Timber Sale Appraisal Long John ## Sale WO-341-2022-W00902-01 District: West Oregon Date: July 25, 2022 ## **Cost Summary** | | Conifer | Hardwood | Total | |----------------------------|----------------|-------------------|----------------| | Gross Timber
Sale Value | \$2,310,049.50 | \$32,035.12 | \$2,342,084.62 | | | | Project Work: | (\$83,442.00) | | | | Advertised Value: | \$2,258,642.62 | ## Timber Sale Appraisal Long John ## Sale WO-341-2022-W00902-01 District: West Oregon Date: July 25, 2022 #### **Timber Description** Location: Portions of Sections 3 & 4, T12S, R8W, and portions of Section 34, T11S, R8W, W.M., Lincoln County, Oregon **Stand Stocking:** 40% | Specie Name | AvgDBH | Amortization (%) | Recovery (%) | |---------------|--------|------------------|--------------| | Douglas - Fir | 16 | 0 | 97 | | Alder (Red) | 13 | 0 | 95 | | Maple | 12 | 0 | 95 | | Volume by Grade | 2\$ | 3S & 4S 6"-
11" | Camprun | Total | | |-----------------|-------|--------------------|---------|-------|--| | Douglas - Fir | 1,425 | 2,240 | 0 | 3,665 | | | Alder (Red) | 0 | 0 | 97 | 97 | | | Maple | 0 | 0 | 48 | 48 | | | Total | 1,425 | 2,240 | 145 | 3,810 | | **Comments:** Pond Values Used: Local Pond Values, May, 2022 Other Conifers Stumpage Price = Pond Value minus Logging Cost: \$215.30/MBF = \$535.00/MBF - \$319.70/ MBF Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: 660.30/MBF = 1,130/MBF - (319.70/MBF + 150/MBF(Extra Haul Cost)) PULP (Conifer and Hardwood Price) = \$2.5/TON Other Costs (with Profit & Risk to be added): Intermediate Support/Tail Trees: 12 supports @ \$100/support = \$1,200 Additional Ground Yarding for Unit 3: 13.2 MBF (2 acres @ 6.6 MBF/acre) $50/MBF \times 13.2 MBF = 660$ TOTAL Other Costs (with Profit & Risk to be added) = \$1,860 Other Costs (No Profit & Risk added): Equipment Cleaning (Invasive Species): \$2,000 Landing Slash piling: 9 Landings @ \$100/Landing = \$900 Landing Slash Piling and sorting out firewood: 10 Landings @ \$180/Landing = \$1800 Water Bar and Block Dirt Roads: 72 stations @ \$15.96/station = \$1,149 TOTAL Other Costs (No Profit & Risk added) = \$5,849 **ROAD MAINTENANCE** Move-in: (Grader) \$875 Final Road Maintenance: \$15,160.31 TOTAL Road Maintenance: \$16,035.31/3,810 MBF = \$4.21/MBF SLASH DISPOSAL Project Work: 58 hrs @ \$170/hr = \$9,860 Weed Wash: \$300 Move-in: \$1,325 TOTAL Slash Disposal = \$11,485 ## Timber Sale Appraisal Long John #### Sale WO-341-2022-W00902-01 District: West Oregon Date: July 25, 2022 **Logging Conditions** Combination#: 1 Douglas - Fir 20.40% Alder (Red) 6.60% Maple 10.67% yarding distance: Long (1,500 ft) downhill yarding: No tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF loads / day: 7 bd. ft / load: 4200 cost / mbf: \$271.44 machines: Log Loader (A) Forwarder Harvester Tower Yarder (Large) Combination#: 2 Douglas - Fir 38.15% Alder (Red) 32.09% Maple 34.00% yarding distance: Medium (800 ft) downhill yarding: No tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF loads / day: 9 bd. ft / load: 4200 cost / mbf: \$213.29 machines: Log Loader (A) Forwarder Harvester Tower Yarder (Large) Combination#: 3 Douglas - Fir 40.00% Alder (Red) 61.31% Maple 55.33% Logging System: Track Skidder Process: Feller Buncher yarding distance: Medium (800 ft) downhill yarding: No tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF loads / day: 11 bd. ft / load: 4200 cost / mbf: \$88.51 machines: Log Loader (B) Stroke Delimber (B) Feller Buncher w/ Delimber Track Skidder Combination#: 4 Douglas - Fir 1.45% yarding distance: Short (400 ft) downhill yarding: No tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF loads / day: 5 bd. ft / load: 3800 cost / mbf: \$424.33 machines: Log Loader (A) Forwarder Harvester Tower Yarder (Large) ## Timber Sale Appraisal Long John ## Sale WO-341-2022-W00902-01 District: West Oregon Date: July 25, 2022 ## **Logging Costs** **Operating Seasons:** 3.00 Profit Risk: 10% **Project Costs:** \$83,442.00 Other Costs (P/R): \$1,860.00 **Slash Disposal:** \$11,485.00 **Other Costs:** \$5,849.00 #### Miles of Road Road Maintenance: 6 \$4.21 | Dirt | Rock
(Contractor) | Rock
(State) | Paved | |------|----------------------|-----------------|-------| | 0.0 | 0.0 | 0.0 | 0.0 | #### **Hauling Costs** | Species | \$/MBF | Trips/Day | MBF / Load | | |---------------|--------|-----------|------------|--| | Douglas - Fir | \$0.00 | 3.0 | 4.2 | | | Alder (Red) | \$0.00 | 2.0 | 3.8 | | | Maple | \$0.00 | 2.0 | 3.8 | | 7/25/22 # Timber Sale Appraisal Long John ## Sale WO-341-2022-W00902-01 District: West Oregon Date: July 25, 2022 ## **Logging Costs Breakdown** | Logging | Road
Maint | Fire
Protect | Hauling | Other
P/R appl | Profit &
Risk | Slash
Disposal | Brand & Paint | Other | Total | |------------|---------------|-----------------|----------|-------------------|------------------|-------------------|---------------|--------|----------| | Douglas - | Fir | | | | | | | | | | \$178.29 | \$4.34 | \$3.46 | \$98.10 | \$0.49 | \$28.47 | \$3.01 | \$2.00 | \$1.54 | \$319.70 | | Alder (Red |) | | | | | | | | | | \$140.62 | \$4.42 | \$3.46 | \$165.78 | \$0.49 | \$31.48 | \$3.01 | \$2.00 | \$1.54 | \$352.80 | | Maple | | | | | | | | | | | \$150.45 | \$4.42 | \$3.46 | \$165.78 | \$0.49 | \$32.46 | \$3.01 | \$2.00 | \$1.54 | \$363.61 | | Specie | Amortization | Pond Value | Stumpage | Amortized | |---------------|--------------|------------|----------|-----------| | Douglas - Fir | \$0.00 | \$950.00 | \$630.30 | \$0.00 | | Alder (Red) | \$0.00 | \$670.00 | \$317.20 | \$0.00 | | Maple | \$0.00 | \$390.00 | \$26.39 | \$0.00 | ## Timber Sale Appraisal Long John ## Sale WO-341-2022-W00902-01 District: West Oregon Date: July 25, 2022 ### **Summary** #### Amortized | Specie | MBF | Value | Total | |---------------|-----|--------|--------| | Douglas - Fir | 0 | \$0.00 | \$0.00 | | Alder (Red) | 0 | \$0.00 | \$0.00 | | Maple | 0 | \$0.00 | \$0.00 | #### Unamortized | Specie | MBF | Value | Total | |---------------|-------|----------|----------------| | Douglas - Fir | 3,665 | \$630.30 | \$2,310,049.50 | | Alder (Red) | 97 | \$317.20 | \$30,768.40 | | Maple | 48 | \$26.39 | \$1,266.72 | #### **Gross Timber Sale Value** **Recovery:** \$2,342,084.62 Prepared By: Zane Sandborg Phone: 541-929-3266 #### **SUMMARY OF ALL PROJECT COSTS** | Sale Name: | Long John | | Date:
Time: | March 2022
9:33 | |----------------------|-----------------|--------------------------|----------------------|--------------------| | Project #1 - New C | Construction | | | | | Road Segment | <u> </u> | Longth | Cost | | | A to B | | <u>Length</u>
1.4 sta | <u>Cost</u>
\$883 | | | C to D | | 2.6 sta | | | | Fuel Cost Increase | | 2.0 Sta | \$1,214
\$210 | | | ruei Cost increase | TOTALS | 4.0 sta | \$210
\$2.207 | _ | | | TOTALS | 4.0 Sta | \$2,307 | | | Project #2 - Impro | vomonte | | | | | Road Segment | vements | Length | Cost | | | 1 to 2 | | 56.6 sta | \$8,839 | | | 3 to 4 | | 5.1 sta | \$218 | | | 5 to 6 | | 167.9 sta | \$10,165 | | | 7 to 8 | | 9.1 sta | \$1,296 | | | 9 to 10 | | 4.9 sta | \$1,954 | | | 11 to 12 | | 173.3 sta | \$21,654 | | | Fuel Cost Increase | | 173.3 Sta | \$4,413 | | | i dei Cost iliciease | TOTALS | 416.9 sta | \$48,539 | _ | | | TOTALS | 410.9 Sta | ψ40,339 | | | Drainat #2 Drugh | : | Langth | Coot | | | Project #3 - Brush | <u>ing</u> | <u>Length</u> | Cost | | | Brushing | may al | 4.0 mi | \$3,602 | | | Sod and Brush Ren | novai | 7.9 mi | \$6,415 | | | Fuel Cost Increase | TOTAL | | \$1,002 | _ | | | TOTAL | | \$11,019 | | | Project #4 - Gate I | nstallation | Quantity | Cost | | | Gate Install | | 1 | \$856 | | | Fuel Cost Increase | | | \$86 | | | | TOTAL | | \$942 | _ | | | | | | | | Project #5 - Stock | Pile Restocking | <u>Quantity</u> | <u>Cost</u> | | | Stockpile Rock | | 500 CY | \$11,833 | | | Fuel Cost Increase | | | \$1,183 | _ | | | TOTAL | | \$13,016 | | | Project #6 - Move | in | | Cost | | | Excavator, C325 or | | | \$1,450 | | | (extra move-in c | | | \$500 | | | Backhoe, C580 or e | | | \$375 | | | Grader, Cat 14-G o | | | \$875 | | | (extra move-in c | • | | \$73 | | | Dozer, D6 or equiv. | , | | \$875 | | | (extra move-in c | | | \$250 | | | Vibratory roller | , | | \$875 | | | Front end loader | | | \$875 | | | Road brusher | | | \$778 | | | Fuel Cost Increase | | | \$693 | | | | TOTAL | | \$7,619 | _ | | | - | | Ŧ·,-·• | | GRAND TOTAL \$83,442 Compiled by: Zane Sandborg Date 03/29/2022 | SALE
ROAD | Long John
A to B | (Unsurfaced) | Project # | 1 | | LENGTH | const | | 1.4 sta | | |----------------------|-----------------------------|--------------|----------------------|---|---|---------------------------|--------|---------|---------------|-------| | CLEARI | NG AND GRUBE | _ | 5 ac | | @ | <u>Rate</u>
\$1,337.00 | /ac | = | \$201 | | | | | | | | T | OTAL CLEA | RING A | AND GRU | IBBING COST = | \$201 | | CONSTI | RUCTION | | | | | <u>Rate</u> | | | | | | Construc | ct road (w/ D6) | 1.4 | 4 sta | | @ | \$138.00 | /sta | = | \$193 | | | Construction (Pt. B) | ct Landing (w/ D6 | · · | 1 Ldg | | @ | \$438.00 | /Ldg | = | \$438 | | | Shape s
(w/ road | • | 1.4 | 4 sta | | @ | \$20.63 | /sta | = | \$29 | | | Compac | t subgrade
itory roller) | 1.4 | 4 sta | | @ | \$16.00 | /sta | = | \$22 | | | (W/ VIDIC | nory roller) | | | | | TO | OTAL C | ONSTRU | ICTION COST = | \$682 | | Commil- | d b | 7 | Candhara | | | | | | | | | Compile
Date: | u by: | | Sandborg
29, 2022 | | | | | CDAND | TOTAL ====> | \$883 | | Date. | | IVIAI A | 29, 2022 | | | | | GRAND | 101AL ====> | 4002 | | SALE
ROAD | Long John
Fuel Cost Increa (Unsu | Project #
rfaced) | 1 | | LENGTH | const | | 2.6 sta | | |-----------------------------|-------------------------------------|----------------------|---|----|------------|--------|-------|---------------|---------| |
CLEARING AND GRUBBING Rate | | | | | | | | | | | | | 0.24 ac | (| @ | \$1,337.00 | /ac | = | \$321 | | | | | | | TO | TAL CLEA | RING A | ND GR | UBBING COST = | \$321 | | CONSTI | RUCTION | | | | Rate | | | | | | Construc | ct road (w/ D6) | 2.6 sta | (| @ | \$138.00 | /sta | = | \$359 | | | Construction (Pt. D) | ct Landing (w/ D6) | 1 Ldg | (| @ | \$438.00 | /Ldg | = | \$438 | | | Shape s
(w/ road | • | 2.6 sta | (| @ | \$20.63 | /sta | = | \$54 | | | Compac | t subgrade | 2.6 sta | (| @ | \$16.00 | /sta | = | \$42 | | | (w/ vibra | tory roller) | | | | TC | OTAL C | ONSTR | UCTION COST = | \$893 | | Compile | d by: | Zane Sandborg | | | | | | | | | Date: | | Mar 29, 2022 | | | | | GRANE |) TOTAL ====> | \$1,214 | | SALE
ROAD | Long John
1 to 2 | (Unsurfaced) | Project # | 2 | | LENGTH | impro | ve | 56.6 sta | | |----------------------|---|----------------------|-------------------------------|-------------------------|---|-------------------------|-------|---------|----------------|----------------| | | NG AND GRUB
00 and 51+80) | BING | 0.05 ac | | @ | Rate
\$1,337.00 | /20 | = | \$67 | | | (Sia. 7+i | 00 and 31+00) | | 0.03 ac | | _ | | | | · | | | | | | | | T | OTAL CLEA | ARING | AND G | RUBBING COST = | \$67 | | Sidecast | ISTRUCTION
t removal (w/ C3:
+25 to Sta. 25+1 | • | 3 hrs | | @ | <u>Rate</u>
\$145.00 | /hr | = | \$435 | | | Sidecast | t endhaul (expan | ded 20%) | 100 CY | | @ | \$2.50 | /CY | = | \$250 | | | Cutbank | +25 to Sta. 25+1
excavation (w/ 0 | C325) | 2 hrs | | @ | \$145.00 | /hr | = | \$290 | | | Road rea | +70 to Sta. 22+6
alignment endha
+70 to Sta. 22+6 | ul (expanded 20%) | 220 CY | | @ | \$2.50 | /CY | = | \$550 | | | Construc | ct Landing (w/ C | 325) | 2 Ldg | | @ | \$438.00 | /Ldg | = | \$876 | | | | 00 & Sta. 48+70)
ct waste area (w/ | | 0.5 hrs | | @ | \$145.00 | /hr | = | \$73 | | | - | ubgrade (Sta. 21 | +70 to Sta. 22+60) | 2.0 sta | | @ | \$20.63 | /sta | = | \$41 | | | (w/ road
Compac | | 21+70 to Sta. 22+60) | 2.0 sta | | @ | \$16.00 | /sta | = | \$32 | | | | atory roller) | , | 450 CY | | @ | \$0.45 | /CY | = | \$203 | | | Оотграс | it wasto | | 400 01 | | • | | | | · | A 0.750 | | | | | | | | 10 | STALC | ONST | RUCTION COST = | \$2,750 | | Re-open | /EMENT
n road (w/ grader |) | 54 sta | | @ | <u>Rate</u>
\$15.40 | /sta | = | \$832 | | | | 60 to Pt. 2)
I landings (w/ C3 | 25) | 1 hr | | @ | \$145.00 | /hr | = | \$145 | | | Re-open | +90 & Sta. 20+60
n landings (w/ gra | • | 0.5 hrs | | @ | \$114.00 | /hr | = | \$57 | | | (Pt. 2)
Compac | t subgrade | | 54 sta | | @ | \$16.00 | /sta | = | \$864 | | | (Sta. 2+6 | 60 to Pt. 2) | | | | | | TOTA | IMRC | OVEMENT COST = | \$1,898 | | 011054 | | | | 0. | | 5.4 | 1017 | Liviico | VENIENT GGGT = | ψ1,000 | | SURFAC
Spot roc | cing
k (Pt. 1 to Sta. 2 | +60) | 20 CY | <u>Size</u>
1½" - 0" | @ | <u>Rate</u>
\$26.02 | /CY | = | \$520 | | | Turnout | Rock (Sta. 2+60 | | 20 CY | 3"-0" | @ | \$24.67 | /CY | = | \$493 | | | Transitio | | | 20 CY | Jaw-Run | @ | \$23.66 | /CY | = | \$473 | | | Base roo | 60 to Sta. 3+10)
ck | | 40 CY | Jaw-Run | @ | \$23.66 | /CY | = | \$946 | | | | 00 to Sta. 7+90) | | | | | | | | • | | | | surfacing (w/ roa | ad grader) | 2.5 sta | | @ | \$20.63 | /sta | = | \$52 | | | Spread | surfacing (w/ doz
60 to Sta. 3+10 & | , | 1.5 sta | | @ | \$20.63 | /sta | = | \$31 | | | | 00 to 7+90)
et surface | | 4.0 sta | | @ | \$16.00 | /sta | = | \$64 | | | | atory roller) | | 1.0 0.0 | | 0 | Ψ10.00 | | | | 00.570 | | | | | | | | | 101 | AL SU | RFACING COST = | \$2,579 | | SPECIA | L PROJECTS | | | <u>Size</u> | | Rate | | | | | | | removal (Sta. 21- | +95) | 0.5 hrs | | @ | \$145.00 | /hr | = | \$73 | | | Install cu | | =\ | 3 hrs | | @ | \$145.00 | /hr | = | \$435 | | | | +95 & Sta. 21+95
18"x30' (Sta. 12+ | • | 30 ft | | @ | \$13.75 | /ft | = | \$413 | | | | atering (Sta. 12- | | 2.5 hrs | | @ | \$12.00 | /hr | = | \$30 | | | Bedding | compaction | | 2 hrs | | @ | \$57.00 | /hr | = | \$114 | | | | ndheld tamper) | | 40.07 | 41/11 01 | 6 | # 00.00 | /C) / | | # 000 | | | Bedding
(Sta. 12- | & backfill rock | | 10 CY | 1½" - 0" | @ | \$26.02 | /CY | = | \$260 | | | | +95)
er rock (Sta. 21+ | 95) | 10 CY | Pit-Run | @ | \$21.97 | /CY | = | \$220 | | | | | | | | | ТОТА | L SPE | CIAL PI | ROJECTS COST = | \$1,545 | | | | | | | | | | | | | | Compile
Date: | d by: | | Zane Sandborg
Mar 29, 2022 | | | | | GRAN | ID TOTAL ====> | \$8,839 | Mar 29, 2022 Date: GRAND TOTAL ====> \$8,839 SALE Long John Project # 2 LENGTH improve 5.1 sta ROAD 3 to 4 (Unsurfaced) **IMPROVEMENT** Rate Re-open road (w/ grader) 5.1 sta @ \$15.40 /sta \$79 Re-open Landing (w/ grader) 0.5 hrs @ \$114.00 /hr \$57 Compact subgrade 5.1 sta @ \$16.00 /sta \$82 TOTAL IMPROVEMENT COST = \$218 Compiled by: Zane Sandborg (w/ vibratory roller) Date: Mar 29, 2022 **GRAND TOTAL =====> \$218** | SALE
ROAD | Long John
5 to 6 | (Johnson C | Project #
Creek Road) (Sui | faced) | 2 | | LENGTH | improv | /e | 167.9 sta | l | |---------------------|--|------------|-------------------------------|--------|----|---|-----------------|--------|-------|-----------------|---------| | IMPROV | 'EMENT | | | | | | Rate | | | | | | | olish ditch (w/ gra
+70 to Sta. 112+6 | | 56 sta | | | @ | \$44.00 | /sta | = | \$2,464 | | | Daylight | road cutting | , | 4 hrs | | | @ | \$45.00 | /hr | = | \$180 | | | Daylight | 2+45 to Sta. 154+
road cleaning (w. | / C325) | 3 hrs | | | @ | \$145.00 | /hr | = | \$435 | | | Round c | 2+45 to Sta. 154+
utslope (w/ C325 |) | 6.2 sta | | | @ | \$49.00 | /sta | = | \$304 | | | Slough e | 3+00 to Sta. 149+
endhaul (w/C325) | • | 10 CY | | | @ | \$2.00 | /CY | = | \$20 | | | • | 3+00 to Sta. 149+
Landings (w/ gra | , | 0.5 hrs | | | @ | \$114.00 | /hr | = | \$57 | | | (Sta. 152 | 2+85, Sta. 154+10 | 0 & Pt. 6) | | | | | Т | OTAL | IMPRO | OVEMENT COST = | \$3,460 | | | | | | | | | | | | | . , | | SURFAC | | | | Size | _ | _ | Rate | | | | | | • | k (Pt. 5 to Pt. 6) | | 160 CY | 1½"-(| | @ | \$26.02 | /CY | = | \$4,163 | | | Landing | | > | 60 CY | Jaw-R | un | @ | \$23.66 | /CY | = | \$1,420 | | | • | 2+85, Sta. 154+1 | , | 0.5.1 | | | | 0.445.00 | /1 | | 47 0 | | | (w/ exca | r placement (Sta.
