

District: West Oregon

Timber Sale Appraisal Cline Miller Thin Sale WO-341-2021-W00360-01

Date: May 29, 2020

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$205,435.41	\$0.00	\$205,435.41
		Project Work:	(\$23,873.00)
		Advertised Value:	\$181,562.41

6/29/20

Timber Sale Appraisal Cline Miller Thin

Sale WO-341-2021-W00360-01

District: West Oregon Date: May 29, 2020

Timber Description

Location: Portions of sections 17, 19 & 20, T11S, R08W, W.M.,

Lincoln County, Oregon.

Stand Stocking: 60%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	12	0	97

Volume by Grade	28	3S & 4S 6"- 11"	Total
Douglas - Fir	11	1,010	1,021
Total	11	1,010	1,021

Comments: Pond Values Used: Local Pond Values, April, 2020

Western Hemlock and Other Conifers: \$19.29/MBF = \$2.50/TON X (27 TONS/ 3.5 MBF)

Red Alder and Other Hardwoods Stumpage Price = Pond Value minus Logging Cost:

\$16.97/MBF = \$530/MBF - \$513.03/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$226.97/MBF = \$890/MBF - (\$513.03/MBF + \$150/MBF(Extra Haul Cost))

PULP (Conifer and Hardwood Price) = \$2.50/TON

Other Costs (with Profit & Risk to be added):

Intermediate Support/Tail Trees: 25 supports @ \$100/support = \$2,500.

TOTAL Other Costs (with Profit & Risk to be added) = \$2,500

Other Costs (No Profit & Risk added):

Equipment Cleaning (Invasive Species): \$2,000

Water Bar and Block Dirt Roads: 8.5 stations @ \$15.96/station = \$136

Landing Slash Piling and sorting out firewood: 6 Landings @ \$180/Landing = \$1080

Landing Slash Piling: 2 Landing @ \$100/Landing = \$200 TOTAL Other Costs (No Profit & Risk added) = \$3,416

ROAD MAINTENANCE Move-in: (Grader) \$875

Move-in: (Front-end Loader for Stockpile) \$875

Final Road Maintenance: \$10,401.80

TOTAL Road Maintenance: \$12,151.80/1,021MBF = \$11.90/MBF

6/29/20 2

Timber Sale Appraisal Cline Miller Thin

Sale WO-341-2021-W00360-01

District: West Oregon Date: May 29, 2020

Logging Conditions

Combination#: 1 Douglas - Fir 47.00%

yarding distance: Long (1,500 ft) downhill yarding: No

tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF

loads / day: 5 bd. ft / load: 3500

cost / mbf: \$377.14

machines: Log Loader (A)

Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 6.00%

Logging System: Shovel Process: Manual Falling/Delimbing

yarding distance: Short (400 ft) downhill yarding: No

tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF

loads / day: 9 bd. ft / load: 3500

cost / mbf: \$125.00
machines: Shovel Logger

Combination#: 3 Douglas - Fir 47.00%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF

loads / day: 6 bd. ft / load: 3500

cost / mbf: \$314.29

machines: Log Loader (A)

Tower Yarder (Medium)

6/29/20

Timber Sale Appraisal Cline Miller Thin

Sale WO-341-2021-W00360-01

Date: May 29, 2020 **District: West Oregon**

Logging Costs

Operating Seasons: 3.00

Profit Risk: 12%

Project Costs: \$23,873.00 Slash Disposal: \$0.00

Other Costs (P/R): \$2,500.00

Other Costs: \$3,416.00

Miles of Road

Road Maintenance:

\$11.92

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	ecies \$ / MBF		MBF / Load		
Douglas - Fir	\$0.00	3.0	3.5		

6/29/20 4

Timber Sale Appraisal Cline Miller Thin

Sale WO-341-2021-W00360-01

District: West Oregon Date: May 29, 2020

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$332.47	\$12.28	\$12.90	\$93.19	\$2.45	\$54.39	\$0.00	\$2.00	\$3.35	\$513.03

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$714.24	\$201.21	\$0.00

6/29/20 5

Timber Sale Appraisal Cline Miller Thin

Sale WO-341-2021-W00360-01

District: West Oregon Date: May 29, 2020

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total		
Douglas - Fir	1,021	\$201.21	\$205,435.41		

Gross Timber Sale Value

Recovery: \$205,435.41

Prepared By: Zane Sandborg Phone: 541-929-9163

6/29/20

SUMMARY OF ALL PROJECT COSTS

Sale Name: Cline Miller Thin Project #1 - Road Construction	Date: Time:	June 2020 16:37
Road Segment Length	Cost	
Pt. A to Pt. B 6.1 sta	\$ 3 ,170	
Pt. C to Pt. D 2.4 sta	\$1,198	
TOTALS 8.5 sta	\$4,368	- \$4,368
0.5 3ta	Ψ+,000	Ψ+,000
Ducinet #2 Bood Immunity		
Project #2 - Road Improvement	Coat	
Road Segment Length Pt. 1 to Pt. 2 239.7 sta	<u>Cost</u> \$1,901	
Pt. 2 to Pt. 3 259.7 sta 18.5 sta	\$1,901 \$2,430	
Pt. 4 to Pt. 5 4.7 sta	\$2,442	
Pt. 6 to Pt. 7 41.4 sta	\$649	
Pt. 7 to Pt. 8 14.4 sta	\$3,045	
Pt. 9 to Pt. 10	\$1,217	
Pt. 10 to Pt. 11 13.3 sta	\$1,716	
Pt. 12 to Pt. A 7.9 sta	\$910	
TOTALS 454.6 sta	\$14,310	\$14,310
Project #3 - Move in	Cost On-site move	
Dozer, D-7 or equiv.	\$905 \$73	<u>.</u>
Grader, Cat 14-G or equiv.	\$875 \$0	
Vibratory roller	\$875 \$0	
Front-end loader	\$875 \$77	
Excavator, C325 or equiv.	\$1,450 \$65	
TOTAL	\$4,980 \$215	\$5,195

GRAND TOTAL \$23,873

Compiled by Zane Sandborg Date 06/03/2020

SALE ROAD	Cline Miller Thin Pt. A to Pt. B	Project # (Unsurfaced)	1		LENGTH	const		6.1 st	a
	NG AND GRUBBING nstruction	0.53 acres		@	\$1,337.00) /acre	=	\$709	
					TOTAL	CLEAF	RING AN	D GRUBBING =	\$709
EXCAVA	ATION (With D7 dozer o	r equivalent)							
Construc	•	6.1 sta		@	\$138.00	/sta	=	\$842	
Construc	ct Landing	1 ldg		@	\$438.00	/ldg	=	\$438	
Remove	large stumps	2 stmps		@	\$82.50	/stmp	=	\$165	
Shape s (with roa	ubgrade id grader)	6.1 sta		@	\$20.63	/sta	=	\$126	
•	t subgrade ratory roller)	6.1 sta		@	\$16.00	/sta	=	\$98	
Construction (Sta. 4+2	ct Turnaround 22)	1 TA		@	\$ 50.00	/TA	=	\$50	
							TOTAL I	EXCAVATION =	\$1,719
SURFAC	CING		Size		Cost/yd				
Landing	rock (Pt. B)	30 CY	Jaw-Run	@	\$22.74	/CY	=	\$682	
Junction		10 CY	3"-0"	@	\$5.97	/CY	=	\$60	
						TOTA	AL SURF	ACING COST =	\$742
Compile Date:	d by:	Zane Sandborg Jun 3, 2020					GRAND	TOTAL ====>	\$3,170

SALE ROAD	Cline Miller Thin Pt. C to Pt. D	Project # (Unsurfaced)	1		LENGTH	cons	t	2.4 st	а
CLEARI	NG AND GRUBBING								
New con	struction	0.21 acres		@	\$1,337.00) /acre	=	\$281	
					TOTAL	CLEA	RING AN	ND GRUBBING =	\$281
EXCAVA	ATION (With D7 dozer or e	quivalent)							
Construc	ct road	2.4 sta		@	\$138.00	/sta	=	\$331	
Construc	ct Landing	1 ldg		@	\$438.00	/ldg	=	\$438	
Shape so (with roa	ubgrade d grader)	2.4 sta		@	\$20.63	/sta	=	\$50	
•	t subgrade ratory roller)	2.4 sta		@	\$16.00	/sta	=	\$38	
							TOTAL	EXCAVATION =	\$857
SURFAC	CING		Size		Cost/yd				
Junction	_	10 CY	3"-0"	@	\$5.97	/CY	=	\$60	
						тот	AL SUR	FACING COST =	\$60
Compile	d by:	Zane Sandborg							
Date:	,	Jun 3, 2020					GRAND	TOTAL ====>	\$1,198

SALE ROAD	Cline Miller Thin Pt. 1 to Pt. 2	Project # (Surfaced)	2		LENGTH	improv	/e	239.7 sta	
•	k urface d grader)	200 CY 30 sta 30 sta	<u>Size</u> 1½"-0"	@ @	Cost/yd \$4.01 \$20.63 \$16.00	/CY /sta /sta	= =	\$802 \$619 \$480	
Compac (with vib	ratory roller)	50 Sta		9	\$16.00			CING COST =	\$1,901
Compile Date:	d by:	Zane Sandborg Jun 3, 2020				(GRAND TO	OTAL ====>	\$1,901

SALE ROAD	Cline Miller Thin Pt. 2 to Pt. 3	Project # (Surfaced)	2		LENGTH	impro	ve	18.5 st	а
IMPROV	/EMENT								
Re-open (With do	n Landing ozer)	0.5 hrs		@	\$162.00	/hr	=	\$81	
Sod rem		9 sta		@	\$15.40	/sta	=	\$139	
						Т	OTAL IN	IPROVEMENT =	\$220
SURFAC	CING		Size		Cost/yd				
Landing	rock (Pt. 3)	40 CY	Jaw-Run	@	\$22.74	/CY	=	\$910	
Spot roc		100 CY	3"-0"	@	\$5.97	/CY	=	\$597	
Shape s (with roa	urface ad grader)	18.5 sta		@	\$20.63	/sta	=	\$382	
Compac	et surface ratory roller)	18.5 sta		@	\$16.00	/sta	=	\$296	
						TOT	AL SURF	FACING COST =	\$2,185
SPECIA	L PROJECTS								
	ut culverts	1 culvert		@	\$25.00	ea	=	\$25	
(inlets ar	nd outlets)				·			·	
						TOTAL	. SPECIA	AL PROJECTS =	\$25
Compile	d by:	Zane Sandborg							4
Date:		Jun 3, 2020					GRAND	TOTAL ====>	\$2,430

