

Sale WO-341-2021-W00689-01

District: West Oregon Date: February 12, 2021

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$755,896.05	\$99.23	\$755,995.28
		Project Work:	(\$44,240.00)
		Advertised Value:	\$711,755.28

Sale WO-341-2021-W00689-01

District: West Oregon Date: February 12, 2021

Timber Description

Location:

Stand Stocking: 60%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	33	0	97
Alder (Red)	21	0	95

Volume by Grade	y Grade 2S 3S & 4S 6"- 11"		3S 12"+	Camprun	Total
Douglas - Fir	1,457	79	219	0	1,755
Alder (Red)	0	0	0	1	1
Total	1,457	79	219	1	1,756

Comments: Pond Values Used: Local Pond Values, December, 2020

Other Conifers Stumpage Price = Pond Value minus Logging Cost:

\$198.51/MBF = \$526.00/MBF - \$327.49/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost:

472.51/MBF = 950.00/MBF - (327.49/MBF + 150/MBF(Extra Haul Cost))

Bigleaf maple and Other Hardwoods Stumpage Price = Hardwood Pulp price using a conversion factor of 10

MBF/ton: = \$25.00/MBF

PULP (Conifer and Hardwood Price) = \$2.5/TON

Other Costs (with Profit & Risk to be added): Intermediate Support/Tail Trees: 4 supports @ \$100/support = \$400

The mediate Support rail frees. 4 supports \oplus \$100/support = \$400

TOTAL Other Costs (with Profit & Risk to be added) = \$400

Other Costs (No Profit & Risk added):

Equipment Cleaning (Invasive Species): \$2,000

Landing Slash Piling and sorting out firewood: 4 Landings @ \$180/Landing = \$720

TOTAL Other Costs (No Profit & Risk added) = \$2,720

ROAD MAINTENANCE

Move-in: (Grader) \$875

Final Road Maintenance: \$9,200

TOTAL Road Maintenance: \$10,075/1,756 MBF = \$5.74/MBF

SLASH DISPOSAL

Move-In: \$1,290 Machine Wash: \$300

Project Work: 20 hrs @ \$150/hr = \$3,000

TOTAL Slash Disposal = \$4,590

Sale WO-341-2021-W00689-01

District: West Oregon Date: February 12, 2021

Logging Conditions

Combination#: 1 Douglas - Fir 82.00%

Alder (Red) 82.00%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 7 bd. ft / load: 4900

cost / mbf: \$192.42

machines: Log Loader (A)

Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 18.00%

Alder (Red) 18.00%

Logging System: Shovel Process: Manual Falling/Delimbing

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 10 bd. ft / load: 4900

cost / mbf: \$80.36

machines: Shovel Logger

Sale WO-341-2021-W00689-01

District: West Oregon Date: February 12, 2021

Logging Costs

Operating Seasons: 2.00

Profit Risk: 10%

Project Costs: \$44,240.00

Other Costs (P/R): \$400.00

Slash Disposal: \$4,590.00

Other Costs: \$2,720.00

Miles of Road

Road Maintenance:

\$5.74

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load	
Douglas - Fir	\$0.00	2.0	4.5	
Alder (Red)	\$0.00	1.0	3.8	

Sale WO-341-2021-W00689-01

District: West Oregon Date: February 12, 2021

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$172.25	\$5.91	\$5.00	\$108.73	\$0.23	\$29.21	\$2.61	\$2.00	\$1.55	\$327.49
Alder (Red	l)								
\$172.25	\$6.03	\$5.00	\$262.50	\$0.23	\$44.60	\$2.61	\$2.00	\$1.55	\$496.77

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$758.20	\$430.71	\$0.00
Alder (Red)	\$0.00	\$596.00	\$99.23	\$0.00

Sale WO-341-2021-W00689-01

District: West Oregon Date: February 12, 2021

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total	
Douglas - Fir	1,755	\$430.71	\$755,896.05	
Alder (Red)	1	\$99.23	\$99.23	

Gross Timber Sale Value

Recovery: \$755,995.28

Prepared By: Cody Valencia Phone: 541-929-3266

SUMMARY OF ALL PROJECT COSTS

Sale Name:	Crystal Clear			Date:	February 2021	
Project #1 - Impro	vements					
Road Segment		<u>Length</u>		Cost		
1 to 2		161.5 sta		\$ 5 ,157		
2 to 3		77.6 sta		\$8,168		
2 to 4		51.8 sta		\$13,978		
5 to 6		9.5 sta		\$6,911		
7 to 8		18.5 sta		\$285		
9 to 10		4.4 sta		\$68		
11 to 12		2.5 sta		\$1,986		
	TOTALS	325.8 sta				\$36,553
Project #2 - Mech	anical Brushing	3.1 miles				\$3,709
Project #3 - Move	<u>in</u>		Cost			
Excavator, C325 or	equiv.		\$1,450			
Grader, Cat 14-G o	r equiv.		\$875			
Vibratory roller			\$875			
Road Brusher			\$778			
	TOTAL					\$3,978
			(GRAND TOTA	AL	\$44,240

Date 02/23/2021

Compiled by Cody Valencia

SALE ROAD	Crystal Clear 1 to 2 (Surfaced)		oject#	1	LENGTH	improve		161.5 sta
SURFACING Spot rock Process surfac (with road grad Compact road s (with vibratory r	er) surface	150 30 sta 30 sta	cy of @ @	Size 1½"-0" \$20.63 \$16.00	/sta	= = =	\$4,008 \$619 \$480	
					TOTAL R	OCK COST	=	\$5,107
SPECIAL PRO Clean out culve (inlets and outle	erts	2	culverts	@ TOTAL SP	\$25.00 ECIAL PR	ea = OJECTS CC	\$50 DST =	\$50
Compiled by: Date:		dy Valencia 23, 2021			GRAND T	OTAL ====	:=>	\$5,157

SALE ROAD	Crystal Cle 2 to 3 (Sur	ar faced) Baber C	Project # forridor Rd.	1	LENGTH	improve		77.6 sta
IMPROVEMI Remove sod brushing deb	l and oris	77.6 sta	@	\$15.40	/sta	=	\$1,195	
(with road grant Re-establish (with road grant g	ditch ader)	5.2 sta	@	\$44.00		=	\$229	
(Sta. 0+00 to	5+20)				TOTAL IN	/IPROVEMI	ENT =	\$1,424
SURFACING Spot rock Process surf	ace	100 77.6 Sta	cy of @	Size 1½"-0" \$20.63	Cost/yd \$26.72 /sta	= =	\$2,672 \$1,601	
(with road grace Compact sur	rfacing	77.6 Sta	@	\$16.00	/sta	=	\$1,242	
(with vibrator	ry roller)				TOTAL R	OCK COST	Γ=	\$5,515
SPECIAL PR	PO IECTS							
Install Culver (18"x40' cpp)	rt (Sta. 24+20	0) 40	ft	@	\$13.75	/ft =	\$550	
Install Culve	,	1	hr	@	\$145.00	/hr =	\$145	
Culvert Bedo backfill rock (Sta. 24+20)	_	20	cy of	1½"-0"	\$26.72	=	\$534	
				TOTAL SP	ECIAL PRO	DJECTS CO	OST =	\$1,229
Compiled by Date:		Cody Valencia Feb 23, 2021			GRAND 1	ΓΟΤΑL ===	==>	\$8,168