vator) | 24+45) | 0.5 hrs | | | @ | \$145.00 | /nr | = | \$73 | | | Fill repai | r rock (Sta. 24+4 | 5) | 10 CY | Jaw-R | un | @ | \$23.66 | /CY | = | \$237 | | | • | r compaction
held tamper) | | 0.5 hrs | | | @ | \$57.00 | /hr | = | \$29 | | | Process
(w/ road | surface | | 20.0 sta | | | @ | \$20.63 | /sta | = | \$413 | | | Compac | t surface | | 20.0 sta | | | @ | \$16.00 | /sta | = | \$320 | | | (w/ vibra | tory roller) | | | | | | | TOT | AL SU | JRFACING COST = | \$6,655 | | SPECIA | L PROJECTS | | | | | | | | | | | | | ut culverts | | 2 culverts | | | @ | \$25.00 | /ea | = | \$50 | | | | | | | | | | TOTAL | L SPEC | IAL P | ROJECTS COST = | \$50 | | | | | | | | | | | | | | Compiled by: Zane Sandborg Date: Mar 29, 2022 **GRAND TOTAL =====>** \$10,165 | SALE | Long John | | Project # | 2 | | LENGTH | impro | ve | 9.1 sta | | |-----------------------|--------------------------------------|-----------|---------------|---------|---|-------------|--------|-------|----------------|---------| | ROAD | 7 to 8 | (Unsurfac | ed) | | | | | | | | | CONSTR | RUCTION | | | | | Rate | | | | | | | alignment (w/ D6
90 to Sta. 4+70) |) | 1.5 hrs | | @ | \$128.00 | /hr | = | \$192 | | | Headwall
(Sta. 4+3 | l stabilization (w. | / C325) | 0.5 hrs | | @ | \$145.00 | /hr | = | \$73 | | | Construc | t Landing (Sta. 3 | 3+10) | 1 Ldg | | @ | \$438.00 | /Ldg | = | \$438 | | | Shape su | | | 2.5 sta | | @ | \$20.63 | /sta | = | \$52 | | | (w/ road | grader) | | | | | TO | OTAL C | ONST | RUCTION COST = | \$755 | | IMPROV | EMENT | | | | | Rate | | | | | | Re-open | road (w/ grader) |) | 9.1 sta | | @ | \$15.40 | /sta | = | \$140 | | | Compact | subgrade | | 9.1 sta | | @ | \$16.00 | /sta | = | \$146 | | | (w/ vibrat | tory roller) | | | | | ٦ | OTAL | IMPRO | OVEMENT COST = | \$286 | | | | | | | | | | | | · | | SURFAC | ING | | | Size | | <u>Rate</u> | | | | | | Junction | | | 10 CY | Jaw-Run | @ | \$23.66 | /CY | = | \$237 | | | • | 00 to Sta. 0+50) | | | | | | | | . | | | Process (w/ road (| | | 0.5 sta | | @ | \$20.63 | /sta | = | \$10 | | | Compact | | | 0.5 sta | | @ | \$16.00 | /sta | = | \$8 | | | (w/ vibrat | tory roller) | | | | | | | | | | | | | | | | | | TOT | AL SU | RFACING COST = | \$255 | | Compiled | d by: | ; | Zane Sandborg | | | | | | | | | Date: | | 1 | Mar 29, 2022 | | | | | GRAN | ID TOTAL ====> | \$1,296 | | SALE | Long John | | Project # | 2 | | LENGTH | impro | ove | 4.9 sta | a | |-----------|----------------|--------------|------------|-------------|---------|-------------|-------|--------|----------------|---------| | ROAD | 9 to 10 | (Unsurfaced) | IMPP() | /EMENT | | | | | Poto | | | | | | _ | | • | Г h.u.s | | <u></u> | <u>Rate</u> | /1 | | | | | • | road (w/ C325) | | .5 hrs | | @ | \$145.00 | /hr | = | \$363 | | | • | Landings (w/ C | 325) 0 | .5 hrs | | @ | \$145.00 | /hr | = | \$73 | | | (Sta. 3+8 | 85) | | | | | | | | | | | | | | | | | ٦ | TOTAL | IMPRO | OVEMENT COST = | \$436 | | | | | | | | | | | | | | SURFAC | CING | | | <u>Size</u> | | <u>Rate</u> | | | | | | Surface | rock- 4" Lift | 1. | I0 CY | 3"-0" | @ | \$5.72 | /CY | = | \$629 | | | Landing | rock | ; | 30 CY | Jaw-Run | @ | \$23.66 | /CY | = | \$710 | | | (Sta. 3+8 | 85) | | | | | | | | | | | Process | surface | 4 | .9 sta | | @ | \$20.63 | /sta | = | \$101 | | | (w/ grade | er) | | | | | | | | · | | | ` • | t surface | 4 | .9 sta | | @ | \$16.00 | /sta | = | \$78 | | | | tory roller) | | | | | , | | | • - | | | (| ,, | | | | | | TO
| TAL SU | RFACING COST = | \$1,518 | | | | | | | | | . • | 00 | | ψ.,σ.σ | | Compile | q pv. | <i>7</i> an | e Sandborg | | | | | | | | | Date: | ~ ~ <i>,</i> . | | 29, 2022 | | | | | GRAN | ND TOTAL ====> | \$1,954 | | Date. | | iviai | 23, 2022 | | | | | CINAI | ID IOIAL | ψ1,334 | | SALE
ROAD | Long John
11 to 12 (Go | Proje
pat Ridge Road) (Sur | | | LENGTH | impro | ve | 173.3 s | ta | |----------------------|--|--------------------------------|-------------|----|---------------------------|--------------|-------|-----------------|-------------| | | NG AND GRUBBING
+70 to Sta. 173+30 | 0.17 ac | | @ | <u>Rate</u>
\$1,337.00 |) /ac | = | \$227 | | | | | | | TC | TAL CLEA | RING A | AND G | RUBBING COST = | \$227 | | | RUCTION | | | | Rate | | | | | | | excavation (w/ C325)
1+30 to Sta. 123+75) | 16 hrs | | @ | \$145.00 | /hr | = | \$2,320 | | | | ion endhaul (expanded | d 20%) 1920 CY | | @ | \$2.50 | /CY | = | \$4,800 | | | | t removal (w/ C325) | 2.5 hrs | | @ | \$145.00 | /hr | = | \$363 | | | • | 1+30 to Sta. 123+75) | 2007) 70.07 | | @ | ድ ር 50 | (C)(| | 047 5 | | | | t endhaul (expanded 2
·emoval (w/ C325) | 20%) 70 CY
0.5 hrs | | @ | \$2.50
\$145.00 | /CY
/hr | = | \$175
\$73 | | | (Sta. 12 | , , | 0.5 1115 | | w | φ145.00 | /111 | - | Ψ13 | | | | endhaul (expanded 20 | %) 20 CY | | @ | \$2.50 | /CY | = | \$50 | | | | ubgrade | 2.5 sta | | @ | \$20.63 | /sta | = | \$52 | | | (w/ road | - | | | | , | | | · | | | | t subgrade | 2.5 sta | | @ | \$16.00 | /sta | = | \$40 | | | | itory roller) | | | | | | | | | | | vaste area (WA3) | 1 hr | | @ | \$145.00 | /hr | = | \$145 | | | | t waste area | 2010 CY | | @ | \$0.45 | /CY | = | \$905 | | | Extend L
(Pt. 12) | _anding (w/ C325) | 0.5 hrs | | @ | \$145.00 | /hr | = | \$73 | | | . , | emoval (w/ C325)
2+70) | 0.5 hrs | | @ | \$145.00 | /hr | = | \$73 | | | (| , | | | | TO | OTAL C | ONST | RUCTION COST = | \$9,069 | | IMPRO\ | /EMENT | | | | Rate | | | | | | Re-estal | blish ditch
+30 to Sta. 69+80 & | 24.2 sta | | @ | \$44.00 | /sta | = | \$1,065 | | | | +20 to Sta. 127+35)
Landing (w/ C325) | 0.5 hrs | | @ | \$145.00 | /hr | = | \$73 | | | (Ft. 12) | | | | | 7 | ΓΟΤΑL | IMPR | OVEMENT COST = | \$1,138 | | SURFA | CING | | <u>Size</u> | | Rate | | | | | | Spot roc | | 200 CY | 1½" - 0" | @ | \$26.66 | /CY | = | \$5,332 | | | Base lay | /er rock - 8" lift
1+30 to Sta. 123+75) | 40 CY | Jaw-Run | @ | \$24.30 | /CY | = | \$972 | | | Surface | rock - 8" lift | 40 CY | 1½" - 0" | @ | \$26.66 | /CY | = | \$1,066 | | | Surface | 1+30 to Sta. 123+75)
rock- 4" Lift
7+85 to Pt. 12) | 110 CY | 3" - 0" | @ | \$5.72 | /CY | = | \$629 | | | Landing | • | 80 CY | Jaw-Run | @ | \$24.30 | /CY | = | \$1,944 | | | Process
(w/ road | surface | 36.0 sta | | @ | \$20.63 | /sta | = | \$743 | | | Compac | et surface
atory roller) | 16.0 sta | | @ | \$16.00 | /sta | = | \$256 | | | • | • | | | | | TOT | AL SU | JRFACING COST = | \$10,942 | | | | | | | | | | | | | SPECIA | L PROJECTS | | | | | | | | | | Grass se | eed
utbank and sidecast p | 25 lbs | | @ | \$1.80 | /lb | = | \$45 | | | Mulch | uwank anu siuecasi p | uliback)
10 bales | | @ | \$12.00 | /bale | = | \$120 | | | Labor | | 2.5 hrs | | @ | \$12.00
\$45.00 | /baie
/hr | = | \$120
\$113 | | | | | - | | | | | NA! - | | #070 | | | | | | | IOIA | L SPEC | JAL P | ROJECTS COST = | \$278 | Compiled by: Zane Sandborg Date: Mar 29, 2022 GRAND TOTAL ====> \$21,654 #### **SUMMARY OF BRUSHING COST** | SALE | Long John | | Project # | 3 | | LENGTH | maint | ain | | 4.0 Mil | es | |------------|---------------|------------|-------------|---|-----|-------------|--------|---------|--------------|---------|---------| | ROAD | All (| (Surfaced/ | unsurfaced) | | | | | | | | | | LIGHT B | RUSHING | | | | | <u>Rate</u> | | | | | | | | 10 to Pt. 6 | | 2.60 mi | | @ | \$800.00 | /mi | = | \$2,080 | | | | (Pt. 5 to | , | | 0.47 | | _ | | , . | | # 400 | | | | Pt. 7 to F | Pt. 8 | | 0.17 mi | | @ | \$800.00 | /mi | = | \$136 | | | | | TOTAL LE | NGTH = | 2.77 mi | | | ТО | TAL LI | GHT BR | USHING COS | ST = | \$2,216 | | MEDIUN | BRUSHING | | | | | Rate | | | | | | | Pt. 1 to F | Pt. 2 | | 1.07 mi | | @ | \$1,100.00 | /mi | = | \$1,177 | | | | Pt. 3 to F | Pt. 4 | | 0.10 mi | | @ | \$1,100.00 | /mi | = | \$110 | | | | Pt. 9 to F | Pt. 10 | | 0.09 mi | | @ | \$1,100.00 | /mi | = | \$99 | | | | | TOTAL LE | NGTH = | 1.26 mi | | | TOTA | L MED | DIUM BR | USHING COS | ST = | \$1,386 | | | | | | | | BRU | SHING | GRANI | D TOTAL === | :==> | \$3,602 | | SOD AN | D DEBRIS REMO | VAL | | | | <u>Rate</u> | | | | | | | All brush | ing segments | | 4.61 mi | | @ | \$813.12 | /mi | = | \$3,748 | | | | | +35 to Pt. 12 | | 3.28 mi | | @ | \$813.12 | /mi | = | \$2,667 | | | | (Pt. 11 to | Pt. 12) | | | | | | | | | | | | | TOTAL LE | NGTH = | 7.89 mi | | тот | ΓAL SOD A | ND DE | BRIS R | EMOVAL === | ==> | \$6,415 | Compiled by: Zane Sandborg Date: Mar 29, 2022 #### SUMMARY OF GATE INSTALLMENT COST SALE Long John Project # 4 ROAD 1 to 2 (Sta. 0+75) **GATE INSTALLATION** Rate 8' Farm Gate 2 gates \$400 \$200.00 /ea \$100.00 /trip Transport gate 1 trip \$100 14 bags 50 lbs concrete bags @ \$6.00 /bag \$84 4"x4"x12' pressure treated post 2 posts \$80 @ \$40.00 /post = Installation 4 hrs @ \$180 \$45.00 /hr 3 ft TOTAL GATE INSTALLATION COST= \$856 \$12 Compiled by: Zane Sandborg Grade 30 chain Date: Mar 29, 2022 **GRAND TOTAL =====> \$856** @ \$4.00 /ft #### SUMMARY OF STOCKPILE RESTOCK COST SALE Long John Project # 5 ROAD Stockpile (Goat Ridge Road) **IMPROVEMENT** Clear brush around stockpile 2 hrs @ \$145.00 /hr = \$290 (W/C325) TOTAL IMPROVEMENT COST = \$290 RESTOCKING Size Rate Stockpile rock 500 CY 1½" - 0" @ \$22.47 /CY = \$11,235 (using 18 CY truck) Front end Loader 4 hrs @ \$77.00 /hr = \$308 TOTAL RESTOCKING COST = \$11,543 Compiled by: Zane Sandborg Date: Mar 29, 2022 **GRAND TOTAL =====> \$11,833** #### **SUMMARY OF MAINTENANCE COST** SALE: Long John Final log haul Maintenance Cost Estimate (Costed in appraisal, not in project costs) Move-in Grader \$ 875 | Road Segment | Length | Cost/Sta | Cost | _Mileage_ | |--------------|-----------|----------|------------|-----------| | 5 to 6 | 167.9 sta | \$20.63 | \$3,463.78 | 3.18 | | 9 to 10 | 4.9 sta | \$20.63 | \$101.09 | 0.09 | | 11 to 12 | 173.3 sta | \$20.63 | \$3,575.18 | 3.28 | | | | | | | | Total | 346.1 | | \$7,140.05 | 6.55 | #### **Maintenance Rock:** | | Volume | Cost/CY | Cost | |------------------------------|--------|---------|---------------------------| | 1½"-0" | 250 | \$26.25 | \$6,562.50 | | Fuel increase
Grand Total | | | \$1,457.76
