

Timber Sale Appraisal Just In Beaver Sale WO-341-2021-W00697-01

District: West Oregon Date: October 29, 2020

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$739,200.00	\$13,508.37	\$752,708.37
		Project Work:	(\$57,447.00)
		Advertised Value:	\$695,261.37

Timber Sale Appraisal Just In Beaver

Sale WO-341-2021-W00697-01

District: West Oregon Date: October 29, 2020

Timber Description

Location: Portions of Sections 4 & 5 of T10S, R8W W.M. Polk County, Oregon

Stand Stocking: 40%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	19	0	97
Alder (Red)	14	0	95

Volume by Grade	28	3S & 4S 6"- 11"	3S 12"+	Camprun	Total
Douglas - Fir	1,088	292	20	0	1,400
Alder (Red)	0	0	0	81	81
Total	1,088	292	20	81	1,481

Comments: Pond Values Used: Local Pond Values, September, 2020

Western Hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost:

257/MBF = 547/MBF - 290/MBF

Maple and Other Hardwoods Stumpage Price = \$19.29/MBF = \$2.50/ton x (27 TONS/3.5 MBF)

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost:

\$460/MBF = \$900/MBF - \$290/MBF - \$150/MBF (Extra Haul Cost)

PULP (Conifer and Hardwood Price) = \$2.50/TON

Other Costs (with Profit & Risk to be added):
Artificial Guyline Anchors (Deadmen): 4 x \$480 = \$1,920
Intermediate Supports: 4 x \$100 = \$400

TOTAL Other Costs (with Profit & Risk to be added): \$2,320

Other Costs (No Profit & Risk added):

Equipment Cleaning (Invasive Species): \$2,000

Landing Slash Piling and sorting out firewood: 6 Landings @ \$180/Landing = \$1,080

TOTAL Other Costs (No Profit & Risk added) = \$3,080

ROAD MAINTENANCE

Move-in:(Grader) \$875

Move-in:(Vibratory roller) \$875 Final Road Maintenance: \$8,839

TOTAL Road Maintenance: \$10,589/1,481 MBF = \$7.15/MBF

SLASH DISPOSAL

In Unit: 7 hrs @ \$150/hr = \$1,050

TOTAL Slash Disposal = \$1,050

Timber Sale Appraisal Just In Beaver

Sale WO-341-2021-W00697-01

District: West Oregon Date: October 29, 2020

Logging Conditions

 Combination#: 1
 Douglas - Fir
 46.00%

 Alder (Red)
 46.00%

Logging System: Cable: Medium Tower >40 - <70 Process: Manual Falling/Delimbing

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 10 bd. ft / load: 4800

cost / mbf: \$137.50

machines: Log Loader (A)

Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 46.00%

Alder (Red) 46.00%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF

loads / day: 7 bd. ft / load: 4200

cost / mbf: \$224.49

machines: Log Loader (A)

Tower Yarder (Medium)

 Combination#: 3
 Douglas - Fir
 8.00%

 Alder (Red)
 8.00%

Logging System: Shovel **Process:** Manual Falling/Delimbing

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 12 bd. ft / load: 4800

cost / mbf: \$68.36

machines: Shovel Logger

Timber Sale Appraisal Just In Beaver

Sale WO-341-2021-W00697-01

District: West Oregon Date: October 29, 2020

Logging Costs

Operating Seasons: 2.00

Profit Risk: 10%

Project Costs: \$57,447.00

Other Costs (P/R): \$2,320.00

Slash Disposal: \$1,050.00

Other Costs: \$3,080.00

Miles of Road

Road Maintenance:

\$7.15

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load		
Douglas - Fir	\$0.00	3.0	4.5		
Alder (Red)	\$0.00	2.0	3.5		

Timber Sale Appraisal Just In Beaver Sale WO-341-2021-W00697-01

District: West Oregon Date: October 29, 2020

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$171.98	\$7.36	\$5.93	\$72.48	\$1.57	\$25.93	\$0.71	\$2.00	\$2.08	\$290.04
Alder (Red	l)								
\$171.98	\$7.51	\$5.93	\$142.50	\$1.57	\$32.95	\$0.71	\$2.00	\$2.08	\$367.23

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$818.04	\$528.00	\$0.00
Alder (Red)	\$0.00	\$534.00	\$166.77	\$0.00

Timber Sale Appraisal Just In Beaver

Sale WO-341-2021-W00697-01

District: West Oregon Date: October 29, 2020

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total		
Douglas - Fir	1,400	\$528.00	\$739,200.00		
Alder (Red)	81	\$166.77	\$13,508.37		

Gross Timber Sale Value

Recovery: \$752,708.37

Prepared By: Zane Sandborg Phone: 541-929-9163

SUMMARY OF ALL PROJECT COSTS

Sale Name:	Just In Beaver		October 2020 14:49	
Project #1 - Road Imp	rovement	l on oth	Cont	
Road Segment Pt. 1 to Pt. 2		<u>Length</u> 105.8 sta	<u>Cost</u> \$2,798	
Pt. 2 to Pt. 3		26.7 sta	\$28,089	
Pt. 4 to Pt. 5		4.9 sta	\$414	
Pt. 6 to Pt. 7		10.3 sta	\$15,116	
Project #2 Tool Prilli	TOTALS	147.7 sta	\$46,417	_
Project #2 - Test Drilli	<u>ing</u>		<u>Cost</u> \$5,690	
Project #3 - Move in			<u>Cost</u>	
Dozer, D-7 or equiv.			\$905	
Grader, Cat 14-G or ec Vibratory roller	luiv.		\$875 \$875	
Exploratory Drill			\$875	

Excavator, C325 or equiv. (X2)

TOTALS

GRAND TOTAL \$57,447

\$1,810

\$5,340

Compiled by Zane Sandborg Date 10/30/2020

SALE Just In Beaver ROAD Pt. 1 to Pt. 2 (Surfa	Project # aced)	1		LENGTH	impro	ve	105.8 sta	a
EXCAVATION (With D7 dozed Construct Landing (Sta. 89+95) End Haul (Sta. 64+42 to Sta. 75+10) Waste material compacting	• •		@ @	Rate \$438.00 \$4.50 \$0.45	/Ldg /CY	= =	\$438 \$450 \$45	
						TOTA	L EXCAVATION =	\$933
SURFACING Spot rock Landing rock Shape surface (with road grader)	40 CY 20 CY 5 sta	Size 1½"-0" Jaw-Run	@ @	Rate \$29.11 \$27.42 \$20.63	/CY /CY /sta	= = =	\$1,164 \$548 \$103	
					TOT	AL SUF	RFACING COST =	\$1,815
SPECIAL PROJECTS Clean out culvert inlets	2 culvert		@	\$25.00	/ea TOTAL	= . SPEC	\$50 IAL PROJECTS =	\$50
Compiled by: Date:	Zane Sandbor Oct 30, 2020	rg				GRAN	D TOTAL ====>	\$2,798

SALE Just In Beaver ROAD Pt. 2 to Pt. 3 (Surface	Project # ced/Unsurfaced)	ŧ 1		LENGTH	impro	ove	26.7	sta
EXCAVATION				<u>Rate</u>				
(With C325 excavator or equiva Construct Landing (Pt. 3)	lent) 1 Ldg		@	\$438.00	/Ldg	=	\$438	
						TOTAI	_EXCAVATION =	\$438
IMPROVEMENT				Rate				
Remove sod	15.8 sta		@	\$15.40	/sta	=	\$243	
Reopen road (w/ grader)	10.9 sta		@	\$15.40	/sta	=	\$168	
Daylight road (w/ excavator)	1 hr		@	\$114.00	/hr	=	\$114	
Reestablish ditch	21.9 sta		@	\$44.00	/sta	=	\$964	
Debris end haul	21.9 sta		@	\$20.00	/sta		\$438	
	10.9 sta		@	\$20.63		=	\$436 \$225	
Shape subgrade	10.9 Sta		w	Φ20.03	/sta	=	Φ ΖΖΌ	
(with road grader)	10.9 sta		@	\$16.00	/oto		¢171	
Compact subgrade	10.9 Sta		@	φ10.00	/sta	=	\$174	
(with vibratory roller)					Т	OTAL I	MPROVEMENT =	\$2,326
SURFACING		Size		Rate				
Landing rock	50 CY	Jaw-Run	@	\$27.42	/CY	=	\$1,371	
Turnout rock	20 CY	Jaw-Run	@	\$27.42	/CY	=	\$548	
Surface rock - 2" lift	170 CY	1½"-0"	@	\$29.11	/CY	=	\$4,949	
(Sta. 0+00 to Sta. 15+80)	170 01	1/2 0	•	Ψ20.11	,01	_	ψ1,010	
Surface rock - 6" lift	360 CY	3"-0"	@	\$28.77	/CY	=	\$10,357	
(Sta. 15+80 to Pt. 3)	000 01	0 0	•	Ψ20.77	/ O I	_	ψ10,007	
Shape surface	26.7 sta		@	\$20.63	/sta	=	\$551	
(with road grader)	20.7 314		•	Ψ20.00	/ota	_	φοσι	
Compact surface	26.7 sta		@	\$16.00	/sta	=	\$427	
(with vibratory roller)	20.7 314		•	ψ10.00	/ota	_	ΨτΖΙ	
(with violatory folion)								
					TOT	AL SUR	RFACING COST =	\$18,203
SPECIAL PROJECTS				Rate				
Culverts								
18"x30' (sta.10+43)	30 ft		@	\$13.75	/ft	=	\$413	
18"x35' (sta.15+80)	35 ft		@	\$13.75	/ft	=	\$481	
18"x30' (sta.17+87)	30 ft		@	\$13.75	/ft	=	\$413	
24"x30' (sta.19+22)	30 ft		@	\$21.45	/ft	=	\$644	
18"x30' (sta. 19+72)	30 ft		@	\$13.75	/ft	=	\$413	
Culvert removal	1 hr		@	\$114.00	/hr	=	\$114	
Install Culverts	5 hrs		@	\$114.00	/hr	=	\$570	
Culvert disposal	1 culvert		@	\$100.00		=	\$100	
Install dissipators	2 hrs		@	\$114.00		=	\$228	
Culvert bedding rock	90 CY	1½"-0"	@	\$29.11	/CY	=	\$2,620	
Dissipater rock	20 CY	Pit-Run	@	\$26.50	/ea.	=	\$530	
Bedding compaction	8 hrs	i it itali	@	\$57.00	/hr	=	\$456	
Site dewatering	1.5 hrs		@	\$12.00	/hr		\$436 \$18	
<u> </u>		loc	@			=		
Mulching Clean out authors inless	6 straw ba	169		\$12.00 \$25.00	/ea	=	\$72 \$50	
Clean out culvert inlets	2 culverts		@	\$25.00	/ea	=	\$50	
					TOT	AL SPE	CIAL PROJECT =	\$7,122
Compiled by:	Zane Sandborg	,						
Compiled by: Date:	Oct 30, 2020	j				CDANI	D TOTAL ====>	\$28,089
Date.	001 00, 2020					SINAIN	D 101AL =====>	Ψ20,009