SALE ROAD	Crystal Clear 2 to 4 (Surfaced)	Baber Butte	e Rd.	Project #	1	LENGTH	improve		51.8 sta
EXCAVAT	TION	With C325	exca	avator or ed	uivalent				
Bank slou	gh removal	6 h		@	\$145.00	/hr	=	\$870	
	60 to Sta. 18+50)			_					
Endhaul w	aste material	150 c	y	@	\$2.50	/cy	=	\$375	
						TOTAL EX	CAVATI	ON =	\$1,245
IMPROVE	MENT								
Remove s	od and brushing	51.8 st	ta	@	\$15.40	/sta	=	\$798	
debris		01.00		Ü	Ψ10110	701.0		ψ. σσ	
(with road Construct	•	2 L	das	@	\$435.00	/I da	=	\$870	
	00, Sta 35+30)	2 5	ugo	•	ψ-100.00	/Lug	_	ΨΟΙΟ	
Re-establi		12 st	ta	@	\$44.00	/sta	=	\$528	
(with road	grader)					TOTAL IN		AFNIT	#0.400
						TOTAL IM	IPROVEN	/IENI =	\$2,196
SURFACI		00)	10	ov of	Size 3"-0"	Cost/yd \$26.38		\$264	
Spot rock	tion rock (Sta. 27+	,		cy of cy of	3 -0 1½"-0"	\$26.36 \$26.72	=	\$204 \$5,344	
Landing ro	ock			cy of	Jaw-Run	\$25.03	=	\$2,503	
	0, Sta. 35+30)			-,		4-0.00		 ,	
Turnaroun	nd rock (Sta. 9+80,	41+30)	20	cy of	3"-0"	\$26.38	=	\$528	
Process s		51.8	Sta	@	\$20.63	/sta	=	\$1,069	
(with road	• '								
Compact s	-	51.8	Sta	@	\$16.00	/sta	=	\$829	
(with vibra	tory roller)								
						TOTAL RO	OCK COS	ST =	\$10,537
Compiled	by:	Cody Vale				GRAND T			
Date:		Feb 23, 20							\$13,978

SALE ROAD	Crystal Clear 5 to 6 (Surfac	ed)		Project #	1	LENGTH	improve		9.5 sta
EXCAVAT	ION	With C32	25 exc	avator or ed	guivalent				
	gh removal to Sta. 1+00)		hrs	@	\$145.00	/hr	=	\$145	
•	aste material	10	су	@	\$3.50	/cy	=	\$35	
						TOTAL EX	KCAVATI	ON =	\$180
IMPROVE	MENT								
sod and bi	oad, remove rushing debris	9.5	sta	@	\$15.40	/sta	=	\$146	
(with road Shape sub (with road	grade	9.5	sta	@	\$20.63	/sta	=	\$196	
(With Toda	gradery				TOTAL IMPF			PROVEMENT =	
SURFACII	NG								
Surface ro	ck (4"lift)		210	cy of	3"-0"	\$26.38	=	\$5,540	
Landing ro	ock (Sta. 7+30)		20	cy of	Jaw-Run	\$25.03	=	\$501	
Process so (with road	urfacing	9.50	Sta	@	\$20.63	/sta	=	\$196	
Compact s	surfacing	9.50	Sta	@	\$16.00	/sta	=	\$152	
(with vibla	iory roller)					TOTAL RO	OCK COS	ST =	\$6,389
Compiled	by:	Cody Val	encia						
Date:	-	Feb 23, 2				GRAND T	OTAL ==	===>	\$6,911

SALE Crystal Clear Project # 1 LENGTH improve 18.5 sta

ROAD 7 to 8 (Surfaced)

IMPROVEMENT

Remove sod and 18.5 sta @ \$15.40 /sta = \$285 brushing debris

(with road grader)

TOTAL IMPROVEMENT COST = \$285

Compiled by: Cody Valencia

Date: Feb 23, 2021 **GRAND TOTAL =====> \$285**

LENGTH improve SALE Crystal Clear Project # 1 4.4 sta 9-10 (Surfaced) ROAD **IMPROVEMENT** 4.4 sta @ \$15.40 /sta \$68 Remove sod and brushing debris (with road grader) TOTAL IMPROVEMENT COST = \$68

Compiled by: Cody Valencia

Date: Feb 23, 2021 **GRAND TOTAL =====>** \$68

SALE ROAD	Crystal Cle 11-12 (Su			Project #	1		LENGTH	improve			2.5 sta
IMPROVE	MENT										
Remove s		2.5	sta	@	\$	15.40	/sta	=	\$39		
brushing of the control of the contr											
Shape sul	•	1.7	sta	@	\$2	20.63	/sta	=	\$35		
Sta. 0+00	to 1+70										
(with road	grader)					TC	TAL IMPR	OVEMEN	NT COST =	;	\$74
SURFACI	NG										
Surface ro	ock (4"lift)		40	cy of	3"	'-0"	\$26.38	=	\$1,055		
Sta. 0+00	` ,			•							
Junction r	ock		10	cy of	11/2	2"-0"	\$26.72	=	\$267		
Turnarour	nd rock (Sta	. 1+00)	20	cy of	3"	'-0"	\$26.38	=	\$528		
Process s	•	1.7	Sta	@	\$	\$20.63	/sta	=	\$35		
(with road	•	4 7	04-		•	240.00	/-+-		#07		
Compact :	•	1.7	Sta	@	\$	\$16.00	/sta	=	\$27		
(with vibra	itory roller)						TOTAL RO	ארג רחי	ST _	\$1	912
							IOIALIK) i —	φι,	J 1 Z
Compiled	by:	Cody Va	lencia								
Date:	-	Feb 23, 2					GRAND T	OTAL ==	===>	\$1,	986