SALE ROAD	Cline Miller Thin Pt. 4 to Pt. 5	Project # (Surfaced)	2		LENGTH	improv	/e	4.7 sta	a
CLEARI	NG AND GRUBBING								
Extend L		0.08 acres		@	\$1,337.00) /acre	=	\$107	
Shape s	_	0.7 sta		@	\$20.63	/sta	=	\$14	
(with roa	id grader)								
	t subgrade	0.7 sta		@	\$16.00	/sta	=	\$11	
(with vib	ratory roller)								
					TOTAL	CLEAR	RING A	ND GRUBBING =	\$132
IMPROV	/EMENT								
Re-open	& extend Landing	2 hrs		@	\$162.00	/hr	=	\$324	
(With do	zer)								
Re-open		4 sta		@	\$15.40	/sta	=	\$62	
(with roa	id grader)								
						TC	OTAL I	MPROVEMENT =	\$386
SURFAC	CING		Size		Cost/yd				
Landing	rock	40 CY	Jaw-Run	@	\$22.74	/CY	=	\$910	
(Sta. 4+0	00 & Pt. 5)								
Surface		30 CY	Jaw-Run	@	\$22.74	/CY	=	\$682	
	0 to Pt. 5)			_		(0)			
Spot roc		40 CY	1½"-0"	@	\$4.01	/CY	=	\$160	
Shape s		4.7 sta		@	\$20.63	/sta	=	\$97	
	id grader) t surface	4.7 sta		@	\$16.00	/sta	=	\$75	
•	ratory roller)	4.7 Sta		٠	ψ10.00	/3ta	-	ΨΙΟ	
(With Vib	ratery remony								
						TOTA	L SUF	RFACING COST =	\$1,924
Compile	d by:	Zane Sandborg							
Date:	•	Jun 3, 2020				(GRAN	D TOTAL ====>	\$2,442

SALE ROAD	Cline Miller Thin Pt. 6 to Pt. 7	Project # (Surfaced)	2		LENGTH	impro	ve	41.4 sta	
Compac	k urface d grader) t surface	70 CY 8 sta 8 sta	<u>Size</u> 1½"-0"	@ @	Cost/yd \$4.01 \$20.63 \$16.00	/CY /sta /sta	= =	\$281 \$165 \$128	
·	ratory roller) L PROJECTS					тот	AL SURF	ACING COST=	\$574
	it culverts nd outlets)	3 culverts		@	\$25.00	ea	=	\$75	Ф 7.5
Compile	d by	Zana Sandhara				TOTAL	SPECIAL	_ PROJECTS =	\$75
Compile Date:	u by.	Zane Sandborg Jun 3, 2020					GRAND 1	TOTAL ====>	\$649

SALE ROAD	Cline Miller Thin Pt. 7 to Pt. 8	Project # (Surfaced)	2		LENGTH	impro	ove	14.4 s	sta
CLEARI Road wid	NG AND GRUBBING dening	0.07 acres		@	\$1,337.00) /acre	=	\$94	
					TOTAL	CLEA	RING AN	D GRUBBING =	\$94
EXCAVA	ATION (With D7 dozer or eq	uivalent)							
	Landing (Pt. 8)	1 hrs		@	\$162.00	/hr	=	\$162	
	Il Excavation (expand 20%) 1 to sta 9+85)	170 CY		@	\$2.50	/CY	=	\$425	
Shape s (with roa	ubgrade d grader)	1.5 sta		@	\$20.63	/sta		\$31	
	t subgrade ratory roller)	1.5 sta		@	\$16.00	/sta		\$24	
•	•						TOTAL	EXCAVATION =	\$642
SURFAC	CING		Size		Cost/yd				
Landing	rock	30 CY	Jaw-Run	@	\$22.74	/CY	=	\$682	
Spot roc	k	50 CY	3"-0"	@	\$5.97	/CY	=	\$299	
Curve wi	idening rock	30 CY	Jaw-Run	@	\$22.74	/CY	=	\$682	
	1 to sta 9+85)								
	idening rock	20 CY	3"-0"	@	\$5.97	/CY	=	\$119	
	1 to sta 9+85)								
Shape s		14.4 sta		@	\$20.63	/sta	=	\$297	
	d grader)			_					
	t surface	14.4 sta		@	\$16.00	/sta	=	\$230	
(with vib	ratory roller)								
						TOT	AL SURF	FACING COST =	\$2,309
Compile	d by:	Zane Sandborg	 						
Date:		Jun 3, 2020					GRAND	TOTAL ====>	\$3,045

SALE ROAD	Cline Miller Thin Pt. 9 to Pt. 10	Project # (Surfaced)	2		LENGTH improve		114.7 sta	a	
Compac	k	90 CY 20 sta 20 sta	<u>Size</u> 1½"-0"	@ @ @	Cost/yd \$4.01 \$20.63 \$16.00	/CY /sta /sta TOT	= = = AL SURF	\$361 \$413 \$320 FACING COST=	\$1,094
Clean ou (inlets ar	L PROJECTS ut culverts nd outlets) ulvert inlets	4 culverts 1 culvert		@	\$25.00 \$23.00	ea ea TOTAL	= = SPECIA	\$100 \$23 L PROJECTS =	\$123
Compile Date:	d by:	Zane Sandborg Jun 3, 2020				1	GRAND ⁻	ГОТAL ====>	\$1,217

SALE ROAD	Cline Miller Thin Pt. 10 to Pt. 11	Project # (Surfaced)	2		LENGTH	impro	ove	13.3 st	a
GRUBB	ING AND CLEARING								
New con	struction	0.03 acres		@	\$1,337.00) /acre	=	\$40	
					TOTAL	GRUE	BING A	ND CLEARING =	\$40
EXCAVA	ATION (With D7 dozer or e	equivalent)							
Construct (Pt. 11)	ct Landing	1 ldg		@	\$438.00	/ldg	=	\$438	
Shape s	ubgrade d grader)	0.5 sta		@	\$20.63	/sta	=	\$10	
Compac	t subgrade ratory roller)	0.5 sta		@	\$16.00	/sta	=	\$8	
(**************************************	rationy rollion,						TOTAL	EXCAVATION =	\$456
IMPROV	'EMENT								
Sod rem	oval	7 sta		@	\$15.40	/sta	=	\$108	
						Т	OTAL IN	MPROVEMENT =	\$108
SURFAC	CING		<u>Size</u>		Cost/yd				
Spot roc	k	30 CY	1½"-0"	@	\$4.01	/CY	=	\$120	
Landing		20 CY	Jaw-run	@	\$22.74	/CY	=	\$455	
Shape s	urface d grader)	13.3 sta		@	\$20.63	/sta	=	\$274	
Compac	t surface	13.3 sta		@	\$16.00	/sta	=	\$213	
(with vib	ratory roller)					TOT	AL SURI	FACING COST =	\$1,062
0050:1									• •
	L PROJECTS	0		@	#05.00			# F0	
	ut culverts nd outlets)	2 culverts		@	\$25.00	ea	=	\$50	
(TOTAL	SPECIA	AL PROJECTS =	\$50
Compile Date:	d by:	Zane Sandborg Jun 3, 2020					GRAND	TOTAL ====>	\$1,716

SALE ROAD	Cline Miller Thin Pt. 12 to Pt. A	Project # (Surfaced)	2		LENGTH	impro	ove	7.9 sta	
IMPROV	EMENT								
Re-open (With do	•	0.5 hrs		@	\$162.00	/hr	=	\$81	
Sod remo	•	7.9 sta		@	\$15.40	/sta	=	\$122	
						٦	TOTAL IN	MPROVEMENT =	\$203
SURFAC	CING		<u>Size</u>		Cost/yd				
Spot rock	<	70 CY	3"-0"	@	\$5.97	/CY	=	\$418	
Shape su	urface d grader)	7.9 sta		@	\$20.63	/sta	=	\$163	
Compact	• ,	7.9 sta		@	\$16.00	/sta	=	\$126	
						тот	AL SURI	FACING COST =	\$707
Compiled	d by:	Zane Sandborg							
Date:		Jun 3, 2020					GRAND	TOTAL ====>	\$910

SUMMARY OF MAINTENANCE COST

SALE	Cline Mille	Cline Miller Thin			Final Maintenance Cost Estimate (Costed in appraisal, not in project costs)			
Grading	Move-in	Grader Front-end	\$	875				
		loader	\$	875				
Road Segment	Length	Cost/Sta		Cost	Mileage			
Pt. 1 to Pt. 2	239.7 sta	\$20.63	\$4	,945.01	4.54			
Pt. 2 to Pt. 3	18.5 sta	\$20.63	9	381.66	0.35			
Pt. 4 to Pt. 5	4.7 sta	\$20.63		\$96.96	0.09			
Pt. 6 to Pt. 7	41.4 sta	\$20.63	9	854.08	0.78			
Pt. 7 to Pt. 8	14.4 sta	\$20.63	9	\$297.07	0.27			
Pt. 9 to Pt. 10	114.7 sta	\$20.63	\$2	,366.26	2.17			
Pt. 10 to Pt. 11	13.3 sta	\$20.63	9	274.38	0.25			
Pt. 12 to Pt. A	7.9 sta	\$20.63	9	\$162.98	0.15			
Total	454.6		\$9	,378.40	8.61			

Maintenance Rock:

	Volume	Cost/CY	Cost
1½"-0"	170	\$4.01	\$681.70
3"-0"	60	\$5.97	\$358.20
Grand Total			\$ 12,168.30
TS Volume	1,021	MBF	
			•
Cost / MBF =			\$11.92

NOTES:

SALE NAME: ROAD NAME: ROCK SOURCE: Route:	DATE: Jun 3, 2020 CLASS: Medium 10 CY truck	
TIME Computation:		
Road speed time fact		
1. 55 M		0.0 minutes
2. 50 M		27.6 minutes
3. 45 M		0.0 minutes
4. 40 M	IPH MRT	0.0 minutes
5. 35 M	IPH MRT	0.0 minutes
6. 30 M	IPH MRT	0.0 minutes
7. 25 M	IPH MRT	0.0 minutes
8. 20 M	IPH 6.0 MRT	18.0 minutes
9. 15 M	IPH MRT	0.0 minutes
10. 10 M	IPH 3.0 MRT	18.0 minutes
11. 05 M	IPH MRT	0.0 minutes
(100% efficiency) Operator efficiency Job efficiency correct Truck capacity (CY) Loading time, delay TIME (minutes) per of	correction 0.85 ection 0.90 10.00 time per CY cubic yard	64.10 minutes 75.41 minutes 83.79 minutes 8.38 min/CY 0.25 min/CY 8.63 min/CY
cost of truck and	d operator per minute	\$1.50 /min \$12.95 /CY
	Water truck, Grader & Rol	ller \$1.50 /CY
	Cost Delivered	d Cost Delivered
Size Cost/Yd	(Pit) w/o processing	with processing
1½ - 0" \$ 11.4	8 \$24.43	\$25.93
3 - 0" \$ 11.1	4 \$24.09	\$25.59
Jaw Run \$ 9.7		\$24.24
Pit-Run \$ 8.8		\$23.32
Rip-rap \$ 24.9		, 20.02
1117 Tap 7 24.9	731.33	

