	212 E TREES - AVG 70 38 59 ACRE AVG 80	221 CF HIGH 72 41 62 HIGH 82		OF TREES R 5 56 OF PLOTS R	EQ. 10 14 EQ.	INF. POP.
CL DF-L TOTAL SD: DF-L DF-L DF-L DF-T	68.1 1.0 AL 68.1 1.0	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8 50.9	S.E.% 3.1 8.4 4.0 S.E.% 2.7 12.7		204 SAMPLI OW 67 35 57 TREES/2 OW 77 53	212 E TREES - AVG 70 38 59 ACRE AVG 80 61	221 CF HIGH 72 41 62 HIGH 82 68		OF TREES R 5 56 OF PLOTS R 5	EQ. 10 14 EQ. 10	INF. POP.
CL DF-L DF-T TOTA CL DF-L DF-L TOTA	68.1 1.0 AL 68.1 1.0	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8 50.9 25.1	S.E.% 3.1 8.4 4.0 S.E.% 2.7 12.7 6.3		204 SAMPLI OW 67 35 57 TREES/A OW 77 53 132	212 E TREES - AVG 70 38 59 ACRE AVG 80 61 140	221 CF HIGH 72 41 62 HIGH 82 68 149	#	OF TREES R 5 56 OF PLOTS R 5	EQ. 10 14 EQ. 10 7	INF. POP. INF. POP. 1
CL SD: DF-L SD: DF-L DF-T TOTAL CL DF-T TOTAL CL	68.1 1.0 AL 68.1 1.0 AL	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8 50.9 25.1 COEFF	S.E.% 3.1 8.4 4.0 S.E.% 2.7 12.7 6.3	L	204 SAMPLI OW 67 35 57 TREES/A OW 77 53 132 BASAL A	212 E TREES - AVG 70 38 59 ACRE AVG 80 61 140 AREA/AC	221 CF HIGH 72 41 62 HIGH 82 68 149	#	OF TREES R 5 56 OF PLOTS R 5 27 OF PLOTS R	EQ. 10 14 EQ. 10 7 EQ.	INF. POP. INF. POP. INF. POP.
CL SD: DF-L DF-T TOTAL CL SD:	68.1 1.0 AL 68.1 1.0 AL 68.1 1.0	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8 50.9 25.1 COEFF VAR.%	S.E.% 3.1 8.4 4.0 S.E.% 2.7 12.7 6.3 S.E.%	L	204 SAMPLI OW 67 35 57 TREES/A OW 77 53 132 BASAL A OW	212 E TREES - AVG 70 38 59 ACRE AVG 80 61 140 AREA/AC	221 CF HIGH 72 41 62 HIGH 82 68 149 RE HIGH	#	OF TREES R 5 56 OF PLOTS R 5	EQ. 10 14 EQ. 10 7	INF. POP. INF. POP. INF. POP.
CL SD: DF-L SD: DF-L DF-T TOTAL CL DF-T TOTAL CL	68.1 1.0 AL 68.1 1.0 AL 68.1 1.0	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8 50.9 25.1 COEFF	S.E.% 3.1 8.4 4.0 S.E.% 2.7 12.7 6.3	L	204 SAMPLI OW 67 35 57 TREES/A OW 77 53 132 BASAL A	212 E TREES - AVG 70 38 59 ACRE AVG 80 61 140 AREA/AC	221 CF HIGH 72 41 62 HIGH 82 68 149	#	OF TREES R 5 56 OF PLOTS R 5 27 OF PLOTS R	EQ. 10 14 EQ. 10 7 EQ.	INF. POP. INF. POP. INF. POP.
CL SD: CL SD: DF-L DF-T TOTAL DF-T TOTAL DF-T TOTAL SD: DF-L SD: DF-L SD: DF-L	68.1 1.0 AL 68.1 1.0 AL 68.1 1.0	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8 50.9 25.1 COEFF VAR.% 8.0	S.E.% 3.1 8.4 4.0 S.E.% 2.7 12.7 6.3 S.E.% 2.0	L	204 SAMPLI OW 67 35 57 TREES/2 OW 77 53 132 BASAL 2 OW 127	212 E TREES - AVG 70 38 59 ACRE AVG 80 61 140 AREA/AC AVG 129	221 CF HIGH 72 41 62 HIGH 82 68 149 RE HIGH 132	#	OF TREES R 5 56 OF PLOTS R 5 27 OF PLOTS R	EQ. 10 14 EQ. 10 7 EQ.	INF. POP. 1 INF. POP. 1 INF. POP.