\$16,035.31 | | TS Volume | 3,810 | MBF | | | Cost / MBF = | | | \$4.21 | #### NOTES: SALE NAME: Long John DATE: Mar 29, 2022 ROAD NAME: Johnson Creek Road CLASS: Medium ROCK SOURCE: Rickard Rock Quarry 10 CY truck Hwy 20, Harlan-Burnt Woods Road Johnson Creek Road TIME Computation: Road speed time factors: 1. 55 MPH 24.6 MRT 26.8 minutes 0.0 minutes 2. 50 MPH MRT 3. 45 MPH MRT 0.0 minutes 4. 40 MPH 0.0 minutes MRT 40 MPH 35 MPH 5. 11.2 MRT 19.2 minutes 30 MPH 6. MRT 0.0 minutes 25 MPH 7. MRT 0.0 minutes 20 MPH 15 MPH 8. 2.0 MRT 6.0 minutes 9. MRT 0.0 minutes 10. 10 MPH 11. 05 MPH 18.0 minutes 3.0 MRT MRT 0.0 minutes 0.50 minutes Dump or spread time per RT Total hauling cycle time for this setting (100% efficiency) 70.50 minutes Operator efficiency correction 0.85 82.94 minutes Job efficiency correction 0.90 92.16 minutes 10.00 9.22 min/CY Truck capacity (CY) 0.25 min/CY Loading time, delay time per CY TIME (minutes) per cubic yard 9.47 min/CY COST per CY computation \$90.00 /hr. Cost of truck and operator per hour \$1.50 /min Cost of truck and operator per minute Cost per CY \$14.21 /CY Spread and compact Water truck, Grader & Roller \$1.50 /CY Cost Delivered Cost Delivered Cost/Yd (Pit) w/o processing with processing Size 1½" - 0" \$ 11.81 \$26.02 \$27.52 3" - 0" \$ 10.46 \$24.67 \$26.17 | Jaw-Run | \$ 9.45 | \$23.66 | \$25.16 | |---------|----------|---------|---------| | Pit-Run | \$ 7.76 | \$21.97 | \$23.47 | | Riprap | \$ 24.98 | \$39.19 | | | | | | | Note: Pit costs March, 2020 Rickard Rock Quarry Riprap costs November, 2020 Hardrock Rock Quarry SALE NAME: Long John DATE: Mar 29, 2022 ROAD NAME: Goat Ridge Road CLASS: Medium ROCK SOURCE: Rickard Rock Quarry 10 CY truck Hwy 20, Harlan-Burnt Woods Road Goat Ridge Road TIME Computation: Road speed time factors: 1. 55 MPH 24.6 MRT 26.8 minutes 0.0 minutes 2. 50 MPH MRT 3. 45 MPH MRT 0.0 minutes 4. 40 MPH 0.0 minutes MRT 40 MPH 35 MPH 5. 4.0 MRT 6.9 minutes 30 MPH 6. MRT 0.0 minutes 25 MPH 7. MRT 0.0 minutes 20 MPH 15 MPH 12.0 minutes 8. 4.0 MRT 9. MRT 0.0 minutes 10. 10 MPH 11. 05 MPH 27.6 minutes 4.6 MRT MRT 0.0 minutes 0.50 minutes Dump or spread time per RT Total hauling cycle time for this setting (100% efficiency) 73.80 minutes Operator efficiency correction 0.85 86.82 minutes Job efficiency correction 0.90 96.47 minutes 10.00 9.65 min/CY Truck capacity (CY) 0.25 min/CY Loading time, delay time per CY TIME (minutes) per cubic yard 9.90 min/CY COST per CY computation \$90.00 /hr. Cost of truck and operator per hour \$1.50 /min Cost of truck and operator per minute Cost per CY \$14.85 /CY Spread and compact Water truck, Grader & Roller \$1.50 /CY Cost Delivered Cost Delivered Size Cost/Yd (Pit) w/o processing with processing 1½" - 0" \$ 11.81 \$26.66 \$28.16 3**" -** 0**"** \$ 10.46 \$25.31 \$26.81 \$24.30 \$39.83 \$22.61 \$25.80 \$24.11 Note: Pit costs March, 2020 Rickard Rock Quarry Riprap costs November, 2020 Hardrock Rock Quarry \$ 9.45 \$ 7.76 \$ 24.98 Jaw-Run Riprap Pit-Run SALE NAME: Long John DATE: Mar 29, 2022 ROAD NAME: Johnson Creek Road CLASS: Medium ROCK SOURCE: Rickard Rock Quarry 18 CY truck Route: Hwy 20, Harlan-Burnt Woods Road Goat Ridge Road TIME Computation: Road speed time factors: 1. 55 MPH 24.6 MRT 26.8
minutes 0.0 minutes 2. 50 MPH MRT 3. 45 MPH MRT 0.0 minutes 40 MPH 35 MPH 4. 0.0 minutes MRT 5. 4.0 MRT 6.9 minutes 30 MPH 25 MPH 6. MRT 0.0 minutes 7. MRT 0.0 minutes 8. 20 MPH 15 MPH 4.0 MRT 12.0 minutes 9. MRT 0.0 minutes 10. 10 MPH 4.6 MRT 27.6 minutes 11. 05 MPH MRT 0.0 minutes 0.50 minutes Dump or spread time per RT Total hauling cycle time for this setting (100% efficiency) 73.80 minutes Operator efficiency correction 0.85 86.82 minutes Job efficiency correction 0.90 96.47 minutes 18.00 5.36 min/CY Truck capacity (CY) 0.25 min/CY Loading time, delay time per CY TIME (minutes) per cubic yard 5.61 min/CY COST per CY computation \$114.00 /hr. Cost of truck and operator per hour \$1.90 /min Cost of truck and operator per minute Cost per CY \$10.66 /CY \$1.50 /CY Spread and compact Water truck, Grader & Roller Cost Delivered Cost Delivered Cost/Yd (Pit) w/o processing with processing Size 1½" - 0" \$ 11.81 \$22.47 \$23.97 3" - 0" \$ 10.46 \$21.12 \$22.62 Jaw-Run \$ 9.45 \$20.11 \$21.61 \$18.42 \$19.92 Note: Pit costs March, 2020 Rickard Rock Quarry \$ 7.76 Pit-Run | SALE NAME: Long John | DATE: | Mar 29, 2022 | |---|-----------------------|-----------------------------| | ROAD NAME: Goat Ridge Road | CLASS | : Medium | | ROCK SOURCE: WOGOAT292 stockpile | 10 CY | truck | | Route: Goat Ridge Road, Harl | lan-Burnt Woods Road, | | | Johnson Creek Road | | | | TIME Computation: | | | | Road speed time factors: | | | | 1. 55 MPH | MRT | 0.0 minutes | | 2. 50 MPH | MRT | 0.0 minutes | | 3. 45 MPH | MRT | 0.0 minutes | | 4. 40 MPH 4.2 | | 6.3 minutes | | 5. 35 MPH | MRT | 0.0 minutes | | 6. 30 MPH | MRT | 0.0 minutes | | 7. 25 MPH | MRT | 0.0 minutes | | 8. 20 MPH 3.6 | | 10.8 minutes | | 9. 15 MPH | MRT | 0.0 minutes | | 10. 10 MPH 1.6 | | 9.6 minutes | | 11. 05 MPH | MRT | 0.0 minutes | | Dump or spread time per RT Total hauling cycle time for the (100% efficiency) | his setting | 0.50 minutes 27.20 minutes | | Operator efficiency correction | 0.85 | 32.00 minutes | | Job efficiency correction | 0.90 | 35.56 minutes | | our cirioteney correction | . 30 | 30.00 minaces | | Truck capacity (CY) | 10.00 | 3.56 min/CY | | Loading time, delay time per CY | | 0.25 min/CY | | TIME (minutes) per cubic yard | | 3.81 min/CY | | COST per CY computation Cost of truck and operator per Cost of truck and operator per | | \$90.00 /hr.
\$1.50 /min | | Cost per CY | | \$5.72 /CY | | Spread and compact Water true | ck, Grader & Roller | \$1.50 /CY | | | Cost Delivered | Cost Delivered | | Size Cost/Yd (Pit) | w/o processing | with processing | | 3" - 0" - | \$5.72 | \$7.22 | #### TIMBER CRUISE REPORT #### Long John (WO-341-2022-W00902-01) FY 2022 - 1. Sale Area Location: Portions of Sections 3 & 4, T12S, R8W and portions of Section of 34, T11S, R8W, W.M. Lincoln County, Oregon. - 2. Fund Distribution: a. Fund **BOF 60%** CSL 40% 3. Sale Acreage by Area: | Unit | Treatment | Gross
Acres | Stream
Buffers | Existing
Roads | No
Harvest -
Other | No
Harvest-
Slope | Net Sale
Acres | Acreage
Comp.
Method | |-------|----------------------|----------------|-------------------|-------------------|--------------------------|-------------------------|-------------------|----------------------------| | 1 | Modified
Clearcut | 50 | 2 | 2 | <1 | - | 46 | GIS | | 2 | Modified
Clearcut | 94 | 22 | 4 | - | <1 | 68 | GIS | | 3 | Partial Cut | 8 | - | <1 | <u>.</u> | - | 8 | GIS | | Total | | 152 | 24 | 6 | <1 | <1 | 122 | _ | - 4. Cruisers and Cruise Dates: This sale was cruised by Zane Sandborg, David Bailey, Jacob Ruhl and Jessica Westcott in November of 2021. - 5. Cruise Method and Computation: The sale consists of two Modified clearcut units that were cruised using variable radius plot sampling. The timber sale area was cruised using a basal area factor of 33.61. Plots were spaced on a 3x4 chain grid for Unit 1 and a 4x5 chain grid for Unit 2. Unit 2 data was imputed onto Unit 3, a light thinning unit. On Unit 1, a total of 37 plots were taken: 13 measure plots and 24 count plots. On Unit 2, a total of 32 plots were taken: 13 measure plots and 19 count plots. Measure plots were measured for DBH, height, form factor, grade, and defect. Data was entered into the Atterbury Super ACE cruise program to determine stand statistics and net board foot volume. Additional volume was removed to account for hidden defect and breakage. Digital ortho photos, Lidar data, and GPS data were used to map the boundaries for the sale, and ArcPro GIS was used to determine gross and net acreage. - 6. Measurement Standards: Tree heights were measured to the nearest foot, to a top diameter of 6 inches inside bark or to 40% of form factor. Diameters at breast height (DBH) were measured to the nearest inch, and a form point of 16 feet was used to calculate form factor. Form factors were measured or estimated on every tree. Most trees were graded in 40 foot log segments unless breakage, defect, or length to top of grade cruise diameter warranted otherwise. - 7. **Timber Description:** Timber is primarily 45 year-old Douglas-fir for Unit 1 and 48-year old Douglas-fir for Units 2 and 3. All Units possess small amounts of bigleaf maple, red alder and Western redcedar. For Unit 1 the average Douglas-fir to be removed is approximately 17 inches DBH, with an average height of 80 feet to a merchantable top. For Unit 2, the average Douglas-fir to be removed is approximately 16 inches DBH, with an average height of 75 feet to a merchantable top. For Unit 3, the average Douglas-fir to be removed is approximately 13 inches DBH, with an average height of 59 feet to a merchantable top. The average volume per Page 1 of 3 March 28, 2022 acre to be harvested (net) is approximately 29.5 MBF for Unit 1, 35.3 MBF for Unit 2 and 6.6 MBF for Unit 3. Conifer trees other than Douglas-fir are reserved from cutting, unless present in yarding corridors, Landings or between R/W tags. 8. Statistical Analysis and Stand Summary: (See attached "Statistics"). | Unit | Target CV | Target SE | Actual CV | Actual SE | |------|-----------|-----------|-----------|-----------| | 1 | 45% | 9% | 33.1% | 5.4% | | 2 | 40% | 9% | 24.6% | 4.3% | Note: Statistics shown are for conifer and hardwood trees combined. Percentages are for net board foot volume. 9. Total Volume (MBF) by Species and Grade: (See attached volume report "Species, Sort Grade – Board Foot Volumes - Project"). | Unit | Species | Gross
Cruise
Volume | Cruised
D & B | Cruised
D & B
(MBF) | Hidden
D & B | Hidden
D & B
(MBF) | Net
Sale
Volume | |-------|-------------------|---------------------------|------------------|---------------------------|-----------------|--------------------------|-----------------------| | | Douglas-
fir | 1309 | 1.6% | (21) | 1% | (13) | 1275 | | 1 | Red
Alder | 79 | 0% | (0) | 2% | (2) | 77 | | | Big-leaf
Maple | 6 | 0% | (0) | 2% | (<1) | 6 | | | Douglas-
fir | 2385 | 1.0% | (24) | 1% | (24) | 2337 | | 2 | Red
Alder | 20 | 0% | (0) | 2% | (<1) | 20 | | | Big-leaf
Maple | 43 | 0% | (0) | 2% | (1) | 42 | | 3 | Douglas-
fir | 55 | 1.0% | (1) | 1% | (1) | 53 | | Total | | 3,897 | 1% | (46) | 1% | (41) | 3,810 | | Unit | Species | Avg.