Note: Pit costs June 1, 2019 Hardrock Rock Quarry

SALE NAME:		(Cline	Mille	r Thin	DATE:	Jun 3, 20	20
ROAD NAME:		(Cline	Creek	Road	CLASS:	Medium	
ROCK SOURC	E:	V	WOWFCA	B00 2	+80 Stockpile	10 CY	truck	
Route:		Ε	Burnt	Woods	Ridge Road,	Cline Cre	eek Road	
			(6 mil	es RT	')			
TIME Compu	tation:							
Road speed	l time fa	ctors	3:					
1	. 55	MPH			MRT		0.0	minutes
2	. 50	MPH			MRT		0.0	minutes
3	. 45	MPH			MRT		0.0	minutes
4	. 40	MPH			MRT		0.0	minutes
5	. 35	MPH			MRT		0.0	minutes
6	. 30	MPH			MRT		0.0	minutes
7	. 25	MPH			MRT		0.0	minutes
8	. 20	MPH		6.0	MRT		18.0	minutes
9	. 15	MPH			MRT		0.0	minutes
10	. 10	MPH			MRT		0.0	minutes
11	. 05	MPH			MRT		0.0	minutes
		ycle		for t	his setting		0.50 18.50	minutes minutes
Operator e	fficienc	v cor	recti	on	0.85		21.76	minutes
Job effici		_			0.90		24.18	
	1 1							
Truck capa	city (CY	.)			10.00		2.42	min/CY
Loading ti	=		ne per	CY			0.25	min/CY
TIME (minu	tes) per	cubi	c yar	d			2.67	min/CY
COST per C	Y comput	ation	1					
Cost of	truck a	nd op	perato	r per	hour		\$90.00	/hr.
Cost of	truck a	nd op	perato	r per	minute		\$1.50	/min
							\$4.01	/CY
		V	Water	truck	., Grader & Ro	ller	\$1.50	/CY
					Cost Delivere	ď	Cost Deliv	vered
Size	Cost/Yd	l (Dit	E)		w/o processing		with proce	
1½ - 0"	\$ -	- \ '	-,		\$4.01	5	\$5.51	
-							,	

SALE NAME:		Cline	Mille	r Thin	DATE:	Jun 3, 20)20
ROAD NAME:				Road		Medium	0
ROCK SOURCE	F. •			+60 Stockpile			
Route:	- •			Ridge Road, Cl			
nouce.		(9 mil		-		on noda	
TIME Compu	tation:	(5		,			
Road speed		ors:					
1.				MRT		0.0	minutes
2.	50 M	PH		MRT		0.0	minutes
3.	45 M	PH		MRT		0.0	minutes
4.	40 M	PH		MRT		0.0	minutes
5.	35 M	PH		MRT		0.0	minutes
6.	30 M	PH		MRT		0.0	minutes
7.	25 M	PH		MRT		0.0	minutes
8.	20 M	PH	8.0	MRT		24.0	minutes
9.	15 M	PH	1.0	MRT		4.0	minutes
10.	10 M	PH		MRT		0.0	minutes
11.	05 M	PH		MRT		0.0	minutes
		cle time	for t	his setting		0.50 28.50	
Operator e	fficiency	correcti	on	0.85		33.53	minutes
Job effici	-			0.90		37.26	minutes
	_						
Truck capa	=			10.00		3.73	, -
Loading time						0.25	, -
TIME (minu	tes) per c	cubic yar	d			3.98	min/CY
COST per C							
	truck and	=	_			\$90.00	/hr.
Cost of	truck and	d operato	r per	minute		\$1.50	/min
						\$5.97	/CY
		Water	truck	, Grader & Roll	er	\$1.50	/CY
			(Cost Delivered		Cost Deliv	vered
Size	Cost/Yd	(Pit)	,	w/o processing		with proce	essing
3"-0"	\$ -			\$5.97		\$7.47	,

SALE NAME: Cline Miller Thin ROAD NAME: Cline Creek Road ROCK SOURCE: Hardrock Route: Hwy 20, Cline Creek Ro (32 miles RT)			DATE: Jun 3, 20 CLASS: Medium 18 CY truck	20	
TIME Computati					
Road speed tim		MDIII	0 0		
1.	55 MPH	MRT	0.0	minutes	
2.	50 MPH 23.0			minutes	
3.	45 MPH	MRT		minutes	
4.	40 MPH	MRT		minutes	
	35 MPH	MRT	0.0		
6.	30 MPH	MRT	0.0	minutes	
7.	25 MPH	MRT	0.0		
8.	20 MPH 6.0			minutes	
9.	15 MPH	MRT		minutes	
10.	10 MPH 3.0	0 MRT		minutes	
11.	05 MPH	MRT	0.0	minutes	
Dump or spread Total hauli (100% effic	ng cycle time fo	0.50	minutes minutes		
		0.05	== 44		
	ciency correction			minutes	
Job efficiency	correction	0.90	83.79	minutes	
Truck capacity	(CY)	18.00	4.66	min/CY	
Loading time,	delay time per C	Υ	0.25	min/CY	
TIME (minutes)	per cubic yard		4.91	min/CY	
COST per CY co	mputation				
Cost of tru	ck and operator	per hour	\$114.00	/hr.	
Cost of tru	ck and operator	per minute	\$1.90	/min	
Cost per CY			\$9.33	/CY	
Spread and com	ıpact Water trı	ıck, Grader & Roll	ler \$1.50	/CY	
Cost Delivered			Cost Deliv	ered	
Size Cost	t/Yd (Pit)	w/o processing		ssing	
1½ - 0" \$	11.48	\$20.81	\$22.31		
3 - 0" \$	11.14	\$20.47	\$21.97		
Jaw Run \$		\$19.12	\$20.62		
Pit-Run \$		\$18.20	\$19.70		

Note: Pit costs June 1, 2019 Hardrock rock Quarry

TIMBER CRUISE REPORT

Cline Miller Thin (WO-341-2021-W00360-01) FY 2020

1. Sale Area Location: Portions of Sections 17, 19 & 20, T11S, R8W, W.M., Lincoln County, Oregon.

2. Fund Distribution:

a. Fund

BOF 96%

CSL 4%

3. Sale Acreage by Area:

Unit	Treatment	Gross Acres	Stream Buffers	Existing Roads	New Construction	Slope Buffer (No Harvest)	PC Not Required	Net Sale Acres	Acreage Comp. Method
1	Thinning	36	2	<1	<1	-	2	32	GIS
2	Thinning	44	6	<1	<1	2	-	35	GIS
3	Thinning	103	7	2	<1	. -	-	94	GIS
Total	-	183	15	2	1	2	2	161	

- 4. Cruisers and Cruise Dates: This sale was cruised by Zane Sandborg, David Bailey and Aaron McEwen in March, 2020.
- 5. Cruise Method and Computation: The sale consists of three thinning units that were cruised using variable radius plot sampling and a Basal Area Factor of 20. Sale Units 1 & 2 were cruised on a 5 x 5 chain grid and Unit 3 was cruised on a 6 x 6 chain grid.
- 6. Measure plots were measured for DBH, height, form factor, grade, and defect. Data was entered into the Atterbury Super ACE cruise program to determine stand statistics and net board foot volume. Additional volume was removed to account for hidden defect and breakage.
 - Digital ortho photos, Lidar data, and GPS data were used to map the boundaries for the sale, and ArcMap GIS was used to determine gross and net acreage.
- 7. Measurement Standards: Tree heights were measured to the nearest foot, to a top diameter of 6 inches inside bark or to 40% of form factor. Diameters at breast height (DBH) were measured to the nearest inch, and a form point of 16 feet was used to calculate form factor. Form factors were measured or estimated on every tree. Most trees were graded in 40 foot log segments unless breakage, defect, or length to top of grade cruise diameter warranted otherwise.
- 8. Timber Description: Timber in the sale units is primarily 35 year old Douglas-fir with a moderate red alder component in Unit 1. The average Douglas-fir to be removed in all units is approximately 12.0 inches DBH. The average volume per acre to be harvested (net) in Units 1, 2 and 3 is approximately 6.0 MBF, 7.5 MBF and 6.0 MBF, respectively. Volume for Rights-of-Way was added. Conifer trees other than Douglas-fir and all hardwoods are reserved from cutting, unless present in yarding corridors, Landings or between R/W tags.

9. Statistical Analysis and Stand Summary: (See attached "Statistics").

Unit	Target CV	Target SE	Actual CV	Actual SE
1	40%	13%	27.8%	7.7%
2	40%	13%	28.8%	8.3%
3	40%	13%	32.5%	6.9%

Note: Statistics shown are for conifer and hardwood trees combined. Percentages are for net board foot volume.

10. Total Volume (MBF) by Species and Grade: (See attached volume report "Species, Sort Grade – Board Foot Volumes - Project").

Unit	Gross Cruise Volume	R/W Removal (MBF)	Cruised D & B	Cruised D & B (MBF)	Hidden D & B	Hidden D & B (MBF)	Net Sale Volume
1	189	2	2%	(2)	1%	(2)	187
2	266	5	1%	(4)	1%	(3)	264
3	582	1	1%	(7)	1%	(6)	570
Total	1037	8	1%	(13)	1%	(11)	1021

Unit .	Species	Ave. DBH	Tot. Net Vol.	2-Saw	3-Saw	4-Saw
	- 1 c	11	Grade %	0%	74%	26%
1	Douglas-fir		187	_	139	48
	Douglas-fir	13	Grade %	4%	77%	19%
2			264	11	203	50
		10	Grade %	0%	77%	23%
3	Douglas-fir	12	570	-	439	131
			Grade %	1%	76%	23%
	Total All Areas		1021	11	781	229

Attachments: (All Units)

- -Cruise Design
- -Cruise Maps
- -Statistics
- -Stand Table Summary
- -Species, Sort Grade Board Foot Volume
- -Log Stock Table MBF

Prepared by: Zane Sandborg	Date: 05/11/2020	
Unit Forester: New Hule Evelyte Hukari	Date: 05/13/20	····

CRUISE DESIGN WEST OREGON DISTRICT

Sa	lle Name:Cline Miller Thin Unit1
	prox. Cruise Acres: 32 Estimated CV% 40 /Acre SE% Objective 13 /Acre
Pla	anned Sale Volume: .315 MMBF Estimated Sale Unit Value/Acre: \$ 2025
A.	<u>Cruise Goals</u> : (a) Grade minimum60conifer and0hardwood trees: (b) Sample14cruise plots (8 grade: 6 count); (c) Other goals <u>X</u> Determine log grades for sale value;X Determine take and leave tree species and sizes.
	(Special cruising directions – leave trees etc.) <u>Take plots as shown on map. Do not take plots in buffers.</u> Select take and leave trees. Mark leave trees on grade plots with an L (yellow paint). All cedar and Western hemlock are reserve species. Basal area target is 130 sq. ft. (6 to 7 trees). Hardwood are also reserve species and do not count for basal area leave target.
	DO NOT RECORD 12', 22' and 32' (for Hardwoods).
	DO NOT RECORD 22' LENGTHS.
В.	Cruise Design: 1. Plot Cruises: BAF 20 Full point Cruise Line Direction(s) 90°/180° Cruise Line Spacing 5/330 (chains) (feet) Cruise Plot Spacing 5/330 (chains) (feet) Grade/Count Ratio 1:1

C. Tree Measurements:

- 1. Diameter: Minimum DBH to cruise is 8" for conifers and 10" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- 3. Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>7</u>", <u>7</u>" for <u>hardwoods</u> or <u>40</u>% of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.

