Timber Sale Appraisal Edge No. 2 GNA ## Sale SW-341-2021-GF7818-07 District: Southwest Date: October 14, 2020 ## **Cost Summary** | | Conifer | Hardwood | Total | |----------------------------|--------------|-------------------|---------------| | Gross Timber
Sale Value | \$224,222.75 | \$0.00 | \$224,222.75 | | | | Project Work: | (\$78,648.20) | | | | Advertised Value: | \$145,574.55 | ## Timber Sale Appraisal Edge No. 2 GNA Sale SW-341-2021-GF7818-07 District: Southwest Date: October 14, 2020 ## **Timber Description** **Location:** Portions of Sections 14, 15, 22, 23, 25, 26, 27, 28, 33, 35 and 36 of Township 34S R4E, and Sections 2, 4 and 11 of T35S, R4E, Willamette Meridian, Jackson County Oregon. Stand Stocking: 20% | Specie Name | AvgDBH | Amortization (%) | Recovery (%) | |-----------------------|--------|------------------|--------------| | Douglas - Fir | 14 | 0 | 90 | | Western Hemlock / Fir | 14 | 0 | 85 | | Ponderosa Pine | 16 | 0 | 70 | | Volume by Grade | 3S & 4S 6"-
11" | 28 | Utility | Camprun | Total | |--------------------------|--------------------|-----|---------|---------|-------| | Douglas - Fir | 296 | 0 | 0 | 0 | 296 | | Western Hemlock
/ Fir | 2,297 | 138 | 0 | 0 | 2,435 | | Ponderosa Pine | 0 | 0 | 0 | 477 | 477 | | Total | 2,593 | 138 | 0 | 477 | 3,208 | Comments: SOURCE OF POND VALUES Douglas-fir True Fir/Hemlock Local Pond Value, October 2020, Ponderosa Pine uses a Local price. PRICING FOR SPECIES NOT LISTED IN VOLUME TABLE Incense Cedar and Other Cedar Roseburg Pond Value and shipping costs Pond Value \$600 - Logging Costs \$426 = \$174.00 **PULP PRICE** Pulp (Conifer and Hardwood) = \$5/Ton OTHER COSTS WITH PROFIT AND RISK TO BE ADDED Equipment Weed Wash (7 Machines x 4 Hours per Machine x 50 hours) = \$1,400 Temporary Road Closure, Create 34 berms (20 Hours x \$100/hour) = \$2,000 Stump Treatment Annosus Root Rot (350.6 Acres x \$30 per acre) = \$10,518 Total Other Costs with Profit and Risk = \$13,918 SLASH DISPOSAL Slash Disposal 30 Piles x \$100/hour = \$3,000 **ROAD MAINTENANCE COSTS** Road Rocking, Brushing, Blading, and dust abatement are covered as project work. 3 Additional costs for \$6.97/MBF road maintenance of County Road (3 miles) and dirt spurs (5 miles). See Project Summary for more detail on Project Costs. 10/14/20 # Timber Sale Appraisal Edge No. 2 GNA ## Sale SW-341-2021-GF7818-07 District: Southwest Date: October 14, 2020 ## **Logging Conditions** Combination#: 1 Douglas - Fir 88.00% Western Hemlock / Fir 88.00% Ponderosa Pine 88.00% Logging System: Track Skidder Process: Feller Buncher yarding distance: Short (400 ft) downhill yarding: No tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF loads / day: 5 bd. ft / load: 3700 cost / mbf: \$221.04 machines: Log Loader (B) Stroke Delimber (B) Feller Buncher w/ Delimber Track Skidder Combination#: 2 Douglas - Fir 12.00% Western Hemlock / Fir 12.00% Ponderosa Pine 12.00% **Logging System:** Cable: Small Tower <=40 **Process:** Stroke Delimber yarding distance: Short (400 ft) downhill yarding: No tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF loads / day: 5 bd. ft / load: 3700 cost / mbf: \$302.70 machines: Log Loader (A) Stroke Delimber (A) Tower Yarder (Small) ## Timber Sale Appraisal Edge No. 2 GNA ## Sale SW-341-2021-GF7818-07 District: Southwest Date: October 14, 2020 ## **Logging Costs** **Operating Seasons: 2.00** Profit Risk: 10% **Project Costs:** \$78,648.20 Other Costs (P/R): \$13,918.00 Slash Disposal: \$3,000.00 Other Costs: \$0.00 #### Miles of Road Road Maintenance: \$0.00 | Dirt | Rock
(Contractor) | Rock
(State) | Paved | |------|----------------------|-----------------|-------| | 5.0 | 3.0 | 0.0 | 0.0 | ### **Hauling Costs** | Species | \$/MBF | Trips/Day | MBF / Load | |-----------------------|--------|-----------|------------| | Douglas - Fir | \$0.00 | 3.0 | 3.6 | | Western Hemlock / Fir | \$0.00 | 3.0 | 4.0 | | Ponderosa Pine | \$0.00 | 3.0 | 3.4 | # Timber Sale Appraisal Edge No. 2 GNA ## Sale SW-341-2021-GF7818-07 District: Southwest Date: October 14, 2020 ## **Logging Costs Breakdown** | Logging | Road
Maint | Fire
Protect | Hauling | Other
P/R appl | Profit &
Risk | Slash
Disposal | Brand & Paint | Other | Total | |-----------|---------------|-----------------|----------|-------------------|------------------|-------------------|---------------|--------|----------| | Douglas - | Fir | | | | | | | | | | \$230.84 | \$6.67 | \$2.74 | \$96.76 | \$4.34 | \$34.14 | \$0.94 | \$2.00 | \$0.00 | \$378.43 | | Western H | emlock | / Fir | | | | | | | | | \$230.84 | \$6.97 | \$2.74 | \$91.05 | \$4.34 | \$33.59 | \$0.94 | \$2.00 | \$0.00 | \$372.47 | | Ponderosa | Pine | | | | | | | | | | \$230.84 | \$7.88 | \$2.74 | \$121.08 | \$4.34 | \$36.69 | \$0.94 | \$2.00 | \$0.00 | \$406.51 | | Specie | Amortization | Pond Value | Stumpage | Amortized | |-----------------------|--------------|------------|----------|-----------| | Douglas - Fir | \$0.00 | \$660.00 | \$281.57 | \$0.00 | | Western Hemlock / Fir | \$0.00 | \$429.25 | \$56.78 | \$0.00 | | Ponderosa Pine | \$0.00 | \$412.00 | \$5.49 | \$0.00 | ## Timber Sale Appraisal Edge No. 2 GNA Sale SW-341-2021-GF7818-07 District: Southwest Date: October 14, 2020 ## **Summary** #### Amortized | Specie | MBF | Value | Total | |-----------------------|-----|--------|--------| | Douglas - Fir | 0 | \$0.00 | \$0.00 | | Western Hemlock / Fir | 0 | \$0.00 | \$0.00 | | Ponderosa Pine | 0 | \$0.00 | \$0.00 | ### Unamortized | Specie | MBF | Value | Total | | |-----------------------|-------|----------|--------------|--| | Douglas - Fir | 296 | \$281.57 | \$83,344.72 | | | Western Hemlock / Fir | 2,435 | \$56.78 | \$138,259.30 | | | Ponderosa Pine | 477 | \$5.49 | \$2,618.73 | | ### **Gross Timber Sale Value** **Recovery:** \$224,222.75 Prepared By: Chris Rudd Phone: 541-474-3152 #### **PROJECT SUMMARY** Purchaser would only be reimbursed for projects accomplished to specifications. For Example, winter logging on frozen ground would not require dust abatement and subsoiling. Purchasers timber account will not be credited for projects not needed or completed. Project 1 | Surface Replacement (Repairing Potholes) 495 CY | | | | | |---|-------|---------|-----------------|----------| | on 3200 Road T-813 | Yards | \$/Yard | \$/mile \$/Load | | | Rock \$15/Yard | 495 | \$15.00 | \$150 | \$7,425 | | Hauling 40 Miles Round Trip (50 trips) | 495 | | \$3.00 \$120 | \$6,000 | | Water, Scarify Potholes, Rock and Compact Rock. | 495 | \$5.00 | | \$2,475 | | *Scallon Bros. Managed Pits near Butte Falls. | 495 | \$20.00 | | \$15,900 | Rock Spec Size 1.5"-0" would cover 6,683' at 2" depth and 12' running surface \$15,900 Subtotal #### Project 2 | | | Т | imes * | | | |----------------------------|--------------|---------|--------|---------|----------| | Road Grading/Blading T-811 | Road | Miles 0 | Graded | \$/Mile | | | | 3200 | 9.3 | 3 | \$520 | \$14,508 | | | 3200540 | 1.1 | 3 | \$520 | \$1,716 | | No Blading Required | 3200550 | | | | \$0 | | No Blading Required | 3700 | | | | \$0 | | | 3770 | 2.1 | 3 | \$520 | \$3,276 | | Pre-Sale Grading Needed | 3700400 | 1.2 | 1 | \$520 | \$624 | | Post Sale Grading Only | 3700660 | 0.8 | 1 | \$520 | \$416 | | Post Sale Grading Only | 661 or 640 | 3.7 | 1 | \$520 | \$1,924 | | | 3450 | 1.5 | 3 | \$520 | \$2,340 | | Post Sale Grading Only | 3200668 | 0.5 | 1 | \$520 | \$260 | | Мо | ve-In Grader | | | | \$500 | ^{*}Grade roads before, during and after logging as specified in Exhibit D (C5.31). \$25,564 Subtotal \$25,564 **Project 3** | Road Brushing T-842 (light) | | Miles | \$/Mile | | |--------------------------------|-------------|-------|---------|---------| | | 3200 | 9.3 | \$600 | \$5,580 | | | 3200540 | 1.1 | \$600 | \$660 | | | 3700 | 2.9 | \$600 | \$1,740 | | | 3770 | 2.1 | \$600 | \$1,260 | | (Heav | vy) 3700668 | 0.25 | \$1,500 | \$375 | | | 3700660 | 0.8 | \$600 | \$480 | | | 3700400 | 1.2 | \$600 | \$720 | | | 3450 | 1.5 | \$600 | \$900 | | Appraised for brushing by hand | | | | | Subtotal \$11,715 Project 4 MPH | | | | | | Refill Time | | | |---------------------------|-------|----------|--------|---------|-------------|----------|-------------| | Dust Abatement T-812 | 1 | Trips/da | У | 10 | Hours/Da | Refill | | | | | Dusty | | | | | | | Use Nearest Water Source. | Miles | Days \$ | /hour | \$/Road | | | Total | | 3200 | 9.4 | 45 | \$90 | \$85 | 3.13 | \$12,690 | \$16,497.00 | | 3200540 | 1.1 | 8 | \$90 | \$10 | 0.37 | \$264 | \$343.20 | | 3770 | 2.1 | 20 | \$90 | \$19 | 0.70 | \$1,260 | \$1,638.00 | | 3700660 | 0.8 | 5 | \$90 | \$7 | 0.27 | \$120 | \$156.00 | | 3450 | 1.5 | 10 | \$90 | \$14 | 0.50 | \$450 | \$585.00 | | Move-In | | 1 | \$ 250 | | | | \$250.00 | Water = 3,520 gallons per mile (1/2 gallon per yard). Water in the morning or at night. Subtotal \$19,469.20 Project 5 Miles \$/mile | The main skid roads shall be subsoiled to a depth of at least 20". Pull slash back across subsoiled skid road for 60% coverage of exposed mineral soil. | Subsoiling, Waterbarring - Temporary Roads, Skid Roads | 3 | \$2,000 | | Subtotal | \$6,000 | |--|--|--------------|-------------|-----------|----------|---------| | Pull slash back across subsoiled skid road for 60% coverage of exposed mineral soil. | The main skid roads shall be subsoiled to a depth of | f at least 2 | 20". | | | | | 9 1 | Pull slash back across subsoiled skid road for 60% of | overage o | f exposed m | ineral so | oil. | | Total \$78,648.20 #### **SUMMARY OF ADDITIONAL COSTS** | Additional Projects with Profit and R | sk | | | | | |---------------------------------------|-------------------------|-------------|-------|----------|----------| | | Machines Ho |
urs \$/I | Hour | | | | Equipment Weed Wash | 7 | 28 | 50 | Subtotal | \$1,400 | | All Road Maintenance and Lo | gging Equipment would b | e | | | | | cleaned prior to entering the | Timber Sale Area and Ha | uling Vicir | nity. | | | | | | | | | | | | Berms Ho | urs \$/I | Hour | | | | Temporary Road Closure T-835 | 34 | 20 | \$100 | Subtotal | \$2,000 | | | | | | | | | | | | | | | | Stump Treatment Annosus Root Rot | Acres | \$// | Acre | | | | Treat true fir and hemlock Stu | imps over 12" 350.6 | | \$30 | Subtotal | \$10,518 | | | | | | | | | | | | _ | Total | \$13,918 | **Slash Disposal** | Landing Piling and Firewood Sorting. | Piles Ho | urs \$ | /Hour | | | |--------------------------------------|----------|--------|-------|-------|---------| | | 30 | 30 | \$100 | Total | \$3,000 | | | | | | | | #### TIMBER SALE SUMMARY 1. Type of Sale: Edge no. 2 GNA is a Recovery sale, sealed bid auction of 350.6 acres of thinning. 2. Revenue Distribution: USFS regional agreement 18-GN-11061000-048 Project GF7818-07 PCA 02604 **3.** <u>Sale Acreage</u>: For the sale, 350.6 net acres were used for the cruise expansion. Acreage was determined with ArcGIS 10.6 and GPS traverse. **4.** <u>Volume</u>: The table below describes the volume by grade over the thirteen unit sale area Pine is broken out by approximate grade in the cruise but was appraised as camprun. The majority of volume is in Shasta Red Fir. The DF and true fir will have more 2 saw than the cruise is showing. We felt like the true fir in some cases was too branchy to give it a 2 saw grade, but by size, there is more 2 saw. | SALE VOLUME | BY GRADE | BF | | | | | |-------------|----------|-----------|---------|---------|---------|-----------| | Species | 2 Saw | 3 Saw | 4 Saw | 5 Saw | 6 Saw | Total | | SRF | 138,531 | 1,240,639 | 652,051 | | | 2,031,221 | | PP | 0 | 0 | 9,854 | 291,355 | 175,840 | 477,048 | | WF | 0 | 274,943 | 129,029 | 0 | 0 | 403,972 | | DF | 0 | 233,958 | 62,080 | | | 296,039 | | Sale Volume | 138,531 | 1,749,541 | 853,014 | 291,355 | 175,840 | 3,208,280 | - 5. <u>Timber Description</u>: These stands are plantations started in the 1950's and 1960's with mixed conifer of Douglas-fir, True Fir and "offsite Pine". The trees are 70 to 100' tall with the White fir the largest and the pine the smallest. The average DBH for take trees are: Shasta Red Fir 14", Ponderosa Pine 16", White Fir 14", and Douglas-fir 14". The cruise report gives a breakdown of log lengths and scaling diameters by species for the combined cruise. The timber has been marked to remove the smaller trees in suppressed and intermediate canopy positions and to release dominant and co-dominant trees and improve the quality of the residual stand. Purchaser is responsible for marking the optional thinning areas of the sale prior to logging. - **Topography and Logging Method:** Cable Yarding will be required on 42 total acres in units 1-26, 2-27 and 3-32. This could be accomplished with a yarder able to reach 900 feet. The remainder of the sale areas are all ground-based logging with slopes less than 30%. The preferred logging method is with a harvester or feller buncher able to bunch logs in skid roads working in conjunction with a skidder or forwarder. The sale may be logged when dry or frozen ground winter logging. - **7.** <u>Access</u>: All hauling routes are located on Federal ground and County Roads. Access is secured. Road surfacing, blading and dust abatement are all described in in the sale prospectus, maps and exhibits. - **8. Projects:** See project Summary. Projects include: road surfacing, grading and brushing, dust abatement, and road vacation (subsoiling, waterbarring etc.). Total costs for these projects is \$78,648.20. Due to the seasonality of some of these projects, it may not be necessary to complete them all. The project credit will be adjusted accordingly. There are other costs as shown below. - 9. Road Maintenance: The appraisal includes \$6.97/MBF for road maintenance (grading, pulling ditches, etc.). - **10.** Other Costs: Additional costs were appraised for equipment weed washing, temporary road closure and Stump Treatment, totaling \$13,918. - **11.** <u>Slash Disposal:</u> Purchaser will pile slash on landings with an excavator or log loader, sorting out firewood into a separate piles. The appraisal includes \$3,000 for machine piling on the landings. USFS will burn the slash piles. #### OREGON DEPARTMENT of FORESTRY CRUISE REPORT - 1. Acreage Calculation: For the Edge No. 2 Timber Sale, there are 350.6 net cruise acres in the sale area determined by a combination of GPS traverse waypoints and ArcGIS 10.6 software. Net acres do not include the riparian management areas, regeneration areas within the stand, and non-stocked areas which were not cruised. - 2. Cruise Method: A variable plot cruise was conducted on the sale area by ODF during the Fall of 2019. - 3. RIGHT of WAY VOLUMES: There is currently no right of way volume associated with this sale. - 4. Sampling Intensity: 119 Total Plots (63 Measured, 56 Count Plots) CV (BDFT) <u>164.1%</u> (take) SE (BDFT) <u>8.66%</u> (take) As per ODF standards, total harvest volume of conifers and hardwoods ("take" trees) is estimated to be 3,208 MBF ± 277.8 MBF at the 68% confidence level and a sampling error of 8.66%*. Sixty eight times out of 100 the volume estimate will be within range of error specified. - **5. Computation Procedures:** Volume was computed using the SuperACE cruise program. Volumes reported are based on the Scribner Log Rule (West). - **6. Form Factors:** Form factors (a ratio of diameter at 4 and 16 feet) were sampled across the diameter distribution in all strata. Those form factors which were not measured were estimated by SuperACE. - 7. Height Standards: Most conifer trees were measured for total height with a laser rangefinder. - 8. Diameter standards: Diameters were measured outside bark at breast height to the nearest inch. - **9. Grading System:** Trees were graded primarily as 34 foot segments lengths and according to the <u>Official Log Scaling and Grading Rules</u> published by the Northwest Log Rules Advisory Group. - **10. Merchantable top:** Conifer were graded to a merchantable top specified by the official log scaling rules. For all species except pine, 2S segments were graded to a 12" top inside bark, 3S to a 6" top, and 4S to a 5" top (inside bark). Pine 4S logs were graded to a 12" top inside bark, 5S to a 6" top, and 6S to a 5" top (inside bark). - **11. Deductions for Cull, Defect and Breakage:** All visible field cull was removed in the cruise computation. Additional volume was deducted for the anticipated amount of hidden cull and breakage during logging. The estimated volume reduction used for this anticipated loss to volume was 4%. - 12. Cruisers: Cruising was performed by Chris Rudd and Kyle Syfert. *ODF does not guarantee the volume of this or any other cruise. Prospective purchasers are advised to do their own cruise and sale volume calculations. Additional SuperAce Reports available upon request. Reviewed by /s Chris Rudd, Unit Forester: 6/16/2020 #### **VOLUME SUMMARY** | | Volum | e By Unit | | | | | | | | | | | | |--------------|----------|------------------|------------------|------------------|--------------------|------------------|------------------|------------------|--------------|------------------|------------------|------------------|-----------------| | | CRUISI | E VOLUME | PER ACRE | | | ADJUSTED | VOLUME N | /IBF/ACRE* | | | TOTAL VOL | JME MBF | | | Species (Tak | Un ▼ | 2 Saw
(4S PP) | 3 Saw (5S
PP) | 4 Saw (6S
PP) | Cruise
Vol/Acre | 2 Saw
(4S PP) | 3 Saw (5S
PP) | 4 Saw (6S
PP) | NET
ACRES | 2 Saw
(4S PP) | 3 Saw (5S
PP) | 4 Saw (6S
PP) | Total
Volume | | SRF | 26 | | 455 | 1,339 | 1,794 | 0 | 437 | 1,285 | 12.8 | 0 | 5,591 | 16,454 | 22,045 | | WF | 26 | | 1,814 | 1,231 | 3,045 | 0 | 1,741 | 1,182 | 12.8 | 0 | 22,290 | 15,127 | 37,417 | | SRF | 27 | | 3,657 | 2,090 | 5,747 | 0 | 3,511 | 2,006 | 17.2 | 0 | 60,384 | 34,510 | 94,894 | | WF | 27 | | 2,237 | 1,368 | 3,605 | 0 | 2,148 | 1,313 | 17.2 | 0 | 36,937 | 22,588 | 59,526 | | DF | 32 | | 2,167 | 514 | 2,681 | 0 | 2,080 | 493 | 12.0 | 0 | 24,964 | 5,921 | 30,885 | | WF | 32 | | 5,055 | 2,370 | 7,425 | 0 | 4,853 | 2,275 | 12.0 | 0 | 58,234 | 27,302 | 85,536 | | PP | 39 | 329 | 1,407 | 3,627 | 5,363 | 316 | 1,351 | 3,482 | 31.2 | 9,854 | 42,142 | 108,636 | 160,633 | | WF | 39 | | 439 | 558 | 997 | 0 | 421 | 536 | 31.2 | 0 | 13,149 | 16,713 | 29,862 | | DF | 41 | | 2,476 | 741 | 3,217 | 0 | 2,377 | 711 | 12.0 | 0 | 28,524 | 8,536 | 37,060 | | WF | 41 | | | 550 | 550 | 0 | 0 | 528 | 12.0 | 0 | 0 | 6,336 | 6,336 | | DF | 44 | | 1,418 | 470 | 1,888 | 0 | 1,361 | 451 | 21.9 | 0 | 29,812 | 9,881 | 39,693 | | SRF | 44 | | 1,579 | 327 | 1,906 | 0 | 1,516 | 314 | 21.9 | 0 | 33,197 | 6,875 | 40,072 | | PP | 44 | | 523 | 163 | 686 | 0 | 502 | 156 | 21.9 | 0 | 10,996 | 3,427 | 14,422 | | WF | 44 | | 5,544 | 1,440 | 6,984 | 0 | 5,322 | 1,382 | 21.9 | 0 | 116,557 | 30,275 | 146,832 | | DF | 49 | | 5,393 | 1,351 | 6,744 | 0 | 5,177 | 1,297 | 29.1 | 0 | 150,659 | 37,742 | 188,400 | | PP | 49 | | 937 | 358 | 1,295 | 0 | 900 | 344 | 29.1 | 0 | 26,176 | 10,001 | 36,177 | | SRF | 52 | | 13,713 | 4,107 | 17,820 | 0 | 13,164 | 3,943 | 11.0 | 0 | 144,809 | 43,370 | 188,179 | | SRF | 61 | 1,248 | 5,095 | 3,234 | 9,577 | 1,198 | 4,891 | 3,105 | 48.0 | 57,508 | 234,778 | 149,023 | 441,308 | | PP | 63 | | 6,924 | 1,756 | 8,680 | 0 | 6,647 | 1,686 | 31.9 | 0 | 212,041 | 53,776 | 265,816 | | WF | 63 | <u> </u> | 907 | 349 | 1,256 | 0 | 871 | 335 | 31.9 | 0 | 27,776 | 10,688 | 38,464 | | SRF | 65 | 823 | 8,725 | 3,382 | 12,930 | 790 | 8,376 | 3,247 | 67.9 | 53,646 | 568,730 | 220,452 | 842,829 | | SRF | 67 | 1,525 | 6,495 | 1,387 | 9,407 | 1,464 | 6,235 | 1,332 | 18.7 | 27,377 | 116,598 | 24,899 | 168,874 | | SRF | 69 | | 2,161 | 4,417 | 6,578 | 0 | 2,075 | 4,240 | 36.9 | 0 | 76,551 |
156,468 | 233,019 | | Sale Volume | <u> </u> | 3,925 | 79,121 | 37,129 | 120,175 | 3,768 | 75,956 | 35,644 | 350.6 | 148,385 | 2,040,895 | 1,019,000 | 3,208,280 | ^{*4%} Hidden Cull and Breakage factored in for all areas. ^{**} Volume Estimates by Unit are not as accurate as the total sale volume. Cutout volumes will be more accurate for the total volume than individual units. ODF does not guarantee the volume of this or any other cruise. Prospective purchasers are advised to do their own cruise and sale. These volumes reflect merchantable saw logs. A small amount of pulp logs could be harvested from the sale area, particularly in the sub-merch pine species. | SALE VOLUME BY | Y GRADE PEI | RCENTAG | E | | | | |----------------|-------------|---------|-------|-------|-------|-------| | | 2 Saw | 3 Saw | 4 Saw | 5 Saw | 6 Saw | Total | | SRF | 4% | 39% | 20% | 0% | 0% | 63% | | PP | 0% | 0% | 0% | 9% | 5% | 15% | | WF | 0% | 9% | 4% | 0% | 0% | 13% | | DF | 0% | 7% | 2% | 0% | 0% | 9% | | Sale Volume | 4% | 55% | 27% | 9% | 5% | 100% | Additional SuperAce Reports are available upon request. | IC PS | TATS | | | | | DJECT S
ROJECT | TATI
EDC | | | | PAGE
DATE | 1
3/31/2020 | |--|--|-------|---|---|--|--|--|---|----------------|-------------------------------|-----------------------------------|----------------| | WP | RGE | SC | TRACT | 1 | ГҮРЕ | | AC | RES | PLOTS | TREES | CuFt | BdFt | | 34S | 04E | 28 | EDGE2 | (| 0026 | | | 12.80 | 8 | 42 | S | W | | | | | | | | TREES | | ESTIMATED
TOTAL | | ERCENT
SAMPLE | | - E-WARRAN | | | | | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOT | | | 8
4 | 42
18 | | 5.3
4.5 | | 2,265 | | .8 | | | | DBH
REF | COUNT
OREST | | | | | | | 2,200 | | | | | | COU
BLA
100 | NKS | | 4 | 24 | | 6.0 | | | | | | | | | | | | | STA | ND SUMM | IARY | | | | | | | | | | AMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | | FIR-L | | 5 | 63.7 | 16.5 | 70 | 23.4 | 95.0 | 9,676 | 9,676 | 2,570 | 2,570
431 | | | FIR-T | | 4
4 | 24.9
33.9 | 12.1
16.4 | 60
70 | 5.7
12.3 | 20.0
50.0 | 1,793
4,496 | 1,793
4,496 | 431
1,246 | 1,246 | | | I FIR-L
I FIR-T | | 4 | 33.9
47.3 | 11.6 | 65 | 10.3 | 35.0 | 3,045 | 3,045 | 786 | 786 | | | JG FIR-L | | 1 | 7.2 | 16.0 | 77 | 2.5 | 10.0 | 1,146 | 1,146 | 300 | 300 | | TOT | | | 18 | 177.0 | 14.8 | 67 | 54.7 | 210.0 | 20,157 | 20,157 | 5,333 | 5,333 | | CL
SD: | | | COEFF
VAR.% | S.E.% | I | SAMPLI
LOW | E TREE
AVG | S - BF
HIGH | # | OF TREES
5 | REQ.
10 | INF. POP. | | | 3 FIR-L | | 62.2 | | | 100 | | | | | | | | | | | 02.2 | 30.9 | | 133 | 192 | 251 | | | | | | | 3 FIR-T | | 02.2 | 30.9 | | 110 | 110 | 110 | | | | | | CON | 3 FIR-T
N FIR-L | | 02.2 | 30.9 | | 110
270 | 110
270 | 110
270 | | | | | | CON | 3 FIR-T
N FIR-L
N FIR-T | | | 30.9 | | 110 | 110 | 110 | | | | | | CON | 3 FIR-T
N FIR-L
N FIR-T
JG FIR-L | | 26.8 | 30.9
7.4 | | 110
270 | 110
270 | 110
270 | | 31 | 8 | | | CON
CON
DOI | B FIR-T
N FIR-L
N FIR-T
JG FIR-L
FAL | | | | i ta de servicio de la constanta constan | 110
270
97 | 110
270
97
<i>163</i>
E TREE | 110
270
97
175
S - CF | # | FOF TREES | REQ. | INF. POP. | | CON
CON
DOU
TO | B FIR-T
N FIR-L
N FIR-T
JG FIR-L
FAL
68.1
1.0 | | 26.8
COEFF
VAR.% | 7.4
S.E.% | | 110
270
97
<i>151</i>
SAMPLI | 110
270
97
<i>163</i>
E TREE
AVG | 110
270
97
175
S - CF
HIGH | # | | | INF, POP. | | CON
CON
DOU
TO | 3 FIR-T
N FIR-L
N FIR-T
JG FIR-L
FAL
68.1
1.0
3 FIR-L | | 26.8
COEFF | 7.4 | | 110
270
97
<i>151</i>
SAMPLI
LOW
35 | 110
270
97
<i>163</i>
E TREE
AVG
51 | 110
270
97
175
S - CF
HIGH
68 | # | FOF TREES | REQ. | INF. POP. | | CON
CON
DOU
TO' | 3 FIR-T N FIR-L N FIR-T JG FIR-L FAL 68.1 1.0 3 FIR-L 3 FIR-L | | 26.8
COEFF
VAR.% | 7.4
S.E.% | | 110
270
97
151
SAMPLI
LOW
35
27 | 110
270
97
163
E TREE
AVG
51
27 | 110
270
97
175
S - CF
HIGH | # | FOF TREES | REQ. | INF. POP. | | CON CON TO | 3 FIR-T
N FIR-L
N FIR-T
JG FIR-L
FAL
68.1
1.0
3 FIR-L | | 26.8
COEFF
VAR.% | 7.4
S.E.% | | 110
270
97
<i>151</i>
SAMPLI
LOW
35 | 110
270
97
<i>163</i>
E TREE
AVG
51 | 110
270
97
175
S - CF
HIGH
68
27 | ‡ | FOF TREES | REQ. | INF. POP. | | CON
CON
TO'
CL
SD:
NOI
NOI
CON
CON
DOI | 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 3 FIR-L N FIR-L N FIR-L UG FIR-L | | 26.8
COEFF
VAR.%
63.6 | 7.4
S.E.%
31.6 | J | 110
270
97
151
SAMPLI
LOW
35
27
75
26 | 110
270
97
163
E TREE
AVG
51
27
75
26 | 110
270
97
175
S - CF
HIGH
68
27
75
26 | į | FOF TREES 5 | REQ.
10 | INF. POP. | | CON
CON
TO'
CL
SD:
NOI
NOI
CON
CON
DOI | 3 FIR-T N FIR-L N FIR-T JG FIR-L FAL 68.1 1.0 3 FIR-L 3 FIR-L N FIR-L N FIR-T | | 26.8
COEFF
VAR.% | 7.4
S.E.% |] | 110
270
97
151
SAMPLI
LOW
35
27
.75
26 | 110
270
97
163
E TREE
AVG
51
27
75
26
43 | 110
270
97
175
S - CF
HIGH
68
27
75 | | FOR TREES 5 | REQ.
10 | INF. POP. | | CON CON DOUGHTON CON TO' CL | 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 3 FIR-L N FIR-L N FIR-L UG FIR-L TAL 68.1 | 13192 | 26.8 COEFF VAR.% 63.6 30.6 COEFF | 7.4
S.E.%
31.6 | | 110
270
97
151
SAMPLI
LOW
35
27
.75
26
40
TREES/ | 110
270
97
163
E TREE
AVG
51
27
75
26
43
ACRE | 110
270
97
175
S - CF
HIGH
68
27
75
26 | | # OF TREES 5 40 # OF PLOTS | 10 10 REQ. | INF. POP. | | CON
CON
TO'
CL
SD:
NON
CON
CON
TO'
CL
SD: | 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 3 FIR-L N FIR-L N FIR-L L G8.1 1.0 68.1 1.0 | | 26.8 COEFF VAR.% 63.6 30.6 COEFF VAR.% | 7.4
S.E.%
31.6 | | 110
270
97
151
SAMPLI
LOW
35
27
.75
26
40
TREES/ | 110
270
97
163
E TREE
AVG
51
27
75
26
43
ACRE
AVG | 110
270
97
175
S - CF
HIGH
68
27
75
26
47 | | FOR TREES 5 | REQ.
10 | INF. POP. | |
CON
CON
TO'
CL
SD:
NOI
CON
CON
TO'
CL
SD:
NOI | 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 3 FIR-L N FIR-L N FIR-L 1.0 68.1 1.0 3 FIR-L | | 26.8 COEFF VAR.% 63.6 30.6 COEFF VAR.% 86.7 | 7.4
S.E.%
31.6
8.5
S.E.%
32.7 | | 110
270
97
151
SAMPLI
LOW
35
27
.75
26
40
TREES/ | 110
270
97
163
E TREE
AVG
51
27
75
26
43
ACRE | 110
270
97
175
S - CF
HIGH
68
27
75
26 | | # OF TREES 5 40 # OF PLOTS | 10 10 REQ. | INF. POP. | | COM
COM
DOU
TO'
CL
SD:
NOI
DOU
TO'
CL
SD:
NOI
NOI
NOI
NOI
NOI
NOI
NOI
NOI
NOI
NOI | 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 3 FIR-L N FIR-L N FIR-L L G8.1 1.0 68.1 1.0 | | 26.8 COEFF VAR.% 63.6 30.6 COEFF VAR.% | 7.4
S.E.%
31.6 | | 110
270
97
151
SAMPLI
LOW
35
27
75
26
40
TREES/ | 110
270
97
163
E TREE
AVG
51
27
75
26
43
ACRE
AVG
64 | 110
270
97
175
S - CF
HIGH
68
27
75
26
47
HIGH
84 | | # OF TREES 5 40 # OF PLOTS | 10 10 REQ. | INF. POP. | | CON CON TO' CL SD: NOI DOU TO' CCN NOI CON NOI CON | 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 1.0 5 FIR-L N FIR-L N FIR-L N FIR-L N FIR-L N FIR-L N FIR-L | | 26.8
COEFF
VAR.%
63.6
30.6
COEFF
VAR.%
86.7
203.2
190.0
143.8 | 7.4
S.E.%
31.6
8.5
S.E.%
32.7
76.6
71.6
54.2 | | 110
270
97
151
SAMPLI
LOW
35
27
.75
26
40
TREES/
LOW
43
6
10
22 | 110
270
97
163
E TREE
AVG
51
27
75
26
43
ACRE
AVG
64
25
34
47 | 110
270
97
175
S - CF
HIGH
68
27
75
26
47
HIGH
84
44
58
73 | | # OF TREES 5 40 # OF PLOTS | 10 10 REQ. | INF. POP. | | CON
CON
TO'
CL
SD:
NOI
DOU
TO'
CL
SD:
NOI
NOI
COI
COI
DOU
DOU
DOU
DOU
DOU
DOU
DOU
DOU
DOU
DOU | 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 3 FIR-T N FIR-T JG FIR-L 1.0 3 FIR-L 1.0 3 FIR-L 1.0 4 FIR-T UG FIR-L N FIR-T UG FIR-L N FIR-T UG FIR-L N FIR-T UG FIR-L | | 26.8 COEFF VAR.% 63.6 30.6 COEFF VAR.% 86.7 203.2 190.0 143.8 185.2 | 7.4
S.E.%
31.6
8.5
S.E.%
32.7
76.6
71.6
54.2
69.8 | | 110
270
97
151
SAMPLI
LOW
35
27
.75
26
40
TREES/
LOW
43
6
10
22
2 | 110
270
97
163
E TREE
AVG
51
27
75
26
43
ACRE
AVG
64
25
34
47
7 | 110
270
97
175
S - CF
HIGH
68
27
75
26
47
HIGH
84
44
58
73
12 | | 40 40 FOF PLOTS | 10
10
REQ.
10 | INF. POP. | | CON CON TO' CL SD: NOI DOU TO' CL SD: NOI DOU TO' CL SD: NOI DOU TO' TO' TO' | 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 3 FIR-T N FIR-L 1.0 3 FIR-L 1.0 5 FIR-L TAL 68.1 1.0 3 FIR-L TAL 1.0 5 FIR-L TAL 1.0 5 FIR-L TAL TAL N FIR-L | | 26.8 COEFF VAR.% 63.6 30.6 COEFF VAR.% 86.7 203.2 190.0 143.8 185.2 41.3 | 7.4
S.E.%
31.6
8.5
S.E.%
32.7
76.6
71.6
54.2 | | 110
270
97
151
SAMPLI
LOW
35
27
75
26
40
TREES/
LOW
43
6
10
22
2
149 | 110
270
97
163
E TREE
AVG
51
27
75
26
43
ACRE
AVG
64
25
34
47
7
177 | 110
270
97
175
S - CF
HIGH
68
27
75
26
47
HIGH
84
44
58
73
12
205 | 7 | # OF TREES 5 40 # OF PLOTS 5 | 10
10
3 REQ.
10 | INF. POP. | | CON CON TO TO TO TO CL | 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0 68.1 | | 26.8 COEFF VAR.% 63.6 30.6 COEFF VAR.% 86.7 203.2 190.0 143.8 185.2 41.3 COEFF | 7.4
S.E.%
31.6
8.5
S.E.%
32.7
76.6
71.6
54.2
69.8
15.6 | | 110
270
97
151
SAMPLI
LOW
35
27
75
26
40
TREES/
LOW
43
6
10
22
2
149
BASAL | 110
270
97
163
E TREE
AVG
51
27
75
26
43
ACRE
AVG
64
25
34
47
7
177 | 110
270
97
175
S - CF
HIGH
68
27
75
26
47
HIGH
84
44
58
73
12
205 | 7 | # OF TREES 5 40 # OF PLOTS 5 | 10 10 REQ. 10 10 REQ. 10 19 SREQ. | INF. POP. | | CON CON TO TO TO CL SD: | 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 3 FIR-T N FIR-L N FIR-T JG FIR-L 1.0 3 FIR-L 68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0 68.1 | | 26.8 COEFF VAR.% 63.6 30.6 COEFF VAR.% 86.7 203.2 190.0 143.8 185.2 41.3 COEFF VAR.% | 7.4 S.E.% 31.6 8.5 S.E.% 32.7 76.6 71.6 54.2 69.8 15.6 S.E.% | | 110
270
97
151
SAMPLI
LOW
35
27
.75
26
40
TREES/
LOW
43
6
10
22
2
149
BASAL | 110
270
97
163
E TREE
AVG
51
27
75
26
43
ACRE
AVG
64
25
34
47
7
177
AREA/A | 110
270
97
175
S - CF
HIGH
68
27
75
26
47
HIGH
84
44
58
73
12
205
ACRE
HIGH | 7 | # OF TREES 5 40 # OF PLOTS 5 | 10
10
3 REQ.
10 | INF. POP. | | CON CON TO TO TO TO CL SD: NOI COI TO | 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 3 FIR-T N FIR-T JG FIR-L 1.0 3 FIR-L 68.1 1.0 3 FIR-L 68.1 1.0 5 FIR-L N FIR-T UG FIR-L N FIR-T UG FIR-L 1.0 68.1 1.0 68.1 1.0 68.1 | | 26.8 COEFF VAR.% 63.6 30.6 COEFF VAR.% 86.7 203.2 190.0 143.8 185.2 41.3 COEFF | 7.4
S.E.%
31.6
8.5
S.E.%
32.7
76.6
71.6
54.2
69.8
15.6 | | 110
270
97
151
SAMPLI
LOW
35
27
75
26
40
TREES/
LOW
43
6
10
22
2
149
BASAL | 110
270
97
163
E TREE
AVG
51
27
75
26
43
ACRE
AVG
64
25
34
47
7
177 | 110
270
97
175
S - CF
HIGH
68
27
75
26
47
HIGH
84
44
58
73
12
205 | 7 | # OF TREES 5 40 # OF PLOTS 5 | 10 10 REQ. 10 10 REQ. 10 19 SREQ. | INF. POP. | | CON CON TO | 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 3 FIR-T N FIR-L N FIR-T JG FIR-L 1.0 3 FIR-L 68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0 68.1 | | 26.8 COEFF VAR.% 63.6 30.6 COEFF VAR.% 86.7 203.2 190.0 143.8 185.2 41.3 COEFF VAR.% 89.8 | 7.4 S.E.% 31.6 8.5 S.E.% 32.7 76.6 71.6 54.2 69.8 15.6 S.E.% 33.9 | | 110
270
97
151
SAMPLI
LOW
35
27
75
26
40
TREES/
LOW
43
6
10
22
2
149
BASAL
LOW
63
4
14 | 110
270
97
163
E TREE
AVG
51
27
75
26
43
ACRE
AVG
64
25
34
47
7
177
AREA/A
AVG
95
20
50 | 110
270
97
175
S - CF
HIGH
68
27
75
26
47
HIGH
84
44
58
73
12
205
ACRE
HIGH
127
36
86 | 7 | # OF TREES 5 40 # OF PLOTS 5 | 10 10 REQ. 10 10 REQ. 10 19 SREQ. | INF. POP. | | CON CON TO TO TO TO TO TO CL SD: NOI DOU TO TO TO CL SD: NOI COI COI COI CCI COI COI COI COI COI C | 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L N FIR-T JG FIR-L N FIR-T JG FIR-L 1.0 3 FIR-L 1.0 3 FIR-L 1.0 3 FIR-L N FIR-T N FIR-L N FIR-T N FIR-L N FIR-T UG FIR-L TAL 68.1 1.0 B FIR-L N FIR-T N FIR-L | | 26.8 COEFF VAR.% 63.6 30.6 COEFF VAR.% 86.7 203.2 190.0 143.8 185.2 41.3 COEFF VAR.% 89.8 213.8 190.0 155.0 | 7.4
S.E.%
31.6
8.5
S.E.%
32.7
76.6
71.6
54.2
69.8
15.6
S.E.%
33.9
80.6
71.6
58.4 | | 110
270
97
151
SAMPLI
LOW
35
27
.75
26
40
TREES/
LOW
43
6
10
22
2
149
BASAL
LOW
63
4
14
15 | 110
270
97
163
E TREE
AVG
51
27
75
26
43
ACRE
AVG
64
25
34
47
7
177
AREA/A
AVG
95
20
50
35 | 110 270 97 175 S - CF HIGH 68 27 75 26 47 HIGH 84 44 58 73 12 205 ACRE HIGH 127 36 86 55 | 7 | # OF TREES 5 40 # OF PLOTS 5 | 10 10 REQ. 10 10 REQ. 10 19 SREQ. | INF. POP. | | CON CON TO TO TO CL SD: NOI DOU CON NOI CON CON NOI CON CON TO TO TO CL SD: NOI NOI CON CON NOI CON NOI CON NOI CON NOI CON NOI CON CON NOI CON CON NOI CON CON DOU DOU DOU DOU DOU DOU DOU DOU DOU TO | 3 FIR-T N FIR-L N FIR-T JG FIR-L 68.1 1.0 3 FIR-L 3 FIR-T N FIR-T JG FIR-L 1.0 3 FIR-L 68.1 1.0 3 FIR-L 1.0 3 FIR-L 68.1 1.0 3 FIR-L N FIR-T N FIR-L 1.0 8 FIR-L 1.0 8 FIR-L 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | | 26.8 COEFF VAR.% 63.6 30.6 COEFF VAR.% 86.7 203.2 190.0 143.8 185.2 41.3 COEFF VAR.% 89.8 213.8 190.0 | 7.4 S.E.% 31.6 8.5 S.E.% 32.7 76.6 71.6 54.2 69.8 15.6 S.E.% 33.9 80.6 71.6 | | 110
270
97
151
SAMPLI
LOW
35
27
75
26
40
TREES/
LOW
43
6
10
22
2
149
BASAL
LOW
63
4
14 | 110
270
97
163
E TREE
AVG
51
27
75
26
43
ACRE
AVG
64
25
34
47
7
177
AREA/A
AVG
95
20
50 | 110
270
97
175
S - CF
HIGH
68
27
75
26
47
HIGH
84
44
58
73
12
205
ACRE
HIGH
127
36
86 | 7 | # OF TREES 5 40 # OF PLOTS 5 | 10 10 REQ. 10 10 REQ. 10 19 SREQ. | INF. POP | TC PSTATS ## PROJECT STATISTICS PROJECT EDGE2 PAGE 2 DATE 3/31/2020 | | | | | | PROJECT | ED | GEZ | | | DATE | 3/31/2020 | |-----|---------|----|-------|-------|---------|----------|--------|-------|------------|------|-----------| | TWP | RGE | SC | TRACT | ТҮРЕ | | A | CRES | PLOTS | TREES | CuFt | BdFt | | 34S | 04E | 28 | EDGE2 | 0026 | | | 12.80 | 8 | 42 | S | W | | CL | 68.1 | | COEFF | | NET B | F/ACRE | | | # OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | NOB | FIR-L | | 90.3 | 34.1 | 6,381 | 9,676 | 12,971 | | | | | | NOB | FIR-T | | 204.7 | 77.2 | 409 | 1,793 | 3,178 | | | | | | CON | FIR-L | | 190.0 | 71.6 | 1,275 | 4,496 | 7,718 | | | | | | CON | FIR-T | | 154.0 |
58.1 | 1,277 | 3,045 | 4,814 | | | | | | DOU | G FIR-L | | 185.2 | 69.8 | 346 | 1,146 | 1,946 | | | | | | тот | AL | | 36.2 | 13.7 | 17,403 | 20,157 | 22,911 | | 60 | 15 | 7 | | CL | 68.1 | | COEFF | | NET C | CUFT FT/ | ACRE | | # OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | NOB | FIR-L | | 90.7 | 34.2 | 1,692 | 2,570 | 3,448 | | | | | | NOB | FIR-T | | 206.7 | 77.9 | 95 | 431 | 767 | | | | | | CON | FIR-L | | 190.0 | 71.6 | 353 | 1,246 | 2,139 | | | | | | CON | FIR-T | | 159.3 | 60.1 | 314 | 786 | 1,257 | | | | | | DOU | G FIR-L | | 185.2 | 69.8 | 91 | 300 | 509 | | | | | | тот | `AL | | 37.7 | 14.2 | 4,574 | 5,333 | 6,091 | | 65 | 16 | 7 | | T34S R04 | | - | 12.80 | | Project | : | ED | GE2 | | | | | | | Page
Date | | 1
31/20 | | |--------------|----------|----------|---------------|---------|---------|----------|------|----------|-------------|--|-------|-----------|-------|----------|--------------|--------|--------------|-----------| | \$ 0. | | | | | Acres | | | 12.8 | 30 | | | | | | Time | | | 20
6AM | | \$ 0. | | % | | | | | Perc | ent of | Net Board F | oot Volu | ıme | | | | Avera | ige Lo | g | Logs | | o 20 | Gr | Net | Bd. Ft. per A | cre | Total | • | L | og Sca | ale Dia. | | Log L | ength | | Ln | Dia | | | Per | | рр Т г | t ad | BdFt | Def% Gro | ss Net | Net MBF | | 4-5 | 6-11 | 12-16 17+ | 12-20 | 21-30 | 31-35 | 36-99 | Ft | In | Ft | Lf | /Acre | | /F L | 3M | 83 | 3,74 | 7 3,747 | | 48 | | 100 | | | | 100 | | 34 | 9 | 110 | 0.89 | 33 | | /F L | 4M | 17 | 74 | 9 749 | | 10 | 100 | | | 72 | 28 | | | 20 | 5 | 22 | 0.32 | 33 | | VF Total | is | 22 | 4,49 | 6 4,496 | | 58 | 17 | 83 | | 12 | 5 | 83 | | 27 | 7 | 66 | 0.68 | 67 | | /F T | 3M | 59 | 1,81 | 4 1,814 | | 23 | | 100 | | | | 100 | | 34 | 8 | | 0.57 | 27 | | VF T | 4M | 41 | 1,23 | 1 1,231 | | 16 | 100 | | | 36 | | 64 | | 23 | 5 | 26 | 0.24 | 47 | | VF Tota | ls | 15 | 3,04 | 5 3,045 | | 39 | 40 | 60 | | 14 | | 86 | | 27 | 6 | 41 | 0.39 | 74 | | | | | | | | | | | | | | 100 | | 34 | 11 | 140 | 1.07 | 34 | | IF L | 3M | 53 | 5,15 | • | | 66
58 | 39 | 28
61 | 72 | | 95 | 100 | 5 | 1 | 7 | | 0.57 | 92 | | IF L | 4M | 47 | 4,51 | | | | ╁─ | | | | | | | - | | | | 127 | | F Total | s | 48 | 9,67 | 9,676 | | 124 | 18 | 43 | 38 | ļ | 44 | 53 | 3 | 27 | | | 0.73 | | | IF T | 3M | 25 | 45 | | 1 | 6 | ١ | 100 | | | (7 | 100
27 | | 34 24 | 7
6 | 60 | 0.41
0.42 | 33 | | IF T | 4M | 75 | 1,33 | 1,339 | | 17 | 51 | 49 | | 6 | 67 | | | \vdash | | | | | | F Total | s | 9 | 1,79 | 3 1,793 | | 23 | 38 | 62 | | 4 | 50 | 46 | | 26 | 6 | 44 | 0.41 | 40 | | | 23.6 | 0.1 | 93 | 31 931 | | 12 | | 100 | | | | 100 | | 34 | 10 | 130 | 0.97 | | | OF L
OF L | 3M
4M | 81
19 | 2: | | 1 | 3 | 100 | 100 | | | 100 | | | 26 | 5 | | 0.34 | | | OF Total | <u> </u> | 6 | 1,14 | | | 15 | 19 | 81 | NI+13-* | | 19 | 81 | | 30 | 8 | 80 | 0.70 | 1 | | тс 1 | PLOC | GSTVB | | | | Log | Stock Tab | le - | MBF | | | | | | | | | | |------|-------|---------------|----------|-----------|-----|---------------|-----------|------|------------|-------|----------|------|---------|--------|----------------------|-------|---------------------------------------|-----| | T34 | S R | 04E S28 Ty002 | 26 | 12.80 | | Proje
Acre | |)G | E2
12.8 | 30 | | | | | Page
Date
Time | | 1
1/2020
54:05 | | | | s | So Gr Log | <u>,</u> | Gross Def | Net | % | | Ņe | et Volu | ne by | Scaling | Diam | eter in | Inches | | | · · · · · · · · · · · · · · · · · · · | | | Spp | Т | rt de Lei | | MBF % | MBF | Spc | 2-3 4-5 | | 6-7 | 8-9 | 10-11 1: | 2-13 | 14-15 | 16-19 | 20-23 2 | 24-29 | 30-39 | 40+ | | WF | L | 3M 3 | 4 | 48 | 48 | 83.3 | | | | 34 | 14 | | | | | | | | | WF | L | 4M 1 | 9 | 7 | 7 | 11.9 | | 7 | | | | | | | | | | | | WF | L | 4M 2 | 24 | 3 | 3 | 4.7 | | 3 | | | | | | | | | | | | WF | | Totals | 1 | 58 | 58 | 22.3 | 1 | 0 | | 34 | 14 | | | | | | | | | WF | Т | 3M 3 | 34 | 23 | 23 | 59.6 | | | 9 | 15 | | | | | | | | | | WF | Т | 4M 1 | 3 | 1 | 1 | 3.7 | | 1 | | | | | | | | | | | | WF | T | 4M | 16 | 4 | 4 | 10.8 | | 4 | | | | | | | | | | | | WF | Т | 4M 3 | 34 | 10 | 10 | 26.0 | 1 | .0 | | | | | | | | | | | | WF | | Totals | | 39 | 39 | 15.1 | | 6 | 9 | 15 | | | | | | | - | | | NF | L | 3M 3 | 34 | 66 | 66 | 53.3 | | | | 18 | | 21 | | 26 | | | | | | NF | L | 4M 2 | 21 | 5 | 5 | 4.3 | | 5 | | | | | | | | | | | | NF | L | 4M : | 24 | 24 | 24 | 19.2 | | 6 | | | 18 | | | | | | | | | NF | L | 4M | 25 | 17 | 17 | 14.1 | | | | | 17 | | | | | | | | | NF | L | 4M | 26 | 5 | 5 | 4.2 | | 5 | | | | | | | | | | | | NF | L | 4M | 29 | 3 | 3 | 2.4 | | 3 | | | | | | | | | | | | NF | L | 4M | 37 | 3 | . 3 | 2.5 | | 3 | | | | | | | | | | | | NF | | Totals | | 124 | 124 | 48.0 | | 23 | | 18 | 35 | 21 | | 26 | | | | | | NF | T | 3M | 34 | 6 | 6 | 25.3 | | | 6 | | | | | | | | | | | NF | T | 4M | 12 | 1 | 1 | 4.2 | | 1 | | | | | | | • | | | | | NF | T | 4M | 23 | 8 | 8 | 36.3 | | | | | 8 | | Ì | | | | | | | NF | T | 4M | 24 | 3 | 3 | 13.6 | | 3 | | | | | | | | | 1 | | | NF | T | 4M | 34 | 5 | 5 | 20.4 | | 5 | | | | | | | | | | | | NF | | Totals | | 23 | 23 | <u> </u> | | 9 | 6 | | 8 | | | | <u> </u> | | - | | | DF | L | . 3M | 34 | 12 | 12 | 81.3 | | | | | 12 | | | | | | | | | DF | L | 4M | 26 | 3 | 3 | 18.7 | | 3 | | | | | | | | | | | | DF | | Totals | | 15 | 1: | 5.7 | | 3 | | | 12 | | | | | | | | | Tota |
! | All Species | | 258 | 258 | 100.0 | | 59 | 14 | 68 | 69 | 21 | | 26 | | | | | | TC PL | OTTREELI | ST | AJ./III | ···· | | | | t Tree | List - V
EDC | olumes
E2 | | | | Page
Date | 1
3/31/20 | 020 | |--------------|----------|-----|---------|--------|------|-------|------|--------|-----------------|--------------|----------|-------|----------|--------------|--------------|--------------| | TWP | RGE | SC | TRA | CT | | TYP | Έ | | AC | CRES | PLOTS | TR | EES | CRUISE | D DATE | | | 34S | 04E | 28 | EDG | E2 | | 0026 | 5 | | | 12.80 | 8 | | 18 | 6 | /1/2019 | | | Plot | Tree | | | | Tree | s | | 16' | Tot | ВА | Trees | Logs | Net | Net | Total | | | No. | No. | Age | SÏ | Spp St | Me. | Ct. D | вн | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | 2601 | 0001 | 60 | 100 | WF L | | 6 | 16.0 | 86 | 70 | 240.0 | 162.87 | 325.7 | 5,981 | 21,581 | 96 | 35 | | 2601 | | | 100 | | | 6 | 16.4 | 86 | 70 | 240.0 | 162.87 | 325.7 | 5,981 | 21,581 | 96 | 35 | | 2602 | 0001 | 60 | 100 | WF T | 2 | | 14.0 | 86 | 68 | 80.0 | 74.84 | 149.7 | 1,907 | 6,735 | 31 | 11 | | | 0002 | 60 | 100 | WF L | 3 | | 16.0 | 86 | 69 | 120.0 | 85.94 | 171.9 | 2,910 | 10,313 | 47 | 17 | | | 0003 | 60 | 100 | WF L | 1 | | 18.0 | 87 | 72 | 40.0 | 22.64 | 45.3 | 1,077 | 4,074 | 17 | 7 | | | 0004 | 60 | 100 | WF T | 1 | | 12.0 | 86 | 68 | 40.0 | 50.93 | 101.9 | 936 | 3,565 | 15 | 6 | | 2602 | | | 100 | | 7 | | 14.8 | 86 | 69 | 280.0 | 234.34 | 468.7 | 6,831 | 24,688 | 109 | 40 | | 2603 | 0001 | 60 | | NF L | | 5 | 16.0 | 86 | 70 | 200.0 | 134.00 | 268.0 | 5,411 | 20,371 | 87 | 33 | | 2603 | | | 100 | | | 5 | 16.5 | 86 | 70 | 200.0 | 134.00 | 268.0 | 5,411 | 20,371 | 87 | 33 | | 2604 | 0001 | 60 | | NF T | 1 | | 10.0 | 84 | 52 | 40.0 | 73.34 | 73.3 | 721 | 2,934 | 12 | 5 | | 200. | 0002 | 60 | 100 | NF L | 1 | | 21.0 | 86 | 75 | 40.0 | 16.63 | 33.3 | 1,133 | 3,991 | 18 | 6 | | | 0003 | 60 | 100 | NF L | 1 | | 24.0 | 87 | 83 | 40.0 | 12.73 | 25.5 | 1,288 | 4,838 | 21 | 8 | | | 0003 | 60 | | NF T | 2 | | 15.0 | 86 | 61 | 80.0 | 65.19 | 130.4 | 1,744 | 7,171 | 28 | 11 | | | 0005 | 60 | | NF L | 1 | | 16.0 | 86 | 65 | 40.0 | 28.65 | 57.3 | 972 | 3,724 | 16 | 6 | | 2604 | | | 100 | | 6 | | 15.0 | 85 | 61 | 240.0 | 196.54 | 319.7 | 5,857 | 22,658 | 94 | 36 | | 2611 | 0001 | 60 | 100 | WF T | | 3 | 11.0 | 86 | 65 | 120.0 | 162.23 | 256.6 | 2,693 | 10,441 | 43 | 17 | | 2011 | 0002 | 60 | 100 | NF L | | 4 | 16.0 | 86 | 70 | 160.0 | 107.20 | 214.4 | 4,329 | 16,297 | 69 | 26 | | 2611 | | | 100 | | | 7 | 13.8 | 86 | 67 | 280.0 | 269.43 | 471.0 | 7,022 | 26,738 | 112 | 43 | | 2612 | 0001 | 60 | | NF L | 1 | *** | 15.0 | 83 | 62 | 40.0 | 32.59 | 65.2 | 960 | 3,911 | 15 | (| | 2612 | | | 100 | | 1 | | 15.0 | 83 | 62 | 40.0 | 32.59 | 65.2 | 960 | 3,911 | 15 | | | 2613 | 0001 | 60 | 100 | | | 5 | 16.0 | 86 | 70 | 200.0 | 134.00 | 268.0 | 5,411 | 20,371 | 87 | 33 | | 2013 | 0002 | 60 | | DF L | | 1 | 15.0 | 84 | 77 | 40.0 | 28.65 | 57.3 | 1,200 | 4,584 | 19 | | | 2613 | | | 100 | | | 6 | 16.4 | 86 | 71 | 240.0 | 162.65 | 325.3 | 6,610 | 24,954 | 106 | 4(| | 2614 | 0001 | 60 | 100 | | 1 | | 9.0 | 85 | 60 | 40.0 | 90.54 | 90.5 | 747 | 3,622 | 12 | (| | 2014 | 0002 | 60 | 100 | | 1 | | 13.0 | 88 | 74 | 40.0 | 43.40 | 86.8 | 1,058 | 3,906 | 17 | (| | | 0002 | 60 | 100 | | 1 | | 16.0 | 84 | 77 | 40.0 | 28.65 | 57.3 | 1,200 | 4,584 | 19 | , | | i | 0003 | 60 | | NF T | 1 | | 11.0 | 87 | 68 | 40.0 | 60.61 | 121.2 | 2 984 | 4,243 | 16 | | | 2614 | | | 100 | | 4 | | 11.5 | 86 | 67 | 160.0 |) 223.20 | 355.8 | 3,989 | 16,354 | 64 | 2 | | 2614
TYPE | | | 100 | | 18 | 24 | 14.8 | | 67 | 210.0 | 176.95 | 324.9 | 5,333 | 3 20,157 | 683 | 25 | | TC PS | TATS | | | | | DJECT S
ROJECT | TATI:
EDG | | | | PAGE
DATE | 1
3/31/2020 | |---|---|----|--|---|---------------------|--|--
---|----------------|----------------------------|-------------------------------|----------------------| | TWP | RGE | SC | TRACT | j- | ГҮРЕ | | AC | RES | PLOTS | TREES | CuFt | BdFt | | 34S | 04E | 14 | EDGE2 | (| 0027 | | | 17.20 | 7 | 33 | S | W | | | | | | | | TREES |] | ESTIMATED
TOTAL | | ERCENT
SAMPLE | | | | | | P | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOTA | AL | | 7 | 33 | | 4.7 | | | | | | | | | ISE
COUNT
OREST | | 4 | 19 | | 4.8 | | 2,141 | | .9 | | | | COU
BLA
100 % | NKS | | 3 | 14 | | 4.7 | | | | | | | | | | | | | STA | ND SUMM | IARY | | | | | | | | | | MPLE
FREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | CON | FIR-L | | 6 | 30.4 | 18.6 | 85 | 13.3 | 57.1 | 6,444 | 6,444 | 1,717 | 1,717 | | | FIR-T | | 4 | 21.2 | 14.0 | 72 | 6.1 | 22.9 | 2,676 | 2,676 | 685 | 685 | | | IG FIR-L | | 3 | 17.9 | 20.2 | 102 | 8.9 | 40.0 | 5,992 | 5,992 | 1,475 | 1,475 | | | R FIR-T | | 1 | 17.4 | 19.0 | 105 | 7.9 | 34.3 | 5,746 | 5,746 | 1,317
441 | 1,317
441 | | | NQUAP-L | | 4 | 34.6 | 11.0 | 45 | 6.9
1.3 | 22.9
5.7 | 1,039
929 | 1,039
929 | 215 | 215 | | GR F
TOT | | | 1
19 | 2.9
124.5 | 19.0
<i>16.4</i> | 101
<i>77</i> | 45. <i>l</i> | 3.1
182.9 | 22,826 | 22,826 | 5,849 | 5,849 | | CON | NFIDENC
68 | | TIMES OU | THE SAMPI
T OF 100 T | | | | HIN THE SAI | | | | | | CL | 68.1 | | COEFF | 0.07 | , | SAMPLI | | | # | OF TREES
5 | REQ.