Mechanical Brushing Costs

Project # 2 Date: Feb 23, 2021

Road Segment/ Point	Road Name	Length (Feet)	Miles	Brush Density	Cost / Mile	Segment Cost
2 to 3	Baber Corridor Road	2,767	0.52	Light	\$800.00	\$416
2 to 3	Baber Corridor Road	4,993	0.95	Heavy	\$1,400.00	\$1,330
2 to 4	Baber Butte Road	5,180	0.98	Medium	\$1,100.00	\$1,078
5 to 6		950	0.18	Heavy	\$1,400.00	\$252
7 to 8		1,850	0.35	Heavy	\$1,400.00	\$490
9 to 10		440	0.08	Medium	\$1,100.00	\$88
11 to 12		250	0.05	Medium	\$1,100.00	\$55
-		10.100				40 -00
Totals		16,430	3.1			\$3,709

Total Cost \$3,709

SUMMARY OF MAINTENANCE COST

SALE Crystal Clear Final log haul Maintenance Cost Estimate

Grading Move-in road grader \$ 875

	Road Segment	Length	Cost/Sta	Cost	Mileage
1 to 4		213.3	\$20.63	\$4,400	4.04
2 to 7		28.9	\$20.63	\$596	0.55
5 to 6		9.5	\$20.63	\$196	0.18
Total		251.7		\$5,192.00	4.77

Maintenance Rock:

	Volume	Cost/CY	Cost
1½"-0"	150	\$26.72	\$4,008.00
3"-0"	0	\$26.38	\$0.00
Grand Total			\$ 10,075
TS Volume	1,756	MBF	
Cost / MBF =			\$5.74

NOTES:

(Costed in appraisal, not in project costs)

Rock Haul Cost Computation

ROAD NAME: Crystal Clear

ROAD NAME: Baber Corridor Road

ROCK SOURCE Hardrock

ROUTO: Was 66

Route: Hwy 20, Trapp Creek, Baber Corridor Road

TIME Computation	n:					
Road speed time	factors:					
1.	55 MPH	30.1	MRT	32.8	minutes	
2.	50 MPH		MRT	0.0	minutes	
3.	45 MPH	10.0	MRT		minutes	
4.	40 MPH		MRT	0.0	minutes	
5.	35 MPH		MRT	0.0	minutes	
6.	30 MPH		MRT	0.0	minutes	
7.	25 MPH	6.1	MRT	14.6	minutes	
8.	20 MPH		MRT	0.0	minutes	
9.	15 MPH	2.0	MRT	8.0	minutes	
10.	10 MPH	0.9	MRT	5.4	minutes	
11.	05 MPH	0.1	MRT	1.2	minutes	
					minutes	
= =	Dump or spread time per RT					
Total hauling	= =	e for t	his setting			
(100% efficie	ency)			75.80	minutes	
6.51			0.05	0.0 1.0		
Operator efficie	=	tion	0.85		minutes	
Job efficiency	correction		0.90	99.09	minutes	
Truck capacity	(CY)		10.00	9.91	min/CY	
Loading time, do		er CY	10.00	0.25	, -	
TIME (minutes)	= =			10.16	•	
TITE (MITTAGES)	per edbre y	ala		10.10	11117 01	
COST per CY com	putation					
Cost of truc	="	tor per	hour	\$90.00	/hr.	
Cost of truc				\$1.50	/min	
0000 01 0140.	n ana opola	.001 P01		4 2 • 0 0	,	
Cost per CY				\$15.24	/CY	
<u>.</u> -						
Spread and compa	act Wate	er truc	k, Grader & Roller	\$1.50	/CY	

		Cost Delivered	Cost Delivered
Size	Cost/Yd (Pit)	w/o processing	with processing
1½" - 0"	\$ 11.48	\$26.72	\$28.22
3" - 0"	\$ 11.14	\$26.38	\$27.88
Jaw-Run	\$ 9.79	\$25.03	\$26.53
Pit-Run	\$ 8.78	\$24.02	\$25.52

TIMBER CRUISE REPORT

Crystal Clear (WO-341-2021-W00689-01) FY 2021

1. Sale Area Location: Portions of Section 9 & 16, T11S, R9W, W.M., Lincoln County, Oregon.

2. Fund Distribution:

a. Fund

BOF 75%

Administration Site 25%

3. Sale Acreage by Area:

Area	Treatment	Gross Acres	Stream Buffers	Existing Roads	Net Sale Acres	Acreage Comp. Method
1	Modified Clearcut	40	<1	2	38	GIS

- **4.** Cruisers and Cruise Dates: The sale was cruised by David Bailey, Evelyn Hukari, Mike Loewen, Elliot Lowry, Aaron Mcewen, Cody Valencia and Zane Sandborg in December 2020.
- 5. Cruise Method and Computation: The sale consists of one modified clearcut area that was cruised using variable radius plot sampling. The sale area was cruised using a 54.45 BAF with plots spaced 3 chains apart on plot lines spaced 3 chains apart. A total of 40 plots were taken with 22 measure plots and 18 count plots.
- 6. Measure plots were measured for DBH, height, form factor, grade, and defect. Data was entered into the Atterbury SuperACE cruise program to determine stand statistics and net board foot volume. Additional volume was removed to account for hidden defect and breakage.
 - Digital ortho photos, Lidar data, and GPS data were used to map the boundaries for the sale, and ArcMap GIS was used to determine gross and net acreage.
- 7. Measurement Standards: Tree heights were measured to the nearest foot, to a top diameter of 6 inches inside bark or to 40% of form factor. Diameters at breast height (DBH) were measured to the nearest inch, and a form point of 16 feet was used to calculate form factor. Form factors were measured or estimated on every tree. Most trees were graded in 40 foot log segments unless breakage, defect, or length to top of grade cruise diameter warranted otherwise.
- **8. Timber Description:** Timber in the sale area includes 38 acres of 79 to 97 year-old Douglas-fir with some scattered red alder. The average Douglas-fir to be removed is approximately 33 inches DBH, with an average height of 123 feet to a merchantable top. The average volume per acre to be harvested (net) is approximately 46 MBF. Conifer trees other than Douglas-fir are reserved from cutting.

9. Statistical Analysis and Stand Summary: (See attached "Statistics").

Area	Target CV	Target SE	Actual CV	Actual SE
1	53%	9%	60.8%	9.4%

Note: Statistics shown are for conifer and hardwood trees combined. Percentages are for net board foot volume.

10. Total Volume (MBF) by Species and Grade: (See attached volume report "Species, Sort Grade – Board Foot Volumes - Project").