- 5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.
- 6. Species, Sort, and Grade Codes: A. Species: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning points with red flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie red flagging above eye level near plot center and another red flagging around a sturdy wooden stake marking plot center. On red flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in yellow paint. Mark leave trees with an L for leave. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint.
- **9. Cruising Equipment:** Relaskop, Rangefinder or Lazer, Logger's Tape (with dbh on back), Biltmore Stick, Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- 10.Attachments: A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by:	Zane Sandborg	
Approved by:	de Mee	
Date: 4/17/20		

CRUISE DESIGN WEST OREGON DISTRICT

Sa	Sale Name: <u>Cline Miller Thin</u> Ur	nit <u>2</u>
Αŗ	Harvest Type: MC Approx. Cruise Acres: 37 Estimated CV% 40	
P18	Planned Sale Volume: <u>.296 MMBF</u> Estimated S	sale Unit Value/Acre: \$ 1800
Α.	A. <u>Cruise Goals</u> : (a) Grade minimum <u>60</u> conifer (b) Sample <u>13</u> cruise plots (7 grade: 6 count); (c) sale value; <u>X</u> Determine take and leave tree species	Other goals X Determine log grades for
	(Special cruising directions – leave trees etc.) <u>Take</u> buffers. Select take and leave trees. Mark leave trees cedar and Western hemlock are reserve species. Bathardwood are also reserve species and do not country.	es on grade plots with an L (yellow paint). Al asal area target is 140 sq. ft. (7 trees).
	DO NOT RECORD 12', 22' and 32' (for Hardwoods)	<u>).</u>
	DO NOT RECORD 22' LENGTHS.	
3.	3. Cruise Design: 1. Plot Cruises: BAF 20 Full point Cruise Line Direction(s) 90°/180 Cruise Line Spacing 5/330 Cruise Plot Spacing 5/330 Grade/Count Ratio 1:1	(chains) (feet)

C. Tree Measurements:

- 1. **Diameter:** Minimum DBH to cruise is 8" for conifers and 10" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- 3. Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>7</u>", <u>7</u>" for <u>hardwoods</u> or <u>40</u>% of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.

- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.
- 6. Species, Sort, and Grade Codes: A. Species: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning points with red flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie red flagging above eye level near plot center and another red flagging around a sturdy wooden stake marking plot center. On red flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in yellow paint. Mark leave trees with an L for leave. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint.
- Cruising Equipment: Relaskop, Rangefinder or Lazer, Logger's Tape (with dbh on back), Biltmore Stick, Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by: Zane Sandborg	2
Approved by:	3
Date: 4/17/2020	

CRUISE DESIGN WEST OREGON DISTRICT

Sa	le Name: <u>Cline Miller Thin</u> Unit <u>3</u>	
	rvest Type: MC prox. Cruise Acres: 97 Estimated CV% 40 /Acre SE% Objective 13 /Acre	
Pla	anned Sale Volume: .679 MMBF Estimated Sale Unit Value/Acre: \$ 1575	
Α.	<u>Cruise Goals</u> : (a) Grade minimum <u>60</u> conifer and <u>0</u> hardwood trees: (b) Sample <u>23</u> cruise plots (12 grade: 11 count); (c) Other goals <u>X</u> Determine log grades for sale value; <u>X</u> Determine take and leave tree species and sizes.	
	(Special cruising directions – leave trees etc.) <u>Take plots as shown on map. Do not take plots in buffers.</u> Select take and leave trees. Mark leave trees on grade plots with an L (yellow paint). All cedar and Western hemlock are reserve species. Basal area target is 130 sq. ft. (6 to 7 trees). Hardwood are also reserve species and do not count for basal area leave target.	
	DO NOT RECORD 12', 22' and 32' (for Hardwoods).	
	DO NOT RECORD 22' LENGTHS.	
В.	Cruise Design: 1. Plot Cruises: BAF 20 Full point Cruise Line Direction(s) 90°/180° Cruise Line Spacing 6/396 (chains) (feet) Cruise Plot Spacing 6/396 (chains) (feet) Grade/Count Ratio 1:1	

C. Tree Measurements:

- **1. Diameter:** Minimum DBH to cruise is <u>8"</u> for conifers and <u>10"</u> for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- 3. Top Cruise Diameter (TCD): Minimum top outside bark for conifer is <u>7</u>", <u>7</u>" for <u>hardwoods</u> or <u>40</u>% of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.

- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. log segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.
- 6. Species, Sort, and Grade Codes: A. Species: Record as DF (Douglas-fir); WH (Western hemlock); SS (Sitka Spruce); RC (Western red cedar); NF (Noble fir); SF (Silver fir); RA (Red alder); BM (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DFL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; K = Camp Run; 0 = Cull; Hardwoods: K = Camprun; #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- **7. Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning points with red flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie red flagging above eye level near plot center and another red flagging around a sturdy wooden stake marking plot center. On red flagging, write the plot identification number. On "measure/grade" plots write the tree number and/or tree diameter on all measured trees (clockwise from the line direction) in yellow paint. Mark leave trees with an L for leave. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint.
- 9. Cruising Equipment: Relaskop, Rangefinder or Lazer, Logger's Tape (with dbh on back), Biltmore Stick, Compass, Cruise Cards or Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by: Zane Sandborg	
Approved by: Cody Wie	
Date: 4/17/2020	

TC PSTATS					OJECT OJECT		STICS NEMIL			PAGE DATE	1 5/11/2020	
TWP RGI		SC TRACT	,	ГҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt	
11S 08		20 A1		00PC			32.00	14	134	1	W	
					TREES		ESTIMATED TOTAL		ERCENT AMPLE			
		PLOTS	TREES		PER PLOT		TREES		TREES			
TOTAL		14	134		9.6							
CRUISE DBH COUNT REFOREST		8	80		10.0		6,752		1.2			
COUN BLAN 100 %	NKS	6	54		9.0							
				STA	ND SUMM	ARY						
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC	
DF-L		46	112.5	14.0	59	32.1	120.0	15,354	15,269	4,284	4,284	
DF-T		26	83.8	11.2	42	17.1	57.1	5,908	5,856	1,638	1,638	
R ALI		8	14.7	13.3	42	3.9	14.3	1,329	1,297	415	415	
TOTA	AL	80	211.0	12.9	51	53.3	191.4	22,590	22,423	6,337	6,337	
COIN		E LIMITS OF TH 8.1 TIMES OU'	T OF 100 THE	VOLUME	WILL BE V	VITHIN TI	HE SAMPLE E	RROR				
CL	68.1	COEFF				E TREES -		#	OF TREES R	=	INF. POP.	
SD:	1.0	VAR.%	S.E.%	L	OW	AVG	HIGH		5	10		
DF-L		40.2	5.9		147	157	166					
DF-T R ALI		55.1 42.4	55.1 11.0 74 42.4 16.0 78		74 78	83 93	93 107					
TOTA		52.0	5.8		119	126	134		108	27	j	
CI	60.1	COEFF			CAMPII	TDEEC	CE	ш.	OF TREES D	EO.	INIE DOD	
CL SD:	68.1 1.0	VAR.%	S.E.%	ĭ	SAMPLI OW	E TREES - AVG	HIGH	# '	OF TREES R 5	EQ. 10	INF. POP.	
DF-L	110	38.0	5.6		41	44	46		<u> </u>	10	-	
DF-T		54.7	10.9		21	24	26					
R ALI	DER	31.0	11.7		26	30	33					
TOTA	AL	48.9	5.5		34	36	38		95	24	j	
CL	68.1	COEFF			TREES/A	ACRE		#	OF PLOTS R	EO.	INF. POP.	
SD:		VAR.%	S.E.%	L	OW	AVG	HIGH		5	10		
DF-L		26.1	7.2		104	113	121					
DF-T		81.0	22.4		65	84	103					
		137.1	38.0		9	15	20					
R ALI	A I	34.0	9.4		191	211	231		50	12		
R ALI	AL .								OF PLOTS R	EQ.	INF. POP.	
TOT A	68.1	COEFF				AREA/AC	RE	#				
CL SD:	68.1 1.0	VAR.%	S.E.%	L	OW	AVG	HIGH	# '	5	10		
CL SD: DF-L	68.1 1.0	VAR.% 18.5	5.1	L	OW 114	AVG 120	HIGH 126	#		10		
CL SD: DF-L DF-T	68.1 1.0	VAR.% 18.5 81.1	5.1 22.5	L	OW 114 44	AVG 120 57	HIGH 126 70	#		10		
CL SD: DF-L	68.1 1.0 DER	VAR.% 18.5	5.1	L	OW 114	AVG 120	HIGH 126	#		8		
CL SD: DF-L DF-T R ALI	68.1 1.0 DER	VAR.% 18.5 81.1 139.2 26.5	5.1 22.5 38.6	L	OW 114 44 9 177	120 57 14 191	HIGH 126 70 20		5	8		
CL SD: DF-L DF-T R ALL TOTA	68.1 1.0 DER AL 68.1	VAR.% 18.5 81.1 139.2 26.5 COEFF	5.1 22.5 38.6 7.3		OW 114 44 9 177 NET BF/	AVG 120 57 14 191 ACRE	HIGH 126 70 20 205		5 30 OF PLOTS R	8 EQ.	INF. POP.	
CL SD: DF-L DF-T R ALL TOTA	68.1 1.0 DER AL 68.1 1.0	VAR.% 18.5 81.1 139.2 26.5 COEFF VAR.%	5.1 22.5 38.6 7.3 S.E.%	L	OW 114 44 9 177 NET BF/	AVG 120 57 14 191 ACRE AVG	HIGH 126 70 20 205 HIGH		5	8		
CL SD: DF-L TOTAL CL SD: DF-L SD: DF-L	68.1 1.0 DER AL 68.1 1.0	VAR.% 18.5 81.1 139.2 26.5 COEFF VAR.% 20.4	5.1 22.5 38.6 7.3 S.E.% 5.6	L	OW 114 44 9 177 NET BF/ OW 14,407	AVG 120 57 14 191 ACRE AVG 15,269	HIGH 126 70 20 205 HIGH 16,132		5 30 OF PLOTS R	8 EQ.	INF. POP.	
CL SD: DF-L DF-T R ALL TOTAL SD:	68.1 1.0 DER AL 68.1 1.0	VAR.% 18.5 81.1 139.2 26.5 COEFF VAR.%	5.1 22.5 38.6 7.3 S.E.%	L	OW 114 44 9 177 NET BF/	AVG 120 57 14 191 ACRE AVG	HIGH 126 70 20 205 HIGH		5 30 OF PLOTS R	8 EQ.	INF. POP.	
CL DF-L CL SD: DF-L DF-L DF-L DF-L DF-T	68.1 1.0 DER AL 68.1 1.0	VAR.% 18.5 81.1 139.2 26.5 COEFF VAR.% 20.4 83.7	5.1 22.5 38.6 7.3 S.E.% 5.6 23.2	L	OW 114 44 9 177 NET BF/ OW 14,407 4,498	AVG 120 57 14 191 ACRE AVG 15,269 5,856	HIGH 126 70 20 205 HIGH 16,132 7,214		5 30 OF PLOTS R	8 EQ.	INF. POP.	
CL DF-L TOTAL DF-L DF-L DF-L DF-T R ALL DF-T	68.1 1.0 DER AL 68.1 1.0	VAR.% 18.5 81.1 139.2 26.5 COEFF VAR.% 20.4 83.7 131.1 27.8	5.1 22.5 38.6 7.3 S.E.% 5.6 23.2 36.3	L	OW 114 44 9 177 NET BF/ OW 14,407 4,498 826 20,697	AVG 120 57 14 191 ACRE AVG 15,269 5,856 1,297 22,423	HIGH 126 70 20 205 HIGH 16,132 7,214 1,768 24,149	#	5 30 OF PLOTS R 5	8 EQ. 10	INF. POP.	
CL SD: DF-L TOTAL CL SD: DF-L DF-T R ALL DF-T R ALL DF-T R ALL DF-T R ALL	68.1 1.0 DER AL 68.1 1.0 DER AL	VAR.% 18.5 81.1 139.2 26.5 COEFF VAR.% 20.4 83.7 131.1	5.1 22.5 38.6 7.3 S.E.% 5.6 23.2 36.3	<u>L</u>	OW 114 44 9 177 NET BF/ OW 14,407 4,498 826 20,697	AVG 120 57 14 191 ACRE AVG 15,269 5,856 1,297 22,423 FT FT/AC	HIGH 126 70 20 205 HIGH 16,132 7,214 1,768 24,149	#	5 30 OF PLOTS R 5	8 EQ. 10 8 EQ.	INF. POP.	
CL SD: DF-L TOTA CL SD: DF-L SD: DF-L DF-T R ALL TOTA CL CL	68.1 1.0 DER AL 68.1 1.0 DER AL 68.1 1.0	VAR.% 18.5 81.1 139.2 26.5 COEFF VAR.% 20.4 83.7 131.1 27.8 COEFF	5.1 22.5 38.6 7.3 S.E.% 5.6 23.2 36.3 7.7	<u>L</u>	OW 114 44 9 177 NET BF/ OW 14,407 4,498 826 20,697 NET CU	AVG 120 57 14 191 ACRE AVG 15,269 5,856 1,297 22,423	HIGH 126 70 20 205 HIGH 16,132 7,214 1,768 24,149 RE	#	5 30 OF PLOTS R 5 33 OF PLOTS R	8 EQ. 10	INF. POP.	