SALE Just In Beaver ROAD Pt. 4 to Pt. 5 (Surfaced)	Project #	1	LENGTH	improve	4.9 sta	
IMPROVEMENT Re-open road (Sta. 0+00 to Sta. 0+50) (with road grader)	0.5 sta	@	<u>Rate</u> \$15.40	/sta =	\$8	
				TOTAL IM	PROVEMENT =	\$8
SURFACING Surface rock Shape surface	Size 10 CY Jaw-Ru 0.5 sta	ın @ @	Rate \$27.42 \$20.63	/CY = /sta =	\$274 \$10	
(with road grader) Compact surface (with vibratory roller)	0.5 sta	@	\$16.00	/sta =	\$8	
				TOTAL SURF	ACING COST =	\$292
SPECIAL PROJECTS Vacate road			Rate			
Restore streambed (Sta. 3+70) Block road (Sta. 0+50)	0.5 hrs 0.5 hrs	@	\$114.00 \$114.00		\$57 \$57	
			TOTAL	SPECIAL PRO	JECTS COST =	\$114
Compiled by: Date:	Zane Sandborg Oct 30, 2020			GRAND	TOTAL ====>	\$414

SALE Just In Beaver ROAD Pt. 6 to Pt. 7 (Unsurfaced)	Project #	ŧ 1		LENGTH impro	ove		10.3 sta
IMPROVEMENT				<u>Rate</u>			
Re-open road (with dozer)	10.3 sta		@	\$36.67 /sta	=	\$378	
Shape subgrade (with road grader)	10.3 sta		@	\$20.63 /sta	=	\$212	
Compact subgrade (with vibratory roller)	10.3 sta		@	\$16.00 /sta	=	\$165	
					TOTA	L IMPROVEME	NT = \$755
SURFACING		Size		Rate			
Surface rock (8" lift)	450 CY	Jaw-Run	@	\$27.42 /CY	=	\$12,339	
Landing rock (Pt. 6, Sta. 6+97, Pt. 7)	60 CY	Jaw-Run	@	\$27.42 /CY	=	\$1,645	
Shape surface (with road grader)	10.3 sta		@	\$20.63 /sta	=	\$212	
Compact surface (with vibratory roller)	10.3 sta		@	\$16.00 /sta	=	\$165	
					TOTAL S	SURFACING CO	OST= \$14,361

GRAND TOTAL ====> \$15,116

Zane Sandborg Oct 30, 2020

Compiled by: Date:

SUMMARY OF PROJECT COST

SALE Just In Beaver Project # 2

EXPLORATORY DRILLING Rate

Excavator 10 hrs. @ \$145.00 /hr = \$1,450 Drill rig 16 hrs. @ \$265.00 /hr = \$4,240

TOTAL EXPLORATORY DRILLING = \$5,690

Compiled by: Zane Sandborg

Date: Oct 30, 2020 **GRAND TOTAL =====> \$5,690**

SUMMARY OF MAINTENANCE COST

SALE Just In Beaver - Final Maintenance Cost Estimate

(Costed in appraisal, not in project costs)

grader-vibratory \$ \$ Grading Move-in 875 875

Road Segment	Length	Cost/Sta	Cost	Mileage
Pt. 1 to Pt. 2	105.8 sta	\$36.63	\$3,875	2.00
Pt. 2 to Pt. 3	26.7 sta	\$36.63	\$978	0.51
Pt. 6 to Pt. 7	10.3 sta	\$20.63	\$212	0.20
Total	142.8		\$5,065	2.70

Maintenance Rock:

	Volume	Cost/CY	Cost
1½"-0"	100	\$29.11	\$2,911
3"-0"	30	\$28.77	\$863
Grand Total			\$10,589
TS Volume	1,481	MBF	
Ocat / MDF			<u> </u>
Cost / MBF =			\$7.15

NOTES:

Rock Haul Cost Computation

SALE NAME: ROAD NAME: ROCK SOURCE Route:	Beave Hardr Hwy 2					
TIME Computa						
=	time factors:					
1.	55 MPH	6.0	MRT		6.5	minutes
2.	50 MPH		MRT		0.0	
3.	45 MPH		MRT		0.0	minutes
4.	40 MPH	32.0	MRT			minutes
5.	35 MPH		MRT		0.0	minutes
6.	30 MPH		MRT		0.0	minutes
7.	25 MPH		MRT		0.0	minutes
8.	20 MPH	7.0	MRT		21.0	minutes
9.	15 MPH		MRT		0.0	minutes
10.	10 MPH	2.0	MRT		12.0	minutes
11.	05 MPH		MRT		0.0	minutes
	ead time per RT uling cycle time	for t	this setting		0.50	minutes
(100% ef	ficiency)				88.00	minutes
Operator ef	ficiency correct:	ion	0.85		103.53	minutes
Job efficie	ncy correction		0.90		115.03	minutes
Truck capac	ity (CY)		10.00		11.50	min/CY
Loading time	e, delay time pe	r CY			0.25	min/CY
	es) per cubic ya:				11.75	min/CY
	computation					
=	truck and operate	or nor	hour		\$90.00	/hr.
					\$1.50	/min
COST OI	truck and operate	or ber	. minute		\$1.50	/ 111111
					\$17.63	/CY
	Water	truc	k, Grader & Roll	er	\$1.50	/CY
			Cost Delivered		Cost Deliv	rered
Size	Cost/Yd (Pit)		w/o processing		with proce	essing
1½ - 0"	\$11.48		\$29.11		\$30.61	
3 - 0"	\$11.14		\$28.77		\$30.27	
Jaw-Run	\$9.79		\$27.42		\$28.92	
Pit-Run	\$8.87		\$26.50		\$28.00	
Rip-Rap	\$24.98		\$42.61		•	
1	,					

Note: Pit costs June 1, 2019 Hardrock Rock Quarry

TIMBER CRUISE REPORT

Just In Beaver (WO-341-2021-W00697-01) FY 2021

1. Sale Area Location: Portions of Sections 4 & 5, T10S, R8W, W.M., Polk County, Oregon.

2. Fund Distribution:

a. Fund

BOF 66%

CSL 34%

3. Sale Acreage by Area:

Unit	Treatment	Gross Acres	Stream Buffers	Existing Roads	Slope Buffer (No Harvest)	Net Sale Acres	Acreage Comp. Method
1	Modified Clearcut	53	11	3	5	34	GIS
2	Modified Clearcut	15	2	1	-	12	GIS
Total		68	13	4	5	46	

- 4. Cruisers and Cruise Dates: This sale was cruised by Zane Sandborg, David Bailey, Cody Valencia and Aaron McEwen in June, 2020.
- 5. Cruise Method and Computation: The sale consists of two modified clearcut units that were stratified into two strata with both units having acreage in each strata. The strata were cruised using variable radius plot sampling on a 3 x 3 grid. Strata 1 was cruised using a Basal Area Factor of 20 and strata 2 was cruised using a Basal Area Factor of 40.
- 6. Measure plots were measured for DBH, height, form factor, grade, and defect. Data was entered into the Atterbury Super ACE cruise program to determine stand statistics and net board foot volume. Additional volume was removed to account for hidden defect and breakage.
 - Digital ortho photos, Lidar data, and GPS data were used to map the boundaries for the sale, and ArcMap GIS was used to determine gross and net acreage.
- 7. Measurement Standards: Tree heights were measured to the nearest foot, to a top diameter of 6 inches inside bark or to 40% of form factor. Diameters at breast height (DBH) were measured to the nearest inch, and a form point of 16 feet was used to calculate form factor. Form factors were measured or estimated on every tree. Most trees were graded in 40 foot log segments unless breakage, defect, or length to top of grade cruise diameter warranted otherwise.
- 8. Timber Description: Strata 1 is 21 acres of approximately 45 year old red alder with a moderate Douglas-fir component and small amounts of Western hemlock and big-leaf maple. Strata 2 consists of 25 acres of approximately 85 year old Douglas-fir with small amounts of red alder and Western hemlock. The average Douglas-fir to be removed in all units is approximately 19.0 inches DBH. The average volume per acre to be harvested (net) in Units 1 and 2 is approximately 32 MBF. Conifer trees other than Douglas-fir are reserved from cutting, unless present in Landings or between R/W tags.

9. Statistical Analysis and Stand Summary: (See attached "Statistics").

Strata	Target CV	Target SE	Actual CV	Actual SE
1	50%	13%	49.1%	11.9%
2	40%	9%	27.6%	5.9%

Note: Statistics shown are for conifer and hardwood trees combined. Percentages are for net board foot volume.