Species	Gross Cruise Volume	Cruised D & B	Cruised D & B (MBF)	Hidden D & B	Hidden D & B (MBF)	Net Sale Volume
Douglas-fir	1,923	2.9%	56	6%	112	1,755
Red Alder	1	28.6%				1
Total	1,924		56		112	1,756

Species	Ave. DBH	Net Vol.	2-Saw	3-Saw	4-Saw	Camp Run
D 1 C	22	Grade %	83%	16%	1%	-
Douglas-fir	33	1,755	1,457	281	17	-
		Grade %	-	-	-	100%
Red Alder	21	1	-	-	1	1
Total		1,756	1,457	281	17	1

Attachments:	Cruise	Design

Cruise Map

Species, Sort Grade – Board Foot Volumes

Statistics

Stand Table Summary Log Stock Table – MBF

Prepared by: Cody Valencia

Date: 1/25/2021

Unit Forester:

Evelyn Hukari

Date: 2/16/20

CRUISE DESIGN WEST OREGON DISTRICT

Sa	ale Name: <u>Crystal Clear</u> Area <u>1</u>
	Arvest Type: MC Deprox. Cruise Acres: 38 Estimated CV% 53 /Acre SE% Objective 9 /Acre
ΡI	anned Sale Volume: 1.8 MMBF Estimated Sale Area Value/Acre: \$ 21,600.
A.	<u>Cruise Goals</u> : (a) Grade minimum <u>80</u> conifer and <u>24</u> hardwood trees: (b) Sample <u>40</u> cruise plots (20 grade: 20 count); (c) Other goals <u>X</u> Determine log grades for sale value; <u>Determine take and leave tree species and sizes.</u>
	(Special cruising directions – leave trees etc.) <u>Take plots as shown on map. Do not take plots in buffers.</u>
	DO NOT RECORD 12', 22' and 32' (for Hardwoods).
	DO NOT RECORD 22' LENGTHS.
В.	Cruise Design: 1. Plot Cruises: BAF 40 (Full point; Half point) (circle one) Cruise Line Direction(s) 7°/187° Cruise Line Spacing 3/198 (chains) (feet) Cruise Plot Spacing 3/198 (chains) (feet) Grade/Count Ratio 1:1

C. Tree Measurements:

- **1. Diameter:** Minimum DBH to cruise is <u>8"</u> for conifers and <u>10"</u> for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- **2. Bole Length:** Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- 3. Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>7</u>", <u>7</u>" for <u>hardwoods</u> or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for

hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes: A. Species: Record as DF (Douglas-fir). WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir). SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull.

 Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11".

 #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- **7. Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning points with red flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie red flagging above eye level near plot center and another red flagging around a sturdy wooden stake marking plot center. On red flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in yellow paint. Mark leave trees with an L for leave. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint.
- **9. Cruising Equipment:** Relaskop, Rangefinder or Lazer, Logger's Tape (with dbh on back), Biltmore Stick, Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10. Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by: _	Cody valencia	
Approved by:		
Date:		