CL SD: CL SD: CL SD: CL SD: CL SD: CCL SD: DF-L CCL SD: DF-L DF-T TOTA	68.1 1.0 AL 68.1 1.0 AL 68.1 1.0	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8 50.9 25.1 COEFF VAR.% 8.0 53.3	S.E.% 3.1 8.4 4.0 S.E.% 2.7 12.7 6.3 S.E.% 2.0 13.3 5.0	L	204 SAMPLI OW 67 35 57 TREES/2 OW 77 53 132 BASAL 2 OW 127 50	212 E TREES - AVG 70 38 59 ACRE AVG 80 61 140 AREA/AC AVG 129 58 187	221 CF HIGH 72 41 62 HIGH 82 68 149 RE HIGH 132 65	#	OF TREES R 5 56 OF PLOTS R 5 27 OF PLOTS R 5	EQ. 10 14 EQ. 10 7 EQ. 10	INF. POP. 1 INF. POP. 1 INF. POP.
CL SD: DF-L SD: DF-L SD: DF-L DF-T TOTA CL SD: DF-L SD: DF-L SD: DF-L DF-T TOTA	68.1 1.0 AL 68.1 1.0 AL 68.1 1.0	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8 50.9 25.1 COEFF VAR.% 8.0 53.3 20.0	S.E.% 3.1 8.4 4.0 S.E.% 2.7 12.7 6.3 S.E.% 2.0 13.3 5.0	L L	204 SAMPLE OW 67 35 57 TREES/A OW 77 53 132 BASAL A OW 127 50 178	212 E TREES - AVG 70 38 59 ACRE AVG 80 61 140 AREA/AC AVG 129 58 187	221 CF HIGH 72 41 62 HIGH 82 68 149 RE HIGH 132 65	#	OF TREES R 5 56 OF PLOTS R 5 27 OF PLOTS R 5	EQ. 10 14 EQ. 10 7 EQ. 10	INF. POP. INF. POP. INF. POP. INF. POP.
CL SD: DF-L DF-T TOTA CL SD: DF-L DF-T TOTA CL SD: DF-L DF-T TOTA CL DF-T TOTA CL DF-T TOTA CL DF-T TOTA	68.1 1.0 68.1 1.0 68.1 1.0 AL 68.1 1.0	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8 50.9 25.1 COEFF VAR.% 8.0 53.3 20.0 COEFF VAR.% 10.2	S.E.% 3.1 8.4 4.0 S.E.% 2.7 12.7 6.3 S.E.% 2.0 13.3 5.0 S.E.% 2.6	L L	204 SAMPLI OW 67 35 57 TREES/2 OW 77 53 132 BASAL 2 OW 127 50 178 NET BF/OW 18,581	212 E TREES - AVG 70 38 59 ACRE AVG 80 61 140 AREA/AC AVG 129 58 187 ACRE AVG 19,067	221 CF HIGH 72 41 62 HIGH 82 68 149 RE HIGH 132 65 196 HIGH 19,554	#	OF TREES R 5 56 OF PLOTS R 5 27 OF PLOTS R 5	EQ. 10 14 EQ. 10 7 EQ. 10 4	INF. POP. INF. POP. INF. POP. INF. POP.
