

District: Southwest

Date: June 15, 2020

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$129,553.58	\$0.00	\$129,553.58
		Project Work:	(\$12,598.00)
		Advertised Value:	\$116,955.58

District: Southwest

Date: June 15, 2020

Timber Description

Location: The sale is located 29 miles east of Roseburg off highway 138. Take the gravel road Boundary approximately 2 miles veering left at the "Y". Follow the NF020 road staying to the right until you reach Unit 1. Continue on NF until the next ro

Stand Stocking: 80%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	13	0	100
Western Hemlock / Fir	15	0	100
Red Cedar	14	0	100
Incense Cedar	12	0	100

Volume by Grade	2S	3S	4S	CR 12"	Total
Douglas - Fir	81	264	123	0	468
Western Hemlock / Fir	27	32	22	0	81
Red Cedar	0	9	11	0	20
Incense Cedar	0	0	0	49	49
Total	108	305	156	49	618

Comments: Swamp Creek GNA Timber Sale out of Grants Pass field office.

SOURCE OF POND VALUES

Local Pond Values, June, 2020

PULP PRICE

Pulp (Conifer and Hardwood) = \$5/ton

SEE PROJECT COST SUMMARY:

OTHER COSTS WITH PROFIT AND RISK TO BE ADDED

Waterbars, Skid Roads (2 miles x \$2,000/Mile) = \$4,000

Temporary Road Closure 6 berms (6 Hrs x \$100/Hr) = \$600

Landing Piling/Firewood Sort (10 Piles = 10 Hrs x \$100.00) = \$1,000

TOTAL OTHER COSTS PLUS PROFIT AND RISK = \$5,600

OTHER COSTS NO PROFIT AND RISK ADDED

Equipment Weed Wash (5 Machines 20 hours x \$50/hour) = \$1,000

SLASH DISPOSAL COSTS

In Unit Slash Piling (25 Acres X \$250/Acre) = \$6,250

ROAD MAINTENANCE COSTS = \$4.08/MBF

Haul route includes 4.0 miles of rocked road through timber sale area. Road Maintenance costs were calculated from the TAS Appraisal Program.

District: Southwest

Date: June 15, 2020

	Loggin	g Conditions
Combination#: 1	Douglas - Fir Western Hemlock / Fir Red Cedar Incense Cedar	45.00% 45.00% 45.00% 45.00%
Logging System: yarding distance: tree size:	Cable: Medium Tower >40 - <70 Medium (800 ft) Small / Thinning 12in (130 Bft/tree), 12-17 lo	Process: Manual Falling/Delimbing downhill yarding: No ogs/MBF
loads / day:	5	bd. ft / load: 3700
cost / mbf:	\$356.76	
machines:	Log Loader (A) Tower Yarder (Medium)	
Combination#: 2	Douglas - Fir Western Hemlock / Fir Red Cedar Incense Cedar	55.00% 55.00% 55.00% 55.00%
Logging System:	Track Skidder	Process: Feller Buncher
yarding distance: tree size:	Medium (800 ft) Small / Thinning 12in (130 Bft/tree), 12-17 lo	downhill yarding: No ogs/MBF
loads / day:	7	bd. ft / load: 3700
cost / mbf:	\$157.89	
machines:	Log Loader (B) Stroke Delimber (B) Feller Buncher w/ Delimber Track Skidder	

District: Southwest

Date: June 15, 2020

Logging Costs		
Operating Seasons: 1.00	Profit Risk: 15%	
Project Costs: \$12,598.00	Other Costs (P/R): \$5,600.00	
Slash Disposal: \$6,250.00	Other Costs: \$1,000.00	

Miles of Road		Road Maintenance:	\$0.00
Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	4.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	3.7
Western Hemlock / Fir	\$0.00	3.0	3.7
White Fir	\$0.00	3.0	3.7
Red Cedar	\$0.00	3.0	3.7
Incense Cedar	\$0.00	3.0	3.7

District: Southwest

Date: June 15, 2020

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$247.38	\$4.08	\$7.10	\$85.59	\$9.06	\$52.98	\$10.11	\$2.00	\$1.62	\$419.92
Western H	emlock	/ Fir							
\$247.38	\$4.08	\$7.10	\$85.59	\$9.06	\$52.98	\$10.11	\$2.00	\$1.62	\$419.92
Red Cedar									
\$247.38	\$4.08	\$7.10	\$85.59	\$9.06	\$52.98	\$10.11	\$2.00	\$1.62	\$419.92
Incense Co	edar								
\$247.38	\$4.08	\$7.10	\$85.59	\$9.06	\$52.98	\$10.11	\$2.00	\$1.62	\$419.92

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$640.80	\$220.88	\$0.00
Western Hemlock / Fir	\$0.00	\$526.54	\$106.62	\$0.00
Red Cedar	\$0.00	\$733.50	\$313.58	\$0.00
Incense Cedar	\$0.00	\$650.00	\$230.08	\$0.00

District: Southwest

Date: June 15, 2020

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00
Red Cedar	0	\$0.00	\$0.00
Incense Cedar	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	468	\$220.88	\$103,371.84
Western Hemlock / Fir	81	\$106.62	\$8,636.22
Red Cedar	20	\$313.58	\$6,271.60
Incense Cedar	49	\$230.08	\$11,273.92

Gross Timber Sale Value		r Sale Value	
	Recovery:	\$129,553.58	
Prepared By:	Kyle Syfert	Phone: 541-471-3152	

PROJECT SUMMARY

Purchaser would only be reimbursed for projects accomplished to specifications. Purchasers timber account will not be credited for incomplete projects.

Project 1 Exhibit D instructions	Road 4710021					
Point C - D, 2" lift of rock on the 471	0-021 Rd, 1,400					
feet long		Yards	\$/Yard	\$/mile	\$/Load	
	Rock USFS Pit*	100	\$0.00		\$0	\$0
Hauling 30 Miles Roun	d Trip (10 trips)	100		\$3.00	\$90	\$900
Rock removal and Culvert Repair, C -	E Road Systems (S	See Exhib	oit D Deta	ils)		\$4,114
Move-in Dump t	ruck and Loader					\$1,000
*Bloody Point USFS Pit		100	\$0.00			\$6,014
Rock Spec Size 1.5"-0"						

Project 2 - insructions Exhibit D

			Tim	es		
Road Grading/Blading	Road	Feet	Miles Gra	ded \$/	Mile	
BLM ROW Section A-B	4710	8380	1.6	3	\$520	2,496
USFS Section B-C C-D	4710 4710-021	2468 1587	0.5 0.3	3 3	\$520 \$520	780 468
C-E	4710-020	4506	0.9	3	\$520	1,404
BLM Road E-F	26-1-18	3084	0.6	3	\$520	936
	Move-In Grader					500
Grade road as needed, before, d	uring and after loggir	ng. Appra	isal is for the	ee times		6,584

Total \$12,598

SUMMARY OF ADDITIONAL COSTS

Slash Disposal	Acres	Miles	\$/mile	\$/Acre		Total
In Unit Slash Piling	25			250	\$6,250	\$6,250
Additional Cost with Profit and Risk	Berms	Hours	\$/Hour			
Temporary Road Closure - Exhibit G	e	56	\$100		\$600	
	Piles	Hours	\$/Hour			
Landing Piling and Firewood Sorting. Ex. E	10) 10	\$100		\$1,000	
All piles shall be covered with 4 n	nil black polyethyle	ne.				
	Acres	Miles	\$/mile	\$/Acre		
Subsoiling, Waterbarring - Temporary Roa	ads, Skid Roads	2	\$2,000		\$4,000	
Approximately 1/3 of the tota	l skid roads will ne	ed to be s	ubsoiled.			
					Total	\$5,600
Additional Costs no Profit and Risk	Machines	5 Hours	\$/Hour		•	Total
Equipment Weed Wash	Ē	5 20	50		\$1,000	\$1,000
All Road Maintenance and Loggir	ng Equipment woul	d be				

cleaned prior to entering the Timber Sale Area and Hauling Vicinity.

TIMBER SALE SUMMARY

- 1. <u>Type of Sale</u>: Recovery sale, sealed bid auction of 50.4 acres of thinning and 4 acres of gap cutting.
- 2. <u>Revenue Distribution</u>: USFS Supplemental Project Agreement 20-GN-11061000-04 Project GF7120-07 PCA 02604
- **3.** <u>Sale Acreage</u>: For the sale, 54.4 net acres were used for the cruise expansion. Acreage was determined with ArcGIS 10.7 and GPS traverse.
- 4. <u>Volume</u>: The table below describes the volume by grade over the two unit sale area. A more detailed look is available in the cruise summary. Incence Cedar is broken out by approximate grade but was appraised as camprun. The majority of volume is in Douglas-fir.
- 5. <u>Cruise Data</u>: The volume of the sale is estimated to be 618 MBF (8.8% sampling error). The volume of individual species or sale areas will be more variable due to the smaller sample compared to the total volume sample. See the cruise report for more detail. Additional SuperAce reports available upon request.
- 6. <u>Timber Description</u>: Unit 1 is a mixed conifer stand with Douglas-fir averaging 13 inches in diameter and 80-100' tall. The stand also includes Western red cedar, Incence cedar and White fir. Unit 2 is mostly a Douglas-fir stand around 70-100' tall. The volume is greatest in Unit 1. These stands are natural Unit 1 is 60-80 years old, Unit 2 is 50-70 years old. The merchantable species will be almost entirely Douglas-fir with some Western Red cedar, Incent cedar, and White fir. The cruise report gives a breakdown of log lengths and scaling diameters by species for the units in the cruise. Reserve timber has been marked with orange to remove the smaller trees in suppressed and intermediate canopy positions and to release dominant and co-dominant trees and improve the quality of the residual stand.
- 7. <u>Topography and Logging Method</u>: The upper portion of the sale is steep and bisected by a number of streams. Cable corridors will have to be planned carefully. Unit 1 has 25 acres of ground-based logging. Area 2 and the east portion of Area 1 will be cable logged. The cable portion is potentially winter logging. Streams in the sale area should not have ground-based equipment within 50'. Unit 2 is 100 percent cable yarding. See the detailed logging map which shows the logging plan. There will be no temporary roads, so logs will need to be skidded to the existing roads in the ground-based portion of Area 1.
- 8. <u>Access</u>: From point A to point B, and E to F, hauling will be on a BLM controlled roadway. From point B to point E it will be on USFS roadway. Access is obtained for all road system. Purchaser will need to take out a bond for the BLM portion of the haul route in the amount of \$10,000.
- 9. Projects: From point C to point D, a 2" lift of rock will be needed on the 4710-021 Rd. The cost for the 1400 feet of rocked road is \$6,014. Road grading/blading will be need on the BLM ROW section A to B USFS sections B-C, C-D, C-E and BLM road E-F for a cost of \$6,584. The two projects total \$12,598. Additional Costs include in unit slash piling for \$6,250, temporary road closures \$600, landing piling and firewood sorting \$1000 and subsoiling, waterbarring skid trails \$4000 for a total of \$5,600. Total costs for these projects is \$18,198. Road surfacing, blading, in unit slash piling, landing piling, subsoiling and waterbarring are all described in in the Project Summary, Sale Prospectus, Maps and Exhibits..
- **10.** <u>Road Maintenance:</u> The appraisal also includes \$3.06/MBF for road maintenance (grading, pulling ditches, etc.) in addition to the project costs.
- **11.** <u>Other Costs:</u> Weed washing and Slash disposal (landing piling) as described above.
- **12.** <u>Slash Disposal:</u> Yard tops to the landing. Purchaser will pile slash on landings and the tractor ground with an excavator or log loader, sorting out firewood or down wood into a separate piles. USFS will burn the slash piles.

OREGON DEPARTMENT of FORESTRY CRUISE REPORT

- 1. Acreage Calculation: For the Swamp Creek Timber Sale, there are 54.4 net cruise acres in the sale area determined by a combination of GPS traverse waypoints and ArcGIS 10.7 software. Net acres do not include the riparian management areas, regeneration areas within the stand, and non-stocked areas which were not cruised.
- 2. Cruise Method: The Swamp Creek timber sale was cruised by ODF during the winter of 2020. A variable plot cruise was conducted on the sale area.
- 3. Sampling Intensity:

Plots 49 Total Plots (24 Measured, 25 Count Plots)

 CV (BDFT)
 109%
 (total)

 SE (BDFT)
 12%
 (total)

As per ODF standards, total harvest volume of conifers and hardwoods ("take" trees) is estimated to be 618 MBF \pm 74 MBF at the 95% confidence level and a sampling error of 12%. The volume estimate will be within 546 MBF and 692 MBF 95% of the time.