10 | INF. POP. | | SD: | 1.0
I FIR-L | | VAR.%
43.9 | S.E.%
19.6 |] | LOW
184 | AVG
228 | HIGH
273 | n. www. | <u> </u> | 10 | 13 | | | FIR-L | | 75.8 | 43.3 | | 129 | 228 | 326 | | | | | | DOU
SH F
CHII | JG FIR-L
R FIR-T
NQUAP-L | , | 38.2 | 26.4 | | 265 | 360 | 455 | | | | | | TO1 | FIR-T
Γ AL | | 48.5 | 12.5 | | 226 | 258 | 290 | | 100 | 25 | 11 | | CL | 68.1 | | COEFF | | | SAMPL | E TREE | | 1 | OF TREES | DEO | INF. POP. | | SD: | 1.0 | | VAR.% | | | | | S - CF | Ŧ | 01 1111111 | KEŲ. | | | | I FIR-L | | 77110.70 | S.E.% | | LOW | AVG | HIGH | Ŧi | 5 | 10 | 15 | | | | | 38.0 | 16.9 | | 50 | AVG
60 | HIGH
71 | FI. | | | 15 | | | I FIR-T | | 38.0
66.5 | 16.9
38.0 | | 50
35 | 60
57 | HIGH
71
79 | Ŧi | | | 15 | | DOU
SH F
CHI | JG FIR-L
R FIR-T
NQUAP-L | , | 38.0 | 16.9 | | 50 | AVG
60 | HIGH
71 | Ŧ. | | | 15 | | DOU
SH F
CHI | JG FIR-L
R FIR-T
NQUAP-L
FIR-T | , | 38.0
66.5 | 16.9
38.0 | | 50
35 | 60
57 | HIGH
71
79 | Ħ. | | | 15 | | DOU
SH F
CHII
GR I
TOT | JG FIR-L
R FIR-T
NQUAP-L
FIR-T
FAL
68.1 | , | 38.0
66.5
35.5
37.8
COEFF | 16.9
38.0
24.5 | | 50
35
66
60
TREES/ | 60
57
88
66
ACRE | HIGH 71 79 110 | | 5
61
OF PLOTS | 10
15
3 REQ. | 7
INF. POP. | | DOU
SH F
CHII
GR I
TOT
CL
SD: | JG FIR-L
R FIR-T
NQUAP-L
FIR-T
FAL
68.1
1.0 | , | 38.0
66.5
35.5
37.8
COEFF
VAR.% | 16.9
38.0
24.5
9.7
S.E.% | | 50
35
66
60
TREES/ | 60
57
88
66
ACRE
AVG | HIGH 71 79 110 72 HIGH | | 5 | 10 | 7
INF. POP. | | DOU
SH F
CHII
GR I
TOT
CL
SD: | UG FIR-L R FIR-T NQUAP-L FIR-T FAL 68.1 1.0 N FIR-L | , | 38.0
66.5
35.5
37.8
COEFF
VAR.% | 16.9
38.0
24.5
9.7
S.E.%
43.8 | | 50
35
66
60
TREES/. | 60
57
88
66
ACRE
AVG
30 | HIGH 71 79 110 72 HIGH 44 | | 5
61
OF PLOTS | 10
15
3 REQ. | . 7 | | DOU
SH F
CHII
GR I
TOT
CL
SD:
COM | JG FIR-L R FIR-T NQUAP-L FIR-T FAL 68.1 1.0 N FIR-L N FIR-T | | 38.0
66.5
35.5
37.8
COEFF
VAR.%
107.7
162.2 | 16.9
38.0
24.5
9.7
S.E.%
43.8
66.0 | | 50
35
66
60
TREES/ | 60
57
88
66
ACRE
AVG | HIGH 71 79 110 72 HIGH 44 35 | | 5
61
OF PLOTS | 10
15
3 REQ. | 7
INF. POP. | | CL SD: | JG FIR-L R FIR-T NQUAP-L FIR-T FAL 68.1 1.0 N FIR-L N FIR-T JG FIR-L | | 38.0
66.5
35.5
37.8
COEFF
VAR.% | 16.9
38.0
24.5
9.7
S.E.%
43.8 | | 50
35
66
60
TREES/.
LOW
17
7 | 60
57
88
66
ACRE
AVG
30
21 | HIGH 71 79 110 72 HIGH 44 | | 5
61
OF PLOTS | 10
15
3 REQ. | 7
INF. POP. | | CL SD: CON CON DOU | JG FIR-L R FIR-T NQUAP-L FIR-T FAL 68.1 1.0 N FIR-L N FIR-T | | 38.0
66.5
35.5
37.8
COEFF
VAR.%
107.7
162.2
115.5 | 16.9
38.0
24.5
9.7
S.E.%
43.8
66.0
47.0 | | 50
35
66
60
TREES/A
LOW
17
7
9 | 60
57
88
66
ACRE
AVG
30
21
18 | HIGH 71 79 110 72 HIGH 44 35 26 | | 5
61
OF PLOTS | 10
15
3 REQ. | 7
INF. POP. | | DOU
SH F
CHII
GR I
TOT
CL
SD:
CON
CON
DOU
SH I
CHII
GR I | JG FIR-L R FIR-T NQUAP-L FIR-T FAL 68.1 1.0 N FIR-L N FIR-T JG FIR-L R FIR-T NQUAP-L | | 38.0
66.5
35.5
37.8
COEFF
VAR.%
107.7
162.2
115.5
170.8
264.6
264.6 | 9.7
S.E.%
43.8
66.0
47.0
69.5
107.7 | | 50
35
66
60
TREES/
LOW
17
7
9
5 | 60
57
88
66
ACRE
AVG
30
21
18
17
35
3 | HIGH 71 79 110 72 HIGH 44 35 26 30 72 6 | | 5 61 FOF PLOTS 5 | 10
15
3 REQ.
10 | 7
INF. POP.
15 | | DOU
SH F
CHII
GR I
TOT
CL
SD:
COM
DOU
SH I
CHII
GR I | JG FIR-L R FIR-T NQUAP-L FIR-T FAL 68.1 1.0 N FIR-L N FIR-T JG FIR-L R FIR-T NQUAP-L | | 38.0
66.5
35.5
37.8
COEFF
VAR.%
107.7
162.2
115.5
170.8
264.6 | 9.7
S.E.%
43.8
66.0
47.0
69.5
107.7 | | 50
35
66
60
TREES/A
LOW
17
7
9 | 60
57
88
66
ACRE
AVG
30
21
18
17
35 | HIGH 71 79 110 72 HIGH 44 35 26 30 72 | # | 5
61
OF PLOTS
5 | 10
15
36 | 7
INF. POP.
15 | | DOU
SH F
CHIII
GR I
TOT
CL
SD:
COM
DOU
SH I
CHIII
GR I
TOT | JG FIR-L R FIR-T NQUAP-L FIR-T FAL 68.1 1.0 N FIR-L N FIR-T JG FIR-L R FIR-T NQUAP-L FIR-T FAL 68.1 | | 38.0
66.5
35.5
37.8
COEFF
VAR.%
107.7
162.2
115.5
170.8
264.6
264.6
55.5
COEFF | 16.9
38.0
24.5
9.7
S.E.%
43.8
66.0
47.0
69.5
107.7
107.7
22.6 | | 50
35
66
60
TREES/
LOW
17
7
9
5 | 60
57
88
66
ACRE
AVG
30
21
18
17
35
3
124
AREA/A | HIGH 71 79 110 72 HIGH 44 35 26 30 72 6 153 | # | 5 61 FOF PLOTS 5 | 10 15 S REQ. 10 36 S REQ. | 7
INF. POP.
15 | | DOU
SH F
CHII
GR I
TOT
CL
SD:
COM
DOU
SH I
CHII
GR I
TOT | JG FIR-L R FIR-T NQUAP-L FIR-T FAL 68.1 1.0 N FIR-L N FIR-T JG FIR-L R FIR-T NQUAP-L FIR-T FAL 68.1 1.0 | | 38.0
66.5
35.5
37.8
COEFF
VAR.%
107.7
162.2
115.5
170.8
264.6
264.6
55.5
COEFF
VAR.% | 16.9
38.0
24.5
9.7
S.E.%
43.8
66.0
47.0
69.5
107.7
107.7
22.6 | | 50
35
66
60
TREES/
LOW
17
7
9
5
96
BASAL
LOW | 66
57
88
66
ACRE
AVG
30
21
18
17
35
3
124
AREA/A | HIGH 71 79 110 72 HIGH 44 35 26 30 72 6 153 ACRE HIGH | # | 5
61
OF PLOTS
5 | 10
15
36 | 7
INF. POP.
15 | | CL SD: | JG FIR-L R FIR-T NQUAP-L FIR-T FAL 68.1 1.0 N FIR-L N FIR-T JG FIR-L R FIR-T NQUAP-L FIR-T FAL 68.1 1.0 N FIR-L | | 38.0
66.5
35.5
37.8
COEFF
VAR.%
107.7
162.2
115.5
170.8
264.6
264.6
55.5
COEFF
VAR.% | 16.9
38.0
24.5
9.7
S.E.%
43.8
66.0
47.0
69.5
107.7
107.7
22.6
S.E.%
43.1 | | 50
35
66
60
TREES/
LOW
17
7
9
5
9
6
BASAL
LOW
33 | 66
66
ACRE
AVG
30
21
18
17
35
3
124
AREA/A
AVG
57 | HIGH 71 79 110 72 HIGH 44 35 26 30 72 6 153 ACRE HIGH 82 | # | 5 61 FOF PLOTS 5 | 10 15 S REQ. 10 36 S REQ. | 7
INF. POP.
15 | | DOU
SH F
CHII
GR I
TOT
CL
SD:
CON
DOU
SH I
CHII
GR I
TOT
CL
SD: | JG FIR-L R FIR-T NQUAP-L FIR-T FAL 68.1 1.0 N FIR-L N FIR-T JG FIR-L R FIR-T NQUAP-L FIR-T FAL 68.1 1.0 | | 38.0
66.5
35.5
37.8
COEFF
VAR.%
107.7
162.2
115.5
170.8
264.6
264.6
55.5
COEFF
VAR.% | 16.9
38.0
24.5
9.7
S.E.%
43.8
66.0
47.0
69.5
107.7
107.7
22.6 | | 50
35
66
60
TREES/
LOW
17
7
9
5
96
BASAL
LOW | 66
57
88
66
ACRE
AVG
30
21
18
17
35
3
124
AREA/A | HIGH 71 79 110 72 HIGH 44 35 26 30 72 6 153 ACRE HIGH | # | 5 61 FOF PLOTS 5 | 10 15 S REQ. 10 36 S REQ. | 7
INF. POP.
15 | | TC PS | TATS | | | | PROJECT | | ISTICS
GE2 | | | PAGE
DATE | 2
3/31/2020 | |-------|----------|-----|-------|-------|---------|----------|---------------|-------|------------|--------------|-----------------------| | TWP | RGE | SC | TRACT | TY | PE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 34S | 04E | 14 | EDGE2 | 003 | 27 | | 17.20 | 7 | 33 | S | W | | CL | 68.1 | | COEFF | | BASA | L AREA/ | ACRE | | # OF PLO | ΓS REQ. | INF. POP. | | SD: | 1.00 | | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | CHIN | IQUAP-L | | 264.6 | 107.7 | | 23 | 47 | | | | | | GR F | - | | 264.6 | 107.7 | | 6 | 12 | | | | | | TOT | AL | | 41.6 | 16.9 | 152 | 183 | 214 | | 80 | 20 | 9 | | CL | 68.1 | *** | COEFF | | NET | BF/ACRE | | **** | # OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | | FIR-L | | 110.1 | 44.8 | 3,557 | 6,444 | 9,331 | | | | | | | FIR-T | | 143.4 | 58.3 | 1,115 | 2,676 | 4,238 | | | | | | DOU | G FIR-L | | 115.5 | 47.0 | 3,177 | 5,992 | 8,808 | | | | | | SH R | FIR-T | |
170.8 | 69.5 | 1,753 | 5,746 | 9,740 | | | | | | CHIN | NOUAP-L | , | 264.6 | 107.7 | | 1,039 | 2,158 | | | | | | GR F | IR-T | | 264.6 | 107.7 | | 929 | 1,929 | | | | | | тот | AL | | 64.4 | 26.2 | 16,843 | 22,826 | 28,809 | | 192 | 48 | 21 | | CL | 68.1 | | COEFF | **** | NET | CUFT FT/ | ACRE | | # OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | CON | FIR-L | | 108.4 | 44.1 | 960 | 1,717 | 2,474 | | | | | | | FIR-T | | 147.8 | 60.1 | 273 | 685 | 1,096 | | | | | | DOU | IG FIR-L | | 115.5 | 47.0 | 782 | 1,475 | 2,168 | | | | | | | R FIR-T | | 170.8 | 69.5 | 402 | 1,317 | 2,232 | | | | | | CHI | NQUAP-I | , | 264.6 | 107.7 | | 441 | 916 | | | | | | | IR-T | | 264.6 | 107.7 | | 215 | 447 | | | | | | тот | CAL | | 55.4 | 22.5 | 4,531 | 5,849 | 7,167 | | 142 | 36 | 16 | | ТС | PSPCSTGR | v. 10-1 | Sp | ecies, S | ort G | rade - B | oard | l Foo | t Vo | lumes | s (P | roject |) | | | | | | | |----------|----------------------|------------------|---------|-------------------|----------------|------------------|----------|-------|-------------|-----------------------------|------|--------|-------|----------------------|---------------|----------------------|-----------|----------------------|----------------------| | T3- | 4S R04E S14 | Ту0027 | 1 | 7.20 | | Project
Acres | : | ED | GE2
17.2 | 0 | | | | | | Page
Date
Time | 3/ | 1
31/20
:24:3 | 20 | | C | S So Gr
T rt ad | %
Net
BdFt | Bd. Ft. | per Acre
Gross | Net | Total
Net MBF | | L | og Sca | Net Boa
de Dia.
12-16 | | | Log L | ength
31-35 36-99 | 1 | Avera
Dia
In | | | Logs
Per
/Acre | | | L DO3M
L DO4M | 72
28 | DCI70 | 4,677
1,767 | 4,677
1,767 | Net MIDE | 80
30 | 35 | 43 | 57 | 17+ | 17 | 18 | 100 65 | 34
24 | | 154 | 1.21
0.46 | 30.4
43.1 | | WF | Totals | 28 | .0 | 6,444 | 6,444 | | 111 | 10 | 49 | 41 | | 5 | 5 | 90 | 28 | 8 | 88 | 0.84 | 73.5 | | WF | T DOCU T DO3M T DO4M | 60
40 | | 1,628
1,049 | 1,628
1,049 | | 28
18 | 43 | 30
57 | 70 | | | 31 | 100
69 | 5
34
32 | 6
12
6 | | 0.00
1.43
0.38 | 6.1
8.3
23.4 | | WF | Totals | 12 | | 2,676 | 2,676 | | 46 | 17 | 40 | 43 | | | 12 | 88 | 28 | 7 | 71 | 0.65 | 37.8 | | | L DO3M
L DO4M | 66
34 | | 4,009
1,983 | 4,009
1,983 | | 69
34 | 23 | 47 | 100
30 | | 19 | 81 | 100 | 34
24 | 13
8 | 224
55 | 1.61
0.57 | 17.9
35.8 | | DF | Totals | 26 | | 5,992 | 5,992 | | 103 | 8 | 15 | 77 | | 6 | 27 | 67 | 28 | 9 | 112 | 1.00 | 53.7 | | CQ | L DO4M | 100 | | 1,039 | 1,039 | | 18 | 100 | | | | | | 100 | 32 | 5 | 30 | 0.40 | 34.6 | | CQ | Totals | 5 | | 1,039 | 1,039 | | 18 | 100 | | | | ļ | | 100 | 32 | 5 | 30 | 0.40 | 34.6 | | GF
GF | T DO3M
T DO4M | 65
35 | | 609
319 | 609
319 | | 10
5 | 27 | 73 | 100 | | | 100 | 100 | 34
24 | 13 | 210
55 | 1.45
0.53 | 2.9
5.8 | | GF | Totals | 4 | | 929 | 929 | | 16 | 9 | 25 | 66 | | | 34 | 66 | 27 | 9 | 107 | 0.92 | 8.7 | | RF
RF | T DO3M
T DO4M | 63
37 | | 3,657
2,090 | 3,657
2,090 | | 63
36 | 25 | 75 | 100 | | | 100 | 100 | 34
25 | 13 | 210
60 | 1.45
0.53 | 17.4
34.8 | | RF | Totals | 25 | | 5,746 | 5,746 | | 99 | 9 | 27 | 64 | | | 36 | 64 | 28 | 9 | 110 | 0.90 | 52.2 | | Tot | als | | | 22,826 | 22,826 | | 393 | 14 | 31 | 56 | | 3 | 20 | 77 | 28 | 8 | 88 | 0.79 | 260.6 | TC PLOGSTVB Log Stock Table - MBF Page T34S R04E S14 Ty0027 17.20 Project: EDGE2 3/31/2020 Date 17.20 Acres Time 1:24:38PM Def % Net Volume by Scaling Diameter in Inches So Gr Log Gross Net 20-23 24-29 30-39 40+ **MBF** 10-11 12-13 14-15 16-19 rt de Len **MBF** Spc 2-3 4-5 Spp 12 80 80 72.6 46 WF DO 3M 34 .6 1 WF L DO 4M 14 1 1.9 2 WF DO 4M 16 L 2 WF DO 4M 19 2 2.1 2.7 3 WF DO 4M 21 L 3 2 WF DO 4M 24 2.3 L 20 17.9 20 DO 4M 20 WF 34 42 Totals 111 111 28.2 11 12 46 WF 8 28 60.8 8 11 28 WF T DO 3M 34 9.7 4 WF T DO 4M 28 4 WF DO 4M 29 2.4 1 7 Т 14.5 WF DO 4M 32 WF T 34 6 12.5 DO 4M Totals 46 11.7 8 13 11 WF 46 25 69 66.9 69 DF L DO 3M 6.3 6 DF DO 4M 20 6 3 DO 4M 3 2.5 3 DF 21 DF L DO 4M 25 9.2 DF DO 4M 26 3 3.1 3 L DF DO 4M 29 10 10 9.9 10 DF DO 4M 30 2 2 2.1 2 103 8 9 54 25 Totals 103 26.3 DF 100.0 18 18 18 CQ L DO 4M Totals 18 18 4.6 18 CQ 10 10 65.6 10 GF T DO 3M 34 4 25.0 GF T DO 4M 23 4 4 T DO 4M GF 24 1 9.4 1 GF Totals 16 16 4.1 1 4 10 63 63 63.6 RF DO 3M 63 27.3 27 RF DO 4M 24 27 27 T 9 9 9.1 9 RF DO 4M 26 Т Totals 99 25.2 9 27 63 RF 99 | TC | PLO |)G | STVB | | | | | Log | Stock | Table | - M | BF | | | | | | | | | | |-------|------|-----|----------|--------|-------|------|-----|--------------|-------|--------------|-------|-------|----|---------|--------|---------|--------|----------------------|-------|-----------------------|-----| | T34 | IS R | ₹04 | 4E S14 ′ | Гу0027 | 7 1 | 7.20 | | Proj
Acre | | EDC | | 17.20 | | | | | | Page
Date
Time | | 2
1/2020
24:38F | | | | s | T | So Gr | Log | Gross | Def | Net | % | | 1 | Net V | olume | by | Scaling | g Dian | eter in | Inches | | | | | | Spp | T | | rt de | | MBF | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | | | 12-13 | 14-15 | | 20-23 | 24-29 | 30-39 | 40+ | | Total | | | All Spec | ies | 393 | | 393 | 100.0 | | 55 | | 6 4 | 8 | 66 | 182 | 11 | 25 | | | | | | TC PL | OTTREELI | ST | | | | | | t Tree
roject | List - V
EDC | | | | | Page
Date | 1
3/31/20 |)20 | |-------|----------|-----|-----|--------|-----|-------|------|------------------|-----------------|-------|--------|-------|----------|--------------|--------------|-----| | TWP | RGE | SC | TRA | .CT | | TY | PE | | A | CRES | PLOTS | TR | EES | | ED DATE | | | 34S | 04E | 14 | EDG | E2 | | 002 | .7 | | | 17.20 | 7 | | 19 | 1 | 1/1/2019 | | | Plot | Tree | | | | Tre | es | | 16' | Tot | ВА | Trees | Logs | Net | Net | Total | | | No. | No. | Age | SI | Spp St | Me. | Ct. I | DВН | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | 2701 | 0001 | 65 | 100 | PP L | | 1 | | | | | | | | | | | | | 0002 | 65 | 100 | DF L | | 1 | 20.0 | 84 | 102 | 40.0 | 17.90 | 53.7 | 1,475 | 5,992 | 36 | 15 | | 2701 | | | 100 | | | 2 | 20.2 | 84 | 102 | 40.0 | 17.90 | 53.7 | 1,475 | 5,992 | 36 | 15 | | 2702 | 0001 | 65 | 100 | CQ L | 4 | | 11.0 | 83 | 45 | 160.0 | 242.44 | 242.4 | 3,089 | 7,273 | 76 | 18 | | 2702 | | | 100 | | 4 | | 11.0 | 83 | 45 | 160.0 | 242.44 | 242.4 | 3,089 | 7,273 | 76 | 18 | | 2703 | 0001 | 65 | 100 | RF T | | 4 | 18.0 | 85 | 105 | 160.0 | 81.26 | 243.8 | 6,144 | 26,816 | 151 | 66 | | | 0002 | 65 | 100 | DF L | | 2 | 20.0 | 84 | 102 | 80.0 | 35.80 | 107.4 | 2,950 | 11,984 | 72 | 29 | | | 0003 | 65 | 100 | WF L | | 1 | 18.0 | 84 | 85 | 40.0 | 21.27 | 51.4 | 1,202 | 4,511 | 30 | 11 | | 2703 | | | 100 | | | 7 | 19.3 | 85 | 101 | 280.0 | 138.34 | 402.6 | 10,296 | 43,311 | 253 | 106 | | 2704 | 0001 | 65 | 100 | WF L | 1 | | 17.0 | 85 | 63 | 40.0 | 25.38 | 50.8 | 910 | 3,045 | 22 | 7 | | | 0002 | 65 | 100 | WF L | 1 | | 19.0 | 85 | 72 | 40.0 | 20.32 | 40.6 | 1,032 | 3,657 | 25 | 9 | | | 0003 | 65 | 100 | WF T | 1 | | 9.0 | 86 | 54 | 40.0 | 90.54 | 90.5 | 703 | 2,716 | 17 | 7 | | | 0004 | 65 | 100 | WF L | 1 | | 16.0 | 84 | 69 | 40.0 | 28.65 | 57.3 | 970 | 3,438 | 24 | 8 | | 2704 | | | 100 | | 4 | | 13.3 | 85 | 60 | 160.0 | 164.88 | 239.2 | 3,616 | 12,856 | 89 | 32 | | 2705 | 0001 | 65 | 100 | WF L | | 3 | 18.0 | 84 | 85 | 120.0 | 63.82 | 154.3 | 3,605 | 13,532 | 89 | 33 | | | 0002 | 65 | 100 | DF L | | 1 | 20.0 | 84 | 102 | 40.0 | 17.90 | 53.7 | 1,475 | 5,992 | 36 | 15 | | | 0003 | 65 | 100 | RF T | | 1 | 18.0 | 85 | 105 | 40.0 | 20.32 | 60.9 | 1,536 | 6,704 | 38 | 16 | | 2705 | | | 100 | | | 5 | 19.0 | 84 | 92 | 200.0 | 102.04 | 268.9 | 6,616 | 26,228 | 163 | 64 | | 2706 | 0001 | 65 | 100 | WF L | 1 | | 20.0 | 83 | 111 | 40.0 | 18.33 | 55.0 | 1,504 | 6,050 | 37 | 15 | | | 0002 | 65 | 100 | WF T | 1 | | 18.0 | 83 | 95 | 40.0 | 22.64 | 45.3 | 1,263 | 4,527 | 31 | 11 | | | 0003 | 65 | 100 | WF T | 1 | | 19.0 | 83 | 99 | 40.0 | 20.32 | 40.6 | 1,315 | 4,673 | 32 | 11 | | | 0004 | 65 | 100 | WF L | 1 | | 21.0 | 83 | 101 | 40.0 | 16.63 | 49.9 | 1,356 | | 33 | 12 | | | 0005 | 65 | 100 | WF L | 1 | | 20.0 | 85 | 111 | 40.0 | 18.33 | 55.0 | 1,437 | 6,050 | 35 | 15 | | 2706 | | | 100 | | 5 | | 19.5 | 83 | 103 | 200.0 | 96.25 | 245.8 | 6,876 | 26,123 | 169 | 64 | | 2707 | | 65 | 100 | DF L | 1 | | 20.0 | 83 | 105 | 40.0 | 18.33 | 55.0 | , | - | 36 | 15 | | | 0002 | 65 | 100 | GF T | 1 | | 19.0 | 86 | 101 | 40.0 | 20.32 | 60.9 | 1,507 | 6,501 | 37 | 16 | | | 0003 | 65 | 100 | RF T | 1 | | 19.0 | 85 | 105 | 40.0 | 20.32 | | | | 38 | 16 | | | 0004 | 65 | 100 | WF T | 1 | | 22.0 | 88 | 110 | 40.0 | 15.15 | | | | 37 | 17 | | | 0005 | 65 | 100 | DF L | 1 | | 24.0 | 84 | 110 | 40.0 | | | | | 38 | 16 | | | 0006 | 65 | 100 | DF L | 1 | | 18.0 | 84 | 95 | 40.0 | 22.64 | 67.9 | 1,397 | 5,432 | 34 | 13 | | 2707 | , | | 100 | | 6 | | 20.0 | 85 | 103 | 240.0 | | | | | 221 | 93 | | TYPE | | | 100 | | 19 | 14 | 16.4 | | 77 | 182.9 | 124.48 | 254.5 | 5,849 | 22,826 | 1,006 | 393 | | TC PSTATS
ODF | | | | | OJECT S
ROJECT | STATI
ED | | | | PAGE
DATE | 1
3/30/2020 | |--|--------------------|-----------------------|----------------|------------|------------------------------------|--------------------------------------|--------------------------|----------------|-------------------|----------------|----------------| | TWP RC | GE | SC TRACT | • | ГҮРЕ | | AC | CRES | PLOTS | TREES | CuFt | BdFt | | 34S 04E | 3 | 23 EDGE2 | | 0032 | | | 12.00 | 5 | 44 | S | W | | | | | | , | TREES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | | PLOTS | TREES | | PER PLOT | • | TREES | | TREES | | | | TOTAL | | 5 | 44 | | 8.8 | | ž. | | | | | | CRUISE
DBH COU
REFORES | | 2 | 17 | | 8.5 | | 1,092 | | 1.6 | | | | COUNT
BLANKS
100 % | | 3 | 27 | | 9.0 | | | | | | | | | | | | STA | AND SUM | MARY | | | | | | | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH |
BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | DOUG FIR | | 9 | 59.9 | 17.8 | 88 | 24.6 | 104.0 | 15,121 | 15,121 | 3,574 | , | | DOUG FIR | | 3 | 15.9 | 16.6 | 85 | 5.9 | 24.0 | 2,681 | 2,681 | 741 | 741 | | CON FIR- | Т | 5 | 15.2 | 23.0 | 107 | 9.2 | 44.0 | 7,426 | 7,426 | 1,686 | = | | TOTAL | | 17 | 91.0 | 18.6 | 91 | 39.9 | 172.0 | 25,227 | 25,227 | 6,001 | 6,001 | | | 68. | | | | | | HIN THE SAM | | | | | | CL 68. | | COEFF | 0.774/ | | SAMPL | | | Ŧ | FOF TREES | | INF. POP. | | SD: 1. | | VAR.% | S.E.% | 1 | LOW 251 | AVG | HIGH | | 5 | 10 | 1 | | DOUG FIR | | 68.3
34.7 | 24.1
24.0 | | 351
137 | 462
180 | 574
223 | | | | | | CON FIR- | | 40.1 | 19.9 | | 432 | 540 | 648 | | | | | | TOTAL | • | 64.2 | 16.0 | | 365 | 435 | 505 | | 175 | 44 | 1: | | CL 68. | 1 | COEFF | | | SAMPL | E TREE | S - CF | | # OF TREES | REO. | INF. POP. | | SD: 1. | | VAR.% | S.E.% | I | .OW | AVG | HIGH | , | 5 | 10 | 1 | | DOUG FIR | | 62.6 | 22.1 | | 83 | 107 | 130 | | | | | | DOUG FIR | R-T | 41.5 | 28.7 | | 36 | 50 | 65 | | | | | | CON FIR- | Т | 34.5 | 17.1 | | 100 | 121 | 141 | | | | | | TOTAL | | 57.2 | 14.3 | | 86 | 101 | 115 | | 139 | 35 | 1. | | CL 68. | 1 | COEFF | | | TREES/ | ACRE | | 7 | FOF PLOTS | REQ. | INF. POP. | | SD: 1. | | VAR.% | S.E.% | I | OW | AVG | HIGH | | 5 | 10 | 1 | | DOUG FIR | | 30.9 | 15.3 | | 51 | 60 | 69 | | | | | | DOUG FIR | | 136.9 | 68.0 | | 5 | 16 | 27 | | | | | | CON FIR-T | Γ | 73.4 | 36.5 | | 10
75 | 15 | 21 | | 62 | 15 | | | | | 35.4 | 17.6 | | 75 | 91 | 107 | | 62 | 15 | | | CL 68. | | COEFF | | _ | BASAL | | | # | FOF PLOTS | | INF. POP. | | SD: 1. | | VAR.% | S.E.% | I | .OW | AVG | HIGH | | 5 | 10 | 1 | | DOUG FIR | | 31.6
136.9 | 15.7
68.0 | | 88
8 | 104
24 | 120
40 | | | | | | CON FIR- | | 81.3 | 40.4 | | 6
26 | 44 | 62 | | | | | | TOTAL | | 50.4 | 25.1 | | 129 | 172 | 215 | | 126 | 31 | 1. | | CI 60 | 1 | COEFF | | | | | | | | | | | CL 68. | | VAR.% | S.E.% | ī | NET BF
.OW | ACRE
AVG | HIGH | 7 | FOF PLOTS 1 | REQ.
10 | INF. POP. | | SD: 1. | | 39.7 | 19.7 | | ** | 15,121 | 18,101 | | 3 | 10 | 1. | | SD: 1. | ₹-I. | ٠,١ | | | 857 | 2,681 | 4,505 | | | | | | DOUG FIR | | 136.9 | 68.0 | | 037 | | | | | | | | | R-T | 136.9
88.8 | 68.0
44.1 | | 4,148 | 7,426 | 10,704 | | | | | | DOUG FIR | R-T | | | 1 | 4,148 | | , | | 161 | 40 | 18 | | DOUG FIR
DOUG FIR
CON FIR-T
TOTAL | R-Т
Г | 88.8
57.0 | 44.1 | 1 | 4,148
8,075 2 | 7,426
25,227 | 10,704
32,379 | | . +- | | | | DOUG FIR DOUG FIR CON FIR-TOTAL | R-T
T | 88.8
57.0
COEFF | 44.1
28.3 | | 4,148
8,075 2
NET C U | 7,426
25,227
J FT FT /A | 10,704
32,379
ACRE | # | FOF PLOTS | REQ. | INF. POP. | | DOUG FIR
DOUG FIR
CON FIR-T
TOTAL | R-T
T
1
0 | 88.8
57.0 | 44.1 | | 4,148
8,075 2 | 7,426
25,227 | 10,704
32,379 | ; | . +- | | | | TC PS | FATS | | | | PROJECT
PROJECT | | ISTICS
GE2 | | | PAGE
DATE | 2
3/30/2020 | |-------|-------|----|-------|-------|--------------------|---------|---------------|-------|-----------|--------------|-----------------------| | TWP | RGE | SC | TRACT | TYI | PE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 34S | 04E | 23 | EDGE2 | 0032 | ! | | 12.00 | 5 | 44 | S | W | | CL | 68.1 | | COEFF | | NET C | UFT FT/ | ACRE | | # OF PLOT | S REQ. | INF. POF | | SD: | 1.00 | | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | CON | FIR-T | | 85.6 | 42.6 | 969 | 1,686 | 2,404 | | | | - Marine Marine | | TOT | AL | | 55.2 | 27.4 | 4,356 | 6,001 | 7,646 | | 150 | <i>38</i> | 17 | | TC PSPCSTGR | | Species | s, Sort G | rade - B | oard | l Foo | ot Vo | lume | es (P | roject) | | | | | | | | |-------------------------------|----------|---------------|--------------------|----------|-----------|----------------|-------------|----------|---------|-------------|-----------|-------|----------|----------------------|-----------|----------------------|----------------------| | T34S R04E S23 | Ту0032 | 12.00 | | Project: | : | ED | GE2
12.0 | 0 | | | | | | Page
Date
Time | | 1
31/20
:01:3 | | | | % | | <u> </u> | | | Perc | ent of | Net Bo | oard Fo | oot Volume | | | | Avera | ge Lo | g | Logs | | S So Gr | Net | Bd. Ft. per A | cre | Total | 1 | Log Scale Dia. | | | | Log L | ength | | Ln | Dia | Bd | CF/ | Per | | Spp T rt ad | BdFt | Def% Gro | ss Net | Net MBF | | 4-5 | 6-11 | 12-16 | 17+ | 12-20 21-30 | 31-35 | 36-99 | Ft | In | Ft | Lf | /Acre | | DF L DOCU DF L DO3M DF L DO4M | 65
35 | 9,86
5,26 | • | | 118
63 | 42 | 11
17 | 47
41 | 42 | 54 | 100
46 | | 34
30 | 5
15
7 | 292
65 | 0.00
1.92
0.56 | 26.2
33.7
80.4 | | DF Totals | 60 | 15,12 | | | 181 | 15 | 13 | 45 | 27 | 19 | 81 | | 26 | 8 | 108 | 0.99 | 140.3 | | DF T DO3M
DF T DO4M | 80
20 | 2,10
5 | 57 2,167
14 514 | | 26
6 | 100 | 64 | 36 | | 38 | 100
33 | 29 | 34
32 | 10
5 | 136
32 | | 15.9
15.9 | | DF Totals | 11 | 2,6 | 31 2,681 | | 32 | 19 | 52 | 29 | | 7 | 87 | 5 | 33 | 8 | 84 | 0.71 | 31.8 | | WF T DO3M
WF T DO4M | 68
32 | 5,0
2,3 | | | 61
28 | 23 | 18 | 35
59 | 65 | 18 | 100
82 | | 34
33 | 16
8 | 332
91 | 2.00
0.77 | 15.2
25.9 | | WF Totals | 29 | 7,4 | 26 7,426 | | 89 | 7 | 6 | 42 | 44 | 6 | 94 | | 33 | 11 | 180 | 1.24 | 41.1 | | Totals | | 25,2 | 27 25,227 | | 303 | 13 | 15 | 42 | 29 | 14 | 86 | 1 | 28 | 9 | 118 | 1.00 | 213.2 | | TC P | LO | GSTVB | | | - | | Log | Stock T | able | - MB | F | | | | | | | | |-------|-----|----------|--------|-------|------|-----|---------------|---------|------|---------|--------|--------|--------|-----------|-------|----------------------|-------|------------------------| | T345 | S R | 04E S23 | Гу0032 | 2 12 | 2.00 | | Proje
Acre | | EDO | | 2.00 | | | , | | Page
Date
Time | | 1
1/2020
01:35PM | | | s | So Gr | Log | Gross | Def | Net | % | | 1 | let Vol | ume by | Scalin | g Diam | eter in I | nches | | | | | Spp | Т | | | MBF | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 2 | 24-29 | 30-39 40- | | DF | L | DO 3N | 1 34 | 118 | | 118 | 65.2 | | | | | 13 | 12 | 30 | 30 | 34 | | | | DF | L | DO 4N | 1 24 | 10 | | 10 | 5.8 | | | | | 10 | | | | | | | | DF | L | DO 4N | 1 25 | 3 | | 3 | 1.8 | | 3 | | | | | | | | | | | DF | L | DO 4N | 1 26 | 5 | | 5 | 2.9 | | | | | | 5 | | | | | | | DF | L | DO 4N | 1 27 | 7 | | 7 | 3.6 | | 1 | | | | 5 | | | | | | | DF | L | DO 4N | 1 28 | 1 | | 1 | .7 | | 1 | | | | | | | | | | | DF | L | DO 4N | 1 30 | 8 | | 8 | 4.2 | | | | | | | 8 | | | | | | DF | L | DO 4N | 1 32 | 1 | | 1 | .5 | | 1 | | | | | | | | | | | DF | L | DO 4N | 1 34 | 28 | | 28 | 15.4 | | 20 | | | | | 8 | | | | | | DF | | Tota | ls | 181 | | 181 | 59.9 | | 27 | | | 24 | 23 | 45 | 30 | 34 | | | | DF | T | DO 3N | 1 34 | 26 | | 26 | 80.8 | | | | 8 | 9 | 9 | - 31 | 1% | | | | | DF | Т | DO 4N | 1 28 | 2 | | 2 | 7.3 | | 2 | | | | | مارا | | | | | | DF | Т | DO 4N | 1 31 | 2 | | 2 | 6.4 | | 2 | | | | | | | | | | | DF | Т | DO 4N | 4 40 | 2 | | 2 | 5.5 | | 2 | | | | | | | | | | | DF | | Tota | ls | 32 | | 32 | 10.6 | | 6 | | 8 | 9 | 9 | | | | | | | WF | Т | DO 3N | 1 34 | 61 | | 61 | 68.1 | | | | | | 9 | 12 | 40 | | | | | WF | Т | DO 4N | 1 30 | 5 | | 5 | 5.8 | | | | | 5 | | | | | | | | WF | Т | DO 4N | 1 31 | 1 | | 1 | 1.3 | | 1 | | | | | | | | | | | WF | T | DO 4N | 1 32 | 6 | | 6 | 7.2 | | 1 | | | | 5 | | | | | | | WF | T | DO 4N | A 33 | 6 | | 6 | 6.4 | | | | | | 6 | | | | | | | WF | T | DO 4N | A 34 | 9 | | 9 | 10.0 | | 3 | | | | 6 | | | | | | | WF | T | DO 4N | 1 35 | 1 | | 1 | 1.2 | | 1 | | | | | | | | | | | WF | | Tota | ls | 89 | | 89 | 29.4 | | 7 | | | 5 | 26 | 12 | 40 | | | | | Total | | All Spec | ies | 303 | | 303 | 100.0 | | 39 | | 8 | 38 | 58 | 57 | 69 | 34 | | | | TC PL | OTTREELI | IST | | | | | Plo | ot Tree | List - V | Volumes | | | | Page | 1 | | |-------|----------|-----|-----|--------|-----|-------|------|---------|----------|---------|--------|-------|----------|----------|-----------|------| | ODF | | | | | | | F | roject | EDO | GE2 | | | | Date | 3/30/2 | .020 | | TWP | RGE | SC | TRA | СТ | | TY | PE | | A | CRES | PLOTS | T | REES | CRUIS | ED DATE | | | 34S | 04E | 23 | EDG | E2 | | 003 | 32 | | | 12.00 | 5 | | 17 | | 11/1/2019 | | | Plot | Tree | | | | Tre | ees | | 16' | Tot | BA | Trees | Logs | Net | Net | Tota | ī | | No. | No. | Age | SI | Spp St | Me. | Ct. I | DBH | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | 3201 | 0001 | 65 | 100 | DF L | | 4 | 17.0 | 84 | 88 | 80.0 | 46.06 | 87.8 | 2,749 | 11,631 | 66 | 28 | | 3201 | | | 100 | | | 4 | 17.8 | 84 | 88 | 80.0 | 46.06 | 87.8 | 2,749 | 11,631 | 66 | 28 | | 3202 | 0001 | 65 | 100 | DF L | 1 | | 19.0 | 85 | 84 | 20.0 | 10.16 | 20.3 | 600 | 2,133 | 14 | 5 | | | 0002 | 65 | 100 | DF L | 1 | | 17.0 | 86 | 86 | 20.0 | 12.69 | 25.4 | 615 | 2,411 | 15 | 6 | | | 0003 | 65 | 100 | DF L | 1 | | 9.0 | 83 | 77 | 20.0 | 45.27 | 45.3 | 445 | 1,811 | 11 | 4 | | | 0004 | 65 | 100 | WF T | 1 | | 19.0 | 87 | 84 | 20.0 | 10.16 | 20.3 | 600 | 2,133 | 14 | 5 | | 3202 | | | 100 | | 4 | | 13.7 | 84 | 80 | 80.0 | 78.27 | 111.3 | 2,260 | 8,488 | 54 | 20 | | 3203 | 0001 | 65 | 100 | DF L | | 7 | 17.0 | 84 | 88 | 140.0 | 80.60 | 153.6 | 4,811 | 20,355 | 115 | 49 | | | 0002 | 65 | 100 | DF T | | 3 | 16.0 | 85 | 85 | 60.0 | 39.79 | 79.6 | 1,852 | 6,702 | 44 | 16 | | | 0003 | 65 | 100 | WF T | | 2 | 23.0 | 87 | 107 | 40.0 | 13.82 | 37.4 | 1,533 | 6,751 | 37 | 16 | | 3203 | | | 100 | | | 12 | 18.1 | 85 | 89 | 240.0 | 134.21 | 270.6 | 8,196 | 33,807 | 197 | 81 | | 3204 | 0001 | 65 | 100 | DF L | 1 | | 25.0 | 85 | 105 | 20.0 | 5.87 | 17.6 | 760 | 3,227 | 18 | 8 | | | 0002 | 65 | 100 | DF L | 1 | | 25.0 | 83 | 103 | 20.0 | 5.87 | 17.6 | 719 | 2,934 | 17 | 7 | | | 0003 | 65 | 100 | DF L | 1 | | 21.0 | 84 | 101 | 20.0 | 8.32 | 24.9 | 723 | 2,993 | 17 | 7 | | | 0004 |
65 | 100 | DF T | 1 | | 20.0 | 85 | 90 | 20.0 | 9.17 | 18.3 | 678 | 2,292 | 16 | 6 | | | 0005 | 65 | 100 | DF T | 1 | | 15.0 | 86 | 81 | 20.0 | 16.30 | 32.6 | 550 | 2,119 | 13 | 5 | | | 0006 | 65 | 100 | DF T | 1 | | 16.0 | 83 | 85 | 20.0 | 14.32 | 28.6 | 624 | 2,292 | 15 | 6 | | | 0007 | 65 | 100 | DF L | 1 | | 22.0 | 86 | 100 | 20.0 | 7.58 | 22.7 | 715 | 3,258 | 17 | 8 | | | 0008 | 65 | 100 | DF L | 1 | | 30.0 | 84 | 110 | 20.0 | 4.07 | 12.2 | 788 | 3,626 | 19 | 9 | | | 0009 | 65 | 100 | DF L | 1 | | 31.0 | 85 | 116 | 20.0 | 3.82 | 11.4 | 820 | 3,778 | 20 | 9 | | | 0010 | 65 | 100 | WF T | 1 | | 24.0 | 87 | 116 | 20.0 | 6.37 | 19.1 | 817 | 3,692 | 20 | 9 | | | 0011 | 65 | 100 | WF T | 1 | | 22.0 | 86 | 115 | 20.0 | 7.58 | 22.7 | 776 | 3,485 | 19 | 8 | | | 0012 | 65 | 100 | WF T | 1 | | 27.0 | 86 | 120 | 20.0 | 5.03 | 15.1 | 824 | 3,823 | 20 | 9 | | | 0013 | 65 | 100 | WF T | 1 | | 26.0 | 87 | 119 | 20.0 | 5.42 | 16.3 | 816 | 3,743 | 20 | 9 | | 3204 | | | 100 | | 13 | | 21.9 | 85 | 100 | 260.0 | 99.70 | 259.3 | 9,610 | 41,261 | 231 | 99 | | 3205 | 0001 | 65 | 100 | DF L | | 6 | 17.0 | 84 | 88 | 120.0 | 69.09 | 131.7 | 4,123 | 17,447 | 99 | 42 | | | 0002 | 65 | 100 | WF T | | 4 | 23.0 | 87 | 107 | 80.0 | 27.64 | 74.8 | 3,066 | 13,501 | 74 | 32 | | | 0003 | 65 | 100 | RF T | | 1 | | | | | | | | | | | | 3205 | | | 100 | | | 11 | 19.5 | 85 | 93 | 200.0 | 96.73 | 206.5 | 7,190 | 30,948 | 173 | 74 | | TYPE | | | 100 | | 17 | 27 | 18.6 | | 91 | 172.0 | 91.00 | 187.1 | 6,001 | 25,227 | 720 | 303 | | TC PSTATS ODF | | | | DJECT S
ROJECT | | ISTICS
GE2 | | | PAGE
DATE | 1
3/30/2020 | |--|--|--|---------|--|--|---|----------|--|------------------------------------|--| | TWP RGE | SC TRACT | | TYPE | | A | CRES | PLOTS | TREES | CuFt | BdFt | | 34S 04E | 26 EDGE2 | | 0039 | | | 31.20 | 13 | 54 | S | W | | W.L | 4.00 | | ******* | TREES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOTAL | 13 | 54 | | 4.2 | | | | | *** | AllFussion . | | CRUISE | 7 | 36 | | 5.1 | | 3,804 | | .9 | | | | DBH COUNT | | | | | | | | | | | | REFOREST | , | | | | | | | | | | | COUNT | 6 | 17 | | 2.8 | | | | | | | | BLANKS
100 % | | | | | | | | | | | | 100 /0 | | ***** | STA | ND SUMN | /ARV | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | PONDEROS-T | 20 | 59.7 | 16.3 | 63 | 21.4 | 86.2 | 5,623 | 5,363 | 1,781 | 1,781 | | DOUG FIR-L | 8 | 35.0 | 15.0 | 63 | 11.1 | 43.1 | 4,951 | 4,951 | 1,236 | 1,236 | | GR FIR-L | 6 | 18.4 | 13.6 | 59 | 5.0 | 18.5 | 1,733 | 1,733 | 481 | 481 | | GR FIR-T | 2 | 8.8 | 13.9 | 79 | 2.5 | 9.2 | 997 | 997 | 273 | 273 | | TOTAL | 36 | 121.9 | 15.4 | 63 | 40.0 | 156.9 | 13,305 | 13,045 | 3,771 | 3,771 | | CONFIDENCE 68. | E LIMITS OF T
1 TIMES OU | | | ME WILL | BE WITI | HIN THE SAN | IPLE ERR | OR | | | | CL 68.1 | COEFF | | | SAMPLI | E TREE | S - BF | # | FOF TREES I | REQ. | INF. POP. | | SD: 1.0 | VAR.% | S.E.% | L | OW | AVG | HIGH | | 5 | 10 | 1: | | PONDEROS-T | 57.7 | 14.4 | | 109 | 127 | 145 | | | | | | | | | | | | | | | | | | DOUG FIR-L | 172.5 | 70.2 | | 189 | 636 | 1,082 | | | | | | GR FIR-L | 35.4 | 17.6 | | 147 | 178 | 1,082
209 | | | | | | GR FIR-L
GR FIR-T | 35.4
54.4 | 17.6
50.9 | | 147
64 | 178
130 | 1,082
209
196 | | 1 9 4 2 | 161 | 205 | | GR FIR-L
GR FIR-T
TOTAL | 35.4
54.4
214.9 | 17.6 | | 147
64
<i>154</i> | 178
130
<i>250</i> | 1,082
209
196
347 | | 1,843 | 461 | | | GR FIR-L
GR FIR-T
TOTAL
CL 68.1 | 35.4
54.4
214.9
COEFF | 17.6
50.9
38.6 | T. | 147
64
154
SAMPLI | 178
130
250
E TREE | 1,082
209
196
<i>347</i>
S - CF | | OF TREES I | REQ. | INF. POP. | | GR FIR-L
GR FIR-T
TOTAL
CL 68.1
SD: 1.0 | 35.4
54.4
214.9
COEFF
VAR.% | 17.6
50.9
38.6
S.E.% | Þ | 147
64
<i>154</i>
SAMPLI
OW | 178
130
<i>250</i>
E TREE
AVG | 1,082
209
196
<i>347</i>
S - CF
HIGH | | , | | INF. POP. | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T | 35.4
54.4
214.9
COEFF
VAR.%
49.7 | 17.6
50.9
38.6
S.E.% | L | 147
64
154
SAMPLI
OW
39 | 178
130
250
E TREES
AVG
44 | 1,082
209
196
347
S - CF
HIGH | | OF TREES I | REQ. | INF. POP. | | GR FIR-L
GR FIR-T
TOTAL
CL 68.1
SD: 1.0 | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4 | 17.6
50.9
38.6
S.E.%
12.4
61.2 | L | 147
64
154
SAMPLI
OW
39
54 | 178
130
250
E TREE:
AVG
44
139 | 1,082
209
196
347
S - CF
HIGH
50
224 | | OF TREES I | REQ. | INF. POP. | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L | 35.4
54.4
214.9
COEFF
VAR.%
49.7 | 17.6
50.9
38.6
S.E.% | L | 147
64
154
SAMPLI
OW
39 | 178
130
250
E TREES
AVG
44
139
51 | 1,082
209
196
347
S - CF
HIGH | | OF TREES I | REQ. | INF. POP. | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-L | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5 | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6 | Ľ | 147
64
154
SAMPLI
OW
39
54
41 | 178
130
250
E TREE:
AVG
44
139 | 1,082
209
196
347
S - CF
HIGH
50
224
60 | | OF TREES I | REQ. | INF. POP. | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-L GR FIR-T | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2 | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6 | L | 147
64
154
SAMPLI
OW
39
54
41
17
48 | 178
130
250
E TREES
AVG
44
139
51
36
66 | 1,082
209
196
347
S - CF
HIGH
50
224
60
55 | # | OF TREES I
5 | REQ.