10. Total Volume (MBF) by Species and Grade: (See attached volume report "Species, Sort Grade – Board Foot Volumes - Project").

Unit	Species	Gross Cruise Volume	Cruised D & B	Cruised D & B (MBF)	Hidden D & B	Hidden D & B (MBF)	Net Sale Volume
1	DF	830	<1%	(4)	2%	(17)	809
	RA	77	1%	(1)	1%	(1)	75
2	DF	606	<1%	(3)	2%	(12)	591
	RA	6	1%	(<1)	1%	(<1)	6
Total		1519	1%	(8)	2%	(30)	1481

Unit	Species	Ave. DBH	Tot. Net Vol.	2-Saw	3-Saw	4-Saw	Camp- run
	Danalas fin	10	Grade %	76%	21%	3%	-
	Douglas-fir	18	809	615	170	24	-
1	Dod oldon	1.4	Grade %	-	<u>=</u> ,	-	100%
	Red alder	14	75	-	-	-	75
	Douglas-fir	22	Grade %	80%	18%	2%	N-
		22	591	472	106	12	1-
2	Red alder	15	Grade %	-	-	-	100%
			6	-	-	1.0	6
	Tetal All Assess		Grade %	73%	19%	3%	5%
	Total All Areas		1481	1088	276	36	81

Attachments: (All Units)

- -Cruise Design
- -Cruise Maps
- -Statistics
- -Stand Table Summary
- -Species, Sort Grade Board Foot Volume
- -Log Stock Table MBF
- -Tree Segment Volumes

Prepared by: Zane Sandborg

Unit Forester:

Evelyn Hukari

Date: 10/14/2020

Date: 10/29/202

CRUISE DESIGN WEST OREGON DISTRICT

Sa	le Name: <u>Just In Beaver</u> Strata <u>2</u>
	rvest Type: MC Net BF Net BF prox. Cruise Acres: _26
Pla	anned Sale Volume: 1.786 MMBF Estimated Sale Unit Value/Acre: \$ 16,200
Α.	<u>Cruise Goals</u> : (a) Grade minimum40 conifer and0 hardwood trees: (b) Sample23 cruise plots (11 grade: 12 count); (c) Other goals <u>X</u> Determine log grades for sale value.
	(Special cruising directions – leave trees etc.) <u>Take plots as shown on map. Do not take plots in buffers. All cedar and Western hemlock are reserve species.</u>
	DO NOT RECORD 12', 22' and 32' (for Hardwoods).
	DO NOT RECORD 22' LENGTHS.
В.	Cruise Design: 1. Plot Cruises: BAF 40 Full point Cruise Line Direction(s) 90°/180° Cruise Line Spacing 3/198 (chains) (feet) Cruise Plot Spacing 3/198 (chains) (feet) Grade/Count Ratio 1:1

C. Tree Measurements:

- 1. Diameter: Minimum DBH to cruise is 8" for conifers and 10" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- 3. Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>7</u>", <u>7</u>" for <u>hardwoods</u> or <u>40</u>% of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for

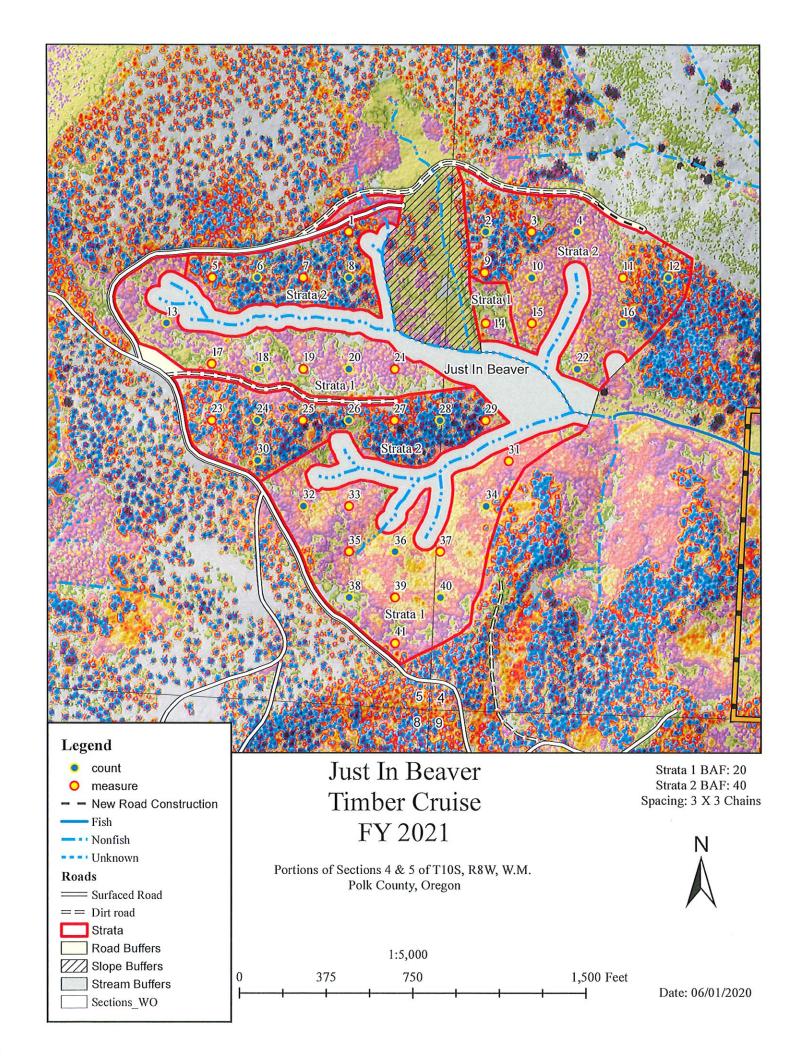
hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes: A. Species: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning points with red flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie red flagging above eye level near plot center and another red flagging around a sturdy wooden stake marking plot center. On red flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in yellow paint. Mark leave trees with an L for leave. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint.
- **9. Cruising Equipment:** Relaskop, Rangefinder or Lazer, Logger's Tape (with dbh on back), Biltmore Stick, Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by:	Zane Sandborg
Approved by:	
Date: 5/25/202	20

CRUISE DESIGN WEST OREGON DISTRICT

Sa	le Name: <u>Just In Beaver</u> Strata <u>1</u>
	rvest Type: MC Net BF Net BF prox. Cruise Acres: 21 Estimated CV% 50 /Acre SE% Objective 13 /Acre
Pla	anned Sale Volume: 1.786 MMBF Estimated Sale Unit Value/Acre: \$ 1,530
A.	<u>Cruise Goals</u> : (a) Grade minimum0 conifer and30 hardwood trees: (b) Sample18 cruise plots (10 grade: 8 count); (c) Other goals <u>X</u> Determine log grades for sale value.
	(Special cruising directions – leave trees etc.) <u>Take plots as shown on map. Do not take plots in buffers. All cedar and Western hemlock are reserve species.</u>
	DO NOT RECORD 12', 22' and 32' (for Hardwoods).
	DO NOT RECORD 22' LENGTHS.
В.	Cruise Design: 1. Plot Cruises: BAF 20 Full point Cruise Line Direction(s) 90°/180° Cruise Line Spacing 3/198 (chains) (feet) Cruise Plot Spacing 3/198 (chains) (feet) Grade/Count Ratio 1:1


C. Tree Measurements:

- **1. Diameter:** Minimum DBH to cruise is __8"_ for conifers and _10"_ for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- 3. Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>7</u>", <u>7</u>" for <u>hardwoods</u> or <u>40</u>% of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for

hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes: A. Species: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning points with red flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie red flagging above eye level near plot center and another red flagging around a sturdy wooden stake marking plot center. On red flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in yellow paint. Mark leave trees with an L for leave. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint.
- **9. Cruising Equipment:** Relaskop, Rangefinder or Lazer, Logger's Tape (with dbh on back), Biltmore Stick, Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by: Z	ane Sandborg	
Approved by:	Coheren	
Date: 5/25/202	6	