TC PST	ATS				PROJECT PROJECT		STICS NEMIL			PAGE DATE	2 5/11/2020
TWP	RGE	SC	TRACT	TY	PE	A	CRES	PLOTS	TREES	CuFt	BdFt
118	08	20	A1	00F	PC .		32.00	14	134	1	W
CL	68.1		COEFF		NET CU	JFT FT/A	CRE		# OF PLOT	S REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
R AL	DER		132.2	36.6	263	415	566				
TOTA	AL		26.3	7.3	5,875	6,337	6,798		30	7	3

TC PSTNDSUM		Stand Tab	le Summary	Page Date:	1 5/11/2020
T11S R08W S20 Ty00PC	32.00	Project	CLINEMIL	Time:	11:32:07AM
		Acres	32.00	Grown Year:	

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF L	9	1	90	47	5.905	2.61	5.90	8.0	30.0		47	177		15	
DFL	10	2	88	63	9.566	5.22	9.57	13.0	45.0		124	430		40	
DF L	11	2	85	74	7.906	5.22	7.91	16.0	55.0		126	435		40	
DF L	12	3	89	88	9.964	7.83	16.61	15.4	56.0		256	930		82	
DF L	13	5	87	92	14.151	13.04	28.30	16.0	56.0		453	1,585		145	
DF L	14	6	87	98	14.642	15.65	29.28	20.1	70.0		588	2,050		188	66
DF L	15	10	87	94	21.258	26.09	42.52	22.5	80.5		957	3,422		306	110
DF L	16	8	88	97	14.947	20.87	31.76	25.1	90.0		796	2,859		255	91
DF L	17	5	89	100	8.275	13.04	16.55	31.9	116.0		528	1,920		169	61
DF L	18	4	88	99	5.905	10.43	11.81	34.6	123.8		409	1,461		131	47
DF L	Totals	46	88	88	112.518	120.00	200.21	21.4	76.3		4,284	15,269		1,371	489
DF T	8	2	84	42	12.592	4.40	12.59	5.5	20.0		69	252		22	. 8
DF T	9	2	87	62	9.950	4.40	9.95	11.0	50.0		109	497		35	16
DF T	10	3	86	86	12.089	6.59	16.12	12.5	47.5		201	766		64	24
DF T	11	6	86	72	19.981	13.19	23.31	14.0	47.1		326	1,099		104	35
DF T	12	4	88	88	11.193	8.79	19.59	14.7	54.3		288	1,063		92	34
DF T	13	2	90	80	4.769	4.40	9.54	14.8	50.0		141	477		45	15
DF T	14	4	89	83	8.224	8.79	14.39	19.1	64.3		275	925		88	30
DF T	15	2	87	85	3.582	4.40	7.16	20.0	67.5		143	484		46	15
DF T	17	1	88	91	1.394	2.20	2.79	30.0	105.0		84	293		27	9
DF T	Totals	26	87	73	83.774	57.14	115.44	14.2	50.7		1,638	5,856		524	187
RA	11	1	86	49	2.706	1.79	2.71	12.0	40.0		32	108		10	3
RA	12	1	87	106	2.274	1.79	4.55	16.0	60.0		73	273		23	9
RA	13	2	86	66	3.875	3.57	3.87	25.5	70.0		99	271		32	9
RA	14	1	87	77	1.670	1.79	1.67	31.0	80.0		52	134		17	4
RA	15	2	86	84	2.910	3.57	4.37	27.0	96.7		118	422		38	3 14
RA	16	1	87	56	1.279	1.79	1.28	32.0	70.0		41	90		13	3
RA	Totals	8	86	73	14.714	14.29	18.44	22.5	70.4		415	1,297		133	42
Totals		80	87	81	211.006	191.43	334.09	19.0	67.1		6,337	22,423		2,028	718

тс	PSPCSTGR		Sı	oecies, S	ort Gra	de - Board	l Fo	ot Vo	olum	es (Pr	oject)								
T1	1S R08W S20 T	y00PC		32.00		Project: Acres		CLI	NEM 32.0								Page Date Time		1 11/202 :32:0	20
		%						Perce	nt of N	Net Boar	d Foot	Volume					Avera	ige Log	3	Logs
	S So Gr	Net	Bd. Ft.	per Acre		Total		L	og Sca	ale Dia.			Log I	Length		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
RA	DO 3M	26	8.5	369	337		11		100						100	40	9	108	0.87	3.1
RA	DO CR	74		960	960		31		100			12	11	18	59	31	7	63	0.65	15.3
RA	Totals	6	2.4	1,329	1,297		42		100			9	8	13	70	32	8	70	0.70	18.4
DF DF	L DO 2M L DO 3M	8 78	1.2 .6	1,366 11,994	1,350 11,926	3	43		100	100		11	67	7	89 93	34 39	8	170 101	1.27	8.0 117.7
DF	L DO 4M	14		1,994	1,994		64		100			33	67			23	6	27	0.39	74.6
DF	Totals	68	.6	15,354	15,269	4	89		91	9		5	9	5	81	32	8	76	0.66	200.2
DF	T DO 3M	74	.5	4,366	4,342	1:	39		100					10	90	39	7	77	0.54	56.7
DF	T DO 4M	26	1.8	1,542	1,514		48	8	92			41	42	16		21	6	26	0.36	58.7
DF	Totals	26	.9	5,908	5,856	1	87	2	98			11	11	12	66	30	7	51	0.48	115.4
Total	ls		0.7	22,590	22,423	7	18	1	93	6		7	9	7	76	31	7	67	0.60	334.1

 TC
 PLOGSTVB
 Log Stock Table - MBF

 T11S R08W S20 Ty00PC
 32.00
 Project: CLINEMIL Acres
 Page 1 Date 5/11/2020 Time 11:32:06AM

	s	So Gr	Log	Gross	I	Def	Net	%			Net Volu	me by S	caling E	iamete	r in Inch	ies				
Spp	Т		Len	MBF		%	MBF	Spc	2-3	4-5	6-7	8-9	10-11		14-15	16-19	20-23	24-29	30-39	40+
RA		DO 3M	40	:	12	8.5	11	26.0				4	7							
RA		DO CR	. 16		2		2	5.3			2									
RA		DO CR	20		1		1	3.4			1									
RA		DO CR	. 24		3		3	8.3			3									
RA		DO CR	. 32		6		6	13.5					6							
RA		DO CR	. 38		4		4	10.5			4									
RA		DO CR	. 40	:	14		14	33.1			7	7								
RA		Totals	3	4	13	2.4	42	5.8			19	11	12							
DF	L	DO 2M	14		5		5	1.0						5						
DF	L	DO 2M	1 40	3	39	1.4	38	7.9						38						
DF	L	DO 3M	32	:	14	6.6	13	2.6			7	5								
DF	L	DO 3M	34		13		13	2.6			13									
DF	L	DO 3M	36	3	39		39	8.0			10	29								
DF	L	DO 3M	38		6		6	1.2			6									
DF	L	DO 3M	1 40	3:	13		311	63.7			34	126	151							
DF	L	DO 4M	12		1		1	.3				1								
DF	L	DO 4M	14		1		1	.2			1									
DF	L	DO 4M	16		7		7	1.5			7									
DF	L	DO 4M	18		3		3	.6			3									
DF	L	DO 4M	20		8		8	1.6			8									
DF	L	DO 4M	1 24		10		10	2.1			10									
DF	L	DO 4M	26		11		11	2.2			11									
DF	L	DO 4M	28	:	11		11	2.3			11									
DF	L	DO 4M	I 30		11		11	2.2			11									
DF	\Box	Totals	3	49) 1		489	68.1			132	162	151	43						
DF		DO 3M			8		8	4.2			8									
DF		DO 3M			7		7					7								
DF		DO 3M			19		19					19								
DF	Т	DO 3M	40	10)6		105	56.3			54	43	8							
DF	T	DO 4M	12		1		1	.7			1									
DF	T	DO 4M	I 14		6		6	3.3			6									
DF	Т	DO 4M	16		7		7	3.9		4	3									
DF	T	DO 4M	20		5		5	2.9			5									
DF	T	DO 4M	24		7		7	3.9			7									
DF	T	DO 4M	28		14	6.4	13	7.0			13									