Legend

- Ownership

Timber Sale Boundary

Stream Buffer

Type F Stream

Type N Stream

Surfaced Road

=== Unsurfaced Road

Count Plot

Crystal Clear Cruise Map

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

Plot Spacing 3 chains 198' Line Spacing 3 chains 198' Bearing 7/187

C TSTA	ATS			P	STA ROJECT	TISTI	ICS CRYSTAL			PAGE DATE 1	1 /25/2021
WP	RGE	SECT	TRACT	Т	YPE	ACR	RES	PLOTS	TREES	CuFt	BdFt
11S	09W	09	A1	Т	AKE		38.00	40	126	1	W
				TRI	EES		ESTIMATED TOTAL		RCENT MPLE		
		PLOTS	TREES	PER	R PLOT		TREES	TR	EES		
ТОТА	AL	40	126		3.2						
CRUIS	SE	22	71		3.2		1,121		6.3		
DBH (COUNT										
REFO	REST										
COUN	NT	17	55		3.2						
BLAN	NKS	1									
100 %)										
				STAND	SUMMAR	RY					
		SAMPLE	TREES	AVG B	OLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DF		70	28.9	32.8	123	29.7	170.2	50,542	49,099	9,908	9,908
R ALI			.6	21.0	28	0.3	1.4	40	28	22	22
N ALL	DER	1	.0								
TOTA	AL FIDENCE	71 LIMITS OF T		32.7	121	30.0	171.5	50,582	49,127	9,929	9,929
TOTA	AL FIDENCE	71 LIMITS OF T	29.5 THE SAMPLE OF 100 THE VC	32.7 DLUME WILL F	121	30.0 N THE SA	171.5 AMPLE ERRO	50,582 DR		,	9,929 INF. POP.
CONI	AL FIDENCE 67.1	LIMITS OF T	29.5 THE SAMPLE OF 100 THE VC	32.7 DLUME WILL F	121 BE WITHIN	30.0 N THE SA	171.5 AMPLE ERRO	50,582 DR	49,127	,	INF. POP.
CCL:	FIDENCE 67.1 67.1 %	LIMITS OF TIMES OUT	29.5 THE SAMPLE OF 100 THE VC	32.7 DLUME WILL F	121 BE WITHIN AMPLE T	30.0 N THE SA	171.5 AMPLE ERRO	50,582 DR	49,127 OF TREES R	EQ.	INF. POP.
CL:	FIDENCE 67.1 67.1 % 1.0	LIMITS OF T TIMES OUT COEF VAR.9	29.5 THE SAMPLE OF 100 THE VC	32.7 DLUME WILL F S. LOW	121 BE WITHIN AMPLE T	30.0 N THE SA	171.5 AMPLE ERRO BF HIGH	50,582 DR	49,127 OF TREES R	EQ.	9,929 INF. POP.
CL: SD: DF	FIDENCE 67.1 67.1 % 1.0 DER	LIMITS OF T TIMES OUT COEF VAR.9	29.5 THE SAMPLE OF 100 THE VC F % S.E.% 9.1	32.7 DLUME WILL F S. LOW	121 BE WITHIN AMPLE T A 80 2	30.0 N THE SA	171.5 AMPLE ERRO BF HIGH	50,582 DR	49,127 OF TREES R	EQ.	INF. POP.
CCL: SD: DF R ALI	FIDENCE 67.1 67.1 % 1.0 DER	LIMITS OF T TIMES OUT COEF VAR.9	29.5 THE SAMPLE OF 100 THE VC F 6 S.E.% 9.1	32.7 DLUME WILL F S. LOW 2,3:	121 BE WITHIN AMPLE T A 80 2	30.0 N THE SANG 2,618	AMPLE ERRO BF HIGH 2,855	50,582 DR # 0	49,127 DF TREES R 5	EQ. 10	INF. POP.
CL: SD: DF R ALL TOTA	FIDENCE 67.1 67.1 % 1.0 DER	LIMITS OF T TIMES OUT COEF VAR.9 77.4	29.5 THE SAMPLE OF 100 THE VC F % S.E.% 9.1 9.2	32.7 DLUME WILL F S. LOW 2,3:	121 BE WITHIN AMPLE T A 80 2 45 2 REES/AC	30.0 N THE SANG 2,618	AMPLE ERRO BF HIGH 2,855	50,582 DR # 0	49,127 DF TREES R 5	EQ. 10	INF. POP.
CL: SD:	FIDENCE 67.1 67.1 % 1.0 DER AL 67.1 %	LIMITS OF TIMES OUT COEF VAR.: 77.4 78.8 COEF	29.5 THE SAMPLE OF 100 THE VC F % S.E.% 9.1 9.2 F % S.E.%	32.7 DLUME WILL F S. LOW 2,3; 2,3- T LOW	121 BE WITHIN AMPLE T A 80 2 45 2 REES/AC	30.0 N THE SA REES - 1 AVG 2,618	171.5 AMPLE ERRO BF HIGH 2,855 2,818	50,582 DR # 0	49,127 DF TREES R 5 238 DF PLOTS R	EQ. 10 60	INF. POP. 2 INF. POP.
CL: SD: TOTA CL: SD: TOTA CL: SD: DF	FIDENCE 67.1 67.1 % 1.0 DER AL 67.1 % 1.0	TIMES OUT COEF VAR.9 77.4 78.8 COEF	29.5 THE SAMPLE OF 100 THE VC F % S.E.% 9.1 9.2 F % S.E.% 10.7	32.7 DLUME WILL F S. LOW 2,3; 2,3- T LOW	121 BE WITHIN AMPLE T A 80 2 45 2 REES/AC	30.0 N THE SA REES - 1 AVG 2,618 2,581 REE	171.5 AMPLE ERRO BF HIGH 2,855 2,818 HIGH	50,582 DR # 0	49,127 DF TREES R 5 238 DF PLOTS R	EQ. 10 60	INF. POP.
CL: SD: DF R ALI TOTA CL: SD:	FIDENCE 67.1 67.1 % 1.0 DER AL 67.1 % 1.0	TIMES OUT COEF VAR.9 77.4 78.8 COEF VAR.9	29.5 THE SAMPLE OF 100 THE VC F 6 S.E.% 9.1 9.2 F 6 S.E.% 10.7 98.0	32.7 DLUME WILL F S. LOW 2,3: T LOW	121 BE WITHIN AMPLE T A80 2 45 2 REES/AC A26	30.0 N THE SAVG 2,618 REE 3,581 REE 329	171.5 AMPLE ERRO BF HIGH 2,855 2,818 HIGH 32	50,582 DR # 0	49,127 DF TREES R 5 238 DF PLOTS R	EQ. 10 60	INF. POP. 2 INF. POP.
CL: SD: DF R ALI TOTA CL: SD: DF R ALI	FIDENCE 67.1 67.1 % 1.0 DER AL 67.1 % 1.0	LIMITS OF TIMES OUT COEF VAR.9 77.4 78.8 COEF VAR.9 69.2 632.5	29.5 THE SAMPLE OF 100 THE VC F 6 S.E.% 9.1 9.2 F 6 S.E.% 10.7 98.0 10.3	32.7 DLUME WILL F S. LOW 2,3; 2,34 T LOW	121 BE WITHIN AMPLE T A80 2 45 2 REES/AC A26 0	30.0 N THE SA REES - 1 AVG 2,618 RE AVG 29 1 29	171.5 AMPLE ERRO BF HIGH 2,855 2,818 HIGH 32 1 33	50,582 DR # 0	49,127 DF TREES R 5 238 DF PLOTS R 5	60 EQ. 10 42	INF. POP. 2 INF. POP.
CCL: SD: DF R ALL TOTA CL: SD: DF R ALL TOTA CL: CL: CCL:	AL FIDENCE 67.1 67.1 % 1.0 DER AL 67.1 % 1.0 DER AL	71 LIMITS OF T TIMES OUT COEF VAR.9 77.4 78.8 COEF VAR.9 69.2 632.5 66.3	29.5 THE SAMPLE OF 100 THE VC F % S.E.% 9.1 9.2 F % S.E.% 10.7 98.0 10.3	32.7 DLUME WILL F S. LOW 2,3; 2,34 T LOW	121 BE WITHIN AMPLE T A80 2 45 2 REES/AC A26 0 26 ASAL AR	30.0 N THE SA REES - 1 AVG 2,618 RE AVG 29 1 29	171.5 AMPLE ERRO BF HIGH 2,855 2,818 HIGH 32 1 33	50,582 DR # 0	49,127 DF TREES R 5 238 DF PLOTS R 5	60 EQ. 10 42	INF. POP. 2 INF. POP. 1 INF. POP.
CL: SD: DF R ALL SD: DF R ALL SD: CL: SD: SD: SD: CL: SD: SD: SD: SD: SD: SD: SD: SD: SD: SD	FIDENCE 67.1 67.1 % 1.0 DER AL 67.1 % 1.0	71 LIMITS OF T TIMES OUT COEF VAR.9 77.4 78.8 COEF VAR.9 69.2 632.5 66.3 COEF VAR.9	29.5 THE SAMPLE OF 100 THE VC F 6 S.E.% 9.1 9.2 F 6 S.E.% 10.7 98.0 10.3 F 6 S.E.% 9.1	32.7 DLUME WILL F S. LOW 2,3; 2,3- T LOW	121 BE WITHIN AMPLE T A80 2 45 2 REES/AC A26 0 26 ASAL AR A555	30.0 N THE SAVG 2,618 2,581 RE 29 1 29 EA/ACR EXVG 170	### AMPLE ERRORD ### AMPLE ERRORD ### BF ### HIGH ### 2,855 2,818 ### ### 32 1 33 ### ### ### ### 4 ### ### ### ### ###	50,582 DR # 0	49,127 DF TREES R 5 238 DF PLOTS R 5 169 DF PLOTS R	60 EQ. 10 42	INF. POP. 2 INF. POP. 1
CL: SD: DF R ALL TOTA CL: SD: DF R ALL TOTA CL: SD: DF R ALL TOTA	FIDENCE 67.1 67.1 % 1.0 DER AL 67.1 % 1.0 DER AL 67.1 % 1.0 DER AL 67.1 % 1.0	71 LIMITS OF T TIMES OUT COEF VAR.9 77.4 78.8 COEF VAR.9 69.2 632.5 66.3 COEF VAR.9 59.0 632.5	29.5 THE SAMPLE OF 100 THE VC F % S.E.% 9.1 9.2 F % S.E.% 10.7 98.0 10.3 F % S.E.% 9.1 98.0	32.7 DLUME WILL F S. LOW 2,3; 2,3- T LOW	121 BE WITHIN AMPLE T A80 2 45 2 REES/AC A26 0 26 ASAL AR	30.0 N THE SAVG 2,618 CREES - 1 CREE 29 1 29 EA/ACR	171.5 AMPLE ERRO BF HIGH 2,855 2,818 HIGH 32 1 33 RE HIGH	50,582 DR # 0	49,127 DF TREES R 5 238 DF PLOTS R 5 169 DF PLOTS R 5	60 EQ. 10 42	INF. POP. 2 INF. POP. 1 INF. POP.
CL: SD: DF R ALL TOTA CL: SD: DF R ALL TOTA CL: SD: DF R ALL TOTA	FIDENCE 67.1 67.1 % 1.0 DER AL 67.1 % 1.0 DER AL 67.1 % 1.0 DER AL 67.1 % 1.0	71 LIMITS OF T TIMES OUT COEF VAR.9 77.4 78.8 COEF VAR.9 69.2 632.5 66.3 COEF VAR.9	29.5 THE SAMPLE OF 100 THE VC F % S.E.% 9.1 9.2 F % S.E.% 10.7 98.0 10.3 F % S.E.% 9.1 98.0	32.7 DLUME WILL F S. LOW 2,3: T LOW B LOW 1:	121 BE WITHIN AMPLE T A80 2 45 2 REES/AC A26 0 26 ASAL AR A555	30.0 N THE SAVG 2,618 2,581 RE 29 1 29 EA/ACR EXVG 170	### AMPLE ERRORD ### AMPLE ERRORD ### BF ### HIGH ### 2,855 2,818 ### ### 32 1 33 ### ### ### ### 4 ### ### ### ### ###	50,582 DR # 0	49,127 DF TREES R 5 238 DF PLOTS R 5 169 DF PLOTS R	60 EQ. 10 42	INF. POP. 2 INF. POP. 1 INF. POP.
CCL: SD: DF R ALL TOTA CL: SD: DF R ALL TOTA TOTA CL: SD: DF R ALL TOTA TOTA	FIDENCE 67.1 67.1 % 1.0 DER AL 67.1 % 1.0 DER AL 67.1 % 1.0 DER AL 67.1 % 1.0	71 LIMITS OF T TIMES OUT COEF VAR.9 77.4 78.8 COEF VAR.9 69.2 632.5 66.3 COEF VAR.9 59.0 632.5	29.5 THE SAMPLE OF 100 THE VC F 6 S.E.% 9.1 9.2 F 6 S.E.% 10.7 98.0 10.3 F 6 S.E.% 9.1 98.0 8.9	32.7 DLUME WILL E S. LOW 2,33 7 LOW 1.	121 BE WITHIN AMPLE T A80 2 45 2 REES/AC A26 0 26 ASAL AR A55 0	30.0 N THE S. TREES - 1 AVG 2,618 2,581 TRE AVG 29 1 29 EA/ACR AVG 170 1 172	### AMPLE ERRO ### BF ### HIGH 2,855 2,818 ### HIGH 32 1 33 ### ### RE ### HIGH 186 3	50,582 DR # 0	49,127 DF TREES R 5 238 DF PLOTS R 5 169 DF PLOTS R 5	10 60 EQ. 10 42 EQ. 10 32	INF. POP. 2 INF. POP. 1 INF. POP.
CL: SD: DF R ALL TOTA CL: SD: DF R ALL TOTA CL: SD: CL: SD: CL: SD: CL: SD: CL: SD: CL: SD:	AL FIDENCE 67.1 67.1 % 1.0 DER AL 67.1 % 1.0 DER AL 67.1 % 1.0 DER AL 67.1 % 1.0	71 LIMITS OF T TIMES OUT COEF VAR.9 77.4 78.8 COEF VAR.9 69.2 632.5 66.3 COEF VAR.9 59.0 632.5 57.8 COEF VAR.9	29.5 THE SAMPLE OF 100 THE VC F % S.E.% 9.1 9.2 F % S.E.% 10.7 98.0 10.3 F % S.E.% 9.1 98.0 8.9 F	32.7 DLUME WILL E S. LOW 2,33 7 LOW 1.	121 BE WITHIN AMPLE T A80 2 45 2 REES/AC A26 0 26 ASAL AR A555 0 556 ET BF/AC	30.0 N THE SAVG 2,618 2,581 RE AVG 29 1 29 EA/ACR 170 1 172 CRE	### AMPLE ERRO ### BF ### HIGH 2,855 2,818 ### HIGH 32 1 33 ### ### RE ### HIGH 186 3	50,582 DR # 0	49,127 DF TREES R 5 238 DF PLOTS R 5 169 DF PLOTS R 5	10 60 EQ. 10 42 EQ. 10 32	INF. POP. 1 INF. POP. 1 INF. POP. 1 INF. POP.
CL: SD: DF R ALL TOTA	AL FIDENCE 67.1 67.1 % 1.0 DER AL 67.1 % 1.0 DER AL 67.1 % 1.0 DER AL 67.1 % 1.0	71 LIMITS OF T TIMES OUT COEF VAR.9 77.4 78.8 COEF VAR.9 69.2 632.5 66.3 COEF VAR.9 59.0 632.5 57.8 COEF VAR.9	29.5 THE SAMPLE OF 100 THE VC F % S.E.% 9.1 9.2 F % S.E.% 10.7 98.0 10.3 F % S.E.% 9.1 98.0 8.9 F	32.7 DLUME WILL F S. LOW 2,3: 7 LOW 1: N LOW 44,4:	121 BE WITHIN AMPLE T A80 2 45 2 REES/AC A26 0 26 ASAL AR A55 0 56 ET BF/AC A91	30.0 N THE SAVG 2,618 2,581 RE 29 1 29 EA/ACR 170 1 172 CRE	### AMPLE ERRORD ### AMPLE ERRORD ### AMPLE ERRORD ### AMPLE ERRORD ### ### AMPLE ERRORD ### ### ### ### ### ### ### ### ### #	50,582 DR # 0	49,127 DF TREES R 5 238 DF PLOTS R 5 169 DF PLOTS R 5	10 60 EQ. 10 10 EQ. 10 32 EQ. 32 EQ.	INF. POP. 1 INF. POP. 1 INF. POP. 1
CL: SD: DF R ALL TOTA CL: SD: DF R ALL TOTA CL: SD:	AL FIDENCE 67.1 67.1 % 1.0 DER AL 67.1 % 1.0 DER	71 LIMITS OF T TIMES OUT COEF VAR.9 77.4 78.8 COEF VAR.9 69.2 632.5 66.3 COEF VAR.9 59.0 632.5 57.8 COEF VAR.9	29.5 THE SAMPLE OF 100 THE VC F % S.E.% 9.1 9.2 F % S.E.% 10.7 98.0 10.3 F % S.E.% 9.1 98.0 8.9 F % S.E.% 9.1 98.0 8.9	32.7 DLUME WILL F S. LOW 2,3: 7 LOW 1: N LOW 44,4:	121 BE WITHIN AMPLE T A80 2 45 2 REES/AC A26 0 26 ASAL AR A555 0 56 ET BF/AC A71 49	30.0 N THE SAVG 2,618 2,581 RE AVG 29 1 29 EA/ACR 170 1 172 CRE	### AMPLE ERRORD ### AMPLE ERRORD ### HIGH 2,855	50,582 DR # 0	49,127 DF TREES R 5 238 DF PLOTS R 5 169 DF PLOTS R 5	10 60 EQ. 10 10 EQ. 10 32 EQ. 10	INF. POP. INF. POP. INF. POP. INF. POP.