DBH | Tot. Net
Vol. | 2-Saw | 3-Saw | 4-Saw | Camp
Run | |-------|----------------|-------------|------------------|-------|-------|-------|-------------| | | Dayalas fin | 177 | Grade % | 45% | 49% | 6% | - | | | Douglas-fir | 17 1275 574 | | 625 | 76 | - | | | 1 | Red Alder | 12 | Grade % | - | - | _ | 100% | | 1 | Red Alder | 12 . | 77 | - | _ | - | 77 | | | Dia loof Monto | 10 | Grade % | - | - | - | 100% | | | Big-leaf Maple | 12 | 6 | - | _ | - | 6 | | | Davalas fin | 16 | Grade % | 36% | 58% | 6% | - | | | Douglas-fir | 16 | 2337 | 841 | 1356 | 140 | - | | 2 | Dad Aldan | 12 | Grade % | - | - | _ | 100% | | 2 | Red Alder | | 20 | - | - | - | 20 | | | Die leef Manle | 10 | Grade % | - | _ | - | 100% | | | Big-leaf Maple | 12 | 42 | - | - | | 42 | | 3 | Davidas fin | 12 | Grade % | 19% | 70% | 11% | - | | J | Douglas-fir | 13 | 53 | 10 | 37 | 6 | - | | Total | Total | | 3810 | 1,425 | 2,018 | 222 | 145 | Attachments: -Cruise Design -Cruise Maps -Statistics -Species, Sort, Grade - Board Foot Volume -Stand Table Summary -Log Stock Table – MBF Prepared by: Zane Sandborg Date: 03/24/2022 Unit Forester: Welfun Hulkari Date: 3/28/2022 #### CRUISE DESIGN WEST OREGON DISTRICT Sale Name: Long John Unit 1 Harvest Type: MC Net BF Net BF Approx. Cruise Acres: 49 Estimated CV% 45 /Acre SE% Objective 9 /Acre Planned Sale Volume: 4.014 MMBF Estimated Sale Area Value/Acre: \$15,200 A. Cruise Goals: (a) Grade minimum 70 conifer and 0 hardwood trees: (b) Sample 37 cruise plots (13 grade: 24 count); (c) Other goals X Determine log grades for sale value; Determine take and leave tree species and sizes. Take plots as shown on map. Do not take plots in buffers. DO NOT RECORD 12', 22' and 32' (for Hardwoods). DO NOT RECORD 22' LENGTHS. #### B. Cruise Design: 1. Plot Cruises: BAF 33.61 Full point Cruise Line Directions 90/270 Cruise Line Spacing 4/264 (chains / feet) Cruise Plot Spacing 3/198 (chains / feet) Grade/Count Ratio 1:2 #### C. Tree Measurements: - **1. Diameter:** Minimum DBH to cruise is <u>8"</u> for conifers and <u>10"</u> for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate. - 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable. - 3. Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>7</u>", <u>7</u>" for <u>hardwoods</u> or <u>40</u>% of dob at 16' form point. Generally, use 7" outside bark for trees < 18"
dbh and 40% of dob @ FP for trees > 18" dbh. - **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87. - **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. - 6. Species, Sort, and Grade Codes: A. Species: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic). - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7" - 7. Deductions: Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce. - 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning points with red flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie red flagging above eye level near plot center and another red flagging around a sturdy wooden stake marking plot center. On red flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in yellow paint. Mark leave trees with an L for leave. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint. - 9. Cruising Equipment: Relaskop, Rangefinder or Lazer, Logger's Tape (with dbh on back), Biltmore Stick, Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint. - **10. Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale. | Cruise Design | by: | | |---------------|-----|--| | Approved by: | | | | Date: | | | ## CRUISE DESIGN WEST OREGON DISTRICT Sale Name: Long John Unit 2 Harvest Type: MC Net BF Net BF Approx. Cruise Acres: 67 Estimated CV% 40 /Acre SE% Objective 9 /Acre Planned Sale Volume: 4.014 MMBF Estimated Sale Area Value/Acre: \$18,050 A. <u>Cruise Goals</u>: (a) Grade minimum 70 conifer and 0 hardwood trees: (b) Sample <u>32</u> cruise plots (11 grade : 21 count); (c) Other goals <u>X</u> Determine log grades for sale value; ___ Determine take and leave tree species and sizes. Take plots as shown on map. Do not take plots in buffers. DO NOT RECORD 12', 22' and 32' (for Hardwoods). DO NOT RECORD 22' LENGTHS. #### B. Cruise Design: 1. Plot Cruises: BAF 33.61 Full point Cruise Line Directions 90/270 Cruise Line Spacing 5/330 (chains / feet) Cruise Plot Spacing 4/264 (chains / feet) Grade/Count Ratio 1:2 #### C. <u>Tree Measurements:</u> - 1. **Diameter:** Minimum DBH to cruise is <u>8</u>" for conifers and <u>10</u>" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate. - 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable. - **3.** Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>7", 7" for hardwoods</u> or <u>40</u>% of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh. - **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87. - **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. - 6. Species, Sort, and Grade Codes: A. Species: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic). - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7" - 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce. - 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning points with red flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie red flagging above eye level near plot center and another red flagging around a sturdy wooden stake marking plot center. On red flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in yellow paint. Mark leave trees with an L for leave. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint. - **9. Cruising Equipment:** Relaskop, Rangefinder or Lazer, Logger's Tape (with dbh on back), Biltmore Stick, Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint. - **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale. | Cruise Design by: | | |-------------------|--| | Approved by: | | | Date: | | | TC PST | CATS | | | | | OJECT
OJECT | | STICS
IGJOHN | | | PAGE
DATE | 1
3/9/2022 | |--|--|----|---|--|--------------|---|--|---|----------------------|--|---|---------------------------------| | TWP | RGE | SC | TRACT | , | ТҮРЕ | | AC | RES | PLOTS | TREES | CuFt | BdFt | | 012 | 008 | 04 | U1 | | 00MC | | | 46.00 | 37 | 201 | 1 | W | | | | | | | | TREES | | ESTIMATED
TOTAL | | ERCENT
AMPLE | | | | | | P | LOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOTA | AL | | 37 | 201 | | 5.4 | | | | | | | | | SE
COUNT
DREST | | 16 | 79 | | 4.9 | | 5,622 | | 1.4 | | | | COUN
BLAN
100 % | NKS | | 20
1 | 110 | | 5.5 | | | | | | | | | | | | | STA | ND SUMM | ARY | | | | | | | | | | MPLE
REES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | DF | | | 73 | 103.0 | 17.3 | 80 | 40.2 | 167.1 | 28,449 | 27,997 | 7,355 | | | R AL | DER | | 2 | 15.1 | 11.5 | 54 | 3.2 | 10.9 | 1,719 | 1,719 |
445 | 445 | | | APLE | | 2 | 2.2 | 12.2 | 35 | 0.5 | 1.8 | 134 | 134 | 45 | | | CHER
TOTA | | | 2
79 | 1.9
122.2 | 13.1
16.5 | 35
75 | 0.5
44.7 | 1.8
181.7 | 116
<i>30,418</i> | 116
29,966 | 40
7,885 | 40
7,885 | | CON | | | TS OF THE | | VOLUME | WILL BE V | WITHIN TI | HE SAMPLE E | RROR | | | | | CL | 68.1 | | COEFF | | | | E TREES - | | # | OF TREES R | - | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | L | OW | AVG | HIGH | | 5 | 10 | 1 | | DF
R ALI | DED | | 46.3
68.1 | 5.4
63.8 | | 318
49 | 336
135 | 355
221 | | | | | | | APLE | | 00.1 | 05.0 | | | | | | | | | | DL IVI | 7 II LL | | | | | 60 | 60 | 60 | | | | | | CHER | | | | | | 60 | 60
60 | 60
60 | | | | | | | RRY | | 51.9 | 5.8 | | | | | | 108 | 27 | 1 | | CHER | RRY | | 51.9
COEFF | 5.8 | | 60
299 | 60 | 60
336 | # | 108
OF TREES R | - | INF. POP. | | CHER
TOTA
CL
SD: | RRY
AL | | COEFF
VAR.% | S.E.% | L | 60
299
SAMPL I | 60
317
E TREES -
AVG | 60
336
• CF
HIGH | # | | - | | | CHER
TOTA
CL
SD: | 68.1
1.0 | | COEFF
VAR.%
40.8 | S.E.%
4.8 | <u> </u> | 60
299
SAMPLI
OW
83 | 60
317
E TREES -
AVG
87 | 60
336
• CF
HIGH | # | OF TREES R | EQ. | INF. POP. | | CHEFTOTAL CL SD: DF R ALL | 68.1
1.0 | | COEFF
VAR.% | S.E.% | L | 60
299
SAMPLI
OW
83
14 | 60
317
E TREES -
AVG
87
35 | 60
336
• CF
HIGH
91
55 | # | OF TREES R | EQ. | INF. POP. | | CHEFTOTAL CL SD: DF R ALL | AL 68.1 1.0 DER (APLE | | COEFF
VAR.%
40.8 | S.E.%
4.8 | L | 60
299
SAMPLI
OW
83 | 60
317
E TREES -
AVG
87 | 60
336
• CF
HIGH | # | OF TREES R | EQ. | INF. POP. | | CHER
TOTA
CL
SD:
DF
R ALL
BL M | 68.1
1.0
DER
APLE
RRY | | COEFF
VAR.%
40.8
63.5 | S.E.%
4.8
59.5 | L | 60
299
SAMPLI
OW
83
14
20 | 60
317
E TREES -
AVG
87
35
20 | 60
336
CF
HIGH
91
55
20 | # | OF TREES R | EQ. | INF. POP. | | CHERTOTAL CL SD: DF R ALL BL M CHER | 68.1
1.0
DER
APLE
RRY | | COEFF
VAR.%
40.8
63.5 | S.E.%
4.8
59.5 | L | 60
299
SAMPLI
OW
83
14
20
20 | 60
317
E TREES -
AVG
87
35
20
21
83 | 60
336
CF
HIGH
91
55
20
22 | | OF TREES R | 10 21 | INF. POP. | | CHERTOTA CL SD: DF R ALL BL M CHERTOTA CL SD: | 68.1
1.0
DER
APLE
RRY | | COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.% | S.E.% 4.8 59.5 6.3 5.2 S.E.% | | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/ | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG | 60
336
CF
HIGH
91
55
20
22
87 | | OF TREES R 5 | 10 21 | INF. POP. | | CHERTOTA CL SD: DF R ALL BL M CHERTOTA CL SD: DF | 68.1
1.0
DER
APLE
RRY
AL
68.1
1.0 | | COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.% | S.E.% 4.8 59.5 6.3 5.2 S.E.% 8.6 | | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/ | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG
103 | 60
336
CF
HIGH 91 55 20 22 87 HIGH 112 | | OF TREES R 5 85 OF PLOTS R | 21 REQ. | INF. POP. | | CHERTOTA CL SD: DF R ALL BL M CHERTOTA CL SD: DF R ALL | 68.1
1.0
DER
APLE
RRY
AL
68.1
1.0 | | COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.%
52.5
242.8 | S.E.% 4.8 59.5 6.3 5.2 S.E.% 8.6 39.9 | | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/
OW
94
9 | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG
103
15 | 60
336
CF
HIGH 91 55 20 22 87 HIGH 112 21 | | OF TREES R 5 85 OF PLOTS R | 21 REQ. | INF. POP. | | CHERTOTA CL SD: DF R ALL BL M CHERTOTA CL SD: DF R ALL BL M | 68.1
1.0
DER
APLE
RRY
AL
68.1
1.0 | | COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.% | S.E.% 4.8 59.5 6.3 5.2 S.E.% 8.6 | | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/ | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG
103 | 60
336
CF
HIGH 91 55 20 22 87 HIGH 112 | | OF TREES R 5 85 OF PLOTS R | 21 REQ. | INF. POP. | | CHERTOTA CL SD: DF R ALL BL M CHERTOTA CL SD: DF R ALL | 68.1
1.0
DER
APLE
RRY
AL
68.1
1.0
DER
APLE | | COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.%
52.5
242.8
424.1 | S.E.% 4.8 59.5 6.3 5.2 S.E.% 8.6 39.9 69.7 | | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/A
OW
94
9
1 | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG
103
15
2 | 60
336
CF
HIGH 91
55
20
22
87 HIGH 112 21 4 | | OF TREES R 5 85 OF PLOTS R | 21 REQ. | INF. POP. | | CHERTOTA CL SD: DF R ALL BL M CHERTOTA CL SD: DF R ALL BL M CHERTOTA | 68.1
1.0
DER
APLE
RRY
AL
68.1
1.0
DER
APLE | | COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.%
52.5
242.8
424.1
424.2 | S.E.% 4.8 59.5 6.3 5.2 S.E.% 8.6 39.9 69.7 69.7 | | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/.
OW
94
9
1
1
114 | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG
103
15
2 | 60
336
CF
HIGH 91
55
20
22
87
HIGH 112 21 4 3 130 | # | OF TREES R 5 85 OF PLOTS R 5 | 21 EEQ. 10 | INF. POP. | | CHERTOTA CL SD: DF R ALL BL M CHERTOTA CL SD: DF R ALL BL M CHERTOTA CHERTOTA CHERTOTA CHERTOTA CHERTOTA CHERTOTA | 68.1 1.0 DER APLE RRY AL 68.1 1.0 DER APLE RRY AL APLE RRY AL | | COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.%
52.5
242.8
424.1
424.2
39.8
COEFF
VAR.% | S.E.% 4.8 59.5 6.3 5.2 S.E.% 8.6 39.9 69.7 69.7 | L | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/.
OW
94
9
1
1
114 | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG
103
15
2
2
122 | 60
336
CF
HIGH 91
55
20
22
87
HIGH 112 21 4 3 130 | # | OF TREES R 5 85 OF PLOTS R 5 | 21 EEQ. 10 | INF. POP. | | CHERTOTA CL SD: DF R ALL BL M CHERTOTA CL SD: DF R ALL BL M CHERTOTA CHERTOTA CHERTOTA CHERTOTA CHERTOTA CHERTOTA CHERTOTA CHERTOTA | 68.1
1.0
DER
APLE
RRY
AL
68.1
1.0
DER
APLE
RRY
AL
68.1
1.0 | | COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.%
52.5
242.8
424.1
424.2
39.8
COEFF
VAR.%
42.8 | S.E.% 4.8 59.5 6.3 5.2 S.E.% 8.6 39.9 69.7 69.7 6.5 S.E.% 7.0 | L | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/
OW
94
9
1
1
114
BASAL | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG
103
15
2
2
122
AREA/AC
AVG | 60
336
CF
HIGH 91
55
20
22
87 HIGH 112 21 4 3 130 RE HIGH | # | OF TREES R 5 85 OF PLOTS R 5 07 OF PLOTS R | 21 2EQ. 10 16 2EQ. | INF. POP. INF. POP. INF. POP. | | CHERTOTA CL SD: DF R ALL SD: DF R ALL SD: DF CL SD: DF CL SD: DF R ALL SD: DF R ALL | 68.1
1.0
DER
APLE
RRY
AL
68.1
1.0
DER
APLE
RRY
AL
68.1
1.0 | | COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.%
52.5
242.8
424.1
424.2
39.8
COEFF
VAR.%
42.8
241.6 | S.E.% 4.8 59.5 6.3 5.2 S.E.% 8.6 39.9 69.7 69.7 6.5 S.E.% 7.0 39.7 | L | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/
OW
94
9
1
1
114
BASAL
OW
155
7 | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG
103
15
2
2
122
AREA/AC
AVG
167
11 | 60
336
CF
HIGH
91
55
20
22
87
HIGH
112
21
4
3
130
RE
HIGH
179
15 | # | OF TREES R 5 85 OF PLOTS R 5 07 OF PLOTS R | 21 2EQ. 10 16 2EQ. | INF. POP. INF. POP. INF. POP. | | CHERTOTA CL SD: DF R ALL SD: DF R ALL SD: DF R ALL BL M CHERTOTA CL SD: DF R ALL SD: DF R ALL SD: DF R ALL SD: | 68.1
1.0
DER
AAL
68.1
1.0
DER
APLE
RRY
AL
68.1
1.0
DER
APLE
RRY
AL | | COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.%
52.5
242.8
424.1
424.2
39.8
COEFF
VAR.%
42.8 | S.E.% 4.8 59.5 6.3 5.2 S.E.% 8.6 39.9 69.7 69.7 6.5 S.E.% 7.0 | L | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/