10 | INF, POP.
15 | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2 | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6 | | 147
64
154
SAMPLI
OW
39
54
41
17
48
TREES/A | 178
130
250
E TREES
AVG
44
139
51
36
66 | 1,082
209
196
347
S - CF
HIGH
50
224
60
55 | # | F OF TREES I | REQ.
10 | INF. POP.
15
108
INF. POP. | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.% | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0 | | 147
64
154
SAMPLI
OW
39
54
41
17
48
TREES/A | 178
130
250
E TREE
AVG
44
139
51
36
66 | 1,082
209
196
347
S - CF
HIGH
50
224
60
55
85 | # | FOF TREES I | REQ. 10 | INF. POP.
15
108
INF. POP. | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.%
111.0
111.7 | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0
32.2 | | 147
64
154
SAMPLI
OW
39
54
41
17
48
TREES/A | 178
130
250
E TREE
AVG
44
139
51
36
66
ACRE
AVG
60
35 | 1,082
209
196
347
S - CF
HIGH
50
224
60
55
85
HIGH | # | FOF TREES I | REQ. 10 | INF. POP.
15
108
INF. POP. | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T |
35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.%
111.0
111.7
234.3 | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0
32.2
67.5 | | 147
64
154
SAMPLI
OW
39
54
41
17
48
TREES/A | 178 130 250 E TREE AVG 44 139 51 36 66 ACRE AVG 60 35 18 | 1,082
209
196
347
S - CF
HIGH
50
224
60
55
85
HIGH
79
46
31 | # | FOF TREES I | REQ. 10 | INF. POP.
15
108
INF. POP. | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-L GR FIR-L | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.%
111.0
111.7
234.3
259.6 | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0
32.2
67.5
74.8 | | 147
64
154
SAMPLI
OW
39
54
41
17
48
TREES/A
OW
41
24
6
2 | 178 130 250 E TREE AVG 44 139 51 36 66 ACRE AVG 60 35 18 9 | 1,082
209
196
347
S - CF
HIGH
50
224
60
55
85
HIGH
79
46
31 | # | 974 FOF PLOTS F | 244 REQ. 10 | 108
108
INF. POP. | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-L GR FIR-L GR FIR-L GR FIR-L GR FIR-T TOTAL | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.%
111.0
111.7
234.3
259.6
55.6 | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0
32.2
67.5 | | 147
64
154
SAMPLI
OW
39
54
41
17
48
TREES/A
OW
41
24
6
2
102 | 178 130 250 E TREE AVG 44 139 51 36 66 ACRE AVG 60 35 18 9 122 | 1,082
209
196
347
S - CF
HIGH
50
224
60
55
85
HIGH
79
46
31
15 | # | 974 FOF PLOTS F | 244 REO. 10 | 108
108
INF. POP.
15 | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 CR FIR-L GR | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.%
111.0
111.7
234.3
259.6
55.6 | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0
32.2
67.5
74.8
16.0 | L | 147
64
154
SAMPLI
OW
39
54
41
17
48
TREES/A
OW
41
24
6
2
102
BASAL A | 178 130 250 E TREE AVG 44 139 51 36 66 ACRE AVG 60 35 18 9 122 AREA/A | 1,082 209 196 347 S - CF HIGH 50 224 60 55 85 HIGH 79 46 31 15 141 CRE | # | 974 FOF PLOTS F 5 133 | 244 REQ. 10 33 REQ. | 108 108 INF. POP. 15 | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 CR FIR-L GR | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.%
111.0
111.7
234.3
259.6
55.6 | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0
32.2
67.5
74.8 | L | 147
64
154
SAMPLI
OW
39
54
41
17
48
TREES/A
OW
41
24
6
2
102
BASAL A | 178 130 250 E TREE AVG 44 139 51 36 66 ACRE AVG 60 35 18 9 122 | 1,082
209
196
347
S - CF
HIGH
50
224
60
55
85
HIGH
79
46
31
15 | # | 974 FOF PLOTS F | 244 REO. 10 | 108 108 INF. POP. 15 | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.%
111.0
111.7
234.3
259.6
55.6
COEFF
VAR.% | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0
32.2
67.5
74.8
16.0 | L | 147
64
154
SAMPLI
OW
39
54
41
17
48
TREES/A
OW
41
24
6
2
102
BASAL A | 178 130 250 E TREE AVG 44 139 51 36 66 ACRE AVG 60 35 18 9 122 AREA/A AVG | 1,082 209 196 347 S - CF HIGH 50 224 60 55 85 HIGH 79 46 31 15 141 CRE HIGH | # | 974 FOF PLOTS F 5 133 | 244 REQ. 10 33 REQ. | 108 108 INF. POP. 15 | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 GR FIR-T TOTAL | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.%
111.0
111.7
234.3
259.6
55.6
COEFF
VAR.%
107.0
88.6
190.0 | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0
32.2
67.5
74.8
16.0
S.E.%
30.8
25.5
54.8 | L | 147
64
154
SAMPLI
OW
39
54
41
17
48
TREES/A
OW
41
24
6
2
102
BASAL A | 178 130 250 E TREE AVG 44 139 51 36 66 ACRE AVG 60 35 18 9 122 AREA/A AVG 86 | 1,082 209 196 347 S - CF HIGH 50 224 60 55 85 HIGH 79 46 31 15 141 CRE HIGH 113 | # | 974 FOF PLOTS F 5 133 | 244 REQ. 10 33 REQ. | 108 108 INF. POP. 15 | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 GR FIR-T TOTAL | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.%
111.0
111.7
234.3
259.6
55.6
COEFF
VAR.%
107.0
88.6
190.0
259.6 | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0
32.2
67.5
74.8
16.0
S.E.%
30.8
25.5
54.8
74.8 | L | 147
64
154
SAMPLI
OW
39
54
41
17
48
TREES/A
OW
41
24
6
2
102
BASAL A
OW
60
32
8
2 | 178 130 250 E TREE: AVG 44 139 51 36 66 ACRE AVG 60 35 18 9 122 AREA/A AVG 86 43 18 9 | 1,082 209 196 347 S - CF HIGH 50 224 60 55 85 HIGH 79 46 31 15 141 CRE HIGH 113 54 29 16 | # | 974 FOF PLOTS F 5 133 | 244 REQ. 10 33 REQ. | 108 108 INF. POP. 15 | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.%
111.0
111.7
234.3
259.6
55.6
COEFF
VAR.%
107.0
88.6
190.0
259.6
61.1 | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0
32.2
67.5
74.8
16.0
S.E.%
30.8
25.5
54.8 | L | 147
64
154
SAMPLI
OW
39
54
41
17
48
TREES/A
OW
41
24
6
2
102
BASAL A
OW
60
32
8
2
129 | 178 130 250 E TREE AVG 44 139 51 36 66 ACRE AVG 60 35 18 9 122 AREA/A AVG 86 43 18 9 157 | 1,082 209 196 347 S - CF HIGH 50 224 60 55 85 HIGH 79 46 31 15 141 CRE HIGH 113 54 29 | # | 974 FOF PLOTS F 5 133 | 244 REQ. 10 33 REQ. | 108 108 INF. POP. 15 15 15 15 15 15 | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.%
111.0
111.7
234.3
259.6
55.6
COEFF
VAR.%
107.0
88.6
190.0
259.6
61.1
COEFF | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0
32.2
67.5
74.8
16.0
S.E.%
30.8
25.5
54.8
74.8
17.6 | L | 147
64
154
SAMPLI
OW
39
54
41
17
48
TREES/A
OW
41
24
6
2
102
BASAL A
OW
60
32
8
2
129
NET BF/A | 178 130 250 E TREE AVG 44 139 51 36 66 ACRE AVG 60 35 18 9 122 AREA/A AVG 86 43 18 9 157 ACRE | 1,082 209 196 347 S - CF HIGH 50 224 60 55 85 HIGH 79 46 31 15 141 CRE HIGH 113 54 29 16 185 | # | 974 FOF PLOTS F 5 133 FOF PLOTS F 5 | 244 REQ. 10 33 REQ. 10 | 108 108 INF. POP. 15 15 175 INF. POP. 15 | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.%
111.0
111.7
234.3
259.6
55.6
COEFF
VAR.%
107.0
88.6
190.0
259.6
61.1
COEFF
VAR.% | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0
32.2
67.5
74.8
16.0
S.E.%
30.8
25.5
54.8
74.8
17.6 | Lo | 147 64 154 SAMPLI OW 39 54 41 17 48 TREES/A OW 41 24 6 2 102 BASAL A OW 60 32 8 2 129 NET BF/A | 178 130 250 E TREE: AVG 44 139 51 36 66 ACRE AVG 60 35 18 9 122 AREA/A AVG 86 43 18 9 157 ACRE AVG | 1,082 209 196 347 S - CF HIGH 50 224 60 55 85 HIGH 79 46 31 15 141 CRE HIGH 113 54 29 16 185 | # | 974 4 OF PLOTS F 5 133 4 OF PLOTS F 5 | 244 REQ. 10 33 REQ. 10 | 108 108 INF. POP. 15 15 175 INF. POP. 15 | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L
GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.%
111.0
111.7
234.3
259.6
55.6
COEFF
VAR.%
107.0
88.6
190.0
259.6
61.1
COEFF
VAR.% | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0
32.2
67.5
74.8
16.0
S.E.%
30.8
25.5
54.8
74.8
17.6
S.E.%
34.9 | Lo | 147 64 154 SAMPLI OW 39 54 41 17 48 TREES/A OW 41 24 6 2 102 BASAL A OW 60 32 8 2 129 NET BF/A OW 3,491 | 178 130 250 E TREE: AVG 44 139 51 36 66 ACRE AVG 60 35 18 9 122 AREA/A AVG 86 43 18 9 157 ACRE AVG 5,363 | 1,082 209 196 347 S - CF HIGH 50 224 60 55 85 HIGH 79 46 31 15 141 CRE HIGH 113 54 29 16 185 HIGH 7,235 | # | 974 FOF PLOTS F 5 133 FOF PLOTS F 5 | 244 REO. 10 33 REO. 10 40 REO. 1 | 108 108 INF. POP. 15 15 175 INF. POP. 15 | | GR FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-L GR FIR-L GR FIR-L GR FIR-L GR FIR-L GR FIR-L CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR FIR-T TOTAL CL 68.1 SD: 1.0 PONDEROS-T DOUG FIR-L GR | 35.4
54.4
214.9
COEFF
VAR.%
49.7
150.4
39.5
56.2
156.2
COEFF
VAR.%
111.0
111.7
234.3
259.6
55.6
COEFF
VAR.%
107.0
88.6
190.0
259.6
61.1
COEFF
VAR.% | 17.6
50.9
38.6
S.E.%
12.4
61.2
19.6
52.6
28.0
S.E.%
32.0
32.2
67.5
74.8
16.0
S.E.%
30.8
25.5
54.8
74.8
17.6 | Lo | 147
64
154
SAMPLI
OW
39
54
41
17
48
TREES/A
OW
41
24
6
2
102
BASAL A
OW
60
32
8
2
129
NET BF/A | 178 130 250 E TREE: AVG 44 139 51 36 66 ACRE AVG 60 35 18 9 122 AREA/A AVG 86 43 18 9 157 ACRE AVG | 1,082 209 196 347 S - CF HIGH 50 224 60 55 85 HIGH 79 46 31 15 141 CRE HIGH 113 54 29 16 185 | # | 974 FOF PLOTS F 5 133 FOF PLOTS F 5 | 244 REO. 10 33 REO. 10 40 REO. 1 | 108 INF. POP. 15 INF. POP. 15 | | TC PS | TATS | | | | PROJECT
PROJECT | | ISTICS
GE2 | | | PAGE
DATE | 2
3/30/2020 | |-------|---------|----|-------|-------|--------------------|----------|---------------|-------|------------|--------------|----------------| | TWP | RGE | SC | TRACT | TY | PE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 34S | 04E | 26 | EDGE2 | 003 | 9 | | 31.20 | 13 | 54 | S | W | | CL | 68.1 | | COEFF | | NET I | BF/ACRE | | | # OF PLO | ΓS REQ. | INF. POP. | | SD: | 1.00 | | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | тот | AL | | 74.0 | 21.3 | 10,262 | 13,045 | 15,828 | | 237 | 59 | 26 | | CL | 68.1 | | COEFF | | NET C | CUFT FT/ | ACRE | 11 | # OF PLOTS | REO. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | PONI | DEROS-T | • | 112.2 | 32.3 | 1,205 | 1,781 | 2,357 | **** | | | 10 | | DOU | G FIR-L | | 90.6 | 26.1 | 913 | 1,236 | 1,558 | | | | | | GR F | IR-L | | 206.1 | 59.4 | 195 | 481 | 767 | | | | | | GR F | IR-T | | 259.6 | 74.8 | 69 | 273 | 477 | | | | | | ТОТ | AL | | 72.2 | 20.8 | 2,986 | 3,771 | 4,556 | | 225 | 56 | 25 | | T24 | S R04E S26 | Tv0030 | 3 | 1.20 | | Project | : | ED | GE2 | | | <u></u> | | | | | Page | | 1 | 20 | |----------|------------------|----------|--------|--------------|--------|----------|-----|----------|---------|---------|--------|----------|-------|-----------|-------|-------|--------------|--------|-----------------|-------| | 134 | -3 KU4E 320 | 1 y0033 | J | 71.20 | | Acres | | | 31.2 | 0 | | | | | | | Date
Time | | 31/20:
32:49 | | | | | % | | | | <u> </u> | | Perc | cent of | Net Bo | ard Fo | oot Volu | me | | | | Avera | ige Lo | g | Logs | | | S So Gr | Net | Bd. Ft | . per Acre | | Total | | L | og Sca | le Dia. | | | Log L | ength | | Ln | Dia | Bd | CF/ | Per | | Spp | T rt ad | BdFt | Def% | Gross | Net | Net MBF | | 4-5 | 6-11 | 12-16 | 17+ | 12-20 | 21-30 | 31-35 | 36-99 | Ft | In | Ft | Lf | /Acre | | | L DO2M | 44 | | 2,222 | 2,222 | | 69 | | **** | 70 | 30 | | | 100 | | 34 | 14 | 291 | 1.96 | 7. | | | L DO2M | 21 | | 1,045 | 1,045 | Ì | 33 | 7 | 15 | 38 | 40 | | 60 | 40 | | 26 | 10 | 155 | 1.45 | 6. | | | L DO3M | 35 | | 1,684 | 1,684 | | 53 | 52 | 41 | | 8 | | 65 | 22 | 13 | 26 | 6 | 37 | 0.40 | 45. | | | Totals | 38 | | 4,951 | 4,951 | | 154 | 19 | 17 | 39 | 25 | | 35 | 61 | 4 | 27 | 8 | 82 | 0.76 | 60 | | | | _ | | 220 | 329 | | 10 | | | 100 | | | | 100 | | 34 | 14 | 240 | 2.11 | 1. | | | T DO2M | 6 | | 329
1,407 | 1,407 | | 44 | 20 | 35 | 45 | | | 44 | 56 | | 26 | 8 | 70 | 0.79 | 20 | | PP
PP | T DO3M
T DO4M | 26
68 | 6.7 | 3,887 | 3,627 | | 113 | 31 | 61 | 1.5 | 8 | l
i | 85 | 15 | | 27 | 7 | 47 | 0.62 | 76 | | | Totals | 41 | 4.6 | 5,623 | 5,363 | <u> </u> | 167 | 26 | 50 | 18 | 6 | | 69 | 31 | | 27 | 7 | 55 | 0.68 | 98 | | | | | | | | | | | | | | | | | | | 12 | 170 | 1 20 | 6 | | GF | L DO3M | 66 | | 1,154 | 1,154 | | 36 | \ | | 100 | | 1 24 | 41 | 100
11 | 24 | 34 25 | 12
6 | | 1.28
0.40 | 18 | | GF | L DO4M | 34 | | 580 | 580 | | 18 | 44 | 56 | | | 24 | 41 | 11 | 24 | ╫ | | | | | | GF | Totals | 13 | | 1,733 | 1,733 | | 54 | 15 | 19 | 67 | | 8 | 14 | 70 | 8 | 28 | 8 | | 0.69 | 25 | | GF | T DO3M | 44 | | 439 | 439 | | 14 | | 100 | | | | | 100 | | 1 | 11 | 150 | | 2 | | GF | T DO4M | 56 | | 558 | 558 | | 17 | 47 | 53 | | | | 100 | | | 28 | 6 | 38 | 0.40 | 14 | | GF | Totals | 8 | | 997 | 997 | | 31 | 26 | 74 | | | | 56 | 44 | | 29 | 7 | 57 | 0.54 | 17 | | Tota | | | 2.0 | 13,305 | 13,045 | | 407 | 22 | 35 | 31 | 12 | 1 | 48 | 48 | 3 | 27 | 7 | 65 | 0.69 | 201 | | rc 1 | PLO | GSTVI | 3 | | | | | | | Log S | Stock | Table | - N | 1BF | | | | | | | | | |------------|-----|-------|----------------------|----------------|-------------|--------|--------------------|-----|--------|----------------|-------|-------|---------|--------|----|-----------|------|-------|-------|----------------------|------|------------------------| | T34 | S R | 04E S | 26 Ty | / 003 9 | | 31.: | 20 | | | Proje
Acres | | EDC | GE2 | 31.20 | | | | | | Page
Date
Time | | 1
1/2020
32:49PM | | | s | So (| | Log | G | ross |
Def | N- | et | % | | | Net V | Volume | by | Scaling D | iame | | | т—— | | | | Spp | Т | rt d | | | | 1BF | % | M | | Spc | 2-3 | 4-5 | 6-7 | 8- | 9 | 10-11 12- | -13 | 14-15 | 16-19 | 20-23 2 | 4-29 | 30-39 40+ | | DF | L | DO | 2M | 34 | | 69 | | | 69 | 44.9 | | | | | | | 32 | 16 | | | | 21 | | DF | L | DO | 3M | 21 | | 5 | | | 5 | 3.1 | | | | | | 5 | | | | | | | | DF | L | DO | 3M | 22 | | 1 | | | 1 | .7 | | 1 | | | | | | | | ļ | | | | DF | L | DO | 3M | 30 | | 14 | | | 14 | 8.8 | | 1 | | | | | | 12 | | | | | | DF | L | DO | 3M | 34 | 4 | 13 | | | 13 | 8.5 | | | <u></u> | | | | | , | | - | 13 | | | DF | L | DO | 4M | 21 | | 21 | | | 21 | 13.8 | | | | | 21 | | | | | | | | | DF | L | DO | 4M | 22 | 2 | 9 | | | 9 | 5.5 | | 9 | | | | | | | | | | | | DF | L | DO | 4M | 24 | 1 | 4 | | | 4 | 2.6 | | | | | | | Ì | | 4 | | | | | DF | L | | 4M | | 5 | 0 | | | 0 | .2 | | 0 | | | | | | | | | | ļ. | | DF | L | l | 4M | | 1 | 11 | | | 11 | 7.4 | | 11 | | | | | | | | | | | | DF | L | DO | 4M | 36 | 6 | 7 | | | 7 | 4.5 | | 7 | 1 | | | <u> </u> | | | | | | | | DF | | | Total | s | | 154 | | | 154 | 38.0 | | 30 | _ | | 21 | 5 | 32 | 28 | | | 13 | 21 | | PP | T | DO | 2M | [34 | 4 | 10 | | | 10 | 6.1 | | | _ | | | | | 10 | | | | | | PP | Т | DO | 3N | 1 22 | 2 | 19 | | | 19 | 11.5 | | 4 | | | | 15 | | | | | | | | PP | T | DO | 3N | 1 3 | 3 | 20 | | | 20 | 11.8 | | | | | | | 20 | | | | | | | PP | T | DO | 3N | 1 3 | 4 | 5 | | | 5 | 2.9 | | 5 | | | | | | | | | | | | PP | Т | DC | 4N | 1 2 | 2 | 14 | | | 14 | 8.4 | | | | | 6 | 8 | | | | 1 | | | | PP | Т | DC | 4N | 1 2 | 3 | 6 | 16 | 5.7 | 5 | 2.9 | | | | | 5 | | | | | | | | | PP | Т | DC | 41 | 1 2 | 4 | 23 | 4 | 1.3 | 22 | 12.9 | | 8 | 3 | 14 | | 3 | | | | | | | | PP | Τ | DC | 41 | 1 2 | 5 | 15 | 22 | 2.2 | 11 | 1 | | | | | | 11 | | | | | | | | PP | Γ | DC | 4N | 1 2 | 26 | 15 | | 0.7 | 13 | 1 | | 13 | 3 | | | | | ! | 0 | | | | | PP | Т | 1 |) 4N | | 28 | 18 | | 7.3 | 17 | 1 | | | | | 8 | | | | 9 | | | | | PP | | |) 4N | | 29 | 3 | | | 3 | | | 3 | ; | | | 10 | | | | | | | | PP | | |) 4N | | 30 | 11 | | | 11 | | 1 | | 2 | | | | | | | | | | | PP | | |) 41 | | 31 | 2
7 | | | 2
7 | | 1 | 4 | | 7 | | | | | | | | | | PP
PP | | r DO |) 41
) 41 | | 34 | 7 | | | 7 | 1 | 1 | , | 7 | • | | | | | | | | | | ├ ─ | | + | Tota | | + | 175 | | 1.6 | 167 | <u> </u> | | 4 | 4 | 21 | 19 | 44 | 20 | 10 | 0 9 | | | | | PP
GF |] | L DO | | M 3 | 34 | 36 | | | 36 | | | | + | | | | 36 | | | | | | | GF | | - | | M 1 | -+ | | | | | 1 8. | 0 | | \top | 4 | | | | | | | | | | GF | | |) 4 <u>1</u>
) 4] | | 24 | (| | | | 5 10. | | | | 6 | | | | | | | | | | GF | | |) 4]
) 4] | | 29 | 2 | | | | 2 3. | | | 2 | | | | | | | | | | | GF | | - 1 |) 4:
) 4: | | 35 | | 2 | | | 2 3. | 6 | | 2 | | | | | | | | | | | GF | | | | M | - 1 | | 1 | | | 4 8. | 0 | | 4 | TC P | LOC | GSTVB | | | | | Log S | Stock ' | Table | - MB | F | | | | | | | | |-------|------|-----------|-------------|-------|-----|-----|---------------|---------|-------|------|-----|---------------------------------------|-------|--------|----------------------|-------|-----------------------|-----| | T34\$ | S R(|)4E S26 T | 'y0039 | 31 | .20 | | Proje
Acre | | EDO | | .20 | , , , , , , , , , , , , , , , , , , , | | | Page
Date
Time | 3/3 | 2
1/2020
32:49P | | | | s | So Gr | Log | Gross | Def | Net | | | | | | | | Inches | | | | | | Spp | Т | rt de | Len | MBF | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 12-13 | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 | 40- | | GF | 1 | Total | s | 54 | | 54 | 13.3 | | 8 | 10 | | 3 | 6 | | | | | | | GF | Т | DO 3M | 1 34 | 14 | | 14
| 44.0 | | | | | 14 | | 40. | | | | | | GF | Т | DO 4N | 1 26 | 9 | | 9 | 29.5 | | | | 9 | | | | | | | | | GF | Т | DO 4N | 1 28 | 6 | | 6 | 17.7 | | 6 | | | | | | | | | | | GF | Т | DO 4N | <i>I</i> 30 | 3 | | 3 | 8.8 | | 3 | | | | | | | | | | | GF | | Tota | ls | 31 | | 31 | 7.6 | | 8 | | 9 | 14 | | | | | | | | Total | | All Spec | ies | 415 | 2.0 | 407 | 100.0 | | 90 | 31 | 49 | 63 8 | 8 3 | 9 13 | | 13 | 21 | | | TC PL
ODF | OTTREEL | IST | | | | | | ot Tree
Project | List - V
EDO | Volumes
GE2 | | | | Page
Date | 1
3/30/2 | 2020 | |--------------|--------------|------------|------------|--------------|---|----------|--------------|--------------------|-----------------|----------------|----------------|--------------|------------|--------------|----------------------|------| | TWP
34S | RGE
04E | SC
26 | TRA
EDO | ACT
GE2 | | TY
00 | 'PE
39 | | A | CRES
31.20 | PLOTS
13 | TF | REES
37 | | ED DATE
11/1/2019 | | | Plot | Tree | | | | Tre | es | | 16' | Tot | BA | Trees | Logs | Net | Net | Tota | 1 | | No. | No. | Age | SI | Spp St | Me. | Ct. | DBH | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | 3901 | 0001 | 65 | 100 | DF L | 1 | | 20.0 | 85 | 85 | 40.0 | 18.33 | 36.7 | 1,250 | 4,584 | 30 | 1 | | | 0002 | 65 | 100 | DF L | 1 | | 9.0 | 89 | 50 | 40.0 | 90.54 | 90.5 | 703 | 2,716 | 17 | | | | 0003 | 65 | 100 | DF L | 1 | | 50.0 | 82 | 130 | 40.0 | 2.93 | 11.7 | 1,785 | 9,123 | 43 | 2: | | 3901 | | | 100 | | 3 | | 14.0 | 88 | 58 | 120.0 | 111.81 | 138.9 | 3,738 | 16,423 | 90 | 3 | | 3902 | 0001 | 65 | 100 | DF L | | 2 | 15.0 | 88 | 63 | 80.0 | 64.97 | 112.0 | 2,295 | 9,195 | 55 | 2 | | 3902 | | | 100 | | | 2 | 15.0 | 88 | 63 | 80.0 | 64.97 | 112.0 | 2,295 | 9,195 | 55 | 2: | | 3903 | 0001 | 65 | | PP T | 2 | | 20.0 | 80 | 86 | 80.0 | 36.67 | 73.3 | 2,370 | 7,334 | 57 | 1 | | | 0002 | 65 | 100 | PP T | 1 | | 18.0 | 80 | 80 | 40.0 | 22.64 | 45.3 | 1,103 | 3,622 | 26 | | | | 0003 | 65 | 100 | PP T | 2 | | 12.0 | 80 | 80 | 80.0 | 101.86 | 203.7 | 1,821 | 7,130 | 44 | 1 | | | 0004 | 65 | 100 | PP T | 1 | | 15.0 | 80 | 80 | 40.0 | 32.59 | 65.2 | 1,035 | 3,259 | 25 | | | | 0005 | 65 | | GF L | 2 | | 18.0 | 87 | 89 | 80.0 | 45.27 | 90.5 | 2,757 | 9,507 | 66 | 2. | | | 0006 | 65 | 100 | DF L | 1 | | 18.0 | 90 | 86 | 40.0 | 22.64 | 45.3 | 1,284 | 4,753 | 31 | 1 | | 3903 | | | 100 | | 9 | | 15.9 | 82 | 83 | 360.0 | 261.67 | 523.3 | 10,371 | 35,605 | 249 | 8 | | 3904 | 0001 | 65 | 100 | РР Т | | 4 | 16.0 | 80 | 67 | 160.0 | 110.94 | 182.0 | 3,308 | 9,960 | 79 | 2 | | | 0003 | 65 | 100 | DF L | | 1 | 15.0 | 88 | 63 | 40.0 | 32.49 | 56.0 | 1,147 | 4,598 | 28 | 1 | | 3904 | | | 100 | | | 5 | 16.0 | 82 | 66 | 200.0 | 143.42 | 238.0 | 4,456 | 14,557 | 107 | 3 | | 3905 | 0001 | 65 | 100 | РР Т | 2 | | 16.0 | 80 | 60 | 80.0 | 57.30 | 114.6 | 1,547 | 5,730 | 37 | 1 | | | 0002 | 65 | 100 | PP T | | 1 | 16.0 | 80 | 67 | 40.0 | 27.73 | 45.5 | 827 | 2,490 | 20 | | | | 0003 | 65 | 100 | DF L | 2 | | 12.0 | 89 | 60 | 80.0 | 101.86 | 203.7 | 1,826 | 7,130 | 44 | 1 | | 3905 | | | 100 | | 4 | 1 | 14.0 | 85 | 61 | 200.0 | 186.89 | 363.8 | 4,200 | 15,350 | 101 | 3 | | 3906 | 0001 | 65 | 100 | RF L | | 1 | | | | | | | | | | | | 3906 | | | | | | 1 | | | | | 0.00 | | | | | | | 3907 | 0001 | 65 | 100 | DF L | 1 | | 26.0 | 79 | 70 | 40.0 | 10.85 | 21.7 | 1,022 | 3,255 | 25 | : | | | 0002 | 65 | 100 | GF L | 1 | | 11.0 | 90 | 50 | 40.0 | 60.61 | 60.6 | 591 | 2,424 | 14 | | | | 0003 | 65 | 100 | GF L | 1 | | 9.0 | 85 | 40 | 40.0 | 90.54 | 90.5 | 420 | 1,811 | 10 | 4 | | 3907 | | | 100 | | 3 | | 11.7 | 86 | 46 | 120.0 | 162.00 | 172.8 | 2,032 | 7,490 | 49 | 13 | | 3908 | 0001 | 65 | 100 | DF L | | 1 | 15.0 | 88 | 63 | 40.0 | 32.49 | 56.0 | 1,147 | 4,598 | 28 | 1 | | | 0002 | 65 | | PP T | | 1 | 16.0 | 80 | 67 | 40.0 | 27.73 | 45.5 | 827 | 2,490 | 20 | (| | | 0003 | 65 | 100 | DF L | | 1 | 15.0 | 88 | 63 | 40.0 | 32.49 | 56.0 | 1,147 | 4,598 | 28 | 1 | | 3908 | | | 100 | | | 3 | 15.4 | 86 | 64 | 120.0 | 92.71 | 157.5 | 3,122 | 11,685 | 75 | 2 | | 3909 | 0001 | 65 | | PP T | 1 | | 27.0 | 84 | 68 | 40.0 | 10.06 | 20.1 | 1,000 | 3,119 | 24 | • | | | 0002 | 65 | | PP T | 1 | | 16.0 | 75 | 66 | 40.0 | 28.65 | 57.3 | 804 | 2,005 | 19 | : | | | 0003 | 65 | | PP T | 1 | | 17.0 | 78 | 68 | 40.0 | 25.38 | 50.8 | 898 | 2,284 | 22 | : | | | 0004 | 65 | | PP T | 1 | | 18.0 | 76 | 67 | 40.0 | 22.64 | 45.3 | 855 | 2,037 | 21 | | | | 0005 | 65
65 | | PP T | 1 | | 16.0 | 80 | 69 | 40.0 | 28.65 | 28.6 | 612 | 2,292 | 15 | , | | | 0006
0007 | 65
65 | | PP T
PP T | I
1 | | 14.0
15.0 | 83
68 | 64
60 | 40.0
40.0 | 37.42
32.59 | 74.8 | 821 | 2,993 | 20 | | | | 0007 | | | 111 | | | | | | 40.0 | 32.39 | | | | | | | 3909 | 0001 | (* | 100 | DET | 7 | 1 | 16.6 | 77 | 66 | 280.0 | 185.38 | 276.9 | 4,990 | 14,730 | 120 | 3: | | 3910 | 0001
0002 | 65
65 | | DF L | | 1 | 15.0 | 88 | 63 | 40.0 | 32.49 | 56.0 | 1,147 | 4,598 | 28 | 1 | | | 0002 | 65
65 | | GF T
RF L | | 1 2 | 13.0 | 86 | 79 | 40.0 | 38.15 | 76.3 | 1,183 | 4,321 | 28 | 10 | | | 5505 | | | | *************************************** | | | | | | | | | | | | | 3910 | 0001 | <i>(F</i> | 100 | DD T | | _4 | 14.4 | 87 | 72 | 80.0 | 70.64 | 132.3 | 2,330 | 8,919 | 56 | 2 | | 3911 | 0001
0002 | 65
65 | | PP T
PP T | 1
1 | | 16.0
26.0 | 81
86 | 45
40 | 40.0 | 28.65 | 28.6 | 684 | 1,146 | 16 | ; | | | 0002 | 65 | | PP T | 1 | | 18.0 | 86
83 | 40
28 | 40.0
40.0 | 10.85
22.64 | 10.8
22.6 | 622
465 | 434
679 | 15
11 | 1 | | | , , , , | | | | | | | | | 70.0 | | | | | | | | 3911 | | | 100 | | 3 | | 18.8 | 83 | 38 | 120.0 | 62.13 | 62.1 | 1,771 | 2,259 | 43 | ; | | TC PL | OTTREEL | IST | | | | | | ot Tree
Project | | Volumes
GE2 | | | | Page
Date | 2
3/30/2 | :020 | |-------|---------|-----|-----|--------|-----|-----|------|--------------------|-----|----------------|--------|-------|----------|--------------|-------------|------| | TWP | RGE | SC | TRA | АСТ | | TY | PE | J | | CRES | PLOTS | TI | REES | | ED DATE | 020 | | 34S | 04E | 26 | EDO | E2 | | 00 | 39 | | | 31.20 | 13 | | 37 | 1 | 1/1/2019 | | | Plot | Tree | | | | Tre | ees | *** | 16' | Tot | BA | Trees | Logs | Net | Net | Tota | ı | | No. | No. | Age | SI | Spp St | Me. | Ct. | DBH | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | 3912 | 0001 | 65 | 100 | PP T | | 2 | 16.0 | 80 | 67 | 80.0 | 55.47 | 91.0 | 1,654 | 4,980 | 40 | 12 | | 3912 | | | 100 | | | 2 | 16.3 | 80 | 67 | 80.0 | 55.47 | 91.0 | 1,654 | 4,980 | 40 | 12 | | 3913 | 0001 | 65 | 100 | GF L | 1 | | 18.0 | 88 | 78 | 40.0 | 22.64 | 45.3 | 1,211 | 4,527 | 29 | 11 | | | 0002 | 65 | 100 | PP T | 1 | | 13.0 | 86 | 50 | 40.0 | 43.40 | 43.4 | 724 | 2,170 | 17 | 5 | | | 0003 | 65 | 100 | GF T | 1 | | 12.0 | 86 | 78 | 40.0 | 50.93 | 101.9 | 1,097 | 4,074 | 26 | 10 | | | 0004 | 65 | 100 | GF T | 1 | | 17.0 | 86 | 80 | 40.0 | 25.38 | 50.8 | 1,268 | 4,568 | 30 | 11 | | | 0005 | 65 | 100 | GF L | 1 | | 19.0 | 86 | 85 | 40.0 | 20.32 | 40.6 | 1,279 | 4,266 | 31 | 10 | | | 0006 | 65 | 100 | DF L | I | | 24.0 | 82 | 92 | 40.0 | 12.73 | 38.2 | 1,309 | 5,220 | 31 | 13 | | | 0007 | 65 | 100 | PP T | 1 | | 24.0 | 81 | 84 | 40.0 | 12.73 | 25.5 | 1,180 | 3,565 | 28 | 9 | | 3913 | | | 100 | | 7 | | 16.5 | 86 | 74 | 280.0 | 188.12 | 345.6 | 8,069 | 28,391 | 194 | 68 | | TYPE | | | 100 | | 36 | 18 | 15.4 | | 65 | 156.9 | 121.94 | 201.1 | 3,771 | 13,045 | 1,177 | 407 | | ODF | ATS | | | 40000 | | OJECT S | STATI
EDO | | | | PAGE
DATE | 1
3/30/2020 | |--|--|----
--|--|--|--|--|--|----------------|---------------------------------|--------------------------|---------------------------------------| | TWP | RGE | SC | TRACT | | TYPE | *********** | AC | CRES | PLOTS | TREES | CuFt | BdFt | | 34S | 04E | 28 | EDGE2 | | 0041 | | | 12.00 | 10 | 84 | S | W | | | | | | | | TREES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | | I | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOTA | L | | 10 | 84 | | 8.4 | | | | | | | | CRUIS
DBH (
REFO | COUNT | | 4 | 37 | | 9.3 | | 1,129 | | 3.3 | | | | COUN
BLAN
100 % | ∖KS | | 6 | 47 | | 7.8 | | | | | | | | | | | | | STA | AND SUMN | 1ARY | | | | | | | | | | MPLE
FREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | DOUC | G FIR-L | | 20 | 41.2 | 22.7 | 95 | 24.3 | 116.0 | 16,728 | 16,728 | 4,074 | 4,074 | | | G FIR-T | | 15 | 29.4 | 13.7 | 77 | 8.1 | 30.0 | 3,217 | • | 868 | 868 | | CON | | | 1 | 18.3 | 10.0 | 42 | 3.2 | 10.0 | 550 | | 143 | 143 | | E SPR
TOTA | RUCE-L | | 1 | 5.1 | 17.0 | 75
78 | 1.9 | 8.0 | 914
21.408 | | 243
5,328 | 243
5,328 | | | | | 37 | 94.1 | 17.9 | /0 | 38.8 | 164.0 | 21,400 | 21,408 | 3,320 | J,J20 | | CONI | FIDENC
68 | | | THE SAMPI
T OF 100 T | | JME WILL | BE WITI | HIN THE SAM | ⁄IPLE ERR | OR | | | | | 68.1 | | COEFF | | | SAMPL | | | | # OF TREES | | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | I | OW 717 | AVG | HIGH | | 5 | 10 | 15 | | DOU | G FIR-L | | | | | | | | | | | | | DOUC
CON I
E SPR | RUCE-L | | | | | 268 | 717
268 | 717 268 | | | | | | DOUC
CON I
E SPR
TOTA | FIR-T
RUCE-L
AL | | | | ······ | 268
498 | 268
498 | 268
498 | , | | | | | DOUC
CON I
E SPR
TOTA | FIR-T
RUCE-L
AL
68.1 | | COEFF | S E 0/ | ······································ | 268
498
SAMPL | 268
498
E TREE | 268
498
S - CF | | # OF TREES | | INF. POP. | | DOUC
CON I
E SPR
TOTA
CL
SD: | FIR-T
RUCE-L
AL
68.1
1.0 | | COEFF
VAR.% | S.E.% | ī | 268
498
SAMPL | 268
<i>498</i>
E TREE
AVG | 268
498
S - CF
HIGH | | # OF TREES
5 | REO.
10 | INF. POP.
15 | | CL
SD:
DOUC
CON I | FIR-T
RUCE-L
AL
68.1
1.0
G FIR-L
G FIR-T
FIR-T | | | S.E.% | I | 268
498
SAMPL | 268
498
E TREE | 268
498
S - CF | : | | | | | CL
SD:
DOUC
CON I | FIR-T
RUCE-L
AL
68.1
1.0
3 FIR-L
3 FIR-T
FIR-T
RUCE-L | | | S.E.% | I | 268 498 SAMPLE OW 170 | 268 498 E TREE AVG 170 | 268
498
S - CF
HIGH
170 | | | | | | CL SD: DOUC CON I E SPR TOTA | FIR-T
RUCE-L
AL
68.1
1.0
3 FIR-L
3 FIR-T
FIR-T
RUCE-L | | | S.E.% | I | 268 498 SAMPL OW 170 72 | 268 498 E TREE AVG 170 72 | 268 498 S - CF HIGH 170 72 | | | 10 | | | CL SD: | FIR-T
RUCE-L
AL
68.1
1.0
3 FIR-L
3 FIR-T
FIR-T
RUCE-L
AL
68.1
1.0 | | VAR.% | S.E.% | | 268 498 SAMPLE OW 170 72 | 268 498 E TREE AVG 170 72 122 ACRE AVG | 268 498 S - CF HIGH 170 72 | | 5 | 10 | 15 | | DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA CL SD: DOUC CON I C | FIR-T
RUCE-L
AL
68.1
1.0
3 FIR-L
3 FIR-T
RUCE-L
AL
68.1
1.0
G FIR-L | | VAR.% COEFF VAR.% 58.6 | S.E.%
19.5 | | 268 498 SAMPLE OW 170 72 122 TREES/ OW 33 | 268 498 E TREE AVG 170 72 122 ACRE AVG 41 | 268 498 S - CF HIGH 170 72 122 HIGH 49 | | 5
OF PLOTS | 10 | 15 INF. POP. | | CL SD: DOUC CONTESPRENT | FIR-T
RUCE-L
AL
68.1
1.0
G FIR-L
G FIR-T
RUCE-L
AL
68.1
1.0
G FIR-L
G FIR-T | | VAR.% COEFF VAR.% 58.6 197.4 | S.E.%
19.5
65.7 | | 268 498 SAMPLE OW 170 72 122 TREES/ OW 33 10 | 268 498 E TREE AVG 170 72 122 ACRE AVG 41 29 | 268 498 S - CF HIGH 170 72 122 HIGH 49 49 | | 5
OF PLOTS | 10 | 15 INF. POP. | | CL SD: DOUC CONTACT CO | FIR-T
RUCE-L
AL
68.1
1.0
G FIR-L
G FIR-T
RUCE-L
AL
68.1
1.0
G FIR-L
G FIR-T
FIR-T | | VAR.% COEFF VAR.% 58.6 197.4 105.4 | S.E.%
19.5
65.7
35.1 | | 268 498 SAMPLE JOW 170 72 122 TREES/ LOW 33 10 12 | 268 498 E TREE AVG 170 72 122 ACRE AVG 41 | 268 498 S - CF HIGH 170 72 122 HIGH 49 | | 5
OF PLOTS | 10 | 15 INF. POP. | | CL SD: DOUC CONTACT CO | FIR-T RUCE-L AL 68.1 1.0 G FIR-L G FIR-T RUCE-L AL 68.1 1.0 G FIR-L G FIR-T RUCE-L RUCE-L RUCE-L RUCE-L RUCE-L RUCE-L | | VAR.% COEFF VAR.% 58.6 197.4 | S.E.%
19.5
65.7 | | 268 498 SAMPLE OW 170 72 122 TREES/ OW 33 10 | 268 498 E TREE AVG 170 72 122 ACRE AVG 41 29 18 | 268 498 S - CF HIGH 170 72 122 HIGH 49 49 25 | | 5
OF PLOTS | 10 | 15 INF. POP. | | CL SD: DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA CL SD: TOTA | FIR-T
RUCE-L
AL
68.1
1.0
G FIR-L
G FIR-T
RUCE-L
AL
68.1
1.0
G FIR-L
G FIR-T
FIR-T
RUCE-L | | COEFF
VAR.%
58.6
197.4
105.4
174.8 | S.E.%
19.5
65.7
35.1
58.2 | | 268 498 SAMPLE OW 170 72 122 TREES/ OW 33 10 12 2 | 268 498 E TREE AVG 170 72 122 ACRE AVG 41 29 18 5 94 | 268 498 S - CF HIGH 170 72 122 HIGH 49 49 25 8 111 | | 5
OF PLOTS
5 | 10
REQ.
10 | INF. POP. 15 | | CL SD: DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA CL SD: TOTA | FIR-T RUCE-L AL 68.1 1.0 3 FIR-L 3 FIR-T RUCE-L AL 68.1 1.0 G FIR-L 5 FIR-T RUCE-L AL 4 L 4 L 5 FIR-T RUCE-L AL | | COEFF
VAR.%
58.6
197.4
105.4
174.8
54.6 | S.E.%
19.5
65.7
35.1
58.2 | I | 268 498 SAMPLE OW 170 72 122 TREES/ OW 33 10 12 2 77 | 268 498 E TREE AVG 170 72 122 ACRE AVG 41 29 18 5 94 | 268 498 S - CF HIGH 170 72 122 HIGH 49 49 25 8 111 | | 5
OF PLOTS
5 | 10
REQ.
10 | 15
INF. POP.
15 | | CL SD: DOUC CON I E SPR TOTA | 68.1
1.0
G FIR-L
G FIR-T
RUCE-L
AL
68.1
1.0
G FIR-L
G FIR-T
RUCE-L
AL
68.1
1.0
G FIR-L
G FIR-T | | COEFF
VAR.%
58.6
197.4
105.4
174.8
54.6
COEFF
VAR.%
55.0 | S.E.%
19.5
65.7
35.1
58.2
18.2
S.E.%
18.3 | I | 268 498 SAMPLE OW 170 72 122 TREES/ COW 33 10 12 2 77 BASAL COW 95 | 268 498 E TREE AVG 170 72 122 ACRE AVG 41 29 18 5 94 AREA/A AVG 116 | 268 498 S - CF HIGH 170 72 122 HIGH 49 49 25 8 111 CCRE HIGH 137 | | 5 # OF PLOTS 5 132 # OF PLOTS | 10
REQ.
10 | 15 INF. POP. 15 INF. POP. | | DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA | 68.1
1.0
3 FIR-L
68.1
1.0
3 FIR-L
68.1
1.0
3 FIR-L
68.1
1.0
5 FIR-T
RUCE-L
AL
68.1
1.0
G FIR-T | | COEFF
VAR.%
58.6
197.4
105.4
174.8
54.6
COEFF
VAR.%
55.0
144.9 | S.E.%
19.5
65.7
35.1
58.2
18.2
S.E.%
18.3
48.2 | I | 268 498 SAMPLE OW 170 72 122 TREES/ OW 33 10 12 2 77 BASAL OW 95 16 | 268 498 E TREE AVG 170 72 122 ACRE AVG 41 29 18 5 94 AREA/A AVG 116 30 | 268 498 S - CF HIGH 170 72 122 HIGH 49 49 25 8 111 CCRE HIGH 137 44 | | 5 # OF PLOTS 5 132 # OF PLOTS | 10
REQ.
10 | 15 INF. POP. 15 INF. POP. | | DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA | 68.1
1.0
3 FIR-L
G FIR-T
FIR-T
RUCE-L
AL
68.1
1.0
3 FIR-L
G FIR-T
RUCE-L
AL
68.1
1.0
G FIR-T
RUCE-L
AL | | COEFF
VAR.%
58.6
197.4
105.4
174.8
54.6
COEFF
VAR.%
55.0
144.9
105.4 | S.E.%
19.5
65.7
35.1
58.2
18.2
S.E.%
18.3
48.2
35.1 | I | 268 498 SAMPLE OW 170 72 122 TREES/ OW 33 10 12 2 77 BASAL OW 95 16 6 | 268 498 E TREE AVG 170 72 122 ACRE AVG 41 29 18 5 94 AREA/A AVG 116 30 10 | 268 498 S - CF HIGH 170 72 122 HIGH 49 49 25 8 111 CCRE HIGH 137 44 14 | | 5 # OF PLOTS 5 132 # OF PLOTS | 10
REQ.
10 | 15 INF. POP. 15 INF. POP. | | DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA | 68.1 1.0 3 FIR-T RUCE-L AL 68.1 1.0 3 FIR-T RUCE-L AL 68.1 1.0 3 FIR-L 5 FIR-T RUCE-L AL 68.1 1.0 3 FIR-T RUCE-L AL 68.1 1.0 5 FIR-T RUCE-L RUCE-L AL 68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0 68.1 | | COEFF
VAR.%
58.6
197.4
105.4
174.8
54.6
COEFF
VAR.%
55.0
144.9 | S.E.%
19.5
65.7
35.1
58.2
18.2
S.E.%
18.3
48.2 | I | 268 498 SAMPLE OW 170 72 122 TREES/ OW 33 10 12 2 77 BASAL OW 95 16 | 268 498 E TREE AVG 170 72 122 ACRE AVG 41 29 18 5 94 AREA/A AVG 116 30 | 268 498 S - CF HIGH 170 72 122 HIGH 49 49 25 8 111 CCRE HIGH 137 44 | | 5 # OF PLOTS 5 132 # OF PLOTS | 10
REQ.