- **4. Computation Procedures:** Volume was computed using the SuperACE cruise program. Volumes reported are based on the Scribner Log Rule (West).
- **5.** Form Factors: Form factors (a ratio of diameter at 4 and 16 feet) were sampled across the diameter distribution in all strata.
- 6. Height Standards: Most conifer trees were measured for total height with a laser rangefinder.
- **7. Diameter standards:** Diameters were measured outside bark at breast height to the nearest inch.
- **8. Grading System:** Trees were graded primarily as 34 foot segments lengths and according to the Official Log Scaling and Grading Rules published by the Northwest Log Rules Advisory Group.
- **9. Merchantable top:** Conifer were graded to a merchantable top specified by the official log scaling rules. For all species except pine, 2S segments were graded to a 12" top inside bark, 3S to a 6" top, and 4S to a 5" top (inside bark). Pine 4S logs were graded to a 12" top inside bark, 5S to a 6" top, and 6S to a 5" top (inside bark).
- **10. Deductions for Cull, Defect and Breakage:** All visible field cull was removed in the cruise computation. Additional volume was deducted for the anticipated amount of hidden cull and breakage during logging. The estimated volume reduction used for this anticipated loss to volume was 4%.
- **11. Cruisers:** Cruising was performed by Chris Rudd and Kyle Syfert

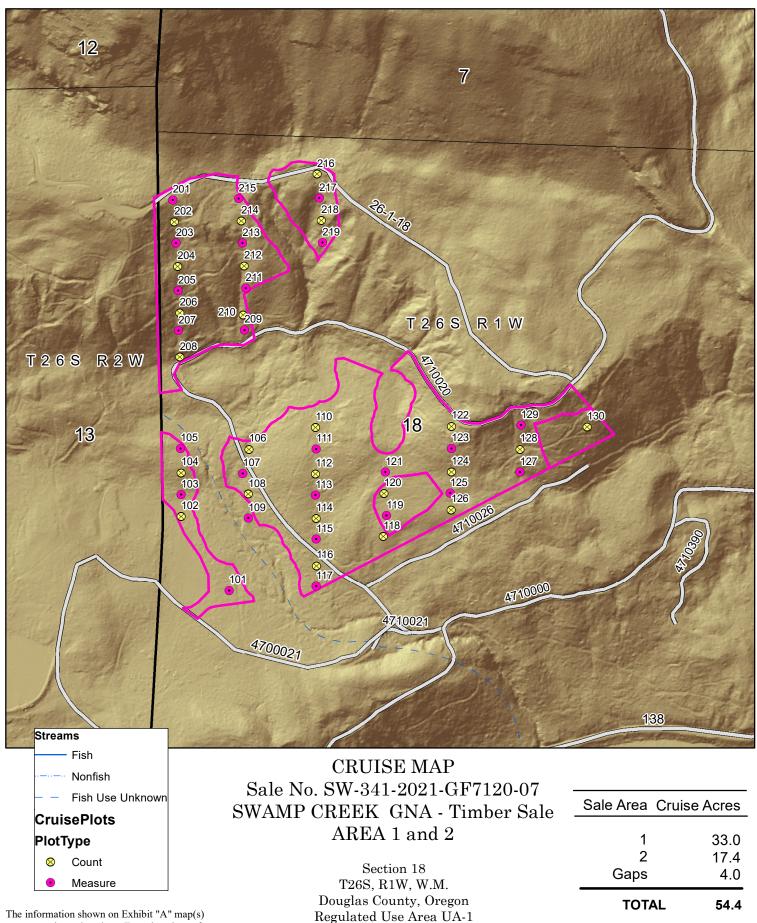
*ODF does not guarantee the volume of this or any other cruise. Prospective purchasers are advised to do their own cruise and sale volume calculations. Additional SuperAce Reports available upon request.

Reviewed by /s Chinis Radd, Unit Forester: 5/20/2020

	CRUIS		E PER ACRE			ADJUSTEI MBF/ACR	E		
Species (Take)	Unit	2 Saw	3 Saw	4 Saw	Cruise Vol/Acre	2 Saw	3 Saw	4 Saw	Net Cruise Vol/Acre
Douglas-Fir	1	1,170	5,513	2,515	<i>.</i> 9,198	1,123	5,292	2,414	, 8,830
Incense Cedar		0	688	765	1,453	0	660	734	1,395
Western Red Cedar			249	329	578	0	239	316	555
White Fir		149	963	316	1,428	143	924	303	1,371
Western Hemlock		553	0	276	829	531	0	265	796
Unit 1 Total	1					1,797	7,116	4,033	12,947
Douglas-Fir	GAPS	6,250	1,519	1,533	9,302	6,000	1,458	1,472	8,930
Incense Cedar			611	204	815	0	587	196	782
Western Red Cedar			362	150	512	0	348	144	492
White Fir		1,274	451	643	2,368	1,223	433	617	2,273
Gap Total						7,223	2,825	2,429	12,477
Unit 2 Douglas-Fir	2	1,177	5,035	2,253	8,465	1,130	4,834	2,163	8,126

*Adjusted 4% for hidden cull and breakage

r


	ΤΟΤΑ	L ADJUST		/IE MBF		
		NET				Total
Species (Take)	Unit	ACRES	2 Saw	3 Saw	4 Saw	Volume
Douglas-Fir	1	33.0	37,066	174,652	79 <i>,</i> 675	291,393
Incense Cedar			0	21,796	24,235	46,031
Western Red Cedar			0	7,888	10,423	18,311
White Fir			4,720	30,508	10,011	45,239
Western Hemlock			17,519	0	8,744	26,263
Unit 1 Total	1		59 <i>,</i> 305	234,844	133,088	427,236
Douglas-Fir	GAPS	4.0	24,000	5,833	5 <i>,</i> 887	35,720
Incense Cedar			0	2,346	783	3,130
Western Red Cedar			0	1,390	576	1,966
White Fir			4,892	1,732	2,469	9,093
Gap Total			28,892	11,301	9,715	49,908
Unit 2 Douglas-Fir	2	17.4	19,661	84,105	37,634	141,399
Sale Volume		54.4	107,858	330,250	180,437	618,544

GRADE BY	PERCENTAGE			
	2 Saw	3 Saw	4 Saw	Total
Douglas-Fir	13%	43%	20%	76%
Incense Cedar	0%	4%	4%	8%
Western Red Cedar	0%	2%	2%	3%
White Fir	2%	5%	2%	9%
Western Hemlock	3%	0%	1%	4%
Sale Volume	17%	53%	29%	100%

*4% Hidden Cull and Breakage factored in for all areas.

** Volume Estimates by Unit are not as accurate as the total sale volume. Cutout volumes will be more accurate for the total volume than individual units. ODF does not guarantee the volume of this or any other cruise. Prospective purchasers are advised to do their own cruise and sale. These volumes reflect merchantable saw logs. A small amount of pulp logs could be harvested from the sale area, particularly in the sub-merch pine species.

Additional SuperAce Reports are available upon request.

Landowner: United States Forest Service

The information shown on Exhibit "A" map(s) are approximate locations. Exact locations of features represented by map symbols will be determined on site and shall depend upon the conditions that exist on site. Activities shall be conducted based upon features determined on site rather than features shown on maps.