T11S R0	08W S20 Ty00PC	32.00		Proje Acre	_	32.00				2 1/2020 32:06AM
Spp T	So Gr Log rt de Len	Gross Def MBF %	Net MBF	% Spc	2-3 4-5	Net Volume by 5 6-7 8-9	Scaling Diamete	r in Inches 14-15 16-19	20-23 24-29	30-39 40
DF T	DO 4M 32	8	8	4.2		8				
DF	Totals	189	187	26.1	4	107 68	8			
Total	All Species	723	718	100.0	4	258 241	172 43			

TC PST	ΓATS				OJECT OJECT		STICS NEMIL			PAGE DATE	1 5/11/2020
TWP	RGE	SC TRACT	Γ	ТҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt
11S	08	20 A2		00PC			35.00	13	132	1	W
					TREES		ESTIMATED TOTAL		RCENT AMPLE		
		PLOTS	TREES		PER PLOT		TREES	ר	TREES		
TOTA	AL	13	132		10.2						
	ISE COUNT DREST	8	67		8.4		5,687		1.2		
BLAN	NKS	5	59		11.8						
				STA	ND SUMM	ARY					
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DF-L		45	89.0	16.5	69	32.6	132.3	17,041	16,892	4,806	4,806
DF-T R AL		19 2	69.6 2.5	13.2	54	18.2	66.2	7,590	7,481	2,199 80	2,199 80
SNA(1	2.5 1.4	15.0 14.0	40 62	0.8 0.4	3.1 1.5	176	176	80	80
TOT		67	162.5	15.1	62	52.2	203.1	24,806	24,549	7,085	7,085
CI			UT OF 100 THE	VOLUME						FO	DIE DOD
CL SD:	68.1 1.0	COEFF VAR.%		I	SAMPLI OW	E TREES - AVG	BF HIGH	# (OF TREES R 5	EQ. 10	INF. POP.
DF-L	1.0	26.7	4.0		192	200	208			10	1,
DF-T R AL		45.1	10.6		110 70	123 70	136 70				
SNAC					70	70	70				
TOT	AL	40.2	4.9		163	171	180		64	16	:
CL	68.1	COEFF			SAMPLI	E TREES -	CF	# (OF TREES R	EQ.	INF. POP.
SD:	1.0	VAR.%		L	OW	AVG	HIGH		5	10	1:
DF-L DF-T		26.7 44.3	4.0 10.4		55 32	57 36	60 40				
R AL		77.5	10.4		32	32	32				
SNAC											
TOT	AL	38.4	4.7		47	50	52		59	15	
CL	68.1	COEFF			TREES/A	ACRE		# (OF PLOTS R	EQ.	INF. POP.
SD:	1.0	VAR.%		L	OW	AVG	HIGH		5	10	1.
DF-L DF-T		18.4 73.8	5.3 21.3		84 55	89 70	94 84				
R AL		360.6	103.9		33	3	5				
		360.6	103.9			1	3				
SNAC	J					1.00	170		52	13	(
SNAC		34.7	10.0		146	162	179		32		
CL	AL 68.1	34.7 COEFF	10.0		BASAL A	AREA/AC	RE	# (OF PLOTS R	EQ.	INF. POP.
CL SD:	68.1 1.0	34.7 COEFF VAR.%	10.0 S.E.%	D	BASAL A	AREA/AC	RE HIGH	# (
CL	68.1 1.0	34.7 COEFF	10.0	և	BASAL A	AREA/AC	RE	# (OF PLOTS R	EQ.	
CL SD: DF-L	68.1 1.0	34.7 COEFF VAR.% 9.8	10.0 S.E.% 2.8	Ъ	BASAL A	AREA/AC	RE HIGH 136	# (OF PLOTS R	EQ.	
CL SD: DF-L DF-T R AL SNAC	68.1 1.0 	34.7 COEFF VAR.% 9.8 72.4 360.6 360.6	S.E.% 2.8 20.9 103.9 103.9	L	BASAL A OW 129 52	AREA/AC AVG 132 66 3 2	HIGH 136 80 6 3	# (OF PLOTS R 5	EQ. 10	1.
CL SD: DF-L DF-T R AL SNAG	68.1 1.0 DER G AL	34.7 COEFF VAR.% 9.8 72.4 360.6 360.6 22.7	S.E.% 2.8 20.9 103.9 103.9 6.5	υ	BASAL A OW 129 52	AREA/AC AVG 132 66 3 2 203	HIGH 136 80 6		DF PLOTS R 5	EQ. 10	1.
CL SD: DF-L DF-T R AL SNAG	68.1 1.0 DER G AL	34.7 COEFF VAR.% 9.8 72.4 360.6 360.6 22.7	S.E.% 2.8 20.9 103.9 103.9 6.5		BASAL A OW 129 52 190 NET BF/	AREA/AC AVG 132 66 3 2 203	HIGH 136 80 6 3 216		DF PLOTS R 5 22 DF PLOTS R	EQ. 10 6	1: Z INF. POP.
CL SD: DF-L SNAC TOT. CL SD:	68.1 1.0 DER G AL 68.1	34.7 COEFF VAR.% 9.8 72.4 360.6 360.6 22.7 COEFF VAR.%	10.0 S.E.% 2.8 20.9 103.9 103.9 6.5	D	BASAL 200W 129 52 190 NET BF/	AREA/AC AVG 132 66 3 2 203 ACRE AVG	HIGH 136 80 6 3 216 HIGH		DF PLOTS R 5	EQ. 10	1: Z INF. POP.
CL SD: DF-L DF-T R AL SNAG	68.1 1.0 DER G AL 68.1	34.7 COEFF VAR.% 9.8 72.4 360.6 360.6 22.7	S.E.% 2.8 20.9 103.9 103.9 6.5	D	BASAL A OW 129 52 190 NET BF/	AREA/AC AVG 132 66 3 2 203	HIGH 136 80 6 3 216		DF PLOTS R 5 22 DF PLOTS R	EQ. 10 6	15
CL SD: DF-L SNAG TOTAL SD: DF-L SD:	68.1 1.0 DER G AL 68.1 1.0	34.7 COEFF VAR.% 9.8 72.4 360.6 360.6 22.7 COEFF VAR.% 14.8	10.0 S.E.% 2.8 20.9 103.9 6.5 S.E.% 4.3	D	BASAL 200W 129 52 190 NET BF/OW 16,171	AREA/AC AVG 132 66 3 2 203 ACRE AVG 16,892	HIGH 136 80 6 3 216 HIGH 17,613		DF PLOTS R 5 22 DF PLOTS R	EQ. 10 6	INF. POP.

TC PST	ATS				PROJECT PROJECT		STICS NEMIL			PAGE DATE	2 5/11/2020
TWP	RGE	SC	TRACT	TYP	E	A	CRES	PLOTS	TREES	CuFt	BdFt
11S	08	20	A2	00PC	!		35.00	13	132	1	W
CL	68.1		COEFF		NET B	F/ACRE			# OF PLOTS	REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
TOTA	A L		28.8	8.3	22,514	24,549	26,583		36	9	4
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS RE	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DF-L			12.6	3.6	4,632	4,806	4,980				
DF-T			72.8	21.0	1,738	2,199	2,660				
R AL	DER		360.6	103.9		80	164				
SNAC	3										
TOTA	AL		26.2	7.6	6,550	7,085	7,621		30	7	3

TC PSTNDSUM		Stand Table Summary	Page Date:	1 5/11/2020
T11S R08W S20 Ty00PC	35.00	Project CLINEMIL	Time:	11:35:59AM
		Acres 35.00	Grown Year:	

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF L	13	3	88	101	9.569	8.82	19.14	17.2	58.3		329	1,116		115	39
DF L	14	3	87	100	8.251	8.82	16.50	20.2	75.0		333	1,238		116	43
DF L	15	5	87	94	11.979	14.70	21.56	24.3	87.8		525	1,893		184	66
DF L	16	8	87	93	16.846	23.52	33.69	25.9	92.5		872	3,117		305	109
DF L	17	9	88	97	16.788	26.46	33.58	30.8	112.2		1,033	3,768		362	132
DF L	18	9	88	89	14.974	26.46	28.28	31.8	109.4		900	3,095		315	108
DF L	19	4	87	89	5.973	11.76	13.44	31.1	105.6		418	1,419		146	50
DF L	20	1	86	86	1.348	2.94	2.70	37.5	115.0		101	310		35	11
DF L	22	2	86	81	2.228	5.88	4.46	43.2	135.0		193	601		67	21
DF L	23	1	85	89	1.019	2.94	2.04	50.5	165.0		103	336		36	12
DF L	Totals	45	87	94	88.975	132.31	175.38	27.4	96.3		4,806	16,892		1,682	591
DF T	10	2	86	68	12.767	6.96	12.77	13.0	45.0		166	575		58	20
DF T	12	3	87	97	13.299	10.45	22.17	16.2	58.0		359	1,286		126	45
DF T	13	6	87	83	22.664	20.89	41.55	16.1	53.6		669	2,229		234	78
DF T	14	1	87	91	3.257	3.48	6.51	18.0	55.0		117	358		41	13
DF T	15	4	87	88	11.349	13.93	22.70	21.6	75.0		491	1,702		172	60
DF T	16	1	85	102	2.494	3.48	4.99	28.5	95.0		142	474		50	17
DF T	18	1	85	94	1.970	3.48	3.94	32.0	110.0		126	433		44	15
DF T	19	1	89	92	1.768	3.48	3.54	36.5	120.0		129	424		45	15
DF T	Totals	19	87	85	69.569	66.15	118.16	18.6	63.3		2,199	7,481		770	262
RA	15	2	86	57	2.507	3.08	2.51	32.0	70.0		80	176		28	6
RA	Totals	2	86	57	2.507	3.08	2.51	32.0	70.0		80	176		28	6
SN	14	1	98	62	1.439	1.54									
SN	Totals	1	98	62	1.439	1.54									
Totals		67	87	90	162.490	203.08	296.05	23.9	82.9		7,085	24,549		2,480	859