10 | 15 INF. POP. 15 INF. POP. | | DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA CL SD: DOUC CON I E SPR TOTA | FIR-T RUCE-L AL 68.1 1.0 G FIR-L G FIR-T RUCE-L AL 68.1 1.0 G FIR-L G FIR-T RUCE-L AL 68.1 1.0 G FIR-T RUCE-L AL 68.1 1.0 G FIR-T RUCE-L AL | | COEFF
VAR.%
58.6
197.4
105.4
174.8
54.6
COEFF
VAR.%
55.0
144.9
105.4
174.8 | S.E.% 19.5 65.7 35.1 58.2 18.2 S.E.% 18.3 48.2 35.1 58.2 | I | 268 498 SAMPLE OW 170 72 122 TREES/ LOW 33 10 12 2 77 BASAL LOW 95 16 6 3 | 268 498 E TREE AVG 170 72 122 ACRE AVG 41 29 18 5 94 AREA/A AVG 116 30 10 8 164 | 268 498 S - CF HIGH 170 72 122 HIGH 49 25 8 111 CCRE HIGH 137 44 14 13 | | # OF PLOTS 5 132 # OF PLOTS 5 | 10 REQ. 10 33 REO. 10 | 15 INF. POP. 15 INF. POP. 15 | | DOUC CON I E SPR TOTAL CL
SD: DOUC CON I E SPR TOTAL CL SD: | 68.1
1.0
3 FIR-L
3 FIR-T
RUCE-L
AL
68.1
1.0
3 FIR-L
3 FIR-T
RUCE-L
AL
68.1
1.0
3 FIR-T
RUCE-L
AL
68.1
1.0
68.1
1.0
68.1
1.0
68.1 | | COEFF
VAR.%
58.6
197.4
105.4
174.8
54.6
COEFF
VAR.%
55.0
144.9
105.4
174.8
32.4
COEFF
VAR.% | S.E.% 19.5 65.7 35.1 58.2 18.2 S.E.% 18.3 48.2 35.1 58.2 10.8 S.E.% | I | 268 498 SAMPLE OW 170 72 122 TREES/ LOW 33 10 12 2 77 BASAL OW 95 16 6 3 146 | 268 498 E TREE AVG 170 72 122 ACRE AVG 41 29 18 5 94 AREA/A AVG 116 30 10 8 164 | 268 498 S - CF HIGH 170 72 122 HIGH 49 25 8 111 CCRE HIGH 137 44 14 13 | | 5 # OF PLOTS 5 132 # OF PLOTS 5 | 10 REQ. 10 33 REO. 10 | 15 INF. POP. 15 INF. POP. 15 | | DOUC CONTESPRENT OT A CL SD: | 68.1 1.0 3 FIR-T RUCE-L AL 68.1 1.0 3 FIR-T RUCE-L AL 68.1 1.0 3 FIR-L 5 FIR-T RUCE-L AL 68.1 1.0 3 FIR-L 68.1 1.0 5 FIR-T RUCE-L AL 68.1 1.0 5 FIR-T RUCE-L AL 68.1 1.0 68.1 1.0 68.1 | | COEFF
VAR.%
58.6
197.4
105.4
174.8
54.6
COEFF
VAR.%
55.0
144.9
105.4
174.8
32.4
COEFF
VAR.%
54.8 | S.E.% 19.5 65.7 35.1 58.2 18.2 S.E.% 18.3 48.2 35.1 58.2 10.8 S.E.% 18.2 | I | 268 498 SAMPLE OW 170 72 122 TREES/ LOW 33 10 12 2 77 BASAL LOW 95 16 6 3 146 NET BE LOW 13,677 | 268 498 E TREE AVG 170 72 122 ACRE AVG 41 29 18 5 94 AREA/A AVG 116 30 10 8 164 /ACRE AVG 16,728 | 268 498 S - CF HIGH 170 72 122 HIGH 49 25 8 111 CCRE HIGH 137 44 14 13 182 HIGH 19,778 | | # OF PLOTS 5 132 # OF PLOTS 5 | 10 REQ. 10 33 REQ. 10 | 15 INF. POP. 15 INF. POP. 5 INF. POP. | | DOUC CONTESPRENT OT A CL SD: | 68.1 1.0 67.1 68.1 1.0 68.1 1.0 68.1 1.0 67.1 68.1 1.0 67.1 68.1 1.0 67.1 68.1 1.0 67.1 68.1 1.0 67.1 67.1 67.1 67.1 67.1 67.1 67.1 67.1 | | COEFF
VAR.%
58.6
197.4
105.4
174.8
54.6
COEFF
VAR.%
55.0
144.9
105.4
174.8
32.4
COEFF
VAR.% | S.E.% 19.5 65.7 35.1 58.2 18.2 S.E.% 18.3 48.2 35.1 58.2 10.8 S.E.% | I | 268 498 SAMPLE OW 170 72 122 TREES/ LOW 33 10 12 2 77 BASAL OW 95 16 6 3 146 NET BE | 268 498 E TREE AVG 170 72 122 ACRE AVG 41 29 18 5 94 AREA/A AVG 116 30 10 8 164 /ACRE AVG | 268 498 S - CF HIGH 170 72 122 HIGH 49 25 8 111 CCRE HIGH 137 44 14 13 182 HIGH | | # OF PLOTS 5 132 # OF PLOTS 5 | 10 REQ. 10 33 REQ. 10 | 15 INF. POP. 15 INF. POP. 5 INF. POP. | | TC PST | TATS | | | | PROJECT PROJECT | | ISTICS
GE2 | | | PAGE
DATE | 2
3/30/2020 | |--------|------------|----|-------|-------|-----------------|----------|---------------|-------|--------------|--------------|-----------------------| | TWP | RGE | SC | TRACT | TY | PE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 34S | 04E | 28 | EDGE2 | 004 | 1 | | 12.00 | 10 | 84 | S | W | | CL | 68.1 | | COEFF | | NET | BF/ACRE | | | # OF PLOT | S REQ. | INF. POP. | | SD: | 1.00 | | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | тот | AL | | 37.5 | 12.5 | 18,734 | 21,408 | 24,083 | | 62 | 16 | 7 | | CL | 68.1 | | COEFF | | NET | CUFT FT/ | ACRE | | # OF PLOTS I | REQ. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOU | G FIR-L | | 54.8 | 18.2 | 3,331 | 4,074 | 4,818 | | | | ****** | | DOU | G FIR-T | | 136.9 | 45.6 | 472 | 868 | 1,263 | | | | | | CON | FIR-T | | 105.4 | 35.1 | 93 | 143 | 193 | | | | | | E SPF | RUCE-L | | 174.8 | 58.2 | 102 | 243 | 385 | | | | | | TOTA | A L | | 35.9 | 12.0 | 4,691 | 5,328 | 5,965 | | 57 | 14 | 6 | | TC | PSP | CSTGR | | Sp | ecies, S | Sort G | rade - B | oard | l Foo | t Vo | lume | s (P | roject) |) | | | | | | | | |------|-------------|----------------|----------|----------|-----------------|-----------------|------------------|-----------|-------|-------------|----------|--------|----------|-------|-----------|-------|---------------|----------------------|-----------|----------------------|----------------------| | T34 | IS R | .04E S28 | Ту0041 | <u> </u> | 2.00 | | Project
Acres | : | ED | GE2
12.0 | 00 | | | | 4 | | | Page
Date
Time | | 1
31/20
04:10 | | | | | | % | | | | | | Perc | ent of | Net Bo | ard Fo | oot Volu | me | | | | Avera | ge Lo | 9 | Logs | | | S | So Gr | Net | Bd. Ft | . per Acre | | Total | 1 | L | og Sca | ıle Dia. | | | Log L | ength | | Ln | Dia | Bd | | Per | | Spp | T | | BdFt | Def% | Gross | Net | Net MBF | | 4-5 | 6-11 | 12-16 | 17+ | 12-20 | 21-30 | 31-35 | 36-99 | Ft | In | Ft | Lf | /Acre | | | L
L | 3M
4M | 73
27 | | 12,257
4,470 | 12,257
4,470 | 3 | 147
54 | 35 | 5
37 | 72
28 | 24 | 2 | 24 | 100
59 | 16 | 34
32 | 15
7 | | 1.97
0.72 | 41.2
56.7 | | DF | | tals | 78 | | 16,728 | 16,728 | | 201 | 9 | 13 | 60 | 18 | 0 | 6 | 89 | 4 | 33 | 10 | 171 | 1.26 | 98.0 | | | T
T
T | CU
3M
4M | 76
24 | | 2,476
741 | 2,476
741 | | 30
9 | 73 | 46
27 | 54 | | 27 | 12 | 100
40 | 20 | 6
34
24 | 5
8
5 | | 0.00
0.70
0.40 | 10.4
26.4
25.1 | | DF | То | tals | 15 | | 3,217 | 3,217 | | 39 | 17 | 42 | 41 | | 6 | 3 | 86 | 5 | 25 | 6 | 52 | 0.56 | 61.9 | | | L
L | 3M
4M | 83
17 | | 761
152 | 761
152 | | 9
2 | 100 | 100 | | | | 100 | 100 | | 34
25 | 11
5 | 150
30 | 1.12
0.40 | 5.1
5.1 | | ES | То | tals | 4 | | 914 | 914 | | 11 | 17 | 83 | | | <u> </u> | 17 | 83 | | 30 | 8 | 90 | 0.81 | 10.2 | | WF | Т | 4M | 100 | | 550 | 550 | | 7 | 100 | | | | | 100 | | | 27 | 5 | | 0.29 | 18.3 | | WF | T | otals | 3 | | 550 | 550 | | 7 | 100 | | | | | 100 | | | 27 | 5 | 30 | 0.29 | 10.3 | | Tota | als | | | | 21,408 | 21,408 | | 257 | 13 | 20 | 53 | 14 | 1 | 9 | 86 | 4 | 30 | 8 | 114 | 0.96 | 188.3 | | TC I | PLO | GSTVB | | | | Log | Stock Table | - MBl | F | | | | | | | | | |-------|------|-----------|-------|-------|---------|---------------|-------------|-----------|--------|---------|------|-----------|-------|----------------------|------|------------------------|----------| | T34 | S R(| 04E S28 T | y0041 | 12 | .00 | Proje
Acre | | GE2
12 | .00 | 10110 | *** | | | Page
Date
Time | | 1
1/2020
04:15PI | м | | | S | So Gr | Log | Gross | Def Net | % |] | Net Volu | ıme by | Scaling | Diam | eter in I | nches | | | | | | Spp | Т | rt de | | MBF | % MBF | Spc | 2-3 4-5 | 6-7 | 8-9 | 10-11 1 | | | 16-19 | 20-23 2 | 4-29 | 30-39 | +0+ | | DF | L | 3M | 34 | 147 | 147 | 73.3 | | | | 7 | 19 | 50 | 43 | 28 | | | | | DF | L | 4M | 20 | 1 | 1 | .4 | 1 | | | | | | | | | | | | DF | L | 4M | 23 | 2 | 2 | 1.0 | | | | | 2 | | | | | | | | DF | L | 4M | 24 | 1 | 1 | .3 | 1 | | | | | | | | | | | | DF | L | 4M | 26 | 7 | 7 | 3.5 | 1 | | | | | 7 | | | | | | | DF | L | 4M | 28 | 3 | 3 | 1.6 | 3 | | | | | | | | | | | | DF | L | 4M | 34 | 31 | 31 | 15.6 | 5 | 1 | 2 | 17 | 3 | 3 | | | | | | | DF | L | 4M | 39 | 2 | 2 | 1.1 | 2 | | | | | | | | | | | | DF | L | 4M | 41 | 6 | 6 | 3.2 | 6 | | | | | | | | | | | | DF | | Totals | 3 | 201 | 201 | 78.1 | 19 | 1 | 2 | 24 | 25 | 60 | 43 | 28 | | | | | DF | Т | 3M | 34 | 30 | 30 | 77.0 | | 12 | | 2 | 14 | 2 | | | | | | | DF | Т | 4M | 13 | 1 | 1 | 1.9 | 1 | | | | | | | | | | | | DF | Т | 4M | 15 | 0 | 0 | 1.3 | 0 | | | | | | | | | | | | DF | Т | 4M | 17 | 1 | 1 | 3.2 | 1 | | | | | | | | | | | | DF | T | 4M | 24 | 1 | 1 | 2.8 | 0 | | 1 | | | | | | | | | | DF | T | 4M | 31 | 0 | C | 1.1 | 0 | | | | | | | | | | | | DF | Т | 4M | 34 | 2 | 2 | 4.4 | | | 2 | | | | | | | | | | DF | T | 4M | 35 | 1 | 1 | 3.8 | 1 | | | | | | | | | | | | DF | T | 4M | 37 | 1 | Ī | 3.6 | 1 | | | | | | | | | | | | DF | T | 4M | 1 38 | 0 | (| 1.0 | 0 | | | | | | | | | | | | DF | | Total | s | 39 | 39 | 15.0 | 6 | 12 | 2 | 2 | 14 | 2 | | | | | | | ES | L | 3N | 1 34 | 9 | Ç | 83.3 | | | | 9 | | | | | | | | | ES | L | 4N | 1 25 | 2 | 2 | 16.7 | 2 | | | | | | | | | | | | ES | | Total | s | 11 | 11 | 4.3 | 2 | | | 9 | | | | | | | | | WF | Т | 4N | 1 27 | 7 | | 7 100.0 | 7 | | | | | | | | | | | | WF | | Total | s | 7 | | 7 2.6 | 7 | | | | | | | | | | | | Total | | All Spec | ies | 257 | 25′ | 7 100.0 | 33 | 13 | 4 | 35 | 38 | 62 | 43 | 28 | | | | | ODF | OTTREELI | IST | | | | | | ot Tree
Project | | Volumes
GE2 | | | | Page
Date | 1
3/30/20 |)20 | |------------|------------|----------|------------|---|-----|-----------|----------|--------------------|-----|----------------|-------------|-------|------------|--------------|---------------------|-----| | TWP
34S | RGE
04E | SC
28 | TRA
EDC | | | TY
004 | PE
41 | | A | CRES
12.00 | PLOTS
10 | TF | REES
37 | | ED DATE
5/1/2019 | | | Plot | Tree | | | | Tre | es | | 16' | Tot | ВА | Trees | Logs | Net | Net | Total | | | No. | No. | Age | SI | Spp St | Me. | Ct. | DBH | FF | Ht. | , /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | 4101 | 0001 | 60 | 100 | WF L | | 1 | | | | | | | | | | | | | 0002 | 60 | 100 | ES L | | 2 | 16.0 | 84 | 75 | 40.0 | 25.38 | 50.8 | 1,217 | 4,568 | 15 | 5 | | 4101 | | - | 100 | | | 3 | 17.0 | 84 | 75 | 40.0 | 25.38 | 50.8 | 1,217 | 4,568 | 15 | 5 | | 4102 | 0001 | 60 | 100 | DF L | 2 | | 30.0 | 87 | 101 | 40.0 | 8.15 | 24.4 | 1,509 | 7,415 | 18 | 9 | | | 0002 | 60 | 100 | DF T | 3 | | 19.5 | 83 | 88 | 60.0 | 28.93 | 57.9 | 1,848 | 6,075 | 22 | 7 | | | 0003 | 60 | 100 | DF L | 1 | | 31.0 | 88 | 105 | 20.0 | 3.82 | 7.6 | 730 | 3,625 | 9 | 4 | | | 0004 | 60 | 100 | DF T | 1 | | 11.0 | 70 | 60 | 20.0 | 30.31 | 30.3 | 489 | 1,212 | 6 | 1 | | | 0005 | 60 | 100 | DF L | 1 | | 26.0 | 81 | 96 | 20.0 | 5.42 | 16.3 | 665 | 2,604 | 8 | 3 | | 4102 | | | 100 | | 8 | | 19.6 | 78 | 80 | 160.0 | 76.62 | 136.5 | 5,241 | 20,932 | 63 | 25 | | 4103 | 0001 | 60 | 100 | DF L | | 8 | 22.0 | 85 | 95 | 160.0 | 56.87 | 135.1 | 5,619 | 23,072 | 67 | 28 | | | 0002 | 60 | 100 | LP L | | 1 | | | | | | | | | | | | | 0003 | 60 | 100 | WF T | | 1 | 9.0 | 81 | 42 | 20.0 | 36.67 | 36.7 | 286 | 1,100 | 3 | 1 | | 4103 | | | 100 | | | 10 | 18.8 | 83 | 74 | 180.0 | 93.53 | 171.8 | 5,906 | 24,173 | 71 | 29 | | 4104 | 0001 | 60 | 100 |
DF L | 3 | | 22.5 | 86 | 115 | 60.0 | 21.73 | 65.2 | 2,368 | 10,430 | 28 | 13 | | | 0002 | 60 | 100 | DF T | 2 | | 19.0 | 86 | 103 | 40.0 | 20.32 | 60.9 | 1,441 | 6,095 | 17 | 7 | | | 0003 | 60 | 100 | DF L | 2 | | 24.0 | 84 | 105 | 40.0 | 12.73 | 38.2 | 1,489 | 6,239 | 18 | 7 | | | 0004 | 60 | | DF T | 1 | | 19.0 | 85 | 102 | 20.0 | 10.16 | 30.5 | 736 | 3,047 | 9 | 4 | | | 0005 | 60 | 100 | ES L | 1 | | 17.0 | 84 | 75 | 20.0 | 12.69 | 25.4 | 609 | 2,284 | 7 | 3 | | 4104 | | | 100 | | 9 | | 20.6 | 85 | 102 | 180.0 | 77.62 | 220.2 | 6,643 | 28,095 | 80 | 34 | | 4105 | 0001 | 60 | 100 | DF L | | 5 | 22.0 | 85 | 95 | 100.0 | 35.54 | 84.4 | 3,512 | 14,420 | 42 | 17 | | | 0002 | 60 | 100 | WF T | | 1 | 9.0 | 81 | 42 | 20.0 | 36.67 | 36.7 | 286 | 1,100 | 3 | 1 | | 4105 | | | 100 | | | 6 | 17.5 | 83 | 68 | 120.0 | 72.21 | 121.1 | 3,798 | 15,520 | 46 | 19 | | 4111 | 0001 | 60 | 100 | DF L | | 11 | 22.0 | 85 | 95 | 220.0 | 78.19 | 185.8 | 7,727 | 31,725 | 93 | 38 | | 4111 | | | 100 | | - | 11 | 22.7 | 85 | 95 | 220.0 | 78.19 | 185.8 | 7,727 | 31,725 | 93 | 38 | | 4112 | 0001 | 60 | | DF L | 2 | 11 | 18.0 | 86 | 84 | 40.0 | 22.64 | 45.3 | 1,263 | 4,753 | 15 | 6 | | | 0002 | 60 | | DF T | 2 | | 10.0 | 83 | 70 | 40.0 | 73.34 | 73.3 | 925 | 3,667 | 11 | 4 | | | 0003 | 60 | | DF T | 2 | | 12.0 | 83 | 75 | 40.0 | 50.93 | 101.9 | 1,086 | 4,074 | 13 | 5 | | | 0004 | 60 | 100 | DF L | 1 | | 21.0 | 83 | 87 | 20.0 | 8.32 | 16.6 | 628 | 2,162 | 8 | 3 | | | 0005 | 60 | 100 | DF T | 2 | | 11.0 | 84 | 73 | 40.0 | 60.61 | 121.2 | 895 | 3,637 | 11 | 4 | | | 0006 | 60 | 100 | DF L | 1 | | 24.0 | 85 | 91 | 20.0 | 6.37 | 12.7 | 680 | 2,610 | 8 | 3 | | | 0007 | 60 | 100 | DF L | 1 | | 17.0 | 85 | 86 | 20.0 | 12.69 | 25.4 | 615 | 2,411 | 7 | 3 | | | 8000 | 60 | 100 | DF L | 1 | | 26.0 | 84 | 110 | 20.0 | 5.42 | 16.3 | 768 | 3,200 | 9 | 4 | | 4112 | | | 100 | | 12 | | 13.5 | 84 | 76 | 240.0 | 240.31 | 412.7 | 6,862 | 26,515 | 82 | 32 | | 4113 | 0001 | 60 | 100 | DF L | | 10 | 22.0 | 85 | 95 | 200.0 | 71.08 | 168.9 | 7,024 | 28,841 | 84 | 35 | | | 0002 | 60 | 100 | WF T | | 1 | 9.0 | 81 | 42 | 20.0 | 36.67 | 36.7 | 286 | 1,100 | 3 | 1 | | 4113 | | | 100 | | | 11 | 19.3 | 84 | 77 | 220.0 | 107.75 | 205.6 | 7,310 | 29,941 | 88 | 36 | | 4114 | 0001 | 60 | | DF L | 2 | - | 22.0 | 84 | 87 | 40.0 | 15.15 | 30.3 | 1,312 | 4,243 | 16 | 5 | | | 0002 | 60 | | DF T | 1 | | 18.0 | 83 | 82 | 20.0 | 11.32 | 22.6 | 607 | 2,037 | 7 | 2 | | | 0003 | 60 | | DF L | 2 | | 23.0 | 85 | 89 | 40.0 | 13.86 | 27.7 | 1,357 | 5,407 | 16 | 6 | | | 0004 | 60 | 100 | DF L | 1 | | 25.0 | 84 | 88 | 20.0 | 5.87 | 11.7 | 664 | 2,582 | 8 | 3 | | | 0005 | 60 | 100 | DF T | 1 | | 21.0 | 86 | 86 | 20.0 | 8.32 | 16.6 | 650 | 2,328 | 8 | 3 | | | 0006 | 60 | 100 | WF T | 1 | | 10.0 | 81 | 42 | 20.0 | 36.67 | 36.7 | 286 | 1,100 | 3 | 1 | | 4114 | | | 100 | *************************************** | 8 | | 17.9 | 83 | 69 | 160.0 | 91.19 | 145.7 | 4,875 | 17,697 | 58 | 21 | | 4115 | 0001 | 60 | | DF L | - | 4 | 22.0 | 85 | 95 | 80.0 | 28.43 | 67.6 | 2,810 | 11,536 | 34 | 14 | | | 0002 | 60 | | WF T | | 1 | 9.0 | 81 | 42 | 20.0 | 36.67 | 36.7 | 286 | 1,100 | 3 | 1 | | | 0002 | | 100 | * * * * | | | | | | | | | | | - | | | | 0002 | 60 | | ES L | | 1 | 16.0 | 84 | 75 | 20.0 | 12.69 | 25.4 | 609 | 2,284 | 7 | 3 | | TC PL | OTTREEL | IST | | | | | ot Tree
Project | | Volumes
GE2 | | | | Page
Date | 2
3/30/2 | 020 | |------------|------------|----------|------------|------------|------------|------|--------------------|-----|----------------|-------------|-------|------------|--------------|---------------------|---| | TWP
34S | RGE
04E | SC
28 | TR/
ED0 | ACT
GE2 | TYI
004 | _ | | A | CRES
12.00 | PLOTS
10 | TF | REES
37 | | ED DATE
6/1/2019 | | | Plot | Tree | | | | Trees | | 16' | Tot | BA | Trees | Logs | Net | Net | Total | • | | No. | No. | Age | SI | Spp St | Me. Ct. I | DВН | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | TYPE | | | 100 | - | 37 47 | 17.9 | | 78 | 164.0 | 94.06 | 178.0 | 5,328 | 21,408 | 639 | 257 | | TC PSTA | ATS | | | | | DJECT S
ROJECT | TATIS
EDG | | | | PAGE
DATE | 1
3/30/2020 | |--|---|----------|---|---|--------------|--|---|---|--|-------------------------------|--|------------------------------------| | | RGE | SC | TRACT | , | TYPE | | AC | RES | PLOTS | TREES | CuFt | BdFt | | 34S (| 04E | 26 | EDGE2 | | 0044 | | | 21.90 | 14 | 87 | S | W | | | | | | | | TREES | I | ESTIMATED
TOTAL | | ERCENT
SAMPLE | | | | | | | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOTAI | [. | | 14 | 87 | | 6.2 | | | | | | | | CRUIS
DBH C | SE
COUNT | | 7 | 42 | | 6.0 | | 3,746 | | 1.1 | | | | REFOR | | | 7 | 45 | | 6.4 | | | | | | | | COUN | | | 7 | 43 | | 0.4 | | | | | | | | BLANI
100 % | | | | | | | | | | | | | | 100 70 | | | | | STA | ND SUMM | IARY | | NAME
OF THE OWNER | | | 10 P. S. | | | | | AMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS
CF/AC | NET
CF/AC | | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC
13,085 | 3,363 | | | | FIR-L | | 18 | 58.4 | 18.0 | 90 | 24.3 | 102.9
17.1 | 13,085
1,888 | 13,085 | 3,363
492 | | | | FIR-T | | 6 | 18.1 | 13.2 | 83
85 | 4.7
9.4 | 40.0 | 4,788 | 4,788 | 1,243 | | | CON F | | | 6
8 | 22.0
48.1 | 18.3
15.1 | 85
81 | 15.4 | 60.0 | 6,984 | 6,984 | 1,739 | - | | CONF | | | 8 2 | 48.1
16.4 | 13.1 | 77 | 4.6 | 17.1 | 1,906 | 1,906 | 521 | - | | SH R I | FIK-I
EROS-T | | 2 | 8.1 | 13.9 | 76 | 2.3 | 8.6 | 686 | 686 | 210 | | | TOTA | | | 42 | 171.1 | 16.2 | 84 | 61.0 | 245.7 | 29,338 | 29,338 | 7,569 | 7,569 | | | 68.1 | | COEFF | G F 0/ | | SAMPL | | S - BF
HIGH | # | OF TREES | S REQ.
10 | INF. POP. | | SD: | 1.0 | | VAR.%
45.9 | S.E.%
11.1 | | 239 | AVG
269 | 299 | | | 10 | | | | G FIR-L
G FIR-T | | 43.9
34.7 | 15.5 | | 96 | 113 | 131 | | | | | | CONI | | | | | | 190 | | | | | | | | | | | 44 / N | 21.2 | | 190 | 242 | 293 | | | | | | CONT | | | 47.6
55.3 | 21.2
20.8 | | 138 | 242
174 | 293
210 | | | | | | CON I | FIR-T | | 55.3
70.7 | | | | | | | | | | | SH R | FIR-T | Γ | 55.3 | 20.8 | | 138
47
78 | 174
140
85 | 210
233
92 | | | | | | SHR | FIR-T
FIR-T
DEROS-T | Γ | 55.3
70.7 | 20.8
66.2 | | 138
47 | 174
140 | 210
233 | | 129 | 32 | | | SH R PONE TOTA | FIR-T
FIR-T
DEROS-T
AL
68.1 | Γ | 55.3
70.7
8.3
56.9 | 20.8
66.2
7.8
8.8 | | 138
47
78
192
SAMPL | 174
140
85
210
E TREE | 210
233
92
228
S - CF | # | OF TREES | S REQ. | INF. POP. | | SH R POND
TOTA
CL
SD: | FIR-T
FIR-T
DEROS-T
AL
68.1
1.0 | <u> </u> | 55.3
70.7
8.3
56.9
COEFF
VAR.% | 20.8
66.2
7.8
8.8
S.E.% | | 138
47
78
192
SAMPL
LOW | 174
140
85
<i>210</i>
E TREE
AVG | 210
233
92
228
S - CF
HIGH | # | | | INF. POP. | | SH R PONE TOTA CL SD: DOUG | FIR-T
FIR-T
DEROS-T
AL
68.1
1.0
G FIR-L | Γ | 55.3
70.7
8.3
56.9
COEFF
VAR.%
38.8 | 20.8
66.2
7.8
8.8
S.E.% | | 138
47
78
192
SAMPL
LOW
62 | 174
140
85
210
E TREE
AVG
68 | 210
233
92
228
S - CF
HIGH | # | OF TREES | S REQ. | INF. POP. | | SH R PONE TOTA CL SD: DOUG | FIR-T FIR-T DEROS-T AL 68.1 1.0 G FIR-L G FIR-T | Γ | 55.3
70.7
8.3
56.9
COEFF
VAR.%
38.8
34.9 | 20.8
66.2
7.8
8.8
S.E.%
9.4
15.5 | | 138
47
78
192
SAMPL
LOW | 174
140
85
<i>210</i>
E TREE
AVG | 210
233
92
228
S - CF
HIGH | ‡ | OF TREES | S REQ. | INF. POP. | | SH R PONE TOTA CL SD: DOUG DOUG CON | FIR-T FIR-T DEROS-T AL 68.1 1.0 G FIR-L G FIR-T FIR-L | Γ | 55.3
70.7
8.3
56.9
COEFF
VAR.%
38.8 | 20.8
66.2
7.8
8.8
S.E.% | | 138
47
78
192
SAMPL
LOW
62
25 | 174
140
85
210
E TREE
AVG
68
30 | 210
233
92
228
S - CF
HIGH
74
34 | ‡ | OF TREES | S REQ. | INF. POP. | | SH R PONE
TOTAL
CL
SD:
DOUG
CON CON | FIR-T
FIR-T
DEROS-T
AL
68.1
1.0
G FIR-L
G FIR-T | <u> </u> | 55.3
70.7
8.3
56.9
COEFF
VAR.%
38.8
34.9
36.2 | 20.8
66.2
7.8
8.8
S.E.%
9.4
15.5
16.1 | | 138
47
78
192
SAMPL
LOW
62
25
51 | 174
140
85
210
E TREE
AVG
68
30
61 | 210
233
92
228
S - CF
HIGH
74
34
71 | ‡ | OF TREES | S REQ. | INF. POP. | | SH R PONE TOTA CL SD: DOUG CON CON SH R | FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L G FIR-T FIR-L FIR-T | 17117 | 55.3
70.7
8.3
56.9
COEFF
VAR.%
38.8
34.9
36.2
48.2 | 20.8
66.2
7.8
8.8
S.E.%
9.4
15.5
16.1
18.2 | | 138
47
78
192
SAMPL
LOW
62
25
51
35
15 | 174
140
85
210
E TREE
AVG
68
30
61
43
38
27 | 210
233
92
228
S - CF
HIGH
74
34
71
51
60
34 | # | FOF TREES | S REQ.
10 | INF. POP. | | SH R PONE TOTA CL SD: DOUG CON CON SH R | FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L G FIR-T FIR-T FIR-T DEROS-1 | 17117 | 55.3
70.7
8.3
56.9
COEFF
VAR.%
38.8
34.9
36.2
48.2
64.2 | 20.8
66.2
7.8
8.8
S.E.%
9.4
15.5
16.1
18.2
60.1 | | 138
47
78
192
SAMPL
LOW
62
25
51
35
15 | 174
140
85
210
E TREE
AVG
68
30
61
43
38 | 210
233
92
228
S - CF
HIGH
74
34
71
51
60 | # | OF TREES | S REQ. | INF. POP. | | SH R PONE TOTA CL SD: DOUG CON CON SH R PONE TOTA CL | FIR-T
FIR-T
DEROS-1
AL
68.1
1.0
G FIR-L
G FIR-T
FIR-T
FIR-T
DEROS-7
AL
68.1 | 17117 | 55.3
70.7
8.3
56.9
COEFF
VAR.%
38.8
34.9
36.2
48.2
64.2
29.2
49.8
COEFF | 20.8
66.2
7.8
8.8
S.E.%
9.4
15.5
16.1
18.2
60.1
27.4
7.7 | | 138
47
78
192
SAMPL
LOW
62
25
51
35
15
19
49 | 174 140 85 210 E TREE AVG 68 30 61 43 38 27 53 | 210
233
92
228
S - CF
HIGH
74
34
71
51
60
34
58 | | 99
OF PLOT | S REQ.
10
25
S REQ. | INF. POP. | | SH R PONE TOTA CL SD: DOUG CON CON SH R PONE TOTA CL SD: | FIR-T
FIR-T
DEROS-1
AL
68.1
1.0
G FIR-L
G FIR-T
FIR-T
FIR-T
DEROS-1
AL
68.1
1.0 | 17117 | 55.3
70.7
8.3
56.9
COEFF
VAR.%
38.8
34.9
36.2
48.2
64.2
29.2
49.8
COEFF
VAR.% | 20.8
66.2
7.8
8.8
S.E.%
9.4
15.5
16.1
18.2
60.1
27.4
7.7 | | 138
47
78
192
SAMPL
LOW
62
25
51
35
15
19
49
TREES/ | 174 140 85 210 E TREE AVG 68 30 61 43 38 27 53 ACRE AVG | 210
233
92
228
S - CF
HIGH
74
34
71
51
60
34
58 | | FOF TREES 5 | S REQ. 10 | INF. POP. | | SH R PONE TOTA CL SD: DOUG CON CON SH R PONE TOTA CL SD: DOUG DOUG CON DO | FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L G FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L | 17117 | 55.3
70.7
8.3
56.9
COEFF
VAR.%
38.8
34.9
36.2
48.2
64.2
29.2
49.8
COEFF
VAR.%
65.3 | 20.8
66.2
7.8
8.8
S.E.%
9.4
15.5
16.1
18.2
60.1
27.4
7.7
S.E.% | | 138
47
78
192
SAMPL
LOW
62
25
51
35
15
19
49
TREES/ | 174
140
85
210
E TREE
AVG
68
30
61
43
38
27
53
ACRE
AVG | 210
233
92
228
S - CF
HIGH
74
34
71
51
60
34
58 | | 99
OF PLOT | S REQ.
10
25
S REQ. | INF. POP. | | SH R PONE TOTA CL SD: DOUG CON SH R PONE TOTA CL SD: DOUG DOUG CON SH R PONE TOTA | FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L G FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L G FIR-T | 17117 | 55.3
70.7
8.3
56.9
COEFF
VAR.%
38.8
34.9
36.2
48.2
64.2
29.2
49.8
COEFF
VAR.%
65.3
214.7 | 20.8
66.2
7.8
8.8
S.E.%
9.4
15.5
16.1
18.2
60.1
27.4
7.7
S.E.%
18.1
59.5 | | 138
47
78
192
SAMPL
LOW
62
25
51
35
15
19
49
TREES/
LOW
48
7 | 174 140 85 210 E TREE AVG 68 30 61 43 38 27 53 ACRE AVG 58 18 | 210
233
92
228
S - CF
HIGH
74
34
71
51
60
34
58
HIGH | | 99
OF PLOT | S REQ.
10
25
S REQ. | INF. POP. | | SH R PONE TOTA CL SD: DOUG CON SH R PONE TOTA CL SD: DOUG CON | FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L G FIR-L FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L G FIR-L FIR-T T FIR-T T T T T T T T T T T T T T T T T T T | 17117 | 55.3
70.7
8.3
56.9
COEFF
VAR.%
38.8
34.9
36.2
48.2
64.2
29.2
49.8
COEFF
VAR.%
65.3
214.7
175.6 | 20.8
66.2
7.8
8.8
S.E.%
9.4
15.5
16.1
18.2
60.1
27.4
7.7
S.E.%
18.1
59.5
48.6 | | 138
47
78
192
SAMPL
LOW
62
25
51
35
15
19
49
TREES/ | 174 140 85 210 E TREE AVG 68 30 61 43 38 27 53 ACRE AVG 58 | 210
233
92
228
S - CF
HIGH
74
34
71
51
60
34
58 | | 99
OF PLOT | S REQ.
10
25
S REQ. | INF. POP. | | SH R PONE TOTA CL SD: DOUG CON SH R PONE TOTA CL SD: DOUG CON | FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L GFIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L G FIR-L G FIR-T FIR-T TIR-T | 17117 | 55.3
70.7
8.3
56.9
COEFF
VAR.%
38.8
34.9
36.2
48.2
64.2
29.2
49.8
COEFF
VAR.%
65.3
214.7 | 20.8
66.2
7.8
8.8
S.E.%
9.4
15.5
16.1
18.2
60.1
27.4
7.7
S.E.%
18.1
59.5 | | 138
47
78
192
SAMPL
LOW
62
25
51
35
15
19
49
TREES/
LOW
48
7 | 174 140 85 210 E TREE AVG 68 30 61 43 38 27 53 ACRE AVG 58 18 22 | 210
233
92
228
S - CF
HIGH
74
34
71
51
60
34
58
HIGH
69
29
33 | | 99
OF PLOT | S REQ.
10
25
S REQ. | INF. POP. | | SH R PONE TOTA CL SD: DOUG CON SH R PONE TOTA CL SD: DOUG CON SH R CON SH R R CCL SD: DOUG CON SH R | FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L G FIR-L FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L G FIR-L FIR-T T FIR-T T T T T T T T T T T T T T T T T T T | Γ | 55.3
70.7
8.3
56.9
COEFF
VAR.%
38.8
34.9
36.2
48.2
64.2
29.2
49.8
COEFF
VAR.%
65.3
214.7
175.6
120.1 | 20.8
66.2
7.8
8.8
S.E.%
9.4
15.5
16.1
18.2
60.1
27.4
7.7
S.E.%
18.1
59.5
48.6
33.3 | - | 138
47
78
192
SAMPL
LOW
62
25
51
35
15
19
49
TREES/
LOW
48
7
11
32 | 174 140 85 210 E TREE AVG 68 30 61 43 38 27 53 ACRE AVG 58
18 22 48 | 210
233
92
228
S - CF
HIGH
74
34
71
51
60
34
58
HIGH
69
29
33
64 | | 99
OF PLOTS | 25
S REQ.
10 | INF. POP. INF. POP. 1 | | SH R PONE TOTA CL SD: DOUG CON SH R PONE TOTA CL SD: DOUG CON SH R CON SH R R CON SH R R R R R R R R R R R R R R R R R R R | FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L FIR-T FIR-T DEROS-2 AL 68.1 1.0 G FIR-L G FIR-L FIR-T FIR-T DEROS-3 FIR-L FIR-T FIR-T FIR-T FIR-T FIR-T FIR-T DEROS-3 | Γ | 55.3
70.7
8.3
56.9
COEFF
VAR.%
38.8
34.9
36.2
48.2
64.2
29.2
49.8
COEFF
VAR.%
65.3
214.7
175.6
120.1
153.9 | 20.8
66.2
7.8
8.8
9.4
15.5
16.1
18.2
60.1
27.4
7.7
S.E.%
18.1
59.5
48.6
33.3
42.6 | - | 138
47
78
192
SAMPL
LOW
62
25
51
35
15
19
49
TREES/
LOW
48
7
11
32
9 | 174 140 85 210 E TREE AVG 68 30 61 43 38 27 53 ACRE AVG 58 18 22 48 16 | 210
233
92
228
S - CF
HIGH
74
34
71
51
60
34
58
HIGH
69
29
33
64
23 | 1 | 99 # OF PLOT: 5 | 25
S REQ.
10 | INF. POP. INF. POP. 1 | | SH R PONE TOTA CL SD: DOUG CON SH R PONE TOTA CL SD: DOUG CON SH R PONE CON SH R PONE CON SH R PONE CON SH R PONE | FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L FIR-T FIR-T DEROS-2 AL 68.1 1.0 G FIR-L G FIR-L FIR-T FIR-T DEROS-3 FIR-L FIR-T FIR-T FIR-T FIR-T FIR-T FIR-T DEROS-3 | Γ | 55.3 70.7 8.3 56.9 COEFF VAR.% 38.8 34.9 36.2 48.2 64.2 29.2 49.8 COEFF VAR.% 65.3 214.7 175.6 120.1 153.9 200.4 | 20.8
66.2
7.8
8.8
9.4
15.5
16.1
18.2
60.1
27.4
7.7
S.E.%
18.1
59.5
48.6
33.3
42.6
55.5
12.1 | - | 138
47
78
192
SAMPL
LOW
62
25
51
35
15
19
49
TREES/
LOW
48
7
11
32
9
4
150
BASAL | 174 140 85 210 E TREE AVG 68 30 61 43 38 27 53 ACRE AVG 58 18 22 48 16 8 171 AREA/A | 210 233 92 228 S - CF HIGH 74 34 71 51 60 34 58 HIGH 69 29 33 64 23 13 192 | 1 | 99 # OF PLOT: 5 83 # OF PLOT | 25
S REQ.
10
25
S REQ.
10 | INF. POP. INF. POP. INF. POP. | | SH R PONE TOTA CL SD: DOUG CON SH R PONE TOTA CL SD: DOUG CON SH R PONE TOTA | FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L GFIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L GFIR-T FIR-T DEROS-1 AL FIR-T DEROS-1 AL | Γ | 55.3 70.7 8.3 56.9 COEFF VAR.% 38.8 34.9 36.2 48.2 64.2 29.2 49.8 COEFF VAR.% 65.3 214.7 175.6 120.1 153.9 200.4 43.8 COEFF VAR.% | 20.8
66.2
7.8
8.8
9.4
15.5
16.1
18.2
60.1
27.4
7.7
S.E.%
18.1
59.5
48.6
33.3
42.6
55.5
12.1 | - | 138
47
78
192
SAMPL
LOW
62
25
51
35
15
19
49
TREES/
LOW
48
7
11
32
9
4
150
BASAL
LOW | 174 140 85 210 E TREE AVG 68 30 61 43 38 27 53 ACRE AVG 58 18 22 48 16 8 171 AREA/A | 210 233 92 228 S - CF HIGH 74 34 71 51 60 34 58 HIGH 69 29 33 64 23 13 192 ACRE HIGH | 1 | 99 # OF PLOT: 5 | 25
S REQ.
10 | INF. POP. INF. POP. INF. POP. 1 | | SH R PONE TOTA CL SD: DOUG CON SH R PONE TOTA CL SD: DOUG CON CON SH R PONE TOTA CL SD: DOUG CON CON SH R PONE TOTA CL SD: DOUG CON CON SH R PONE TOTA | FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L FIR-T FIR-T DEROS- AL 68.1 1.0 G FIR-L G FIR-T FIR-T DEROS- AL 68.1 1.0 G FIR-L FIR-T OBEROS- AL 68.1 1.0 G FIR-T OBEROS- AL | т | 55.3 70.7 8.3 56.9 COEFF VAR.% 38.8 34.9 36.2 48.2 64.2 29.2 49.8 COEFF VAR.% 65.3 214.7 175.6 120.1 153.9 200.4 43.8 COEFF VAR.% 67.7 | 20.8
66.2
7.8
8.8
9.4
15.5
16.1
18.2
60.1
27.4
7.7
S.E.%
18.1
59.5
48.6
33.3
42.6
55.5
12.1 | - | 138
47
78
192
SAMPL
LOW
62
25
51
35
15
19
49
TREES/
LOW
48
7
11
32
9
4
150
BASAL
LOW | 174 140 85 210 E TREE AVG 68 30 61 43 38 27 53 ACRE AVG 58 18 22 48 16 8 171 AREA/A AVG 103 | 210 233 92 228 S - CF HIGH 74 34 71 51 60 34 58 HIGH 69 29 33 64 23 13 192 ACRE HIGH 122 | 1 | 99 # OF PLOT: 5 83 # OF PLOT | 25
S REQ.
10
25
S REQ.
10 | INF. POP. INF. POP. INF. POP. | | SH R PONE TOTA CL SD: DOUG CON SH R PONE TOTA CL SD: DOUG CON CON SH R PONE TOTA CL SD: DOUG CON CON SH R PONE TOTA CL SD: DOUG CON CON SH R PONE TOTA | FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L FIR-T FIR-T DEROS-3 AL 68.1 1.0 G FIR-L FIR-T FIR-L FIR-T FIR-L FIR-T OBEROS-3 AL 68.1 1.0 G FIR-L G FIR-T OBEROS-3 AL 68.1 1.0 G FIR-T OBEROS-3 AL 68.1 1.0 G FIR-T OBEROS-3 AL | т | 55.3 70.7 8.3 56.9 COEFF VAR.% 38.8 34.9 36.2 48.2 64.2 29.2 49.8 COEFF VAR.% 65.3 214.7 175.6 120.1 153.9 200.4 43.8 COEFF VAR.% 67.7 218.8 | 20.8
66.2
7.8
8.8
9.4
15.5
16.1
18.2
60.1
27.4
7.7
S.E.%
18.1
59.5
48.6
33.3
42.6
55.5
12.1 | - | 138
47
78
192
SAMPL
LOW
62
25
51
35
15
19
49
TREES/
LOW
48
7
11
32
9
4
150
BASAL
LOW
84
7 | 174 140 85 210 E TREE AVG 68 30 61 43 38 27 53 ACRE AVG 58 18 22 48 16 8 171 AREA/A AVG 103 17 | 210 233 92 228 S - CF HIGH 74 34 71 51 60 34 58 HIGH 69 29 33 64 23 13 192 ACRE HIGH 122 28 | 1 | 99 # OF PLOT: 5 83 # OF PLOT | 25
S REQ.
10
25
S REQ.
10 | INF. POP. INF. POP. INF. POP. | | SH R PONE TOTA CL SD: DOUG CON SH R PONE TOTA CL SD: DOUG CON CON SH R PONE TOTA CL SD: DOUG CON | FIR-T FIR-T DEROS-1 AL 68.1 1.0 G FIR-L FIR-T FIR-T DEROS- AL 68.1 1.0 G FIR-L G FIR-T FIR-T DEROS- AL 68.1 1.0 G FIR-L FIR-T OBEROS- AL 68.1 1.0 G FIR-T OBEROS- AL | т | 55.3 70.7 8.3 56.9 COEFF VAR.% 38.8 34.9 36.2 48.2 64.2 29.2 49.8 COEFF VAR.% 65.3 214.7 175.6 120.1 153.9 200.4 43.8 COEFF VAR.% 67.7 | 20.8
66.2
7.8
8.8
9.4
15.5
16.1
18.2
60.1
27.4
7.7
S.E.%
18.1
59.5
48.6
33.3
42.6
55.5
12.1 | | 138
47
78
192
SAMPL
LOW
62
25
51
35
15
19
49
TREES/
LOW
48
7
11
32
9
4
150
BASAL
LOW | 174 140 85 210 E TREE AVG 68 30 61 43 38 27 53 ACRE AVG 58 18 22 48 16 8 171 AREA/A AVG 103 | 210 233 92 228 S - CF HIGH 74 34 71 51 60 34 58 HIGH 69 29 33 64 23 13 192 ACRE HIGH 122 | 1 | 99 # OF PLOT: 5 83 # OF PLOT | 25
S REQ.
10
25
S REQ.
10 | INF. POP. INF. POP. INF. POP | | TC PST | ГАТЅ | | | | PROJECT | | ISTICS
GE2 | | | PAGE
DATE | 2
3/30/2020 | |--------|----------|----|-------|-------|---------|----------|---------------|-------|-----------|--------------|-----------------------| | TWP | RGE | SC | TRACT | TY | PE | A | CRES | PLOTS | TREES | CuF | BdFt | | 348 | 04E | 26 | EDGE2 | 004 | 4 | | 21.90 | 14 | 8′ | 7 S | W | | CL | 68.1 | | COEFF | | BASA | AL AREA/ | ACRE | | # OF PL | OTS REQ. | INF. POP. | | SD: | 1.00 | | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | SH R | FIR-T | | 150.8 | 41.8 | 10 | 17 | 24 | | | | | | PON | DEROS-T | • | 198.7 | 55.0 | 4 | 9 | 13 | | | | | | тот | AL | | 39.8 | 11.0 | 219 | 246 | 273 | | 68 | 17 | 8 | | CL | 68.1 | | COEFF | | NET | BF/ACRE | | | # OF PLOT | S REQ. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOU | G FIR-L | - | 67.3 | 18.7 | 10,644 | 13,085 | 15,526 | | | | | | DOU | G FIR-T | | 222.4 | 61.6 | 725 | 1,888 | 3,052 | | | | | | CON | FIR-L | | 176.5 | 48.9 | 2,448 | 4,788 | 7,129 | | | | | | CON | FIR-T | | 116.4 | 32.3 | 4,732 | 6,984 | 9,237 | | | | | | SH R | FIR-T | | 151.9 | 42.1 | 1,104 | 1,906 | 2,708 | | | | | | PON | DEROS-1 | Γ | 199.3 | 55.2 | 307 | 686 | 1,065 | | | | | | тот | AL | | 41.5 | 11.5 | 25,962 | 29,338 | 32,714 | | 74 | 19 | 8 | | CL | 68.1 | | COEFF | | NET | CUFT FT/ | ACRE | | # OF PLOT | S REQ. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOU | JG FIR-L | | 67.7 | 18.7 | 2,733 | 3,363 | 3,994 | | | | | | DOU | JG FIR-T | | 218.6 | 60.6 | 194 | 492 | 790 | | | | | | CON | FIR-L | | 176.2 | 48.8 | 636 | 1,243 | 1,850 | | | | | | CON | FIR-T | | 116.7 | 32.3 | 1,177 | 1,739 | 2,301 | | | | | | SHR | R FIR-T | | 151.3 | 41.9 | 303 | 521 | 739 | | | | | | PON | DEROS- | Г | 199.1 | 55.1 | 94 | 210 | 327 | | | | | | тот | ſAL | | 40.4 | 11.2 | 6,723 | 7,569 | 8,416 | | 70 | 18 | 8 | | TC | PSPCSTGR | | Species, S | ort G | rade - Board | l Foo | ot Vo | lume | es (P | roject |) | | | | | | | | |----------|--------------------|------------------|--------------------------------|----------------|-------------------|-------|-------------|----------------------------|-------|-------------------|----------------------|-----------------|---------|----------------|----------------------|--------------------|----------------------|-----------------------| | T34 | 4S R04E S26 | Ту0044 | 21.90 | | Project:
Acres | ED | GE2
21.9 | 0 | | | | | | | Page
Date
Time | 3/. | 1
31/20
59:50 | | | Spp | S So Gr
T rt ad | %
Net
BdFt | Bd. Ft. per Acre
Def% Gross | Net | Total
Net MBF | L | og Sca | Net Bo
le Dia.