Feet

500

0

N

1,000

TC PS	STATS					OJECT S ROJECT		ISTICS AMPCR			PAGE DATE	1 4/23/20
TWP	RGE	SC	TRACT		ТҮРЕ		AC	CRES	PLOTS	TREES	CuFt	BdFt
268	01	18	SWAMPC	RK	001G			33.00	26	187	S	W
						TREES		ESTIMATED TOTAL		PERCENT SAMPLE		<u> </u>
			PLOTS	TREES		PER PLOT		TREES		TREES		
TOT			26	187		7.2						
CRU			12	90		7.5		6,027		1.5		
	I COUNT OREST											
COU			14	97		6.9						
	JNKS		14	21		0.9						
100												
					STA	AND SUMM	IARY					
			AMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NE
			TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/A
	JG FIR-L		39	59.1	18.6	104	25.8	111.2	18,347	=	4,255	4,2:
	JG FIR-T CED-L		23 4	73.8 4.7	12.7 17.4	96 52	18.2 1.9	64.6 7.8	9,197 995	•	2,159 242	2,1 2
	CED-L CED-T		4 8	22.0	17.4	52 65	5.2	7.8 18.1	993 1,453		242 415	4
	CED-1 CEDAR-L		° 3	4.6	21.4	111	2.5	18.1	1,455	-	415 448	4
	CEDAR-T		2	4.8	14.1	. 74	1.4	5.2	578	-	154	1
	FIR L		3	1.0	26.9	135	0.7	3.9	893		177	1'
CON	I FIR-T		5	10.4	11.7	121	2.3	7.8	1,428		294	29
WHI	EMLOCK-	Т	1	1.6	27.0	106	1.2	6.5	829		236	2
GR F	FIR-L		2	.6	27.3	140	0.5	2.6	679	679	131	1.
тот	147		00									
				<i>182.6</i> THE SAMPI T OF 100 T		95 IME WILL F	60.8 BE WITI	239.1 HIN THE SAN	36,067 1PLE ERR	····	8,512	8,51
CON CL	VFIDENC 68 68.1		MITS OF T TIMES OU COEFF	THE SAMPI T OF 100 T	LE HE VOLU	IME WILL F	BE WITI E TREE	HIN THE SAN S - BF	IPLE ERR	OR # OF TREES I	REQ.	
CON CL SD:	VFIDENC 68 68.1 1.0		MITS OF T TIMES OU COEFF VAR.%	THE SAMPI T OF 100 T S.E.%	LE HE VOLU	ME WILL F SAMPLE	BE WITI E TREE : AVG	HIN THE SAN S - BF HIGH	IPLE ERR	OR		
CON CL SD: DOU	NFIDENC 68.1 1.0 NG FIR-L		MITS OF T TIMES OU COEFF VAR.% 59.7	THE SAMPI T OF 100 T S.E.% 9.6	LE HE VOLU	ME WILL F SAMPLE OW 391	BE WITH E TREES AVG 433	HIN THE SAN S - BF HIGH 474	IPLE ERR	OR # OF TREES I	REQ.	
CON CL SD: DOU DOU	NFIDENC 68.1 1.0 IG FIR-L IG FIR-T		MITS OF T TIMES OU COEFF VAR.% 59.7 77.5	THE SAMPI T OF 100 T S.E.% 9.6 16.5	LE HE VOLU	IME WILL F SAMPLE OW 391 143	BE WITH E TREE: AVG 433 172	HIN THE SAN S - BF HIGH 474 200	IPLE ERR	OR # OF TREES I	REQ.	
CON CL SD: DOU DOU	VFIDENC 68.1 1.0 VG FIR-L VG FIR-T CED-L		MITS OF T TIMES OU COEFF VAR.% 59.7	THE SAMPI T OF 100 TT <u>S.E.%</u> 9.6 16.5 83.9	LE HE VOLU	IME WILL F SAMPLE OW 391 143	BE WITH E TREES AVG 433	HIN THE SAN S - BF HIGH 474	IPLE ERR	OR # OF TREES I	REQ.	
CON CL SD: DOU DOU INC	NFIDENC 68.1 1.0 IG FIR-L IG FIR-T	.1 7	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8	THE SAMPI T OF 100 T <u>S.E.%</u> 9.6 16.5 83.9 39.1 25.9	LE HE VOLU	ME WILL F SAMPLE LOW 391 143 177 62 294	BE WITH TREE AVG 433 172 1,098	HIN THE SAN S - BF HIGH 474 200 2,018	IPLE ERR	OR # OF TREES I	REQ.	
CON CL SD: DOU DOU INC INC WR (WR (VFIDENC 68.1 1.0 VG FIR-L VG FIR-T CED-L CED-T CEDAR-L CEDAR-L	.1 7	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8	LE HE VOLU	ME WILL F SAMPLE OW 391 143 177 62 294 28	BE WITH E TREE: AVG 433 172 1,098 103 397 160	HIN THE SAM S - BF HIGH 474 200 2,018 143 499 292	IPLE ERR	OR # OF TREES I	REQ.	
CON CL SD DOU DOU INC INC WR (WR (CON	VFIDENC 68.1 1.0 G FIR-L JG FIR-T CED-L CED-T CEDAR-L CEDAR-T FIR-L	.1 7	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4	LE HE VOLU	ME WILL F SAMPLE OW 391 143 177 62 294 28 728	BE WITH E TREES AVG 433 172 1,098 103 397 160 1,017	HIN THE SAN S - BF HIGH 474 200 2,018 143 499 292 1,305	IPLE ERR	OR # OF TREES I	REQ.	
CON CL SD: DOU DOU INC INC WR CON CON	VFIDENC 68.1 1.0 VG FIR-L VG FIR-T CED-L CED-T CEDAR-L CEDAR-L	.1 .	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1	LE HE VOLU	ME WILL F SAMPLE OW 391 143 177 62 294 28	BE WITH E TREE: AVG 433 172 1,098 103 397 160	HIN THE SAM S - BF HIGH 474 200 2,018 143 499 292	IPLE ERR	OR # OF TREES I	REQ.	
CON SD: DOU INC WR C CON CON WHE GR F	VFIDENC 68.1 1.0 G FIR-L JG FIR-T CED-L CED-T CEDAR-L CEDAR-L CEDAR-T FIR-L FIR-T EMLOCK- TR-L	.1 .	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0 46.6 49.8	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1 46.6	LE HE VOLU	ME WILL F SAMPLE OW 391 143 177 62 294 28 728 126 667	BE WITH E TREE : AVG 433 172 1,098 103 397 160 1,017 164 1,250	HIN THE SAN S - BF HIGH 474 200 2,018 143 499 292 1,305 202 1,833	IPLE ERR	OR # OF TREES I 5	REQ. 1	INF. PO
CON SD: DOUU DOUU INC INC WR O CON CON WHE GR F TOT	VFIDENC 68.1 1.0 G FIR-L VG FIR-T CED-L CED-T CEDAR-L CEDAR-L CEDAR-T FIR-L FIR-L FIR-L AL	.1 .	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0 46.6 49.8 <i>119.1</i>	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1	LE HE VOLU	ME WILL F SAMPLE OW 391 143 177 62 294 28 728 126 667 334	BE WITH AVG 433 172 1,098 103 397 160 1,017 164 1,250 382	HIN THE SAM S - BF HIGH 474 200 2,018 143 499 292 1,305 202 1,833 430	IPLE ERR	OR # OF TREES 1 5 567	REQ. 1 10 142	INF. PO
CL SD: DOU DOU INC WR CON CON WHE GR F TOT	VFIDENC 68.1 1.0 G FIR-L JG FIR-T CED-L CED-T CEDAR-L CEDAR-L CEDAR-T FIR-L FIR-T EMLOCK- TR-L	.1 .	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0 46.6 49.8	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1 46.6	LE HE VOLU	ME WILL F SAMPLE OW 391 143 177 62 294 28 728 126 667 334 SAMPLE	BE WITH AVG 433 172 1,098 103 397 160 1,017 164 1,250 382	HIN THE SAM S - BF HIGH 474 200 2,018 143 499 292 1,305 202 1,833 430	IPLE ERR	OR # OF TREES I 5	REQ. 1 10 142	INF. PO
CON SD: DOU DOU INC INC WR C CON CON WHE GR F TOT CL SD:	VFIDENC 68.1 1.0 G FIR-L JG FIR-L CED-L CED-T CEDAR-L CEDAR-L CEDAR-T FIR-L FIR-L FIR-L FIR-L AL 68.1	.1 .	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0 46.6 49.8 <i>119.1</i> COEFF	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1 46.6 <i>12.5</i>	LE HE VOLU	ME WILL F SAMPLE OW 391 143 177 62 294 28 728 126 667 334 SAMPLE	BE WITH E TREES AVG 433 172 1,098 103 397 160 1,017 164 1,250 382 E TREES	HIN THE SAN S - BF HIGH 474 200 2,018 143 499 292 1,305 202 1,833 430 S - CF	IPLE ERR	OR # OF TREES 5 5 567 # OF TREES	REQ. 1 10 142 REQ. 1	INF. PO
CON SD: DOU DOU INC INC WR C CON WHE GR F TOT CL SD: DOU DOU	VFIDENC 68.1 1.0 G FIR-L JG FIR-L CED-L CED-T CEDAR-L CEDAR-L CEDAR-L FIR-L FIR-L FIR-L AL 68.1 1.0 G FIR-L IG FIR-T	.1 .	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0 46.6 49.8 119.1 COEFF VAR.% 56.2 71.9	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1 46.6 <i>12.5</i> S.E.% 9.0 15.3	LE HE VOLU	ME WILL F SAMPLE OW 391 143 177 62 294 28 728 126 667 334 SAMPLE OW	BE WITH E TREES AVG 433 172 1,098 103 397 160 1,017 164 1,250 382 E TREES AVG	HIN THE SAN S - BF HIGH 474 200 2,018 143 499 292 1,305 202 1,833 430 S - CF HIGH	IPLE ERR	OR # OF TREES 5 5 567 # OF TREES	REQ. 1 10 142 REQ. 1	INF. PO
CON CL SD: DOU DOU INC INC WR O CON WHE GR F TOT CL SD: DOU DOU INC O	VFIDENC 68.1 1.0 G FIR-L JG FIR-T CED-L CED-T CEDAR-T CEDAR-T FIR-L FIR-L FIR-L FIR-L G FIR-L G FIR-L G FIR-L G FIR-L G FIR-T CED-L	.1 .	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0 46.6 49.8 119.1 COEFF VAR.% 56.2 71.9 119.8	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1 46.6 <i>12.5</i> S.E.% 9.0 15.3 68.4	LE HE VOLU	ME WILL F SAMPLE OW 391 143 177 62 294 28 728 126 667 334 SAMPLE OW 90 34 72	BE WITH AVG 433 172 1,098 103 397 160 1,017 164 1,250 382 E TREE AVG 99 40 229	HIN THE SAN S - BF HIGH 474 200 2,018 143 499 292 1,305 202 1,833 430 S - CF HIGH 108 47 387	IPLE ERR	OR # OF TREES 5 5 567 # OF TREES	REQ. 1 10 142 REQ. 1	8,51
CON SD: DOU DOU INC INC WR (CON CON WHE GR F TOT CL SD: DOU DOU INC (INC (VFIDENC 68.1 1.0 G FIR-L JG FIR-T CED-L CED-T CEDAR-L CEDAR-T FIR-L FIR-L FIR-L G FIR-L G FIR-L G FIR-L G FIR-L CED-T	.1 Г	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0 46.6 49.8 119.1 COEFF VAR.% 56.2 71.9 119.8 92.4	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1 46.6 <i>12.5</i> S.E.% 9.0 15.3 68.4 34.8	LE HE VOLU	ME WILL F SAMPLE OW 391 143 177 62 294 28 728 126 667 334 SAMPLE OW 90 34 72 18	BE WITH E TREE : AVG 433 172 1,098 103 397 160 1,017 164 1,250 382 E TREE : AVG 99 40 229 28	HIN THE SAN S - BF HIGH 474 200 2,018 143 499 292 1,305 202 1,833 430 S - CF HIGH 108 47 387 38	IPLE ERR	OR # OF TREES 5 5 567 # OF TREES	REQ. 1 10 142 REQ. 1	INF. PO
CON SD: DOU DOU INC INC WR C CON WR C CON WHE GR F TOT CL SD: DOU DOU INC C WR C	VFIDENC 68.1 1.0 G FIR-L G FIR-T CED-L CED-T CEDAR-L CEDAR-L FIR-L FIR-L FIR-L FIR-L G FIR-L G FIR-L G FIR-L G FIR-L G FIR-T CED-L CED-T CEDAR-L	.1 Г	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0 46.6 49.8 <i>119.1</i> COEFF VAR.% 56.2 71.9 119.8 92.4 37.5	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1 46.6 <i>12.5</i> S.E.% 9.0 15.3 68.4 34.8 26.0	LE HE VOLU	ME WILL F SAMPLE OW 391 143 177 62 294 28 728 126 667 334 SAMPLE OW 90 34 72 18 79	BE WITH E TREE : AVG 433 172 1,098 103 397 160 1,017 164 1,250 382 E TREE : AVG 99 40 229 28 107	HIN THE SAN S - BF HIGH 474 200 2,018 143 499 292 1,305 202 1,833 430 S - CF HIGH 108 47 387 38 134	IPLE ERR	OR # OF TREES 5 5 567 # OF TREES	REQ. 1 10 142 REQ. 1	INF. PO
CON SD: DOU DOU INC INC WR C CON WR C CON WR C CON CON WHE GR F TOT CL SD: DOU DOU INC C SD: CL SD: CN CON WR C CON CON WR C CON CON CON CON CON CON CON CON CON CO	VFIDENC 68.1 1.0 G FIR-L JG FIR-T CED-L CED-T CEDAR-L CEDAR-T FIR-L I FIR-T SMLOCK- TR-L AL 68.1 1.0 G FIR-L IG FIR-L IG FIR-L CED-T CEDAR-L CEDAR-T	.1 Г	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0 46.6 49.8 <i>119.1</i> COEFF VAR.% 56.2 71.9 119.8 92.4 37.5 86.7	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1 46.6 <i>12.5</i> 5.E.% 9.0 15.3 68.4 34.8 26.0 81.2	LE HE VOLU	IME WILL F SAMPLE COW 391 143 177 62 294 28 728 126 667 334 SAMPLE COW 90 34 72 18 79 8	BE WITH AVG 433 172 1,098 103 397 160 1,017 164 1,250 382 TREE AVG 99 40 229 28 107 42	HIN THE SAM S - BF HIGH 474 200 2,018 143 499 292 1,305 202 1,833 430 S - CF HIGH 108 47 387 38 134 77	IPLE ERR	OR # OF TREES 5 5 567 # OF TREES	REQ. 1 10 142 REQ. 1	INF. PO
CON SD: DOU DOU INC INC WR (CON CON WHE GR F TOT CL SD: DOU DOU INC (SD: CL SD: CL SD: CON	VFIDENC 68.1 1.0 G FIR-L G FIR-T CED-L CED-T CEDAR-L CEDAR-L FIR-L FIR-L FIR-L FIR-L G FIR-L G FIR-L G FIR-L G FIR-L G FIR-T CED-L CED-T CEDAR-L	.1 Г	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0 46.6 49.8 <i>119.1</i> COEFF VAR.% 56.2 71.9 119.8 92.4 37.5	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1 46.6 <i>12.5</i> S.E.% 9.0 15.3 68.4 34.8 26.0	LE HE VOLU	ME WILL F SAMPLE OW 391 143 177 62 294 28 728 126 667 334 SAMPLE OW 90 34 72 18 79	BE WITH E TREE : AVG 433 172 1,098 103 397 160 1,017 164 1,250 382 E TREE : AVG 99 40 229 28 107	HIN THE SAN S - BF HIGH 474 200 2,018 143 499 292 1,305 202 1,833 430 S - CF HIGH 108 47 387 38 134	IPLE ERR	OR # OF TREES 5 5 567 # OF TREES	REQ. 1 10 142 REQ. 1	INF. PO
CON SD: DOUU DOUU INC - WR C CON CON WHE GR F TOT CL SD: DOUU INC - SD: DOUU INC - WR C CON CON WHE CON CON	VFIDENC 68.1 1.0 G FIR-L VG FIR-T CED-L CED-T CEDAR-L CEDAR-T FIR-L FIR-L G FIR-L G FIR-T CED-L CED-T CEDAR-L CEDAR-L CEDAR-T FIR-L FIR-T SMLOCK- ²	.1	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0 46.6 49.8 119.1 COEFF VAR.% 56.2 71.9 119.8 92.4 37.5 86.7 35.6 59.6	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1 46.6 <i>12.5</i> 5.E.% 9.0 15.3 68.4 34.8 26.0 81.2 24.7 29.6	LE HE VOLU	ME WILL F SAMPLE OW 391 143 177 62 294 28 728 126 667 334 SAMPLE OW 90 34 72 18 79 8 150 25	BE WITH AVG 433 172 1,098 103 397 160 1,017 164 1,250 382 E TREES AVG 99 40 229 28 107 42 200 36	HIN THE SAM S - BF HIGH 474 200 2,018 143 499 292 1,305 202 1,833 430 S - CF HIGH 108 47 387 38 134 77 249 46	IPLE ERR	OR # OF TREES 5 5 567 # OF TREES	REQ. 1 10 142 REQ. 1	INF. PO
CON CL SD: DOUU DOUU INC WR C CON CON WHE GR F TOT CL SD: DOUU INC C NC C WR C CON CON CON	VFIDENC 68.1 1.0 G FIR-L VG FIR-T CED-L CED-T CEDAR-L CEDAR-L FIR-L FIR-L G FIR-L G FIR-L G FIR-L CEDAR-L CEDAR-L CEDAR-L CEDAR-T FIR-L FIR-L FIR-T SMLOCK- TIR-L FIR-T SMLOCK- TIR-L	.1	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0 46.6 49.8 119.1 COEFF VAR.% 56.2 71.9 119.8 92.4 37.5 86.7 35.6	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1 46.6 <i>12.5</i> 5.E.% 9.0 15.3 68.4 34.8 26.0 81.2 24.7	LE HE VOLU	ME WILL F SAMPLE OW 391 143 177 62 294 28 728 126 667 334 SAMPLE OW 90 34 72 18 79 8 150	BE WITH AVG 433 172 1,098 103 397 160 1,017 164 1,250 382 2 TREES AVG 99 40 229 28 107 42 200	HIN THE SAN S - BF HIGH 474 200 2,018 143 499 292 1,305 202 1,833 430 S - CF HIGH 108 47 387 38 134 77 249	IPLE ERR	OR # OF TREES 5 5 567 # OF TREES	REQ. 1 10 142 REQ. 1	NF. PO
CON CL SD: DOUU DOUU INC WR C CON CON WHE GR F TOT CL SD: DOUU DOUU INC C WR C CON CON WHE GR F TOT CL SD: CON CON CON CON CON CON CON CON CON CON	VFIDENC 68.1 1.0 G FIR-L G FIR-T CED-L CED-T CEDAR-L CEDAR-T FIR-L FIR-T G FIR-T CED-R-T CED-L CED-T CEDAR-L CEDAR-T FIR-L FIR-T SMLOCK-T FIR-L FIR-T SMLOCK-T AL	.1	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0 46.6 49.8 119.1 COEFF VAR.% 56.2 71.9 119.8 92.4 37.5 86.7 35.6 59.6 54.0 101.1 COEFF	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1 46.6 <i>12.5</i> S.E.% 9.0 15.3 68.4 34.8 26.0 81.2 24.7 29.6 50.6 <i>10.6</i>		ME WILL F SAMPLE OW 391 143 177 62 294 28 728 126 667 334 SAMPLE OW 90 34 72 18 79 8 150 25 121 77 TREES/A	BE WITH E TREE : AVG 433 172 1,098 103 397 160 1,017 164 1,250 382 E TREE : AVG 99 40 229 28 107 42 200 36 245 86 CRE	HIN THE SAM S - BF HIGH 474 200 2,018 143 499 292 1,305 202 1,833 430 S - CF HIGH 108 47 387 38 134 77 249 46 369 95	IPLE ERR	OR # OF TREES 1 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	REQ. 1 10 142 REQ. 1 10	INF. PO
CON CL SD: DOUU DOUU INC WR C CON WHE GR F TOT CL SD: DOUU INC C WR C CON CON WHE GR F TOT CL SD: CON CON CON CON CON CON CON CON CON CON	VFIDENC 68.1 1.0 G FIR-L G FIR-L CED-L CED-T CEDAR-L CEDAR-L FIR-L FIR-L FIR-L G FIR-L G FIR-L G FIR-L G FIR-L CED-L CED-T CEDAR-L CEDAR-T FIR-L FIR-L FIR-L FIR-L FIR-L FIR-L FIR-L AL	.1	MITS OF 7 TIMES OU COEFF VAR.% 59.7 77.5 146.8 103.7 37.4 88.4 41.0 46.6 49.8 119.1 COEFF VAR.% 56.2 71.9 119.8 92.4 37.5 86.7 35.6 59.6 54.0 101.1	THE SAMPI T OF 100 T 9.6 16.5 83.9 39.1 25.9 82.8 28.4 23.1 46.6 <i>12.5</i> 5.E.% 9.0 15.3 68.4 34.8 26.0 81.2 24.7 29.6 50.6		ME WILL F SAMPLE OW 391 143 177 62 294 28 728 126 667 334 SAMPLE OW 90 34 72 18 79 8 150 25 121 77 TREES/A	BE WITH AVG 433 172 1,098 103 397 160 1,017 164 1,250 382 C TREE: AVG 99 40 229 28 107 42 200 36 245 86	HIN THE SAM S - BF HIGH 474 200 2,018 143 499 292 1,305 202 1,833 430 S - CF HIGH 108 47 387 38 134 77 249 46 369	IPLE ERR	OR # OF TREES 1 5 567 # OF TREES 1 5 408	REQ. 1 10 142 REQ. 1 10	INF. PO