OW
94
9
1
1
114
BASAL | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG
103
15
2
2
122
AREA/AC
AVG | 60
336
CF
HIGH 91
55
20
22
87 HIGH 112 21 4 3 130 RE HIGH | # | OF TREES R 5 85 OF PLOTS R 5 07 OF PLOTS R | 21 2EQ. 10 16 2EQ. | INF. POP. INF. POP. INF. POP. | | CHERTOTA CL SD: DF R ALL SD: DF R ALL SD: DF CL SD: DF CL SD: DF R ALL SD: DF R ALL | 68.1
1.0
1.0
DER
APLE
RRY
AL
68.1
1.0
DER
APLE
RRY
AL
68.1
1.0 | | COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.%
52.5
242.8
424.1
424.2
39.8
COEFF
VAR.%
42.8
241.6
424.1 | S.E.% 4.8 59.5 6.3 5.2 S.E.% 8.6 39.9 69.7 69.7 6.5 S.E.% 7.0 39.7 69.7 | L | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/
OW
94
9
1
1
114
BASAL
OW
155
7 | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG
103
15
2
2
122
AREA/AC
AVG
167
11 | 60
336
CF
HIGH
91
55
20
22
87
HIGH
112
21
4
3
130
RE
HIGH
179
15
3 | # | OF TREES R 5 85 OF PLOTS R 5 07 OF PLOTS R | 21 2EQ. 10 16 2EQ. | INF. POP. INF. POP. INF. POP. | | CHERTOTA CL SD: DF R ALL SD: CL SD: DF R ALL | 68.1
1.0
DER
APLE
RRY
AL
68.1
1.0
DER
APLE
RRY
AL
68.1
1.0 | |
COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.%
52.5
242.8
424.1
424.2
39.8
COEFF
VAR.%
42.8
241.6
424.1 | S.E.% 4.8 59.5 6.3 5.2 S.E.% 8.6 39.9 69.7 69.7 6.5 S.E.% 7.0 39.7 69.7 69.7 | L | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/
OW
94
9
1
114
BASAL
OW
155
7
1 | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG
103
15
2
2
122
AREA/AC
AVG
167
11
2
2
183 | 60
336
CF
HIGH 91
55
20
22
87 HIGH 112
21
4
3
130 RE HIGH 179 15 | # | OF TREES R 5 85 OF PLOTS R 5 OF PLOTS R 5 | 21 22 20 10 16 22 10 10 10 10 10 | INF. POP. INF. POP. INF. POP. | | CHERTOTA CL SD: DF R ALL SD: DF R ALL SD: DF R ALL SD: DF R ALL SD: CL SD: CL SD: CL SD: CHERTOTA | 68.1
1.0
DER
APLE
RRY
AL
68.1
1.0
DER
APLE
RRY
AL
68.1
1.0 | | COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.%
52.5
242.8
424.1
424.2
39.8
COEFF
VAR.%
42.8
241.6
424.1
424.1
31.0
COEFF
VAR.% | S.E.% 4.8 59.5 6.3 5.2 S.E.% 8.6 39.9 69.7 69.7 6.5 S.E.% 7.0 39.7 69.7 69.7 5.1 | L | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/
OW
94
9
1
1
114
BASAL
OW
155
7
1
1
172
NET BE | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG
103
15
2
2
122
AREA/AC
AVG
167
111
2
2
182
182
ACRE
AVG | 60
336
CF
HIGH 91
55
20
22
87 HIGH 112 21 4 3 130 RE HIGH 179 15 3 3 191 | # | OF TREES R 5 85 OF PLOTS R 5 OF PLOTS R 5 | 21 22 20 10 16 22 10 10 10 10 10 | INF. POP. | | CHERTOTA CL SD: DF R ALL SD: DF R ALL BL M CHERTOTA CL SD: DF R ALL SD: DF R ALL SD: DF CL SD: DF R ALL BL M CHERTOTA | 68.1
1.0
1.0
DER
AAL
68.1
1.0
DER
AAPLE
RRY
AL
68.1
1.0
DER
APLE
RRY
AL
68.1
1.0 | | COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.%
52.5
242.8
424.1
424.2
39.8
COEFF
VAR.%
42.8
241.6
424.1
424.1
31.0
COEFF
VAR.% | S.E.% 4.8 59.5 6.3 5.2 S.E.% 8.6 39.9 69.7 69.7 6.5 S.E.% 7.0 39.7 69.7 69.7 5.1 S.E.% 6.9 | L | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/
OW
94
9
1
1
114
BASAL
OW
155
7
1
1
172
NET BF | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG
103
15
2
2
122
AREA/AC
AVG
167
11
2
2
182
/ACRE
AVG
2
183 | 60
336
CF
HIGH
91
55
20
22
87
HIGH
112
21
4
3
130
RE
HIGH
179
15
3
3
191 | # | OF TREES R 5 85 OF PLOTS R 5 OF PLOTS R 5 | 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 21 | INF. POP. INF. POP. INF. POP. | | CHERTOTA CL SD: DF R ALL SD: DF R ALL BL M CHERTOTA CL SD: DF R ALL SD: DF R ALL BL M CHERTOTA CL SD: DF R ALL BL M CHERTOTA | 68.1
1.0
1.0
DER
AAL
68.1
1.0
DER
AAPLE
RRY
AL
68.1
1.0
DER
APLE
RRY
AL
68.1
1.0 | | COEFF
VAR.%
40.8
63.5
6.7
46.2
COEFF
VAR.%
52.5
242.8
424.1
424.2
39.8
COEFF
VAR.%
42.8
241.6
424.1
424.1
31.0
COEFF
VAR.% | S.E.% 4.8 59.5 6.3 5.2 S.E.% 8.6 39.9 69.7 69.7 6.5 S.E.% 7.0 39.7 69.7 69.7 5.1 | L | 60
299
SAMPLI
OW
83
14
20
20
78
TREES/
OW
94
9
1
1
114
BASAL
OW
155
7
1
1
172
NET BE | 60
317
E TREES -
AVG
87
35
20
21
83
ACRE
AVG
103
15
2
2
122
AREA/AC
AVG
167
111
2
2
182
182
ACRE
AVG | 60
336
CF
HIGH 91
55
20
22
87 HIGH 112 21 4 3 130 RE HIGH 179 15 3 3 191 | # | OF TREES R 5 85 OF PLOTS R 5 OF PLOTS R 5 | 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 21 | INF. POP. INF. POP. INF. POP. | | TC PST | ATS | | | | PROJECT
PROJECT | | <u>STICS</u>
NGJOHN | | | PAGE
DATE | 2
3/9/2022 | |--------|------------|----|-------|-------|--------------------|----------|------------------------|------------|---------------|--------------|----------------------| | TWP | RGE | SC | TRACT | TYP | E | A | CRES | PLOTS | TREES | CuFt | BdFt | | 012 | 008 | 04 | U1 | 00M0 | C | | 46.00 | 37 | 201 | 1 | W | | CL | 68.1 | | COEFF | | NET B | | | # OF PLOTS | REQ. | INF. POP. | | | SD: | 1.00 | | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | TOTA | A L | | 33.1 | 5.4 | 28,337 | 29,966 | 31,596 | | 44 | 11 | 5 | | CL | 68.1 | | COEFF | | NET C | UFT FT/A | CRE | | # OF PLOTS RE | Q. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DF | | | 42.1 | 6.9 | 6,846 | 7,355 | 7,863 | | | | | | R ALI | DER | | 241.9 | 39.7 | 268 | 445 | 621 | | | | | | BL M | APLE | | 424.1 | 69.7 | 14 | 45 | 76 | | | | | | CHER | RY | | 424.2 | 69.7 | 12 | 40 | 69 | | | | | | TOTA | AL | | 32.8 | 5.4 | 7,460 | 7,885 | 8,309 | | 43 | 11 | 5 | | TC | PSPCSTGR | | Sı | pecies, S | ort Gra | de - Board F | oot V | olum | es (Pr | oject |) | | | | | | | | | |----------------|-------------------------|------------------|-------------------|---------------------------|---------------------------|-------------------|-------|------------------------------|---------|-------|--------|-----|--------|-----------------|----------------|----------------------|---------------------|-------------------|-----------------------| | ТО | 12 R008 S04 Ty | 00MC | | 46.00 | | Project:
Acres | LO | ONGJ(| | | | | | | | Page
Date
Time | | 19/2022
:32:00 | 2 | | Spp | S So Gr
T rt ad | %
Net
BdFt | Bd. Ft
Def% | . per Acre
Gross | Net | Total
Net MBF | - | cent of N
Log Sca
6-11 | | | Volume | | Length | 36-99 | . Ln
Ft | | age Log
Bd
Ft | CF/ | Logs
Per
/Acre | | DF
DF
DF | DO 2M
DO 3M
DO 4M | 45
49
6 | 2.2
1.1
1.0 | 13,068
13,808
1,573 | 12,785
13,655
1,557 | 588
628
72 | | 98 | 87
2 | 13 | 85 | 2 4 | 13 | 100
85
12 | 40
38
17 | | 277
105
22 | 1.68
0.78 | 46.1
129.8
71.0 | | DF | Totals | 93 | 1.6 | 28,449 | 27,997 | 1,288 | | 53 | 41 | 6 | 5 | 1 | 6 | 88 | 32 | 9 | 113 | 0.92 | 246.9 | | RA | DO CR Totals | 100 | | 1,719 | 1,719 | 79
79 | | 100 | | | | 15 | | 85
85 | 37
37 | 8 | 85 | | 20.2 | | BM | DO CR | 100 | | 1,719 | 1,719 | 6 | | 100 | | | | 15 | 100 | 83 | 34 | 7 | 60 | 0.60 | 20.2 | | BM | Totals | 0 | | 134 | 134 | 6 | | 100 | | | | | 100 | | 34 | 7 | 60 | 0.59 | 2.2 | | СН | DO CR | 100 | | 116 | 5 | | 100 | | | | | 100 | | 34 | 7 | 60 | 0.62 | 1.9 | | | СН | Totals | 0 | | 116 | 116 | 5 | | 100 | | | | | 100 | | 34 | 7 | 60 | 0.62 | 1.9 | | Tota | ıls | | 1.5 | 30,418 | 29,966 | 1,378 | | 56 | 38 | 5 | 4 | 2 | 7 | 87 | 33 | 9 | 110 | 0.89 | 271.2 | | TC PST | TNDSUM | | Stand Table | e Summary | Page
Date: | 1
3/9/2022 | |----------|---------------|-------|-------------|-----------|---------------|---------------| | T012 R00 | 08 S04 Ty00MC | 46.00 | Project | LONGJOHN | Time: | 3:32:01PM | | | | | Acres | 46.00 | Grown Year: | | | S
Spc T | DBH | Sample
Trees | FF
16' | Tot
Av
Ht | Trees/
Acre | BA/
Acre | Logs
Acre | Average
Net
Cu.Ft. | Log
Net
Bd.Ft. | Tons/
Acre | Net
Cu.Ft.
Acre | Net
Bd.Ft.
Acre | Tons | Totals
Cunits | N | ЛВF | |------------|--------|-----------------|-----------|-----------------|----------------|-------------|--------------|--------------------------|----------------------|---------------|-----------------------|-----------------------|------|------------------|----|-------| | DF | 8 | 1 | 86 | 26 | 6.559 | 2.29 | 6.56 | 5.0 | 20.0 | | 33 | 131 | | | 15 | 6 | | DF | 11 | 1 | 90 | 112 | 3.469 | 2.29 | 6.94 | 12.5 | 45.0 | | 87 | 312 | | • | 40 | 14 | | DF | 12 | 2 | 85 | 96 | 5.830 | 4.58 | 11.66 | 13.5 | 45.0 | | 157 | 525 | | | 72 | 24 | | DF | 13 | 2 | 89 | 92 | 4.968 | 4.58 | 7.45 | 21.7 | 80.0 | | 161 | 596 | | | 74 | 27 | | DF | 14 | 1 | 88 | 117 | 2.142 | 2.29 | 4.28 | 22.5 | 90.0 | | 96 | 386 | | | 44 | 18 | | DF | 15 | 6 | 86 | 114 | 11.194 | 13.74 | 24.25 | 23.9 | 89.2 | | 580 | 2,164 | | 2 | 67 | 100 | | DF | 16 | 5 | 87 | 111 | 8.199 | 11.45 | 16.40 | 29.5 | 110.0 | | 484 | 1,804 | | 2 | 23 | 83 | | DF | 17 | 12 | 87 | 118 | 17.431 | 27.48 | 43.58 | 28.1 | 103.7 | | 1,225 | 4,517 | | 5 | 63 | 208 | | DF | 18 | 9 | 89 | 119 | 11.661 | 20.61 | 33.69 | 28.1 | 103.8 | | 947 | 3,498 | | 4 | 36 | 161 | | DF | 19 | 6 | 88 | 117 | 6.977 | 13.74 | 20.93 | 29.6 | 106.7 | | 619 | 2,233 | | | 85 | 103 | | DF | 20 | 6 | 87 | 117 | 6.297 | 13.74 | 18.89 | 32.6 | 122.2 | | 615 | 2,309 | | 2 | 83 | 106 | | DF | 21 | 6 | 89 | 127 | 5.711 | 13.74 | 17.13 | 38.9 | 157.8 | | 667 | 2,703 | | | 07 | 124 | | DF | 22 | 5 | 88 | 121 | 4.337 | 11.45 | 12.14 | 42.9 | 172.9 | | 521 | 2,099 | | | 40 | 97 | | DF | 23 | 5 | 87 | 117 | 3.968 | 11.45 | 10.32 | 49.9 | 194.6 | | 515 | 2,008 | | | 37 | 92 | | DF | 24 | 5 | 89 | 123 | 3.644 | 11.45 | 10.93 | 50.1 | 210.7 | | 547 | 2,303 | | | 52 | 106 | | DF | 27 | 1 | 88 | 117 | .576 | 2.29 | 1.73 | 57.7 | 236.7 | | 100 | 409 | | • | 46 | 19 | | DF | Totals | 73 | 87 | 109 | 102.964 | 167.14 | 246.89 | 29.8 | 113.4 | | 7,355 | 27,997 | | 3,3 | 83 | 1,288 | | RA | 10 | 1 | 86 | 94 | 9.993 | 5.45 | 9.99 | 19.0 | 70.0 | | 190 | 700 | | | 87 | 32 | | RA | 14 | 1 | 86 | 113 | 5.098 | 5.45 | 10.20 | 25.0 | 100.0 | | 255 | 1,020 | | 1 | 17 | 47 | | RA | Totals | 2 | 86 | 100 | 15.091 | 10.90 | 20.19 | 22.0 | 85.2 | | 445 | 1,719 | | 2 | 05 | 79 | | BM | 12 | 2 | 86 | 61 | 2.238 | 1.82 | 2.24 | 20.0 | 60.0 | | 45 | 134 | | : | 21 | 6 | | BM | Totals | 2 | 86 | 61 | 2.238 | 1.82 | 2.24 | 20.0 | 60.0 | | 45 | 134 | | | 21 | 6 | | СН | 13 | 2 | 86 | 55 | 1.927 | 1.82 | 1.93 | 21.0 | 60.0 | | 40 |
116 | | | 19 | 5 | | СН | Totals | 2 | 86 | 55 | 1.927 | 1.82 | 1.93 | 21.0 | 60.0 | | 40 | 116 | | | 19 | 5 | | Totals | | 79 | 87 | 106 | 122.220 | 181.68 | 271.24 | 29.1 | 110.5 | | 7,885 | 29,966 | | 3,6 | 27 | 1,378 | TC PLOGSTVB Log Stock Table - MBF T012 R008 S04 Ty00MC 46.00 Project: LONGJOHN Acres LONGJOHN Acres Date 3/9/2022 Time 3:32:00PM | s | So G | Fr | Log | Gross | Def | Net | % | | l | Net Volu | me by S | caling I | Diamete | r in Inche | es | | | | | |-------|-------|-------|-----|-------|------|-------|-------|-----|-----|----------|---------|----------|---------|------------|-------|-------|-------|-------|-----| | Spp T | rt d | e | Len | MBF | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 | 40+ | | DF | DO | 2M | 40 | 601 | 2.2 | 588 | 45.7 | | | | | | 254 | 218 | 116 | | | | | | DF | DO | 3M | 28 | 4 | 14.3 | 4 | .3 | | | | 4 | | | | | | | | | | DF | DO | 3M | 30 | 8 | | 8 | .6 | | | | 8 | | | | | | | | | | DF | DO | 3M | 32 | 36 | 4.4 | 34 | 2.6 | | | 4 | 25 | 5 | | | | | | | | | DF | DO | 3M | 34 | 47 | | 47 | 3.6 | | | 11 | 26 | 10 | | | | | | | | | DF | DO | 3M | 36 | 76 | | 76 | 5.9 | | | 20 | 51 | 6 | i | | | | | | | | DF | DO | 3M | 38 | 19 | 2.3 | 19 | 1.4 | | | | 14 | 5 | | | | | | | | | DF | DO | 3M | 40 | 445 | | 441 | 34.2 | | | 80 | 69 | 279 | 13 | | | | | | | | DF | DO | 4M | 12 | 6 | | 6 | .4 | | | 4 | 1 | | | | | | | | | | DF | DO | 4M | 14 | 3 | | 3 | .2 | | | 3 | | | | | | | | | | | DF | DO | 4M | 16 | 38 | | 38 | 2.9 | | | 38 | | | | | | | | | | | DF | DO | 4M | 18 | 6 | | 6 | .5 | | | 6 | | | | | | | | | | | DF | DO | 4M | 20 | 9 | | 9 | .7 | | | 9 | | | | | | | | | | | DF | DO | 4M | 28 | 3 | | 3 | .2 | | | 3 | | | | | | | | | | | DF | DO | 4M | 36 | 9 | 8.3 | 8 | .6 | | | 8 | | | | | | | | | | | DF | 7 | otals | | 1,309 | 1.6 | 1,288 | 93.4 | | | 185 | 198 | 303 | 267 | 218 | 116 | | | | | | RA | DO | CR | 28 | 12 | | 12 | 14.8 | | | 12 | | | | | | | | | | | RA | DO | CR | 40 | 67 | | 67 | 85.2 | | | 32 | | 35 | | | | | | | | | RA | 7 | otals | | 79 | | 79 | 5.7 | | | 44 | | 35 | | | | | | | | | BM | DO | CR | 34 | 6 | | 6 | 100.0 | | | 6 | | | | | | | | | | | BM | 7 | otals | | 6 | | 6 | .4 | | | 6 | | | | | | | | | | | СН | DO | CR | 34 | 5 | | 5 | 100.0 | | | 5 | | | | | | | | | | | СН | 7 | otals | | 5 | | 5 | .4 | | | 5 | | | | | | | | | | | Total | All S | pecie | s | 1,399 | 1.5 | 1,378 | 100.0 | | | 241 | 198 | 339 | 267 | 218 | 116 | | | | | | TC PSTATS | | | | | OJECT
OJECT | | TICS
GJOHN | | | PAGE
DATE | 1
3/18/2022 | |--|---------|---|---|--------------|--|--|---|---------------------|---|----------------------------|-----------------------| | WP RG | E S | SC TRACT | 7 | ГҮРЕ | | ACI | RES | PLOTS | TREES | CuFt | BdFt | | 012 008 | (| 03 U2 | (| 00MC | | | 68.00 | 32 | 215 | 1 | W | | | | | | | TREES |] | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOTAL | | 32 | 215 | | 6.7 | | | | | | | | CRUISE
DBH COUN
REFOREST | Т | 13 | 93 | | 7.2 | | 11,191 | | .8 | | | | COUNT
BLANKS
100 % | | 19 | 122 | | 6.4 | | | | | | | | | | | | STA | ND SUMM | ARY | | | | | | | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | DF | | 80 | 146.4 | 16.2 | 75 | 52.2 | 210.1 | 35,052 | 34,708 | 9,028 | 9,028 | | BL MAPLE | | 5 | 7.8 | 12.2 | 35 | 1.8 | 6.3 | 628 | 628 | 175 | 175 | | SNAG | | 4 | 5.5 | 13.2 | 56 | 1.4 | 5.3 | *** | *** | | _ | | R ALDER | | 3 | 3.8 | 12.3 | 42 | 0.9 | 3.2 | 294 | 294 | 94 | 9. | | CHERRY
TOTAL | | 1
93 | 1.1
<i>164.6</i> | 13.0
15.9 | 35
72 | 0.3
56.7 | 1.1
225.8 | 68
<i>36,043</i> | 68
35,699 | 9,319 | 9,31 | | | | | | | | | | | | | | | CL 68. | 1 | COEFF | | | SAMPLI | E TREES - | BF | i | # OF TREES R | EQ. | INF. POP. | | SD: 1.0 | | VAR.% | S.E.% | L | ow | AVG | HIGH | - | # OF TREES R
5 | EQ.