12-16 | | oot Volu
12-20 | me
Log L
21-30 | | 36-99 | | Avera
Dia
In | ige Lo
Bd
Ft | | Logs
Per
/Acre | | | L DO3M
L DO4M | 74
26 | 9,791
3,294 | 9,791
3,294 | 214
72 | 60 | 37
29 | 56
11 | 6 | 14 | 40 | 100
15 | 31 | 34
29 | 11 6 | | 1.21
0.46 | 58.4
73.3 | | DF | Totals T DO3M | 45
75 | 13,085
1,418 | 13,085 | 287
31 | 15 | 35
100 | 45 | 5 | 25 | 10 | 79
100
42 | 20 | 31
34
25 | 8 5 | 78 | 0.82
0.61
0.26 | 131.7
18.1
18.1 | | | T DO4M Totals | 25
6 | 1,888 | 1,888 | 10 41 | 25 | 75 | | | 6 | 3 | 86 | 5 | 30 | 6 | | 0.46 | 36.2 | | | T DO3M
T DO4M | 79
21 | 5,544
1,440 | 5,544
1,440 | 121
32 | 87 | 90
13 | | 10 | 10
33 | 42 | 90
12 | 13 | 33
23 | 10
5 | | 0.80
0.32 | 51.0
52.9 | | WF | Totals L DO3M | 24
75 | 6,984
3,637 | 6,984
3,637 | 153 | 18 | 74
26 | 74 | 8 | 15 | 9
76 | 74
100 | 3
24 | 28
34
27 | 7
11
6 | 166 | 0.60
1.21
0.46 | 103.8
22.0
27.5
 | | L DO4M Totals | 25
16 | 1,151
4,788 | 1,151
4,788 | 105 | 14 | 30 | 56 | | | 18 | 76 | 6 | 30 | | | 0.84 | 49.5 | | RF
RF | T DO3M
T DO4M | 82
18 | 1,579
327 | 1,579
327 | 35
7 | 100 | 41 | 59 | | 33 | | 100 | 67 | 34
21 | 9
5 | 97
20 | 0.71
0.36 | 16.4
16.4 | | RF | Totals | 6 | 1,906 | 1,906 | 42 | 17 | 34 | 49 | | 6 | | 83 | 11 | 28 | | | 0.58 | 32.7 | | PP
PP | T DO3M
T DO4M | 76
24 | 523
163 | 523
163 | 11 4 | 100 | 100 | | -wn | 57 | 43 | 100 | | 34
19 | 5 | | 0.22 | 8.1
8.1
16.3 | | PP | Totals | 2 | 29 338 | 29,338 | 643 | 24 | | 32 | 4 | 6 | 10 | 76
78 | 6 | 26 | 8 | | 0.49 | 370.2 | | TC P | LOC | SSTVB | | | | | | | Log | Stock | Table | - MB | F | | | | | | | | | |------|-----|---------|-------------------|------|------------|-------|-----|------|---------------|-------|--------------|--------|-------|-----|---------|-------|---------|--------|----------------------|-------|------------------------| | T34S | RO | 94E S26 | б Ту ^і | 0044 | MIP TANK | 21.90 | | 4.44 | Proje
Acre | | EDG | | .90 | | | .112 | 11570 | | Page
Date
Time | | 1
1/2020
59:49PM | | | s | So G | r I | _0g | Gross | De | f [| Net | % | | Ŋ | et Vol | ume b | y S | Scaling | Diam | eter in | Inches | | | | | | | rt de | | | MBF | % | | 1BF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 2 | 24-29 | 30-39 40+ | | DF | L | DO : | 3M | 34 | 2 | 4 | | 214 | 74.8 | | | 10 | 10 | | 61 | 66 | 41 | 27 | | | | | DF | L | DO 4 | 1M | 18 | - 11-11-11 | 3 | | 3 | 1.1 | | 3 | | | | | | | | | | | | DF | L | DO 4 | 4M | 20 | | 7 | | 7 | 2.5 | | | | | | 4 | 3 | | | | | | | DF | L | DO 4 | 4M | 21 | | 2 | | 2 | .6 | | 2 | | | ١ | | | | | Ì | | | | DF | L | DO 4 | 4M | 22 | : | 20 | | 20 | 6.9 | | 3 | | | | 17 | | | | | | | | DF | L | DO 4 | 4M | 23 | | 1 | | 1 | .4 | | i | | | ١ | | | | | | | | | DF | L | DO - | 4M | 24 | | 5 | | 5 | 1.7 | | | | | | | 5 | | | | | | | DF | L | DO · | 4M | 26 | | 1 | | 1 | .4 | | 1 | | | | | | | | | | | | DF | L | DO - | 4M | 31 | | 6 | | 6 | 2.2 | | 6 | | | ļ | | | | | | | | | DF | L | DO | 4M | 33 | | 2 | | 2 | .7 | | 2 | | | İ | | | | | | | | | DF | L | DO | 4M | 34 | ļ | 3 | | 3 | .9 | | 3 | | | | | : | | | | | | | DF | L | DO | 4M | 38 | | 3 | | 3 | 1.1 | | 3 | | | | | | | | | | | | DF | L | | | 39 | | 7 | | 7 | 2.4 | | 7 | | | | | | | | | | | | DF | L | | 4M | 40 | | 4 | | 4 | 1.4 | | 4 | | | | | | | | | | | | DF | L | | | | | 8 | | 8 | 3.0 | | 8 | | | | | | | | | | | | DF | | T | otals | | 2 | 87 | | 287 | 44.6 | | 43 | 10 | 10 | 0 | 82 | 75 | 41 | 27 | | | | | DF | Т | DO | 3M | 34 | | 31 | | 31 | 75.1 | | | 10 | 10 | 6 | 6 | | | | | | | | DF | Т | DO | 4M | 13 | | 1 | | 1 | 2.3 | | 1 | | | | | | | | 1 | | | | DF | Т | DO | 4M | 20 | | 2 | | 2 | 3.9 | ļ | 2 | | | | | | | | | | | | DF | Т | DO | 4M | 28 | | 1 | | 1 | 3.3 | | 1 | | | | 1 | | | | | | | | DF | Т | | 4M | | 1 | 2 | | 2 | 4.9 | | 2 | | | | | | | | | | | | DF | | DO | | | 1 | 2 | | 2 | 5.7 | | 2 | | | | | | | | | | | | DF | | DO | | | 1 | 2 | | 2 | 4.9 | | 2 | | | | | | | | | | | | DF | | Т | otals | | | 41 | | 41 | 6.4 | | 10 | 10 |) 1 | 6 | 6 | | | | | | | | WF | Т | DO | 3M | 17 | | 12 | | 12 | 8.1 | | | | | | | | | 12 | | | | | WF | T | DO | 3M | 34 | 1 | .09 | | 109 | 71.2 | | | 15 | 4 | 0 | 55 | | | | | | | | WF | Т | DO | 4M | 14 | | 1 | | 1 | .9 | | 1 | | | | | | | | | | | | WF | T | DO | 4M | 18 | 3 | 5 | | 5 | 3.3 | | 5 | | | | | | | | 1 | | | | WF | T | DO | 4M | 20 | | 4 | | 4 | 2.7 | 1 | | | | 4 | | | | | | | | | WF | Т | DO | 4M | 21 | ı | 2 | | 2 | 1.4 | | 2 | | | | | | | | | | | | WF | Т | DO | 4M | 24 | 4 | 11 | | 11 | 7.2 | | 11 | | | | | | | | | | | | WF | T | DO | 4M | 35 | 5 | 4 | | 4 | 2.4 | | 4 | | | | | | | | | | | | WF | T | DO | 4M | 3 | 7 | 4 | | 4 | 2.7 | ' | 4 | | | | | | | | | | | | WF | | 7 | otals | S | | 153 | | 153 | 23.8 | 3 | 27 | 1 | 5 4 | 14 | 55 | | | 12 | | | | | WF | L | DO | 3M | 34 | 4 | 80 | | 80 | 76.0 |) | | | 2 | 21 | | 42 | 1 | 7 | | | | | ГС Р | LOC | GSTVB | - | *** | | | Log S | tock Table | - MBF | | | | | | | | | |----------|------|-----------|-------------|------|----------|------------|----------------|------------|------------|--------------|----------|-----|--------------------|----------------|----------------------|-------|------------------------| | T345 | S RO |)4E S26 ′ | Гу0044 | ļ | 21.90 | | Proje
Acres | | E2
21.9 | 00 | | | | | Page
Date
Time | | 2
1/2020
59:49PM | | a | S | So Gr | Log
Len | | Def
% | Net
MBF | %
Spc | 2-3 4-5 | | ne by
8-9 | Scaling | | eter in 1
14-15 | nches
16-19 | 20-23 | 24-29 | 30-39 40+ | | Spp | T | rt de | Len | WIBF | 70 | MIDI | Эрс | 2-3 13 | | | | | | | | | | | WF | L | DO 4N | л 22 | | 10 | 10 | 9.9 | | | | 10 | | | | | | | | WF | L | DO 41 | л 23 | | 2 | 2 | 2.0 | 2 | | | | | | | | | | | WF | L | DO 41 | л 24 | | 4 | 4 | 3.5 | 4 | | | | | | | | | | | WF | L | | | ; | 3 | 3 | 3.0 | 3 | | | | | | | | | i | | WF | L | | | 5 | 3 | 3 | 2.6 | 3 | | | | | | | | | į | | WF | L | | | 1 | 3 | 3 | 3.2 | 3 | | | | | | | | | | | WF | | Tota | als | 1 | 05 | 105 | 16.3 | 15 | | 21 | 10 | 42 | 17 | | | | | | RF | Т | DO 3 | M 34 | 1 | 35 | 35 | 82.9 | | 14 | | | 20 | | | | | | | RF | Т | DO 4 | M 13 | 3 | 2 | 2 | 5.7 | 2 | | | | | 1 | | | | | | RF | T | DO 4 | M 3 | 8 | 5 | 5 | 11.4 | 5 | | | | | | | | | | | RF | | Tot | als | | 42 | 42 | 6.5 | 7 | 14 | | | 20 | | | | | | | PP | T | DO 3 | M 3 | 4 | 11 | 11 | 76.3 | | 6 | 5 | <u> </u> | | | | | | | | PP | T | DO 4 | M 1 | 6 | 2 | 2 | 13.6 | 2 | | | | | | | | | | | PP | T | DO 4 | M 2 | 2 | 2 | 2 | 10.2 | 2 | | | | | | | | | | | PP | | To | als | | 15 | 15 | 2.3 | 4 | 6 | 5 | | | | | - | | | | Total | | All Spe | ecies | Ţ , | 543 | 643 | 100.0 | 107 | 54 | 95 | 152 | 137 | 58 | 39 | | | | | TC PLO | OTTREELIS | ST | | | | | | t Tree
roject | List - Vo | | | | | Page
Date | 1
3/30/20 |)20 | |------------|--------------|----------|------------|--------------|--------|-----|----------------|------------------|-----------|---------------|------------------|----------------|-----------------|--------------|---------------------|-----| | TWP
34S | RGE
04E | SC
26 | TRA
EDG | | | | YPE
)44 | | AC | RES
21.90 | PLOTS
14 | TR | EES
42 | | ED DATE
1/1/2019 | | | Plot | Tree | | | | Tre | ees | | 16' | Tot | BA | Trees | Logs | Net | Net | Total | | | No. | No. | Age | SI | Spp St | Me. | Ct. | DBH | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | | | | | | | 4 | 17.0 | 85 | 90 | 160.0 | 90.83 | 204.8 | 5,232 | 20,355 | 82 | 32 | | 4401 | 0001
0002 | 65
65 | | DF L
WF T | | 1 | | 86 | 81 | 40.0 | 32.07 | 69.2 | 1,159 | 4,656 | 18 | 7 | | | 0002 | | | W1. 1 | | | | | | | 122.00 | 274.0 | 6,391 | 25,011 | 100 | 39 | | 4401 | | | 100 | | | 5 | | 85
80 | 88
75 | 200.0
40.0 | 122.90
60.61 | 121.2 | 1,013 | 3,637 | 16 | 6 | | 4402 | 0001 | 65 | | DF T | 1 | | 11.0
17.0 | 83 | 93 | 40.0 | 25.38 | 50.8 | 1,359 | 4,822 | 21 | 8 | | | 0002 | 65 | | DF L | 1
1 | | 17.0 | 86 | 90 | 40.0 | 25.38 | 50.8 | 1,261 | 4,822 | 20 | 8 | | | 0003 | 65 | | WF T
WF T | 1 | | 18.0 | 83 | 88 | 40.0 | 22.64 | 45.3 | 1,249 | 4,301 | 20 | 7 | | | 0004 | 65 | | DF L | 1 | | 21.0 | 83 | 96 | 40.0 | 16.63 | 49.9 | 1,334 | 5,155 | . 21 | 8 | | | 0005 | 65
65 | | DF T | 1 | | 15.0 | 83 | 93 | 40.0 | 32.59 | 65.2 | 1,264 | 4,563 | 20 | 7 | | | 0006
0007 | 65 | | DF L | 1 | | 19.0 | 84 | 93 | 40.0 | 20.32 | 40.6 | 1,335 | 4,876 | 21 | 8 | | | 0007 | 65 | | DF L | 1 | | 17.0 | 83 | 92 | 40.0 | 25.38 | 50.8 | 1,349 | 4,822 | 21 | 8 | | | 0008 | | | DIL | | | | | | 220.0 | 220.02 | 474.5 | 10 164 | 36,996 | 159 | 58 | | 4402 | | | 100 | | 8 | | 16.0 | 83 | 88 | 320.0 | 228.92
131.75 | 474.5
297.0 | 10,164
7,459 | | 117 | 45 | | 4403 | 0001 | 65 | 100 | | | | 18.0 | | 85 | 240.0 | 38.15 | 76.3 | 1,215 | 4,447 | 19 | 7 | | | 0002 | 65 | 100 | RF T | | | 1 13.0 | 84 | 77 | 40.0 | 36.13 | 70.5 | | | | | | 4403 | | | 100 | | | • | 7 17.4 | 84 | 83 | 280.0 | 169.91 | 373.3 | 8,674 | | 136 | 52 | | 4404 | 0001 | 65 | 100 | DF L | 1 | | 21.0 | 81 | 81 | 40.0 | | 33.3 | 1,231 | 4,158 | 19 | 7 | | | 0002 | 65 | 100 | DF T | 1 | l | 16.0 | 82 | 81 | 40.0 | | 57.3 | 1,219 | | 19 | 7 | | | 0003 | 65 | 100 | DF L | 1 | i | 23.0 | 83 | 94 | 40.0 | | 41.6 | 1,378 | | 22 | 9 | | | 0004 | 65 | 100 | DF L | 1 | l | 21.0 | 83 | 92 | 40.0 | | 49.9 | 1,304 | | 20 | 8 | | | 0005 | 65 | 100 | DF T | 1 | l | 12.0 | 86 | 78 | 40.0 | | 101.9 | 1,008 | | 16 | 6 | | | 0006 | 65 | 100 | WF T | | l | 11.0 | 86 | 80 | 40.0 | | 121.2 | 1,058 | | 17 | 8 | | | 0007 | 65 | 100 | RF T | | i | 17.0 | 89 | 90 | 40.0 | | | 1,386 | | 22 | 8 | | | 8000 | 65 | 100 | DF T | | 1 | 14.0 | 88 | | 40.0 | | | | | 19 | 7 | | | 0009 | 65 | 100 | DF L | | 1 | 19.0 | 88 | | 40.0 | | | | | 19
22 | 10 | | | 0010 | 65 | 100 | DF L | | 1 | 22.0 | | | 40.0 | | | • | | 16 | 6 | | | 0011 | 65 | 100 | WFT | | I | 14.0 | 83 | 80 | 40.0 | 37.42 | 74.8 | 1,026 | 3,742 | 10 | 0 | | 4404 | | | 100 |) | 11 | | 15.8 | 85 | 84 | 440.0 | 322.99 | 691.6 | | | 210 | 83 | | 4405 | | 65 | | DF L | | | 3 17.0 | | 90 | 120.0 | 68.12 | 153.6 | 3,924 | 15,266 | 61 | 24 | | | 0002 | 65 | | RFT | | | 1 13.0 |) 84 | 77 | 40.0 | 38.15 | 76.3 | 1,21 | 4,447 | 19 | 7 | | | | | 100 | | | | 1 164 | 2 95 | 85 | 160.0 |) 106.28 | 229.9 | 5,139 | 19,713 | 80 | 31 | | 4405 | | 65 | 100 | RFT | | 1 | 4 16.0
12.0 | | | 40.0 | | | | | 16 | 6 | | 4406 | | 65
65 | | DFL | | 1 | 20.0 | | | 40.0 | | | | | 22 | 10 | | | 0002 | 65
65 | | DFT DFT | | 1 | 13.0 | | | 40.0 | | | | | 18 | 7 | | 1 | 0003
0004 | 65 | | DF L | | 1 | 13. | | | 40.0 | | | | | 18 | 7 | | | 0004 | 65 | | DFL | | 1 | 16. | | | 40.0 | | | | 4 5,443 | 21 | 9 | | | 0003 | - 03 | | | | | | | | 200 | 0 1047 | 1 207' | 7 6,15 | 2 23,921 | 96 | 37 | | 4406 | | | 100 | | 5 | | 14. | | |
200.0
80.0 | | | | | | 15 | | 4407 | | 65 | | 0 WFT | | | 2 15. | | | 80.0 | | | | | 38 | 14 | | | 0002 | 65 | | O RFT | | | 2 13. | | | 120.0 | | | | | | 24 | | | 0003 | 65 | 10 | 0 DF L | | | 3 17. | 0 85 | 3 90 | 120. | 0 00.1. | | | | | | | 4407 | 7 | | 10 | 0 | | | 7 15. | | | 280. | | | | | | 52 | | 4408 | | 65 | 10 | 0 DF L | | 1 | 18. | 0 83 | | 40. | | | | | | 6 | | | 0002 | 65 | 5 10 | 0 DF L | | i | 26. | | | 40. | | | | | | | | | 0003 | 65 | 5 10 | 0 WFL | | 1 | 16. | .0 8: | 3 75 | 40. | 0 28.6 | 5 57. | 3 1,00 | 3,438 | 16 | 5 | | 140 | 0 | | 10 | 0 | 3 | | 18. | .8 8 | 3 80 | 120. | 0 62.1 | 3 135. | 1 3,49 | 7 13,045 | 55 | 20 | | 440 | | 65 | | 0
0 WFT | | | 4 15 | | | 160. | | | | 7 18,625 | | 29 | | 440 | 0001 | | | 0 DFL | | | 5 17 | | 5 90 | 200. | | | 0 6,54 | 0 25,443 | 102 | 40 | | | 0002 | | | | | | | | | 262 | 0 241.0 | 2 522 | 0 11 17 | 77 44,068 | 175 | 69 | | 440 | 9 | | 10 | 0 | | | 9 16 | .5 8 | 6 85 | 360. | .0 241.8 | 3 532. | 7 11,L | 7 44,000 | , 1/3 | | | TC PLO | OTTREELIS | ST | | | | | | Tree
oject | List - V
EDG | | | | | Page
Date | 2
3/30/20 | 020 | |--------------|--------------|----------|------------|----------|---------------|------------|------|---------------|------------------------|-------|-------------|---------|-----------|--------------|--------------------|-----| | TWP
34S | RGE
04E | SC
26 | TRA
EDG | | | TYF
004 | | | AC | 21.90 | PLOTS
14 | TR | EES
42 | | D DATE
1/1/2019 | | | DI - A | Tree | | | | Tree | s | | 16' | Tot | BA | Trees | Logs | Net | Net | Total | | | Plot
No. | No. | Age | SI | Spp St | Me. | | ВН | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | | | 65 | | PP T | 1 | | 15.0 | 81 | 78 | 40.0 | 32.59 | 65.2 | 1,047 | 2,934 | 16 | ; | | 4410 | 0001
0002 | 65 | | DF L | 1 | | 15.0 | 83 | 98 | 40.0 | 32.59 | 65.2 | 1,427 | 5,541 | 22 | | | | 0002 | 65 | | WF T | 1 | | 17.0 | 83 | 98 | 40.0 | 25.38 | 76.1 | 1,350 | 5,329 | 21 | | | | 0003 | 65 | | WF L | 1 | | 20.0 | 83 | 100 | 40.0 | 18.33 | 55.0 | 1,413 | 5,867 | 22 | | | | 0004 | 65 | 100 | | 1 | | 14.0 | 89 | 78 | 40.0 | 37.42 | 74.8 | 1,127 | 4,864 | 18 | | | | 0005 | 65 | | WF L | 1 | | 22.0 | 87 | 97 | 40.0 | 15.15 | 45.5 | 1,395 | 6,364 | 22 | 1 | | | 0000 | | 100 | | 6 | | 16.5 | 84 | 89 | 240.0 | 161.47 | 381.8 | 7,759 | 30,899 | 121 | | | 4410 | 0001 | 65 | | PP T | 0 | 1 | 13.0 | 82 | 76 | 40.0 | 38.00 | 76.0 | 982 | 3,203 | 15 | | | 4411 | 0001 | 65 | | WF L | | 2 | 18.0 | 84 | 85 | 80.0 | 43.92 | 99.0 | 2,486 | 9,577 | 39 | • | | | 0002 | 65 | | GF L | | 1 | 10.0 | | | | | | | | | | | 4411 | **** | | 100 | | | 4 | 16.4 | 83 | 81 | 120.0 | 81.91 | 175.0 | | 12,779 | 54 | | | 4411
4412 | 0001 | 65 | | WF L | 1 | <u> </u> | 18.0 | 88 | 88 | 40.0 | 22.64 | 45.3 | 1,295 | 4,753 | 20 | | | 4412 | 0001 | 65 | | WF T | 1 | | 15.0 | 89 | 62 | 40.0 | 32.59 | 65.2 | 969 | 3,585 | 15 | | | | 0002 | 65 | | WF L | 1 | | 16.0 | 80 | 78 | 40.0 | 28.65 | 57.3 | 1,102 | 3,724 | 17 | | | | 0003 | 65 | | WFL | 1 | | 20.0 | 86 | 85 | 40.0 | 18.33 | 36.7 | 1,250 | 4,584 | 20 | | | 4410 | | | 100 | | 4 | | 16.9 | 86 | 76 | 160.0 | 102.21 | 204.4 | 4,616 | 16,647 | 72 | | | 4412
4413 | | 65 | | WFT | _ | 6 | 15.0 | 86 | 81 | 240.0 | 192.44 | 415.3 | 6,955 | 27,937 | 109 | | | 4413 | 0001 | 65 | | DF L | | 3 | 17.0 | 85 | 90 | 120.0 | 68.12 | 153.6 | 3,924 | 15,266 | 61 | | | 4412 | | | 100 | 1 | | 9 | 15.9 | 86 | 83 | 360.0 | 260.56 | 568.9 | 10,879 | | 170 | | | 4413
4414 | | 65 | | PPT | 1 | | 13.0 | 82 | 75 | 40.0 |) 43.40 | 86.8 | 917 | • | 14 | | | 4414 | 0001 | 65 | | DF L | 1 | | 20.0 | 88 | 91 | 40.0 | 18.33 | 36.7 | 1,299 | • | 20 | | | | 0002 | 65 | |) WFT | 1 | | 22.0 | 89 | 90 | 40.0 |) 15.15 | 45.5 | 1,234 | | 19 | | | | 0003 | 65 | | DFL | 1 | | 24.0 | 86 | 100 | 40. | 0 12.73 | 38.2 | 1,413 | 6,239 | 22 | | | | 0004 | 65 | | DF L | 1 | | 12.0 | 84 | 75 | 40. | 0 50.93 | 3 101.9 | 1,096 | 4,074 | 17 | | | 4417 | | | 100 | <u> </u> | 5 | | 16.2 | 85 | 81 | 200. | 0 140.54 | 309.0 | 5,958 | 3 24,677 | 93 | | | 4414
TYP | | | 100 | | 42 | 45 | | | 84 | 245. | 7 171.07 | 7 370. | 7,569 | 9 29,338 | 1,658 | (| | TC PS | TATS | | | 200 | | DJECT S
ROJECT | TATIS
EDG | | | | PAGE
DATE | 1
3/31/2020 | |-----------|---------------------------------|-------|---------------|---------------|------|-------------------|--------------|--------------------|--------|------------------|--------------|----------------| | CWP | RGE | SC | TRACT | Т | YPE | | ACI | RES | PLOTS | TREES | CuFt | BdFt | | 34S | 04E | 28 | EDGE2 | C | 049 | | | 29.00 | 14 | 61 | S | W | | | | | | | | TREES | E | ESTIMATED
TOTAL | _ | ERCENT
SAMPLE | | | | | | | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOT | AL | - | 14 | 61 | | 4.4 | | | | | | | | | COUNT | | 7 | 30 | | 4.3 | | 2,120 | | 1.4 | | | | COL | NKS | | 7 | 31 | | 4.4 | | | | | | | | | | | | | STA | AND SUMM | IARY | | , | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | | | | | _ | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | DOU | JG FIR-L | | 16 | 40.6 | 21.3 | 100 | 21.7 | 100.0 | 14,516 | 14,516 | 3,585 | | | DOU | JG FIR-T | | 8 | 21.3 | 19.8 | 104 | 10.3 | 45.7 | 6,744 | 6,744 | 1,651 | 1,651
172 | | PON | IDEROS-I | L | 1 | 3.2 | 18.0 | | 1.3 | 5.7 | 679 | 679 | 172
366 | | | PON | IDEROS- | Γ | 3 | 6.2 | 18.3 | 101 | 2.7 | 11.4 | 1,295 | 1,295 | 366
94 | | | CON | N FIR-L | | 1 | .9 | 24.0 | | 0.6 | 2.9 | 409 | 409 | 94
73 | | | INC | CED-L | | 1 | .8 | 25.0 | | 0.6 | 2.9 | 176 | 176 | | | | TO | ΓAL | | 30 | 73.1 | 20.6 | 101 | 37.2 | 168.6 | 23,819 | 23,819 | 5,940 | 5,940 | | CL | | | COEFF | S.E.% | A | SAMPL
LOW | E TREES | S - BF
HIGH | # | F OF TREES | S REQ.
10 | INF. POP. | | SD: | | | VAR.%
25.1 | 5.E.76
6.5 | | 349 | 373 | 397 | | | | | | DO | UG FIR-L
UG FIR-T
NDEROS- | | 28.2 | 10.6 | | 295 | 330 | 365 | | | | | | POI | NDEROS-
N FIR-L | | 7.4 | 5.1 | | 196 | 207 | 217 | | | | | | | CED-L
TAL | | 30.7 | 5.7 | | 317 | 337 | 356 | | 39 | 10 | 4 | | | | | COEFF | | | SAMPL | E TREE | S - CF | | # OF TREE: | S REQ. | INF. POP. | | | 68.1 | | VAR.% | S.E.% | | LOW | AVG | HIGH | | 5 | 10 | 15 | | SD: | | | 21.4 | 5.E.76 | | 87 | 92 | 97 | | - | | | | DO | UG FIR-L
UG FIR-T
NDEROS- | • | 24.3 | 9.2 | | 73 | 81 | 88 | | | | | | PO:
CO | NDEROS-
N FIR-L | | 3.2 | 2.2 | | 57 | 59 | 60 | | | | | | | C CED-L
TAL | | 24.9 | 4.6 | | 81 | 84 | 88 | | 26 | 6 | | | CL | 68.1 | | COEFF | | | TREES | ACRE | | | # OF PLOT | | INF. POP. | | SD | | | VAR.% | S.E.% | | LOW | AVG | HIGH | | 5 | 10 | 1 | | | UG FIR-L | , | 32.9 | 9.1 | | 37 | 41 | 44 | | | | | | | UG FIR-1 | | 104.7 | 29.0 | | 15 | 21 | 27 | | | | | | | NDEROS | | 254.2 | 70.4 | | 1 | 3 | 6 | | | | | | PO | NDEROS | -T | 288.9 | 80.0 | | 1 | 6 | 11 | | | | | | | N FIR-L | | 374.2 | 103.6 | | | 1 | 2 | | | | | | | C CED-L | | 374.2 | 103.6 | | | 1 | 2 | | 0.1 | 20 | | | TC | TAL | | 43.5 | 12.1 | | 64 | 73 | 82 | | 81 | 20 | | | CI | | | COEFF | | | | AREA/ | | | # OF PLOT
5 | S REQ.
10 | INF. POP. | | SE | | | VAR.% | | | LOW | AVG | HIGH | | <u> </u> | 10 | 1. | | i | OUG FIR-I | | 30.4 | 8.4 | | 92 | 100 | 108 | | | | | | | OUG FIR- | | 102.1 | 28.3 | | 33 | 46 | 59
10 | | | | | | | NDEROS | | 254.2 | 70.4 | | 2 | 6 | 10 | | | | | | | NDEROS | יוף ו | 288.9 | 80.0 | | 2 | 11 | 21 | | | | | | TC PST | TATS | | | | PROJECT
PROJECT | | ISTICS
GE2 | | | PAGE
DATE | 2
3/31/2020 | |--------|----------|----|-------|-------|--------------------|----------|---------------|-------|------------|--------------|-----------------------| | TWP | RGE | SC | TRACT | TY | /PE | AC | CRES | PLOTS | TREES | CuFt | BdFt | | 34S | 04E | 28 | EDGE2 | 00 | 49 | | 29.00 | 14 | 61 | S | W | | CL | 68.1 | | COEFF | | RASA | L AREA/A | ACRE | | # OF PLO | OTS REQ. | INF. POP. | | SD: | 1.00 | | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | CON | FIR-L | | 374.2 | 103.6 | | 3 | 6 | | | | | | INC (| CED-L | | 374.2 | 103.6 | | 3 | 6 | | | | _ | | TOT | AL | | 37.4 | 10.4 | 151 | 169 | 186 | | 60 | 15 | 7 | | CL | 68.1 | | COEFF | | NET | BF/ACRE | | | # OF PLOTS | S REQ. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | | G FIR-L | | 32.3 | 8.9 | 13,218 | 14,516 | 15,814 | | | | | | | G FIR-T | | 104.7 | 29.0 | 4,787 | 6,744 | 8,701 | | | | | | | DEROS-I | Ĺ | 254.2 | 70.4 | 201 | 679 | 1,157 | | | | | | PON | DEROS- | Γ | 288.9 | 80.0 | 259 | 1,295 | 2,331 | | | | | | CON | FIR-L | | 374.2 | 103.6 | | 409 | 833 | | | | | | INC | CED-L | | 374.2 | 103.6 | | 176 | 358 | | | | _ | | TOT | AL | | 40.5 | 11.2 | 21,148 | 23,819 | 26,490 | | 70 | 18 | 8 | | CL | 68.1 | | COEFF | | NET | CUFT FT/ | ACRE | | # OF PLOT | S REQ. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOU | JG FIR-L | | 32.2 | 8.9 | 3,265 | 3,585 | 3,905 | | | | | | | JG FIR-T | | 103.6 | 28.7 | 1,177 | 1,651 | 2,125 | | | | | | | DEROS- | L | 254.2 | 70.4 | 51 | 172 | 293 | | | | | | PON | DEROS- | Т | 288.9 | 80.0 | 73 | 366 | 658 | | | | | | CON | I FIR-L | | 374.2 | 103.6 | | 94 | 191 | | | | | | INC | CED-L | | 374.2 | 103.6 | | 73 | 148 | | | | - | | тот | ΓAL | | 39.5 | 10.9 | 5,290 | 5,940 | 6,590 | | 67 | 17 | 7 | | TC P | PSPCSTGR | | Species, S | Sort G | rade - B | oard | l Foo | ot Vo | lume | es (P | roject |) | | | | | | | | |------|--------------------|------------------|------------------|-----------------|------------------|------------|-------|-------------|----------------------------|-------|----------|----------------|---------|-------|----------|----------------------|--------------------|---------------------|----------------------| | T345 | S R04E S28 | Ту0049 | 29.00 | | Project
Acres | • | ED | GE2
29.0 | 0 | | | | | | | Page
Date
Time | 3/3 | 1
31/20
:19:3 | | |
Spp | S So Gr
T rt ad | %
Net
BdFt | Bd. Ft. per Acre | Net | Total
Net MBF | | L | og Sca | Net Bo
le Dia.
12-16 | | oot Volu | Log L
21-30 | | 36-99 | | Avera
Dia
In | age Lo
Bd
Ft | g
CF/
Lf | Logs
Per
/Acre | | PP ' | T DO3M | 72
28 | 937
358 | 937
358 | | 27
10 | 52 | 100
48 | | | 24 | 54 | 100 | 22 | 34
25 | 11
6 | | 1.24
0.38 | 6.2
10.6 | | | Totals | 5 | 1,295 | 1,295 | | 38 | 14 | 86 | | | 7 | 15 | 72 | 6 | 29
34 | 8 | | 0.76
1.12 | 16.8 | | | L DO3M
L DO4M | 71
29 | 485
194 | 485
194 | | 14
6 | 33 | 100
67 | 107 | | 67 | 33 | 100 | | 21 | 7 | | 0.37 | 6.5 | | PP | Totals | 3 | 679 | 679 | | 20 | 10 | 90 | | | 19 | 10 | 71 | | 25 | 8 | 70 | 0.71 | 9.7 | | | L DO3M
L DO4M | 75
25 | 10,964
3,552 | 10,964
3,552 | | 318
103 | 31 | 13
55 | 81
14 | 6 | 5 | 2
89 | 98
2 | 4 | 34
26 | 13
7 | 218
54 | 1.58
0.55 | 50.2
65.4 | | DF | Totals | 61 | 14,516 | 14,516 | | 421 | 7 | 23 | 65 | 5 | 1 | 23 | 75 | 1 | | 10 | | 1.07 | 115.6 | | | T DO3M
T DO4M | 79
21 | 5,393
1,351 | 5,393
1,351 | | 156
39 | 44 | 26
56 | 74 | | | 91 | 100 | 9 | 34
25 | 12
7 | 189
41 | 1.32
0.45 | 28.5
32.6 | | DF | Totals | 28 | 6,744 | 6,744 | | 196 | 9 | 32 | 59 | | | 18 | 80 | 2 | 29 | 9 | 111 | 0.92 | 61.0 | | | L DO3M
L DO4M | 75
25 | 309
100 | 309
100 | | 9 | 18 | 82 | 100 | | | 100 | 100 | | | 16
8 | | 2.14
0.71 | .9
1.8 | | WF | Totals | 2 | 409 | 409 | | 12 | 4 | 20 | 76 | | | 24 | 76 | | 26 | 11 | 150 | 1.34 | 2.7 | | IC | L DO4M | 100 | 176 | 176 | | 5 | 14 | | 86 | | | 100 | | W. | 30 | 9 | | 1.47 | | | IC | Totals | 1 | 176 | 176 | | 5 | 14 | | 86 | | | 100 | | | 30 | 9 | 105 | 1.47 | 1.7 | | Tota | ls | | 23,819 | 23,819 | | 691 | 8 | 31 | 58 | 3 | 2 | 21 | 75 | 1 | 29 | 9 | 115 | 0.99 | 207.5 | TC PLOGSTVB Log Stock Table - MBF Page 29.00 Project: EDGE2 T34S R04E S28 Ty0049 Date 3/31/2020 29.00 Acres 4:19:36PM Time Net Volume by Scaling Diameter in Inches Def % So Gr Log Net Gross 20-23 24-29 30-39 40+ 6-7 8-9 10-11 12-13 14-15 16-19 **MBF** 2-3 4-5 rt de Len **MBF** Spc Spp 27 72.4 27 27 DO 3M 34 PP 3 6.7 3 DO 4M 20 3 PP T 1 3.3 21 PP T DO 4M 3 6.7 3 PP T DO 4M 24 5.0 2 PP Т DO 4M 25 2 2 2 6.0 2 DO 4M 38 PP T 5 5 27 38 5.4 Totals 38 PP 14 14 14 71.4 PP L DO 3M 19.0 4 DO 4M 20 4 PP 2 2 9.5 2 DO 4M 21 PP 2 4 14 20 2.9 Totals PP 20 6 1.3 6 DF DO 3M 24 6 27 60 154 62 74.2 8 312 DF DO 3M 34 312 L 5 1.3 5 5 DO 4M 20 DF 5 5 1.1 DO 4M 21 DF 18 23 23 5.5 5 DO 4M 22 DF 8 9 2.1 DO 4M 23 9 DF 13 3.0 13 24 DF DO 4M 10 10 2.5 26 DF L DO 4M 21 21 5.1 DO 4M 27 21 DF L 11 2.5 11 28 11 DF DO 4M 2 .4 2 2 31 DF L DO 4M 5 1.1 DF DO 4M 40 5 L 154 62 13 85 75 421 60.9 31 Totals 421 DF 7 34 46 69 80.0 156 DF DO 3M 34 156 4 5 4.6 DO 4M 21 9 T DF 3 DO 4M 22 9 4.8 DF T 2 2 .9 23 DO 4M DF T 3.2 6 24 T DO 4M 6 DF 2.7 5 26 5 Т DO 4M DF 1.0 2 27 2 Т DO 4M DF 2 2 1.2 30 2 DF TDO 4M 1.7 3 39 3 DF Т DO 4M 69 28.3 17 17 45 46 196 Totals 196 DF | TC F | PLO | GSTVB | | <u></u> | | | Log | Stock | Table | - MI | BF | | | | | | | | | |-------|-----|----------|--------|---------|------|-----|---------------|-------|-------|--------|---------|--------|--------|---------|--------|----------------------|-------|-----------------------|-----| | T345 | S R | 04E S28 | Гу0049 |) 2 | 9.00 | | Proje
Acre | | EDO | | 9.00 | | | | | Page
Date
Time | | 2
1/2020
19:36P | | | | s | So Gr | Log | Gross | Def | Net | % | | | let Vo | lume by | Scalin | g Dian | eter in | Inches | т | | | | | Spp | T | rt de | Len | | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 | 40+ | | WF | L | DO 3N | Л 34 | 9 |) | 9 | 75.6 | | | | | | | | 9 | | | | | | WF | L | DO 4N | л 21 | 2 | 2 | 2 | 20.0 | | | | | 2 | | | | | | | | | WF | L | DO 4N | M 22 | 1 | I | 1 | 4.4 | | 1 | | | | | | | | | | | | WF | | Tota | ıls | 12 | 2 | 12 | 1.7 | | 1 | | | 2 | | | 9 | ļ | | | | | IC | L | DO 4N | M 29 | 2 | ļ | 4 | 85.7 | | | | | | 4 | | | | | | | | IC | L | DO 41 | M 30 | 1 | l | 1 | 14.3 | | 1 | | | | | | | | | | | | IC | | Tota | ıls | 4 | 5 | 5 | .7 | | 1 | | | | 4 | | | | | | | | Total | | All Spec | cies | 69 | 1 | 691 | 100.0 | | 57 | | 39 | 174 | 126 | 224 | 71 | | | | | | rc plo | OTTREELIS | ST | | | | | | t Tree
oject | List - V
EDG | olumes
E2 | | | _ | Page
Date | 1
3/31/20 |)20 | |------------|--------------|----------|------------|--------|-----|------------|--------------|-----------------|-----------------|---------------|----------------|---------------|----------------|-----------------|--------------------|----------| | TWP
34S | RGE
04E | SC
28 | TRA
EDG | | | TYI
004 | | | AC | CRES
29.00 | PLOTS
14 | TR | EES
30 | | D DATE
2/1/2019 | | | | | | | | | | | 16' | Tot | ВА | Trees | Logs | Net | Net | Total | | | Plot | Ттее | | ~* | 0 0 | Tre | | NDI I | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | No. | No. | Age | SI | Spp St | Me. | Ct. I | | | | | | 106.8 | 2,889 | 11,802 | 60 | 24 | | 1901 | 0001 | 65 | | DF T | | 2 | 19.0 | 85 | 104 | 80.0
80.0 | 37.29
32.46 | 92.5 | 2,868 | 11,613 | 59 | 24 | | | 0002 | 65 | | DF L | | 2 | 21.0 | 84
83 | 102
99 | 40.0 | 22.64 | 67.9 | 1,204 | 4,753 | 25 | 10 | | | 0003 | 65 | 100 | PP L | | 1 | 17.0 | 63 | 77 | | | | | | 144 | | | 4901 | | | 100 | | | 5 | 19.9 | 84 | 102 | 200.0 | 92.39 | 267.2 | 6,962 | 28,168 | 144
25 | 58 | | 4902 | 0001 | 65 | | PP T | 1 | | 19.0 | 82 | 92 | 40.0 | 20.32 | 40.6
50.8 | 1,215
1,369 | 3,860
4,822 | 28 | 10 | | | 0002 | 65 | | DF L | 1 | | 17.0 | 83 | 95 | 40.0 | 25.38
22.64 | 67.9 | 1,345 | 4,980 | 28 | 10 | | | 0003 | 65 | | PP T | l | | 18.0 | 82 | 110 | 40.0 | 22.64 | 67.9 | 1,278 | 4,753 | 26 | 10 | | | 0004 | 65 | | PP T | 1 | | 18.0 | 82 | 100
92 | 40.0
40.0 | 12.73 | 38.2 | 1,313 | 5,730 | 27 | 13 | | | 0005 | 65 | | WF L | 1 | | 24.0
21.0 | 86
86 | 92
92 | 40.0 | 16.63 | 49.9 | 1,312 | 5,488 | 27 | 1 | | | 0006 | 65 | 100 | DF L | 1 | | 21.0 | | | | | | | | 162 | 6 | | 4902 | | | 100 | | 6 | | 19.1 | 83 | 98 | 240.0 | 120.33 | 315.3 | 7,833 | 29,632 | 162
27 | - 0 | | 4903 | 0001 | 65 | | PP T | | 1 | 18.0 | 82 | 101 | 40.0 | 21.86
37.29 | 58.8
106.8 | 1,279
2,889 | 4,531
11,802 | 60 | 2 | | | 0002 | 65 | | DF T | | 2 | 19.0 | 85 | 104 | 80.0
120.0 | 48.69 | 138.7 | 4,302 | 17,419 | 89 | 3 | | | 0003 | 65 | 100 | DF L | | 3 | 21.0 | 84 | 102 | 120.0 | 46.09 | | | | | | | 4903 | | | 100 | | | 6 | 20.2 | 84 | 102 | 240.0 | 107.84 | 304.3 | 8,471 | 33,752 | 175 | 7 | | 4904 | 0001 | 65 | 100 | DF L | 1 | | 24.0 | 78 | 95 | 40.0 | | 38.2 | 1,328 | 4,456 | 28
29 | 1 | | | 0002 | 65 | | DF L | 1 | | 21.0 | 86 | 99 | 40.0 | | 49.9 | 1,409 | 6,153 | 29 | 1 | | | 0003 | 65 | | DF T | 1 | | 24.0 | 80 | 93 | 40.0 | | 38.2 | 1,309
1,430 | 5,220
5,606 | 30 | 1 | | | 0004 | 65 | | DF L |] | | 22.0 | 81 | 108 | 40.0 | | 45.5
60.9 | 1,430 | 4,876 | 28 | 1 | | | 0005 | 65 | 100 | DF T |] | | 19.0 | 83 | 95 | 40.0 | 20.32 | 00.5 | | | | | | 4904 | | | 100 | | 5 | | 21.7 | 82 | 98 | 200.0 | | 232.7 | 6,818 | | 141 | <u>5</u> | | 4905 | 0001 | 65 | 100 | DF T | | 1 | 19.0 | 85 | 104 | 40.0 | | 53.4 | | | 30
89 | 3 | | | 0002 | 65 | 100 | DF L | | 3 | 21.0 | 84 | 102 | 120.0 | 48.69 | 138.7 | 4,302 | | | | | 4905 | | | 100 | | | 4 | | 84 | 103 | 160.0 | | 192.1 | 5,747 | | 119 | 4 | | 4906 | 0001 | 65 | 100 | IC L | | 1 | 25.0 | 69 | 72 | 40.0 | | 23.5 | | | 21 | 1 | | | 0002 | 65 | 100 | DF L | | i | 26.0 | 83 | 99 | 40.0 | 10.85 | 32.5 | 1,408 | 5,858 | 29 | | | 4906 | | | 100 |) | 2 | | 25.5 | 76 | 85 | 80.0 | 22.58 | 56.0 | 2,428 | 8,323 | 50 | | | 4907 | 0001 | 65 | | DF L | | 2 | | | 102 | 80.0 | 32.46 | 92.5 | 2,868 | 11,613 | 59 | 2 | | | | | | | | | 21.2 | 84 | 102 | 80.0 | 32.46 | 92.5 | 2,868 | 11,613 | 59 | 2 | | 4907 | 0001 | 65 | 100 | DF L | | 2
1 | 21.3 | | | 40.0 | | | | | 26 | | | 4908 | 0001
0002 | 65 | | PP L | | 1 | 18.0 | | | 40.0 | | | 1,204 | 4,753 | 25 | | | | 0002 | | | | | | | | | | 26.50 | 05.4 | 2,468 | 3 10,160 | 51 | | | 4908 | | | 100 | | 2 | | 20.0 | 83 | 96 | 80.0 | 36.50 | 95.6 | 2,400 | 10,100 | | | | 4909 | | 65 | | WFT | | 2 | | 85 | 104 | 80.0 | 37.29 | 106.8 | 2.889 | 11,802 | 60 | : | | | 0002 | 65 | | DFT | | 2 | | | | 120.0 | | | | 2 17,419 | 89 | : | | | 0003 | 65 | 100 | DF L | | | | | | | | | | | 140 | | | 4909 | | | 100 | | | 7 | | | | 200.0 | | | | | 149
30 | | | 4910 | 0001 | 65 | | DF L | | 1 | 22.0 | | | 40. | | | | | 28 | | | | 0002 | 65 | | DF L | | 1 | 19.0 | | | 40.
40. | | | | | 33 | | | | 0003 | 65 | 100 | 0 DFL | | 1 | 22.0 | 9(| 105 | 40. | 0 13.1. | | | | | | | 4910 |) | | 10 | 0 | 3 | | 20.8 | 8.5 | | 120. | | | | | 91 | | | 4911 | | 65 | 10 | 0 DFL | _ | 3 | 21.0 |) 84 | 1 102 | 120. | 0 48.69 | 9 138. | 7 4,30 | 2 17,419 | 89 | | | 4911 | ı | | 10 | 0 | | 3 | 3 21.3 | 3 84 | 1 102 | 120. | 0 48.69 | 9 138. | 7 4,30 | 2 17,419 | 89 | | | 4912 | | 65 | _ | 0 DFL | | 1 | 20.0 | | | 40. | | | 0 1,52 | 0 6,234 | 31 | | | ''' | 0001 | 65 | | 0 DFT | | 1 | 21.0 | | 1 115 | 40. | 0 16.6 | 3 49. | | | 32 | | | | 0002 | 65 | | 0 DFT | | 1 | 22.0 | S C | 5 115 | 40. | | | | | | | | 1 | 0004 | 65 | | 0 DF L | | 1 | 24.0 | 8 (| 5 117 | 40. | .0 12.7 | 3 38. | 2 1,63 | 6 6,875 | 34 | | | TC PL | OTTREELI | ST | | | | | | ot Tree
Project | List - V | | | | | Page
Date | 2
3/31/2 | 020 | |------------|------------|----------|-----|--------|-----|-----------|------|--------------------|----------|---------------|-------------|-------|------------|--------------|---------------------|-----| | TWP
34S | RGE
04E | SC
28 | TRA | | | TY
004 | | | AC | CRES
29.00 | PLOTS
14 | TR | REES
30 | | ED DATE
2/1/2019 | | | Plot | Tree | | | | Tre | es | | 16' | Tot | BA | Trees | Logs | Net | Net | Tota | 1 | | No. | No. | Age | SI | Spp St | Me. |
Ct. | DBH | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | 4912 | 0005 | 65 | 100 | DF L | 1 | | 21.0 | 85 | 117 | 40.0 | 16.63 | 49.9 | 1,597 | 6,652 | 33 | 14 | | 4712 | 0006 | 65 | | DF T | 1 | | 20.0 | 86 | 120 | 40.0 | 18.33 | 55.0 | 1,704 | 7,334 | 35 | 15 | | 4912 | | | 100 | | 6 | | 21.2 | 84 | 116 | 240.0 | 97.81 | 293.4 | 9,584 | 40,219 | 199 | 83 | | 4913 | 0001 | 65 | 100 | DF T | | 1 | 19.0 | 85 | 104 | 40.0 | 18.65 | 53.4 | 1,445 | 5,901 | 30 | 12 | | ., | 0002 | 65 | 100 | DF L | | 3 | 21.0 | 84 | 102 | 120.0 | 48.69 | 138.7 | 4,302 | 17,419 | 89 | 36 | | 4913 | | | 100 | | | 4 | 20.9 | 84 | 103 | 160.0 | 67.33 | 192.1 | 5,747 | 23,320 | 119 | 48 | | 4914 | 0001 | 65 | 100 | | 1 | | 22.0 | 85 | 96 | 40.0 | 15.15 | 45.5 | 1,388 | 5,455 | 29 | 11 | | 7717 | 0002 | 65 | 100 | | 1 | | 19.0 | 86 | 89 | 40.0 | 20.32 | 40.6 | 1,247 | 4,266 | 26 | 9 | | | 0002 | 65 | 100 | | 1 | | 21.0 | 85 | 108 | 40.0 | 16.63 | 49.9 | 1,503 | 6,153 | 31 | 13 | | | 0003 | 65 | 100 | | 1 | | 17.0 | 86 | 108 | 40.0 | 25.38 | 76.1 | 1,413 | 6,090 | 29 | 13 | | | 0004 | 65 | 100 | | 1 | | 19.0 | 87 | 98 | 40.0 | 20.32 | 60.9 | 1,416 | 6,298 | 29 | 13 | | | 0003 | 65 | | DF L | 1 | | 20.0 | | 96 | 40.0 | 18.33 | 55.0 | 1,401 | 5,684 | 29 | 12 | | 4914 | | | 100 | | 6 | | 19.5 | 85 | 99 | 240.0 | 116.12 | 328.1 | 8,368 | 33,946 | 173 | 70 | | TYPE | | | 100 | | 30 | 31 | 20.6 | | 102 | 168.6 | 73.11 | 207.5 | 5,940 | 23,819 | 1,723 | 691 | | rc psi
ODF | TATS | | | | | JECT S
OJECT | STATIS
EDG | | | | PAGE
DATE | 1
3/30/2020 | |--|--|------|---|---|---------|--|---|---|--------|------------------------------------|---------------|----------------| | WP | RGE | SC | TRACT | T | YPE | | AC | RES | PLOTS | TREES | CuFt | BdFt | | 34S | 04E | 26 | EDGE2 | 0 | 052 | | | 11.00 | 6 | 41 | S | W | | | | | | | | TREES | J | ESTIMATED
TOTAL | | ERCENT
SAMPLE | | | | | | | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOTA | AI. | | 6 | 41 | | 6.8 | | | | | | | | CRUI | | | 3 | 22 | | 7.3 | | 2,089 | | 1.1 | | | | DBH | COUNT | | | | | | | | | | | | | REFO | OREST | | | | | | | | | | | | | COU | | | 3 | 19 | | 6.3 | | | | | | | | BLA | | | | | | | | | | | | | | 100 % | / 0 | u | | | ST A | ND SUM | MARV | | | | | | | | | c | AMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | 3 | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | SHP | R FIR-L | | 3 | 26.9 | 20.2 | 89 | 13.3 | 60.0 | 8,055 | 8,055 | 1,946 | - | | - | R FIR-T | | 11 | 115.8 | 14.9 | 82 | 36.3 | 140.0 | 17,820 | 17,820 | 4,242 | | | - | JG FIR-L | | 8 | 47.1 | 16.9 | 73 | 17.8 | 73.3 | 7,767 | 7,767 | 2,147 | | | тот | TAL | | 22 | 189.9 | 16.2 | 81 | 67.8 | 273.3 | 33,643 | 33,643 | 8,335 | 8,335 | | COr | | 8.1 | TIMES OU | THE SAMPL
T OF 100 TI | HE VOLU | | | HIN THE SA | | | S DEO | INF. POP. | | CL | 68.1 | | COEFF | | | | E TREE | | # | FOF TREES | 5 REQ.
10 | INF. POF. | | SD: | 1.0 | | VAR.% | S.E.% | | 234 | AVG
310 | HIGH
386 | | | 10 | 1 | | | R FIR-L | | 35.5 | 24.5 | | 336 | 336 | 336 | | | | | | | R FIR-T
JG FIR-L | | | | | 270 | 270 | 270 | | | | | | TOT | | | 11.9 | 3.1 | | 297 | 306 | 316 | | 6 | 1 | | | CL | 68.1 | | COEFF | | | SAMPI | E TREE | S - CF | † | OF TREE | S REQ. | INF. POP. | | SD: | | | VAR.% | S.E.% | | LOW | AVG | HIGH | | 5 | 10 | 1 | | | R FIR-L | **** | 23.6 | 16.3 | | 62 | 74 | 86 | | | | | | SH I | R FIR-T | | | | | 77 | 77 | 77 | | | | | | | UG FIR-L | , | | | | 74 | 74
76 | 74
76 | | | | | | TO | TAL | | | | | 76 | | 70 | | | | DE DOD | | CL | 68.1 | | COEFF | | | | ACRE | | | # OF PLOT | S REQ.
10 | INF. POP. | | SD: | | | VAR.% | S.E.% | | LOW | AVG | HIGH
38 | | 5 | 10 | 1 | | | R FIR-L | | 90.8 | 40.4 | | 16
62 | 27
116 | 38
170 | | | | | | | R FIR-T
UG FIR-L | | 104.9
102.7 | 46.7
45.7 | | 26 | 47 | 69 | | | | | | | TAL | , | 79.2 | 35.2 | | 123 | 190 | 257 | | 298 | 75 | 3 | | | | | | | | | L AREA/ | ACRE | | # OF PLOT | S REO. | INF. POP | | CL | | | COEFF
VAR.% | S.E.% | | LOW | ANEA/ | HIGH | | 5 | 10 | 1 | | | R FIR-L | | 91.9 | 40.9 | | 35 | 60 | 85 | | | | | | SD: | | | | | | 78 | 140 | 202 | | | | | | SD: | | | 100.2 | 44.6 | | | =-0 | 104 | | | | 2 | | SD:
SH
SH | R FIR-L
R FIR-T
UG FIR-I | | 93.9 | 41.8 | | 43 | 73 | | | 220 | /^ | | | SD:
SH
SH
DO | R FIR-T | | | | | 43
187 | 273 | 359 | | 238 | 60 | | | SD:
SH
SH
DO | R FIR-T
UG FIR-I
TAL | | 93.9
70.7
COEFF | 41.8
31.5 | | 187
NET B | 273
F/ACRE | 359 | | # OF PLOT | S REQ. | INF. POP | | SD:
SH
SH
DO'
TO' | R FIR-T
UG FIR-I
TAL
68.1
1.0 | | 93.9
70.7
COEFF
VAR.% | 41.8
31.5
S.E.% | | 187
NET B
LOW | 273
F/ACRE
AVG | 359
HIGH | | | | INF. POP | | SD: SH SH DO TO CL SD: | R FIR-T
UG FIR-I
TAL
68.1
1.0
R FIR-L | | 93.9
70.7
COEFF
VAR.%
94.8 | 41.8
31.5
S.E.%
42.2 | | 187
NET B LOW 4,656 | 273
F/ACRE
AVG
8,055 | 359
HIGH
11,455 | | # OF PLOT | S REQ. | INF. POP | | SD: SH SH DO' TO' CL SD: SH SH | R FIR-T UG FIR-I TAL 68.1 1.0 R FIR-L R FIR-T | | 93.9
70.7
COEFF
VAR.%
94.8
103.2 | 41.8
31.5
S.E.%
42.2
45.9 | | 187
NET B LOW 4,656 9,635 | 273
F/ACRE
AVG
8,055
17,820 | 359
HIGH
11,455
26,005 | | # OF PLOT | S REQ. | INF. POP | | SD: SH SH DO' TO' CL SD: SH SH DO | R FIR-T OUG FIR-I OTAL 68.1 1.0 R FIR-L R FIR-T OUG FIR-I | | 93.9
70.7
COEFF
VAR.%
94.8
103.2
104.2 | 41.8
31.5
S.E.%
42.2
45.9
46.4 | | 187
NET B
LOW
4,656
9,635
4,164 | 273
F/ACRE
AVG
8,055 | 359
HIGH
11,455 | | # OF PLOT | S REQ. | INF. POP | | SD:
SH
SH
DO'
TO'
CL
SD:
SH
SH
DO
TO | R FIR-T UG FIR-I TAL 68.1 1.0 R FIR-L R FIR-T DUG FIR-I | L | 93.9
70.7
COEFF
VAR.%
94.8
103.2
104.2
80.7 | 41.8
31.5
S.E.%
42.2
45.9
46.4
35.9 | | 187
NET B
LOW
4,656
9,635
4,164
21,557 | 273
F/ACRE
AVG
8,055
17,820
7,767
33,643 | 359
HIGH
11,455
26,005
11,370
45,728 | | # OF PLOT
5 | TS REQ.
10 | INF. POP | | SD:
SH
SH
DO'
TO'
CL
SD:
SH
SH
DO
TO | R FIR-T UG FIR-I TAL 68.1 : 1.0 R FIR-L R FIR-T UG FIR-I UG FIR-I UG FIR-I UG FIR-I UG FIR-I | L | 93.9
70.7
COEFF
VAR.%
94.8
103.2
104.2
80.7
COEFF | 41.8
31.5
S.E.%
42.2
45.9
46.4
35.9 | | NET B
LOW
4,656
9,635
4,164
21,557
NET C | 273
F/ACRE
AVG
8,055
17,820
7,767
33,643
CUFT FT | 359
HIGH
11,455
26,005
11,370
45,728 | | # OF PLOT
5 | TS REQ.
10 | INF. POP | | SD: SH SH DO' TO CL SD: SH DO TO CL SD: SH DO CL SD | R FIR-T UG FIR-I TAL 68.1 : 1.0 R FIR-L R FIR-T UG FIR-I UG FIR-I UG FIR-I UG FIR-I UG FIR-I | L | 93.9
70.7
COEFF
VAR.%
94.8
103.2
104.2
80.7 | 41.8
31.5
S.E.%
42.2
45.9
46.4
35.9 | | 187
NET B
LOW
4,656
9,635
4,164
21,557 | 273
F/ACRE
AVG
8,055
17,820
7,767
33,643 | 359
HIGH
11,455
26,005
11,370
45,728 | | # OF PLOT
5
310
OF PLOT | 77 TS REQ. | INF. POP | | TC PST | TATS | | | | PROJECT
PROJECT | | ISTICS
GE2 | | | PAGE
DATE 3 | 2
3/30/2020 | |------------|---------------|----|---------------|--------------|--------------------|----------------|-----------------|-------|----------------|----------------|-----------------------| | TWP | RGE | SC | TRACT | TYI | PE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 34S | 04E | 26 | EDGE2 | 0052 | 2 | | 11.00 | 6 | 41 | S | W | | CL
SD: | 68.1
1.00 | | COEFF
VAR. | S.E.% | NET (| CUFT FT/ | ACRE
HIGH | | # OF PLOT
5 | S REQ.
10 | INF. POP. | | DOU
TOT | G FIR-L
AL | | 98.5
75.5 | 43.9
33.6 | 1,205
5,532 | 2,147
8,335 | 3,089
11,139 | | 272 | 68 | 30 | | TC PSPCSTGR | <u>.</u> | Species, | Sort G | rade - B | oard | l Foo | t Vo | lume | s (Pi | roject) | | | | | | | |------------------------|----------|-----------------|-----------------|------------------|-----------|-------|-------------|---------|--------|-------------|-------------|----------------|----------------------|-----------|----------------------|------------------------| | T34S R04E S26 | Ту0052 | 11.00 | | Project
Acres | • | EDO | GE2
11.0 | 0 | | | | | Page
Date
Time | 4/1 | 1
1/202
:47:3 | 0
0AM | | | % | | 1 | <u> </u> | | Perce | ent of | Net Bo | ard Fo | oot Volume | | | Avera | ige Lo | g | Logs | | S So Gr | Net | Bd. Ft. per Acr | e | Total | | Lo | og Sca | le Dia. | | Log Lo | ength | Ln | Dia | Bd | CF/ | Per | | Spp T rt ad | BdFt | Def% Gross | Net | Net MBF | | 4-5 | 6-11 | 12-16 | 17+ | 12-20 21-30 | 31-35 36-99 | Ft | In | Ft | Lf | /Acre | | RF T DOCU
RF T DO3M | 76 | 13,713 | | | 151
45 | 74 | 67 | 8
26 | 25 | 64 | 100
36 | 11
34
29 | 5
9
6 | 118
41 | 0.00
0.79
0.39 | 23.3
115.8
101.3 | | RF T DO4M | 53 | 4,107
17,820 | 4,107
17,820 | | 196 | 17 | 51 | 12 | 19 | 15 | 85 | 30 | 7 | 74 | 0.60 | 240.5 | | RF L DO3M
RF L DO4M | 73
27 | 5,925
2,131 | | | 65
23 | 34 | 66 | 100 | | 100 | 100 | 34
24 | 13
7 | 220
49 | 1.49
0.56 | 26.9
43.6 | | RF Totals | 24 | 8,055 | 8,055 | | 89 | 9 | 18 | 74 | | 26 | 74 | 28 | 9 | 114 | 0.99 | 70.5 | | DF L
DO3M
DF L DO4M | 77
23 | 6,022
1,746 | | | 66
19 | 78 | 71
22 | 29 | | 62 | 100
38 | 34
29 | 11
5 | 162
34 | 1.18
0.45 | 37.2
51.0 | | DF Totals | 23 | 7,767 | 7,767 | | 85 | 18 | 60 | 23 | | 14 | 86 | 31 | 8 | 88 | 0.79 | 88.2 | | Totals | | 33,643 | 33,643 | | 370 | 15 | 45 | 29 | 10 | 17 | 83 | 30 | 8 | 84 | 0.71 | 399.2 | | TC ¹ | PLO | GSTVB | | | | | Log | Stock | Table | - MBI | र | | | | | | | | |-----------------|-----|---------|--------|-------|------|-----|---------------|-------|-------|----------|-------|---------|-------|-----------|-------|----------------------|-------|-----------------------| | T34 | S R | 04E S26 | Гу0052 | 2 1 | 1.00 | | Proje
Acre | | EDC | GE2 | .00 | | | | | Page
Date
Time | | 1
/2020
47:29AM | | | s | So Gr | Log | Gross | Def | Net | % | | , | let Volu | me by | Scaling | Diam | eter in I | nches | | | | | Spp | Т | rt de | | | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 40+ | | RF | Т | DO 3N | 1 34 | 151 | | 151 | 77.0 | | | 13 | 37 | 51 | 12 | | 38 | | | | | RF | Т | DO 4N | 1 25 | 22 | | 22 | 11.0 | | 10 | | | | 12 | | | | | | | RF | Т | DO 4N | 1 26 | 3 | | 3 | 1.5 | | 3 | | | | | | | | | | | RF | Т | DO 4N | 1 27 | 5 | | 5 | 2.3 | | 5 | | | | | | | | | | | RF | Т | DO 4N | 1 32 | 4 | | 4 | 2.2 | | 4 | | | | | | | | | | | RF | Т | DO 41 | A 34 | 12 | | 12 | 6.1 | | 12 | | | | | | | | | | | RF | | Tota | ls | 196 | 3.00 | 196 | 53.0 | | 34 | 13 | 37 | 51 | 24 | | 38 | | | | | RF | L | DO 3N | A 34 | 65 | | 65 | 73.6 | | | | | | 40 | 25 | | | | | | RF | L | DO 41 | A 22 | 18 | | 18 | 19.8 | | 2 | | | 16 | | | | | | | | RF | L | DO 41 | A 24 | 3 | | 3 | 2.8 | | 3 | | | | | | | | | | | RF | L | DO 41 | A 30 | 3 | | 3 | 3.8 | | 3 | | | | | | · | | | | | RF | | Tota | ls | 89 | | 89 | 23.9 | | 8 | | | 16 | 40 | 25 | | | | | | DF | L | DO 31 | Л 34 | 66 | | 66 | 77.5 | | | | 8 | 39 | | 10 | 9 | | | | | DF | L | DO 41 | и 23 | 2 | , | 2 | 1.9 | | 2 | | | | | | | | | | | DF | L | DO 41 | И 25 | 4 | | 4 | 4.9 | | | | | 4 | | | | | | | | DF | L | DO 41 | M 26 | 1 | | 1 | 1.5 | | 1 | | | | | | | | | | | DF | L | DO 41 | M 27 | 2 | | 2 | 1.9 | | 2 | | | | | | | | | | | DF | L | DO 41 | M 29 |) 3 | | 3 | 3.8 | | 3 | | | | | | | | | | | DF | L | DO 41 | M 32 | 6 | ; | 6 | 7.2 | | 6 | | | | | | | | | | | DF | L | DO 41 | M 35 | 1 | | 1 | 1.3 | | 1 | | | | ···· | | | <u> </u> | | | | DF | | Tota | ıls | 85 | i | 85 | 23.1 | | 15 | ļ | 8 | 43 | | 10 | 9 | ļ | | | | Total | | All Spe | cies | 370 |) | 370 | 100.0 | | 56 | 13 | 45 | 109 | 64 | 35 | 47 | | | | | TC PL | OTTREELI | ST | | | | | Plo | t Tree | List - V | | | | | Page | 1
3/30/20 | 020 | |-------|----------|--------------|-----|--------|-----|-----|--------|--------|----------|-------|----------|-------|----------|----------|--------------|---------| | ODF | | | | | | | P | roject | EDG | E2 | | | | Date | | J20
 | | TWP | RGE | SC | TRA | СТ | | TY | PE | | AC | CRES | PLOTS | TR | EES | | D DATE | | | 34S | 04E | 26 | EDG | E2 | | 00 | 52 | | | 11.00 | 6 | | 22 | 1 | 1/1/2019 | | | Plot | Tree | | | | Tre | es | | 16' | Tot | BA | Trees | Logs | Net | Net | Total | | | No. | No. | Age | SI | Spp St | Me. | Ct. | DBH | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | 5201 | 0001 | 65 | 100 | DF L | | 3 | 16.0 | 85 | 73 | 120.0 | 77.14 | 144.2 | 3,514 | 12,710 | 64 | 2: | | J201 | 0002 | 65 | 100 | RF T | | 4 | 14.0 | 88 | 82 | 160.0 | 132.39 | 248.2 | 4,848 | 20,366 | 89 | 3′ | | 5201 | | | 100 | | | 7 | 15.7 | 87 | 79 | 280.0 | 209.53 | 392.4 | 8,362 | 33,076 | 153 | 6 | | 5202 | 0001 | 65 | | RF T | 1 | | 10.0 | 88 | 72 | 40.0 | 73.34 | 73.3 | 796 | 3,667 | 15 | • | | 3202 | 0002 | 65 | | RF T | 1 | | 19.0 | 87 | 75 | 40.0 | 20.32 | 40.6 | 1,134 | 4,063 | 21 | _ | | | 0003 | 65 | 100 | DF L | 3 | | 16.5 | 86 | 84 | 120.0 | 80.81 | 161.6 | 3,855 | 14,547 | 71 | 2 | | | 0004 | 65 | 100 | RF T | 3 | | 16.0 | 87 | 87 | 120.0 | 85.94 | 171.9 | 3,586 | 14,610 | 66 | 2 | | | 0005 | 65 | 100 | RF T | 2 | | 23.0 | 92 | 100 | 80.0 | 27.73 | 83.2 | 3,028 | 14,973 | 56 | 2 | | | 0006 | 65 | 100 | | 1 | | 21.0 | 86 | 103 | 40.0 | 16.63 | 49.9 | 1,451 | 6,153 | 27 | 1 | | | 0007 | 65 | | RF T | 2 | | 12.5 | 88 | 82 | 80.0 | 93.87 | 187.7 | 2,380 | 9,387 | 44 | 1 | | | 0007 | 65 | | RF L | 1 | | 22.0 | 88 | 96 | 40.0 | 15.15 | 45.5 | 1,395 | 6,364 | 26 | 1 | | | 0009 | 65 | | RF L | 1 | | 20.0 | 87 | 95 | 40.0 | 18.33 | 55.0 | 1,334 | 5,684 | 24 | 1 | | | 0010 | 65 | 100 | RF T | 1 | | 13.5 | 87 | 89 | 40.0 | 40.24 | 80.5 | 1,305 | 5,231 | 24 | I | | 5202 | | | 100 | | 16 | | 15.8 | 87 | 85 | 640.0 | 472.37 | 949.2 | 20,263 | 84,679 | 371 | 15 | | 5203 | 0001 | 65 | | RF T | | 3 | 14.0 | 88 | 82 | 120.0 | 99.29 | 186.1 | 3,636 | 15,274 | 67 | 2 | | 3203 | 0002 | 65 | | RF L | | 3 | 20.0 | 88 | 89 | 120.0 | 53.80 | 141.1 | 3,892 | 16,111 | 71 | 3 | | 5203 | | | 100 | | | | 17.0 | 88 | 84 | 240.0 | 153.10 | 327.2 | 7,528 | | 138 | | | 5204 | 0001 | 65 | 100 | | 1 | _ | 18.5 | 84 | 75 | 40.0 | 21.43 | 42.9 | 1,115 | 3,857 | 20 | | | 3201 | 0002 | 65 | 100 | DF L | 1 | | 13.0 | 84 | 38 | 40.0 | 43.40 | 43.4 | 580 | 1,302 | 11 | | | | 0002 | 65 | | DF L | 1 | | 15.0 | 83 | 75 | 40.0 | 32.59 | 65.2 | 1,142 | 3,911 | 21 | | | | 0004 | 65 | | RF T | 1 | | 18.0 | 88 | 75 | 40.0 | 22.64 | 45.3 | 1,104 | 4,074 | 20 | 4.00 | | 5204 | | | 100 |) | 4 | | 15.6 | 84 | 62 | 160.0 | 120.05 | 196.7 | | | 72 | | | 5205 | | 65 | 100 | RFL | | | 3 20.0 | 88 | 89 | 120.0 | 53.80 | 141.1 | 3,892 | | 71 | | | 5200 | 0002 | 65 | 100 | RFT | | : | 3 14.0 | 88 | 82 | 120. | 99.29 | 186.1 | 3,636 | 15,274 | 67 | | | 5205 | | - | 100 |) | | | 6 17.0 | 88 | 84 | 240. | 0 153.10 | 327.2 | | | 138 | | | 5206 | | 65 | | | | 1 | 19.0 | 88 | 78 | 40. | 0 20.32 | 40.6 | • | | 21 | | | 3200 | 0002 | 65 | | | | 1 | 26.0 | 83 | 80 | 40. | 0 10.85 | 21. | 7 1,228 | 4,123 | 23 | | | 5206 | : | | 100 |) | 2 | | 21.7 | 86 | 79 | 80. | 0 31.16 | 62 | 3 2,391 | | 44 | | | TYP | | | 100 | | 22 | 1 | 9 16.2 | | 81 | 273. | 3 189.89 | 375.9 | 9 8,335 | 33,643 | 917 | 3 | | TC PS | TATS | | | | JECT S
oject | TATIS
EDGI | | | | PAGE
DATE 3 | 1
3/30/2020 | |--|--|---
---|----------|--|--|--|--------|--|---|---------------------------------| | ODF
WP | RGE | SC TRACT | T | YPE | | ACR | ES | PLOTS | TREES | CuFt | BdFt | | 34S | 04E | 35 EDGE2 | 0 | 061 | | • | 48.00 | 16 | 82 | S | W | | | | | | | TREES | Е | STIMATED
TOTAL | | ERCENT
SAMPLE | | | | | | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOT | AI | 16 | 82 | | 5.1 | | | | | | | | CRU | | 9 | 43 | | 4.8 | | 10,072 | | .4 | | | | | I COUNT | , | | | | | | | | | | | | OREST | | | | | | | | | | | | COU | | 7 | 31 | | 4.4 | | | | | | | | BLA | NKS | | | | | | | | | | | | 100 | % | | | | | | | | LAN 181 "V | | | | | | | | STA | ND SUMM | IARY | | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | SHI | R FIR-L | 22 | 103.9 | 13.8 | 70 | 29.0 | 107.5 | 10,824 | 10,824 | 2,825 | 2,825 | | | R FIR-T | 19 | 90.7 | 13.3 | 67 | 24.0 | 87.5 | 8,809 | 8,809 | 2,263 | 2,263 | | | FIR-L | 1 | 9.5 | 12.0 | 61 | 2.2 | 7.5 | 573 | 573 | 159 | 159
23 | | INC | CED-L | 1 | 5.7 | 9.0 | 17 | 0.8 | 2.5 | 113 | 113 | 5,270 | 5,270 | | TO | TAL | 43 | 209.8 | 13.4 | 67 | 56.0 | 205.0 | 20,319 | 20,319 | 3,270 | 3,270 | | CL | 68.1 | COEFF | | | | E TREES | | # | FOF TREES | S REQ.