TC PSI	FATS				PROJECT PROJECT		ISTICS AMPCR			PA Da		2 4/23/2020
TWP	RGE	SC	TRACT	TYP	E		CRES	PLOTS	TREE		CuFt	BdFt
26S	01	18	SWAMPCRK	001G			33.00	26	1	187	S	W
CL	68.1		COEFF		TREE	S/ACRE	<u></u> .		# OF I	PLOTS F	REQ.	INF. POP
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5		10	15
DOU	G FIR-T		84.2	16.8	61	74	86					
	CED-L		276.8	55.3	2	5	7					
	CED-T		227.8	45.6	12	22	32					
	EDAR-L	r	244.3	48.9	2	5	7					
WR C	EDAR-T	•	249.4	49.9	2	5	7					
CON	FIR-L		397.9	79.6	0	1	2					
CON	FIR-T		394.8	78.9	2	10	19					
WHE	MLOCK-	Т	416.5	83.3	0	2	3					
GR F	IR-L		384.2	76.8	0	1	1					
тот	AL		58.1	11.6	161	183	204		141	3	35	16
CL	68.1		COEFF		BASA	L AREA/A	ACRE		# OF PLC	TS REC).	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	1	0	15
	G FIR-L		43.4	8.7	102	111	121		-	-		
DOU	G FIR-T		76.3	15.3	55	65	74					
INC C	CED-L		186.2	37.2	5	8	11					
INC C	CED-T		218.0	43.6	10	18	26					
WR C	EDAR-L		244.3	48.9	6	12	17					
WR C	EDAR-T		239.2	47.8	3	5	8					
CON	FIR-L		373.9	74.8	1	4	7					
CON	FIR-T		353.3	70.6	2	8	13					
WHE	MLOCK-	Т	416.5	83.3	1	6	12					
GR FI	R-L		353.3	70.6	1	3	4					
TOT	AL		42.3	8.5	219	239	259		74	Ι	9	8
CL	68 .1		COEFF		NET B	F/ACRE			# OF PLO	TS REQ).	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	1	0	15
	G FIR-L		46.9	9.4	16,628	18,347	20,065					
	G FIR-T		77.5	15.5	7,772	9,197	10,622					
INC C	CED-L		222.4	44.5	553	995	1,438					
INC C	CED-T		217.5	43.5	821	1,453	2,085					
WR C	EDAR-L		244.3	48.9	853	1,668	2,482					
	EDAR-T		246.1	49.2	293	578	862					
CON			362.5	72.5	246	893	1,541					
CON			364.6	72.9	387	1,428	2,469					
WHE	MLOCK-	Т	416.5	83.3	139	829	1,520					
GR FI			354.2	70.8	198	679	1,160					
TOTA	AL		45.8	9.2	32,765	36,067	39,370		87	2	2	10
CL	68 .1		COEFF		NET C	UFT FT/A	ACRE		# OF PLO	TS REQ).	INF. POP.
	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5		0	15
	G FIR-L		45.0	9.0	3,872	4,255	4,637					
	G FIR-T		76.3	15.3	1,829	2,159	2,488					
INC C	ED-L		200.7	40.1	145	242	340					
INC C			213.9	42.8	238	415	593					
	EDAR-L		244.3	48.9	229	448	668					
WR C	EDAR-T		245.4	49.1	79	154	230					
	FIR-L		368.2	73.6	47	177	307					
CON			351.0	70.2	88	294	500					
CON		Г	416.5	83.3	39	236	433					
CON	MLOCK-	Г	416.5 353.5	83.3 70.7	39 38	236 131	433 224					

T TS	SPCST	GR			Species,	Sort G Projec	rade - Boar t: SW	rd F AMP			mes (Гуре)					Pag Date Tim	e 4	1 /23/2():40:1	
T26S I Twp 26S	R	S18 T(tge 1W	Sec	Tract WAMP	CRK	Туре 0010			Plo ⁻ 20		Samp	le Tree 97	s	C S	uFt	T2 Bd W		801W S	518 T	001G
			%					Per	cent]	Net B	oard F	oot Vol	ıme			A	vera	ge Log		,
	S _{So}	Gr	Net	Bd.	Ft. per Ac	re	Total	L	og Sc	ale D	ia.	Log	g Lei	ngth		Ln	Dia	Bd	CF/	Logs Per
Spp	T rt	ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-1	6 17+	12 - 20	21-30	31-35	36 -9 9	Ft	In	Ft	Lf	/Acre
DF I	l do	2M	54		10,022	10,022	331			63	37	T		100		34	15	283	1.84	35.4
	L DO		30		5,478	5,478	181	2	83	15			6	94		33	9		0.77	49.6
DF I	L DO	4M	16		2,847	2,847	94	53	47			14	66	4	16	25	6	36	0.40	79.0
DF L	Tota	ıls	51		18,347	18,347	605	9	32	39	20	2	12	83	3	29	9	112	0.89	163.9
DF]	T DO	2M	12		1,170	1,170	39			70	30			100		34	13	223	1.51	5,2
DF 1	T DO	3M	60		5,513	5,513	182		97	3				100		34	8	81	0.57	67.7
DF 1	t do	4M	28		2,515	2,515	83	84	16			13	64	10	13	23	5	26	0.26	96.2
DF T	Tota	ls	26		9,197	9,197	304	23	62	11	4	3	17	76	4	28	7	54	0.46	169.1
IC 7	T DO	3M	47		688	688	23		70	30				100		34	9	100	0.82	6.9
	T DO		53		765	765	25	91	9	50		9	31	60		18			0.35	34.6
ІС Т	Total	e	4		1,453	1,453	48	48	38	14	· · .	5	16	79		21	6	35	0.48	41.5
		-																		
	l do l do		14 58		140 579	140 579	5			100	100			100	ĺ	34			2.03	.7
	L DO L DO	3М 4М	28	[277	579 277	19 9	36	17	19	100 28	17	52	100 31		34 23			5.69 0.56	.6 5.8
1.1			3		995	995	33	10	5	19	66	5	15	81						7.1
IC L	Tota	18			,,,,,	,,,,		10		15			15	01		25	9	140	1.36	7.1
	L DO	3M	43		733	733	24			48	52			100		34			2.42	2.4
RC I	L DO	4M	57		935	935	31	15	31	55			60	40		29	8	81	0.75	11.5
RC L	Tota	ls	5		1,668	1,668	55	8	17	52	23		34	66		30	10	120	1.08	13.9
RC T	T DO	3M	43		249	249	8			100				100		34	12	170	1.38	1.5
RC 1	F DO	4M	57		329	329	11	33	67			40	60			22	7	35	0.42	9.5
RC T	Tota	ls	2		578	578	19	19	38	43		23	34	43		23	7	53	0.61	11.0
WF 1	гDO	2M	10		149	149	5			100		f		100		34	12	170	1.26	.9
	ΓD0	21v1 3M	67		963	963	32		100	100				100		34 34			0.41	. 9 14,1
	Г DO		23		316	316		100				13	58	_	30	29			0.19	10.4
WF T	' Tota	als	4		1,428	1,428	47	22	67	10		3	13	78	7	32	7		0.36	25.3
		2M	57		509	509					67									
	l do L do	2M 3M	31		509 278	278	17 9			33 60	67 40			100 100		34 34			2.86 1.58	1.0 1.0
	L DO	4M	12		106	106	3	23	46	30	10	23	77	100		23			0.64	2.0
WF L		ıls	2		893	893	29	3	6	41	51	3	9	88		28	12	227		3.9
									-		-									
WH 1 WH 1		2M 4M	66 34		553 276	553 276	18	18		100 82			100	100		34			2.99	1.6
		4M					9									28			0.78	3.3
WH T	[Tot	als	2		829	829	27	6		94		ļ	33	67		30	11	170	1.61	4.9
GF L	DO	2M	56		385	385	13				100			100		34	20	606	3.22	.6
GF L	DO	3M	30		203	203	7			53	47			100		34	15	320	1.79	.6

T TSP	CSTGR		Specie		rade - Boa	rd F	oot V	'olu	mes (T	Гуре)			Pa	ige	2	
				Projec	et: SW	AMP	CRK							ite	4/23/2	
													Ti	me	9:40:1	4AM
T26S R0 Twp 26S	01W S18 T(Rge 01W	Sec	Tract SWAMPCRK	Тура 001			Plot 26		-	le Trees 97	8	CuFt S	T26S BdFt W		W S18 T	001G
		%				Per	rcent N	let B	oard Fo	oot Volu	ıme		Ave	age 1	log	Ļ
_	50 01	Net	Bd. Ft. per A		Total	L	og Sca	ale D	via.	· ·	g Len	¢	Ln D			Logs Per
Spp T	rt ad	BdFt	Def% Gross	s Net	Net MBF	4-5	6-11	12-1	6 17+	12-20	21-30 :	31-35 36-99	Ft In	F	t Lf	/Acre
GF L	DO 4M	14	91	91	3	21	44	35			100		26 8		72 0.70	1.3
GF L	Totals	2	679	679	22	3	6	21	71		13	87	30 13	20	57 1.72	2.5
Type Total	ls		36,067	36,067	1,190	14	38	31	17	3	16	79 2	28 8	8	1 0.69	443.2