10 | | | | | | S.E.%
6.1
31.1 | L | | | | - | | - | INF. POP. | | SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY | | VAR.%
54.8
62.7
27.2 | 6.1
31.1
18.8 | L | 286
67
62 | AVG
305
98
77 | HIGH 323 129 91 | | 5 | 10 | | | SD: 1,0 DF BL MAPLE SNAG R ALDER | | VAR.%
54.8
62.7 | 6.1
31.1 | и | OW 286 67 | 305
98 | 323
129 | 1 | | - | | | SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY |) | VAR.%
54.8
62.7
27.2 | 6.1
31.1
18.8 | ъ | 286
67
62
252 | AVG
305
98
77 | HIGH 323 129 91 289 | | 5 | 10 | | | SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% | 6.1
31.1
18.8
6.8 | | 286
67
62
252
SAMPLI | AVG 305 98 77 270 E TREES - AVG | HIGH 323 129 91 289 CF HIGH | | 5
172 | 10
43
EQ. | | | SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF | 6.1
31.1
18.8
6.8 | | 286
67
62
252
SAMPLI | AVG 305 98 77 270 E TREES - | HIGH 323 129 91 289 CF | | 5
172
OF TREES R | 10
43
EQ. | INF. POP. | | DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 | 6.1
31.1
18.8
6.8
S.E.%
5.6
29.5 | | 286
67
62
252
SAMPLI
OW
74
19 | AVG 305 98 77 270 E TREES - AVG 78 27 25 | 91 289 CF HIGH 83 35 27 | | 5
172
OF TREES R
5 | 10
43
EQ. | INF. POP. | | DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 | 6.1
31.1
18.8
6.8
S.E.%
5.6
29.5 | | 286
67
62
252
SAMPLI
OW
74
19 | AVG 305 98 77 270 2 TREES - AVG 78 27 | 91 289 CF HIGH 83 35 | | 5
172
OF TREES R | 10
43
EQ. | INF. POP. | | SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 | 6.1
31.1
18.8
6.8
S.E.%
5.6
29.5 | L | 286
67
62
252
SAMPLI
OW
74
19
22
65
TREES/4 | AVG 305 98 77 270 2 TREES - AVG 78 27 25 70 ACRE | 91 289 CF HIGH 83 35 27 | ; | 172
OF TREES R
5
146
OF PLOTS R | 10 43 EQ. 10 37 EQ. | INF. POP. | | DE 1.0 DF SNAG R ALDER CHERRY TOTAL CL 68.5D: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68.5SD: 68.5SD: 1.0 | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 13.0 60.5 COEFF VAR.% | 6.1
31.1
18.8
6.8
S.E.%
5.6
29.5
9.0
6.3 | L | 286
67
62
252
SAMPLE
OW
74
19
22
65
TREES/A | AVG 305 98 77 270 E TREES - AVG 78 27 25 70 ACRE AVG | HIGH 323 129 91 289 CF HIGH 83 35 27 74 HIGH | ; | 5
172
OF TREES R
5 | 43
EQ. 10 | INF. POP. | | DE 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68.5 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68.5 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68.5 DF BL MAPLE SNAG R ALDER CHERRY TOTAL | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 13.0 60.5 COEFF VAR.% 35.3 | 6.1
31.1
18.8
6.8
S.E.%
5.6
29.5
9.0
6.3
S.E.% | L | 286
67
62
252
SAMPLI
OW
74
19
22
65
TREES/A | AVG 305 98 77 270 E TREES - AVG 78 27 25 70 ACRE AVG 146 | HIGH 323 129 91 289 CF HIGH 83 35 27 74 HIGH 155 | ; | 172
OF TREES R
5
146
OF PLOTS R | 10 43 EQ. 10 37 EQ. | INF. POP. | | DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 13.0 60.5 COEFF VAR.% 35.3 477.7 | 6.1
31.1
18.8
6.8
S.E.%
5.6
29.5
9.0
6.3
S.E.%
6.2
84.4 | L | 286
67
62
252
SAMPLI
OW
74
19
22
65
TREES/A | AVG 305 98 77 270 E TREES - AVG 78 27 25 70 ACRE AVG 146 8 | HIGH 323 129 91 289 CF HIGH 83 35 27 74 HIGH 155 14 | ; | 172
OF TREES R
5
146
OF PLOTS R | 10 43 EQ. 10 37 EQ. | INF. POP. | | DE 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 13.0 60.5 COEFF VAR.% 35.3 477.7 308.8 | 6.1
31.1
18.8
6.8
S.E.%
5.6
29.5
9.0
6.3
S.E.% | L | 286
67
62
252
SAMPLI
OW
74
19
22
65
TREES/A | AVG 305 98 77 270 E TREES - AVG 78 27 25 70 ACRE AVG 146 | HIGH 323 129 91 289 CF HIGH 83 35 27 74 HIGH 155 | ; | 172
OF TREES R
5
146
OF PLOTS R | 10 43 EQ. 10 37 EQ. | INF. POP. | | SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 13.0 60.5 COEFF VAR.% 35.3 477.7 |
6.1
31.1
18.8
6.8
S.E.%
5.6
29.5
9.0
6.3
S.E.%
6.2
84.4
54.5 | L | 286
67
62
252
SAMPLIOW
74
19
22
65
TREES/A | AVG 305 98 77 270 E TREES - AVG 78 27 25 70 ACRE AVG 146 8 5 | HIGH 323 129 91 289 CF HIGH 83 35 27 74 HIGH 155 14 8 | ; | 172
OF TREES R
5
146
OF PLOTS R | 10 43 EQ. 10 37 EQ. | INF. POP. | | DE 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 13.0 60.5 COEFF VAR.% 35.3 477.7 308.8 565.7 | 6.1
31.1
18.8
6.8
S.E.%
5.6
29.5
9.0
6.3
S.E.%
6.2
84.4
54.5
99.9 | L | 286
67
62
252
SAMPLI
OW
74
19
22
65
TREES/A | AVG 305 98 77 270 E TREES - AVG 78 27 25 70 ACRE AVG 146 8 5 4 | HIGH 323 129 91 289 CF HIGH 83 35 27 74 HIGH 155 14 8 8 | ; | 172
OF TREES R
5
146
OF PLOTS R | 10 43 EQ. 10 37 EQ. | INF. POP. | | DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. CHERRY TOTAL CL 68. CHERRY TOTAL | 1 1 1) | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 13.0 60.5 COEFF VAR.% 35.3 477.7 308.8 565.7 565.7 | 6.1
31.1
18.8
6.8
S.E.%
5.6
29.5
9.0
6.3
S.E.%
6.2
84.4
54.5
99.9 | L | 286
67
62
252
SAMPLE
OW
74
19
22
65
TREES/A
OW
137
1
2
0
0
154 | AVG 305 98 77 270 E TREES - AVG 78 27 25 70 ACRE AVG 146 8 5 4 1 165 | HIGH 323 129 91 289 CF HIGH 83 35 27 74 HIGH 155 14 8 8 2 175 | į | 5 172 # OF TREES R 5 146 # OF PLOTS R 5 | 10 43 EQ. 10 37 EQ. 10 | INF. POP. | | DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 13.0 60.5 COEFF VAR.% 35.3 477.7 308.8 565.7 565.7 35.3 | 6.1
31.1
18.8
6.8
S.E.%
5.6
29.5
9.0
6.3
S.E.%
6.2
84.4
54.5
99.9 | L
D | 286
67
62
252
SAMPLE
OW
74
19
22
65
TREES/A
OW
137
1
2
0
0
154 | AVG 305 98 77 270 E TREES - AVG 78 27 25 70 ACRE AVG 146 8 5 4 1 | HIGH 323 129 91 289 CF HIGH 83 35 27 74 HIGH 155 14 8 8 2 175 | į | 172 # OF TREES R 5 146 # OF PLOTS R 5 | 10 43 EQ. 10 37 EQ. 10 | INF. POP. | | DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 13.0 60.5 COEFF VAR.% 35.3 477.7 308.8 565.7 565.7 35.3 COEFF | 6.1
31.1
18.8
6.8
S.E.%
5.6
29.5
9.0
6.3
S.E.%
6.2
84.4
54.5
99.9
99.9
6.2 | L
D | 286
67
62
252
SAMPLIOW
74
19
22
65
TREES/A
OW
137
1
2
0
0
154 | AVG 305 98 77 270 E TREES - AVG 78 27 25 70 ACRE AVG 146 8 5 4 1 165 AREA/ACI | HIGH 323 129 91 289 CF HIGH 83 35 27 74 HIGH 155 14 8 8 2 175 RE | į | # OF PLOTS R 50 # OF PLOTS R | 10 43 EQ. 10 37 EQ. 10 | INF. POP. | | DE 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 13.0 60.5 COEFF VAR.% 35.3 477.7 308.8 565.7 565.7 35.3 COEFF VAR.% 26.6 477.7 | 6.1
31.1
18.8
6.8
S.E.%
5.6
29.5
9.0
6.3
S.E.%
6.2
84.4
54.5
99.9
99.9
6.2
S.E.% | L
D | 286
67
62
252
SAMPLIOW
74
19
22
65
TREES/A
OW
137
1
2
0
0
154
BASAL A | AVG 305 98 77 270 ETREES - AVG 78 27 25 70 ACRE AVG 146 8 5 4 1 165 AREA/ACI AVG | HIGH 323 129 91 289 CF HIGH 83 35 27 74 HIGH 155 14 8 8 2 175 RE HIGH | į | # OF PLOTS R 50 # OF PLOTS R | 10 43 EQ. 10 37 EQ. 10 | INF. POP. | | DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 13.0 60.5 COEFF VAR.% 35.3 477.7 308.8 565.7 565.7 35.3 COEFF VAR.% 26.6 477.7 286.6 | 6.1
31.1
18.8
6.8
5.6
29.5
9.0
6.3
S.E.%
6.2
84.4
54.5
99.9
99.9
6.2
S.E.%
4.7
84.4
50.6 | L
D | 286
67
62
252
SAMPLI
OW
74
19
22
65
TREES/A
OW
137
1
2
0
0
154
BASAL A
OW
200
1
3 | AVG 305 98 77 270 E TREES - AVG 78 27 25 70 ACRE AVG 146 8 5 4 1 165 AREA/ACI AVG 210 6 5 | HIGH 323 129 91 289 CF HIGH 83 35 27 74 HIGH 155 14 8 8 2 175 RE HIGH 220 12 8 | į | # OF PLOTS R 50 # OF PLOTS R | 10 43 EQ. 10 37 EQ. 10 | INF. POP. | | DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 13.0 60.5 COEFF VAR.% 35.3 477.7 308.8 565.7 565.7 35.3 COEFF VAR.% 26.6 477.7 286.6 565.7 | 6.1
31.1
18.8
6.8
5.E.%
5.6
29.5
9.0
6.3
S.E.%
6.2
84.4
54.5
99.9
99.9
6.2
S.E.%
4.7
84.4
50.6
99.9 | L
D | 286
67
62
252
SAMPLI
OW
74
19
22
65
TREES/A
OW
137
1
2
0
0
154
BASAL A
OW
200
1
3
0 | AVG 305 98 77 270 E TREES - AVG 78 27 25 70 ACRE AVG 146 8 5 4 1 165 AREA/ACI AVG 210 6 5 3 | HIGH 323 129 91 289 CF HIGH 83 35 27 74 HIGH 155 14 8 8 2 175 RE HIGH 220 12 8 6 | į | # OF PLOTS R 50 # OF PLOTS R | 10 43 EQ. 10 37 EQ. 10 | INF. POP. | | DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL CL 68. SD: 1.0 DF BL MAPLE SNAG R ALDER CHERRY TOTAL | 1 | VAR.% 54.8 62.7 27.2 65.7 COEFF VAR.% 49.8 59.4 13.0 60.5 COEFF VAR.% 35.3 477.7 308.8 565.7 565.7 35.3 COEFF VAR.% 26.6 477.7 286.6 | 6.1
31.1
18.8
6.8
5.6
29.5
9.0
6.3
S.E.%
6.2
84.4
54.5
99.9
99.9
6.2
S.E.%
4.7
84.4
50.6 | L
D | 286
67
62
252
SAMPLI
OW
74
19
22
65
TREES/A
OW
137
1
2
0
0
154
BASAL A
OW
200
1
3 | AVG 305 98 77 270 E TREES - AVG 78 27 25 70 ACRE AVG 146 8 5 4 1 165 AREA/ACI AVG 210 6 5 | HIGH 323 129 91 289 CF HIGH 83 35 27 74 HIGH 155 14 8 8 2 175 RE HIGH 220 12 8 | į | # OF PLOTS R 50 # OF PLOTS R | 10 43 EQ. 10 37 EQ. 10 | INF. POP. | TC PSTATS ## PROJECT STATISTICS **PAGE** 2 PROJECT DATE 3/18/2022 LONGJOHN RGE SC**TYPE** TWP TRACT ACRES **PLOTS** TREES CuFt BdFt 215 1 W 012 008 03 U2 00MC 68.00 32 COEFF NET BF/ACRE # OF PLOTS REQ. INF. POP. CL68.1 SD: VAR.% S.E.% LOW AVG HIGH 10 1.0 DF 25.7 4.5 33,134 34,708 36,283 BL MAPLE 477.7 84.4 98 628 1,158 SNAG 99.9 0 R ALDER 565.7 294 587 CHERRY 565.7 99.9 0 68 137 TOTAL 24.6 4.3 34,146 35,699 37,251 24 3 # OF PLOTS REQ. INF. POP. COEFF NET CUFT FT/ACRE CL 68.1 SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 15 DF 25.7 4.5 8,618 9,028 9,438 477.7 84.4 175 322 BL MAPLE 27 ${\bf SNAG}$ 565.7 99.9 0 94 188 R ALDER CHERRY 565.7 99.9 0 23 46 TOTAL 6 24.9 4.4 8,909 9,319 9,729 25 3 | T01 | 2 R008 S03 Ty | 00MC | | 68.00 | | Project:
Acres | LON | GJO
68.0 | | | | | | | | Page
Date
Time | | 1
18/202
28:47 | 22 | |----------|-----------------------|-------------|-----------------|-------------------|------------------|-------------------|--------|-------------|---------|--------|--------|--------|--------|----------|----------|----------------------|------------|----------------------|--------------| | | | % | | | | | Percen | t of Ne | et Boar | d Foot | Volume | | | | | Avera | ige Log | g | Logs | | Spp | S So Gr
T rt ad | Net
BdFt | Bd. Ft.