10 | INF. POP. | | SD: | 1.0 | VAR.% | 6 S.E.% | l | LOW | AVG
171 | HIGH
171 | | | 10 | | | SH
GR | R FIR-L
R FIR-T
FIR-L
C CED-L | | | | 171
177 | 177 | 177 | | | | | | то | TAL | | | | 165 | 165 | 165 | | | | | | CL | 68.1 | COEFI | г. | | CAMOT | | | | | | 7 IT DOD | | | | COEF | | | | E TREES | | | # OF TREES | | | | SD | : 1.0 | VAR.9 | | | LOW | AVG | HIGH | i | # OF TREES
5 | S REQ.
10 | | | | : 1.0
R FIR-L | | | | LOW
45 | AVG
45 | HIGH
45 | 1 | | | | | SH
SH | R FIR-L
R FIR-T | | | | LOW | AVG | HIGH | - | | | | | SH
SH
GR | R FIR-L
R FIR-T
FIR-L | | | | LOW
45 | AVG
45 | HIGH
45 | | | | | | SH
SH
GR
INC | R FIR-L
R FIR-T
FIR-L
C CED-L | | | <u> </u> | 45
46 | 45
46 | HIGH
45 | 1 | | | | | SH
SH
GR
INC
TO | R FIR-L
R FIR-T
FIR-L
C CED-L
OTAL | VAR.9 | % S.E.% | | 45
46
43 | 45
46
43 | HIGH
45
46 | | 5 | 10 | 1 | | SH
SH
GR
INC
TO | R FIR-L
R FIR-T
FIR-L
C CED-L
DTAL
68.1 | VAR.9 | % S.E.% | | 45
46
43
TREES | 45
46
43
4ACRE | 45
46
43 | | | 10 | INF. POP | | SH
SH
GR
INC
TO | R FIR-L
R FIR-T
E FIR-L
C CED-L
DTAL
68.1
0: 1.0 | VAR.9
COEF
VAR.9 | % S.E.% | | 45
46
43
TREES | 45
46
43
43
43
4ACRE
AVG | 45
46
43
HIGH | | 5
OF PLOT | 10
S REQ. | INF. POP | | SH
SH
GR
INC
TO | R FIR-L
R FIR-T
E FIR-L
C CED-L
OTAL
68.1
D: 1.0 | COEF
VAR.9
42.5 | F S.E.% 11.0 | | 45
46
43
TREES
LOW
93 | 45
46
43
4ACRE
AVG
104 | 45
46
43 | | 5
OF PLOT | 10
S REQ. | INF. POP | | SH
SH
GR
INC
TO
CL
SD
SH
SH | R FIR-L
R FIR-T
R FIR-L
C CED-L
DTAL
68.1
D: 1.0
I R FIR-L
I R FIR-T | COEF
VAR.9
42.5
100.2 | F S.E.% 11.0 25.8 | | 45
46
43
TREES | 45
46
43
43
43
4ACRE
AVG | HIGH 45 46 43 HIGH 115 | | 5
OF PLOT | 10
S REQ. | INF. POP. | | SH
SH
GR
INC
TO
CL
SD
SH
SH
GR | R FIR-L R FIR-T R FIR-L C CED-L DTAL 68.1 D: 1.0 I R FIR-L I R FIR-L R FIR-T R FIR-L | COEF
VAR.9
42.5
100.2
215.0 | F S.E.% 11.0 25.8 55.5 | | 45
46
43
TREES
LOW
93
67 | 45
46
43
43
4ACRE
AVG
104
91 | HIGH 45 46 43 HIGH 115 114 | | 5
OF PLOT
5 | 10
S REO.
10 | INF. POP. | | SH
GR
INC
TO
CL
SD
SH
SH
GR
INC | R FIR-L
R FIR-T
R FIR-L
C CED-L
DTAL
68.1
D: 1.0
I R FIR-L
I R FIR-T | COEF
VAR.9
42.5
100.2 | F % S.E.% 11.0 25.8 55.5 103.2 | | 45
46
43
TREES
LOW
93
67 | 45
46
43
43
43
43
43
44
43
40
40
104
91
10 | HIGH 45 46 43 HIGH 115 114 15 | | 5
OF PLOT | 10
S REQ. | INF. POP. | | SH
SH
GR
INC
TO
CL
SD
SH
SH
GR
INC | R FIR-L R FIR-T FIR-L C CED-L OTAL 68.1 D: 1.0 I R FIR-L I R FIR-L C FIR-L C CED-L OTAL | COEF
VAR.9
42.5
100.2
215.0
400.0
48.2 | F % S.E.% 11.0 25.8 55.5 103.2 12.4 | | 43 TREES LOW 93 67 4 184 | 45
46
43
4ACRE
AVG
104
91
10
6
210 | HIGH 45 46 43 HIGH 115 114 15 11 236 | | 5
OF PLOT
5 | 10
S REO.
10 | INF. POP | | SH SH INCOME SH INCOME SH SH SH SH INCOME I | R FIR-L R FIR-T R FIR-L C CED-L DTAL 68.1 D: 1.0 I R FIR-L I R FIR-L C CED-L DTAL C CED-L DTAL 68.1 | COEF
VAR.9
42.5
100.2
215.0
400.0
48.2 | F S.E.% 11.0 25.8 55.5 103.2 12.4 | | 43 TREES LOW 93 67 4 184 | 45
46
43
6/ACRE
AVG
104
91
10
6 | HIGH 45 46 43 HIGH 115 114 15 11 236 | | 5
OF PLOT
5 | 10
S REO.
10 | INF. POP | | SH SH INCOME SH INCOME SH | R FIR-L R FIR-T R FIR-L C CED-L DTAL 68.1 D: 1.0 I R FIR-L R FIR-L C CED-L DTAL L 68.1 D: 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | COEF
VAR.9
42.5
100.2
215.0
400.0
48.2 | F % S.E.% 11.0 25.8 55.5 103.2 12.4 FF % S.E.% | | 45
46
43
TREES
LOW
93
67
4
184
BASAL | 45
46
43
43
43
43
43
44
43
104
91
10
6
210 | HIGH 45 46 43 HIGH 115 114 15 11 236 | | # OF PLOT 5 99 # OF PLOT | 10
S REO.
10
25 | INF. POP. | | SH SH ING TO CL SD SH ING TO CL ST SH SH ING TO CL SD SH ING TO CL SD SH SH ING TO CL SD SH | R FIR-L R FIR-T R FIR-L C CED-L DTAL 68.1 D: 1.0 I R FIR-L R FIR-L C CED-L DTAL 68.1 D: 1.0 H R FIR-L | COEF
VAR.9
42.5
100.2
215.0
400.0
48.2
COEF
VAR.9 | F S.E.% 11.0 25.8 55.5 103.2 12.4 FF S.E.% 10.9 | | 43 TREES LOW 93 67 4 BASAI LOW 96 65 | 43 43 6/ACRE AVG 104 91 10 6 210 AREA/A AVG 108 88 | HIGH 45 46 43 HIGH 115 114 15 11 236 ACRE HIGH 119 110 | | # OF PLOT 5 99 # OF PLOT | 10
S REO.
10
25 | INF. POP | | SH SE SH SH SH SH SE SH SH SH SE SH | R FIR-L R FIR-T R FIR-L C CED-L DTAL 68.1 D: 1.0 I R FIR-L R FIR-L C CED-L DTAL L 68.1 D: 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | COEF
VAR.9
42.5
100.2
215.0
400.0
48.2
COEF
VAR.9 | F % S.E.% 11.0 25.8 55.5 103.2 12.4 FF % S.E.% 10.9 55.5 55.5 | | 43 TREES LOW 93 67 4 BASAI LOW 96 | 43 43 43 43 47 47 47 47 47 47 47 47 47 47 47 47 47 | HIGH 45 46 43 HIGH 115 114 15 11 236 ACRE HIGH 119 110 12 | | # OF PLOT 5 99 # OF PLOT | 10
S REO.
10
25 | INF. POP | | SH SH INCOME SH | R FIR-L R FIR-T R FIR-L C CED-L DTAL 68.1 D: 1.0 I R FIR-L R FIR-L C CED-L DTAL 68.1 C CED-L DTAL 1.0 L 68.1 C CED-L DTAL 1.0 L 68.1 C CED-L DTAL 1.0 L 68.1 C CED-L DTAL | COEF
VAR.9
42.5
100.2
215.0
400.0
48.2
COEF
VAR.4
100.5
215.0
400.0 | F % S.E.% 11.0 25.8 55.5 103.2 12.4 FF % S.E.% 1.0.9 5.5.5 103.2 | | 43 TREES LOW 93 67 4 184 BASAI LOW 96 65 3 | 43 43 43 47 47 47 47 47 47 47 47 47 47 47 47 47 | HIGH 45 46 43 HIGH 115 114 15 11 236 ACRE HIGH 119 110 12 5 | | 5 # OF PLOT 5 99 # OF PLOT 5 | 10
S REO.
10
25
S REO.
10 | INF. POP | | SH S | R FIR-L R FIR-T R FIR-L C CED-L DTAL 68.1 D: 1.0 I R FIR-L R FIR-L C CED-L DTAL 68.1 D: 1.0 H R FIR-L H R FIR-L | COEF
VAR.9
42.5
100.2
215.0
400.0
48.2
COEF
VAR.9
42.4
100.5
215.0 | F % S.E.% 11.0 25.8 55.5 103.2 12.4 FF % S.E.% 1.0.9 5.5.5 103.2 | | 43
TREES LOW 93 67 4 BASAI LOW 96 65 | 43 43 43 43 47 47 47 47 47 47 47 47 47 47 47 47 47 | HIGH 45 46 43 HIGH 115 114 15 11 236 ACRE HIGH 119 110 12 | | 5 # OF PLOT 5 99 # OF PLOT 5 | 10
S REO.
10
25
TS REO.
10 | INF. POP | | SH GR ING CL SD SH SH ING CL SE SH ING TO CL SE SH ING TO CL SE SH ING TO CL SE SH ING SE SH ING SH ING SH ING SE SH ING | R FIR-L R FIR-T R FIR-L C CED-L DTAL 68.1 D: 1.0 I R FIR-L R FIR-L C CED-L DTAL 68.1 C TAL L 68.1 D: 1.0 H R FIR-L R FIR-L R FIR-L R FIR-L C CED-L DTAL L 68.1 | COEF
VAR.9
42.5
100.2
215.0
400.0
48.2
COEF
VAR.4
100.5
215.0
400.0 | F % S.E.% 11.0 25.8 55.5 103.2 12.4 FF % S.E.% 10.9 5.5.5 10.9 6.10.9 | | 43 TREES LOW 93 67 4 BASAI LOW 96 65 3 177 NET B | AVG 45 46 43 6/ACRE AVG 104 91 10 6 210 AREA/A AVG 108 88 8 3 205 | HIGH 45 46 43 HIGH 115 114 15 11 236 ACRE HIGH 119 110 12 5 233 | | 5 # OF PLOT 5 99 # OF PLOT 5 123 # OF PLOT | 10 S REQ. 10 25 S REQ. 10 10 31 | INF. POP | | SH GR SH | R FIR-L R FIR-T R FIR-L C CED-L DTAL 68.1 D: 1.0 I R FIR-L R FIR-L C CED-L DTAL 68.1 D: 1.0 H R FIR-L H R FIR-T R FIR-L R FIR-L R FIR-L C CED-L DTAL | COEF
VAR.9
42.5
100.2
215.0
400.0
48.2
COEF
VAR.9
42.4
100.5
215.0
400.0
53.7 | F S.E.% 11.0 25.8 55.5 103.2 12.4 FF S.E.% 10.9 5 25.9 103.2 13.9 | | 43 TREES LOW 93 67 4 BASAI LOW 96 65 3 177 NET B | 43 43 46 43 47 47 47 47 47 47 47 47 47 47 47 47 47 | HIGH 45 46 43 HIGH 115 114 15 11 236 ACRE HIGH 119 110 12 5 233 HIGH | | 5 # OF PLOT 5 99 # OF PLOT 5 | 10
S REO.
10
25
TS REO.
10 | INF. POP. INF. POP. | | SH GR INO CLL SD SH INO TO CLL SD INO TO CLL SC SH ST INO TO CLL SC SH | R FIR-L R FIR-T R FIR-L C CED-L DTAL 68.1 D: 1.0 I R FIR-L R FIR-L C CED-L DTAL 68.1 D: 1.0 H R FIR-L H R FIR-L R FIR-L R FIR-L C CED-L DTAL L 68.1 D: 1.0 H R FIR-L C CED-L DTAL C CED-L DTAL 68.1 C 68.1 C 68.1 | COEF
VAR.9
42.5
100.2
215.0
400.0
48.2
COEF
VAR.1
42.4
100.5
215.0
400.0
53.7
COEF
VAR.5 | F % S.E.% 11.0 25.8 55.5 103.2 12.4 FF % S.E.% 1.0.9 5.5.5 1.0.9 2.5.9 1.0.9 2.5.9 2.13.9 FF % S.E.% 2.13.0 | | 43 TREES LOW 93 67 4 BASAI LOW 96 65 3 177 NET B LOW 9,422 | AVG 45 46 43 6/ACRE AVG 104 91 10 6 210 AREA/A AVG 108 88 8 3 205 6F/ACRE AVG 10,824 | HIGH 45 46 43 HIGH 115 114 15 11 236 ACRE HIGH 119 110 12 5 233 HIGH 12,226 | | 5 # OF PLOT 5 99 # OF PLOT 5 123 # OF PLOT | 10 S REQ. 10 25 S REQ. 10 10 31 | INF. POP | | SH GR ING SH ST CL SE SH | R FIR-L R FIR-T R FIR-L C CED-L DTAL 68.1 D: 1.0 I R FIR-L R FIR-L C CED-L DTAL 68.1 D: 1.0 H R FIR-L H R FIR-L H R FIR-L IC CED-L OTAL L 68.1 DC CED-L OTAL L 68.1 DC CED-L OTAL L 68.1 DC CED-L OTAL | COEF
VAR.9
42.5
100.2
215.0
400.0
48.2
COEF
VAR.
42.4
100.5
215.0
400.0
53.7
COEF
VAR. | F % S.E.% 11.0 25.8 55.5 103.2 12.4 FF % S.E.% 1.0.9 5.5.5 103.2 13.9 FF .% S.E.% 2 13.0 7 27.8 | | 43 TREES LOW 93 67 4 184 BASAI LOW 96 65 3 177 NET B LOW 9,422 6,362 | AVG 45 46 43 A/ACRE AVG 104 91 10 6 210 AREA/A AVG 108 88 8 3 205 AF/ACRE AVG 10,824 8,809 | HIGH 45 46 43 HIGH 115 114 15 11 236 ACRE HIGH 119 110 12 5 233 HIGH 12,226 11,255 | | 5 # OF PLOT 5 99 # OF PLOT 5 123 # OF PLOT | 10 S REQ. 10 25 S REQ. 10 10 31 | INF. POP. INF. POP. INF. POP. | | SH GR ING SH SE SH | R FIR-L R FIR-T R FIR-L C CED-L DTAL 68.1 D: 1.0 I R FIR-L R FIR-L C CED-L DTAL 68.1 D: 1.0 H R FIR-L IC CED-L OTAL L 68.1 D: 1.0 H R FIR-L IC CED-L OTAL L 68.1 D: 1.0 H R FIR-L IC CED-L OTAL L 68.1 D: 1.0 H R FIR-L | COEF
VAR.9
42.5
100.2
215.0
400.0
48.2
COEF
VAR.
42.4
100.5
215.0
400.0
53.7
COEF
VAR.
50.2 | F % S.E.% 11.0 25.8 55.5 103.2 12.4 FF % S.E.% 10.9 5 55.5 1 103.2 13.9 FF .% S.E.% 2 13.0 7 27.8 0 55.5 | | 43 TREES LOW 93 67 4 BASAI LOW 96 65 3 177 NET B LOW 9,422 | AVG 45 46 43 6/ACRE AVG 104 91 10 6 210 AREA/A AVG 108 88 8 3 205 6F/ACRE AVG 10,824 | HIGH 45 46 43 HIGH 115 114 15 11 236 ACRE HIGH 119 110 12 5 233 HIGH 12,226 | | 5 # OF PLOT 5 99 # OF PLOT 5 123 # OF PLOT | 10 S REQ. 10 25 S REQ. 10 10 31 | INF. POP | | TC PST | TATS | ATTAC | | | PROJEC' | | ISTICS
GE2 | | | PAGE
DATE | 2
3/30/2020 | |--------|-------|-------|-------|-------|---------|----------|---------------|-------|--------------|--------------|-----------------------| | TWP | RGE | SC | TRACT | TYI | E | A | CRES | PLOTS | TREES | CuFt | BdFt | | 34S | 04E | 35 | EDGE2 | 0061 | | | 48.00 | 16 | 82 | S | W | | CL | 68.1 | | COEFF | | NET | BF/ACRE | | | # OF PLOT | S REQ. | INF. POP | | SD: | 1.00 | | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | TOT | AL | | 65.0 | 16.8 | 16,914 | 20,319 | 23,724 | | 180 | 45 | 20 | | CL | 68.1 | | COEFF | | NET | CUFT FT/ | ACRE | | # OF PLOTS F | EQ. | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | SH R | FIR-L | | 47.2 | 12.2 | 2,481 | 2,825 | 3,169 | | | | | | SH R | FIR-T | | 104.3 | 26.9 | 1,654 | 2,263 | 2,872 | | | | | | GR F | IR-L | | 215.0 | 55.5 | 71 | 159 | 248 | | | | | | INC (| CED-L | | 400.0 | 103.2 | | 23 | 47 | | | | | | TOT | AL | | 61.7 | 15.9 | 4,432 | 5,270 | 6,109 | | 162 | 41 | 18 | | TC PSPCST | GR | | Sp | ecies, S | Sort G | rade - B | oard | l Foo | t Vo | lumes (P | roject |) | | | | | | | | |---|----------------|----------------|------|-------------------------|-------------------------|-------------------|------------------|-------|-------------|-----------------------|--------|----------|-----------------|---|---------------------|----------------------|--------------------|------------------------------|-----------------------------| | T34S R04E | S35 T | Гу0061 | 4 | 8.00 | | Project:
Acres | : | ED | GE2
48.0 | 0 | | | | *************************************** | | Page
Date
Time | 4/ | 1
1/202
:05:2 | 0
9AM | | S So | | %
Net | | per Acre | | Total | • | L | og Sca | Net Board F | | Log L | | 26.00 | Ln
Ft |
Avera
Dia
In | ige Lo
Bd
Ft | g
CF/
Lf | Logs
Per
/Acre | | RF L DOO | CU
2M
3M | 12
58
30 | Def% | 1,317
6,273
3,234 | 1,317
6,273
3,234 | | 63
301
155 | 4 76 | 91
24 | 12-16 17+
100
6 | 31 | 14
37 | 100
78
17 | 9 | 8 | 5
13
8
6 | 197
92 | 0.00
1.46
0.68
0.36 | 9.0
6.7
68.5
108.8 | | RF Totals | | 53 | | 10,824 | 10,824 | | 520 | 25 | 60 | 15 | 9 | 19 | 62 | 9 | 27 | 7 | 56 | 0.54 | 193.0 | | RF T DO
RF T DO
RF T DO | 2M
3M | 14
58
28 | | 1,248
5,095
2,466 | 1,248
5,095
2,466 | | 60
245
118 | 100 | 91 | 100
9 | 31 | 33 | 100
94
4 | 6
31 | 3
34
35
25 | 5
12
8
5 | 183
86
29 | 0.00
1.33
0.63
0.31 | 13.4
6.8
59.2
85.7 | | RF Totals | | 43 | | 8,809 | 8,809 | | 423 | 28 | 53 | 19 | 9 | 9 | 70 | 12 | 27 | 6 | 53 | 0.51 | 165.2 | | IC L DO | 4M | 100 | | 113 | 113 | | 5 | | 100 | | 100 | | | | 15 | 6 | | 0.27 | 5.7 | | GF L DO | 4M | 100 | | 573 | 573 | | 28 | 33 | 67 | | 67 | 33 | | | 21 | 7 | | 0.40 | 19.1 | | GF Totals | | 3 | | 573 | 573 | <u> </u> | 28 | 33 | 67 | | 67 | 33 | | | 21 | 7 | 30 | 0.40 | 19.1 | | Totals | | | | 20,319 | 20,319 | | 975 | 26 | 57 | 17 | 11 | 15 | 63 | 10 | 27 | 7 | 53 | 0.52 | 382.9 | Log Stock Table - MBF TC TLOGSTVB Project: EDGE2 T34S R04E S35 T0061 T34S R04E S35 T0061 Page 1 Sample Trees **Plots** Acres Tract Type Twp Rge Sec Date 4/1/2020 47 16 0061 48.00 **34S** 04E 35 EDGE2 11:05:29AM Time Net Volume by Scaling Diameter in Inches % % Net S So Gr Log Gross 30-39 40+ 14-15 16-19 20-23 24-29 Spp T rt de Len 6-7 10-11 12-13 Def **MBF** Spc 4-5 **MBF** 2-3 RF L DO CU 8 63 63 6.7 RF L DO 2M 34 63 13 13 1.4 RF L DO 3M 22 13 8 .8 8 8 L DO 3M 24 17 17 1.8 17 L DO 3M 26 3 3 .3 L DO 3M 28 3 24.9 36 44 155 L DO 3M 34 235 235 26 L DO 3M 40 26 26 2.7 RF 12 1.3 12 RF L DO 4M 16 12 37 3.9 13 24 L DO 4M 20 37 RF .6 L DO 4M 21 6 RF 6 21 21 2.3 RF L DO 4M 22 21 L DO 4M 26 13 1.4 13 RF 13 9 9 9 .9 RF L DO 4M 27 5 5 5 .5 RF L DO 4M 29 3 3 .3 L DO 4M 30 3 12 12 1.3 L DO 4M 33 12 14 14 1.5 L DO 4M 35 14 4 .5 L DO 4M 36 4 4 L DO 4M 37 4 .5 14 1.5 14 14 RF L DO 4M 40 T DO CU T DO CU 9 60 6.4 60 T DO 2M 34 60 RF 22 97 43 24.4 230 T DO 3M 34 230 RF 1.5 14 14 T DO 3M 40 14 17 1.8 17 T DO 4M 15 17 6 T DO 4M 16 6 6 .6 14 RF T DO 4M 19 14 1.5 3 RF T DO 4M 22 3 3 .3 25 2.6 25 RF T DO 4M 26 25 5 .5 RF T DO 4M 29 7 7 .7 7 T DO 4M 30 5 .5 5 RF T DO 4M 35 5 RF T DO 4M 36 4 4 .4 16 RF T DO 4M 40 16 1.7 16 17 17 17 1.8 RF T DO 4M 41 198 178 162 96.6 248 156 RF Totals 942 942 66.7 18 18 GF L DO 4M 20 18 9 9 33.3 GF L DO 4M 22 9 9 18 Totals 28 28 2.8 GF 5 100.0 5 IC L DO 4M 15 Totals 5 5 .6 5 196 198 162 975 975 100.0 257 162 Total All Species | TC PLO | OTTREELIS | ST | | | | | | t Tree
roject | List - V
EDC | | | | | Page
Date | 1
3/30/20 |)20 | |------------|--------------|----------|------------|--------------|----------|------------|--------------|------------------|-----------------|---------------|-----------------|--------|-----------|-----------------|----------------------|----------| | TWP
34S | RGE
04E | SC
35 | TRA
EDG | | | TYI
006 | | | AC | CRES
48.00 | PLOTS
16 | TR | EES
47 | | ED DATE
11/1/2019 | | | Plot | Ттее | | | | Tre | ees | | 16' | Tot | ВА | Trees | Logs | Net | Net | Total | | | No. | No. | Age | SI | Spp St | Me. | Ct. I | DВН | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | | | 61 | | RF L | 1 | | 12.0 | 83 | 60 | 40.0 | 50.93 | 101.9 | 850 | 3,056 | 25 | 9 | | 6101 | 0001
0002 | 61 | | RF L | 1 | | 11.0 | 83 | 60 | 40.0 | 60.61 | 60.6 | 965 | 2,424 | 29 | 7 | | | 0002 | 61 | | RF L | 1 | | 20.0 | 85 | 65 | 40.0 | 18.33 | 36.7 | 961 | 3,484 | 29 | 10 | | | 0003 | 61 | | RF T | 1 | | 12.0 | 83 | 57 | 40.0 | 50.93 | 50.9 | 831 | 3,056 | 25 | 9 | | | | | | | 4 | | 12.7 | 83 | 60 | 160.0 | 180.80 | 250.1 | 3,607 | 12,020 | 108 | 36 | | 6101 | 0001 | 61 | 100 | RF L | 4 | 3 | 13.0 | 86 | 70 | 120.0 | 115.97 | 205.4 | 3,153 | 12,083 | 95 | 36 | | 6102 | 0001 | 61 | | RF T | | 7 | 13.0 | 86 | 67 | 280.0 | 290.32 | 485.5 | 7,242 | 28,188 | 217 | 85 | | | 0002 | | | | | | | | | | 406.20 | 690.9 | 10,395 | 40,271 | 312 | 121 | | 6102 | | | 100 | nn. | | 10 | 13.4 | 86
86 | 68
70 | 400.0 | 406.29
38.66 | 68.5 | 1,051 | 4,028 | 32 | 12 | | 6103 | 0001 | 61 | | RF L | | 1
1 | 13.0 | 86 | 70
70 | 40.0 | 38.66 | 68.5 | 1,051 | 4,028 | 32 | 12 | | | 0002 | 61 | | RF L
RF T | | 1 | 13.0 | 86 | 67 | 40.0 | 41.47 | 69.4 | 1,035 | 4,027 | 31 | 12 | | | 0003 | 61
61 | | RF T | 1 | - | 9.0 | 90 | 24 | 40.0 | 90.54 | 90.5 | 418 | 1,811 | 13 | 5 | | | 0004
0005 | 61 | | RF L | • | 1 | 13.0 | 86 | 70 | 40.0 | 38.66 | 68.5 | 1,051 | 4,028 | 32 | 12 | | | 0003 | | | - Ki E | | | | | | 200.0 | 247.00 | 365.3 | 4,605 | 17,920 | 138 | 54 | | 6103 | | | 100 | 221 | <u> </u> | 4 | 12.2 | 87
86 | 53
70 | 200.0
80.0 | 247.99
77.31 | 136.9 | | 8,055 | 63 | 24 | | 6104 | 0001 | 61 | | RF L | | 2 | 13.0 | 86 | 67 | 80.0 | | 138.7 | | 8,054 | 62 | 24 | | | 0002 | 61 | | RF T | 1 | | 9.0 | 75 | 18 | 40.0 | | | • | 1,811 | 11 | 5 | | | 0003 | 61 | 100 | IC L | | | | | | | | | | | 126 | 54 | | 6104 | | | 100 | | 1 | 4 | 12.1 | 82 | 50 | 200.0 | | 366.2 | | 17,920
9,643 | 136
78 | 29 | | 6105 | 0001 | 61 | | RF L | 2 | | 17.0 | | 85 | 80.0 | | | | 12,223 | 86 | 37 | | | 0002 | 61 | | RF T | 3 | | 12.0 | | 70
80 | 120.0
80.0 | | | | 9,729 | 69 | 29 | | | 0003 | 61 | | RF L | 2 | | 14.0
14.0 | | 80 | 160.0 | | | | | 138 | 58 | | | 0004 | 61 | | RF T | 2 | t
I | 10.0 | | 65 | 40.0 | | | | | 25 | 11 | | | 0005 | 61 | 100 | RF L | | | 10.0 | | | | | | | | 206 | 164 | | 6105 | | | 100 | | 12 | | 13.2 | | | 480.0 | | | | | 396
63 | 24 | | 6106 | 0001 | 61 | | RF L | | 2 | 13.0 | | | 80.0
80.0 | | | | | 62 | 24 | | | 0002 | 61 | 100 | RF T | | 2 | 13.0 | 86 | 67 | 80.0 | 02.93 | | | | | | | 6106 | | | 100 |) | | 4 | | | | 160.0 | | | | | 125 | 48
14 | | 6107 | 0001 | 61 | | RFL | | 1 | 20.1 | | | 40.0 | | | | | 37
36 | 15 | | 1 | 0002 | 61 | | RFT | | 1 | 16.3 | | | 40.0 | | | | | 37 | 12 | | | 0003 | 61 | | RFL | | 1 | 20.0 | | | 40.0 | | | | | 40 | 15 | | | 0004 | 61 | | RFT | | 1 | 17.7 | | | 40.0
40.0 | | | | | 38 | 14 | | Ì | 0005 | 61 | | RFT | | 1 | 19.8
16.0 | | | 40.0 | | | | | 34 | 14 | | | 0006 | 61 | 100 |) RFL | | 1 | 10.0 | 09 | - 00 | | | | | | | | | 6107 | | | 100 | | 6 | | 18.1 | | | 240.0 | | | | | 223
63 | 83
24 | | 6108 | | 61 | | RFL | | 2 | | | | 80.0 | | | | | 62 | 24 | | | 0002 | 61 | 100 | RFT | | 2 | 13.0 |) 86 | 67 | 80.0 | 0 82.95 |) 136. | 7 2,003 | , 6,054 | | | | 6108 | } | | 100 |) | | 4 | 13.5 | 5 86 | 68 | 160. | 0 160.26 | | | | 125 | 48 | | 6109 | | 61 | 100 | RFL | | 2 | 12.0 |) 86 | 72 | 80. | | | | | 58 | 24 | | | 0002 | 61 | | O RFT | | 1 | 12.0 | | | 40. | | | | | 29
65 | 12
20 | | | 0003 | 61 | | 0 RFL | | 2 | 16.0 | | | 80. | | | | | 65
32 | 1: | | | 0004 | 61 | | 0 RFT | | 1 | 16.0 | | | 40. | | | | | | 10 | | | 0005 | 61 | 1 10 | 0 RFT | | I | 14.0 | 0 81 | 72 | 40. | 0 37.4 | 2 74. | 0 1,07 | | | | | 6109 |) | | 10 | 0 | 7 | | 13.0 | 6 8: | 5 72 | 280. | | | | | | 8 | | 6110 | | 6 | | 0 RFL | | | 13.0 | 0 80 | 5 70 | 40. | 0 38.6 | 6 68. | 5 1,05 | 1 4,028 | 32 | 1: | | Z114 | n | | 10 | 0 | | | 13. | 8 80 | 5 70 | 40. | 0 38.6 | 6 68 | .5 1,05 | 1 4,028 | 32 | 1 | | 6110 | | 6 | | 0 RFL | | 1 | 11.0 | | | 40. | | | | 3 2,424 | 22 | | | 1 311 | 0001 | | | 0 RFL | | i | 13. | | 6 63 | 40. | .0 43.4 | 0 86 | .8 88 | 7 3,472 | 27 | 1 | | TC PL | OTTREEL | IST | | | | | Plo | t Tree | List - V | olumes | | | | Page | 2 | | |-------|---------|-----|-----|--------|---------------|-------|------|--------|----------|--------|--------|-------|----------|----------|----------|-----| | ODF | | | | | | | P | roject | EDG | E2 | | | | Date | 3/30/20 |)20 | | TWP | RGE | SC | TRA | СТ | | TYF | PΕ | | AC | ERES | PLOTS | TF | REES | CRUISE | ED DATE | | | 34S | 04E | 35 | EDG | | | 006 | 1 | | | 48.00 | 16 | | 47 | 1 | 1/1/2019 | | | Plot | Ттее | | | | Tre | es | | 16' | Tot | BA | Trees | Logs | Net | Net | Total | | | No. | No. | Age | SI | Spp St | | Ct. I | рвн | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | 6111 | | | 100 | | 2 | | 11.9 | 84 | 56 | 80.0 | 104.01 | 147.4 | 1,610 | 5,896 | 48 | 18 | | 6112 | 0001 | 61 | | RF L | _ | 2 | 13.0 | 86 | 70 | 80.0 | 77.31 | 136.9 | 2,102 | 8,055 | 63 | 24 | | 0112 | 0002 | 61 | | GF L | | 1 | 11.0 | 81 | 61 | 40.0 | 50.93 | 101.9 | 850 | 3,056 | 25 | 9 | | 6112 | | | 100 | · | | 3 | 13.1 | 84 | 66 | 120.0 | 128.24 | 238.8 | 2,952 | 11,111 | 89 | 33 | | 6113 | 0001 | 61 | | RF L | 1 | | 12.0 | 81 | 60 | 40.0 | 50.93 | 101.9 | 837 | 3,056 | 25 | 9 | | 0115 | 0002 | 61 | | GF L | 1 | | 12.0 | 81 | 61 | 40.0 | 50.93 | 101.9 | 850 | 3,056 | 25 | | | 6113 | | | 100 | | 2 | | 12.0 | 81 | 61 | 80.0 | 101.86 | 203.7 | 1,687 | 6,112 | 51 | 1 | | 6114 | 0001 | 61 | | RF L | | 4 | 13.0 | 86 | 70 | 160.0 | 154.63 | 273.9 | 4,204 | 16,110 | 126 | 4 | | OIII | 0002 | 61 | | RF T | | 1 | 13.0 | 86 | 67 | 40.0 | 41.47 | 69.4 | 1,035 | 4,027 | 31 | 12 | | 6114 | | | 100 | -10 | | 5 | 13.7 | 86 | 69 | 200.0 | 196.10 | 343.2 | 5,239 | | 157 | 6 | | 6115 | 0001 | 61 | 100 | RF L | 2 | | 17.0 | 89 | 76 | 80.0 | 50.75 | 101.5 | 2,320 | | 70 | 2 | | | 0002 | 61 | 100 | RF T | 1 | | 13.0 | 86 | 66 | 40.0 | 43.40 | 43.4 | | | 26 | | | | 0003 | 61 | 100 | RF T | 1 | | 10.0 | 89 | 65 | 40.0 | 73.34 | 73.3 | | • | 25 | _ | | | 0004 | 61 | 100 | RF T | 2 | | 19.0 | 86 | 78 | 80.0 | 40.63 | 81.3 | • | , | 70 | 2 | | | 0005 | 61 | 100 | RF L | 1 | | 20.0 | 86 | 78 | 40.0 | 18.33 | | • | • | 36 | 1 | | | 0006 | 61 | 100 | RF L | 1 | | 10.0 | 89 | 74 | 40.0 | 73.34 | 73.3 | 936 | 4,400 | 28 | 1 | | 6115 | | | 100 | | 8 | | 14.0 | 88 | 72 | 320.0 | 299.79 | 409.5 | | | 254 | 9 | | 6116 | 0001 |
61 | 100 | RF L | | 2 | 13.0 | 86 | 70 | 80.0 | 77.31 | 136.9 | 2,102 | | 63 | 2 | | | 0002 | 61 | 100 | RF T | | 1 | 13.0 | 86 | 67 | 40.0 | 41.47 | 69.4 | · · | | 31 | 1 | | | 0003 | 61 | 100 | GF L | | 1 | 11.0 | 81 | 61 | 40.0 | 50.93 | 101.9 | 850 | 3,056 | 25 | | | 6116 | | | 100 | 1 | | 4 | 13.1 | 84 | 67 | 160.0 | 169.72 | 308.2 | | | 120 | 4 | | TYPE | | | 100 |) | 43 | 39 | 13.4 | | 67 | 205.0 | 209.82 | 360.5 | 5,270 | 20,319 | 2,530 | 97 | | C PSTATS | | | | | DJECT S
ROJECT | TATIS
EDG | | | | PAGE
DATE | 1
3/30/2020 | |--|------------|--|---|---------|---|--|---|--------|--------------------------------|--------------------------|--------------------------------| | WP RGE | SC | TRACT | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ГҮРЕ | | AC | RES | PLOTS | TREES | CuFt | BdFt | | 35S 04E | 04 | EDGE2 | , | 0063 | | | 31.90 | 14 | 56 | S | W | | | | <u> </u> | | | TREES | I | ESTIMATED
TOTAL | | ERCENT
SAMPLE | | | | | | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOTAL | | 14 | 56 | | 4.0 | | | | | | | | CRUISE DBH COUNT | , | 7 | 28 | | 4.0 | | 2,497 | | 1.1 | | | | COUNT
BLANKS
100 % | | 7 | 28 | | 4.0 | | | | | | | | | | | | STA | ND SUMM | IARY | | | | | | | | 5 | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | PONDEROS- | Т | 15 | 49.3 | 17.9 | 78 | 20.3 | 85.7 | 8,681 | 8,681 | 2,384 | 2,383 | | CON FIR-L | | 6 | 11.8 | 21.1 | 87 | 6.2 | 28.6 | 3,977 | 3,977 | 945 | 945 | | CON FIR-T | | 1 | 2.3 | 26.0 | 97 | 1.7 | 8.6 | 1,255 | 1,255 | 289 | 289 | | DOUG FIR-L | , | 5 | 14.1 | 20.2 | 87 | 7.0 | 31.4 | 3,851 | 3,851 | 994 | 992 | | INC CED-L | | 1 | .8 | 37.0 | 94 | 0.9 | 5.7 | 750 | 750 | 183 | 183 | | TOTAL | | 28 | 78.3 | 19.4 | 82 | 36.4 | 160.0 | 18,514 | 18,514 | 4,795 | 4,792 | | CL 68.1 | 8.1 | COEFF | T OF 100 1 | HE VOLU | SAMPL! | | HIN THE SA | | OF TREES | REQ. | INF. POP. | | SD: 1.0 | | VAR.% | S.E.% |] | LOW | AVG | HIGH | | 5 | 10 | 1 | | PONDEROS | T | 48.4 | 100 | | | | | | | | | | CON FIR-L | -1 | 55.5 | 13.9
27.6 | | 230
433 | 267
598 | 304
763 | | | | | | | | | | | | | | | | | | | CON FIR-L
CON FIR-T
DOUG FIR-I | | 55.5 | 27.6 | | 433 | 598 | 763 | | 184 | 46 | 2 | | CON FIR-L
CON FIR-T
DOUG FIR-I
INC CED-L
TOTAL | | 55.5
49.7 | 27.6
24.7 | | 433
235 | 598
312
382 | 763
389
<i>433</i> | # | <i>184</i>
OF TREES | | INF. POP. | | CON FIR-L
CON FIR-T
DOUG FIR-I
INC CED-L | | 55.5
49.7
66.6 | 27.6
24.7 | | 433235330 | 598
312
382 | 763
389
<i>433</i> | # | | | | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 | | 55.5
49.7
66.6
COEFF | 27.6
24.7
13.6 | | 433
235
330
SAMPL | 598 312 382 E TREE AVG 72 | 763 389 433 S - CF HIGH 80 | # | OF TREES | REQ. | INF. POP. | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T | -T | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7 | 27.6
24.7
13.6
S.E.%
10.6
22.7 | | 433 235 330 SAMPL LOW 64 106 | 598 312 382 E TREE AVG 72 137 | 763 389 433 S - CF HIGH 80 168 | ħ | OF TREES | REQ. | INF. POP. | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L | -T | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0 | 27.6
24.7
13.6
S.E.%
10.6
22.7 | | 433 235 330 SAMPL LOW 64 106 63 | 598 312 382 E TREE AVG 72 137 78 | 763 389 433 S - CF HIGH 80 168 | ħ | OF TREES
5 | REQ.
10 | INF. POP. | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-T | -T | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7 | 27.6
24.7
13.6
S.E.%
10.6
22.7 | | 433 235 330 SAMPL LOW 64 106 63 84 | 598 312 382 E TREE AVG 72 137 78 95 | 763 389 433 S - CF HIGH 80 168 | | F OF TREES 5 | 3 REQ.
10 | INF. POP. | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 | -T | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF | 27.6
24.7
13.6
S.E.%
10.6
22.7
19.4
11.3 | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ | 598 312 382 E TREE AVG 72 137 78 95 ACRE | 763 389 433 S - CF HIGH 80 168 94 106 | | FOF TREES 5 128 FOF PLOTS | 32
32 REQ. | INF. POP. | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 | -Т | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF
VAR.% | 27.6
24.7
13.6
S.E.%
10.6
22.7
19.4
11.3
S.E.% | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ | 598 312 382 E TREE AVG 72 137 78 95 ACRE AVG | 763 389 433 S - CF HIGH 80 168 94 106 HIGH | | F OF TREES 5 | 3 REQ.
10 | INF. POP. | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS | -Т | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF
VAR.%
80.0 | 27.6 24.7 13.6 S.E.% 10.6 22.7 19.4 11.3 S.E.% 22.2 | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ LOW 38 | 598 312 382 E TREE AVG 72 137 78 95 ACRE AVG 49 | 763 389 433 S - CF HIGH 80 168 94 106 HIGH 60 | | FOF TREES 5 128 FOF PLOTS | 32
32 REQ. | INF. POP. | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-L | -Т | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF
VAR.%
80.0
147.9 | 27.6 24.7 13.6 S.E.% 10.6 22.7 19.4 11.3 S.E.% 22.2 41.0 | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ LOW 38 7 | 598 312 382 E TREE AVG 72 137 78 95 ACRE AVG 49 12 | 763 389 433 S - CF HIGH 80 168 94 106 HIGH 60 17 | | FOF TREES 5 128 FOF PLOTS | 32
32 REQ. | INF. POP. | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T CON FIR-L CON FIR-L CON FIR-L | -T | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF
VAR.%
80.0
147.9
270.2 | 27.6 24.7 13.6 S.E.% 10.6 22.7 19.4 11.3 S.E.% 22.2 41.0 74.8 | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ LOW 38 7 1 | 598 312 382 E TREE AVG 72 137 78 95 ACRE AVG 49 12 2 | 763 389 433 S - CF HIGH 80 168 94 106 HIGH 60 17 4 | | FOF TREES 5 128 FOF PLOTS | 32
32 REQ. | INF. POP. | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-I CON FIR-T DOUG FIR-I DOUG FIR-I CON FIR-T DOUG FIR-I CON FIR-T DOUG FIR-T DOUG FIR-T | -T | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF
VAR.%
80.0
147.9
270.2
98.6 | 27.6 24.7 13.6 S.E.% 10.6 22.7 19.4 11.3 S.E.% 22.2 41.0 74.8 27.3 | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ LOW 38 7 1 10 | 598 312 382 E TREE AVG 72 137 78 95 ACRE AVG 49 12 2 14 | 763 389 433 S - CF HIGH 80 168 94 106 HIGH 60 17 4 18 | | FOF TREES 5 128 FOF PLOTS | 32
32 REQ. | INF. POP. | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-I CON FIR-T DOUG FIR-I CON FIR-T DOUG FIR-I CON FIR-T DOUG FIR-I CON FIR-T DOUG FIR-I INC CED-L | -T |
55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF
VAR.%
80.0
147.9
270.2
98.6
254.2 | 27.6 24.7 13.6 S.E.% 10.6 22.7 19.4 11.3 S.E.% 22.2 41.0 74.8 27.3 70.4 | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ LOW 38 7 1 10 0 | 598 312 382 E TREE AVG 72 137 78 95 ACRE AVG 49 12 2 14 1 | 763 389 433 S - CF HIGH 80 168 94 106 HIGH 60 17 4 18 1 | | FOF TREES 5 128 FOF PLOTS | 32
32 REQ. | INF. POP. | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CON FIR-T DOUG FIR-I CON FIR-T DOUG FIR-I CON FIR-T DOUG FIR-I INC CED-L TOTAL | -T | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF
VAR.%
80.0
147.9
270.2
98.6
254.2
33.5 | 27.6 24.7 13.6 S.E.% 10.6 22.7 19.4 11.3 S.E.% 22.2 41.0 74.8 27.3 | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ LOW 38 7 1 10 0 71 | 598 312 382 E TREE AVG 72 137 78 95 ACRE AVG 49 12 2 14 1 78 | 763 389 433 S - CF HIGH 80 168 94 106 HIGH 60 17 4 18 1 86 | # | # OF TREES 5 128 # OF PLOTS 5 | 32
32
3 REQ.
10 | INF. POP. | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-I CON FIR-T DOUG FIR-I CON FIR-T DOUG FIR-T DOUG FIR-T CON FIR-T CON FIR-T CON FIR-T CON FIR-T CON CED-L TOTAL CL 68.1 | -T | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF
VAR.%
80.0
147.9
270.2
98.6
254.2
33.5
COEFF | 27.6 24.7 13.6 S.E.% 10.6 22.7 19.4 11.3 S.E.% 22.2 41.0 74.8 27.3 70.4 9.3 | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ LOW 38 7 1 10 0 71 BASAL | 598 312 382 ETREE AVG 72 137 78 95 ACRE AVG 49 12 2 14 1 78 AREA/A | 763 389 433 S - CF HIGH 80 168 94 106 HIGH 60 17 4 18 1 86 ACRE | # | FOF TREES 5 128 FOF PLOTS 5 | 32
32
3 REQ.
10 | INF. POP. INF. POP. INF. POP | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-T DOUG FIR-T DOUG FIR-T L CON C C C C C C C C C C C C C C C C C C | -T | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF
VAR.%
80.0
147.9
270.2
98.6
254.2
33.5
COEFF
VAR.% | 27.6 24.7 13.6 S.E.% 10.6 22.7 19.4 11.3 S.E.% 22.2 41.0 74.8 27.3 70.4 9.3 S.E.% | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ LOW 38 7 1 10 0 71 BASAL LOW | 598 312 382 ETREE AVG 72 137 78 95 ACRE AVG 49 12 2 14 1 78 AREA/A | 763 389 433 S - CF HIGH 80 168 94 106 HIGH 60 17 4 18 1 86 ACRE HIGH | # | # OF TREES 5 128 # OF PLOTS 5 | 32
32
3 REQ.
10 | INF. POP | | CON FIR-L CON FIR-T DOUG FIR-T INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-T DOUG FIR-T DOUG FIR-T L CON FIR-T DOUG FIR-T DOUG FIR-T L CON FIR-T DOUG FIR-T INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-T DOUG FIR-T INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS | -T | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF
VAR.%
80.0
147.9
270.2
98.6
254.2
33.5
COEFF
VAR.%
81.6 | 27.6 24.7 13.6 S.E.% 10.6 22.7 19.4 11.3 S.E.% 22.2 41.0 74.8 27.3 70.4 9.3 S.E.% 22.6 | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ LOW 38 7 1 10 0 71 BASAL LOW 66 | 598 312 382 ETREE AVG 72 137 78 95 ACRE AVG 49 12 2 14 1 78 AREA/A AVG 86 | 763 389 433 S - CF HIGH 80 168 94 106 HIGH 60 17 4 18 1 86 ACRE HIGH 105 | # | FOF TREES 5 128 FOF PLOTS 5 | 32
32
3 REQ.
10 | INF. POP. 1 INF. POP. 1 | | CON FIR-L CON FIR-T DOUG FIR-T INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-T DOUG FIR-T DOUG FIR-T DOUG FIR-T DOUG FIR-T INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L | -T | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF
VAR.%
80.0
147.9
270.2
98.6
254.2
33.5
COEFF
VAR.%
81.6
139.2 | 27.6 24.7 13.6 S.E.% 10.6 22.7 19.4 11.3 S.E.% 22.2 41.0 74.8 27.3 70.4 9.3 S.E.% 22.6 38.6 | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ LOW 38 7 1 10 0 71 BASAL LOW 66 18 | 598 312 382 E TREE AVG 72 137 78 95 ACRE AVG 49 12 2 14 1 78 AREA/A AVG 86 29 | 763 389 433 S - CF HIGH 80 168 94 106 HIGH 60 17 4 18 1 86 ACRE HIGH 105 40 | # | FOF TREES 5 128 FOF PLOTS 5 | 32
32
3 REQ.
10 | INF. POP. INF. POP. INF. POP | | CON FIR-L CON FIR-T DOUG FIR-T INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-T DOUG FIR-T DOUG FIR-T DOUG FIR-T CON | -T
-T | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF
VAR.%
80.0
147.9
270.2
98.6
254.2
33.5
COEFF
VAR.%
81.6
139.2
270.2 | 27.6 24.7 13.6 S.E.% 10.6 22.7 19.4 11.3 S.E.% 22.2 41.0 74.8 27.3 70.4 9.3 S.E.% 22.6 38.6 74.8 | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ LOW 38 7 1 0 0 71 BASAL LOW 66 18 2 | 598 312 382 E TREE AVG 72 137 78 95 ACRE AVG 49 12 2 14 1 78 AREA/A AVG 86 29 9 | 763 389 433 S - CF HIGH 80 168 94 106 HIGH 60 17 4 18 1 86 ACRE HIGH 105 40 15 | # | FOF TREES 5 128 FOF PLOTS 5 | 32