TC PL	OTTREEL	IST						o t Tree Project		Volumes VAMPCRK				Page Date	1 4/23/2	.020
TWP 26S	RGE 01W	SC 18	TRA SWA	ACT AMPCRK			PE 1G		1	ACRES 33.00	PLOTS 26	TI	REES 97		ED DATE 2/1/2020	
Plot	Tree				Tr	ees		16'	Tot	BA	Trees	Logs	Net	Net	Tota	I
No.	No.	Age	SI	Spp St	Me.	Ct.	DBH	FF	Ht.	/Ac.	/Ac.	/Ac,	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
0101	0001	70	120	WF T	1		12.0	94	127	33.6	42.79	128.4	1,490	7,703	19	1
0101	0001	70	120	WFT	1		13.0	92	130	33.6	36.46	109.4	1,384	6,928	19	
	0003	70	120	DFT	1		12.0	89	120	33.6	42.79	128.4	1,238	5,991	16	
	0004	70	120	DFT	1		11.0	89	120	33.6	50.93	152.8	1,195	5,602	15	
	0005	70	120	GFL	1		23.0	92	140	33.6	11.65	46.6	1,763	9,436	22	
	0006	70	120	DF T	1		12.0	89	120	33.6	42.79	128.4	1,238	5,991	16	
	0007	70	120	WFT	1		11.0	89	115	33.6	50.93	101.9	1,115	5,093 ·	14	
	0008	70	120	WF T	1		9.0	89	117	33.6	76.08	152.2	1,060	6,086	13	
	0009	70	120	DF L	1		15.0	92	105	33.6	27.39	82.2	1,282	6,025	16	
	0010	70		WFL	1		31.0	89	139	33.6	6.41	25.6	1,649	9,041	21	1
0101			120		10		12.6	90	120	336.1	388.23	1055.7	13,414	67,897	170	
0102	0001	70	120	DF T		2	12.0	85	96	67.2	76,74	175.9	2,245	9,565	28	
	0002	70	120	DF L		4	18.0	85	104	134.4	71.47	198.2	5,145	22,187	65	2
0102			120			6	15.8	85	100	201.7	148.21	374.1	7,390	31,752	94	4
0103	0001	70	120	DF T	1		12.0	92	110	33.6	42.79	128.4	1,310	6,419	17	
	0002	70	120	DF L	1		17.0	89	115	33.6	21.32	64.0	1,336	5,757	17	
	0003	70	120	DF L	1		14.0	90	100	33.6	31.44	94.3	1,226	5,974	16	
	0004	70	120	DF T	1		15.0	87	110	33.6	27.39	82.2	1,212	5,478	15	
	0005	70	120	DF T	1		11.0	85	95	33.6	50.93	101.9	1,080	4,584	14	
	0006	70	120	DF L	1		21.0	91	110	33.6	13.97	41.9	1,345	6,428	17	
	0007	70		RC T	1		12.0	80	60	33.6	42.79	85.6	704	2,568	9	
	0008	70		IC L	1		48.0	87	150	33.6	2.67	10.7	1,672	9,334	21	1
	0009	70		DF L	1		19.0	87	105	33.6	17.07	51.2	1,245	5,633	16	
	0010	70		DF L	1		22.0	85	139	33.6	12.73	50.9	1,541	7,130	20	
	0011	70		DF L	1		25.0	89	139	33.6	9.86	39.4	1,605	8,085	20	1
	0012	70		DF L	1		17.0	87	110	33.6	21.32	64.0	1,291	5,544	16	
	0013	70		IC T	1		11.0	75	55	33.6	50.93	50.9	689	2,037	9	
	0014	70	120	DF T	1		13.0	89	100	33.6	36.46	72.9	1,172	5,105	15	
0103			120		14		15.0	86	95	470.5	381.69	938.3	17,427	80,074	221	10
0104	0001	70		DF L		4	18.0	85	104	134.4	71.47	198.2	5,145	22,187	65	2
	0002	70		DF T		4	12.0	85	96	134.4	153.48	351.7	4,490	19,130	57	2
	0003	70	120			1	12.0	79	65	33.6	40.91	77.1	771	2,699	10	
	0004	70	120	RC T		1	14.0	80	74	33.6	30.91	71.3	1,003	3,756	13	
0104			120			10	14.4	84	91	336.1	296.77	698.3	11,410	47,772	145	e
0105	0001	70		RC L	1		18.0	78	118	33.6	19.02	57.1	1,377	5,135	17	
	0002	70		DF L	1		20.0	85	131	33.6	15.41	46.2	1,539	6,624	20	
	0003	70		WFL	1		22.0	90	132	33.6	12.73	50.9	1,529	7,385	19	
	0004	70		WFL	1		31.0	81	135	33.6	6.41	25.6	1,419	6,797	18	
	0005	70		WFT	1		18.0	81	125	33.6	19.02	57.1	1,319	5,135	17	
	0006	70		WH T	1		27.0	75	106	33.6	8.45	25.4	1,227	4,311	16	
	0007	70		RC T	1		18.0	80	105	33.6	19.02	57.1	1,303	4,945	17	
	8000	70 70		RCL	1		22.0	80 80	105	33.6	12.73	38.2	1,236	4,584	16	
	0009	70 70		DF L	1		20.0	80 00	123	33.6	15.41	46.2	1,308	5,238	17	
	0010 0011	70 70		DF T RC L	1		14.0 27.0	90 78	110 106	33.6 33,6	31.44 8.45	94.3 25.4	1,305 1,274	6,288 4,734	17 16	
0105																
0105	0001	70	120	DEI	11	2	20.1	83	117	369.7	168.09	523.4	14,834	61,176	188	
0106	0001	70 70		DF L		3	18.0	85 70	104	100.8	53.60	148.7	3,859	16,640	49	2
	0002	70 70		RC L		1	21.0	79 85	111	33.6	13.40	40.2	1,296	4,817	16	1
	0003	70	120	DF T		3	12.0	85	96	100.8	115.11	263.8	3,368	14,348	43	

TC PL				o t Tree Project		Volumes AMPCRK				Page Date	2 4/23/2	020				
TWP 26S	RGE 01W	SC 18		ACT AMPCRK			7PE 91G		А	CRES 33.00	PLOTS 26	TI	REES 97		ED DATE 2/1/2020	
Plot	Тгее			·	Tr	ees		16'	Tot	BA	Trees	Logs	Net	Net	Total	
No.	No.	Age	SI	Spp St	Me.	Ct.	DBH	FF	Ht.	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
0106			120			7	15.4	85	99	235.3	182.11	452.6	8,522	35,805	108	4
0107	0001	70	120	GF L	1		35.6	81	141	33.6	4.86	19.4	1,646	8,217	21]
	0002	70	120	DF L	1		21.0	82	128	33.6	13.97	41.9	1,442	6,009	18	
	0003	70	120	DF L	1		25.0	88	118	33.6	9.86	29.6	1,446	6,902	18	
	0004	70	120	DF T	1		24.0	88	128	33.6	10.70	32.1	1,498	7,168	19	
	0005	70	120	DF L	1		24.0	88	128	33.6	10.70	32.1	1,498	7,168	19	
0107			120		5		24.8	86	127	168.1	50.09	155,1	7,529	35,463	96	4
0108	0001	70	120	RC L		1	21.0	79	111	33.6	13.40	40.2	1,296	4,817	16	
	0002	70	120	GF T		1										
	0003	70	120	WF T		1	11.0	90	121	33.6	45.06	109.8	1,273	6,189	16	
	0004	70	120	DF L		3	18.0	85	104	100.8	53.60	148.7	3,859	16,640	49	2
	0005	70	120	DF T		1	12.0	85	96	33.6	38.37	87.9	1,123	4,783	14	
0108			120			7	15.7	86	108	201.7	150.43	386.5	7,550	32,429	96	4
0110	0001	70	120	DF L		4	18.0	85	104	134.4	71.47	198.2	5,145	22,187	65	2
	0002	70	120	DF T		1	12.0	85	96	33.6	38.37	87.9	1,123	4,783	14	
0110			120			5	16.7	85	101	168.1	109.84	286.1	6,268	26,969	80	3
0111	0001	70	120	DF L	1		26.0	86	122	33.6	9.12	27.3	1,440	6,381	18	
	0002	70	120	DF T	1		17.0	81	111	33.6	21.32	64.0	1,220	4,904	15	
	0003	70	120	DF L	1		14.3	83	99	33.6	30.13	60.3	1,114	4,219	14	
	0004	70	120	DF L	1		19.6	78	109	33.6	16.04	48.1	1,186	4,171	15	
	0005	70	120	DF L	1		14,6	85	100	33.6	28.91	57.8	1,197	5,493	15	
	0006	70	120	DF L	1		19.0	88	110	33.6	17.07	51.2	1,281	5,804	16	
	0007	70	120	DF T	1		18.0	87	110	33.6	19.02	57.1	1,221	4,945	15	
	0008	70	120	IC T	1		17.0	80	90	33.6	21.32	42.6	1,023	3,625	13	
0111			120		8		17.4	83	104	268.9	162.94	408 .4	9,683	39,541	123	5
0112	0001	70	120	DF L		2	18.0	85	104	67.2	35.74	99.1	2,573	11,093	33	1
0112			120			2	18.6	85	104	67.2	35.74	99.1	2,573	11,093	33	1
0113	0001	70	120	DF L	1		15.0	84	101	33.6	27.39	82.2	1,210	5,204	15	
	0002	70	120	DF L	1		20.0	83	114	33.6	15.41	46.2	1,287	5,238	16	
	0003	70	120	DF L	1		16.0	83	102	33.6	24.07	72.2	1,149	4,574	15	
	0004	70	120	DF L	1		29.0	82	119	33.6	7.33	22.0	1,350	5,789	17	
0113			120		4		18.2	83	106	134.4	74.19	222.6	4,995	20,804	63	2
0114	0001	70		RC L	•	3	21.0	79	111	100.8	40.20	120.6	3,887	14,452	49	1
	0002	70		DFL		1	18.0	85	104	33.6	17.87	49.6	1,286	5,547	16	
	0003	70	120	RC T		1	14.0	80	74	33.6	30.91	71.3	1,003	3,756	13	
0114			120			5	18.6	81	97	168.1	88.98	241.5	6,176	23,755	78	3
0115	0001	70		DF L	1		20.0	85	97	33.6	15.41	46.2	1,182	4,776	15	
	0002	70		IC L	1		23.1	75	93	33.6	11.55	34.6	1,050	3,464	13	
	0003	70	120	DF T	1		13.0	92	87	33.6	36.46	72.9	1,087	4,740	14	
	0004	70	120	DF L	1		18.5	82	75	33.6	18.01	36.0	929	3,241	12	
	0005	70	120	DF T	1		13.0	87	83	33.6	36.46	72.9	933	3,646	12	
	0006	70	120	DF T	1		8.0	81	70	33.6	96.29	96.3	701	2,889	9	
0115			120		6		. 13.1	84	79	201.7	214.17	359.0	5,883	22,756	75	2
0116	0001	70		IC T	~	1	12.0	79	65	33.6	40.91	77.1	771	2,699	10	-
	0002	70		IC T		1	12.0	79	65	33.6	40.91	77.1	771	2,699	10	
	0003	70		IC L		1	17.0	75	52	33.6	20.35	30.9	1,050	4,314	13	
	0004	70		DF L		3	18.0	85	104	100.8	53.60	148.7	3,859	16,640	49	2
	0005	70	120	DF T		2	12.0	85	96	67.2	76.74	175.9	2,245	9,565	28	1