T	FSPCS	TGR					Specie	es, Sort (Project	Grade - Boar : CRY	d Foot V	olume	es (Typ	oe)				Pag Dat Tim	e 1	1 /25/20: 0:18:1	
T11S Twp 11S)	S09 Rge 09W		KE Sec 09	T A1	Γract		Type TAK			ts .0	Sampl	e Trees		C 1	uFt	T11S R BdFt W	x09W S0	9 TTA	KE
				%						Percent 1	Net Boa	ard Foot	Volume	;			Avera	ge Log		
Spp	S S			Net BdFt	t]	Bd. I Def%	Ft. per Acre Gross	e Net	Total Net MBF	l	cale Di		1 *	Leng		36-99	Ln Dia Ft In	Bd Ft	CF/ Lf	Logs Per /Acre
DF	D	0	CU														20 24		0.00	
DF	Г	О	2M	83		2.7	41,998	40,884	1,554		16	84	1	0	1	98	38 19	651	3.36	62.
DF	D	О	3M	16		4.0	8,174	7,845	298	24	7	69	3	2	7	88	35 13	314	1.97	25.
DF	D	О	4M	1			370	370	14	100			58		26	15	18 9	44	0.75	8.
DF	Total	s		100		2.9	50,542	49,099	1,866	5	15	81	2	1	2	96	36 16	508	2.88	96.
RA	D	Ю	CR	100		28.6	40	28	1	100				100			28 9	50	1.36	
RA	Total	s		0	1	28.6	40	28	1	100				100			28 9	50	1.36	
Туре Т	otals					2.9	50,582	49,127	1,867	5	15	81	2	1	2	95	36 16	505	2.87	97.