Def% | per Acre
Gross | Net | Total
Net MBF | | g Scal | | 17. | 12.20 | | Length | 26.00 | Ln | Dia
In | Bd
Ft | CF/
Lf | Per
/Acre | | | | | | | | | 4-3 0 | -11 | 12-16 | | 12-20 | 21-30 | | | Ft | | | | | | DF
DF | DO 2M
DO 3M | 36
58 | 1.5
.7 | 12,873
20,112 | 12,678
19,964 | 862
1,358 | | 100 | 89 | 11 | | 1
6 | 1
7 | 98
88 | 40
38 | 8 | 281
103 | 1.70
0.73 | 4:
19: | | DF | DO 4M | 6 | ., | 2,067 | 2,067 | 141 | | 100 | | | 62 | 38 | , | 00 | 19 | 6 | 24 | | 84 | | DF | DO 4M 6 2,067 2,067 1 | | | | | 2,360 | | 63 | 32 | 4 | 4 | 6 | 4 | 86 | 33 | 9 | 107 | 0.84 | 323 | | RA | DO CR | 100 | | 294 | 294 | 20 | | 100 | | | 14 | | 32 | 54 | 31 | 7 | 57 | 0.59 | | | | Totals | 1 | | 294 | 294 | 20 | | 100 | | | 14 | | 32 | 54 | 31 | | | 0.59 | СН | DO CR | 100 | | 68 | 68 | 5 | | 100 | | | | | 100 | | 34 | 7 | 60 | 0.59 | : | | СН | Totals | 0 | | 68 | 68 | 5 | | 100 | | | | | 100 | | 34 | 7 | 60 | 0.59 | 1 | | ВМ | DO CR | 100 | | 628 | 628 | 43 | | 100 | | | 9 | 31 | 60 | | 27 | 8 | 65 | 0.66 | Ģ | | вм | Totals | 2 | | 628 | 628 | 43 | | 100 | | | 9 | 31 | 60 | | 27 | 8 | 65 | 0.66 | | | Total | | | 1.0 | 36,043 | 35,699 | 2,428 | | 64 | 32 | 4 | 4 | 6 | 5 | 84 | 33 | 9 | 105 | 0.83 | 33' | | TC PSTNDSUM | | Stand Table | e Summary | Page
Date: | 1
3/18/2022 | |----------------------|-------|-------------|-----------|---------------|----------------| | T012 R008 S03 Ty00MC | 68.00 | Project | LONGJOHN | Time: | 8:28:48AM | | | | Acres | 68.00 | Grown Year: | | | C | | | | Tot | | | | Average
 Log | | Net | Net | | | | |--------|----------|--------|----------|-----|---------------|--------------|--------|--------------|----------------|-------|------------|------------|------|--------|---------| | S | | Sample | FF | Av | Trees/ | BA/ | Logs | Net | Net | Tons/ | Cu.Ft. | Bd.Ft. | | Totals | | | Spc T | DBH | Trees | 16' | Ht | Acre | Acre | Acre | Cu.Ft. | Bd.Ft. | Acre | Acre | Acre | Tons | Cunits | MBF | | DF | 9 | 1 | 86 | 48 | 5.944 | 2.63 | 5.94 | 8.0 | 30.0 | | 48 | 178 | | 3: | 2 12 | | DF | 10 | 2 | 88 | 102 | 9.629 | 5.25 | 14.44 | 12.3 | 50.0 | | 178 | 722 | | 12 | 1 49 | | DF | 11 | 1 | 81 | 82 | 3.979 | 2.63 | 3.98 | 19.0 | 60.0 | | 76 | 239 | | 5 | 1 16 | | DF | 12 | 3 | 88 | 102 | 10.030 | 7.88 | 20.06 | 14.7 | 55.0 | | 294 | 1,103 | | 20 | | | DF | 13 | 3 | 86 | 98 | 8.546 | 7.88 | 14.24 | 20.2 | 72.0 | | 288 | 1,026 | | 19 | | | DF | 14 | 7 | 88 | 106 | 17.194 | 18.38 | 34.39 | 21.7 | 80.7 | | 747 | 2,776 | | 508 | | | DF | 15 | 6 | 85 | 114 | 12.838 | 15.75 | 27.82 | 24.4 | 91.5 | | 678 | 2,546 | | 46 | | | DF | 16 | 14 | 88 | 116 | 26.328 | 36.76 | 58.30 | 27.6 | 107.7 | | 1,612 | 6,281 | | 1,09 | | | DF | 17 | 6 | 89 | 120 | 9.995 | 15.75 | 26.65 | 26.9 | 101.2 | | 716 | 2,699 | | 48' | | | DF | 18 | 5 | 89 | 118 | 7.429 | 13.13 | 19.32 | 30.2 | 110.0 | | 582 | 2,125 | | 39 | | | DF | 19 | 9 | 88 | 113 | 12.002 | 23.63 | 33.34 | 31.6 | 120.4 | | 1,055 | 4,014 | | 71 | | | DF | 20 | 5 | 89 | 123 | 6.018 | 13.13 | 18.05 | 34.3 | 130.7 | | 619 | 2,359 | | 42 | | | DF | 21 | 4 | 88 | 129 | 4.367 | 10.50 | 13.10 | 38.5 | 151.7 | | 504 | 1,987 | | 34: | | | DF | 22 | 5 | 88 | | 4.973 | 13.13 | 13.93 | 41.9 | 172.9 | | 583 | 2,407 | | 390 | | | DF | 23 | 3 2 | 90 | | 2.730 | 7.88 | 8.19 | 45.3 | 192.2 | | 371 | 1,574 | | 25: | | | DF | 24
25 | 1 | 88
86 | | 1.672
.770 | 5.25 | 4.18 | 55.2 | 224.0
220.0 | | 231
127 | 936
508 | | 15 | | | DF | 25
26 | 2 | 85
85 | 104 | | 2.63
5.25 | 2.31 | 55.0
58.8 | 214.0 | | 209 | 762 | | 14: | | | DF | 31 | 1 | 83 | | 1.424
.501 | 2.63 | 1.50 | 73.3 | 310.0 | | 110 | 466 | | 7: | | | DF | | | | | | | | | | | | | | | | | DF | Totals | 80 | 87 | 109 | 146.369 | 210.06 | 323.30 | 27.9 | 107.4 | | 9,028 | 34,708 | | 6,139 | 2,360 | | BM | 10 | 1 | 87 | 56 | 2.311 | 1.26 | 2.31 | 14.0 | 50.0 | | 32 | 116 | | 2 | 2 8 | | BM | 11 | 1 | 87 | 66 | 1.910 | 1.26 | 1.91 | 17.0 | 60.0 | | 32 | 115 | | 2: | | | BM | 12 | 1 | 87 | 45 | 1.605 | 1.26 | 1.60 | 15.0 | 50.0 | | 24 | 80 | | 1 | | | BM | 15 | 1 | 87 | 88 | 1.027 | 1.26 | 2.05 | 21.5 | 80.0 | | 44 | 164 | | 30 | | | BM | 16 | 1 | 87 | 70 | .903 | 1.26 | 1.81 | 23.0 | 85.0 | | 42 | 153 | | 2 | 3 10 | | BM | Totals | 5 | 87 | 62 | 7.755 | 6.30 | 9.68 | 18.0 | 64.9 | | 175 | 628 | | 119 | 43 | | RA | 12 | 2 | 87 | 83 | 2.675 | 2.10 | 4.01 | 16.0 | 53.3 | | 64 | 214 | | 4 | 1 15 | | RA | 13 | 1 | 87 | 68 | 1.139 | 1.05 | 1.14 | 26.0 | 70.0 | | 30 | 80 | | 20 | | | RA | Totals | 3 | 87 | 78 | 3.814 | 3.15 | 5.15 | 18.2 | 57.0 | | 94 | 294 | | 6- | 1 20 | | СН | 13 | 1 | 87 | 55 | 1.139 | 1.05 | 1.14 | 20.0 | 60.0 | | 23 | 68 | | 1: | | | СН | Totals | 1 | 87 | 55 | 1.139 | 1.05 | 1.14 | 20.0 | 60.0 | | 23 | 68 | | 1: | | | | | | | | | | 1.14 | 20.0 | 00.0 | | 23 | 00 | | 1. | , 3 | | SN | 10 | 1 | 98 | 49 | 2.407 | 1.31 | | | | | | | | | | | SN | 13 | 1 | 98 | 18 | 1.424 | 1.31 | | | | | | | | | | | SN | 17 | 2 | 98 | 97 | 1.666 | 2.63 | | | | | | | | | | | SN | Totals | 4 | 98 | 56 | 5.497 | 5.25 | | | | | | | | | | | Totals | | 93 | 88 | 103 | 164.575 | 225.82 | 339.28 | 27.5 | 105.2 | | 9,319 | 35,699 | | 6,33 | 7 2,428 | TC PLOGSTVB Log Stock Table - MBF T012 R008 S03 Ty00MC 68.00 Project: LONGJOHN Acres Date 3/18/2022 Time 8:28:47AM | | | | <u> </u> | | | | | | | | | | | | | | 20.7/A | | |----------|----------------|------------|--------------|----------|------------|----------|-----|-----|-----|-----------------------|--------------------------|-------|---------------------|-------|-------|-------|--------|-----| | Spp T | So Gr
rt de | Log
Len | Gross
MBF | Def
% | Net
MBF | %
Spc | 2-3 | 4-5 | | ne by S
8-9 | caling I
10-11 | | r in Inche
14-15 | 16-19 | 20.22 | 24-29 | 30-39 | 40: | | | | | İ | | | _ | 2-3 | 4-3 | 0-7 | 8-9 | 10-11 | 12-13 | | 10-19 | 20-23 | 24-29 | 30-39 | 40+ | | DF | DO 21 | | | 5.0 | 6 | | | | | | | 0 | 6 | | | | | | | DF
DF | DO 21 | | | 1.5 | 8
848 | | | | | | | 328 | 284 | 213 | 24 | | | | | DI | DO 21 | VI 40 | , 301 | 1.5 | 040 | 33.9 | | | | | | 326 | 204 | 213 | 24 | | | | | DF | DO 31 | M 28 | 19 | | 19 | .8 | | | | 13 | 7 | | | | | | | | | DF | DO 31 | M 30 | 57 | | 57 | 2.4 | | | | 49 | 8 | | | | | | | | | DF | DO 31 | M 32 | 40 | 3.7 | 39 | 1.6 | | | 20 | 6 | 12 | | | | | | | | | DF | DO 31 | M 34 | 50 | | 50 | 2.1 | | | 8 | 41 | | | | | | | | | | DF | DO 31 | M 36 | 113 | 1.9 | 111 | 4.7 | | | 45 | 26 | 40 | | | | | | | | | DF | DO 31 | M 38 | 66 | 1.2 | 65 | 2.8 | | | 10 | 44 | 11 | | | | | | | | | DF | DO 31 | M 40 | 1,022 | | 1,017 | 43.1 | | | 182 | 287 | 548 | | | | | | | | | DF | DO 41 | м 16 | 67 | | 67 | 2.9 | | | 60 | 7 | | | | | | | | | | DF | DO 41 | M 18 | 17 | | 17 | .7 | | | 17 | | | | | | | | | | | DF | DO 41 | M 20 | 2 | | 2 | .1 | | | 2 | | | | | | | | | | | DF | DO 41 | M 24 | 24 | | 24 | 1.0 | | | 24 | | | | | | | | | | | DF | DO 41 | M 26 | 18 | | 18 | .7 | | | 18 | | | | | | | | | | | DF | DO 41 | M 28 | 12 | | 12 | .5 | | | 12 | | | | | | | | | | | DF | Tota | ls | 2,384 | | 2,360 | 97.2 | | | 399 | 473 | 626 | 336 | 290 | 213 | 24 | | | | | RA | DO C | R 16 | 3 | | 3 | 13.7 | | | 3 | | | | | | | | | | | RA | DO C | R 32 | 6 | | 6 | 31.9 | | | | 6 | | | | | | | | | | RA | DO C | R 36 | 5 | | 5 | 27.3 | | | 5 | | | | | | | | | | | RA | DO C | R 40 | 5 | | 5 | 27.2 | | | 5 | | | | | | | | | | | RA | Tota | ls | 20 | | 20 | .8 | | | 14 | 6 | | | | | | | | | | СН | DO C | R 34 | 5 | | 5 | 100.0 | | | 5 | | | | | | | | | | | СН | Tota | ls | 5 | | 5 | .2 | | | 5 | | | | | | | | | | | BM | DO C | R 16 | 5 4 | | 4 | 9.2 | | | 2 | 2 | | | | | | | | | | BM | DO C | R 28 | 13 | | 13 | 31.2 | | | 13 | | | | | | | | | | | BM | DO C | R 32 | 16 | | 16 | 38.4 | | | 8 | | 9 | | | | | | | | | BM | DO C | R 34 | 9 | | 9 | 21.3 | | | | | 9 | | | | | | | | | BM | Tota | ls | 43 | | 43 | 1.8 | | | 23 | 2 | 18 | | | | | | | | | Total | All Spec | ies | 2,451 | | 2,428 | 100.0 | | | 440 | 482 | 643 | 336 | 290 | 213 | 24 | | | | | TC PST | ΓATS | | | | | OJECT
OJECT | | STICS
NGJOHN | | | PAGE
DATE | 1
3/18/2022 | |-----------------------|-----------------------|----|----------------|----------------|--------------|----------------|-------------------------|---------------------|----------------|------------------|----------------|----------------| | TWP | RGE | SC | TRACT | ŗ | ГҮРЕ | | AC | RES | PLOTS | TREES | CuFt | BdFt | | 012 | 008 | 03 | U3 | (| 00PC | | | 8.00 | 32 | 215 | 1 | W | | | | | | | | TREES | | ESTIMATED
TOTAL | | ERCENT
SAMPLE | | | | | | PL | LOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOTA | AL | | 32 | 215 | | 6.7 | | | | | | | | | ISE
COUNT
DREST | | 13 | 93 | | 7.2 | | 1,330 | | 7.0 | | | | COUR
BLAN
100 % | NKS | | 19 | 122 | | 6.4 | | | | | | | | | | | | | STA | ND SUMM | ARY | | | | | | | | | | MPLE
REES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | DF-L | , | | 63 | 97.1 | 17.5 | 83 | 38.7 | 161.7 | 28,108 | 27,825 | 7,171 | 7,171 | | DF-T | | | 17 | 51.0 | 13.2 | 59 | 13.3 | 48.3 | 6,846 | 6,787 | 1,840 | 1,840 | | | IAPLE
C | | 5 | 7.8 | 12.2 | 35
56 | 1.8 | 6.3 | 628 | 628 | 175 | 175 | | SNA0
R AL | | | 4 3 | 5.5
3.8 | 13.2
12.3 | 56
42 | 1.4
0.9 | 5.3
3.2 | 294 | 294 | 94 | 94 | | CHE | | | 1 | 1.1 | 13.0 | 35 | 0.3 | 1.1 | 68 | 68 | 23 | 23 | | TOT | | | 93 | 166.2 | 15.8 | 71 | 56.8 | 225.8 | 35,945 | 35,603 | 9,302 | 9,302 | | CL
SD: | 68.1
1.0 | | COEFF
VAR.% | S.E.% | I | SAMPLI
OW | E TREES -
AVG | · BF
HIGH | # | OF TREES R | EQ.
10 | INF. POP. | | DF-L | | | 48.4 | S.E.%
6.1 | | 318 | 339 | 360 | | 3 | 10 | 13 | | DF-T | • | | 60.9 | 15.2 | | 151 | 178 | 205 | | | | | | | IAPLE | | 62.7 | 31.1 | | 67 | 98 | 129 | | | | | | R AL
CHEI | DER | | 27.2 | 18.8 | | 62 | 77 | 91 | | | | | | TOT | | | 65.8 | 6.8 | | 252 | 271 | 289 | | 173 | 43 | 19 | | CL | 68.1 | | COEFF | | | SAMPLI | E TREES - | · CF | # | OF TREES R | EQ. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | L | OW | AVG | HIGH | | 5 | 10 | 15 | | DF-L | | | 43.6 | 5.5 | | 82 | 87 | 91 | | | | | | | IAPLE | | 58.2
59.4 | 14.5
29.5 | | 41
19 | 48
27 | 55
35 | | | | | | SNAO
R AL
CHEI | DER | | 13.0 | 9.0 | | 22 | 25 | 27 | | | | | | TOT | | | 60.6 | 6.3 | | 66 | 70 | 74 | | 147 | 37 | 16 | | CL | 68.1 | | COEFF | | | TREES/A | | | # | OF PLOTS R | | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | I | OW | AVG | HIGH | | 5 | 10 | 15 | | DF-L
DF-T | | | 23.1
99.8 | 4.1
17.6 | | 93
42 | 97
51 | 101
60 | | | | | | | IAPLE | | 477.7 | 84.4 | | 1 | 8 | 14 | | | | | | SNA | | | 308.8 | 54.5 | | 2 | 5 | 8 | | | | | | R AL | | | 565.7 | 99.9 | | 0 | 4 | 8 | | | | | | CHE | | | 565.7
39.2 | 99.9
6.9 | | 0
155 | 1
166 | 2
178 | | 61 | 15 | 7 | | CL | 68.1 | | COEFF | 0.9 | | | AREA/AC | | # | OF PLOTS R | | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | I | OW. | AKEA/AC
AVG | KE
HIGH | # | 5 5 | EQ.