TC PSTA	ATS					DJECT S DJECT	STATIS JINB				PAGE DATE	1 7/21/2020
WP	RGE	SC	TRACT	Г	YPE		AC	RES	PLOTS	TREES	CuFt	BdFt
10S	08	04	S1	0	00MC			21.00	18	87	1	W
						TREES	1	ESTIMATED TOTAL		ERCENT SAMPLE		
		P	LOTS	TREES		PER PLOT		TREES		TREES		
TOTA	L		18	87		4.8						
CRUIS	SE		10	50		5.0		2,098		2.4		
DBH (COUNT											
REFO	REST											
COUN			8	37		4.6						
BLAN 100 %												
100 70	,				STAN	D SUMM.	ARY		-			
		SAI	MPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
			REES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
R ALI	DER		30	65.6	12.5	31	15.7	55.6	3,671	3,634	1,220	1,220
DF			11	21.2	14.5	53	6.4	24.4	3,105	3,066	843	843
WHE	MLOCK		3	4.1	20.0	62	2.0	8.9	924	818	252	252
BL M	APLE		6	9.0	11.6	18	2.0	6.7	242	193	77	77
TOTA	AL		50	99.9	13.2	35	26.3	95.6	7,942	7,712	2,392	2,392
	6		IMES OUT	E SAMPLE F OF 100 THE	VOLUME		2000	HE SAMPLE E				nu non
CL SD:	68.1 1.0		COEFF	S.E.%	т.	SAMPLI DW	E TREES -		#	OF TREES R		INF. POP.
21).												
	1,0		VAR.%				AVG	HIGH 76		5	10	1
R ALI	1,0		70.7	13.1		58	67	76		5	10	1
R ALI	1,0									5	10	1
R ALI DF WHE	DER		70.7 191.3	13.1 60.4		58 143	67 362	76 580		5	10	1
R ALI DF WHE	DER MLOCK APLE		70.7 191.3 44.5	13.1 60.4 30.8	2.	58 143 171	67 362 247	76 580 323		2,443	611	27
R ALI DF WHEI BL M	DER MLOCK APLE		70.7 191.3 44.5 65.7	13.1 60.4 30.8 29.3	2.	58 143 171 18 90	67 362 247 25	76 580 323 32 186	ħ		611	
R ALI DF WHEI BL M TOTA	DER MLOCK IAPLE AL		70.7 191.3 44.5 65.7 247.4	13.1 60.4 30.8 29.3		58 143 171 18 90	67 362 247 25 138	76 580 323 32 186 CF HIGH	ħ	2,443	611	27
R ALI DF WHEI BL M TOTA CL SD: R ALI	DER MLOCK MAPLE AL 68.1 1.0		70.7 191.3 44.5 65.7 247.4 COEFF VAR.%	13.1 60.4 30.8 29.3 35.0 S.E.%		58 143 171 18 90 SAMPLI DW 20	67 362 247 25 138 E TREES - AVG 23	76 580 323 32 186 CF HIGH	ħ	<i>2,443</i> # OF TREES R	<i>611</i> EEQ.	27 INF. POP.
R ALI DF WHEI BL M TOTA CL SD: R ALI DF	DER MLOCK MAPLE AL 68.1 1.0 DER		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2		58 143 171 18 90 SAMPLI OW 20 46	67 362 247 25 138 E TREES - AVG 23 89	76 580 323 32 186 CF HIGH 26 132	ħ	<i>2,443</i> # OF TREES R	<i>611</i> EEQ.	27 INF. POP.
R ALI DF WHEI BL M TOTA CL SD: R ALI DF WHEI	DER MLOCK APLE AL 68.1 1.0 DER MLOCK		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7		58 143 171 18 90 SAMPLI DW 20 46 44	67 362 247 25 138 E TREES - AVG 23 89 86	76 580 323 32 186 CF HIGH 26 132	ħ	<i>2,443</i> # OF TREES R	<i>611</i> EEQ.	27 INF. POP.
R ALI DF WHEI BL M TOTA CL SD: R ALI DF WHEI BL M	MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5		58 143 171 18 90 SAMPLI DW 20 46 44 7	67 362 247 25 138 E TREES - AVG 23 89 86 10	76 580 323 32 186 CF HIGH 26 132 128	#	2,443 # OF TREES R 5	611 EEQ. 10	27 INF. POP.
R ALI DF WHEI BL M TOTA CL SD: R ALI DF WHEI BL M TOTA	MLOCK (APLE AL 68.1 1.0 DER MLOCK (APLE AL MLOCK (APLE AL		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7		58 143 171 18 90 SAMPLI DW 20 46 44 7 30	67 362 247 25 138 E TREES - AVG 23 89 86 10 40	76 580 323 32 186 CF HIGH 26 132		2,443 # OF TREES R 5	611 EEQ. 10	27 INF. POP. 1
R ALI DF WHEI BL M TOTA CL SD: R ALI DF WHEI BL M TOTA	MLOCK (APLE AL 68.1 1.0 DER MLOCK (APLE AL 68.1		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2	L	58 143 171 18 90 SAMPLI OW 20 46 44 7 30 TREES/A	67 362 247 25 138 E TREES - AVG 23 89 86 10 40	76 580 323 32 186 CF HIGH 26 132 128 13 50		2,443 # OF TREES R 5 1,268 # OF PLOTS R	611 EEQ. 10 317 REQ.	27 INF. POP. 1
R ALI DF WHEI SD: R ALI DF WHEI BL M TOTA	MLOCK (APLE AL 1.0 DER MLOCK (APLE AL 68.1 1.0 DER MLOCK (APLE AL 68.1 1.0		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.%	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2	L	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/A	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH		2,443 # OF TREES R 5	611 EEQ. 10	27 INF. POP. 1
R ALI DF WHEI BL M TOTA CL SD: R ALI DF WHEI BL M TOTA CL SD: R ALI	MLOCK (APLE AL 1.0 DER MLOCK (APLE AL 68.1 1.0 DER MLOCK (APLE AL 68.1 1.0		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.%	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2	L	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/A DW 50	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG 66	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH 81		2,443 # OF TREES R 5 1,268 # OF PLOTS R	611 EEQ. 10 317 REQ.	27 INF. POP. 1
R ALI DF WHEI BL M TOTA CL SD: R ALI DF WHEI BL M TOTA CL SD: R ALI DF	MLOCK (APLE AL 1.0 DER MLOCK (APLE AL 68.1 1.0 DER MLOCK (APLE AL 68.1 1.0		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.%	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2	L	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/A	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH		2,443 # OF TREES R 5 1,268 # OF PLOTS R	611 EEQ. 10 317 REQ.	27 INF. POP. 1
R ALI DF WHEI BL M TOTA CL SD: R ALI DF WHEI BL M TOTA CL SD: R ALI DF WHEI WHEI SD:	MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.% 96.4 190.3	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2 S.E.% 23.4 46.1	L	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/A DW 50 11	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG 66 21	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH 81 31		2,443 # OF TREES R 5 1,268 # OF PLOTS R	611 EEQ. 10 317 REQ.	27 INF. POP. 1
R ALI DF WHEI BL M TOTA CL SD: R ALI DF WHEI BL M TOTA CL SD: R ALI DF WHEI WHEI SD:	MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL MLOCK IAPLE		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.%	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2 S.E.% 23.4 46.1 55.2	L	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/A DW 50 11	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG 66 21 4	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH 81 31 6		2,443 # OF TREES R 5 1,268 # OF PLOTS R	611 EEQ. 10 317 REQ.	27 INF. POP. 1
R ALI DF WHEI SD: R ALI DF WHEI BL M TOTA CL SD: R ALI DF WHEI BL M TOTA CL CL CL CL CL CL CL	MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.% 96.4 190.3 228.0 424.3 52.2 COEFF	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2 S.E.% 23.4 46.1 55.2 102.8 12.7	L	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/A DW 50 11 2 87	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG 66 21 4 9 100 AREA/AC	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH 81 31 6 18 113	#	2,443 # OF TREES R 5 1,268 # OF PLOTS R 5	611 REQ. 10 317 REQ. 10	INF. POP.
R ALI DF WHEI SD: R ALI DF WHEI BL M TOTA CL SD: R ALI DF WHE BL M TOTA CL SD: CL SD: CL SD: CL SD:	MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.% 96.4 190.3 228.0 424.3 52.2 COEFF VAR.%	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2 S.E.% 23.4 46.1 55.2 102.8 12.7	L	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/A DW 50 11 2 87 BASAL A DW	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG 66 21 4 9 100 AREA/AC AVG	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH 81 31 6 18 113 RE HIGH	#	2,443 # OF TREES R 5 1,268 # OF PLOTS R 5	611 EEQ. 10 317 REQ. 10	27 INF. POP. 1 INF. POP.
R ALI DF WHEI SD: R ALI DF WHEI BL M TOTA CL SD: R ALI DF WHE SD: R ALI DF WHE BL M TOTA CL SD: R ALI	MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.% 96.4 190.3 228.0 424.3 52.2 COEFF VAR.% 96.1	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2 S.E.% 23.4 46.1 55.2 102.8 12.7	L	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/A DW 50 11 2 87 BASAL A DW 43	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG 66 21 4 9 100 AREA/AC AVG 56	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH 81 31 6 18 113 RE HIGH 68	#	2,443 # OF TREES R 5 1,268 # OF PLOTS R 5	611 REQ. 10 317 REQ. 10	INF. POP. INF. POP. INF. POP.
R ALI DF WHEE BL M TOTA CL SD: R ALI DF WHEE BL M TOTA CL SD: R ALI DF WHE BL M TOTA CL SD: R ALI DF	MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.% 96.4 190.3 228.0 424.3 52.2 COEFF VAR.% 96.1 157.6	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2 S.E.% 23.4 46.1 55.2 102.8 12.7	L	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/ DW 50 11 2 87 BASAL DW 43 15	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG 66 21 4 9 100 AREA/AC AVG 56 24	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH 81 31 6 18 113 RE HIGH 68 34	#	2,443 # OF TREES R 5 1,268 # OF PLOTS R 5	611 REQ. 10 317 REQ. 10	INF. POP. INF. POP. INF. POP.
R ALI DF WHEE BL M TOTA CL SD: R ALI DF WHEE BL M TOTA CL SD: R ALI DF WHE BL M TOTA CL SD: WHEE BL M TOTA CL SD: WHEE BL M TOTA	MLOCK MLOCK MLOCK MLOCK MLOCK MLOCK MLOCK MAPLE AL 68.1 1.0 DER MLOCK MLOCK MAPLE AL 68.1 1.0 DER		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.% 96.4 190.3 228.0 424.3 52.2 COEFF VAR.% 96.1 157.6 221.3	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2 S.E.% 23.4 46.1 55.2 102.8 12.7	L	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/A DW 50 11 2 87 BASAL A DW 43	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG 66 21 4 9 100 AREA/AC AVG 56	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH 81 31 6 18 113 RE HIGH 68 34 14	#	2,443 # OF TREES R 5 1,268 # OF PLOTS R 5	611 REQ. 10 317 REQ. 10	INF. POP. INF. POP. INF. POP.
R ALI DF WHEE BL M TOTA CL SD: R ALI DF WHEE BL M TOTA CL SD: R ALI DF WHE BL M TOTA CL SD: WHEE BL M TOTA CL SD: WHEE BL M TOTA	MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.% 96.4 190.3 228.0 424.3 52.2 COEFF VAR.% 96.1 157.6	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2 S.E.% 23.4 46.1 55.2 102.8 12.7	L	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/ DW 50 11 2 87 BASAL DW 43 15	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG 66 21 4 9 100 AREA/AC AVG 56 24 9	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH 81 31 6 18 113 RE HIGH 68 34	#	2,443 # OF TREES R 5 1,268 # OF PLOTS R 5	611 REQ. 10 317 REQ. 10	INF. POP. INF. POP. INF. POP.
R ALI DF WHEE BL M TOTA CL SD: R ALI DF WHEE BL M TOTA CL SD: R ALI DF WHE BL M TOTA CL SD: R ALI DF WHEE BL M TOTA	MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.% 96.4 190.3 228.0 424.3 52.2 COEFF VAR.% 96.1 157.6 221.3 424.3	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2 S.E.% 23.4 46.1 55.2 102.8 12.7	L	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/ DW 50 11 2 87 BASAL 0W 43 15 4	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG 66 21 4 9 100 AREA/AC AVG 56 24 9 7 96	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH 81 31 6 18 113 RE HIGH 68 34 14 14	#	2,443 # OF TREES R 5 1,268 # OF PLOTS R 5	611 REQ. 10 317 REQ. 10 29 REQ. 10	INF. POP. INF. POP. INF. POP.
R ALI DF WHEI SD: R ALI DF WHEI BL M TOTA CL SD: R ALI DF WHE BL M TOTA CL SD: R ALI DF WHE BL M TOTA	MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 1.0 DER MLOCK IAPLE AL 68.1 AL 68.1 AL		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.% 96.4 190.3 228.0 424.3 52.2 COEFF VAR.% 96.1 157.6 221.3 424.3 39.7 COEFF VAR.%	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2 S.E.% 23.4 46.1 55.2 102.8 12.7 S.E.% 23.3 38.2 53.6 102.8 9.6	L.	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/ DW 50 11 2 87 BASAL DW 43 15 4 86 NET BE	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG 66 21 4 9 100 AREA/AC AVG 56 24 9 7 96 /ACRE AVG	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH 81 31 6 18 113 RE HIGH 68 34 14 14 105	#	2,443 # OF TREES R 5 1,268 # OF PLOTS R 5	611 REQ. 10 317 REQ. 10 29 REQ. 10	INF. POP. INF. POP. INF. POP.
R ALI DF WHEE BL M TOTA CL SD: R ALI DF WHEE BL M TOTA CL SD: R ALI DF WHE BL M TOTA CL SD: R ALI DF WHE BL M TOTA CL SD: R ALI DF WHE BL M TOTA CL SD: R ALI DF WHE BL M TOTA CL SD: R ALI DF WHE BL M TOTA	MLOCK IAPLE AL 68.1 1.0 DER		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.% 96.4 190.3 228.0 424.3 52.2 COEFF VAR.% 96.1 157.6 221.3 424.3 39.7 COEFF VAR.% 98.3	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2 S.E.% 23.4 46.1 55.2 102.8 12.7 S.E.% 23.3 38.2 53.6 102.8 9.6 S.E.% 23.8	L.	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/ DW 50 11 2 87 BASAL OW 43 15 4 86 NET BE OW 2,769	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG 66 21 4 9 100 AREA/AC AVG 56 24 9 7 96 /ACRE AVG 3,634	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH 81 31 6 18 113 RE HIGH 68 34 14 14 105	#	2,443 # OF TREES R 5 1,268 # OF PLOTS R 5 115 # OF PLOTS F 5	611 REQ. 10 317 REQ. 10 29 REQ. 10	INF. POP. INF. POP. INF. POP.
R ALI DF WHEE BL M TOTA CL SD: R ALI DF WHEE BL M TOTA CL SD: R ALI DF WHEE BL M TOTA CL SD: R ALI DF WHEE BL M TOTA CL SD: R ALI DF WHEE BL M TOTA CL SD: R ALI DF	MLOCK IAPLE AL 68.1 1.0 DER		70.7 191.3 44.5 65.7 247.4 COEFF VAR.% 64.9 152.5 70.4 70.8 178.2 COEFF VAR.% 96.4 190.3 228.0 424.3 52.2 COEFF VAR.% 96.1 157.6 221.3 424.3 39.7 COEFF VAR.%	13.1 60.4 30.8 29.3 35.0 S.E.% 12.0 48.2 48.7 31.5 25.2 S.E.% 23.4 46.1 55.2 102.8 12.7 S.E.% 23.3 38.2 53.6 102.8 9.6	L.	58 143 171 18 90 SAMPLI DW 20 46 44 7 30 TREES/ DW 50 11 2 87 BASAL DW 43 15 4 86 NET BE	67 362 247 25 138 E TREES - AVG 23 89 86 10 40 ACRE AVG 66 21 4 9 100 AREA/AC AVG 56 24 9 7 96 /ACRE AVG	76 580 323 32 186 CF HIGH 26 132 128 13 50 HIGH 81 31 6 18 113 RE HIGH 68 34 14 14 105	#	2,443 # OF TREES R 5 1,268 # OF PLOTS R 5 115 # OF PLOTS F 5	611 REQ. 10 317 REQ. 10 29 REQ. 10	INF. POP.