CL SD: DF-L SD: DF-L SD: CL SD: CL SD: CL SD: DF-L SD: DF-L DF-T TOTA	68.1 1.0 AL 68.1 1.0 AL 68.1 1.0 AL 68.1	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8 50.9 25.1 COEFF VAR.% 8.0 53.3 20.0 COEFF VAR.% 10.2 57.5	S.E.% S.E.% S.E.% 2.7 12.7 6.3 S.E.% 2.0 13.3 5.0 S.E.% 2.6 14.4	L L	204 SAMPLE OW 67 35 57 TREES/A OW 77 53 132 BASAL A OW 127 50 178 NET BF/OW 18,581 5,881	212 E TREES - AVG 70 38 59 ACRE AVG 80 61 140 AREA/AC AVG 129 58 187 ACRE AVG 19,067 6,867	221 CF HIGH 72 41 62 HIGH 82 68 149 RE HIGH 132 65 196 HIGH 19,554 7,853	#	OF TREES R 5 56 OF PLOTS R 5 27 OF PLOTS R 5 17 OF PLOTS R 5	EQ. 10 14 EQ. 10 7 EQ. 10 4 EQ. 10	INF. POP. INF. POP. INF. POP. INF. POP. 1
CL SD: DF-L DF-T TOTA	AL 68.1 1.0 AL 68.1 1.0 AL 68.1 1.0 AL 68.1 1.0 AL	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8 50.9 25.1 COEFF VAR.% 8.0 53.3 20.0 COEFF VAR.% 10.2 57.5 20.3	4.1 S.E.% 3.1 8.4 4.0 S.E.% 2.7 12.7 6.3 S.E.% 2.0 13.3 5.0 S.E.% 2.6 14.4 5.1	L L	204 SAMPLI OW 67 35 57 TREES/A OW 77 53 132 BASAL A OW 127 50 178 NET BF/OW 18,581 5,881 44,619	212 E TREES - AVG 70 38 59 ACRE AVG 80 61 140 AREA/AC 129 58 187 ACRE AVG 19,067 6,867 25,934	221 CF HIGH 72 41 62 HIGH 82 68 149 RE HIGH 132 65 196 HIGH 19,554 7,853 27,249	#	OF TREES R 5 56 OF PLOTS R 5 27 OF PLOTS R 5 17 OF PLOTS R 5	EQ. 10 14 EQ. 10 7 EQ. 10 4 EQ. 10	INF. POP. INF. POP. INF. POP. INF. POP. 1
CL SD: DF-L DF-T TOTA CL SD: DF-L DF-T TOTA CL SD: CL SC CL	68.1 1.0 68.1 1.0 AL 68.1 1.0 AL 68.1 1.0	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8 50.9 25.1 COEFF VAR.% 8.0 53.3 20.0 COEFF VAR.% 10.2 57.5 20.3 COEFF	S.E.% 3.1 8.4 4.0 S.E.% 2.7 12.7 6.3 S.E.% 2.0 13.3 5.0 S.E.% 2.6 14.4 5.1	L L	204 SAMPLI OW 67 35 57 TREES/2 OW 77 53 132 BASAL 2 OW 127 50 178 NET BF/ OW 18,581 5,881 24,619 NET CU	212 E TREES - AVG 70 38 59 ACRE AVG 80 61 140 AREA/AC 129 58 187 ACRE AVG 119067 6,867 25,934 FT FT/AC	221 CF HIGH 72 41 62 HIGH 82 68 149 RE HIGH 132 65 196 HIGH 19,554 7,853 27,249 RE	#	OF TREES R 5 56 OF PLOTS R 5 27 OF PLOTS R 5 17 OF PLOTS R 5	EQ. 10 14 EQ. 10 7 EQ. 10 4 EQ. 10	INF. POP. INF. POP. INF. POP. INF. POP.
CL SD: DF-L DF-T TOTA CL SD: DF-L DF-T TOTA CL SD: CL	68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8 50.9 25.1 COEFF VAR.% 8.0 53.3 20.0 COEFF VAR.% 10.2 57.5 20.3 COEFF VAR.%	S.E.% S.E.% S.E.% 2.7 12.7 6.3 S.E.% 2.0 13.3 5.0 S.E.% 2.6 14.4 5.1	L L	204 SAMPLE OW 67 35 57 TREES/A OW 77 53 132 BASAL A OW 127 50 178 NET BF/OW 18,581 5,881 14,619 NET CU	212 E TREES - AVG 70 38 59 ACRE AVG 80 61 140 AREA/AC AVG 129 58 187 ACRE AVG 19,067 6,867 25,934 FT FT/AC AVG	221 CF HIGH 72 41 62 HIGH 82 68 149 RE HIGH 132 65 196 HIGH 19,554 7,853 27,249 RE HIGH	#	OF TREES R 5 56 OF PLOTS R 5 27 OF PLOTS R 5 17 OF PLOTS R 5	EQ. 10 14 EQ. 10 7 EQ. 10 4 EQ. 10	INF. POP. INF. POP. INF. POP. INF. POP.