TC PL	OTTREEL	IST	<u> </u>					ot Tree Project		- Volumes WAMPCRK				Page Date	3 4/23/2	:020
TWP 26S	RGE 01W	SC 18		ACT AMPCRK			/PE 1G			ACRES 33.00	PLOTS 26	TI	REES 97		ED DATE 2/1/2020	
Piot	Tree				Tre	es		16'	Tot	BA	Trees	Logs	Net	Net	Tota	
No.	No.	Age	SI	Spp St	Me.	Ct.	DBH	FF	Ht.	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
0116			120			8	14.6	82	83	268.9	232.52	509.5	8,696	35,916	110	4
0117	0001	70	120	DF L	1		17.0	84	100	33.6	21.32	64.0	1,161	4,478	115	
	0002	70	120	DF T	1		13.0	82	88	33.6	36.46	72.9	1,036	3,646	13	
	0003	70	120	IC T	1		13.0	85	64	33.6	36.46	72.9	741	2,552	9	
	0004	70	120	IC L	1		33.3	68	105	33.6	5.56	16.7	1,086	3,223	14	
	0005	70	120	DF L	1		10.0	82	73	33.6	61.62	123,2	777	3,081	10	
	0006	70	120	DF L	1		11.0	83	84	33,6	50.93	101.9	1,008	4,074	13	
	0007	70	120	DF T	1		8.0	81	71	33.6	96.29	192.6	631	2,889	8	
0117			120		7		11.8	82	77	235.3	308.64	644.2	6,440	23,944	82	3
0118	0001	70	120	WH T		4	26.0	75	106	134.4	33.81	101.4	4,908	17,244	62	2
	0002	70	120	DF L		3	18.0	85	104	100.8	53.60	148.7	3,859	16,640	49	2
	0003	70	120	GF T		1								,		
0118			120	<u> </u>		8	22.2	81	105	235.3	87.41	250.1	8,767	33,884	111	4
0121	0001	70	120	IC L	1		10.0	75	35	33.6	61.62	61.6	392	1,232	5	
0121			120		1		10.0	75	35	33.6	61.62	61.6	392	1,232	5	
0122	0001	70	120	IC L		1	17.0	75	52	33.6	20.35	30.9	1,050	4,314	13	
	0002	70	120	DF L		4	18.0	85	104	134.4	71.47	198.2	5,145	22,187	65	2
	0003	70	120	DF T		6	12.0	85	96	201.7	230.21	527.6	6,735	28,695	85	3
0122			120			11	14.5	84	95	369.7	322.03	756.7	12,930	55,195	164	
0123	0001	70	120	DF L		1	18.0	85	104	33.6	17.87	49.6	1,286	5,547	16	
	0002	70	120	DF T		1	12.0	85	96	33.6	38.37	87.9	1,123	4,783	14	
	0003	70	120	DF L		1	18.0	85	104	33.6	17.87	49.6	1,286	5,547	16	
	0004	70	120	RC L		1	21.0	79	1 11	33.6	13.40	40.2	1,296	4,817	16	
	0005	70	120	DF T		1	12.0	85	96	33.6	38.37	87.9	1,123	4,783	14	
	0006	70	120	DF L		1	18.0	85	104	33.6	17.87	49.6	1,286	5,547	16	
	0007	70	120	DF L		1	18.0	85	104	33.6	17. 8 7	49.6	1,286	5,547	16	
0123	•		120			7	16.3	85	101	235.3	161.61	414.3	8,686	36,569	110	4
0124	0001	70	120	DF L		4	18.0	85	104	134.4	71.47	198.2	5,145	22,187	65	2
	0002	70	120	DF T		2	12.0	85	96	67.2	76.74	175.9	2,245	9,565	28	1
0124			120			6	15.8	85	100	201.7	148.21	374.1	7,390	31,752	94	4
0125	0001	70	120	IC T	1		11.0	80	62	33.6	50.93	101.9	590	2,037	7	
	0002	70	120	DF T	1		12.0	80	86	33.6	42.79	85.6	964	3,423	12	
	0003	70	120	DF L	1		22.0	83	106	33.6	12.73	38.2	1,203	4,584	15	
	0004	70	120	DF L	1		28.0	82	109	33.6	7.86	23.6	1,243	5,109	16	
	0005	70	120	IC T	1		9.0	78	60	33.6	76.08	152.2	594	2,282	8	
	0006	70	120		1		14.0	81	73	33.6	31.44	62.9	817	2,830	10	
	0007	70		DF L	1		24.0	81	109	33.6	10.70	32.1	1,201	4,814	15	
	0008	70	120		1		22.0	83	96	33.6	12.73	38.2	1,074	4,329	14	
	0009	70	120		1		32.0	79	109	33.6	6.02	18.1	1,261	5,175	16	
	0010	70		DF L	1		32.0	80	110	33.6	6.02	18.1	1,311	5,536	17	
	0011	70		DF T	1		17.5	81	76	33.6	20.12	40.2	903	3,219	11	
	0012	70	120		1		11.4	73	60	33.6	47.42	94.8	642	1,897	8	
	0013	70	120	DF Ţ	1		13.5	83	73	33.6	33.81	67.6	886	3,043	11	
0125			120		13		14.9	79	74	436.9	358.65	773.4	12,689	48,279	161	6
0126	0001	70	120			4	18.0	85	104	134.4	71.47	198.2	5,145	22,187	65	2
	0002	70 70	120			2	12.0	85	96 65	67.2	76.74	175.9	2,245	9,565	28	1
	0003	70	120			3	12.0	79	65	100.8	122.74	231.2	2,314	8,096	29	1
0126			120			9	14.3	82	84	302.5	270.95	605.2	9,704	39,848	123	5

TC PL	OTTREEL	IST						ot Tree Project		/olumes AMPCRK				Page Date	4 <u>4/23/2</u>	:020
TWP	RGE	SC		АСТ			PΕ		А	CRES	PLOTS	TI	REES		ED DATE	
268	01W	18	SW.	AMPCRK		00	IG			33.00	26		97	2	2/1/2020	
Plot	Tree				Tre	es		16'	Tot	BA	Trees	Logs	Net	Net	Tota	1
No.	No.	Age	SI	Spp St	Me.	Ct.	DBH	FF	Ht.	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
0127	0001	70	120	DF L	1		20,5	86	115	33.6	14.66	44.0	1,343	5,865	17	7
	0002	70	120	DF L	1		25,1	83	114	33.6	9.78	29.3	1,352	5,771	17	7
	0003	70	120	DF L	1		24.0	83	118	33.6	10.70	32.1	1,375	5,777	17	7
	0004	70	120	DF L	1		16.0	84	98	33.6	24.07	72.2	1,133	4,574	14	e
	0005	70	120	DF T	1		14.0	83	115	33.6	31.44	94.3	1,227	5,345	16	7
	0006	70	120	DF T	1		12.0	82	106	33.6	42.79	85.6	1,210	4,707	15	6
	0007	70	120	DF T	1		21.0	83	111	33.6	13.97	41.9	1,277	5,030	16	6
0127			120		7		17.1	83	109	235.3	147.42	399.5	8,916	37,070	113	47
0128	0001	70	120	DF T		2	12.0	85	96	67.2	76.74	175.9	2,245	9,565	28	12
	0002	70	120	DF L		4	18.0	85	104	134.4	71.47	198.2	5,145	22,187	65	28
0128			120			6	15.8	85	100	201.7	148.21	374.1	7,390	31,752	94	40
0129	0001	70	120	DF L	1		26.2	85	145	33.6	8.98	35.9	1,627	8,079	21	10
	0002	70	120	DF L	1		30.3	86	123	33.6	6.71	20.1	1,474	6,913	19	9
	0003	70	120	DF L	1		20.0	84	111	33.6	15.41	46.2	1,268	5,084	16	6
	0004	70	120	DF T	1		18.0	83	108	33.6	19.02	57.1	1,275	4,945	16	6
0129			120	···	4		22.2	84	118	134.4	50.11	159.3	5,644	25,022	72	32
TYPE			120		90	97	15.5		95	239.1	182.65	443.2	8,512	36,067	2,809	1,190

.

TC T	LOGST	гvв					og Sto oject:	ck T:	able - SW.	MBF AMP(
T26S Twp 26S	R	W S1 ge I W	18 T0 Se 18	c Tra	act AMPCF	ĸ	Type 001G		Acres 33.0		Plots 26	Samp	le Tre 97	es		6S R01 Page Date Time	1 4/23/	5 T001G 2020 :50AM
	So		- 1	Gross	%	Net	%	L		Net V	olume t	y Scalin	ıg Dia	meter i	n Inch	es		
Spp T	rt (de I	Len	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
DF L	DO	2M	34	331		331	36.4						94	97	107	7 33		
DF L		3M		4		4	.5					4	1					
DFL DFL	-	3M 3M		1 4		1 4	.2		1		4							
	DO			4		4	.5 .2		2		4							
	DO			169		169	18.6		-	17	21	104	27					
DF L	DO	4M	9															1
DF L	DO	4M	20	13		13	1.4		4		9							
DF L		4M		7		7	.8		5		3							
DFL DFL	DO DO	4M 4M		9 7		9 7	1.0 .7		3 1		2 5	3						
	DO			, 7		, 7	.8		5		5	3						
	DO			14		14	1.5		7		6							
	DO			5		5	.6		1			5						
DFL DFL		4M 4M		10 1		10 1	1.1		3			7						
	DO			1		1	.1		1									
DF L		4M		2		2	.2		2									
DF L		4M		1		1	.1		1									
DFL DFL		4M 4M		1		1	.1 .3		1									
DF L		4M		5		5	.6		5									
DF L	DO			1		1	.1		1									
DF L	DO	4M	41	7		7	.8		7									
DF T	DO	2M 3	34	39		39	4.2						18	9	12	,		
DF T	DO	3M .	34	182		182	20.0			35	103	37	' 6					
DF T	DO	4M														1		
	DO																	
	DO			6		6	.7		6									
	DO DO			1		1	.1 .1		1									
	DO			2		2	.2		2									
DF T	DO	4M (21	4		4	.4			4								
	DO DO			2		2	.3		2									
	DO DO			3 9		3 9	.3 1.0		3		6							
	DO			2		2	.2		2		5							
	DO			8		8	.9		5		3							
	DO DO			12		12	1.3		12									
	DO DO			5 8		5 8	.5 .9		5 8			1						
	DO			3		3	.3		3									
	DO			6		6	.6		6			1						
	DO			5		5	.5		5									
DF T DF T	DO DO		· · ·	4 2		4 2	.4 .2		4									
·		Total						<u> </u>			164	164	144	107	110			
DF	D O			909		909	76.4		123	56	164	164	145	106	118	33		
IC L				5		5	5.7				<u>-</u> .		5					
IC L	DO	3M 3	34	19		19	23.6								4		6	9

TC TL	.OGST	'VB					og Sto oject:	ck Ta		MBF AMP								
T26S Twp 26S	R		8 T(Se 18	e Tr	act AMPCI	RK	Type 001G		Acres 33.		Plots 26	Samp	le Tre 97	es]	6S R01 Page Date Fime	2 4/23/2	T001G 2020 50AM
		Gr L	Ŭ	Gross	%	Net	%	ļ		Net V	olume k	y Scalir	ig Dia	meter in	Inche	s		
S pp T	rt d	le I	æn	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
IC L	DO	4M 2	20	2		2	1.9					2	2					
		4M 2		0		0	.5		0									
		4M 3		2 2		2 2	2.9 2.1		2				2					
IC L	DO	4M 2	28	0		0	.4		0				2					
IC L	DO	4M 3	34	3		3	3.5		0						3			
ІС Т	DO	3M 3	34	23		23	28.1			4	; 5	e	5	7				
	DO															···-		
		4M 4M		1		1 1	1.0 1.7		1 1									
		4M 2		3		3	3.5		1			2						
		4M 2		5		5	6.3		5									
		4M 3		13 2		13 2	16.4		13									
	DO	Totals	+				2.3		2			10						
	DO			18		81	6.8		26	5	5	10	6		7		6	9
RC L			_	24		24	32.6			-				12	13			
		4M 2 4M 2		6 11		6 11	7.9 14.2		1		5	4						
RC L				2		2	2.9		2		5		3					
RC L	DO	4M 3	34	12		12	16.6						12					
RC T	DO	3M 3	34	8		8	11.1			·····			8					
RC T	DO	4M 2	20	4		4	5.9				4							
	-	4M 2		2		2	2.9		2									
RC T	DO			4		4	5.9		1		3							
RC		Totals		74		74	6.2		8		12	4	25	12	13			
WF L	DO	2M 3	34	17		17	21.9								5	11		
WF L	DÖ	3M 3	4	9		9	12.0						3		6			
WF L				1		1	1.1				1							
WF L				0		0	.4		0									
WF L WF L				1		1	1.4 1.4		U				1					
WF L				0		0	.3		0				-					
WF T	DO	2M 3	4	5		5	6.4						5			L		
WF T	DO	3M 3	4	32		32	41.5			18	14							
WF T			_	1		1	1.7		1									
WF T	DO	4M 2	25	2		2	2.2		2									
WF T				3		3	4.5		3									
WF T WF T				1 3		1	1.1 4.1		1									
		Totals							11	1.0	1.5	<u> </u>			10			
WF	D0			77		77	6.4		11	18	15	1	9		12			
WH T			_	18		18	66.7						<u> </u>		18			
WH T	DO	4M 2	8	9			33.3		2				8					
WH		Totals		27		27	2.3		2				8		18			
GF L	DO	2M 3	14	13		13	56.7								7		6	