TC PSPCSTO	R		Sı	pecies, S	ort Gra	de - Boa	rd F	oot V	olum	es (Pr	oject)								
T11S R08W	S20 Ty	00PC		35.00		Project Acres	:	CL	35.0								Page Date Time		1 11/202 :35:5	20
		%						Perce	ent of N	Net Boar	d Foot	Volume					Avera	ige Log	g	Logs
S So (Net		per Acre		Total		I	Log Sca	ale Dia.			Log I	ength		. Ln	Dia	Bd	CF/	Per
Spp T rt	ad	BdFt	Def%	Gross	Net	Net MBF		4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF L DO	2M	16	1.4	2,899	2,859		100			100			18		82	37	13	203	1.51	14.1
DF L DO	3M	72	.9	12,163	12,054		422		100				1	10	88	38	9	111	0.81	108.8
DF L DO	lМ	12		1,979	1,979		69	3	97			17	50	3	30	25	6	38	0.52	52.6
DF Totals		69	.9	17,041	16,892		591	0	83	17		2	10	8	80	34	8	96	0.81	175.4
DF T DO	2M	4	5.0	354	336		12			100					100	40	12	190	1.40	1.8
DF T DO	3M	77	1.1	5,855	5,789		203		100					2	98	39	8	92	0.67	63.2
DF T DO	lМ	19	1.8	1,381	1,356		47	6	94			39	53	7		22	6	25	0.37	53.2
DF Totals		30	1.4	7,590	7,481		262	1	94	4		7	10	3	81	32	7	63	0.59	118.2
		100							100						100		_			
RA DO	JR .	100		176	176		6		100						100	40	7	70	0.80	2.5
RA Totals		1		176	176		6		100						100	40	7	70	0.80	2.5
Totals			1.0	24,806	24,549		859	1	86	13		4	10	6	81	33	8	83	0.72	296.1

 TC
 PLOGSTVB
 Log Stock Table - MBF

 T11S R08W S20 Ty00PC
 35.00
 Project: CLINEMIL Acres
 Page 1 Date 5/11/2020 Time 11:35:58AM

																	111110	11.	.33.30A	11/1
	S	So C	}r	Log	Gross	Def	Net	%		N	let Volu	me by S	caling I	Diamete	r in Inch	es				
Spp	T	rt d	e	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	L	DO	2M	24	9	5.9	8	1.4							8					
DF	L	DO	2M	28	10		10	1.7						10						
DF	L	DO	2M	40	83	1.1	82	13.8						72	10					
DF	L	DO	2M	28	5		5	.9					5							
DF			3M			47					20	6								
DF	L L					4.7	34 10				28 10	0								
DF	L		3M			5.1	12				12									
DF		DO				5.1	13				13									
DF	L						348				3	95	249							
	L		3141		347			36.6			,		247							
DF	L	DO	4M	16	3		3	.4			3									
DF	L	DO	4M	18	2		2	.3			2									
DF	L	DO	4M	20	7		7	1.2			7									
DF	L	DO	4M	24	6		6	.9			6									
DF	L	DO	4M	26	13		13	2.2			13									
DF	L	DO	4M	28	6		6	1.1			6									
DF	L	DO	4M	30	10		10	1.7			10									
DF	L	DO	4M	32	2		2	.3		2										
DF	L	DO	4M	40	21		21	3.5					21							
DF		7	Γotals		596		591	68.8		2	113	101	275	82	18					
DF	Т	DO	2M	40	12	5.0	12	4.5						12						
DF	Т	DO	3M	32	3		3	1.2			3									
DF	Т	DO	3M	36	11	12.5	9	3.5				9								
DF	Т	DO	3M	38	11		11	4.0				11								
DF	Т	DO	3M	40	181		180	68.6			31	109	40							
DF	Т	DO	4M	12	1		1	.5			1									
DF	T	DO	4M	14	5		5	2.0			5									
DF	Т	DO	4M	16	2		2	.8			2									
DF	Т	DO	4M	18	5		5	1.8		3	2									
DF	Т	DO	4M	20	5		5	2.1			5									
DF	Т	DO	4M	26	3		3	1.1			3									
DF	Т	DO	4M	28	14		14	5.5			14									
DF	Т	DO	4M	30	8		8	3.1			8									
DF	Т	DO	4M	32	4	20.0	3	1.3			3									
DF		7	Γotals		266	1.4	262	30.5		3	79	128	40	12						
RA		DO	CR	40	6		6	100.0			6									

TC	PLO	GSTVB					Log S	Stock '	Table -	MBF									
T113	S R0	8W S20 T	y00PC		35.00		Proje Acre		CLI	NEMIL 35	5.00					Page Date Time	5/1	2 1/2020 :35:58	
	s	So Gr	Log	Gross	Def	Net	%		1	let Volu	me by S	caling D	Diamete	r in Inch	es				
Spp	Т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40
RA		Tota	s		6	6	.7			6									
Total		All Speci	es	86	8 1.0	859	100.0		4	198	230	315	93	18					

TC PST	TATS					OJECT OJECT		STICS NEMIL			PAGE DATE	1 5/11/2020
TWP	RGE	SC TR	ACT	,	ГҮРЕ		AC	CRES	PLOTS	TREES	CuFt	BdFt
11S	08	20 A3			00PC			94.00	23	230	1	W
						TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PLOTS	1	TREES		PER PLOT		TREES		TREES		
TOTA	AL	2	2.3	230		10.0						
	ISE COUNT DREST	1	2	134		11.2		18,828		.7		
COUR BLAN 100 %	NKS		0	96		9.6						
					STA	ND SUMM	ARY					
		SAMPLE TREES		REES ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DF-L			75	102.9	14.8	61	31.9	122.6	14,896	14,618	4,308	4,308
DF-T R AL			40	74.2	12.2	45 25	17.2	60.0	6,187	6,116	1,791	1,791
SNA(13	14.2 9.0	12.5 10.3	35 56	3.4 1.6	12.2 5.2	916	890	302	302
TOT		1	34	200.3	13.5	53	54.4	200.0	22,000	21,624	6,400	6,400
CON			S OUT OI		VOLUME	WILL BE V	VITHIN T	HE SAMPLE E				
CL	68.1		EFF		_		E TREES		#	OF TREES R		INF. POP.
SD: DF-L	1.0		AR.% 80.6	S.E.% 3.5	L	OW 149	AVG 154	HIGH 159		5	10	15
DF-L DF-T			51.7	8.2		90	98	106				
R AL			50.2	14.5		59	69	79				
SNAC TOT		5	0.3	4.3		117	122	128		101	25	11
CL	68.1	CO	EFF			SAMPLI	E TREES	- CF	#	OF TREES R	EΩ	INF. POP.
SD:	1.0		R.%	S.E.%	L	OW	AVG	HIGH		5	10	15
DF-L			28.9	3.3		44	45	47				
DF-T			19.1	7.8		27	29	31				
R AL SNA		4	18.4	13.9		20	24	27				
TOT		4	8.0	4.1		35	36	38		92	23	10
CL	68.1		EFF			TREES/A				OF PLOTS R		INF. POP.
SD:	1.0		AR.%	S.E.%	L	OW	AVG	HIGH	π	5	10	15
DF-L			34.8	7.4		95	103	111		-		
DF-T			76.2	16.2		62	74	86				
R AL			25.8	69.4		4	14	24				
SNAC			81.8 6. <i>1</i>	49.4 7.7		5 185	9 200	13 216		54	14	6
				7.7								
CL SD:	68.1 1.0		EFF AR.%	S.E.%	ī	.OW	AREA/AC AVG	KE HIGH	#	OF PLOTS R	EQ. 10	INF. POP.
DF-L			32.7	7.0		114	123	131		<u> </u>	10	13
DF-T			76.5	16.3		50	60	70				
R AL			12.3	66.5		4	12	20				
SNAC			37.4 1.6	50.6 6.7		3 187	5 200	8 213		42	10	5
			1.0 DEFF	0.7				213				
CL SD:	68.1 1.0		R.%	S.E.%	ī	NET BF/	AVG	HIGH	#	OF PLOTS R	EQ. 10	INF. POP.
DF-L			32.8	7.0		13,596	14,618	15,641			10	13
DF-T			75.1	16.0		5,138	6,116	7,094				
R AL		33	32.2	70.8		260	890	1,519				
SNA	3											

TC PST	ATS				PROJECT PROJECT		STICS NEMIL			PAGE DATE	2 5/11/2020
TWP	RGE	SC	TRACT	TYP	E	A	CRES	PLOTS	TREES	CuFt	BdFt
11S	08	20	A3	00PC			94.00	23	230	1	W
CL	68.1		COEFF		NET B	F/ACRE			# OF PLOTS	REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
TOTA	L		32.5	6.9	20,126	21,624	23,122		44	11	5
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS RE	Q.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DF-L			32.9	7.0	4,006	4,308	4,610				
DF-T			75.3	16.0	1,504	1,791	2,078				
R ALI	DER		326.8	69.6	92	302	512				
SNAC	ì										
TOTA	L		31.7	6.8	5,968	6,400	6,833		42	10	5

TC PSTNDSUM		Stand Table Summary	Page Date:	1 5/11/2020
T11S R08W S20 Ty00PC	94.00	Project CLINEMIL	Time:	11:38:44AM
		Acres 94.00	Grown Year:	