TC TSTNDSUM Stand Table Summary

Project CRYSTAL

T11S R09W S09 TTAKE

T11S R09W S09 TTAKE

Page: Twp Sample Trees Rge Sec Tract Type Acres **Plots** Date: 01/25/2021 11S 09W 09 **A1** TAKE 38.00 40 71 Time: 10:18:18AM

					Av				Aver	age Log		Net	Net	т	o to la	
	S		Sample	FF	Ht	Trees/	BA/	Logs	Net	Net	Tons/	Cu.Ft.	Bd.Ft.	1	otals	
Spc	T	DBH	Trees	16'	Tot	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF		19	1	83	154	1.235	2.43	3.70	33.3	133.3		123	494		47	19
DF		22	1	86	147	.921	2.43	2.76	47.0	193.3		130	534		49	20
DF		23	2	87	135	1.685	4.86	4.21	52.0	220.0		219	927		83	35
DF		24	3	85	148	2.321	7.29	6.96	55.9	224.4		389	1,563		148	59
DF		25	3	87	157	2.139	7.29	6.42	64.6	277.8		414	1,783		157	68
DF		26	2	88	149	1.319	4.86	3.96	67.2	290.0		266	1,147		101	44
DF		27	1	86	166	.611	2.43	2.45	60.0	270.0		147	660		56	25
DF		28	5	87	157	2.842	12.15	9.10	75.4	344.4		686	3,132		261	119
DF		29	1	89	188	.530	2.43	2.12	76.8	392.5		163	832		62	32
DF		30	4	87	153	1.981	9.72	6.93	78.3	367.9		543	2,550		206	97
DF		31	5	87	166	2.319	12.15	8.35	81.6	403.9		681	3,372		259	128
DF		32	3	85	165	1.306	7.29	4.35	96.7	439.0		421	1,911		160	73
DF		33	6	87	164	2.456	14.58	9.00	96.6	478.2		870	4,305		330	164
DF		34	1	86	160	.386	2.43	1.16	122.0	576.7		141	667		54	25
DF		36	4	87	164	1.376	9.72	4.47	128.9	643.8		576	2,878		219	109
DF		37	1	86	158	.326	2.43	.98	140.0	696.7		137	680		52	26
DF		38	2	87	203	.617	4.86	2.47	139.3	773.8		344	1,910		131	73
DF		39	2	86	172	.586	4.86	2.34	125.9	648.7		295	1,521		112	58
DF		41	1	88	198	.265	2.43	1.06	163.0	950.0		173	1,007		66	38
DF		42	2	84	156	.505	4.86	1.52	164.5	813.3		249	1,233		95	47
DF		43	2	84	173	.482	4.86	1.93	151.7	790.0		293	1,523		111	58
DF		46	1	84	165	.211	2.43	.63	183.0	956.7		116	604		44	23
DF		47	1	86	190	.202	2.43	.81	200.0	1077.5		161	870		61	33
DF		48	2	87	173	.387	4.86	1.35	216.0	1134.3		292	1,536		111	58
DF		51	1	83	181	.171	2.43	.69	214.0	1110.0		147	761		56	29
DF		52	1	89	198	.165	2.43	.66	261.7	1545.0		173	1,019		66	39
DF		53	2	87	167	.317	4.86	1.11	260.6	1365.7		289	1,517		110	58
DF		54	1	89	182	.153	2.43	.61	259.5	1480.0		159	905		60	34
DF		56	3	86	176	.426	7.29	1.71	256.7	1455.0		438	2,481		166	94
DF		57	1	89	189	.137	2.43	.55	301.5	1777.5		165	975		63	37
DF		60	2	85	172	.248	4.86	.87	331.1	1812.9		287	1,571		109	60
DF		63	1	86	173	.112	2.43	.45	325.5	1797.5		146	807		56	31
DF		68	1	86	165	.096	2.43	.29	478.3	2666.7		138	771		53	29
DF		70	1	86	163	.091	2.43	.27	499.7	2386.7		136	651		52	25
DF		Totals	70	86	160	28.923	170.16	96.23	103.0	510.2		9,908	49,099		3,765	1,866
RA	_	21	1	86	36	.566	1.36	.57	38.0	50.0		22	28		8	1
RA		Totals	1	86	36	.566	1.36	.57	38.0	50.0		22	28		8	1
Totals			71	86	158	29.489	171.52	96.79	102.6	507.6		9929	49,127		3,773	1,867