TC	TI	JOGS1	ГVВ					Ŷ	ck Ta	able -								···,		
							Pi	oject:		SW	AMPO	CRK								
T26 Twj 265	р	R	WS ge IW	S		ract /AMPCI	RK	Туре 001G		Acres 33.0		Plots 26	Samj	ole Tre 97	es)]	5S R01 Page Date Γime	IW S18 3 4/23/2 9:40		
	S	So (Gr	Log	Gross	%	Net	%			Net V	olume b	y Scali	ng Dia	meter i	n Inche	s			
Spp	T	rt (le	Len	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
GF	L	DO	3M	34	7		7	29.9							4	3	[
GF	L	DO	4M	24	1		1	5.9					_	1					1	
GF	L	DO	4M	26	0		0	2.0		0										
GF	L	DO	4M	28	1		1	5.5		0				1						
GF	7		Tot	als	22		22	1.9		1			1	1	4	10		6		
Total	All	Speci	es		1,190		1,190	100.0		171	78	196	180	194	128	178	44	12	9	

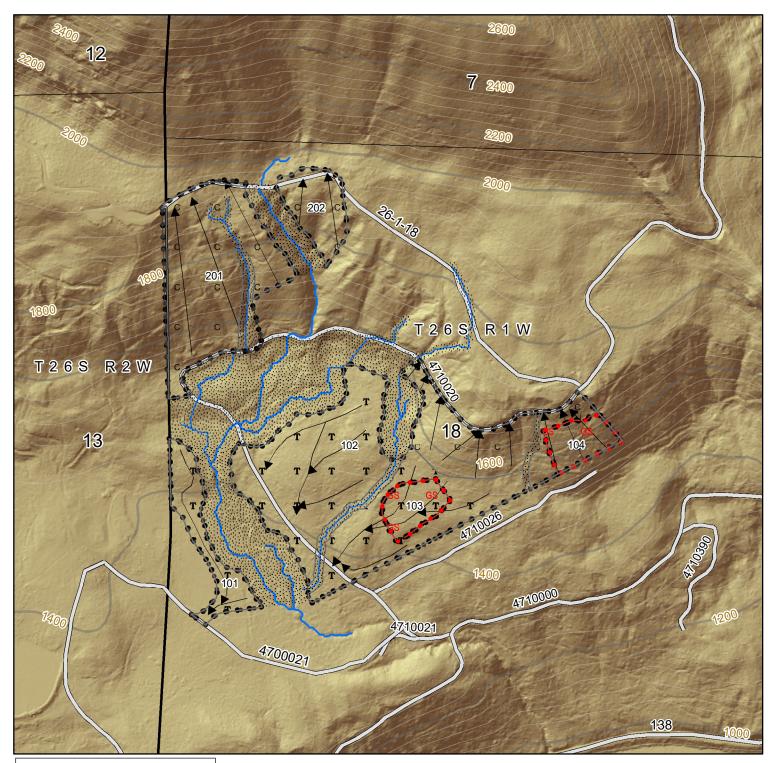
.

TC PS	TATS					OJECT Roject		ISTICS AMPCR			PAGE DATE	1 4/23/2020
ГWP	RGE	SC	TRACT		TYPE		A	CRES	PLOTS	TREES	CuFt	BdFt
26S	01	18	SWAMPC	CRK	002B			17.00	19	100	S	W
						TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		ļ	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA			19	100		5.3						
CRUI DBH	ISE COUNT		10	47		4.7		1,755		2.7		
REFC	OREST											
COUI	NT		9	53		5.9						
BLAN 100 %												
100 /					STA	AND SUM	MARY					
		SA	MPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		3	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
	G FIR-L		32	51.8	19.6	105	24.4	107.9	19,142	,	4,292	4,292
	G FIR-T		12	49.4	14.7	94	15.2	58.4	8,464	-	2,019	2,019
	EDAR-L		2	1.6	24.4	80	1.1	5.3	463	463	162	162
INC C	CED-L		1 47	.5 103.3	36.0 17.6	107	0.6	3.5	566		128	128
				·····		100	41.7	175.1	28,635	28,635	6,602	6,602
CON	FIDENC 68			THE SAMP T OF 100 T		ME WILL	BE WIT	HIN THE SAN	IPLE ERR	OR		
CL	68 .1		COEFF		<u> </u>	SAMPL	E TREE	S - BF		OF TREES	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	I	.OW	AVG	HIGH		5	10	. 1
	GFIR-L		85.1	15.0		544	640	737				
	G FIR-T EDAR-L		64.1 10.1	19.3 9.5		223 254	277 280	330 306				
	EDAR-L		10.1	2.5		234	200	300				
TOTA	AL		90.9	13.3		471	543	614		330	83	3
CL	68.1		COEFF			SAMPL	E TREE	S - CF	#	OF TREES	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	L	.OW	AVG	HIGH		5	10	1:
	G FIR-L		72.9	12.9		120	138	155				
	G FIR-T		61.2 3.8	18.4		54	66	78				
INC C	EDAR-L		3.0	3.5		95	99	102				
TOTA			77.1	11.2		107	120	134		237	59	20
	68.1		COEFF			TREES/						
SD:	1.0		VAR.%	S.E.%	T	IKLES/2 .OW	ACKE AVG	HIGH	Ŧ	# OF PLOTS 1 5	REQ. 10	INF. POP. 1:
	<u> </u>		50.4	11.9	<u>L</u>	46	52	58		<u> </u>	10	1.
	G FIR-T		111.6	26.3		36	49	62				
	EDAR-L		317.6	74.8		0	2	3				
INC C			299.5	70.6		0	1	1				
TOTA	AL		61.1	14.4		88	103	118		157	39	I
CL			COEFF			BASAL			#	OF PLOTS I	REO.	INF. POP.
SD:	1.0		VAR.%	S.E.%	L		AVG	HIGH		5	10	1:
	FIR-L		32.1	7.6		100	108	116				
	3 FIR-T EDAR-L		110.0 317.6	25.9 74.8		43 1	58	74				
INC C			317.6 299.5	74.8 70.6		1	5 4	9 6				
			49.0	11.5		155	175	195		101	25	II
ΤΟΤΑ			COEFF			NET BF/	ACRE			OF PLOTS I	REO.	INF. POP.
TOTA CL	68.1		COEFF									
TOTA CL SD:	68.1 1.0		VAR.%	S.E.%	L		AVG	HIGH		5	10	1:
CL SD:				S.E.% 7.5		.OW		HIGH 20,579	·····	5	10	1
CL SD: DOUC	1.0 FIR-L FIR-T	-	VAR.% 31.9 111.3	7.5 26,2	. 1	OW 7,704 1 6,246	AVG 19,142 8,464	20,579 10,683	·····	5	10	15
CL SD: DOUC	1.0 FIR-L FIR-T EDAR-L		VAR.% 31.9	7.5	. 1	. <u>OW</u> 17,704 1	AVG 19,142	20,579		5	10	1

TC PS	TATS					ROJECT PROJECT		TISTICS WAMPCR			PAGE DATE	2 4/23/2020
TWP	RGE	SC	TRACT		TYPE		А	CRES	PLOTS	TREES	CuFt	BdFt
26S	01	18	SWAMPCRK		002B			17.00	19	100	S	W
CL	68.1		COEFF			NET I	BF/ACRE	· · · ·		# OF PLO	TS REQ.	INF. POP.
SD:	1.00		VAR,	S.E.%		LOW	AVG	HIGH		5	10	15
тот	AL		45.9	10.8		25,539	28,635	31,730		89	22	10
CL	68.1		COEFF			NET (CUFT FT.	ACRE		# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%		LOW	AVG	HIGH		5	10	15
DOU	G FIR-L		31.9	7.5		3,970	4,292	4,614				
DOU	G FIR-T		110.8	26.1		1,492	2,019	2,547				
WR C	CEDAR-L	r	317.6	74.8		41	162	284				
INC (CED-L		299.5	70.6		38	128	219				
TOT	AL		46.9	11.1		5,872	6,602	7,332		93	23	10

T TSPCSTGR

۰


Species, Sort Grade - Board Foot Volumes (Type) Project: SWAMPCRK

														······			_				····	
	vр		VS Rge 01V		Sec	Tract SWAMI	PCRK	Тура 002]			Plot 19		Samp	le Tree 47	\$S	C S	uFt		lFt	01W :	S18 T	002B
					%			·		Per	cent N	let B	oard Fo	oot Vol	ume			A	verag	ge Log		Loga
Spj		s _{So} T rt		ðr 1d	Net BdFt	Bd. Def%	Ft. per Ac Gross	ere Net	Total Net MBF	L 4-5	og Sca 6-11		ia. 6 17+	Lo 12-20	g Lei 21-30	-	36-99	Ln Ft	Dia In	Bd Ft	CF/ Lf	Logs Per /Acre
DF	L	, D	0	2M	30		5,760	5,760	98			14	86			100		34	19	544	3.07	10.6
DF	L	, D	0	3M	47		9,113	9,113	155		22	59	19			100		34	12	199	1.34	45.9
DF	L	, D	0	4M	23		4,269	4,269	73	34	47	13	6	5	42	42	11	28	7	51	0.48	83.5
DF	L	To	tals		67		19,142	19,142	325	8	21	36	36	1	9	87	2	30	9	137	1.01	140.0
DF	Т	D	0	2M	13		1,177	1,177	20		_	49	51			100		34	16	364	2.18	3.2
DF	Т	D	0	3M	60		5,035	5,035	86	ļ	54	46				100		34	10	128	0.91	39.3
DF	Т	D	о	4M	27		2,253	2,253	38	50	50			13	19	66	3	21	6	29	0.35	78.3
DF	Т	To	tals		30		8,464	8,464	144	13	45	34	7	3	5	91	1	25	7	70	0.66	120.9
RC	L	, D	С	3M	79		366	366	6			100				100		34	13	223	2.40	1.6
RC	L	, D	С	4M	21		97	97	2	34	66			15	85			20	7	38	0.55	2.6
RC	L	To	tals		2		463	463	8	7	14	79		3	18	79	·	26	9	110	1.51	4.2
IC	L	D) C	3M	70		400	400	7				100			100		34	23	800	4.98	.5
IC	L	D	С	4M	30		165	165	3	9		91			100			30	11	165	1.45	1.0
IC	L	Tot	als		2		566	566	10	3		27	71		29	71		31	15	377	2.73	1.5
Туре	Tota	als					28,635	28,635	487	9	28	36	28	2	9	88	2	28	8	107	0.89	266.6