CL SD: DF-L DF-T TOTA CL SD: DF-L DF-T TOTA CL SD:	68.1 1.0 68.1 1.0 68.1 1.0 AL 68.1 1.0 AL 68.1 1.0	38.7 COEFF VAR.% 23.8 44.5 37.6 COEFF VAR.% 10.8 50.9 25.1 COEFF VAR.% 8.0 53.3 20.0 COEFF VAR.% 10.2 57.5 20.3 COEFF	S.E.% 3.1 8.4 4.0 S.E.% 2.7 12.7 6.3 S.E.% 2.0 13.3 5.0 S.E.% 2.6 14.4 5.1	L L	204 SAMPLI OW 67 35 57 TREES/2 OW 77 53 132 BASAL 2 OW 127 50 178 NET BF/ OW 18,581 5,881 24,619 NET CU	212 E TREES - AVG 70 38 59 ACRE AVG 80 61 140 AREA/AC 129 58 187 ACRE AVG 119067 6,867 25,934 FT FT/AC	221 CF HIGH 72 41 62 HIGH 82 68 149 RE HIGH 132 65 196 HIGH 19,554 7,853 27,249 RE	#	OF TREES R 5 56 OF PLOTS R 5 27 OF PLOTS R 5 17 OF PLOTS R 5	EQ. 10 14 EQ. 10 7 EQ. 10 4 EQ. 10	INF. POP. INF. POP. INF. POP. INF. POP.

TC PSPCSTGR Species, Sort Grade - Board Foot Volumes (Project)																			
T10S R08W S08 T	Project: THINMEN Acres 34.00											Page Date Time		1 6/2023 :28:2	3				
	%						Perc	ent of N	let Boai	rd Foot	Volume					Avera	3	Logs	
S So Gr	Net	Bd. Ft.	per Acre		Total			Log Scale Dia.			Log Length					Dia	Bd	CF/	Per
Spp T rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF L DO 2M	38	2.4	7,457	7,276		247		3	97			4		96	40	13	223	1.46	32.0
DF L DO 3M	58	1.5	11,231	11,058		376		100				0	9	90	38	8	103	0.76	107.8
DF L DO 4M	4	5.6	777	734		25	4	96			28	65	7		25	6	30	0.45	24.8
DF Totals	74	2.0	19,465	19,067		648	0	63	37		1	4	6	89	36	9	115	0.88	165.2
DF T DO 2M	5	11.3	410	364		12			100				50	50	36	13	189	1.54	1.9
DF T DO 3M	77	2.9	5,437	5,280		180		100				2	19	79	37	8	87	0.67	60.4
DF T DO 4M	18		1,223	1,223		42		100			48	52			20	6	24	0.35	51.7
DF Totals	26	2.9	7,071	6,867		233		95	5		8	11	17	63	29	7	60	0.59	114.0
Totals		2.3	26,536	25,934		882	0	71	29		3	6	9	82	33	8	93	0.77	279.2

TC PSTNDSUM		Stand Table Sumn	nary	Page Date:	1 3/6/2023
T10S R08W S08 Ty00PC	34.00	Project THIN	NMEN	Time:	11:28:24AM
		Acres	34.00	Grown Year:	

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF L	13	2	90	107	4.680	4.31	9.36	18.3	70.0		171	655		58	22
DFL	14	1	89	107	2.018	2.16	4.04	21.0	80.0		85	323		29	11
DFL	15	5	88	106	8.788	10.78	17.58	24.9	93.0		438	1,635		149	56
DFL	16	10	89	104	15.447	21.57	30.89	28.5	109.5		881	3,383		299	115
DFL	17	11	89	104	15.052	23.73	31.47	30.8	111.7		970	3,517		330	120
DFL	18	14	89	105	17.087	30.20	36.62	33.8	119.0		1,239	4,357		421	148
DFL	19	5	89	103	5.477	10.78	12.05	37.1	133.6		447	1,610		152	55
DF L	20	7	89	101	6.920	15.10	14.83	40.5	138.7		600	2,056		204	70
DF L	21	1	89	107	.897	2.16	1.79	50.0	175.0		90	314		30	11
DF L	22	4	89	98	3.268	8.63	6.54	50.5	186.3		330	1,217		112	41
DF L	Totals	60	89	104	79.635	129.41	165.16	31.8	115.4		5,250	19,067		1,785	648