TC PST	TATS				PROJECT PROJECT	STATI				PAGE DATE	2 7/21/2020
TWP	RGE	SC	TRACT	TYI	PΕ	A	CRES	PLOTS	TREES	CuFt	BdFt
10S	08	04	S1	00M	С		21.00	18	87	1	W
CL	68.1		COEFF		NET BI	F/ACRE			# OF PLOTS	REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
TOTA	AL		50.8	12.3	6,762	7,712	8,662		109	27	12
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS RE	Q.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
R ALI	DER		97.1	23.5	933	1,220	1,507				
DF			154.4	37.4	527	843	1,158				
WHE	MLOCK		221.8	53.7	117	252	388				
BL M	APLE		424.3	102.8		77	156				
TOTA	AL		43.4	10.5	2,140	2,392	2,644		80	20	9

TC	PSTNDSU	IM				S	Stand T	Table Si	ımmary				Page Date:	7/21	[/2020	
T10S 1	R08W S0-	4 Ty00MC		21.0	00		Project	J	INB				Time:	3:00	5:04PM	ſ
							Acres		21.0	0			Grown Year			
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/	BA/ Acre	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MB	F
RA	10	4	87	35	13.581	7.41	13.58	9.3	30.0		126	407			26	9
RA	11	8	87	50	22.448	14.81	22.45	13.1	43.7		295	982			62	21
RA	12	4	86	54	9.431	7.41	9.43	17.2	50.0		163	472			34	10
RA	13	2	86	69	4.018	3.70	6.03	17.0	53.3		102	321			22	7
RA	14	1	87	38	1.732	1.85	1.73	19.0	40.0		33	69			7	1
RA	15	6	86	56	9.054	11.11	10.56	24.3	64.3		257	679			54	14
RA	16	1	87	53	1.326	1.85	1.33	30.0	70.0		40	93			8	2
RA	17	1	87	54	1.175	1.85	1.17	35.0	70.0		41	82			9	2
RA	18	1	86	66	1.048	1.85	2.10	27.0	85.0		57	178			12	4
RA	19	1	87	90	.941	1.85	1.88	29.5	105.0		55	198			12	4
RA	20	1	87	60	.849	1.85	1.70	30.5	90.0		52	153			11	3
RA	Totals	30	87	50	65.604	55.56	71.96	16.9	50.5		1,220	3,634			256	76
DF	9	1	88	76	5.030	2.22	5.03	13.0	60.0		65	302			14	6
DF	10	1	87	74	4.074	2.22	4.07	15.0	60.0		61	244			13	5
DF	14	1	85	98	2.079	2.22	4.16	20.0	70.0		83	291			17	6
DF	15	2	88	84	3.622	4.44	7.24	20.5	70.0		148	507			31	11
DF	16	3	87	91	4.775	6.67	9.55	24.5	85.0		234	812			49	17
DF	24	2	80	77	1.415	4.44	2.83	48.5	122.5		137	347			29	7
DF	42	1	85	141	.231	2.22	.69	164.0	813.3		114	564	P		24	12
DF	Totals	11	87	83	21.225	24.44	33.58	25.1	91.3		843	3,066			177	64
WH	15	1	85	89	2.414	2.96	4.83	21.0	80.0		101	386			21	8
WH	22	1	83	67	1.122	2.96	2.24	30.5	105.0		68	236			14	5
WH	32	1	87	79	.531	2.96	1.06	77.5	185.0		82	196			17	4
WH	Totals	3	85	82	4.067	8.89	8.13	31.0	100.6		252	818			53	17
BM	10	2	87	19	4.074	2.22	2.04	7.0	20.0		14	41			3	1
BM	12	2	87	24	2.829	2.22	2.83	10.5	25.0		30	71			6	1
BM	13	1	86	22	1.205	1.11	1.21	11.0	30.0		13	36			3	1
BM	15	1	86	42	.905	1.11	.91	22.0	50.0		20	45			4	1
ВМ	Totals	6	87	23	9.015	6.67	6.98	11.1	27.6		77	193			16	4
Totals		50	87	56	99.911	95.56	120.65	19.8	63.9		2,392	7,712			502	162