TC T	LOGSTV	В					g Stoci	k Tal	ole - M CRY	BF YSTAI	L									
T11S Twp 11S	R09W Rg 09'	e	Se	TAKE Sec Tract 09 A1			Type Acr			00	Plots		Sample	Trees	s	Date 1/2		1 1/25/2		
S	So G	r Lo	og	Gross	%	Net	%			Net V	olume	by S	Scaling D	iamet	ter in In	ches				
Spp T	rt de	e Le	n	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9		10-11 1:	2-13	14-15	16-19	20-23	24-29	30-39	40+
DF	DO	CU 2	0																	
DF DF		2M 1 2M 1	- 1	5 1	1.3	5 1	.2 .1							1		2	1			
DF		2M 1	- 1	2		2	.1							1	1					
DF DF DF	DO	2M 1 2M 2 2M 2	0	1 4 1		1 4 1	.1 .2 .1							1 4 1						
DF		2M 2	- 1	1		1	.1								1					
DF	DO	2M 2	8	2		2	.1							2						
DF		2M 3	- 1	18		18	.9							14		4	1			
DF		2M 3 2M 3	- 1	15 53	1.1	15 52	.8 2.8							8 17	11	3	5	18		
DF DF		2M 3 2M 4	- 1	1,493	1.1 2.8	1,451	77.8							40			336			115
DF DF		3M 1 3M 2		10 2	7.7	9	.5 .1						2 2	1		1	1		5	
DF	DO	3M 2	6	5		5	.3					1				3	3			
DF		3M 3	- 1	21	5.1	20	1.1				5	5	2			2	3	3		
DF DF	DO DO	3M 3	- 1	2 17	2.7	2 17	.1 .9					2	15							
DF	DO	3M 3	- 1	25	1.0	25	1.3				2	4	4			16	5			
DF		3M 4	- 1	229	4.3	219	11.7					7	18	17		27		18	64	54
DF		4M 1	- 1	6		6	.3					4	2							
DF		4M 1	- 1	3		3	.1				2	3								
DF DF		4M 3	- 1	4 2		4 2	.2				2	2	2							
DF		Totals		1,921	2.9	1,866	99.9				9	29	46	107	88	391	358	385	283	169
RA	DO	CR 2	8	2	28.6	1	100.0					1								
RA		Totals		2	28.6	1	.1					1								
Total All	Species			1,922	2.9	1,867	100.0				9	30	46	107	88	391	358	385	283	169

TC TSTATS				ST PROJEC	TATIST	ICS CRYSTAL			PAGE DATE 1	1 /25/2021
ΓWP RGE	SECT T	TRACT		ТҮРЕ		RES	PLOTS	TREES	CuFt	BdFt
11S 09W	09 A	\1		ALL		38.00	40	156	1	W
				TREES		ESTIMATED TOTAL		ERCENT AMPLE		
	PLOTS	TREES		PER PLOT		TREES		REES		
TOTAL	40	156		3.9						
CRUISE DBH COUNT REFOREST COUNT	22 17	92		4.2 3.7		1,506		6.1		
BLANKS 100 %	1									
			STAN	D SUMM	ARY					
	SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DF	70	28.9	32.8	123	29.7	170.2	50,542	49,099	9,908	9,908
SNAG	15	7.1	27.2	106	5.5	28.6		=		_
DF LEAVE	4	.4	65.9	138	1.2	9.5	1,522	1,447	274	27
WHEMLOCK R ALDER	2	2.7	13.6 21.0	33 28	0.7 0.3	2.7 1.4	199 40	199 28	72 22	7 2
R ALDER TOTAL	92	.o 39.6	31.3	28 113	37.9	212.4	52,303	50,774	10,275	10,27
CL: 67.1 %	COEFF	7		SAMPLE	TREES -	BF	#	OF TREES R	EQ.	INF. POP.
SD: 1.0	VAR.%	S.E.%	LO	OW	AVG	HIGH		5	10	
DF	77.4	9.1		2,380	2,618	2,855				
SNAG DF LEAVE	127.7	71.4		1,148	4,013	6,877				
WHEMLOCK	107.5	98.2		2	125	248				
R ALDER										
TOTAL	105.1	10.7		1,936	2,169	2,402		424	106	
CL: 67.1 %	COEFF	7		TREES/A	CRE		#	OF PLOTS R	EQ.	INF. POP.
SD: 1.0	VAR.%		LC	OW OF	AVG	HIGH		5	10	
DF SNAG	69.2 173.8			26 5	29 7	32 9				
DF LEAVE	227.5			0	0	1				
WHEMLOCK	503.7	78.0		1	3	5				
R ALDER	632.5			0	1	1				
TOTAL	65.3			36	40	44		164	41	
CL: 67.1 %	COEFF	7		BASAL A	AREA/ACI	RE	#	OF PLOTS R		INF. POP.
SD: 1.0	VAR.%		LO	OW 155	AVG	HIGH		5	10	
DF SNAG	59.0 161.3	9.1 25.0		155 21	170 29	186 36				
DF LEAVE	219.9	34.1		6	10	13				
WHEMLOCK	441.4	68.4		1	3	5				
R ALDER	632.5			0	1	3				
TOTAL	43.0	6.7		198	212	226		71	18	
CL: 67.1 %	COEFF	7		NET BF/	ACRE		#	OF PLOTS R	EQ.	INF. POP.
	VAR.%	S.E.%	LC	OW	AVG	HIGH		5	10	
SD: 1.0						£0.505				
DF	60.9		4	4,471	49,099	53,727				
DF SNAG	60.9	9.4	4							
		9.4 44.5	4	803 53	1,447 199	2,092 345				
DF SNAG DF LEAVE	60.9 287.4	9.4 44.5 73.4	4	803	1,447	2,092				

Legend

Timber Sale Boundary

Reforestation Area

Stream Buffer

Roads

Surfaced Road

=== Unsurfaced Road

/// Motorized Trail

Streams

Type F Stream

··· — · · Type N Stream

— Cable Corridor

Landing

• Land Survey Monument

Radio Tower Site

LOGGING PLAN

OF TIMBER SALE CONTRACT NO. WO-341-2021-W00689-01 CRYSTAL CLEAR PORTIONS OF SECTIONS 9 AND 16. OF T11S, R9W, W.M. LINCOLN COUNTY, OREGON.

	Tractor	Cable
UNIT	ACRES	ACRES
1 (MC)	7	31
TOTAL	7	31

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