32
3 REQ.
10 | INF. POP. INF. POP. INF. POP | | CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-I CON FIR-T DOUG FIR-T DOUG FIR-T DOUG FIR-T DOUG FIR-T DOUG FIR-T | -T -T -T L | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF
VAR.%
80.0
147.9
270.2
98.6
254.2
33.5
COEFF
VAR.%
81.6
139.2
270.2
102.0 | 27.6 24.7 13.6 S.E.% 10.6 22.7 19.4 11.3 S.E.% 22.2 41.0 74.8 27.3 70.4 9.3 S.E.% 22.6 38.6 74.8 28.3 | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ LOW 38 7 1 10 0 71 BASAL LOW 66 18 2 23 | 598 312 382 E TREE AVG 72 137 78 95 ACRE AVG 49 12 2 14 1 78 AREA/A AVG 86 29 9 31 | 763 389 433 S - CF HIGH 80 168 94 106 HIGH 60 17 4 18 1 86 ACRE HIGH 105 40 15 40 | # | FOF TREES 5 128 FOF PLOTS 5 | 32
32
3 REQ.
10 | INF. POP. INF. POP. INF. POP | | CON FIR-L CON FIR-T DOUG FIR-T INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-L CON FIR-T DOUG FIR-I INC CED-L TOTAL CL 68.1 SD: 1.0 PONDEROS CON FIR-T DOUG FIR-T DOUG FIR-T DOUG FIR-T CON | -T -T -T L | 55.5
49.7
66.6
COEFF
VAR.%
36.8
45.7
39.0
55.4
COEFF
VAR.%
80.0
147.9
270.2
98.6
254.2
33.5
COEFF
VAR.%
81.6
139.2
270.2 | 27.6 24.7 13.6 S.E.% 10.6 22.7 19.4 11.3 S.E.% 22.2 41.0 74.8 27.3 70.4 9.3 S.E.% 22.6 38.6 74.8 | | 433 235 330 SAMPL LOW 64 106 63 84 TREES/ LOW 38 7 1 0 0 71 BASAL LOW 66 18 2 | 598 312 382 E TREE AVG 72 137 78 95 ACRE AVG 49 12 2 14 1 78 AREA/A AVG 86 29 9 | 763 389 433 S - CF HIGH 80 168 94 106 HIGH 60 17 4 18 1 86 ACRE HIGH 105 40 15 | # | FOF TREES 5 128 FOF PLOTS 5 | 32
32
3 REQ.
10 | INF. POP. INF. POP. INF. POP | PAGE PROJECT STATISTICS TC PSTATS DATE 3/30/2020 **PROJECT** EDGE2 ODF BdFt CuFt **PLOTS** TREES **TYPE ACRES** TWP RGE SC TRACT S W56 31.90 14 0063 EDGE2 35S 04E 04 # OF PLOTS REQ. INF. POP. **NET BF/ACRE** COEFF CL 68.1 15 10 LOW AVG HIGH 5 VAR.% S.E.% SD: 1.0 8,681 10,675 PONDEROS-T 82.9 23.0 6,686 5,579 3,977 CON FIR-L 145.4 40.3 2,375 2,195 74.8 316 1,255 CON FIR-T 270.2 2,759 3,851 4,942 28.4 DOUG FIR-L 102.3 750 1,278 222 70.4 INC CED-L 254.2 7 15 20,423 60 18,514 16,605 TOTAL 37.2 10.3 INF. POP. # OF PLOTS REQ. NET CUFT FT/ACRE **COEFF** CL 68.1 10 15 LOW HIGH 5 AVG S.E.% VAR.% SD: 1.0 2,925 2,383 PONDEROS-T 82.3 22.8 1,840 574 945 1,316 141.7 39.2 CON FIR-L 73 289 505 270.2 74.8 CON FIR-T 713 992 1,272 28.2 DOUG FIR-L 101.8 312 183 54 INC CED-L 254.2 70.4 5 11 45 4,792 9.0 32.5 TOTAL 4,361 5,223 | TC PSPCSTGR | | Sp | oecies, S | Sort G | rade - E | Boar | d Foo | ot Vo | olume | es (P | roject | :) | | | | | | | | |-------------------------------------|------------|--------|-----------------------|-----------------------|------------------|----------------|-------|----------------|----------------|---------|----------|-------|------------------|-------|---------------|----------------------|-----------|----------------------|-----------------------------| | T35S R04E S0 | 04 Ty0063 | 3 | 31.90 | | Project
Acres | t: | ED | GE2
31.9 | 90 | | | | · | | | Page
Date
Time | | 1
1/202
:14:2 | 0
3AM | | l | % | | | | | | Perc | ent of | Net Bo | oard Fo | oot Volu | me | | | | Avera | ge Lo | g | Logs | | S So Gr | Net | Bd. Ft | . per Acre | | Total | | L | og Sca | le Dia. | | | Log L | ength | | Ln | Dia | Bd | CF/ | Per | | Spp T rt ad | l BdFt | Def% | Gross | Net | Net MBF | | 4-5 | 6-11 | 12-16 | 17+ | 12-20 | 21-30 | 31-35 | 36-99 | Ft | In | Ft | Lf | /Acre | | PP T DOCU
PP T DO3M
PP T DO4M | 1 79 | .0 | 6,924
1,756 | 6,924
1,756 | | 221
56 | 58 | 48
29 | 43
13 | 9 | 15 | 73 | 100 | 8 | 8
34
23 | 5
10
6 | | 0.00
1.10
0.46 | 6.2
49.3
51.0 | | PP Totals | 47 | | 8,681 | 8,681 | | 277 | 12 | 44 | 37 | 7 | 3 | 15 | 80 | 2 | 27 | 8 | 82 | 0.82 | 106.5 | | WF L DO3M | | | 3,026
951 | 3,026
951 | | 97
30 | 40 | 13
17 | 47
43 | 40 | | 38 | 100
53 | 8 | 34
29 | 13
7 | 257
62 | 1.61
0.68 | 11.8
15.3 | | WF Totals | 21 | | 3,977 | 3,977 | | 127 | 10 | 14 | 46 | 30 | | 9 | 89 | 2 | 31 | 10 | 147 | 1.13 | 27.1 | | WF T DO3M
WF T DO4M | | | 907
349 | 907
349 | | 29
11 | 20 | | 80 | 100 | | 100 | 100 | | 34
24 | 17
9 | | 2.49
0.82 | 2.3
4.6 | | WF Totals | 7 | | 1,255 | 1,255 | | 40 | 6 | | 22 | 72 | | 28 | 72 | | 27 | 11 | 180 | 1.51 | 7.0 | | IC L DO4M | 1 100 | | 750 | 750 | | 24 | 3 | | 24 | 72 | | 28 | 72 | | 28 | 14 | 327 | 2.88 | 2.3 |
 IC Totals | 4 | | 750 | 750 | | 24 | 3 | | 24 | 72 | | 28 | 72 | | 28 | 14 | 327 | 2.88 | 2.3 | | DF L DO2N
DF L DO3N
DF L DO4N | 44
4 22 | .0 | 1,345
1,693
813 | 1,345
1,693
813 | | 43
54
26 | 57 | 35
22
20 | 51
65
21 | 49 | 21 | 42 | 100
100
18 | 20 | 34
29 | 16
12
6 | 46 | | 3.7
10.4
17.8
32.0 | | DF Totals Totals | 21 | 0.0 | 3,851
18,514 | 3,851
18,514 | | 591 | 11 | 28 | 40 | 21 | 2 | 14 | 82 | 2 | 29 | 9 | | 0.96 | 174.8 | TC PLOGSTVB Log Stock Table - MBF Page EDGE2 31.90 Project: T35S R04E S04 Ty0063 Date 4/1/2020 31.90 Acres Time 11:14:23AM Net Volume by Scaling Diameter in Inches % Def Net So Gr Log Gross 30-39 40+ 20-23 24-29 8-9 10-11 12-13 14-15 16-19 rt de Len **MBF** Spc **MBF** % T Spp 43 16 78 21 41 22 79.8 221 221 DO 3M 34 PP 4 1.4 15 4 DO 4M PP T 4 1.6 Т 20 DO 4M PP 3.0 8 21 PP T DO 4M 2.5 1 6 22 7 PP T DO 4M 6 4.4 12 23 PP T DO 4M 2 .8 T DO 4M 24 2 PP 2.6 T DO 4M 26 PP .5 Т DO 4M 27 PP 1.1 3 29 PP T DO 4M 2 .7 32 2 PP T DO 4M 2 2 .8 37 2 PP T DO 4M 2 .8 39 2 PP Т DO 4M 23 78 21 41 59 33 22 277 Totals 277 46.9 PP 13 32 39 12 97 76.1 L DO 3M 34 97 WF 5 5.0 1 6 6 22 DO 4M WF 4.2 5 5 DO 4M 26 WF 3 3 2.4 33 3 DO 4M WF L 13 10.3 13 WF DO 4M 34 13 L 3 2.0 3 38 3 WF L DO 4M 39 13 45 12 5 12 127 21.5 Totals 127 WF 29 72.2 29 29 T DO 3M WF 9 11 27.8 2 DO 4M 24 11 WF Т 9 29 40 6.8 2 Totals 40 WF 6 24.5 DO 4M 24 6 6 IC 3.1 1 IC DO 4M 25 1 17 72.4 17 17 DO 4M 34 IC 17 6 24 4.1 1 24 Totals IC 43 34.9 43 43 L DO 2M DF 35 19 44.0 54 54 DO 3M 34 DF L 4.4 5 DO 4M 20 DF 1 DO 4M 21 DF 6 7 1 7 5.7 22 DO 4M DF 3 2.2 3 3 DF DO 4M | TC F | PLO | GSTVB | | | | | Log | Stock | Table | - MBF | 7 | | | | | | | | | |-------|-----|---------|------|-------|-----|---|---------------|-------|-------|------------|-------|--------|--------|-----------|---------------|----------------------|-------|---------------------|-----| | T35 | | | | | | *************************************** | Proje
Acre | | EDC | GE2
31. | 90 | | | | | Page
Date
Time | | 2
/2020
14:23 | AM | | | s | So Gr | Log | Gross | Def | Net | % | | ľ | let Volu | me by | Scalin | g Diam | eter in l | Inches | | | | | | Spp | Т | rt de | | 1 | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 | 40+ | | DF | L | DO 41 | M 34 | | 5 | 5 | 3.7 | | 5 | | | | | | | | | | | | DF | L | DO 4 | M 40 | : | 5 | 5 | 4.1 | | 5 | | | | | | | | | | | | DF | | Tota | als | 12: | 3 | 123 | 20.8 | | 15 | | | 25 | 40 | | 43 | | | | | | Total | | All Spe | cies | 59 | 1 | 591 | 100.0 | | 62 | 22 | 53 | 89 | 86 | 124 | 98 | 56 | | | | . | C PLC | OTTREELIS | ST | | | | | | | List - V | | | | | Page
Date | 1
3/30/20 | 20 | |-----------|--------------|----------|------------|--------------|-----|-----|--------------|----------|-----------------|--------------------|-------------|---------|----------|--------------|--------------|----------| | ODF | | | | | | | | roject | EDG | | | | | w | | | | TWP
5S | RGE
04E | SC
04 | TRA
EDG | | | | /PE
163 | | AC | RES
31.90 | PLOTS
14 | TRI | 28
28 | CRUISE
1 | 1/1/2019 | | | Plot | Tree | | | | Tre | ees | | 16' | Tot | ВА | Trees | Logs | Net | Net | Total | | | No. | No. | Age | SI | Spp St | Me. | Ct. | DBH | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | | | 65 | | DF L | | 2 | 20.0 | 85 | 87 | 80.0 | 35.97 | 81.4 | 2,526 | 9,802 | 58 | 22 | | 6301 | 0001
0002 | 65 | | PP T | | 1 | | 83 | 78 | 40.0 | 22.99 | 46.8 | 1,112 | 4,051 | 25 | 9 | | | 0002 | | | | * | | | 0.4 | | 120.0 | 58.97 | 128.2 | 3,638 | 13,853 | 83 | 32 | | 6301 | | | 100 | DD III | | 3 | 19.3
24.0 | 84
83 | 83
88 | 40.0 | 12.73 | 25.5 | 1,229 | 4,329 | 28 | 10 | | 6302 | 0001 | 65 | | PP T | 1 | | 13.0 | 82 | 60 | 40.0 | 43.40 | 43.4 | 724 | 2,170 | 17 | 5 | | | 0002 | 65
65 | | PP T
WF L | 1 | | 21.0 | 90 | 86 | 40.0 | 16.63 | 33.3 | 1,240 | 4,656 | 28 | 11 | | | 0003 | 65
65 | | IC L | 1 | | 37.0 | 80 | 94 | 40.0 | 5.36 | 16.1 | 1,283 | 5,250 | 29 | 12 | | | 0004
0005 | 65 | | DF L | 1 | | 17.0 | 86 | 93 | 40.0 | 25.38 | 50.8 | 1,291 | 4,822 | 29 | 11 | | | 0003 | | | DI D | | | | | | | 102.40 | 168.9 | 5,766 | 21,227 | 131 | 48 | | 6302 | | | 100 | | 5 | | 18.8 | 84 | 77 | 200.0
120.0 | 103.49 | 140.4 | 3,336 | 12,153 | 76 | 28 | | 6303 | 0001 | 65 | | PP T | | 3 | | | 78
87 | 40.0 | 16.50 | 37.9 | 1,324 | 5,568 | 30 | 13 | | | 0002 | 65 | 100 | WF L | | 1 | 21.0 | 87 | 07 | 40.0 | | | | | 106 | 4.0 | | 6303 | | | 100 | | | 4 | 18.5 | 84 | 80 | 160.0 | 85.49 | 178.3 | 4,659 | 17,721 | 106 | 40
12 | | 6304 | 0001 | 65 | 100 | PP T | 1 | | 21.0 | 83 | 102 | 40.0 | 16.63 | 49.9 | 1,357 | 5,322 | 31
21 | 12 | | | 0002 | 65 | 100 | PP T | 1 | | 13.0 | | 72 | 40.0 | 43.40 | 86.8 | 908 | 3,472 | 27 | 10 | | | 0003 | 65 | 100 | WF L |] | İ | 19.0 | 87 | 82 | 40.0 | 20.32 | 40.6 | 1,191 | 4,266 | 21 | | | 6304 | | | 100 | | 3 | _ | 16.5 | 84 | 81 | 120.0 | 80.34 | 177.3 | 3,456 | 13,060 | 79 | 30 | | 6305 | 0001 | 65 | | PP T | | | 2 17.0 | 83 | 78 | 80.0 | 45.99 | 93.6 | 2,224 | 8,102 | 51 | 18 | | 0505 | 0002 | 65 | | DF L | | | 1 20.0 | 85 | 87 | 40.0 | 17.99 | 40.7 | 1,263 | 4,901 | 29 | 1 | | | | | 100 | | | | 3 18.5 | 84 | 81 | 120.0 | 63.97 | 134.3 | 3,487 | 13,003 | 79 | 3(| | 6305 | 0001 | 65 | 100 | PP T | | 2 | 15.5 | | | 80.0 | | 122.1 | 2,103 | 7,326 | 48 | 17 | | 6306 | 0001 | 65 | | PP T | | 1 | 27.0 | | | 40.0 | 10.06 | 30.2 | 1,428 | 6,439 | 33 | 1: | | | 0002 | 65 | | PPT | | 1 | 23.0 | | 94 | 40.0 | 13.86 | 41.6 | 1,202 | 4,575 | 27 | 10 | | | 0005 | _ | | | | | 10 | . 02 | 82 | 160.0 | 84.98 | 193.9 | 4,733 | 18,340 | 108 | 4: | | 6306 | | | 100 | | 44 | | 18.6 | | | 40.0 | | | 1,283 | | 29 | 1: | | 6307 | 0001 | 65 | | ICL | | | 1 20.0 | | | 40.0 | | | 1,263 | | 29 | 1 | | | 0002 | 65 | 100 | DFL | | | | | | | | | 2.546 | 10.151 | 58 | 2 | | 6307 | | | 100 | | | | 2 25. | | | 80.0 | | | | | 26 | | | 6308 | 0001 | 65 | |) DF L | | 1 | 20. | | | 40.0 | | | | | 30 | 1 | | | 0002 | 65 | |) DF L | | 1 | 24. | | | 40.0 | | | | | 32 | 1 | | | 0003 | 65 | |) WF L | | 1 | 22. | | | 40.0
40.0 | | | | | 25 | 1 | | | 0004 | 65 | 100 |) WFL | | i | 15. | 0 84 | 4 80 | 40.0 | 32.39 | | | | <u></u> | | | 6308 | | | 100 |) | 4 | | 19. | 3 8 | | 160.0 | | | | | 113 | 4 | | 6309 | | 65 | 100 |) PPT | | | 3 17. | | | 120.0 | | | | | 76
25 | 2 | | | 0002 | 65 | 10 | O PPT | | | 1 17. | 0 8 | 3 78 | 40.0 | 22.99 | 46.8 | 1,112 | 2 4,051 | 23 | | | 6309 |) | | 10 | 0 | | | 4 17. | 9 8 | 3 78 | 160.0 | 0 91.98 | 3 187.2 | | | 101 | 3 | | 6310 | | 65 | | 0 PP T | | 1 | 22. | | 7 98 | 40.0 | 0 15.15 | | | | 29 | 1 | | | 0002 | 65 | | 0 PPT | | 1 | 23. | .0 8 | 5 80 | 40.0 | | | | | 26 | | | | 0003 | 65 | | 0 PPT | | 1 | 18 | .0 8 | 1 83 | 40. | 0 22.64 | 4 45.3 | 3 1,11 | 4 3,622 | 25 | | | | | | 10 | 0 | 3 | | 20 | .6 8 | 4 87 | 120. | 0 51.63 | 5 118.5 | 5 3,53 | 8 12,517 | 81 | | | 6310 | | 65 | | 0
0 PP T | | | 2 17 | | 3 78 | 80. | | | | 4 8,102 | 51 | | | 031 | 0001 | 6: | | O PPT | | | 3 17 | | 3 78 | 120. | 0 68.9 | 8 140.4 | 4 3,33 | 6 12,153 | 76 | : | | | 0002 | 6: | | 0 DFL | | | 1 20 | | 5 87 | 40. | 0 17.9 | 9 40. | 7 1,26 | 3 4,901 | 29 | | | [| | | | | | ••• | | | 22 70 | 240. | 0 132.9 | 6 274. | 7 6,82 | 2 25,156 | 155 | | | 631 | | | 10 | | | 1 | 6 18 | | 33 79
37 97 | <u>240.</u>
40. | | | | | 31 | | | 631 | | 6: | | 0 WFT | | 1 | 32 | | 88 107 | 40.
80. | | | | | | | | 1 | 0002 | | | 00 WFL | | 2 | | | 36 107
36 84 | 40. | | | | | | | | | 0003 | | | 00 DFL | | | 26 | | 36 88 | 40. | | | | | | | | 1 | 0004 | 6 | o 1(| 00 DF L | | 1 | 20 | , | ,, 00 | 10. | | | , | * | | | | TC PLO | OTTREELI | ST | | | | | | t Tree | List - V | Volumes
GE2 | | | | Page
Date | 2
3/30/2 | 020 | |--------------|--------------|----------|------------|--------|-----|-----|------|--------|----------|----------------|-------------|-------|-----------|--------------|---------------------|-----| | TWP
35S | RGE
04E | SC
04 | TRA
EDG | | | TY | | | A | CRES
31.90 | PLOTS
14 | TR | EES
28 | | ED DATE
1/1/2019 | | | DI -4 | Tree | | | | Tre | es | | 16' | Tot | BA | Trees | Logs | Net | Net | Tota | Ī | | Plot
No. | No. | Age | SI | Spp St | | | DBH | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | | | | 100 | | 5 | | 25.0 | 87 | 93 | 200.0 | 58.66 | 153.3 | 6,938 | 30,182 | 158 | 69 | | 6312 | 0001 | 65 | 100 | WF L | | 3 | 21.0 | 87 | 87 | 120.0 | 49.51 | 113.8 | 3,971 | 16,705 | 90 | 38 | | 6313 | | 65 | 100 | WFT | | 2 | 25.0 | 87 | 97 | 80.0 | 21.70 | 65.1 | 2,694 | 11,717 | 61 | 27 | | | 0002
0003 | 65 | | DF L | | 1 | 20.0 | 85 | 87 | 40.0 | 17.99 | 40.7 | 1,263 | 4,901 | 29 | 11 | | | | | 100 | | | 6 | 22.2 | 87 | 89 | 240.0 | 89.19 | 219.5 | 7,928 | 33,323 | 181 | 76 | | 6313 | 0001 | 65 | 100 | | 1 | - 0 | 24.0 | 83 | 86 | 40.0 | | 25.5 | 1,140 | 3,565 | 26 | 8 | | 6314 | 0001 | | | PP T | 2 | | 17.0 | 84 | 75 | 80.0 | 50.75 | 101.5 | 2,073 | 7,613 | 47 | 17 | | | 0002
0003 | 65
65 | | PP T | 1 | | 16.0 | 82 | 74 | 40.0 | 28.65 | 57.3 | 976 | 3,438 | 22 | 8 | | | | | 100 | | 4 | | 17.8 | 83 | 76 | 160.0 | 92.13 | 184.3 | 4,189 | 14,616 | 95 | 33 | | 6314
TYPE | | | 100 | | 28 | 28 | | | 82 | 160.0 | | 168.6 | 4,792 | 18,514 | 1,529 | 591 | i | TC PS
ODF | TATS | | | | JECT S
OJECT | STATI
EDO | | | | PAGE
DATE | 1
3/30/2020 |
--|--|--|--|-------------|---|--|---|---|---|--|--| | WP | RGE | SC TRACT | , | ГҮРЕ | | AC | RES | PLOTS | TREES | CuFt | BdFt | | 35S | 04E | 02 EDGE2 | | 0065 | | | 67.90 | 18 | 114 | S | W | | | | | | | | | ESTIMATED | | ERCENT | | | | | | | | | TREES | | TOTAL | ; | SAMPLE | | | | | | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOT | AL | 18 | 114 | | 6.3 | | | | | | | | CRU | ISE | 9 | 62 | | 6.9 | | 14,325 | | .4 | | | | DBH | COUNT | | | | | | | | | | | | | OREST | | | | | | | | | | | | COU | | 9 | 52 | | 5.8 | | | | | | | | BLA | | | | | | | | | | | | | 100 9 | / /0 | | **** | STA. | ND SUMN | AADV | | | · · · · · · | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | SHR | R FIR-L | 28 | 76.5 | 16.8 | 73 | 28.7 | 117.8 | 11,981 | 11,836 | 3,213 | 3,213 | | | R FIR-T | 34 | 134.5 | 13.5 | 66 | 36.3 | 133.3 | 13,070 | 12,930 | 3,360 | 3,360 | | TOT | | 62 | 211.0 | 14.8 | 69 | 65.3 | 251.1 | 25,052 | 24,766 | 6,573 | 6,573 | | CL | 68.1 | COEFF | | | SAMPL | | HIN THE SAI
S - BF | | OF TREES | REQ. | INF. POP. | | SD: | 1.0 | VAR.% | S.E.% | L | OW | AVG | HIGH | | 5 | 10 | 15 | | | R FIR-L | 36.5 | 7.3 | | 184 | 198 | 213 | | | | | | SH F | R FIR-T | 51.5
<i>47.1</i> | 9.2
<i>6.2</i> | | 122
153 | 135
<i>164</i> | 147
<i>174</i> | | 89 | 22 | 10 | | 101 | | A&IMENA. | 0.2 | , | | | | *************************************** | | | | | CL | | COEFF | | | SAMPL | | | 7 | OF TREES | REQ.
10 | INF. POP. | | SD: | 1.0 | VAR.%
36.2 | S.E.% | L | .OW
51 | AVG
55 | HIGH
59 | | 5 | 10 | 1, | | | R FIR-L
R FIR-T | | 1.2 | | | | | | | | | | SELL | Z LIIZ-1 | 440 | Q 1 | | | | | | | | | | TOT | ΓAL | 44.9
<i>46.1</i> | 8.1
<i>6.1</i> | | 32
41 | 35
44 | 37 | | 85 | 21 | 9 | | TOT | | 46.1 | 8.1
6.1 | | 32
41 | 35
44 | | | | | | | CL | 68.1 | 46.1
COEFF | 6.1 | Ţ | 32
41
TREES/ | 35
44
ACRE | 37
<i>47</i> | | FOF PLOTS | REQ. | INF. POP. | | CL
SD: | 68.1
1.0 | 46.1
COEFF
VAR.% | 6.1
S.E.% | L | 32
41
TREES | 35
44
/ACRE
AVG | 37
<i>47</i>
HIGH | į | | | INF. POP. | | CL
SD: | 68.1 | 46.1
COEFF | 6.1 | L | 32
41
TREES/ | 35
44
ACRE | 37
<i>47</i> | 1 | FOF PLOTS | REQ. | INF. POP. | | CL
SD: | 68.1
1.0
R FIR-L
R FIR-T | 46.1
COEFF
VAR.%
29.4 | 6.1
S.E.%
7.1 | L | 32
41
TREES/
OW
71 | 35
44
'ACRE
AVG
76 | 37
47
HIGH
82 | ;
; | FOF PLOTS | REQ. | INF. POP. | | CL
SD:
SH I
SH I | 68.1
1.0
R FIR-L
R FIR-T | 46.1
COEFF
VAR.%
29.4
54.5
38.0 | 6.1
S.E.%
7.1
13.2 | Ĺ | 32
41
TREES/
OW
71
117
192 | 35
44
ACRE
AVG
76
134
211 | 37
47
HIGH
82
152
230 | | # OF PLOTS
5 | REQ.
10 | INF. POP. | | CL
SD:
SH I
SH I
TOT | 68.1
1.0
R FIR-L
R FIR-T
TAL
68.1 | 46.1
COEFF
VAR.%
29.4
54.5
38.0
COEFF | S.E.%
7.1
13.2
9.2 | | 32
41
TREESA
OW
71
117 | 35
44
ACRE
AVG
76
134
211 | 37
47
HIGH
82
152
230 | | FOF PLOTS | REQ.
10 | INF. POP. | | CL
SD:
SH F
TOT
CL
SD: | 68.1
1.0
R FIR-L
R FIR-T
FAL
68.1
1.0 | 46.1
COEFF
VAR.%
29.4
54.5
38.0 | S.E.%
7.1
13.2
9.2 | | 32
41
TREES/
.OW
71
117
192
BASAL | 35
44
ACRE
AVG
76
134
211
AREA/A | 37
47
HIGH
82
152
230 | | # OF PLOTS 5 61 # OF PLOTS | REQ.
10
15
REQ. | INF. POP. | | CL
SD:
SH I
SH I
TOT | 68.1
1.0
R FIR-L
R FIR-T
TAL
68.1 | 46.1
COEFF
VAR.%
29.4
54.5
38.0
COEFF
VAR.% | 6.1
S.E.%
7.1
13.2
9.2
S.E.% | | 32
41
TREES/
OW
71
117
192
BASAL | 35
44
ACRE
AVG
76
134
211
AREA/A | 37
47
HIGH
82
152
230
ACRE
HIGH
124
150 | | # OF PLOTS 5 61 # OF PLOTS 5 | REQ.
10
15
REQ.
10 | INF. POP. | | CL
SD:
SH F
TOT
CL
SD:
SH I | 68.1
1.0
R FIR-L
R FIR-T
TAL
68.1
1.0 | 46.1
COEFF
VAR.%
29.4
54.5
38.0
COEFF
VAR.% | 6.1
S.E.%
7.1
13.2
9.2
S.E.%
5.3 | | 32
41
TREES/
OW
71
117
192
BASAL
OW | 35
44
ACRE
AVG
76
134
211
AREA/A
AVG
118 | 37
47
HIGH
82
152
230
ACRE
HIGH
124 | | # OF PLOTS 5 61 # OF PLOTS | REQ.
10
15
REQ. | INF. POP. | | CL
SD:
SH F
TOT
CL
SD:
SH F
SH F | 68.1
1.0
R FIR-L
R FIR-T
FAL
68.1
1.0
R FIR-L
R FIR-T | 46.1
COEFF
VAR.%
29.4
54.5
38.0
COEFF
VAR.%
21.7
52.5 | S.E.% 7.1 13.2 9.2 S.E.% 5.3 12.7 8.0 | | 32
41
TREES/
OW
71
117
192
BASAL
OW
112
116 | 35
44
ACRE
AVG
76
134
211
AREA/A
AVG
118
133
251 | 37
47
HIGH
82
152
230
ACRE
HIGH
124
150 | 1 | # OF PLOTS 5 61 # OF PLOTS 5 | REQ.
10
15
REQ.
10 | INF. POP. | | CL
SD:
SH F
SH F
TOT
CL
SD:
SH F
TOT | 68.1
1.0
R FIR-L
R FIR-T
TAL
68.1
1.0
R FIR-L
R FIR-T | 46.1
COEFF
VAR.%
29.4
54.5
38.0
COEFF
VAR.%
21.7
52.5
33.1 | 5.E.% 7.1 13.2 9.2 S.E.% 5.3 12.7 8.0 | L | 32
41
TREES/
OW
71
117
192
BASAL
OW
112
116
231 | 35
44
ACRE
AVG
76
134
211
AREA/A
AVG
118
133
251 | 37
47
HIGH
82
152
230
ACRE
HIGH
124
150 | 1 | # OF PLOTS 5 61 # OF PLOTS 5 | REQ.
10
15
REQ.
10 | INF. POP. 1: INF. POP. 1: INF. POP. | | CL
SD:
SH F
TOT
CL
SD:
SH I
TOT
CL
SD: | 68.1
1.0
R FIR-L
R FIR-T
FAL
68.1
1.0
R FIR-L
R FIR-T
FAL
68.1 | 46.1 COEFF VAR.% 29.4 54.5 38.0 COEFF VAR.% 21.7 52.5 33.1 COEFF VAR.% 27.3 | 5.E.% 7.1 13.2 9.2 S.E.% 5.3 12.7 8.0 S.E.% 6.6 | I | 32
41
TREES/
OW
71
117
192
BASAL
OW
112
116
231
NET BE | 35
44
ACRE
AVG
76
134
211
AREA/A
AVG
118
133
251
F/ACRE
AVG
11,836 | 37
47
HIGH
82
152
230
ACRE
HIGH
124
150
271
HIGH
12,618 | 1 | # OF PLOTS 61 # OF PLOTS 5 46 # OF PLOTS | REQ. 10 15 REQ. 10 12 REQ. | INF. POP. 1: INF. POP. 1: INF. POP. | | CL
SD:
SH I
TOT
CL
SD:
SH I
TOT
CL
SD:
SH I | 68.1
1.0
R FIR-L
R FIR-T
FAL
68.1
1.0
R FIR-L
R FIR-T
FAL
68.1
1.0
R FIR-L
R FIR-T | 46.1 COEFF VAR.% 29.4 54.5 38.0 COEFF VAR.% 21.7 52.5 33.1 COEFF VAR.% 27.3 58.2 | 5.E.% 7.1 13.2 9.2 S.E.% 5.3 12.7 8.0 S.E.% 6.6 14.1 | I | 32
41
TREES/
OW
71
117
192
BASAL
OW
112
116
231
NET
BE
OW
11,055
11,106 | 35
44
ACRE
AVG
76
134
211
AREA/A
AVG
118
133
251
E/ACRE
AVG
11,836
12,930 | 37
47
HIGH
82
152
230
ACRE
HIGH
124
150
271
HIGH
12,618
14,753 | 1 | # OF PLOTS 5 61 # OF PLOTS 5 46 # OF PLOTS 5 | REQ. 10 15 REQ. 10 12 REQ. 10 | INF. POP. INF. POP. INF. POP. 1. | | CL SD: SHI TOTO CL SD: SHI SHI SHI | 68.1
1.0
R FIR-L
R FIR-T
FAL
68.1
1.0
R FIR-L
R FIR-T
FAL
68.1
1.0
R FIR-L | 46.1 COEFF VAR.% 29.4 54.5 38.0 COEFF VAR.% 21.7 52.5 33.1 COEFF VAR.% 27.3 | 5.E.% 7.1 13.2 9.2 S.E.% 5.3 12.7 8.0 S.E.% 6.6 | I | 32
41
TREES/
OW
71
117
192
BASAL
OW
112
116
231
NET BE
OW
11,055
11,106
22,359 | 35
44
ACRE
AVG
76
134
211
AREA/A
AVG
118
133
251
E/ACRE
AVG
11,836
12,930
24,766 | 37
47
HIGH 82
152
230
ACRE
HIGH 124
150
271
HIGH 12,618
14,753
27,174 | ; | # OF PLOTS 5 61 # OF PLOTS 5 46 # OF PLOTS 5 | REQ. 10 15 REQ. 10 12 REQ. 10 17 | INF. POP. 1: INF. POP. 1: INF. POP. | | CL
SD:
SH I
TOT
CL
SD:
SH I
TOT
CL
SD:
SH I | 68.1
1.0
R FIR-L
R FIR-T
FAL
68.1
1.0
R FIR-L
R FIR-T
1.0
R FIR-L
R FIR-L
R FIR-L | 46.1 COEFF VAR.% 29.4 54.5 38.0 COEFF VAR.% 21.7 52.5 33.1 COEFF VAR.% 27.3 58.2 | S.E.% 7.1 13.2 9.2 S.E.% 5.3 12.7 8.0 S.E.% 6.6 14.1 9.7 | I | 32
41
TREES/
.OW
71
117
192
BASAL
.OW
112
116
231
NET BE
.OW
11,055
11,106
12,359
NET CU | 35
44
ACRE
AVG
76
134
211
AREA/A
AVG
118
133
251
F/ACRE
AVG
11,836
12,930
24,766
JFT FT/A | 37
47
HIGH
82
152
230
ACRE
HIGH
124
150
271
HIGH
12,618
14,753
27,174
ACRE | ; | # OF PLOTS 61 # OF PLOTS 5 46 # OF PLOTS 5 68 # OF PLOTS | REQ. 10 15 REQ. 10 12 REQ. 10 17 3 REQ. 10 | INF. POP. INF. POP. INF. POP. INF. POP. | | CL
SD:
SHI
SHI
TOTO
CL
SD:
SHI
SHI
TOTO
CL
SD: | 68.1
1.0
R FIR-L
R FIR-T
FAL
68.1
1.0
R FIR-L
R FIR-T
FAL
68.1
1.0
R FIR-L
R FIR-T
1.0
R FIR-L
R FIR-L
R FIR-T
1.0 | 46.1 COEFF VAR.% 29.4 54.5 38.0 COEFF VAR.% 21.7 52.5 33.1 COEFF VAR.% 27.3 58.2 40.1 COEFF VAR.% | S.E.% 7.1 13.2 9.2 S.E.% 5.3 12.7 8.0 S.E.% 6.6 14.1 9.7 S.E.% | I | 32
41
TREES/
.OW
71
117
192
BASAL
.OW
112
116
231
NET BE
.OW
11,055
11,106
12,359
NET CU | 35
44
ACRE
AVG
76
134
211
AREA/A
AVG
118
133
251
F/ACRE
AVG
11,836
12,930
24,766
JFT FT/A | 37
47
HIGH
82
152
230
ACRE
HIGH
124
150
271
HIGH
12,618
14,753
27,174
ACRE
HIGH | ; | # OF PLOTS 5 61 # OF PLOTS 5 46 # OF PLOTS 5 | REQ. 10 15 REQ. 10 12 REQ. 10 17 | INF. POP. INF. POP. INF. POP. INF. POP. | | CL SD: SH I SD: SH I TO'T CL SD: SH I SD: SH I SD: SH I SH I TO'T CL SD: SH I SH I TO'T CL SD: SH I SD | 68.1
1.0
R FIR-L
R FIR-T
FAL
68.1
1.0
R FIR-L
68.1
1.0
R FIR-L
R FIR-T
FAL
68.1
1.0
R FIR-L | 46.1 COEFF VAR.% 29.4 54.5 38.0 COEFF VAR.% 21.7 52.5 33.1 COEFF VAR.% 27.3 58.2 40.1 COEFF VAR.% 24.0 | 5.E.% 5.E.% 5.3 12.7 8.0 S.E.% 6.6 14.1 9.7 S.E.% 5.8 | I | 32
41
TREES/
OW
71
117
192
BASAL
OW
112
116
231
NET BE
OW
11,055
11,106
12,359
NET CU | 35
44
ACRE
AVG
76
134
211
AREA/A
AVG
118
133
251
E/ACRE
AVG
11,836
12,930
24,766
UFT FT/A
AVG
3,213 | HIGH 82 152 230 CRE HIGH 124 150 271 HIGH 12,618 14,753 27,174 ACRE HIGH 3,401 | ; | # OF PLOTS 61 # OF PLOTS 5 46 # OF PLOTS 5 68 # OF PLOTS | REQ. 10 15 REQ. 10 12 REQ. 10 17 3 REQ. 10 | 15
INF. POP.
15 | | CL SD: SHI TOTO CL SD: SHI SHI TOTO CL SD: SHI SHI TOTO CL SD: SHI SHI TOTO CL SD: SHI SHI SD: SHI | 68.1
1.0
R FIR-L
R FIR-T
FAL
68.1
1.0
R FIR-L
R FIR-T
FAL
68.1
1.0
R FIR-L
R FIR-T
1.0
R FIR-L
R FIR-L
R FIR-T
1.0 | 46.1 COEFF VAR.% 29.4 54.5 38.0 COEFF VAR.% 21.7 52.5 33.1 COEFF VAR.% 27.3 58.2 40.1 COEFF VAR.% | S.E.% 7.1 13.2 9.2 S.E.% 5.3 12.7 8.0 S.E.% 6.6 14.1 9.7 S.E.% | 1
1
2 | 32
41
TREES/
.OW
71
117
192
BASAL
.OW
112
116
231
NET BE
.OW
11,055
11,106
12,359
NET CU | 35
44
ACRE
AVG
76
134
211
AREA/A
AVG
118
133
251
F/ACRE
AVG
11,836
12,930
24,766
JFT FT/A | 37
47
HIGH
82
152
230
ACRE
HIGH
124
150
271
HIGH
12,618
14,753
27,174
ACRE
HIGH | ; | # OF PLOTS 61 # OF PLOTS 5 46 # OF PLOTS 5 68 # OF PLOTS | REQ. 10 15 REQ. 10 12 REQ. 10 17 3 REQ. 10 | INF. POP. INF. POP. INF. POP. INF. POP. | | T35S R04E S02 | Ty0065 | (| 67.90 | | Project:
Acres | ED | GE2
67.9 | | | | | | | | Page
Date
Time | 4/ | 1
1/202
1:24:4 | 0
19AM | |------------------------|-------------|----------------|----------------------|--------|-------------------|------|-------------|------------------|--------|----------|-------|-------|-------|----------|----------------------|----------|----------------------|--------------| | , | % | | • | | | Perc | ent of | Net Bo | ard Fo | oot Volu | me | | | | Avera | ge Lo | g | Logs | | S So Gr
Spp T rt ad | Net
BdFt | Bd. Ft
Def% | t. per Acre
Gross | | Total
Net MBF | 4-5 | | le Dia.
12-16 | | 12-20 | Log L | | 36-00 | Ln
Ft | Dia
In | Bd
Ft | CF/
Lf | Per
/Acre | | RF T DOCU | | | | | T CC INIDI | - | | 12-10 | 1,, | 12-20 | 21-30 | 31-33 | 30-77 | 6 | 5 | | 0.00 | 18.6 | | RF T DO2M | 6 | | 823 | 823 | 56 | | | 100 | | | | 100 | | 34 | 14 | 251 | 1.61 | 3.3 | | RF T DO3M | 67 | 1.3 | 8,838 | 8,725 | 592 | 3 | 84 | 13 | | | 14 | 75 | 11 | 33 | 8 | 86 | 0.68 | 101.7 | | RF T DO4M | 27 | .8 | 3,410 | 3,382 | 230 | 80 | 20 | | | 16 | 47 | 37 | | 25 | 5 | 30 | 0.33 | 112.4 | | RF Totals | 52 | 1.1 | 13,070 | 12,930 | 878 | 23 | 62 | 15 | | 4 | 22 | 67 | 7 | 27 | 7 | 55 | 0.53 | 236.0 | | RF L DOCU | | | | | | | | , | | | | | | 8 | 5 | | 0.00 | 11.7 | | RF L DO2M | 26 | 3.2 | 3,227 | 3,125 | 212 | | | 100 | | | | 100 | | 34 | 14 | 228 | 1.66 | 13.7 | | RF L DO3M | 62 | .6 | 7,427 | 7,385 | 501 | 2 | 72 | 26 | | 2 | 8 | 79 | 11 | 33 | 9 | 104 | | 70.8 | | RF L DO4M | 12 | | 1,327 | 1,327 | 90 | 100 | | | | 11 | 64 | 4 | 21 | 27 | 5 | 30 | 0.42 | 44.8 | | RF Totals | 48 | 1.2 | 11,981 | 11,836 | 804 | 12 | 45 | 42 | | 3 | 12 | 76 | 9 | 29 | 8 | 84 | 0.78 | 141.1 | | Totals | | 1.1 | 25.052 | 24,766 | 1,682 | 18 | 54 | 28 | | 3 | 17 | 71 | 8 | 28 | 7 | 66 | 0.63 | 377.0 | | | - | | | | | | | | 1 | | | | . , , | | , | | | | | | |-----|---|-------|------|----|-------|----|---------|--------|-----|-----|-----|--------|-------|-------|-----------|-------|----------|-------|-------|-----| | | S | So G | | | Gross | De | | % | | | | | | | eter in l | | T.: | | 1 | | | Spp | T | rt de | | | MBF | % | | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 | 40+ | | RF | T | DO 2 | M | 34 | 56 | | 56 | 6.4 | | | | ······ | | 26 | 30 | | | | ļ | | | RF | Т | DO 3 | M | 24 | 48 | | 48 | 5.5 | | 9 | | 17 | 22 | | | | ŀ | | | | | RF | Т | DO 3 | М | 26 | 7 | | : | .9 | | 7 | | | | | | | | | | | | RF | Т | DO 3 | M | 29 | 26 | | 26 | 3.0 | | | | | | | 26 | | | | | | | RF | Т | DO 3 | M | 30 | 3 | | 3 | .3 | | 3 | | | | | | | | | | | | RF | Т | DO 3 | M | 34 | 452 | | 1.7 444 | 1 | | | 62 | 234 | 100 | 49 | | | | | | | | RF | T | DO 3 | M | 40 | 63 | | 6. | 7.2 | | | 20 | 43 | | | | | <u> </u> | | | | | RF | Т | DO 4 | M | 13 | 2 | | 2 | .3 | | 2 | | | | | | | | | | | | RF | Т | DO 4 | M | 15 | 7 | | • | 7 .8 | | 7 | | | | | | | | | | | | RF | T | DO 4 | М | 19 | 5 | | ; | .6 | | 5 | | | | | | | | | | | | RF | Т | DO 4 | M | 20 | 23 | | 23 | 3 2.6 | | | 15 | | 8 | | | | | | | | | RF | Т | DO 4 | łМ | 21 | 16 | | 10 | 5 1.8 | | 16 | | | | | | | | | | | | RF | T | DO 4 | M | 22 | 26 | | 2 | 5 2.9 | | 26 | | | | | | | | | | | | RF | T | DO 4 | M | 24 | 35 | | 3 | 5 4.0 | | 35 | | | | | | | | | | | | RF | T | DO 4 | lМ | 25 | 14 | | 1 | 4 1.6 | | 14 | | | | | | | | | | | | RF | Т | DO . | 1M | 26 | 5 | | | 5 .5 | | 5 | | | | | | | | | | | | RF | T | DO - | ₽M | 27 | 11 | 1 | 6.7 | 0 1.1 | | 10 | | | | | | | 1 | | | | | RF | Т | DO · | 4M | 28 | 4 | | | 4 .5 | | 4 | | | | | | | | | | | | RF | Т | DO · | 4M | 32 | 44 | | 4 | 1 | | 20 | | | 24 | | | | | | | | | RF | | DO · | | | 20 | | 2 | 1 | | 20 | | | | | | | | | | | | RF | T | DO | 4M | 34 | 21 | | 2 | 1 2.4 | | 21 | | | | | | | _ | | | | | RF | | То | tals | | 887 |] | 1.1 87 | 8 52.2 | | 202 | 97 | 294 | 154 | | | | | | | | | RF | L | DO | 2M | 34 | 219 | | 3.2 21 | 26.4 | | | | | | 125 | 88 | | | | | | | RF | L | DO | 3M | 20 | 11 | | 1 | 1 1.3 | | | | | | 11 | | | | | | | | RF | L | DO | 3M | 22 | 2 | | | 2 .3 | | 2 | | | | | | | | | | | | RF | L | DO | | | | | 2 | 3 2.9 | , | | | | 23 | 3 | | | | | | | | RF | L | DO | 3M | 24 | 7 | | | 7 .9 | | 7 | | | | | | | | | | | | RF | L | DO | 3M | 26 | 6 | | | 6 .7 | | | İ | 6 | | | | | | | | | | RF | L | DO | 3M | 34 | 400 | | 39 | 7 49.4 | | | 40 | 73 | 160 | 5 118 | | | | | ĺ | | | RF | L | DO | 3M | 40 | 56 | | 5 | 6.9 | , | | 19 | 37 | | | | | | | | | | RF | L | DO | 4M | 18 | 5 | | | 5 .6 | 5 | 5 | | | | | | | | | | | | RF | L | | | | | | | 5 .6 | 5 | 5 | | | | | | | | | | | | RF | | DO | | | | | | 3 .4 | | 3 | | | | | | | | | | | | RF | | . DO | | | | | | 5 .6 | ; | 5 | | | | | | | Ì | | | | | RF | | DO | | | | | | 5 .: | , | 5 | | | | | | | | | | | | RF | | DO | | | | | 2 | 3.1 | | 25 | | | | | | | | | | | | TC | PLO | GSTV | 3 | | Log Stock Table - MBF | | | | | | | | | | | | | | | | |-------|-----|-------|-------|-------|-----------------------|------
-------------------------------------|---|---------|-----|-----------|-----|-------|-------|-------|-------|----------------------|-------|---------------------|-----| | T35 | S R | 04E S | 02 T | y0065 | 5 67 | 7.90 | | Proje
Acre | | DGE | 2
67.9 | 90 | | | | | Page
Date
Time | 4/1 | 2
/2020
24:49 | | | | s | So (| Gr | Log | Gross | Def | Net | Net % Net Volume by Scaling Diameter in Inc | | | | | | | | | | | | | | Spp | Т | rt d | | Len | 1 | % | MBF | Spc | 2-3 4-5 | 6- | 7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 | 40+ | | RF | L | DO | 4M | 28 | 4 | | 4 | .4 | | 4 | | | | | | | | | | | | RF | L | DO | 4M | 29 | 16 | | 16 | 2.0 | | 16 | | | | | | | | | | | | RF | L | DO | 4M | 31 | 4 | | 4 | .4 | | 4 | | | | | | | | | | | | RF | L | DO | 4M | 39 | 6 | | 6 | .7 | | 6 | | | | | | | | | | | | RF | L | DO | 4M | 40 | 4 | | 4 | .5 | | 4 | | | | | | | | | | | | RF | L | DO | 4M | 41 | 9 | | 9 | 1.1 | | 9 | | | | | | | | | | | | RF | | , | Γotal | s | 814 | 1.2 | 804 | 47.8 | | 99 | 59 | 116 | 189 | 254 | 88 | | | | | | | Total | | A11 : | Speci | es | 1,701 | 1.1 | 1,682 100.0 301 155 410 343 328 144 | | | | | | | | | | | | | | | TC PLO | OTTREELI | ST | | | | | | t Tree | List - V
EDC | | 1907 | | | Page
Date | 1
3/30/20 |)20 | |--------------|------------|----------|------------|--------|-------|--|--------------|--------|-----------------|---------------|-------------|--------|------------|--------------|---------------------|-----| | TWP
35S | RGE
04E | SC
02 | TRA
EDG | | | TYF
006 | | | AC | CRES
67.90 | PLOTS
18 | TR | REES
62 | | ED DATE
1/1/2019 | | | Plot | Tree | | | | Trees | 3 | | 16' | Tot | ВА | Trees | Logs | Net | Net | Total | | | No. | No. | Age | SI | Spp St | Me. C | Ct. D | вн | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | 6501 | 0001 | 65 | 100 | RF L | 1 | | 21.0 | 75 | 80 | 40.0 | 16.63 | 16.6 | 968 | 2,827 | 37 | 11 | | 0301 | 0001 | 65 | | RF L | 1 | | 27.0 | 72 | 62 | 40.0 | 10.06 | 20.1 | 1,038 | 2,314 | 39 | 9 | | | 0003 | 65 | | RF T | 1 | | 10.0 | 82 | 35 | 40.0 | 73.34 | 73.3 | 509 | 2,200 | 19 | 8 | | | 0004 | 65 | | RF T | 1 | | 12.0 | 85 | 70 | 40.0 | 50.93 | 50.9 | 872 | 3,056 | 33 | 12 | | | 0005 | 65 | 100 | RF L | 1 | | 14.0 | 85 | 72 | 40.0 | 37.42 | 37.4 | 890 | 2,619 | 34 | 10 | | (501 | | | 100 | | 5 | | 14.0 | 82 | 57 | 200.0 | 188.38 | 198.4 | 4,277 | 13,016 | 161 | 49 | | 6501
6502 | 0001 | 65 | | RF L | | 3 | 16.0 | 87 | 73 | 120.0 | 77.91 | 131.8 | 3,274 | 12,060 | 124 | 45 | | 0302 | 0002 | 65 | | RF T | | 2 | 13.0 | 87 | 67 | 80.0 | 80.70 | 130.4 | 2,016 | 7,758 | 76 | 29 | | | ***- | | | | | | 16.2 | 87 | 70 | 200.0 | 158.61 | 262.2 | 5,290 | 19,818 | 200 | 75 | | 6502 | 0001 | 65 | 100 | RF L | 1 | 5 | 15.2
22.0 | 91 | 87 | 40.0 | | 30.3 | 1,349 | 5,152 | 51 | 19 | | 6503 | 0001 | 65 | | RF L | 1 | | 22.0 | 91 | 91 | 40.0 | | 45.5 | | 6,364 | 53 | 24 | | | 0002 | 65 | | RF T | 1 | | 16.0 | 91 | 77 | 40.0 | | 57.3 | 1,227 | 5,157 | 46 | 19 | | | 0003 | 65 | | RF T | 1 | | 16.0 | 91 | 77 | 40.0 | | 57.3 | 1,227 | 4,584 | 46 | 17 | | | 0004 | 65 | | RF T | 1 | | 22.0 | 91 | 90 | 40.0 | 15.15 | 45.5 | 1,348 | 6,061 | 51 | 23 | | | 0006 | 65 | | RF T | 1 | | 13.0 | 90 | 65 | 40.0 | 43.40 | 86.8 | 940 | 3,906 | 35 | 15 | | | 0007 | 65 | 100 | RF T | 1 | | 22.0 | 91 | 70 | 40.0 | 15.15 | 30.3 | 1,059 | 4,394 | 40 | 17 | | | 8000 | 65 | 100 | RF T | 1 | | 14.0 | 90 | 65 | 40.0 | 37.42 | 74.8 | | 4,490 | 37 | 17 | | | 0009 | 65 | 100 | RF L | 1 | | 15.0 | 90 | 60 | 40.0 | 32.59 | 65.2 | 960 | 4,237 | 36 | 16 | | 6503 | | | 100 | | 9 | - | 16.9 | 91 | 72 | 360.0 | 231.31 | 492.9 | 10,495 | 44,345 | 396 | 167 | | 6504 | 0001 | 65 | | RF L | | 1 | 16.0 | 87 | 73 | 40.0 | | 43.9 | 1,091 | 4,020 | 41 | 15 | | | | | 100 | | | 1 | 16.8 | 87 | 73 | 40.0 | 25.97 | 43.9 | 1,091 | 4,020 | 41 | 15 | | 6504
6505 | 0001 | 65 | 100 | RF T | 1 | | 20.0 | 89 | 70 | 40.0 | | | | 3,850 | 34 | 15 | | 0303 | 0001 | 65 | 100 | | 1 | | 16.0 | 83 | 69 | 40.0 | | | | 2,578 | 38 | 10 | | | 0002 | 65 | 100 | | 1 | | 21.0 | 89 | 69 | 40.0 | 16.63 | 16.6 | 877 | 3,492 | 33 | 13 | | | 0004 | 65 | 100 | | 1 | | 14.0 | 89 | 69 | 40.0 | 37.42 | 37.4 | 951 | 3,368 | 36 | 13 | | | 0005 | 65 | 100 | RF T | 1 | | 17.0 | 85 | 69 | 40.0 | 25.38 | 25.4 | 933 | - | 35 | 11 | | | 0006 | 65 | 100 | RF L | 1 | | 16.0 | 87 | 67 | 40.0 | 28.65 | 28.6 | 903 | 2,578 | 34 | 10 | | 6505 | | | 100 | | 6 | | 16.8 | 87 | 69 | 240.0 | 155.05 | 155.1 | 5,565 | 18,912 | 210 | 71 | | 6506 | | 65 | | RF L | | 3 | 16.0 | | 73 | 120.0 | | | 3,274 | 12,060 | 124 | 45 | | | 0002 | 65 | | RF T | | 2 | 13.0 | 87 | 67 | 80.0 | 80.70 | 130.4 | 2,016 | 7,758 | 76 | 29 | | | | | 100 | | | 5 | 15.2 | 87 | 70 | 200.0 |) 158.61 | 262.2 | 2 5,290 | 19,818 | 200 | 75 | | 6506
6507 | | 65 | 100 | RF L | 1 | <u>, , </u> | 21.0 | | 78 | 40.0 | | | | | 43 | 15 | | 0307 | 0001 | 65 | | RF T | 1 | | 14.0 | | | 40.0 | | | | 4,490 | 40 | 17 | | | 0002 | 65 | | RFT | 1 | | 16.0 | | | 40.0 | 28.65 | 5 57.3 | 3 1,068 | 3,438 | 40 | 13 | | | 0003 | 65 | | RFL | 1 | | 15.0 | 89 | | 40.0 | 32.59 | 65.2 | 2 1,054 | 3,911 | 40 | 15 | | | 0005 | 65 | | RFT | 1 | | 18.0 | 89 | 74 | 40.0 | 0 22.64 | 45.3 | 3 1,180 | | 45 | 17 | | | 0006 | 65 | | RFL | 1 | | 19.0 | 89 | 77 | 40.0 | 0 20.32 | | | | 43 | 14 | | | 0007 | 65 | 100 | RFT | 1 | | 15.0 | 83 | 77 | 40.0 | | | | | 43 | 16 | | | 8000 | 65 | 100 | RFT | 1 | | 19.0 | | | 40.0 | | | | | 43 | 15 | | | 0009 | 65 | 100 | RFL | 1 | | 23.0 | 85 | 86 | 40.0 | 0 13.86 | 5 27. | 7 1,270 | 4,020 | 48 | 15 | | 6507 | , | | 100 |) | 9 | | 17.1 | 87 | 74 | 360. | 0 225.02 | 2 450. | 0 10,243 | 3 36,335 | 386 | 137 | | 6508 | | 65 | | RFL | | 4 | | | | 160. | 0 103.8 | | | | 165 | 61 | | | 0002 | 65 | 100 |) RFT | | 4 | 13.0 | 87 | 67 | 160. | 0 161.40 | 0 260. | 9 4,032 | 2 15,516 | 152 | 59 | | 6508 | 2 | | 100 |) | | 8 | 14.9 | 87 | 69 | 320. | 0 265.2 | 8 436. | 6 8,39 | 7 31,596 | 317 | 119 | | 6509 | | 65 | |) RFL | 1 | | 20.0 | | | 40. | | | | | 42 | 17 | | 3303 | 0001 | 65 | | RFL | 1 | | 21.0 | | | 40. | 0 16.6 | 3 33. | 3 1,12 | 4 3,991 | 42 | 15 | | | 0003 | 65 | | RFT | 1 | | 13.0 | | | 40. | 0 43.4 | 0 86. | 8 1,19 | | 45 | 16 | | 1 | 0004 | 65 | | RFL | 1 | | 14.0 | 92 | 82 | 40. | 0 37.4 | 2 74. | 8 1,18 | 1 4,864 | 45 | 18 | | TC PLO | OTTREELI | ST | | | | | | t Tree | List - V
EDO | olumes
GE2 | | | | Page
Date | 2
3/30/20 |)20 | |------------|--------------|----------|------------|--------------|--------|----------------|--------------|----------|------------------------|----------------|-----------------|----------------|----------------|------------------|---------------------|----------| | TWP
35S | RGE
04E | SC
02 | TRA
EDG | | | TYP
006: | | | A | CRES
67.90 | PLOTS
18 | TR | EES
62 | | ED DATE
1/1/2019 | | | Plot | Tree | | | | Tre | es | | 16' | Tot | ВА | Trees | Logs | Net | Net | Total | | | No. | No. | Age | SI | Spp St | Me. | Ct. D | ВН | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | | | | 100 | | 4 | | 15.9 | 88 | 80 | 160.0 | 115.78 | 231.6 | 4,614 | 17,595 | 174 | 66 | | 6509 | 0001 | 65 | 100 | RF L | 4 | 3 | 16.0 | 87 | 73 | 120.0 | 77.91 | 131.8 | 3,274 | 12,060 | 124 | 45 | | 6510 | 0001 | 65 | | RF T | | 3 | 13.0 | 87 | 67 | 120.0 | 121.05 | 195.6 | 3,024 | 11,637 | 114 | 44 | | | 0002 | | 100 | Ki I | | | | | | | 100.06 | 207.4 | (200 | 22 607 | 238 | 89 | | 6510 | | - | 100 | | | 6 | 14.9 | 87 | 69 | 240.0 | 198.96
73.34 | 73.3 | 6,298
678 | 23,697
2,200 | 26 | 8 | | 6511 | 0001 | 65 | | RF T | 1 | | 10.0 | 84 | 49
75 | 40.0
40.0 | 25.38 | 50.8 | 1,150 | 4,568 | 43 | 17 | | | 0002 | 65 | | RF L | 1 | | 17.0 | 90 | 75 | 40.0 | 32.59 | 65.2 | 1,044 | 3,911 | 39 | 15 | | | 0003 | 65 | | RF T | 1 | | 15.0
11.0 | 88
86 | 73
68 | 40.0 | 60.61 | 60.6 | 764 | 3,031 | 29 | 11 | | | 0004 | 65 | | RF T | 1
1 | | 18.0 | 87 | 69 | 40.0 | 22.64 | 45.3 | 1,059 | 3,848 | 40 | 15 | | | 0005 | 65 | | RF L
RF T | 1 | | 10.0 | 87 | 49 | 40.0 | 73.34 | 73.3 | 700 | 2,934 | 26 | 11 | | | 0006
0007 | 65
65 | | RF L | 1 | | 20.0 | 88 | 73 | 40.0 | 18.33 | 36.7 | 1,163 | 4,400 | 44 | 17 | | | 0007 | 65 | | RF T | 1 | | 17.0 | 88 | 72 | 40.0 | 25.38 | 50.8 | 1,130 | 4,568 | 43 | 17 | | | 0000 | | | | | | | | | 220.0 | 221.61 | 455.9 | 7,688 | 29,460 | 290 | 111 | | 6511 | 0001 | | 100 | DEL | 8 | 3 | 13.3 | 87
87 | 73 | 320.0
120.0 | 331.61
77.91 | 131.8 | 3,274 | 12,060 | 124 | 45 | | 6512 | 0001
0002 | 65
65 | | RF L
RF T | | 2 | 13.0 | 87 | 67 | 80.0 | 80.70 | 130.4 | 2,016 | 7,758 | 76 | 29 | | | 0002 | | 100 | | | | | | | | | 0.60.0 | | 10.010 | 200 | 75 | | 6512 | | | 100 | | | 5 | 15.2 | 87 | 70 | 200.0 | 158.61 | 262.2
77.9 | 5,290
766 | 19,818
3,118 | 200 | 12 | | 6513 | 0001 | 65 | 100 | | 1 | | 9.7 | 83 | 65 | 40.0 | 77.95
120.72 | 241.4 | 3,253 | 10,865 | 123 | 41 | | | 0002 | 65 | 100 | | 3 | | 13.5 | 83 | 77
69 | 120.0
40.0 | 53.57 | 107.1 | 1,007 | 4,286 | 38 | 16 | | | 0003 | 65 | 100 | | 1 | | 11.7
15.0 | 92
87 | 79 | 120.0 | | 195.6 | | | 135 | 59 | | | 0004
0005 | 65
65 | 100 | RF L
RF T | 3 | | 16.8 | 89 | 80 | 40.0 | 25.98 | 52.0 | - | | 45 | 17 | | | 0003 | | 100 | IXI I | | | | | | | | | | 20.222 | 260 | 145 | | 6513 | | | 100 | | 9 | | 13.2 | 86 | 74 | 360.0 | | 674.1 | 9,795
3,274 | 38,332
12,060 | 369
124 | 45 | | 6514 | 0001 | 65 | 100 | | | 3 | 16.0 | 87 | 73 | 120.0 | | 131.8
195.6 | | | 114 | 44 | | | 0002 | 65 | 100 | RF T | | 3 | 13.0 | 87 | 67 | 120.0 | 121.03 | 193.0 | ·········· | | | | | 6514 | | | 100 | | | 6 | 14.9 | 87 | 69 | 240.0 | | | | | 238 | 89 | | 6515 | 0001 | 65 | 100 | RF T | 1 | | 13.7 | 89 | 75 | 40.0 | | | 1,154 | • | 44 | 18 | | | 0002 | 65 | 100 | RF T | 2 | | 14.6 | 88 | 77
 80.0 | | | | | 85 | 34
18 | | | 0003 | 65 | | RF L | 1 | | 19.5 | 89 | 88 | 40.0 | | | | | 48
38 | 15 | | | 0004 | 65 | | RF L | 1 | | 15.1 | 87 | 70 | 40.0 | | | | | 31 | 14 | | | 0005 | 65 | | RF T | 1 | | 10.0 | | 65
90 | 40.0
40.0 | | | | | 48 | 19 | | | 0006 | 65 | 100 | RF L | 1 | | 20.2 | 87 | 90 | 40.0 | 11.91 | | | | | | | 6515 | | | 100 |) | 7 | | 14.3 | 87 | 74 | 280.0 | | | | | 295 | 117 | | 6516 | 0001 | 65 | | RFL | | 3 | 16.0 | | 73 | 120.0 | | | , | 12,060 | 124 | 45
73 | | | 0002 | 65 | 100 | RFT | | 5 | 13.0 | 87 | 67 | 200.0 | 201.75 | 326.1 | 5,040 |) 19,395 | 190 | | | 6516 | | | 100 |) | | 8 | 14.5 | 87 | 69 | 320.0 | 279.66 | 457.9 | 8,314 | | 314 | 119 | | 6517 | 0001 | 65 | | RFL | 1 | | 11.0 | 89 | 60 | 40.0 | 60.61 | 60.6 | | | 29 | 11 | | | 0002 | 65 | 100 | RFL | 1 | | 12.0 | 83 | 61 | 40.0 | 50.93 | | | | 32 | 10 | | | 0003 | 65 | 100 |) RFT | 1 | | 14.0 | 89 | 62 | 40.0 | | | | | 35 | 11 | | | 0004 | 65 | 100 |) RF L | I | | 17.0 | 89 | | 40.0 | | | | • | 37 | 14 | | | 0005 | 65 | 100 | RFT | 1 | | 12.0 | 87 | 60 | 40.0 | 50.93 | 3 50.9 | 9 803 | 3,056 | 30 | 12 | | 6517 | | | 100 |
) | 5 | | 12.8 | 87 | 61 | 200.0 | 225.26 | 5 288. | 1 4,33′ | 7 15,433 | 164 | 58 | | 6518 | | 65 | | DF L | | 1 | | | | | | | | - | | | | | 0002 | 65 | | RFL | | 2 | 16.0 | 87 | 73 | 80.0 | 51.94 | 4 87. | 9 2,18 | 3 8,040 | 82 | 30 | | | 0003 | 65 | | RFT | | 5 | 13.0 | 87 | 67 | 200.0 | 0 201.75 | 326. | 1 5,04 | 0 19,395 | 190 | 73 | | (510 | | | 10 | <u> </u> | | 8 | 14.2 | 87 | 68 | 280. | 0 253.69 | 9 413. | 9 7,22 | 2 27,435 | 272 | 103 | | 6518 | | | 10 | | 62 | <u>8</u>
52 | | | 69 | 251. | | | | 3 24,766 | 4,463 | 1,682 | | C PST | TATS | | | | | JECT S
oject | TATIS
EDG | | | | PAGE
DATE | 1
3/30/2020 | |------------------|-----------------------------|-------------|------------------------|--------------------------|---------------------------------------|-----------------|------------------------|--------------------|----------|------------------|--------------|----------------| | <u>ODF</u>
WP | RGE S | SC | TRACT | Т | YPE | | AC | RES | PLOTS | TREES | CuFt | BdFt | | 35S | | 02 | EDGE2 | 00 | 067 | | | 18.70 | 5 | 30 | S | W | | | | | | | <u></u> | TREES | I | ESTIMATED
TOTAL | | ERCENT
SAMPLE | | | | | | | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOTA | A L | | 5 | 30 | | 6.0 | | 4 205 | | .7 | | | | | COUNT
DREST
NT
NKS | | 5 | 30 | | 6.0 | | 4,295 | | ., | | | | | | | | | STA | ND SUMN | MARY | | | | | | | | | S | AMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | SH F | R FIR-L | | 15 | 102.2 | 14.7 | 59 | 31.3 | 120.0 | 12,882 | 12,882 | 3,287 | 3,287
2,520 | | | R FIR-T | | 13 | 114.9 | 12.9 | 65 | 29.0 | 104.0 | 9,407 | 9,407 | 2,520
363 | 2,520
363 | | WHI | EMLOCK-I | L | 2 | 12.6 | 15.3 | 63 | 4.1 | 16.0 | 1,184 | 1,184 | 6,170 | 6,170 | | тот | FAL | | 30 | 229.7 | 13.8 | 62 | 64.5 | 240.0 | 23,472 | 23,472 | 0,170 | 0,170 | | COI | NFIDENC
68. | EL
.1 | IMITS OF T | THE SAMPL
T OF 100 TI | E
HE VOLU | JME WILL | BE WIT | HIN THE SA | MPLE ERR | | | | | CL | 68.1 | | COEFF | | | SAMPL | E TREE | | ì | # OF TREES | | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | | LOW | AVG | HIGH | | 5 | 10 | 13 | | SHI | R FIR-L | | 101.0 | 29.1 | | 304 | 428 | 553 | | | | | | SHI | R FIR-T | | 26.1 | 9.8 | | 177 | 196 | 216 | | | | | | WH | EMLOCK- | L | 42.4 | 39.7 | | 60 | 100 | 140 | | 492 | 123 | 55 | | TO | ГAL | | 108.6 | 23.1 | | 245 | 319 | 393 | | | | | | CL | 68.1 | | COEFF | | | | E TREE | | | # OF TREES | 5 REQ.