TC	PSPCSTGR		$S_{\mathbf{l}}$	oecies, S	ort Gra	de - Boai	d F	oot Volum	es (Pı	oject)								
T10	0S R08W S04 T	у00МС		21.00		Project: Acres		JINB 21.	00							Page Date Time		1 21/202 :06:03	20
		%						Percent of	Net Boa	rd Foot	Volume	1				Avera	age Log	3	Logs
	S So Gr	Net	Bd. Ft.	per Acre		Total		Log Sc	ale Dia.			Log	Length		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5 6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	DO 2M	22		699	699		15		50	50		5		95	38	15	373	2.78	1.9
DF	DO 3M	69	1.8	2,154	2,115		44	92		8			4	96	39	8	99	0.66	21.4
DF	DO 4M	9		252	252		5	100			45	55			20	6	24	0.42	10.3
DF	Totals	40	1.3	3,105	3,066		64	71	11	17	4	6	3	88	33	8	91	0.75	33.6
WH WH	DO 3M DO 4M	98 2	11.2 25.0	903 21	802 16		17 0	55 100		45	22 100	33	22	22	28 20	10 8	106 30	1.12 1.10	7.6 .5
WH	Totals	11	11.5	924	818		17	56		44	24	32	22	22	28	10	101	1.12	8.1
ВМ	DO CR	100	20.1	242	193		4	100			77	23			19	7	28	0.59	7.0
BM	Totals	3	20.1	242	193		4	100			77	23			19	7	28	0.59	7.0
RA	DO CR	100	1.0	3,671	3,634		76	96	4		19	27	12	43	27	7	51	0.64	72.0
RA	Totals	47	1.0	3,671	3,634		76	96	4		19	27	12	43	27	7	51	0.64	72.0
Total	s		2.9	7,942	7,712		162	82	6	11	15	19	9	57	28	8	64	0.70	120.6

TC PLOGSTVB Log Stock Table - MBF Page T10S R08W S04 Ty00MC 21.00 Project: JINB Date 7/21/2020 Acres 21.00 Time 3:06:03PM So Gr Log Gross Def % Net Volume by Scaling Diameter in Inches Net Len MBF 16-19 20-23 24-29 30-39 40+ Spp rt de **MBF** Spc 10-11 12-13 14-15 DF 1.2 DO 2M 26 1 7 DF DO 2M 40 14 21.6 34 2 2 2.6 DF DO 3M DF DO 3M 6 9.8 6 38 DF 40 37 2.2 36 56.5 5 18 10 DO 3M 0 0 .5 DF DO 4M 12 DF DO 4M 14 1.2 DF 20 2.1 DO 4M 24 2 3.8 2 DF DO 4M DF DO 4M 28 0 .7 0 64 7 Totals 1.3 39.8 18 18 10 7 4 DF 65 21.9 WH DO 3M 4 WH DO 3M 26 6 32.5 6 WH 3M 32 3 14.8 3 WH DO 3M 34 6.9 1 1 WH 40 6 35.8 22.0 4 DO 3M 0 1.9 DO 4M 20 0 25.0 WH 0 Totals 17 4 8 WH 19 11.5 10.6 6 BM DO CR 2 33.3 35.8 BM DO CR 18 1 18.7 1 BM DO CR 20 1 25.0 22.0 1 BMDO CR 28 1 23.5 1 Totals 2 5 20.1 2.5 2 BMDO CR 12 2 2.1 2 RA 3 RA DO CR 14 3 4.6 1 RA DO CR 18 .8 2 DO CR 20 11.4 6 RA RA DO CR 24 5 6.2 5 DO CR 26 3.1 RA 28 7.6 5.8 RA DO CR 30 9 11.8 CR RA DO 32 4.6 RA DO CR 7.1 RA DO CR 34 3.2 3

10

4

3

3

16

21.5

5.5

17

4

1.3

36

38

RA

RA

DO CR

DO CR

TC PLO	GSTVB				Log S	Stock Tab	ole -	MBF									
T10S R0	08W S04 Ty00MC	21	.00		Proje Acres		JINI		.00					Page Date Time	7/2	2 1/2020 06:03P	
S Spp T	So Gr Log	Gross MBF	Def %	Net MBF	% Spc	2-3 4	-5	Net Volu	me by S 8-9	Scaling Dia	mete	<u>r in Inch</u> 14-15	es 16-19	20-23	24-29	30-39	40+
RA	DO CR 40		, v	12		2-3 4	-5	2	7	4	2-13	14-13	10-19	20-23	24-29	30-39	401
RA	Totals	77		76	47.1			51	15	7	3						
Total	All Species	167	2.9	162	100.0			76	35	22	10		8	4	7		