TC PL	OTTREEL	ST						ot Tree Project		Volumes VAMPCRK				Page Date	1 4/23/2	020
TWP 26S	RGE 01W	SC 18	TR/ SW/	ACT AMPCRK			PE 2B		ł	ACRES 17.00	PLOTS 19	TI	REES 47		ED DATE 2/1/2020	
Plot	Tree				Tre	es		16'	Tot	BA	Trees	Logs	Net	Net	Tota	
No.	No.	Age	SI	Spp St	Me.	Ct.	DBH	FF	Ht.	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
0201	0001	65	120	DF L	1		42.0	90	135	33.6	3.49	14.0	1,625	9,432	15	8
	0002	65	120	DF L	1		40.0	75	109	33.6	3.85	11.6	1,254		11	4
	0003	65	120	DF L	1		36.0	82	129	33.6	4.75	19.0	1,455	6,990	13	6
	0004	65	120	DF T	1		23.0	86	107	33.6	11.65	34.9	1,271	5,708	11	5
	0005	65	120	DF T	1		24.0	86	124	33.6	10.70	32.1	1,475	6,419	13	6
	0006	65	120	IC L	1		36.0	81	107	33.6	4.75	14.3	1,219	5,373	11	5
0201			120		6		30.7	84	117	201.7	39.20	125.9	8,300	38,736	74	35
0202	0002	65	120	DF L		1	19.0	84	105	33.6	16.12	43.6	1,337	5,962	12	5
0202			120	·		1	19.6	84	105	33.6	16.12	43.6	1,337	5,962	12	5
0202	0002	65	-	DF L	1		29.0	88	132	33.6	7.33	29.3	1,563	8,280	12	
0203	0001	(5	120	DEI	1	-	29.0	88	132	33.6	7.33	29.3	1,563	8,280	14	7
0204	0001 0002	65 65		DF L DF T		4 3	19.0 14.0	84 82	105 94	134.4	64.48	174.4	5,348		48	21
	0002	65		IC T		5 1	14.0	82	94	100.8	85.27	208.8	3,488	14,620	31	13
0204			120			8	17.0	83	99	235.3	149.75	383.2		38,469	79	34
0205	0001	65		DF L	1		31.0	90	126	33.6	6.41	25.6	1,552	8,400	14	8
	0002 0003	65 65		DF L DF L	1		20.0 18.4	83 82	109	33.6	15.41	46.2	1,259	5,084	11	5
	0003	65		DF L DF T	1 1		18.4 11.2	83 80	114 90	33.6 33.6	18.20 49.13	54.6 98.3	1,238 992	4,732	11 9	4
	0004	65		DF L	1		11.2	83	105	33.6	49.13 16.89	90.5 50.7	1,182	3,930 4,392	9 11	4
	0005	65		DF T	1		17.3	83	95	33.6	20.59	61.8	1,182	4,118	10	4
0205	0001	65	120	DF L	6	4	<u>17.1</u> 19.0	82	100	201.7	126.63	337.2	7,307	30,656	65	27
0206	0001	65		DF L DF T		4	19.0 14.0	84 82	105 94	134.4 134.4	64.48 113.70	174.4 278.3	5,348 4,651	23,848 19,494	48 42	21 17
													4,051	19,494	42	17
0206			120			8	16.6	83	98	268.9	178.17	452.8	9,998	43,342	89	39
0207	0001	65		DF L	1		22.0	81	110	33.6	12.73	38.2		4,965	11	4
	0002 0003	65 65		DF L DF T	1		24.0	83 80	113	33.6	10.70	32.1	1,314	5,563	12	5
	0003	65		DF L	1 1		10.7 17.3	80 86	87 114	33.6 33.6	53.82 20.59	107.6 61.8	945	3,768 5,353	8 12	3
	0004	65		DF T	1		19.4	83	107	33.6	16.37	49.1	1,334 1,230	3,333 4,912	12	5 4
	0005	65		DF L	1		23.6	84	119	33.6	11.06	33.2	1,230	4,912 5,753	11	5
	0007	65		DF T	1		21.1	86	103	33.6	13.84	41.5	1,241	4,983	11	4
	0008	65		DF T	1		21.3	87	110	33.6	13.58	40.7	1,355	6,112	12	5
	0009	65		DF T	1		14.4	86	103	33.6	29.72	89.2	1,190	5,349	11	5
0207	•		120		9		17.4	83	102	202.5	102 /2	402.4	11 190	46 750	100	42
0207	0001	65		DF L	9	4	19.0	84 84	102	302.5 134.4	182.42 64.48	<u>493.4</u> 174.4	11,189 5,348	46,759 23,848	100 48	<u>42</u> 21
	0002	65		DF T			14.0	82	94	168.1	142.12	347.9		24,367	52	21
0000	-															
0208 0209	0001	65	120	DF L	1	9	16.4 24.0	<u>83</u> 81	97	302.5	206.60	522.4	11,161	48,216	100	43
0209	0001	65 65		RC L	1		24.0 26.0	81 78	115 60	33.6 33.6	10.70 9.12	32.1 18.2	1,333 875	5,563 2,370	12 8	5 2
	0002	65	120		1		25.6	78 83	111	33.6	9.12 , 9.40	28.2	875 1,304	2,370 5,360	8 12	2 5
	0004	65		RCL	1		23.0	71	96	33.6	11.65	34.9	1,179	3,495	12	3
	0005	65		DF T	1		17.4	82	102	33.6	20.35	61.1	1,175	4,478	10	4
0000	-												-			
0209	0001	65	120 120	DET	5	4	22.4	79	98	168.1	61.22	174.5	5,848	21,265	52	19
0210	0001	65	120				19.0 14.0	84 82	105 94	134.4 33.6	64.48 28.42	174.4 69.6	5,348 1,163	23,848 4,873	48 10	21 4
		00	120			1	14.0	02	94	33.0	20.42	09.0	1,103	4,0/3	10	4
0210			120			5	18.2	83	102	168.1	92.90	244.0	6,510	28,722	58	26

TC PL	OTTREELI	ST						ot Tree Project		Volumes VAMPCRK				Page Date		.020
TWP	RGE	sc	TRA			ту	'PE			ACRES	PLOTS	T	REES	CRUIS	ED DATE	
268	01W	18		AMPCRK			2B		1	17.00	19		47		2/1/2020	
Plot	Tree				Tre	es		16'	Tot	BA	Trees	Logs	Net	Net	Total	l
No.	No.	Age	SI	Spp St	Me.	Ct.	DBH	FF	Ht.	/Ac.	/Ac.	/Ac,	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
0211	0001	65	120	DF L	1		28.0	90	130	33.6	7.86	31.4	1,607	8,646	14	8
	0002	65	120	DF L	1		8.8	80	56	33.6	79.57	79.6	579	2,387	5	2
	0003	65	120	DF L	1		26.0	86	124	33.6	9.12	27.3	1,445	6,381	13	6
	0004	65	120	DF L	1		23.0	8 6	130	33.6	11.65	34.9	1,500	6,756	13	6
0211			120		4		15.1	82	75	134.4	108.20	173.3	5,132	24,171	46	22
0212	0001	65	120	DF L		2	19.0	84	105	67.2	32.24	87.2	2,674	11,924	24	11
	0002	65	120	IC L		1	35.0	81	107	33.6	4.75	14.3	1,219	5,373	11	5
0212			120			3	22.4	84	105	100.8	36.99	101.5	3,893	17,297	35	15
0213	0001	65	120	DF L	1		22.3	87	130	33.6	12.39	37.2	1,544	7,187	14	6
	0002	65	120	DF L	1		12.0	86	110	33.6	42.79	85.6	1,160	5,135	10	5
	0003	65	120	DF L	1		17.0	90	123	33.6	21.32	64.0	1,414	6,397	13	6
	0004	65	120	DF L	1		23.0	89	126	33.6	11.65	34.9	1,507	6,989	13	6
0213			120		4		16.7	88	118	134.4	88.16	221.7	5,625	25,709	50	23
0214	0001	65	120	RC L		1	24.0	74	80	33.6	10.38	26.6	1,027	2,932	9	3
	0002	65	120	DF L		3	19.0	84	105	100.8	48.36	130.8	4,011	17,886	36	16
	0003	65	120	DF T		5	14.0	82	94	168.1	142.12	347.9	5,813	24,367	52	22
0214			120			9	16.6	82	96	302.5	200.86	505.3	10,851	45,186	97	40
0215	0001	65	120	DF L	1		15.4	88	106	33.6	25.98	78.0	1,286	5,716	12	5
	0002	65	120	DF L	1		24.0	88	111	33.6	10.70	32.1	1,329	6,098	12	5
	0003	65	120	DF L	1		17.0	87	106	33.6	21.32	64.0	1,265	5,544	11	5
0215			120		3		17.9	88	107	100.8	58.00	174.0	3,880	17,358	35	16
0216	0001	65	120	DF L		3	19.0	84	105	100.8	48.36	130.8	4,011	17,886	36	16
0216			120			3	19.6	84	105	100.8	48.36	130.8	4,011	17,886	36	16
0217	0001	65	120	ÐF L	1		17.0	81	115	33.6	21.32	64.0	1,280	5,117	11	5
	0002	65		DF L	1		17.6	82	106	33.6	19.89	59.7	1,195	4,576	11	4
	0003	65	120	DF L	1		14.0	83	108	33.6	31.44	94.3	1,149	4,716	10	4
0217			120		3		16.0	82	110	100.8	72.66	218.0	3,623	14,409	32	13
0218	0001	65	120	DF L		4	19.0	84	105	134.4	64.48	174.4	5,348	23,848	48	21
	0002	65	120	DF T		3	14.0	82	94	100.8	85.27	208.8	3,488	14,620	31	13
0218			120			7	17.0	83	99	235.3	149.75	383.2	8,836	38,469	79	34
0219	0001	65	120	DF L	1		29.0	80	130	33.6	7.33	29.3	1,414	6,155	13	6
	0002	65	120	DF L	1		30.0	81	132	33.6	6.85	27.4	1,468	6,915	13	6
	0003	65	120	DF L	1		32.0	82	132	33.6	6.02	24.1	1,539	7,462	14	7
	0004	65	120	DF T	1		19.6	82	110	33.6	16.04	48.1	1,311	5,294	12	5
	0005	65	120	DF T	1		8.5	80	81	33.6	85.29	170.6	704	3,412	6	3
	0006	65	120	DF L	1		19.0	83	98	33.6	17.07	51.2	1,105	3,926	10	4
0219			120		6		16.3	81	94	201.7	138.59	350.7	7,541	33,164	67	30
TYPE			120		47	53	17.6		99	175.1	103.26	266.6	6,602	28,635	1,122	487

IC II	.OGSTVB					og Sto oject:	CK 18		AMP								
T26S Twp 26S	R01W S18 Rge 01W	T00 Sec 18	Tra	ct MPCH		у Туре 002В		Acres		Plots 19	Samp	le Tre 47	ees]	5S R01 Page Date Fime	W S18 1 4/23/2 10:02	
s	So Gr Lo	g	Gross	%	Net	%			Net V	olume	ov Scalin	ıg Dia	meter in				
	rt de Le	-	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11		14-15		20-23	24-29	30-39
	DO 2M 3	_	98		98	20.9			, î			12 15	1115	42		7	1
_	DO 3M 34	_	155		155	33.0				14	20) 53	12	46		11	
_														07			
	DO 4M 10		1		1	1		1									
	DO 4M 1: DO 4M 1		1 1		1,	.1		1									
					1	.1		1									
	DO 4M 2		2		2	.5		1			,	1					
	DO 4M 2		1		1	.2		_	ļ			~					
	DO 4M 22		7		7	1.5		2		-	2	2	1				
	DO 4M 23		3		3	.6				2		1					
	DO 4M 24		5		5	1.0		3		2							
	DO 4M 20		3		3	.7		2						2			
	DO 4M 2'		1		1	.1		1					1				
	DO 4M 28		0		0	.0		0						i			
	DO 4M 29		1		1	.2		1									
DF L	DO 4M 30		10		10	2.1		5				5					
DF L	DO 4M 3		2		2	.5								2			
DF L	DO 4M 32	2	1		1	.3		1									
DF L	DO 4M 34	1 ·	27		27	5.7			6	5 12	8						
DF L	DO 4M 38	3	1		1	.3		1									
	DO 4M 4		7		7	1.4		7									
DF T	DO 2M 34		20		20	4.3								20			
DF T	DO 3M 34	-	86		86	18.2			14	1 4	28	21	18				
DF T	DO 4M																
DF T	DO 4M 8	3															
DF T	DO 4M 12	7	1		1	.1		1			1						
DF T	DO 4M 18	3	3		3	.7		3									
DF T	DO 4M 20		1		1	.2		1									
DF T	DO 4M 22	2	5		5	1.2		3		3	1						
DF T	DO 4M 23	3	2		2	.4		2			1						
DF T	DO 4M 34	F	25		25	5.4		8	6	56	4						
DF T	DO 4M 38	3	1		1	.2		1									
DF	Totals		469		469	96.4		44	27	7 43	64	84	30	112	40	18	9
RC L	DO 3M 34		6		6	79.0						3	3				
	DO 4M 17		0		0	3.1		0									
	DO 4M 21		1		1	13.9					1						
RC L	DO 4M 22	2	0		0	4.0		0									
RC	Totals		8		8	1.6		1			1	3	3				
IC L	DO 3M 34	ţ	7		7	70.8									7		
IC L	DO 4M 30		3		3	29.2		0						3			
IC	Totals		10		10	2.0		0						. 3	7		
	Species		487			100.0		45	27	43	65	87	33	115	47	18	9

Category	LOG
Stream Buffer	Sale No. S
Logging	SWAMP CR
Category	
Cable	
GS - Gap or Group Selection	
T- Tractor or Ground-Based	Do
The information shown on Exhibit "A" map(s) are approximate locations. Exact locations of	Reg Landownei

features represented by map symbols will be determined on site and shall depend upon the conditions that exist on site. Activities shall be conducted based upon features determined on site rather than features shown on maps.

GGING PLAN MAP SW-341-2021-GF7120-07 CREEK GNA - Timber Sale

REEK GNA - Timb	er Sale		101	3.7
AREA 1 and 2			102	29.3
			103 - Gap	2.0
Section 18			104 - Gap	2.0
T26S, R1W, W.M.			201	14.1
Douglas County, Oregon			202	3.3
egulated Use Area UA-1		-	TOTAL	54.4
er: United States Forest Se	rvice			N
	0	500	1,000	
		ĺ		
	-	Feet		

Operational

Acres

Sale Area