10 | INF. POP. | | DF-L | | | 9.8 | 1.7 | | 159 | 162 | 165 | | | | 1. | | DF-T | , | | 98.3 | 17.4 | | 40 | 48 | 57 | | | | | | | IAPLE | | 477.7 | 84.4 | | 1 | 6 | 12 | | | | | | | IAPLE | | | | | | | | | | | | | TC PST | ATS | | | | PROJECT
PROJECT | | STICS
NGJOHN | | | PAGE
DATE | 2
3/18/2022 | |--------|------|----|-------|-------|--------------------|----------|-----------------|-------|--------------|--------------
-----------------------| | TWP | RGE | SC | TRACT | TY | | | CRES | PLOTS | TREES | CuFt | | | 012 | 008 | 03 | U3 | 00P | С | | 8.00 | 32 | 215 | 1 | W | | CL | 68.1 | | COEFF | | BASAI | AREA/A(| CRE | | # OF PLOT | S REQ. | INF. POP. | | SD: | 1.00 | | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | R AL | DER | | 565.7 | 99.9 | 0 | 3 | 6 | | | | | | CHE | RRY | | 565.7 | 99.9 | 0 | 1 | 2 | | | | | | TOT | AL | | 25.7 | 4.5 | 216 | 226 | 236 | | 26 | 7 | 3 | | CL | 68.1 | | COEFF | | NET B | F/ACRE | | | # OF PLOTS R | EO. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DF-L | | | 9.8 | 1.7 | 27,341 | 27,825 | 28,309 | | | | | | DF-T | | | 100.2 | 17.7 | 5,586 | 6,787 | 7,988 | | | | | | BL M | APLE | | 477.7 | 84.4 | 98 | 628 | 1,158 | | | | | | SNAC | 3 | | | | | | | | | | | | R AL | DER | | 565.7 | 99.9 | 0 | 294 | 587 | | | | | | CHEF | RRY | | 565.7 | 99.9 | 0 | 68 | 137 | | | | | | TOT | AL | | 22.6 | 4.0 | 34,181 | 35,603 | 37,024 | | 20 | 5 | 2 | | CL | 68.1 | | COEFF | | NET C | UFT FT/A | CRE | | # OF PLOTS R | EQ. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DF-L | | | 9.4 | 1.7 | 7,052 | 7,171 | 7,290 | | | | | | DF-T | | | 99.9 | 17.6 | 1,515 | 1,840 | 2,164 | | | | | | BL M | APLE | | 477.7 | 84.4 | 27 | 175 | 322 | | | | | | SNAC | 3 | | | | | | | | | | | | R AL | DER | | 565.7 | 99.9 | 0 | 94 | 188 | | | | | | CHEF | RRY | | 565.7 | 99.9 | 0 | 23 | 46 | | | | | | TOT | AL | | 23.4 | 4.1 | 8,918 | 9,302 | 9,686 | | 22 | 5 | 2 | | TC PSPCSTGR | | $\mathbf{S}_{\mathbf{l}}$ | pecies, S | ort Gra | de - Board | Foot \ | Volum | es (Pr | oject |) | | | | | | | | | |--|---|---------------------------|--------------------------|--------------------------|-------------------|--------|------------------------------|-----------|-------|--------|-----------------------|--------|-----------------|----------------|----------------------|---------------------|----------------------|-----------------------| | T012 R008 S03 T | y00PC | | 8.00 | | Project:
Acres | L | ONGJO
8. | OHN
00 | | | | | | | Page
Date
Time | | 18/202 | 22 | | S So Gr
Spp T rt ad | %
Net | | • | Net | Total | Pe 4-5 | rcent of l
Log Sc
6-11 | | | Volume | | Length | 26.00 | Ln
Ft | Avera | ige Log
Bd
Ft | 7 | Logs
Per
/Acre | | DF L DO 2M
DF L DO 3M
DF L DO 4M | Net and Bd. Ft. per Acre Total Net Net MBF M 40 1.4 11,352 11,190 M 54 .8 15,355 15,234 M 6 1,402 1,402 | | | | | | 100 | 88 | 12 | 69 | 21-30
1
6
31 | 1 7 | 98
87 | 40
38
19 | | 289
109
24 | 1.74
0.77
0.40 | 38.7
139.1
57.6 | | DF Totals DF T DO 2M DF T DO 3M | 78
19
70 | 1.0
2.4
.6 | 28,108
1,368
4,793 | 27,825
1,335
4,766 | 223 | | 100 | 35
100 | 5 | 3 | 5 | 5 | 87
100
90 | 33
40
38 | 8 | 118
224
86 | 0.91
1.42
0.61 | 235.5
6.0
55.4 | | DF T DO 4M DF Totals | 11 | .9 | 6,846 | 686 | 54 | + | 100 | 20 | | 44 | 56
9 | 3 | 83 | 33 | 7 | 76 | 0.33 | 27.9
89.3 | | RA DO CR RA Totals | 100 | | 294
294 | 294
294 | 2 | + | 100 | | | 14 | | 32 | 54
54 | 31 | 7 | 57
57 | 0.59 | 5.2 | | CH DO CR CH Totals | 100 | | 68
68 | 68
68 | 1 | _ | 100 | | | | | 100 | | 34 | 7 | 60 | 0.59 | 1.1 | | BM DO CR BM Totals | 100 | | 628
628 | 628
628 | 4 | _ | 100 | | | 9 | 31 | 60 | | 27
27 | 8 | 65
65 | 0.66 | 9.7
9.7 | | Totals | | 1.0 | 35,945 | 35,603 | 285 | | 65 | 31 | 4 | 4 | 6 | 5 | 84 | 33 | 8 | 104 | 0.82 | 340.7 | | TC PSTNDSUM | | Stand Table Summary | Page 1 Date: 3/18/2022 | | |----------------------|------|---------------------|------------------------|--| | T012 R008 S03 Ty00PC | 8.00 | Project LONGJOHN | Time: 9:07:26AM | | | | | Acres 8.00 | Grown Year: | | | S | | Sample | FF | Tot
Av | Trees/ | BA/ | Logs | Average
Net | e Log
Net | Tons/ | Net
Cu.Ft. | Net
Bd.Ft. | Totals | | |--------|--------|--------|-----|-----------|---------|--------|--------|----------------|--------------|-------|---------------|---------------|----------------|-----| | Spc T | DBH | Trees | 16' | Ht | Acre | Acre | _ | Cu.Ft. | Bd.Ft. | Acre | Acre | Acre | Tons Cunits MB | BF | | DF L | 12 | 1 | 87 | 94 | 3.269 | 2.57 | 6.54 | 13.5 | 50.0 | | 88 | 327 | 7 | 3 | | DF L | 13 | 2 | 88 | 111 | 5.571 | 5.13 | 11.14 | 18.7 | 72.5 | | 209 | 808 | 17 | 6 | | DF L | 14 | 5 | 87 | 106 | 12.008 | 12.84 | 24.02 | 22.0 | 82.0 | | 528 | 1,969 | 42 | 16 | | DF L | 15 | 5 | 86 | 114 | 10.461 | 12.84 | 23.01 | 24.2 | 91.8 | | 557 | 2,113 | 45 | 17 | | DF L | 16 | 12 | 88 | 116 | 22.065 | 30.81 | 47.81 | 28.3 | 110.4 | | 1,355 | 5,277 | 108 | 42 | | DF L | 17 | 5 | 88 | | 8.144 | 12.84 | 22.80 | 26.1 | 98.6 | | 595 | 2,248 | 48 | 18 | | DF L | 18 | 3 | 89 | 122 | 4.359 | 7.70 | 11.62 | 29.9 | 112.5 | | 347 | 1,308 | 28 | 10 | | DF L | 19 | 8 | 88 | | 10.432 | 20.54 | 28.69 | 32.0 | 121.8 | | 917 | 3,495 | 73 | 28 | | DF L | 20 | 4 | 88 | 123 | 4.707 | 10.27 | 14.12 | 34.1 | 128.3 | | 481 | 1,812 | 39 | 14 | | DF L | 21 | 4 | 88 | | 4.270 | 10.27 | 12.81 | 38.5 | 151.7 | | 493 | 1,943 | 39 | 16 | | DF L | 22 | 5 | 88 | | 4.863 | 12.84 | 13.62 | 42.3 | 174.3 | | 576 | 2,373 | 46 | 19 | | DF L | 23 | 3 | 90 | | 2.670 | 7.70 | 8.01 | 45.3 | 192.2 | | 363 | 1,539 | 29 | 12 | | DF L | 24 | 2 | 88 | | 1.634 | 5.13 | 4.09 | 55.2 | 224.0 | | 226 | 915 | 18 | 7 | | DF L | 25 | 1 | 85 | 127 | .753 | 2.57 | 2.26 | 55.0 | 220.0 | | 124 | 497 | 10 | 4 | | DF L | 26 | 2 | 84 | 104 | 1.393 | 5.13 | 3.48 | 58.8 | 214.0 | | 205 | 745 | 16 | 6 | | DF L | 31 | 1 | 83 | 109 | .490 | 2.57 | 1.47 | 73.3 | 310.0 | | 108 | 456 | 9 | 4 | | DF L | Totals | 63 | 88 | 115 | 97.088 | 161.75 | 235.48 | 30.5 | 118.2 | | 7,171 | 27,825 | 574 | 223 | | DF T | 9 | 1 | 86 | 48 | 6.433 | 2.84 | 6.43 | 8.0 | 30.0 | | 51 | 193 | 4 | 2 | | DF T | 10 | 2 | 87 | 102 | 10.422 | 5.68 | 15.63 | 12.3 | 50.0 | | 193 | 782 | 15 | 6 | | DF T | 11 | 1 | 81 | 82 | 4.306 | 2.84 | 4.31 | 19.0 | 60.0 | | 82 | 258 | 7 | 2 | | DF T | 12 | 2 | 88 | 106 | 7.237 | 5.68 | 14.47 | 15.3 | 57.5 | | 221 | 832 | 18 | 7 | | DF T | 13 | 1 | 83 | 73 | 3.083 | 2.84 | 3.08 | 26.0 | 70.0 | | 80 | 216 | 6 | 2 | | DF T | 14 | 2 | 88 | 105 | 5.317 | 5.68 | 10.63 | 21.0 | 77.5 | | 223 | 824 | 18 | 7 | | DF T | 15 | 1 | 82 | | 2.316 | 2.84 | 4.63 | 25.5 | 90.0 | | 118 | 417 | 9 | 3 | | DF T | 16 | 2 | 87 | 113 | 4.071 | 5.68 | 10.18 | 24.0 | 94.0 | | 244 | 957 | 20 | 8 | | DF T | 17 | 1 | 91 | | 1.803 | 2.84 | 3.61 | 32.5 | 120.0 | | 117 | 433 | 9 | 3 | | DF T | 18 | 2 | 89 | | 3.217 | 5.68 | 8.04 | 30.6 | 106.0 | | 246 | 852 | 20 | 7 | | DF T | 19 | 1 | 87 | 118 | 1.443 | 2.84 | 4.33 | 29.3 | 110.0 | | 127 | 476 | 10 | 4 | | DF T | 20 | 1 | 90 | 123 | 1.303 | 2.84 | 3.91 | 35.0 | 140.0 | | 137 | 547 | 11 | 4 | | DF T | Totals | 17 | 86 | 96 | 50.951 | 48.31 | 89.26 | 20.6 | 76.0 | | 1,840 | 6,787 | 147 | 54 | | BM | 10 | 1 | 87 | 56 | 2.311 | 1.26 | 2.31 | 14.0 | 50.0 | | 32 | 116 | 3 | 1 | | BM | 11 | 1 | 87 | 66 | 1.910 | 1.26 | 1.91 | 17.0 | 60.0 | | 32 | 115 | 3 | 1 | | BM | 12 | 1 | 87 | 45 | 1.605 | 1.26 | 1.60 | 15.0 | 50.0 | | 24 | 80 | 2 | 1 | | BM | 15 | 1 | 87 | 88 | 1.027 | 1.26 | 2.05 | 21.5 | 80.0 | | 44 | 164 | 4 | 1 | | BM | 16 | 1 | 87 | 70 | .903 | 1.26 | 1.81 | 23.0 | 85.0 | | 42 | 153 | 3 | 1 | | BM | Totals | 5 | 87 | 62 | 7.755 | 6.30 | 9.68 | 18.0 | 64.9 | | 175 | 628 | 14 | 5 | | RA | 12 | 2 | 87 | 83 | 2.675 | 2.10 | 4.01 | 16.0 | 53.3 | | 64 | 214 | 5 | 2 | | RA | 13 | 1 | 87 | 68 | 1.139 | 1.05 | 1.14 | 26.0 | 70.0 | | 30 | 80 | 2 | 1 | | RA | Totals | 3 | 87 | 78 | 3.814 | 3.15 | 5.15 | 18.2 | 57.0 | | 94 | 294 | 8 | 2 | | СН | 13 | 1 | 87 | 55 | 1.139 | 1.05 | 1.14 | 20.0 | 60.0 | | 23 | 68 | 2 | 1 | | СН | Totals | 1 | 87 | 55 | 1.139 | 1.05 | 1.14 | 20.0 | 60.0 | | 23 | 68 | 2 | 1 | | SN | 10 | 1 | 98 | 49 | 2.407 | 1.31 | | | | | | | | | | SN | 13 | 1 | 98 | 18 | 1.424 | 1.31 | | | | | | | | | | SN | 17 | 2 | 98 | | 1.666 | 2.63 | | | | | | | | | | SN | Totals | 4 | 98 | 56 | 5.497 | 5.25 | | | | | | | | | | Totals | 10000 | | | | | | 240.70 | 27.0 | 104.5 | | 0.202 | 25.602 | 7.1 | 207 | | rotais | 1 | 93 | 88 | 103 | 166.245 | 225.82 | 340.72 | 27.3 | 104.5 | | 9,302 | 35,603 | 744 | 285 | TC PLOGSTVB Log Stock Table - MBF T012 R008 S03 Ty00PC 8.00 Project: LONGJOHN Acres LONGJOHN 8.00 Date 3/18/2022 Time 9:07:25AM | | _ | | | | | - | | | | | | | | | | 1 ime | 9.0 | U7:25A | 171 | |-----|----------|-------|-------------|--------------|-----|-----|-------|-----|-----|-----|-----|-------|-------|------------|-------|-------|-------|--------|-----| | _ | S | So Gr | - | | Def | Net | % | | | | | | | er in Inch | | I | | 1 | | | Spp | T | rt de | Len | MBF | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 | 40+ | | DF | L | | | | 5.0 | 1 | | | | | | | | 1 | | | | | | | DF | L | DO 2M | | | | 1 | .4 | | | | | | 1 | | | | | | | | DF | L | DO 2M | 1 40 | 89 | 1.4 | 88 | 39.5 | | | | | | 31 | 30 | 24 | 3 | | | | | DF | L | DO 3M | 1 28 | 2 | | 2 | 1.0 | | | | 1 | 1 | | | | | | | | | DF | L | DO 3M | 1 30 | 5 | | 5 | 2.2 | | | | 4 | 1 | | | | | | | | | DF | L | DO 3M | 1 32 | 4 | 4.7 | 3 | 1.6 | | | 1 | 1 | 1 | | | | | | | | | DF | L | DO 3M | 1 34 | 5 | | 5 | 2.2 | | | 1 | 4 | | | | | | | | | | DF | L | DO 3M | 1 36 | 10 | 2.6 | 10 | 4.3 | | | 3 | 3 | 3 | 3 | | | | | | | | DF | L | DO 3M | 1 38 | 7 | 1.4 | 6 | 2.9 | | | 1 | 4 | 1 | | | | | | | | | DF | L | DO 3M | 1 40 | 91 | | 90 | 40.5 | | | 11 | 22 | 57 | 7 | | | | | | | | DF | L | DO 4M | 1 16 | 7 | | 7 | 3.0 | | | 6 | 1 | | | | | | | | | | DF | L | DO 4M | 1 18 | 1 | | 1 | .3 | | | 1 | | | | | | | | | | | DF |
L | | | | | 0 | .2 | | | 0 | | | | | | | | | | | DF | L | DO 4M | 1 24 | 1 | | 1 | .6 | | | 1 | | | | | | | | | | | DF | L | DO 4M | 1 26 | 1 | | 1 | .3 | | | 1 | | | | | | | | | | | DF | L | DO 4M | 1 28 | 1 | | 1 | .6 | | | 1 | | | | | | | | | | | DF | | Total | s | 225 | 1.0 | 223 | 78.2 | | | 29 | 40 | 65 | 5 32 | 31 | 24 | 3 | | | | | DF | T | DO 2M | 1 40 | 11 | 2.4 | 11 | 19.7 | | | | | | 8 | 3 | | | | | | | DF | Т | DO 3M | 1 30 | 2 | | 2 | 3.5 | | | | 2 | | | | | | | | | | DF | | DO 3M | | | | 1 | 2.0 | | | 1 | | | | | | | | | | | DF | Т | | | | | 1 | 1.5 | | | | 1 | | | | | | | | | | DF | Т | DO 3M | 1 36 | 2 | | 2 | 3.8 | | | 2 | | | | | | | | | | | DF | Т | DO 3M | 1 38 | 1 | | 1 | 2.1 | | | | 1 | | | | | | | | | | DF | T | DO 3M | 1 40 | 31 | | 31 | 57.4 | | | 11 | 12 | 8 | 3 | | | | | | | | DF | Т | DO 4M | 1 16 | 1 | | 1 | 1.9 | | | 1 | | | | | | | | | | | DF | | DO 4M | | | | 1 | 2.6 | | | 1 | | | | | | | | | | | DF | | DO 4M | | 2 | | 2 | 2.8 | | | 2 | | | | | | | | | | | DF | T | DO 4M | I 26 | 2 | | 2 | 2.8 | | | 2 | | | | | | | | | | | DF | | Total | s | 55 | | 54 | 19.1 | | | 19 | 16 | 8 | 8 8 | 3 | | | | | | | RA | | DO CF | 16 | 0 | | 0 | 13.7 | | | 0 | | | | | | | | | | | RA | | DO CF | 32 | 1 | | 1 | 31.9 | | | | 1 | | | | | | | | | | RA | | DO CF | 36 | 1 | | 1 | 27.3 | | | 1 | | | | | | | | | | | RA | | DO CF | 40 | 1 | | 1 | 27.2 | | | 1 | | | | | | | | | | | RA | \dashv | Total | s | 2 | | 2 | .8 | | | 2 | 1 | | | | | | | | | | СН | 寸 | DO CF | 34 | 1 | | 1 | 100.0 | | | 1 | | | | | | | | | | | TC PLO | OGS | STVB | | | | | Log S | Stock ' | Table - | MBF | | | | | | | | | |---------------------------|-----|-----------|------|-------|------|-----|---|---------|---------|------|-----------|-------------|------|----------------------|-------|-------------------------|-------|-----| | T012 R008 S03 Ty00PC 8.00 | | | | | 8.00 | | Project:
Acres | | LON | GJOH | N
8.00 | | | Page
Date
Time | 3/1 | 2
18/2022
07:25AM | | | | s | | So Gr | Log | Gross | Def | Net | Net % Net Volume by Scaling Diameter in Inches | | | | | | | | | | | | | Spp T | 1 | rt de | Len | MBF | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 12-13 | 14-1 | 5 16-19 | 20-23 | 24-29 | 30-39 | 40+ | | СН | T | Total | s | | 1 | 1 | .2 | | | 1 | | | | | | | | | | BM | T | DO CF | R 16 | | 0 | 0 | 9.2 | | | 0 | 0 | | | | | | | | | BM | | DO CF | R 28 | | 2 | 2 | 31.2 | | | 2 | | | | | | | | | | BM | | DO CF | R 32 | | 2 | 2 | 38.4 | | | 1 | | 1 | | | | | | | | BM | | DO CF | R 34 | | 1 | 1 | 21.3 | | | | | 1 | | | | | | | | BM | | Total | s | | 5 | 5 | 1.8 | | | 3 | 0 | 2 | | | | | | | | Total | | All Speci | es | 28 | 38 | 285 | 100.0 | | | 53 | 57 | 75 | 19 | 34 24 | 3 | | | |