10 | INF. POP. | | SD: | 1.0 | | VAR.% | S.E.% | | LOW | AVG | HIGH | | 5 | 10 | 13 | | SH | R FIR-L | | 91.1 | 26.2 | | 76 | 104 | 131
61 | | | | | | | R FIR-T | | 31.6 | 11.9 | | 48 | 55
30 | 38 | | | | | | | EMLOCK- | -L | 28.1 | 26.3 | | 22
64 | 30
80 | 96 | | 373 | 93 | 41 | | то | TAL | | 94.6 | 20.1 | | | | | | | | INF. POP. | | CL | 68.1 | | COEFF | | | | ACRE | | | # OF PLOTS
5 | S REQ.
10 | INF. FOF. | | SD | 210 | | VAR.% | | · · · · · · · · · · · · · · · · · · · | LOW | AVG | HIGH
137 | | | 10 | | | | R FIR-L | | 69.1 | 34.3 | | 67
21 | 102
115 | 209 | | | | | | | R FIR-T | | 164.3 | 81.7 | | ∠1 | 113 | 209 | | | | | | | IEMLOCK
TAL | -L | 223.6
103.0 | 111.1
51.2 | | 112 | 230 | 347 | | 524 | 131 | 58 | | | | | | | | | | | | # OF PLOTS | S REO | INF. POP. | | | 68.1 | | COEFF | | | | L AREA /
AVG | ACKE
HIGH | | # OF FLOTS | 10 | 1: | | SD | | | VAR.% | | | 100 | 120 | 140 | | | | | | | R FIR-L | | 33.3 | 16.6
62.8 | | 39 | 104 | 169 | | | | | | | R FIR-T | . 1 | 126.4
223.6 | 62.8
111.1 | | 3) | 16 | 34 | | | | | | | HEMLOCK
)TAL | -L | 65.6 | 32.6 | | 162 | 240 | 318 | | 213 | 53 | 2- | | | | | | | | | F/ACRE | | | # OF PLOT | S REQ. | INF. POP. | | | 68.1 | | COEFF | | | LOW | AVG | HIGH | | 5 | 10 | 1 | | SD | | | VAR.%
42.2 | 21.0 | | 10,181 | 12,882 | 15,582 | | | | | | | I R FIR-L | | 127.4 | 63.3 | | 3,452 | 9,407 | 15,363 | | | | | | | I R FIR-T
HEMLOCK | _T | 223.6 | 111.1 | | -, | 1,184 | 2,499 | | | | | | | HEMLOCK
)TAL | ~ −L | 63.0 | 31.3 | | 16,128 | 23,472 | 30,817 | | 196 | 49 | 2 | | | | | | | | | CUFT FT | /ACRE | | # OF PLOT | S REQ. | INF. POP. | | TO | | | | | | W. 12.12 | | | | | | | | T(| 68.1 | | COEFF | | | | | | | 5 | | 1 | | CI
SI | | | COEFI
VAR.%
38.5 | | W. W. W. | LOW
2,658 | AVG
3,287 | HIGH
3,915 | | | 10 | 1 | | TC PST | TATS | | , | | PROJECT
PROJECT | | ISTICS
GE2 | | | PAGE
DATE | 2
3/30/2020 | |------------|-------------|----|---------------|---------------|--------------------|-----------------|---------------|-------|----------|---------------|-----------------------| | TWP | RGE | SC | TRACT | TYF | PE . | A | CRES | PLOTS | TREES | CuFt | BdFt | | 35S | 04E | 02 | EDGE2 | 0067 | 7 | | 18.70 | 5 | 30 | S | W | | CL
SD: | 68.1 | | COEFF
VAR. | S.E.% | NET (| CUFT FT/
AVG | ACRE
HIGH | | # OF PLO | TS REQ.
10 | INF. POP. | | WHE
TOT | MLOCK
AL | -L | 223.6
59.9 | 111.1
29.8 | 4,332 | 363
6,170 | 767
8,008 | | 177 | 44 | 20 | | T35S R04E S02 | Ty0067 | , 1 | 8.70 | | Projec | t: | ED | GE2 | | | | | | | | Page | | 1/202 | 0 | |---------------|--------|------|----------|--------|--------------|-----|------|---------|----------|-------|----------|-------|-------|-------|----|--------------|--------|----------------|-----------| | | | | | | Acres | | | 18.7 | 70 | | | | | | | Date
Time | | 1/202
:25:3 | 0
87AM | | | % | | | | | | Pero | cent of | Net Bo | ard F | oot Volu | ıme | | | | Avera | ige Lo | g | Logs | | S So Gr | Net | | per Acre | | Total | | | | ale Dia. | | | Log L | ength | | Ln | | Bd | CF/ | Per | | Spp T rt ad | BdFt | Def% | Gross | Net | Net MBF | | 4-5 | 6-11 | 12-16 | 17+ | 12-20 | 21-30 | 31-35 | 36-99 | Ft | In | Ft | Lf | /Acre | | RF L DOCU | | | | | | | | | | | | | | | 8 | 5 | | 0.00 | 45.2 | | RF L DO2M | 41 | | 5,354 | 5,354 | | 100 | | | 14 | 86 | | | 100 | | | 18 | | 3.01 | 11.4 | | RF L DO3M | 47 | | 5,997 | 5,997 | İ | 112 | 2 | 67 | 26 | 5 | | 19 | 81 | 20 | 33 | 8 | 86 | 0.70 | 70.0 | | RF L DO4M | 12 | | 1,531 | 1,531 | <u></u> | 29 | 76 | 24 | | | 26 | 29 | 7 | 38 | 25 | 5 | 27 | 0.35 | 56.5 | | RF Totals | 55 | | 12,882 | 12,882 | | 241 | 10 | 34 | 18 | 38 | 3 | 12 | 80 | 5 | 24 | 7 | 70 | 0.74 | 183.1 | | RF T DOCU | | | | | | | | | | | | | | | 7 | 5 | | 0.00 | 49.4 | | RF T DO2M | 16 | | 1,525 | 1,525 | | 29 | | | 100 | | | | 100 | | 34 | 15 | 284 | 2.09 | 5.4 | | RF T DO3M | 69 | | 6,495 | 6,495 | | 121 | | 100 | | | | | 100 | | 34 | 7 | 64 | 0.50 | 101.7 | | RF T DO4M | 15 | | 1,387 | 1,387 | | 26 | 100 | | | | 49 | 12 | 9 | 29 | 19 | 5 | 20 | 0.32 | 68.5 | | RF Totals | 40 | | 9,407 | 9,407 | | 176 | 15 | 69 | 16 | | 7 | 2 | 87 | 4 | 24 | 6 | 42 | 0.47 | 225.0 | | | | | | | | | | • | | | | | | | | | | | | | WH L DOCU | | | | | | | | | | | | | | | 15 | 5 | ٠. | 0.00 | 12.6 | | WH L DO3M | 100 | | 1,184 | 1,184 | | 22 | | 100 | | | | | 100 | | 34 | 9 | 94 | 0.85 | 12.6 | | WH Totals | 5 | | 1,184 | 1,184 | | 22 | İ | 100 | | | | | 100 | | 25 | 7 | 47 | 0.59 | 25.1 | | TC PLOGSTVB | Log Stock Table - MBF | | |----------------------|----------------------------|--------------------------------------| | T35S R04E S02 Ty0067 | Project: EDGE2 Acres 18.70 | Page 1 Date 4/1/2020 Time 11:25:36AM | | | s | So G | r | Log | Gross | Def Net | % | | ľ | let Vol | ıme by | Scalin | g Dian | ieter in l | Inches | | | | | |-------|---|-------|-------|-----|-------|---------|-------|-----|-----|---------|--------|--------|--------|------------|--------|-------|-------|-------|-----| | Spp | Т | rt de | • | Len | MBF | % MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 | 40+ | | RF | L | DO | 2M | 34 | 100 | 100 | 41.6 | | | | | , | 14 | | 34 | 34 | 18 | | | | RF | L | DO | 3M | 26 | 13 | 13 | 5.2 | | 1 | | | | 6 | | 6 | | | | | | RF | L | DO | 3M | 27 | 1 | 1 | .5 | | 1 | | | | | | | | | | | | RF | L | DO | 3M | 28 | 7 | 7 | 2.8 | | | | | | | | 7 | | | | | | RF | L | DO | 3M | 29 | 1 | 1 | .3 | | 1 | | | | | | | | | | | | RF | L | DO | 3M | 34 | 91 | 91 | 37.8 | | : | 37 | 25 | 13 | 5 | 11 | | | | | | | RF | L | DO | 4M | 15 | 7 | 7 | 2.8 | | | 7 | | | | , | | | | | | | RF | L | DO | 4M | 19 | 1 | 1 | .2 | | 1 | | | | | | | | | | | | RF | L | DO | 4M | 21 | 4 | 4 | 1.8 | | 4 | | | İ | | | | | | | | | RF | L | DO | 4M | 25 | 1 | 1 | .6 | | 1 | | | | | | | · | | | | | RF | L | DO | 4M | 28 | 3 | 3 | 1.1 | | 3 | | | | | | | | | | | | RF | L | DO | 4M | 32 | 2 | 2 | .9 | | 2 | | | | | | | | | | | | RF | L | DO | 4M | 38 | 11 | 11 | 4.6 | | 11 | | | | | | | | | | | | RF | | Т | otals | | 241 | 241 | 54.9 | | 24 | 44 | 25 | 13 | 25 | 11 | 47 | 34 | 18 | | | | RF | Т | DO | 2M
| 34 | 29 | 29 | 16.2 | | | | | | | 14 | 15 | | | | | | RF | Т | DO | 3M | 34 | 121 | 121 | 69.0 | | | 78 | 20 | 24 | | | | | | | | | RF | T | DO | 4M | 12 | 6 | 6 | 3.2 | | 6 | | | | | | | | | | | | RF | T | DO | 4M | 15 | 2 | 2 | .9 | | 2 | | | | | | | | | | | | RF | T | DO | 4M | 17 | 6 | 6 | 3.2 | | 6 | | | | | | | | | | | | RF | T | DO | 4M | 26 | 3 | 3 | 1.8 | | 3 | | | | | | | | | | | | RF | T | DO | 4M | 33 | 2 | 2 | 1.3 | | 2 | | | | | | | | | | | | RF | Т | DO | 4M | 39 | 8 | 8 | 4.3 | | 8 | | | | | | | | | | | | RF | | Т | otals | | 176 | 176 | 40.1 | | 26 | 78 | 20 | 24 | | 14 | 15 | | | | | | WH | L | DO | 3M | 34 | 22 | 22 | 100.0 | | | | 10 | 12 | | | | | | | | | WH | | Т | otals | | 22 | 22 | 5.0 | | | | 10 | 12 | | | | | | | | | Total | | All S | ecie | es | 439 | 439 | 100.0 | | 50 | 122 | 55 | 49 | 25 | 25 | 61 | 34 | 18 | | | | | OTTREELI | ST | | | • | | t Tree | List - V
EDG | | | | | Page
Date | 1
3/30/20 |)20 | |--------------|------------|----------|------------|----------|--------|-------------|--------|-----------------|-------|----------|-------|----------|--------------|--------------|-----| | ODF | | | | | | | | | RES | PLOTS | TR | EES | CRUISE | ED DATE | | | TWP
35S | RGE
04E | SC
02 | TRA
EDG | | | YPE
1067 | | AC | 18.70 | 5 | 110 | 30 | | 1/1/2019 | | | Plot | Tree | | | | Trees | | 16' | Tot | BA | Trees | Logs | Net | Net | Total | | | No. | No. | Age | SI | Spp St | Me. Ct | . DBH | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | | 0001 | 64 | | RF L | 2 | 10.0 | 89 | 63 | 80.0 | 146.68 | 146.7 | 1,591 | 7,334 | 60 | 27 | | 6701 | 0001 | 64 | | RF T | 3 | 10.0 | 89 | 63 | 120.0 | 220.02 | 220.0 | 2,387 | 11,001 | 89 | 41 | | | 0002 | 64 | | RF T | 3 | 12.0 | 87 | 65 | 120.0 | 152.79 | 305.6 | 2,778 | 10,695 | 104 | 40 | | | 0003 | 64 | | RF T | 2 | 14.0 | 85 | 69 | 80.0 | 74.84 | 149.7 | 1,926 | 6,735 | 72 | 25 | | | 0004 | 64 | | RF L | 2 | 16.0 | 85 | 70 | 80.0 | 57.30 | 114.6 | 1,973 | 6,875 | 74 | 26 | | 6501 | | | 100 | | 12 | 11.6 | 88 | 65 | 480.0 | 651.61 | 936.5 | 10,655 | 42,641 | 399 | 159 | | 6701
6702 | 0001 | 64 | | WH L | 12 | 17.0 | 82 | 67 | 40.0 | 25.38 | 25.4 | 915 | 3,299 | 34 | 12 | | 6702 | 0001 | 64 | 100 | | 1 | 14.0 | 83 | 60 | 40.0 | 37.42 | 37.4 | 902 | 2,619 | 34 | 10 | | | 0002 | 64 | | | 1 | 19.0 | 83 | 60 | 40.0 | 20.32 | 40.6 | 972 | 3,047 | 36 | 11 | | | 0003 | 64 | 100 | RF L | 1 | 24.0 | 82 | 70 | 40.0 | 12.73 | 25.5 | 1,103 | 3,438 | 41 | 13 | | | 0004 | 64 | | RF T | 1 | 12.0 | 85 | 54 | 40.0 | 50.93 | 50.9 | 791 | 2,037 | 30 | 8 | | | 0005 | 64 | | RF L | 1 | 40.0 | 82 | 96 | 40.0 | 4.58 | 13.8 | 1,440 | 6,600 | 54 | 25 | | (702 | | | 100 | | 6 | 17.1 | 83 | 61 | 240.0 | 151.36 | 193.6 | 6,124 | 21,041 | 229 | 79 | | 6702
6703 | 0001 | 64 | | RF L | 1 | 10.0 | 83 | 60 | 40.0 | 73.34 | 73.3 | 950 | 2,934 | 36 | 11 | | 0703 | 0001 | 64 | | RF L | 1 | 12.0 | 83 | 60 | 40.0 | 50.93 | 50.9 | 850 | 2,546 | 32 | 10 | | (702 | | | 100 | | 2 | 10.9 | 83 | 60 | 80.0 | 124.27 | 124.3 | 1,800 | 5,480 | 67 | 20 | | 6703
6704 | 0001 | 64 | | RF L | 1 | 9.0 | 80 | 17 | 40.0 | 90.54 | 90.5 | 370 | 1,811 | 14 | 7 | | 0704 | 0001 | 64 | | RF L | 1 | 27.0 | 82 | 102 | 40.0 | 10.06 | 30.2 | 1,478 | 6,439 | 55 | 24 | | | 0002 | 64 | | RF L | 1 | 34.0 | 82 | 103 | 40.0 | 6.34 | 19.0 | 1,505 | 6,471 | 56 | 24 | | 6704 | | | 100 | | 3 | 14.3 | 80 | 30 | 120.0 | 106.95 | 139.8 | 3,353 | 14,720 | 125 | 55 | | 6704
6705 | 0001 | 64 | 100 | | 1 | 18.0 | 83 | 78 | 40.0 | 22.64 | 45.3 | 1,186 | 4,074 | 44 | 15 | | 0703 | 0001 | 64 | | RF T | 1 | 16.0 | 83 | 77 | 40.0 | 28.65 | 57.3 | 1,200 | | 45 | 17 | | | 0002 | 64 | | RFL | 1 | 20.0 | 87 | 80 | 40.0 | 18.33 | 36.7 | 1,211 | 4,400 | 45 | 16 | | | 0003 | 64 | | RFT | 1 | 22.0 | 85 | 80 | 40.0 | 15.15 | 30.3 | 1,257 | - | 47 | 16 | | | 0004 | 64 | | RFL | 1 | 27.0 | 85 | 90 | 40.0 | 10.06 | 20.1 | - | | 51 | 21 | | | 0003 | 64 | 100 | | 1 | 25.0 | 83 | 86 | 40.0 |) 11.73 | 23.5 | 1,290 | 4,694 | 48 | 18 | | | 0007 | 64 | | RFL | 1 | 31.0 | 82 | 100 | 40.0 | 7.63 | 22.9 | 1,415 | 5 5,953 | 53 | 22 | | (705 | | | 100 | <u> </u> | 7 | 21.2 | 84 | 82 | 280.0 |) 114.20 | 236.0 | 8,919 | 33,480 | 334 | 125 | | 6705
TYPI | | | 100 | | 30 | 13.8 | | 62 | 240.0 | | | | 0 23,472 | 1,154 | 439 | | TC PST | FATS | | | | | JECT S
OJECT | TATIS
EDG | | | | PAGE
DATE | 1
3/30/2020 | |------------------|-----------------------------|-------------|------------------------|--------------------------|--------------|-----------------------|-----------------|------------------------|-----------|------------------|--------------|----------------| | <u>лог</u>
WP | RGE | SC | TRACT | Т | YPE | | AC | RES | PLOTS | TREES | CuFt | BdFt | | 35S | 04E | 11 | EDGE2 | 0 | 069 | | | 36.90 | 16 | 79 | S | W | | | | | | - W | | TREES | I | ESTIMATED
TOTAL | | ERCENT
SAMPLE | | | | | | | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | тот | A I | | 16 | 79 | | 4.9 | | | | | | | | CRU | | | 9 | 42 | | 4.7 | | 5,338 | | .8 | | | | | COUNT | | | | | | | | | | | | | REF | OREST | | | | | | | | | | | | | COU | INT | | 7 | 37 | | 5.3 | | | | | | | | | NKS | | | | | | | | | | | | | 100 9 | <u> </u> | | | | OTT A | ND SUM | #ADV | | | | W | | | | | | | mp HEQ | | | | BASAL | GROSS | NET | GROSS | NET | | | | 5 | SAMPLE | TREES | AVG
DBH | BOLE
LEN | REL
DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | | | | TREES | /ACRE | 18.4 | 67 | 26.8 | 115.0 | 10,852 | 10,852 | 3,073 | 3,073 | | | R FIR-L | | 24
16 | 62.5
79.2 | 18.4 | 61 | 20.8 | 72.5 | 6,578 | 6,578 | 1,696 | 1,696 | | | R FIR - T
EMLOCK- | r | 2 | 3.0 | 17.5 | 61 | 1.2 | 5.0 | 399 | 399 | 128 | 128 | | | EMLOCK-
FAL | ·L | 42 | 144.7 | 15.6 | 63 | 48.7 | 192.5 | 17,829 | 17,829 | 4,897 | 4,897 | | CO | nfideno
68 | | LIMITS OF T | THE SAMPL
T OF 100 TI | E
HE VOLU | JME WILL | BE WIT | HIN THE SA | MPLE ERRO | OR | | | | CL | 68.1 | | COEFF | | | SAMPL | E TREE | | # | OF TREES | | INF. POP. | | SD: | | | VAR.% | S.E.% | I | LOW | AVG | HIGH | | 5 | 10 | 1, | | | R FIR-L | | 38.7 | 8.6 | | 218 | 239
117 | 259
126 | | | | | | | R FIR-T | | 27.9 | 7.7
34.3 | | 108
89 | 135 | 181 | | | | | | | EMLOCK:
TAL | -L | 36.7
50.1 | 8.2 | | 172 | 187 | 202 | | 100 | 25 | 1. | | | | | COEFF | | ··· | | E TREE | S - CF | | # OF TREES | REQ. | INF. POP. | | CL
SD: | | | VAR.% | S.E.% | 1 | LOW | AVG | HIGH | | 5 | 10 | 1 | | | R FIR-L | | 31.6 | 7.1 | | 62 | 67 | 72 | | | | | | | R FIR-T | | 28.9 | 8.0 | | 28 | 30 | 33 | | | | | | | IEMLOCK | -L | 26.1 | 24.4 | | 33 | 43 | 54 | | 00 | 22 | 10 | | ТО | TAL | | 47.3 | 7.8 | | 48 | 52 | 56 | | 89 | | | | CL | 68.1 | | COEFF | | | TREES | /ACRE | | | # OF PLOTS | | INF. POP. | | SD | | | VAR.% | | | LOW | AVG | HIGH | | 5 | 10 | 1 | | | R FIR-L | | 43.3 | 11.2 | | 55 | 62
79 | 69
99 | | | | | | | R FIR-T | - т | 95.9
400.0 | 24.7
103.2 | | 60 | 3 | 6 | | | | | | | IEMLOCK
TAL | - L | 55.9 | 103.2 | | 124 | 145 | 166 | | 133 | 33 | 1 | | | | | | | | | AREA/ | ACRE. | | # OF PLOTS | S REQ. | INF. POP. | | CL
SD | 68.1 | | COEFF
VAR.% | S.E.% | | LOW | AVG | HIGH | | 5 | 10 | 1 | | | R FIR-L | | 37.8 | 9.8 | | 104 | 115 | 126 | | | | | | | R FIR-T | | 95.0 | 24.5 | | 55 | 73 | 90 | | | | | | | HEMLOCK | ۲-L | 400.0 | 103.2 | | | 5 | 10 | | 70 | 17 | | | | TAL | | 40.3 | 10.4 | | 172 | 193 | 213 | | 69 | 17 | | | CI | 68.1 | | COEFF | | | | F/ACRE | | | # OF PLOTS | | INF. POP | | | : 1.0 | | VAR.% | | | LOW | AVG | HIGH | | 5 | 10 | | | SH | R FIR-L | | 39.6 | 10.2 | | 9,742 | 10,852 | 11,961
8,214 | | | | | | | R FIR-T | | 96.5 | 24.9
103.2 | | 4,941 | 6,578
399 | 8,214
811 | | | | | | | HEMLOCE | ∖- L | 400.0
<i>40.6</i> | 103.2 | | 15,960 | 17,829 | 19,698 | | 70 | 18 | | | WI |)TAI | | 70.0 | 10.5 | | | | | | # OF PLOT | C DEO | INF. POP | | TO | OTAL CO. 1 | | COPPE | , | | AIDT C | ידים ידיקון ויי | /ACPE | | # ()6 61371 | S KEO. | 11 (1) 1 (1 | | T(C | 68.1 | | COEFF | | | | UFT FT
AVG | | | # OF FLOT | 3 KEQ. | | | CI
SE | 68.1 | | COEFF
VAR.%
39.1 | | | NET C
LOW
2,763 | AVG
3,073 | /ACRE
HIGH
3,383 | | | | 14.101 | | TC PST | TATS | | |] | PROJECT
PROJECT | | ISTICS
GE2 | | | PAGE
DATE | 2
3/30/2020 | |------------|--------------|----|---------------|---------------|--------------------|----------------------|---------------|-------|----------------|--------------|-----------------------| | TWP | RGE | SC | TRACT | TYPI | E | A | CRES | PLOTS | TREES | CuFt | BdFt | | 35S | 04E | 11 | EDGE2 | 0069 | | | 36.90 | 16 | 79 | S | W | | CL
SD: | 68.1
1.00 | | COEFF
VAR. | S.E.% | NET (| CUFT FT/
AVG | ACRE
HIGH | | # OF PLOT
5 | S REQ.
10 | INF. POP | | WHE
TOT | MLOCK
AL | -L | 400.0
39.2 | 103.2
10.1 | 4,402 | 128
<i>4</i> ,897 | 260
5,392 | | 65 | 16 | 7 | . l | T35S R04E S11 | Ту0069 |) 3 | 6.90 | | Project
Acres | t: | ED | 36.9 | 0 | | | | | | | Page
Date
Time | 4/ | 1
1/202
:26:4 | 0
 6AM | |------------------------|------------|---------|------------|--------|------------------|--------|------|---------|----------|--------|----------|-------|-------|-------|----|----------------------|-------|---------------------|-----------| | | % | | | | <u> </u> | , | Perc | cent of | Net Bo | ard Fo | oot Volu | ıme | | | | Avera | ge Lo | g | Logs | | S So Gr | Net | Bd. Ft. | per Acre | ; | Total | | I. | og Sca | ıle Dia. | | | Log I | ength | | Ln | Dia | Bd | CF/ | Per | | Spp T rt ad | BdFt | Def% | Gross | Net | Net MBF | | 4-5 | 6-11 | 12-16 | 17+ | 12-20 | 21-30 | 31-35 | 36-99 | Ft | In | Ft | Lf | /Acre | | RF L DO3M | 72 | | 7,840 | 7,840 | | 289 | | 45 | 48 | 7 | | | 100 | | 34 | 12 | 175 | 1.33 | 44 | | RF L DO4M | 28 | | 3,012 | 3,012 | | 111 | 51 | 22 | 28 | | 13 | 56 | 20 | 11 | 26 | 6 | 43 | 0.59 | 69 | | RF Totals | 61 | | 10,852 |
10,852 | | 400 | 14 | 38 | 42 | 5 | 4 | 15 | 78 | 3 | 29 | 8 | 95 | 0.93 | 114 | | RF T DO3M | 32 | | 2,161 | 2,161 | | 80 | | 82 | 18 | | | | 100 | | 34 | 9 | 106 | 0.83 | 20 | | RF T DO4M | 68 | | 4,417 | 4,417 | | 163 | 56 | 44 | | | 3 | 66 | 8 | 23 | 27 | 6 | 43 | 0.40 | 103 | | RF Totals | 37 | | 6,578 | 6,578 | | 243 | 38 | 56 | 6 | | 2 | 44 | 38 | 16 | 28 | 7 | 53 | 0.48 | 124 | | WW 1 DOO: | 5 2 | | 212 | 212 | | 8 | | 100 | | | | | 100 | | 34 | 11 | 150 | 1.21 | | | WH L DO3M
WH L DO4M | 53
47 | .0 | 212
187 | 187 | | o
7 | 100 | 100 | | | | 15 | 100 | 85 | 34 | | 62 | | | | WII L DO4W | 2 | | 399 | 399 | <u> </u> | 15 | 47 | 53 | | | | 7 | 53 | 40 | 34 | 7 | - 00 | 0.85 | | TC PLOGSTVB Log Stock Table - MBF T35S R04E S11 Ty0069 36.90 Project: EDGE2 Acres 36.90 Page 1 Date 4/1/2020 Time 11:26:45AM | | _ | | | ··· | | | | | | | | | • | | Time 11, | 20.437 | 1111 | |-------|---|----------|------|-----|---------|-------|-----|-----|-----|----------|-------|-----|-------|----|-------------|--------|------| | | s | So Gr | | | Def Net | % | , | | | olume by | | - | | | T. | Γ | | | Spp | T | rt de | Len | MBF | % MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | | 14-15 | | 20-23 24-29 | 30-39 | 40+ | | RF | L | DO 3M | 34 | 289 | 289 | 72.2 | | | | 28 | 101 | 87 | 35 | 18 | 21 | | | | RF | L | DO 4M | [14 | 3 | 3 | .6 | | 3 | | | | | | | | | | | RF | L | DO 4M | [16 | 4 | 4 | 1.0 | | 4 | | | | | | | | | | | RF | L | DO 4M | 17 | 1 | 1 | .4 | | 1 | | | | | | | | | | | RF | L | DO 4M | 19 | 6 | 6 | 1.5 | | 6 | | | | | | | | | | | RF | L | DO 4M | 1 21 | 2 | 2 | .4 | | 2 | | | | | | | | | | | RF | L | DO 4M | 1 22 | 4 | 4 | .9 | | 4 | | | | | | | | | | | RF | L | DO 4M | 1 24 | 3 | 3 | .7 | | 3 | | | | | | | | | | | RF | L | DO 4M | 1 26 | 47 | 47 | 11.6 | | 3 | | | 12 | | 31 | | | | | | RF | L | DO 4M | 1 28 | 5 | 5 | 1.2 | | 5 | | | | | | | | | | | RF | L | DO 4M | 1 29 | 2 | 2 | .5 | | 2 | | | | | | | | | | | RF | L | DO 4M | 1 33 | 2 | 2 | .6 | | 2 | | | | | | | | | | | RF | L | DO 4M | 1 34 | 18 | 18 | 4.5 | | 6 | | 12 | | | | | | | | | RF | L | DO 4M | 1 35 | 2 | 2 | .5 | | 2 | | | | | | | | | | | RF | L | DO 4M | 1 38 | 4 | 4 | 1.0 | ĺ | 4 | | : | | | | | | | | | RF | L | DO 4M | 1 40 | 8 | 8 | 2.1 | | 8 | | | | | | | | | | | RF | | Total | S | 400 | 400 | 60.9 | | 56 | | 39 | 114 | 87 | 65 | 18 | 21 | | | | RF | Т | DO 3M | 1 34 | 80 | 80 | 32.9 | | | | 36 | 29 | 15 | | | | | | | RF | T | DO 4M | 1 12 | 1 | 1 | .6 | | 1 | | | | | | | | | | | RF | Т | DO 4M | 1 17 | 4 | 4 | 1.5 | | 4 | | | | | | | | | | | RF | Т | DO 4M | 1 21 | 3 | 3 | 1.1 | | 3 | | | | | | | | | | | RF | T | DO 4M | 1 22 | 39 | 39 | 16.0 | | 4 | | 9 | 26 | | | | | | | | RF | T | DO 4M | 1 23 | 2 | 2 | .9 | | 2 | | | | | | | | | | | RF | T | DO 4M | 1 24 | 28 | 28 | 11.4 | | 15 | | | 12 | | | | | | | | RF | T | DO 4M | 1 25 | 11 | 11 | 4.5 | | | | 11 | | | | | | | | | RF | T | DO 4M | 1 26 | 25 | 25 | 10.3 | | 12 | | | 13 | | | | | | | | RF | T | DO 4M | 1 34 | 12 | 12 | 5.1 | | 12 | | | | | | | | | | | RF | T | DO 4M | 1 36 | 14 | 14 | 5.6 | | 14 | | | | | | | | | | | RF | T | DO 4M | 1 37 | 25 | 25 | 10.1 | | 25 | | | | | | | | | | | RF | | Total | ls | 243 | 243 | 36.9 | | 91 | | 56 | 81 | 15 | | | | | | | WH | L | DO 3M | 1 34 | 8 | { | 53.2 | | | | | 8 | | | Wa | | | | | WH | L | DO 4N | 1 26 | 1 |] | 7.1 | | 1 | | | | | | | | | | | WH | L | DO 4N | | 1 | 6 | 39.7 | | 6 | | | | | | | | | | | WH | | Total | ls | 15 | 15 | 2.2 | | 7 | | | 8 | | | | | | | | Total | | All Spec | ies | 658 | 658 | 100.0 | | 155 | | 96 | 202 | 101 | 65 | 18 | 21 | | | | C PLC | TTREELIS | T | | | | | | | List - V | | | | | Page
Date | 1
3/30/20 | 20 | |--------------|--------------|----------|------------|------------------|-----|---------------|--------------|----------|----------|----------------|-----------------|---------|-----------|--------------|--------------|--------| | DF | | | | | | | P | roject | EDG | | | | | | | | | TWP
5S | RGE
04E | SC
11 | TRA
EDG | | | TY
00 | PE
69 | | AC | RES
36.90 | PLOTS
16 | TR | EES
42 | CRUISE
1 | 1/1/2019 | | | Plot | Tree | | | | Tro | es | | 16' | Tot | BA | Trees | Logs | Net | Net | Total | | | | No. | Age | SI | Spp St | | | DBH | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | | | | | | | 6 | 18.0 | 86 | 67 | 240.0 | 130.34 | 239.4 | 6,413 | 22,647 | 148 | 52 | | 5901 | 0001
0002 | 65
65 | | RF L
WH T | | 2 | 16.0 | 00 | 0, | | | | | | | | | | 0002 | 03 | | 4411.1 | | | | 0.6 | (7 | 240.0 | 130.34 | 239.4 | 6,413 | 22,647 | 148 | 52 | | 6901 | | | 100 | D.D.W. | 2 | 8 | 18.4 | 86
89 | 67
55 | 80.0 | 146.68 | 146.7 | 1,569 | 5,867 | 36 | 14 | | 6902 | 0001 | 65 | | RF T
RF L | 1 | | 15.0 | 88 | 62 | 40.0 | 32.59 | 65.2 | 969 | 3,585 | 22 | 8 | | | 0002 | 65
65 | | RF L | 1 | | 17.3 | 86 | 66 | 40.0 | 24.50 | 49.0 | 1,043 | 3,676 | 24 | 8 | | | 0003
0004 | 65 | | RF L | 1 | | 12.4 | 87 | 53 | 40.0 | 47.70 | 47.7 | 760 | 1,908 | 18 | 4 | | | 0004 | | 100 | KI L | | | | | | | 051.47 | 308.6 | 4,340 | 15,036 | 100 | 35 | | 6902 | | | 100 | | 5 | | 12.1 | 88 | 57 | 200.0
120.0 | 251.47
65.17 | 119.7 | 3,206 | | 74 | 26 | | 6903 | 0001 | 65 | | RF L | | 3 | | 86 | 67 | 240.0 | 262.25 | 411.5 | • | 21,775 | 130 | 50 | | | 0002 | 65 | 100 | RF T | | 6 | 12.0 | 88 | 61 | 240.0 | | | | | | 7/ | | 6903_ | | | 100 | | | 9 | 14.2 | 88 | 62 | 360.0 | 327.42 | 531.2 | 8,822 | 33,098 | 203 | 76 | | 6904 | 0001 | 65 | 100 | RF T | 1 | | 10.0 | 88 | | 40.0 | 73.34 | 73.3 | 721 | 2,934 | 17
22 | ;
{ | | | 0002 | 65 | 100 | RF L | 1 | | 17.0 | 88 | | 40.0 | 25.38 | 50.8 | | 3,553 | 48 | 18 | | | 0003 | 65 | 100 | RF L | 2 | 2 | 18.0 | 91 | 65 | 80.0 | 45.27 | 90.5 | 2,063 | 7,696 | 40 | | | 6904 | | | 100 | | 4 | | 14.3 | 89 | 56 | 160.0 | 143.99 | 214.6 | 3,743 | 14,182 | 86 | 33 | | 6904 | 0001 | 65 | | RF L | | 3 | | | | 120.0 | 65.17 | 119.7 | 3,206 | 11,324 | 74 | 20 | | 0703 | 0002 | 65 | | RFT | | 2 | 12.0 | 88 | 61 | 80.0 | 87.42 | 137.2 | 1,872 | 7,258 | 43 | 1 | | | 0002 | | | | | | 155 | 87 | 64 | 200.0 | 152.58 | 256.9 | 5,078 | 18,582 | 117 | 4: | | 6905 | | | 100 | | | <u>.</u>
I | 15.5
22.0 | | | 40.0 | | | | | 31 | 12 | | 6906 | 0001 | 65 | | RFL | | 2 | 20.0 | | | 80.0 | | | | | 60 | 2 | | | 0002 | 65 | 100 | | | z
I | 13.0 | | | 40.0 | | | | | 23 | 9 | | | 0003 | 65 | 100 |) RFT | | 1 | 13.0 | , 0, | | | | | | 10.005 | 112 | 4: | | 6906 | | | 100 |) | 4 | | 17.6 | | | 160.0 | | | | | 113
74 | 2 | | 6907 | 0001 | 65 | 100 | RFL | | ; | 3 18.0 |) 86 | 67 | 120.0 | 65.17 | 119.7 | 3,206 | 11,324 | | | | 6907 | | | 100 |) | | | 3 18.4 | 1 86 | 67 | 120.0 | 65.17 | 1 119.7 | 7 3,206 | | 74 | 2 | | 6908 | 0001 | 65 | | RFL | | 2 | 20.0 |) 88 | 65 | 80.0 | 36.67 | | - | | 48 | 1 | | *** | 0002 | 65 | | 0 RFT | | 1 | 16.0 |) 87 | 7 66 | 40.0 | | | | | 23 | | | | 0003 | 65 | 100 | 0 RFT | | 1 | 13.0 |) 86 | 60 | 40.0 | | | | | 20 | | | | 0004 | 65 | 10 | 0 RFT | | 1 | 15.0 |) 80 | 62 | 40.0 | | | | | 21 | | | | 0005 | 65 | 10 | 0 RFL | | 1 | 17.0 | 0 83 | 3 66 | 40.0 | 25.38 | 8 50.3 | 8 1,000 | 3,553 | 23 | | | (000 | | | 10 | 0 | 6 | | 16.3 | 2 8 | 6 63 | 240.0 | 0 166.68 | 8 333.4 | 4 5,82 | 7 22,580 | 134 | 5 | | 6908
6909 | | 65 | | 0 RFL | | | 3 18. | | | 120.0 | | | 7 3,20 | | 74 | 2 | | 3,00 | 0001 | 65 | | 0 RFT | | | 1 12. | | 8 61 | 40.0 | 0 43.7 | 1 68. | 6 93 | 6 3,629 | 22 | | | | | | | | | | | | 7 65 | 160.0 | 0 108.8 | 8 188. | 3 4,14 | 2 14,953 | 96 | 3 | | 6909 | | | 10 | | | 1 | 4 16.
17. | | | 40. | | | | | 26 | 1 | | 6910 | | 65 | | 0 RFL | | 1 | 17. | | | 40. | | | | | 25 | | | | 0002 | 65 | | 00 RFL
00 RFL | | 1 | 21. | | | 40. | | | | | 25 | | | | 0003 | 65 | | O RFT | | 2 | 14. | | 2 59 | 80. | | | | | 43 | | | | 0004 | 65 | , 10 | V KF I | | | | | | | | | | | 118 | | | 6910 |) | | 10 | | 5 | | 16. | | 9 64 | 200. | | | | | 118 | | | 6911 | 0001 | 6: | | 00 RFL | | 1 | 14. | | 5 60 | 40. | | | | | 21 | | | | 0002 | 6: | | 00 WHL | | 1 | 17. | | 34 50 | 40.
40. | | | | | | | | | 0003 | 6: | 5 10 | 00 WHL | | 1 | 18 | .u 8 | 36 73 | 40. | .0 22.0 | | | | | | | 691 | 1 | | 10 | 00 | 3 | | 16 | .0 8 | 35 60 | 120. | | | | | 66 | | | 6912 | | 6 | | 00 RFL | | 1 | 21 | .0 8 | 37 60 | | | | | - | | | | | 0002 | | | 00 RFT | | 1 | 15 | .0 | 38 71 | | | | | | _ | | | 1 | 0003 | | 5 10 | 00 RFL | | 1 | 21 | .3 8 | 30 62 | | | | | 52 2,748 | | | | 1 | 0004 | | | 00 RFT | | 1 | 14 | 0 1 | 33 60 | 40 | .0 33.4 | 48 67 | n 91 | 05 2,679 | 21 | | | TC PL | Plot Tree List - Volumes Project EDGE2 | | | | | | | | Page
Date | 2
3/30/2 | 020 | | | | | | |------------|--|----------------------|-----|--------|--------------|-------|------|-----|----------------|-------------|-------------|-------------|----------|---------------------------|--------|-----| | TWP
35S | RGE
04E | SC TRACT
11 EDGE2 | | | TYPE
0069 | | | | ACRES
36.90 | | PLOTS
16 | TREES
42 | | CRUISED DATE
11/1/2019 | | | | Plot | Tree | | | | Tree | 25 | | 16' | Tot | ВА | Trees | Logs | Net | Net | Total | | | No. | No. | Age | SI | Spp St | | Ct. D | BH | FF | Ht. | /Ac. | /Ac. | /Ac. | CuFt/Ac. | BdFt/Ac. | CUNITS | MBF | | 6912 | 0005 | 65 | | RF L | 1 | | 15.5 | 85 | 64 | 40.0 | 30.53 | 61.1 | 1,007 | 3,663 | 23 | 8 | | 6912 | | | 100 | | 5 | | 16.8 | 85 | 64 | 200.0 | 129.40 | 258.8 | 4,860 | 16,161 | 112 | 37 | | 6913 | 0001 | 65 | | RF L | | 1 | 18.0 | 86 | 67 | 40.0 | 21.72 | 39.9 | 1,069 | 3,775 | 25 | 9 | | 6913 | | | 100 | | | 1 | 18.4 | 86 | 67 | 40.0 | 21.72 | 39.9 | 1,069 | 3,775 | 25 | 9 | | 6914 | 0001 | 65 | 100 | RF T | 1 | | 18.9 | 89 | 71 | 40.0 | 20.53 | 41.1 | 1,118 | 4,106 | 26 | 9 | | 0514 | 0001 | 65 | | RF L | 1 | | 23.1 | 83 | 80 | 40.0 | 13.74 | 27.5 | 1,197 | 3,848 | 28 | 9 | | | 0002 | 65 | | RF T | 1 | | 9.5 | 86 | 58 | 40.0 | 81.26 | 81.3 | 846 | 3,250 | 20 | 7 | | | 0003 | 65 | | RF L | 1 | | 20.5 | 86
| 66 | 40.0 | 17.45 | 34.9 | 1,049 | 3,316 | 24 | 8 | | | 0004 | 65 | | RF T | 1 | | 12.9 | 88 | 70 | 40.0 | 44.07 | 88.1 | 1,032 | 3,966 | 24 | 9 | | | 0005 | 65 | | RF T | 1 | | 18.0 | 88 | 74 | 40.0 | 22.64 | 45.3 | 1,095 | 4,074 | 25 | 9 | | | 0007 | 65 | | RF L | 1 | | 21.7 | 83 | 75 | 40.0 | 15.57 | 31.1 | 1,120 | 3,738 | 26 | 9 | | 6014 | | | 100 | | 7 | | 15.4 | 86 | 67 | 280.0 | 215.27 | 349.3 | 7,456 | 26,299 | 172 | 61 | | 6914 | 0001 | 65 | | RF L | | 3 | 18.0 | 86 | 67 | 120.0 | | 119.7 | 3,206 | 11,324 | 74 | 26 | | 6915 | 0001 | 65 | 100 | | | 4 | 12.0 | 88 | 61 | 160.0 | 174.83 | 274.3 | 3,744 | 14,516 | 86 | 33 | | 6915 | | | 100 | | | 7 | 14.6 | 87 | 63 | 280.0 | 240.00 | 394.0 | 6,950 | 25,840 | 160 | 60 | | 6916 | 0001 | 65 | 100 | | 1 | | 25.0 | 86 | 80 | 40.0 | 11.73 | 23.5 | 1,220 | 4,459 | 28 | 10 | | 0710 | 0001 | 65 | | RF L | 1 | | 30.0 | 86 | 82 | 40.0 | 8.15 | 16.3 | 1,297 | 5,134 | 30 | 12 | | ŧ | 0002 | 65 | | RFT | 1 | | 16.5 | 89 | 71 | 40.0 | 26.94 | 53.9 | 1,023 | 4,041 | 24 | 9 | | 6916 | | | 100 | | 3 | | 21.7 | 88 | 75 | 120.0 | 46.82 | 93.6 | 3,539 | 13,633 | 82 | 31 | | TYPE | | | 100 | | 42 | 37 | 15.6 | | 63 | 192.5 | 144.67 | 243.4 | 4,897 | 17,829 | 1,807 | 658 | conditions that exist on site. Activities shall be site rather than features shown on maps. site rather than features shown on maps. Landowner: United States Forest Service conditions that exist on site. Activities shall be conducted based upon features determined on site rather than features shown on maps.