DF T	9	1	87	56	4.500	1.99	4.50	9.0	30.0		40	135		14	. 5
DF T	10	1	88	98	3.645	1.99	7.29	9.5	40.0		69	292		24	. 10
DF T	11	4	87	102	12.048	7.95	21.08	12.3	44.3		259	934		88	32
DF T	12	3	88	88	7.593	5.96	15.19	12.8	41.7		195	633		66	22
DF T	13	4	88	93	8.626	7.95	17.25	15.7	52.5		272	906		92	31
DF T	14	6	88	91	11.157	11.93	22.31	18.9	66.7		422	1,488		144	51
DF T	15	4	87	97	6.479	7.95	12.96	23.1	83.7		300	1,085		102	37
DF T	16	2	89	90	2.847	3.98	5.69	25.5	92.5		145	527		49	18
DF T	18	1	88	98	1.125	1.99	2.25	33.0	115.0		74	259		25	9
DF T	19	1	87	82	1.010	1.99	2.02	33.5	115.0		68	232		23	8
DF T	20	1	88	101	.911	1.99	1.82	43.0	130.0		78	237		27	8
DF T	21	1	87	75	.826	1.99	1.65	27.5	85.0		45	140		15	5
DF T	Totals	29	88	91	60.767	57.65	114.02	17.3	60.2		1,968	6,867		669	233
Totals		89	88	99	140.402	187.06	279.19	25.9	92.9		7,218	25,934		2,454	882

 TC PLOGSTVB
 Log Stock Table - MBF

 T10S R08W S08 Ty00PC
 34.00
 Project: THINMEN Acres
 Page 3/6/2023 Time 11:28:22AM

																	1 ime	; 11;	:28:22A	\IVI
	s	02000				Def	Net	%	Net Volume by Scaling Diameter in Inches											
Spp	Т	rt de	Len	1	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	L	DO 2N	A 3	0	9		9	1.3							9					
DF	L	DO 2N	Л 4	0	245	2.5	239	36.8					6	180	53					
DF	L	DO 3N	л 2	6	2		2	.3				2								
DF	L	DO 3N	Л 3	2	15		15	2.3			12	3								
DF	L	DO 3N	Л 3	4	20		20	3.1			17	3								
DF	L	DO 3N	Л 3	6	33	4.4	32	4.9			28	4								
DF	L	DO 3N	Л 3	8	19		19	2.9			19									
DF	L	DO 3N	Л 4	0	293	1.5	288	44.5			30	39	220							
DF	L	DO 4N	л 1	2	0		0	.1			0									
DF	L	DO 4N	A 1	6	1		1	.2			1									
DF	L	DO 4N	1 1	8	1		1	.1			1									
DF	L	DO 4N	A 2	.0	5	9.6	4	.7			3	2								
DF	L	DO 4N	A 2	6	3		3	.5			3									
DF	L	DO 4N	Л 2	8	3		3	.5		1	2									
DF	L	DO 4N	<i>A</i> 3	0	11	5.7	10	1.5			10									
DF	L	DO 4N	Л 3	2	2	20.0	2	.3			2									
DF		Total		╽	662	2.0	648	73.5		1	128	52	226	180	61					
DF	T	DO 2N	Л 3	2	7	5.3	6	2.6						6						
DF	T	DO 2N	Л 4	.0	7	16.7	6	2.7						6						
DF	T	DO 3N	л 2	4	5	16.7	4	1.8				4								
DF	T	DO 3N	A 3	2	14		14	6.1			14									
DF	T	DO 3N	A 3	4	19		19	8.3			2	17								
DF	T	DO 3N	A 3	6	11	2.6	10	4.4			6		4							
DF	Т	DO 3N	A 3	8	9	11.3	8	3.4			8									
DF	Т	DO 3N	Л 4	0	126	2.5	123	52.7			19	72	32							
DF	T	DO 4N	и 1	2	2		2	.7			2									
DF	Т	DO 4N	A 1	4	1		1	.5			1									
DF	Т	DO 4N	A 1	6	14		14	5.8			14									
DF	Т	DO 4N	1 1	8	3		3	1.4			3									
DF	Т	DO 4N	Л 2	4	4		4	1.8			4									
DF	Т	DO 4N	Л 2	6	4		4	1.8			4									
DF	Т	DO 4N	Л 2	8	9		9	3.8			9									
DF	T	DO 4N	Л 3	0	5		5	2.0			5									
DF		Total	ls	Ι	240	2.9	233	26.5			91	93	36	12						
Total		All Speci	es		902	2.3	882	100.0		1	219	146	262	192	61					