TC PSTATS					OJECT S OJECT	STATIS JINB				PAGE DATE	1 7/9/2020
WP RGI	SC	TRACT	7	TYPE		ACI	RES	PLOTS	TREES	CuFt	BdFt
10S 08	04	S2	(00MC			25.00	23	146	1	W
						F	ESTIMATED	PI	ERCENT		
					TREES		TOTAL		AMPLE		
		PLOTS	TREES		PER PLOT		TREES	,	TREES		
TOTAL		23	146		6.3						
CRUISE		11	71		6.5		2,578		2.8		
DBH COUNT											
REFOREST											
COUNT		12	75		6.3						
BLANKS											
100 %				Om to							
		A A COLUMN	mp ppg		ND SUMMA		Digit	CDOSS	NET	CROSS	NET
	S	SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DF		66	89.7	22.2	93	51.3	241.7	54,838	54,596	12,397	12,397
R ALDER		1	4.3	15.0	36	1.3	5.2	255	255	12,397	12,397
SNAG		2	7.2	9.4	67	1.1	3.5	233	2,3	111	111
WHEMLOCI		1	1.9	13.0	44	0.5	1.7	113	113	40	40
DF LEAVE		1	.1	59.0	192	0.2	1.7				
TOTAL		71	103.1	21.2	88	55.1	253.9	55,206	54,964	12,547	12,547
							BF	"	OF TREES R		
SD: 1.0 DF		VAR.% 74.4	S.E.% 9.2	L	OW 917	AVG 1,009	HIGH 1,102		5	10	
				L		AVG	HIGH			67	1
DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL		74.4 81.6	9.2	L	917 849	AVG 1,009	HIGH 1,102 <i>1,031</i>		266	67	ž
DF R ALDER SNAG WHEMLOCI DF LEAVE	S	74.4	9.2		917 849	AVG 1,009	HIGH 1,102 <i>1,031</i>		5	67	
DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.1 SD: 1.0 DF R ALDER SNAG WHEMLOCI	S	74.4 81.6 COEFF	9.2		917 849 SAMPLE	AVG 1,009 940 E TREES -	HIGH 1,102 1,031 CF		5 266 OF TREES R	67 EQ.	INF. POP.
DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.1 SD: 1.0 DF R ALDER SNAG	S	74.4 81.6 COEFF VAR.%	9.2 9.7 S.E.%		917 <i>849</i> SAMPLE OW	AVG 1,009 940 E TREES - AVG	HIGH 1,102 1,031 CF HIGH		5 266 OF TREES R	67 EQ.	INF. POP.
DF R ALDER SNAG WHEMLOCK DF LEAVE TOTAL CL 68.1 SD: 1,0 DF R ALDER SNAG WHEMLOCK DF LEAVE TOTAL		74.4 81.6 COEFF VAR.% 63.8	9.7 S.E.% 7.8		917 849 SAMPLE OW 199	940 E TREES - AVG 216	1,031 CF HIGH 233	#	5 266 OF TREES R 5	67 EQ. 10	INF. POP.
DF R ALDER SNAG WHEMLOCK DF LEAVE TOTAL CL 68.1 SD: 1.0 DF R ALDER SNAG WHEMLOCK DF LEAVE TOTAL	S	74.4 81.6 COEFF VAR.% 63.8	9.7 S.E.% 7.8	L	917 849 SAMPLE OW 199	940 E TREES - AVG 216	1,031 CF HIGH 233	#	5 266 OF TREES R 5	67 EQ. 10	INF. POP.
DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.1 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.3 SD: 1.0 DF LEAVE TOTAL	S	74.4 81.6 COEFF VAR.% 63.8 71.0 COEFF VAR.% 45.6	9.2 9.7 S.E.% 7.8 8.4 S.E.% 9.7	L	917 849 SAMPLE OW 199 185 TREES/AOW 81	940 E TREES - AVG 216 202 ACRE AVG 90	HIGH 1,102 1,031 CF HIGH 233 219 HIGH 98	#	266 OF TREES R 5	67 EQ. 10	INF. POP.
DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.1 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.5 SD: 1.0 DF R ALDER	S	74.4 81.6 COEFF VAR.% 63.8 71.0 COEFF VAR.% 45.6 264.0	9.2 9.7 S.E.% 7.8 8.4 S.E.% 9.7 56.2	L	917 849 SAMPLE OW 199 185 TREES/A OW 81 2	202 ACRE AVG 90 4	HIGH 1,102 1,031 CF HIGH 233 219 HIGH 98 7	#	266 OF TREES R 5	67 EQ. 10	INF. POP.
DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.1 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.5 SD: 1.1 DF R ALDER SNAG		74.4 81.6 COEFF VAR.% 63.8 71.0 COEFF VAR.% 45.6 264.0 357.2	9.2 9.7 S.E.% 7.8 8.4 S.E.% 9.7 56.2 76.1	L	917 849 SAMPLE OW 199 185 TREES/AOW 81	202 ACRE AVG 90 4 7	HIGH 1,102 1,031 CF HIGH 233 219 HIGH 98 7 13	#	266 OF TREES R 5	67 EQ. 10	INF. POP.
DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.1 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68 SD: 1.1 DF R ALDER SNAG WHEMLOCI		74.4 81.6 COEFF VAR.% 63.8 71.0 COEFF VAR.% 45.6 264.0 357.2 479.6	9.2 9.7 S.E.% 7.8 8.4 S.E.% 9.7 56.2 76.1 102.2	L	917 849 SAMPLE OW 199 185 TREES/A OW 81 2	202 ACRE AVG 90 4 7 2	HIGH 1,102 1,031 CF HIGH 233 219 HIGH 98 7	#	266 OF TREES R 5	67 EQ. 10	INF. POP.
DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.1 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.5 SD: 1.1 DF R ALDER SNAG		74.4 81.6 COEFF VAR.% 63.8 71.0 COEFF VAR.% 45.6 264.0 357.2	9.2 9.7 S.E.% 7.8 8.4 S.E.% 9.7 56.2 76.1	L	917 849 SAMPLE OW 199 185 TREES/A OW 81 2	202 ACRE AVG 90 4 7	HIGH 1,102 1,031 CF HIGH 233 219 HIGH 98 7 13 4	#	266 OF TREES R 5	67 EQ. 10	INF. POP.
DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.1 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.3 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL		74.4 81.6 COEFF VAR.% 63.8 71.0 COEFF VAR.% 45.6 264.0 357.2 479.6 479.6	9.2 9.7 S.E.% 7.8 8.4 S.E.% 9.7 56.2 76.1 102.2 102.2	L	917 849 SAMPLE OW 199 185 TREES/A OW 81 2 2 90	202 ACRE AVG 90 4 7 2 0 103	HIGH 1,102 1,031 CF HIGH 233 219 HIGH 98 7 13 4 0 116	#	266 OF TREES R 5 202 OF PLOTS R 5	67 EQ. 10 50 EQ. 10	INF. POP.
DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.1 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68 SD: 1.1 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL DF R ALDER SNAG WHEMLOCI DF LEAVE SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE		74.4 81.6 COEFF VAR.% 63.8 71.0 COEFF VAR.% 45.6 264.0 357.2 479.6 479.6 60.4	9.2 9.7 S.E.% 7.8 8.4 S.E.% 9.7 56.2 76.1 102.2 102.2	L	917 849 SAMPLE OW 199 185 TREES/A OW 81 2 2 90	202 ACRE AVG 90 4 7 2 0	HIGH 1,102 1,031 CF HIGH 233 219 HIGH 98 7 13 4 0 116	#	266 OF TREES R 5 202 OF PLOTS R 5	67 EQ. 10 50 EQ. 10	INF. POP.
DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.1 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.3 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.3 CL		74.4 81.6 COEFF VAR.% 63.8 71.0 COEFF VAR.% 45.6 264.0 357.2 479.6 479.6 60.4 COEFF	9.2 9.7 S.E.% 7.8 8.4 S.E.% 9.7 56.2 76.1 102.2 102.2 12.9	L	917 849 SAMPLE OW 199 185 TREES/A OW 81 2 2 90 BASAL A	202 ACRE AVG 90 4 7 2 0 103 AREA/ACI	HIGH 1,102 1,031 CF HIGH 233 219 HIGH 98 7 13 4 0 116 RE	#	266 OF TREES R 5 202 OF PLOTS R 5	67 EQ. 10 50 EQ. 10	INF. POP.
DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.1 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.5 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68. SD: 1.0 DF R ALDER		74.4 81.6 COEFF VAR.% 63.8 71.0 COEFF VAR.% 45.6 264.0 357.2 479.6 479.6 60.4 COEFF VAR.%	9.2 9.7 S.E.% 7.8 8.4 S.E.% 9.7 56.2 76.1 102.2 102.2 12.9 S.E.%	L	917 849 SAMPLI OW 199 185 TREES/A OW 81 2 2 90 BASAL A OW 229 2	202 ACRE AVG 90 4 7 2 0 103 AREA/ACI AVG 242 5	HIGH 1,102 1,031 CF HIGH 233 219 HIGH 98 7 13 4 0 116 RE HIGH 255 8	#	266 OF TREES R 5 202 OF PLOTS R 5	67 EQ. 10 50 EQ. 10	INF. POP.
DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.1 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68 SD: 1.1 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68. SD: 1.1 DF R ALDER SNAG SD: 1.1 DF R ALDER SNAG		74.4 81.6 COEFF VAR.% 63.8 71.0 COEFF VAR.% 45.6 264.0 357.2 479.6 479.6 60.4 COEFF VAR.% 25.2 264.0 331.3	9.2 9.7 S.E.% 7.8 8.4 S.E.% 9.7 56.2 76.1 102.2 102.2 12.9 S.E.% 5.4 56.2 70.6	L	917 849 SAMPLI OW 199 185 TREES/A OW 2 90 BASAL A OW 229	202 ACRE AVG 90 4 7 2 0 103 AREA/ACI AVG 242 5 3	HIGH 1,102 1,031 CF HIGH 233 219 HIGH 98 7 13 4 0 116 REE HIGH 255 8 6	#	266 OF TREES R 5 202 OF PLOTS R 5	67 EQ. 10 50 EQ. 10	INF. POP.
DF R ALDER SNAG WHEMLOCK DF LEAVE TOTAL CL 68.1 SD: 1,0 DF R ALDER SNAG WHEMLOCK DF LEAVE TOTAL CL 68.3 SD: 1,0 DF R ALDER SNAG WHEMLOCK DF LEAVE TOTAL CL 68.3 SD: 1,0 DF R ALDER SNAG WHEMLOCK DF LEAVE TOTAL CL 68.3 SD: 1,0 DF R ALDER SNAG WHEMLOCK SD: 1,0 DF R ALDER SNAG WHEMLOCK SD: 1,0 DF R ALDER SNAG WHEMLOCK SD: 1,0 DF		74.4 81.6 COEFF VAR.% 63.8 71.0 COEFF VAR.% 45.6 264.0 357.2 479.6 479.6 60.4 COEFF VAR.% 25.2 264.0 331.3 479.6	9.2 9.7 S.E.% 7.8 8.4 S.E.% 9.7 56.2 76.1 102.2 102.2 12.9 S.E.% 5.4 56.2 70.6 102.2	L	917 849 SAMPLI OW 199 185 TREES/A OW 81 2 2 90 BASAL A OW 229 2	202 ACRE AVG 90 4 7 2 0 103 AREA/ACI AVG 242 5 3 2	HIGH 1,102 1,031 CF HIGH 233 219 HIGH 98 7 13 4 0 116 RE HIGH 255 8 6 4	#	266 OF TREES R 5 202 OF PLOTS R 5	67 EQ. 10 50 EQ. 10	INF. POP.
DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68.1 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68 SD: 1.1 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68 SD: 1.0 DF R ALDER SNAG WHEMLOCI DF LEAVE TOTAL CL 68. SD: 1.1 DF R ALDER SNAG SD: 1.1 DF R ALDER SNAG		74.4 81.6 COEFF VAR.% 63.8 71.0 COEFF VAR.% 45.6 264.0 357.2 479.6 479.6 60.4 COEFF VAR.% 25.2 264.0 331.3	9.2 9.7 S.E.% 7.8 8.4 S.E.% 9.7 56.2 76.1 102.2 102.2 12.9 S.E.% 5.4 56.2 70.6	L	917 849 SAMPLI OW 199 185 TREES/A OW 81 2 2 90 BASAL A OW 229 2	202 ACRE AVG 90 4 7 2 0 103 AREA/ACI AVG 242 5 3	HIGH 1,102 1,031 CF HIGH 233 219 HIGH 98 7 13 4 0 116 REE HIGH 255 8 6	#	266 OF TREES R 5 202 OF PLOTS R 5	67 EQ. 10 50 EQ. 10	INF. PO

TC PST	ATS				PROJECT PROJECT	Γ STATI JIN				PAGE DATE	2 7/9/2020
TWP	RGE	\mathbf{SC}	TRACT	T	YPE	A	CRES	PLOTS	TREES	CuFt	BdFt
10S	08	04	S2	00	OMC		25.00	23	146	1	W
CL	68.1		COEFF		NET B	F/ACRE			# OF PLOTS R	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DF			28.1	6.0	51,327	54,596	57,865				
R AL	DER		264.0	56.2	112	255	399				
SNAC WHE DF LI	MLOCK		479.6	102.2		113	229				
TOTA	AL		27.6	5.9	51,728	54,964	58,200		32	8	4
CL	68.1		COEFF		NET C	CUFT FT/A	CRE		# OF PLOTS R	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DF			26.7	5.7	11,691	12,397	13,103				
R AL	DER		264.0	56.2	48	111	173				
SNAC WHE	MLOCK		479.6	102.2		40	80				
TOTA	AL		25.9	5.5	11,856	12,547	13,238		28	7	3

TC	PSTNDSUM		Stand Table Sun	nmary	Page Date:	1 7/9/2020
T105	S R08W S04 Ty00MC	25.00	Project JIN	В	Time:	9:34:58AM
			Acres	25.00	Grown Year:	