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF	ŗ
DF L	10	2	85	70	5.995	3.27	5.99	15.0	55.0		90	330			35	31
DF L	11	1	87	65	2.477	1.63	2.48	16.0	60.0		40	149			37	14
DF L	12	3	86	93	6.244	4.90	10.41	15.8	54.0		164	562			55	53
DF L	13	3	86	85	5.321	4.90	8.87	17.4	58.0		154	514			15	48
DF L	14	21	86	92	32.114	34.33	64.23	19.0	63.1		1,220	4,052		1,14		381
DF L	15	14	87	93	18.650	22.89	37.30	22.4	76.8		835	2,864		78		269
DF L	16	13	87	92	15.221	21.25	30.44	25.3	88.1		769	2,681		72		252
DF L	17	8	87	88	8.297	13.08	16.59	27.8	93.1		462	1,545		43		145
DF L	18	6	88	92	5.551	9.81	11.10	32.4	111.7		360	1,240			38	117
DF L	19	2	89	89	1.661	3.27	3.32	35.7	115.0		119	382			12	36
DF L	21	2	84	75	1.359	3.27	2.72	34.7	110.0		94	299			39	28
DF L	Totals	75	87	89	102.889	122.61	193.45	22.3	75.6		4,308	14,618		4,04	19 1	1,374
DF T	8	1	88	17	4.297	1.50	4.30	4.0	20.0		17	86			16	8
DF T	9	3	87	53	10.186	4.50	10.19	9.0	36.7		92	373		8	36	35
DF T	10	3	87	60	8.251	4.50	8.25	12.0	46.7		99	385		9	93	36
DF T	11	4	86	74	9.092	6.00	11.36	13.8	46.0		157	523		14	17	49
DF T	12	4	87	78	7.639	6.00	11.46	14.7	48.3		168	554		15	58	52
DF T	13	10	86	86	16.273	15.00	32.55	15.3	50.5		496	1,644		40	57	154
DF T	14	6	86	85	8.419	9.00	16.84	17.8	56.7		299	954		28	31	90
DF T	15	4	88	87	4.889	6.00	8.56	24.1	85.7		207	733		19	94	69
DF T	16	4	87	84	4.297	6.00	8.59	23.5	78.7		202	677		19	90	64
DF T	18	1	86	93	.849	1.50	1.70	32.0	110.0		54	187			51	18
DF T	Totals	40	87	72	74.192	60.00	113.79	15.7	53.7		1,791	6,116		1,68	33	575
RA	10	1	87	17	1.717	.94	1.72	6.0	20.0		10	34			10	3
RA	11	1	86	22	1.419	.94	1.42	8.0	20.0		11	28			11	3
RA	12	5	87	64	5.962	4.68	5.96	20.2	62.0		120	370		1.	13	35
RA	13	2	86	78	2.032	1.87	2.03	27.5	80.0		56	163			53	15
RA	14	2	86	60	1.752	1.87	1.75	26.0	70.0		46	123		4	13	12
RA	15	1	87	83	.763	.94	1.53	21.5	70.0		33	107		3	31	10
RA	17	1	86	62	.594	.94	.59	43.0	110.0		26	65		2	24	6
RA	Totals	13	87	57	14.239	12.17	15.00	20.1	59.3		302	890		28	34	84
SN	8	1	99	48	2.491	.87										
SN	10	1	99	70	1.594	.87										
SN	11	3	99	62	3.953	2.61										
SN	13	1	98	64	.943	.87										
SN	Totals	6	99	60	8.982	5.22										
Totals		134	87	79	200.302	200.00	322.24	19.9	67.1		6,400	21,624		6,0	16 2	2,033

тс	PSPCSTGR		\mathbf{S}_{1}	pecies, S	ort Gra	de - Board F	oot V	olum	es (Pro	ject	()								
T1	1S R08W S20 T	y00PC		94.00		Project: Acres	CL	INEM 94.								Page Date Time		1 11/202 :38:4	20
		%					Perc	ent of l	Net Board	Foot	Volume					Avera	ige Log	g	Logs
	S So Gr	Net		. per Acre		Total		Log Sc	ale Dia.			Log L	ength		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	L DO 2M	4	1.0	660	653	61			100			21		79	37	13	200	1.43	3.3
DF	L DO 3M	77	1.9	11,532	11,315	1,064		100					2	98	39	9	112	0.81	101.4
DF	L DO 4M	19	2.0	2,704	2,650	249	8	92			27	49	18	6	24	6	30	0.41	88.8
DF	Totals	68	1.9	14,896	14,618	1,374	2	94	4		5	10	5	80	32	8	76	0.69	193.5
DF	T DO 3M	77	1.2	4,774	4,715	443		100				2	2	96	39	8	83	0.63	56.6
DF	T DO 4M	23	.9	1,413	1,401	132	6	94			50	46	3		20	6	24	0.35	57.2
DF	Totals	28	1.1	6,187	6,116	575	1	99			12	12	3	74	29	7	54	0.54	113.8
RA	DO CR	100	2.9	916	890	84		100			14		20	66	30	7	59	0.67	15.0
RA	Totals	4	2.9	916	890	84		100			14		20	66	30	7	59	0.67	15.0
Tota	ıls		1.7	22,000	21,624	2,033	1	96	3		7	10	5	78	31	7	67	0.64	322.2

					-				1								1 11116	- 11;	:38:43A	VIVI
	\mathbf{s}			-		Def	Net	%		N	let Volu	ne by S	caling I	Diamete	r in Inch	es	1		I	
Spp	Т	rt de	!	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	L	DO	2M	24	13	4.8	13	.9							13					
DF	L	DO	2M	40	49		49	3.5						49						
DF	L	DO	3M	32	13		13	.9			13									
DF	L	DO	3M	34	10		10	.7			10									
DF	L	DO	3M	36	22		22	1.6			22									
DF	L	DO	3M	38	14		14	1.0			14									
DF	L	DO	3M	40	1,026	2.0	1,005	73.1			37	534	434							
DF	L	DO	4M	12	1		1	.1			1									
DF	L	DO	4M	14	15	9.3	14	1.0			14									
DF	L	DO	4M	16	9		9	.7			9									
DF	L	DO	4M	18	22		22	1.6		5	17									
DF	L	DO	4M	20	21		21	1.5		2	19									
DF	L	DO	4M	24	20		20	1.5		3	17									
DF	L	DO	4M	26	29		29	2.1			29									
DF	L	DO	4M	28	34		34	2.5		4	30									
DF	L	DO	4M	30	38		38	2.7		4	34									
DF	L	DO	4M	32	28	13.1	24	1.8		2	22									
DF	L	DO	4M	34	21		21	1.5			21									
DF	L	DO	4M	40	16		16	1.1					16							
DF		To	otals		1,400	1.9	1,374	67.6		21	308	534	449	49	13					
DF	Т	DO	3M	24	9		9	1.6				9								
DF	T	DO	3M	32	11		11	1.9			11									
DF	T	DO	3M	36	35		35	6.1			25	11								
DF	T	DO	3M	38	24		24	4.1			16	8								
DF	T	DO	3M	40	370	1.5	365	63.4			102	168	94							
DF	Т	DO	4M	12	1		1	.2		1										
DF	T	DO	4M	14	27		27	4.7		2	26									
DF	T	DO	4M	16	16		16	2.7		3	13									
DF	T	DO	4M	18	12		12	2.1			12									
DF	Т	DO	4M	20	10		10	1.7		3	7									
DF	Т	DO	4M	24	21		21	3.6			21									
DF	Т	DO	4M	26	4		4	.7			4									
DF	T	DO	4M	28	13		13	2.2			13									
DF	Т	DO	4M	30	24		24	4.2			24									
DF	T	DO	4M	32	6	20.0	5	.8		_	5									
DF		To	otals		582	1.1	575	28.3		8	277	196	94							

TC PLO	OG	STVB							Log S	Stock T	able -	MBF									
T11S R	.08	W S20	0 Ту	00PC		94.00			Proje Acres		CLI	NEMIL 94	, 4.00					Page Date Time	5/1	2 1/2020 38:43	
Spp T	1	So G		Log Len	Gross MBF	De		Net MBF	% Spc	2-3	1-5	Net Volu	me by S 8-9	caling 1	Diamete 12-13	r in Inch 14-15	es 16-19	20-23	24-29	30-39	40-
	t							2		2-3	4-3	0-7		10-11	12-13	14-13	10-19	20-23	24-29	30-39	40-
RA	ı		CR			3		3	3.9				3								
RA		DO	CR	14		1		1	1.7			1									
RA		DO	CR	18		3		3	3.2			3									
RA		DO	CR	20		4		4	5.4				4								
RA		DO	CR	32	1	12	16.7	10	11.6			10									
RA		DO	CR	34		7		7	8.0			7									
RA		DO	CR	40	5	56		55	66.2			15	41								
RA	Ī	Т	otals		8	36	2.9	84	4.1			35	49								
Total		All S _I	pecie	s	2,06	58	1.7	2,033	100.0		29	620	779	544	49	13					

ODF/State Forests Operational Periods and Seasonal Restriction WALT Sys Gen Report 2014 Page 1 of 1

Oregon Department of Forestry OPERATIONAL PERIODS and SEASONAL RESTRICTIONS

West Oregon, NWOA 24533 ALSEA HWY, PHILOMATH, OR 97370 (541) 929-3266

	-
PRISTA	
5	

	Expiration Date	Expiration Date March 31, 2023	Ailler Thin Expiration Date Ailler Thin March 31, 2023 Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	Sale Name Expiration Date ine Miller Thin Ine Miller Thin Apr May Jun Jul Aug Sep Oct Nov Dec 15 1 15	De T	De _
		Aug	15 1 15 1			
		lun Jul	15 1			
		Мау	1 15 1			
		Apr	5 1 15			
ө	hin	Mar	1 18			
Sale Name	Cline Miller Thin		15 1 18			
0,	Olir	Jan	~			
			Project			
			Units			
nber	V00360-01		Comments	Within MMMA	Within MMMA	
Sale Number	WO-341-2021-W00360-01		Harvesting	Felling in seasonal Wit restricted area	Cable yarding in Witseasonally restricted area	

Date

				Jan	Feb	Jan Feb Mar Apr May Jun	Apr	Мау	Jun	ĮnΓ	Jul Aug Sep Oct Nov Dec	dəs	Oct	Nov	Dec	Date	
Hauling	Comments	Units	Project	1 15	1 15	1 15	1 15 1	1 15	1 15	1 15	1 15	1 15	1 15	1 15	5 1 15	2	
Log Hauling on Unsurfaced Roads					_												

Outside MMMA. Within MMMA.

Ground yarding restricted area

Ground yarding in seasonally restricted area

Within MMMA

seasonally restricted area

Loading in seasonally

				Jan	Feb	Mar	Apr	Мау	Jun	JuC	Aug	Sep	Oct	Nov		Dec	Date
Project Work	Comments	Units	Project	1 15	1 15	1 15	1 15	1 15	1 15	1 15	1 15	-	15 1	15 1	15 1	15	
Non-project roads and landings																	
Project inside seasonally restricted area	Project inside seasonally For Daylighting road segment restricted area reopening road from Point 4 to Point 5.																
Road improvement and Outside MMMA. construction	Outside MMMA.																

Operation Restricted

Activity Restricted 2 hours before sunset and 2 hours after sunrise

This report is for information purposes only. Refer to Section 2455 Seasonal Restrictions of the contract.

Operation Allowed

OF TIMBER SALE CONTRACT NO. WO-341-2021-W00360-01 CLINE MILLER THIN PORTIONS OF SECTIONS 17, 19 & 20, T11S, R08W, W.M., LINCOLN COUNTY, OREGON.

Surfaced Road

= Unsurfaced Road

Type F Stream

Type N Stream

Cable Corridors

Landing

Buried Fiber Optic Line

Land Survey Monument

Streams

New Construction ☐ ☐ Right of Way (Posted)

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

	Sc	cale	
	1:1	2,000	
500	0	500	1,000
			Fee

	NET ACRES	NET ACRES
UNIT	TRACTOR	CABLE
1 (PC)	1	31
2 (PC)	0	35
3 (PC)	8	86
		152
ΓOTAL	9	152

Date: 05/29/2020

Scale 1:12,000 500 1,000 500

been prepared for or be suitable for legal, engineering or

survey purposes. Users of this information should review or consult the primary data and information

sources to ascertain the usability of this information.

Streams

Type F Stream

Type N Stream

Cable Corridors

Landing

Buried Fiber Optic Line

Land Survey Monument

Date: 05/29/2020