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	ì	MBF
DF	9	1	83	56	8.291	3.66	8.29	11.0	30.0		91	249			23	
DF	14	3	85	92	10.279	10.99	20.56	18.8	61.7		387	1,268			97	3
DF	15	1	84	93	2.985	3.66	5.97	23.5	75.0		140	448			35	
DF	16	3	86	114	7.870	10.99	15.74	21.5	80.0		338	1,259			85	3
DF	17	2	87	121	4.647	7.33	11.62	29.4	112.0		342	1,301			85	1
DF	18	2	87	136	4.145	7.33	12.44	30.7	115.0		381	1,430			95	3
DF	19	2	82	83	3.720	7.33	7.44	33.0	95.0		246	707			61	1
DF	20	2	87	123	3.358	7.33	8.39	40.6	154.0		341	1,293			85	3
DF	21	3	87	148	4.568	10.99	13.71	44.6	185.6		611	2,543			153	6
DF	22	3	85	146	4.162	10.99	13.87	43.2	176.0		599	2,442			150	6
DF	23	2	84	134	2.539	7.33	7.62	48.3	193.3		368	1,473			92	3
DF	24	5	88	142	5.829	18.31	17.49	56.7	244.0		992	4,267		3	248	10
DF	25	4	87	150	4.298	14.65	12.89	63.1	272.5		813	3,514		:	203	8
DF	26	2	83	146	1.987	7.33	5.96	62.8	246.7		375	1,470			94	3
DF	27	6	86	149	5.527	21.98	17.50	70.1	318.9		1,227	5,582		:	307	14
DF	28	3	87	149	2.570	10.99	7.71	68.4	326.7		528	2,518			132	(
DF	30	2	87	139	1.492	7.33	4.48	85.8	393.3		384	1,761			96	4
DF	31	4	86	158	2.795	14.65	9.08	95.2	460.0		864	4,179		:	216	10
DF	32	1	86	163	.656	3.66	1.97	111.0	550.0		218	1,082			55	2
DF	33	5	86	153	3.083	18.31	9.87	105.1	513.1		1,037	5,063		:	259	12
DF	34	3	86	152	1.743	10.99	5.23	118.1	564.4		618	2,951			154	7
DF	35	1	85	132	.548	3.66	1.64	110.7	506.7		182	833			46	2
DF	36	1	85	154	.518	3.66	1.55	133.7	676.7		208	1,052			52	2
DF	37	1	89	175	.491	3.66	1.96	118.5	655.0		233	1,285			58	3
DF	38	1	89	183	.465	3.66	1.86	131.2	740.0		244	1,377			61	3
DF	40	1	85	175	.420	3.66	1.68	133.7	712.5		225	1,196			56	3
DF	44	2	86	151	.694	7.33	2.08	194.5	986.7		405	2,053			101	
DF	Totals	66	86	123	89.680	241.74	228.60	54.2	238.8		12,397	54,596		3,	099	1,36
RA	15	1	86	49	4.252	5.22	4.25	26.0	60.0		111	255			28	
RA	Totals	1	86	49	4.252	5.22	4.25	26.0	60.0		111	255			28	
WH	13	1	91	52	1.887	1.74	1.89	21.0	60.0		40	113			10	
WH	Totals	1	91	52	1.887	1.74	1.89	21.0	60.0		40	113			10	
DFL	59	1	87	192	.092	1.74										
DFL	Totals	1	87	192	.092	1.74										
SN	8	1	99	158	4.982	1.74										
SN	12	1	82	1000000	2.214	1.74										
SN	Totals	2	94	124	7.197	3.48										
Totals		71	86	119	103.107	253.91	234 74	53.5	234.1		12,547	54,964		3	137	1,3

тс	PSPCSTGR		S_{l}	pecies, S	ort Gra	de - Board F	oot V	/olum	es (Pr	oject)								
T10	OS R08W S04 T	y00MC		25.00		Project:	JI	NB								Page		1	
						Acres		25.	00							Date Time		9/2020 :34:58	
		%					Per	cent of 1	Vet Boar	rd Foot	Volume					Avera	ige Lo	g	Logs
	S So Gr	Net	Bd. Ft	. per Acre		Total		Log Sca	ale Dia.			Log I	Length		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	DO 2M	79	.5	43,862	43,638	1,091			32	68	0			100	40	17	464	2.45	94.0
DF	DO 3M	18	.2	9,700	9,681	242		93		7	1	3	6	90	38	9	114	0.89	84.9
DF	DO 4M	3		1,276	1,276	32		100			43	57			21	6	26	0.40	49.7
DF	Totals	99	.4	54,838	54,596	1,365		19	26	55	1	2	1	96	35	11	239	1.56	228.6
RA	DO CR	100		255	255	6		100						100	36	7	60	0.72	4.3
RA	Totals	0		255	255	6		100						100	36	7	60	0.72	4.3
WH	DO 3M	100		113	113	3		100						100	38	6	60	0.55	1.9
WH	Totals	0		113	113	3		100						100	38	6	60	0.55	1.9
Total	s		0.4	55,206	54,964	1,374		19	26	55	1	2	1	96	35	11	234	1.53	234.7

TC PLOGSTVB Log Stock Table - MBF Page 25.00 T10S R08W S04 Ty00MC Project: JINB Date 7/9/2020 Acres 25.00 Time 9:34:57AM % So Gr Log Def Gross Net Volume by Scaling Diameter in Inches Net rt de Len MBF % MBF Spp Spc 2-3 6-7 8-9 10-11 12-13 14-15 16-19 20-23 24-29 4-5 30-39 40+ DF DO 2M 14 2 DF DO 2M 20 1 DF DO 2M 36 5 2 2 DF DO 2M 38 DF DO 2M 40 1,086 1,081 79.2 136 365 259 137 30 154 1 1.1 DF DO 3M 20 2 DF 26 DO 3M DF DO 3M 28 .2 1 2 DF 30 2 DO 3M 3 .2 2 DF DO 3M 32 .6 3 7 DF DO 3M 34 6 DF DO 3M 36 18 1.3 2 6 9 23 DF DO 3M 38 23 1.7 6 13 4 177 DF 13.0 9 DO 3M 40 177 16 54 90 8 2 1 DF DO 4M 12 4 .3

2

2

3

2

5

3

8

2

61

6

6

3

3

70

88

1

108

108

144

144

157

157

365

365

267

267

145

145

30

30

.2

.2

.2

.3

.6

.1

99.3

100.0

100.0

100.0

.2

1,365

1,374

DF

DF

DF

DF

DF

DF

DF

DF

DF

RA

RA

WH

WH

Total

DO 4M

DO 4M

DO 4M

DO 4M

DO 4M

DO 4M

DO

DO 4M

4M

Totals

Totals

Totals

All Species

DO CR

DO 3M

14

16

18

20

24

26

28

30

36

38

2

2

3

8

2

6

6

3

3

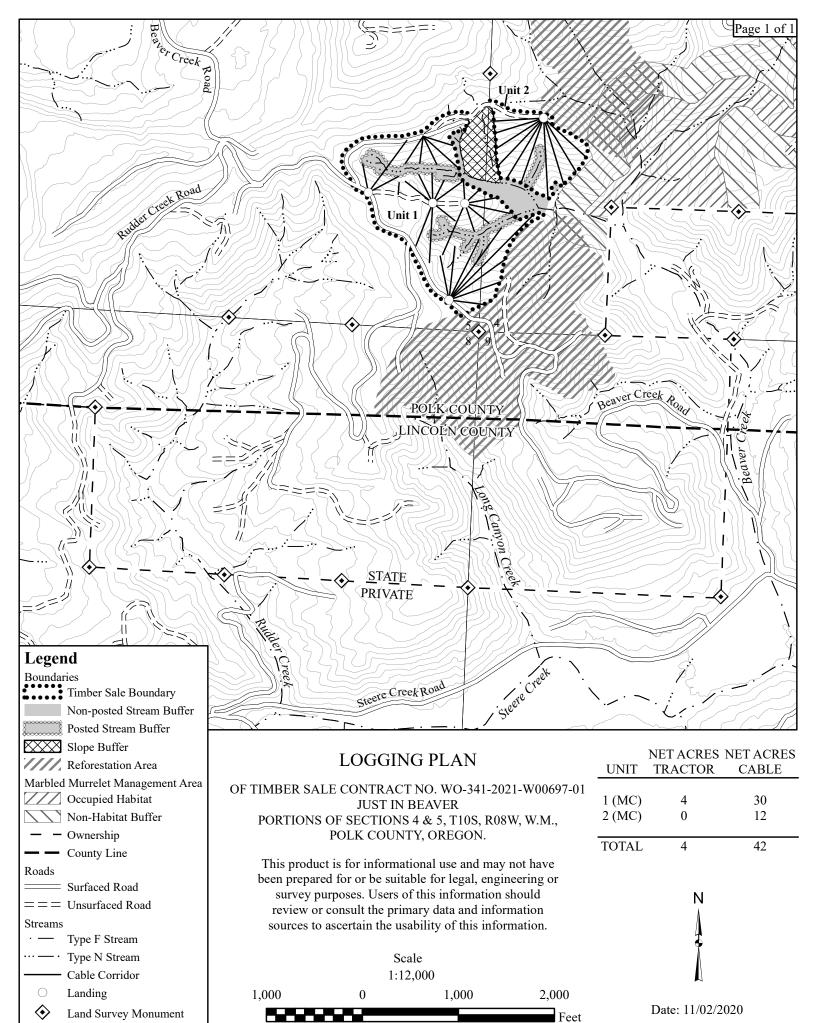
1,380

1,371

ODF/State Forests Operational Periods and Seasonal Restriction WALT Sys Gen Report 2014 Page 1 of 1

Oregon Department of Forestry

OPERATIONAL PERIODS and SEASONAL RESTRICTIONS


West Oregon, NWOA 24533 ALSEA HWY, PHILOMATH, OR 97370 (541) 929-3266

Sale Number																
WO-341-2021-W00697-01			Just ir	Just in Beaver			П					December 31, 2023	r 31, 20	23		
			Jan	Feb	Mar	Apr	Мау	Jun	Juc	Aug	Sep	Oct	Nov	Dec	Date	
Comments	Units	Project	1 15	1 15 1	1 15	1 15 1	1 15	1 15	1 15 1		15 1 15	_	15 1 15 1	1 15		
Chainsaw use in or within For tailholding in a MMMA 300' of seasonally restricted area																

Dec Date	15		
Nov	15 1		
Oct	1 15 1 15 1		
Sep	1 15 1		
Aug	15 /		
Jul	1 15 1 15		
Jun	1 15		
Mar Apr May Jun Jul Aug Sep Oct Nov Dec	15 1 15 1 15 1		
Apr	1 15		
Mar	1 15 '		
Jan Feb I	15		
Jan	15 1		
-	Project 1		
	Units		
	Comments		
	Hauling	Log Hauling on Unsurfaced Roads	

																	_
				Jan	Feb	Mar	Apr	Мау	Jun	Jul	Ang	Sep	Öct	No No	Dec	Date	
Project Work	Comments	Units	Project	1 15	1 15	1 15	1 15	1 15	1 15	1 15	1 15	1 15	1 15	1 15	1 15		
Activity in Live Streams																	
Non-project roads and landings																	
Landing and Road Construction or Improvement Operations																	1
Project outside seasonally restricted area	Exploratory Drilling																

Activity Restricted 2 hours before sunset and 2 hours after sunrise Operation Restricted Operation Allowed

