Get to the Choppah # KL-341-2026-W01030-01 Cruise Report **SALE NAME:** Get to the Choppah # **LEGAL DESCRIPTION:** Located in Section(s) 27, 28, 34 of T32S, R7½E, Willamette Meridian, Klamath County, Oregon #### **BOUNDARY LINES:** Unit boundaries are unmarked. #### **ACREAGE**: Gross Sale Acreage: 226 Acres Exclusion Acreage: 5 Acres Net Sale Acreage: 221 Acres Mapping was accomplished using Avenza pdf Maps with the data processed through ArcGIS. #### TREATMENT: The Timber Sale is a single tree selection partial cut harvest. Leave trees are marked with a yellow band at breast height. #### **CRUISE METHOD:** Variable plot cruise with a ratio of one count plot for every measure plot. ## **BASAL AREA FACTOR:** A basal area factor of 10 was used for all variable cruise plots. ## **PLOT DESIGNATION:** Plot centers were established at every plot with blue flag wire stakes with the corresponding plot number. Blue flagging was attached to the nearest available tree branch. #### **SAMPLE SIZE CALCULATIONS:** | AREA | CV% | DESIRED SE% | ACRES | |--------|-----|-------------|-------| | Area 1 | 56% | 12% | 221 | Number of Plots = $$\frac{T^2C^2}{A^2}$$ C = Coefficient of Variation in Percent (Taken from inventory data) **T** = Number of Standard Errors **A** = Desired Sampling Error for a sale of this size and value $$N = (1)^2(56)^2 = 22 \text{ plots}$$ $(12)^2$ Measurements and Grading: - Ratio of two count plot for every measure plot. - DBH and Height were measured on all "in" trees for measure plots. - Pulp volume and sawlog volume cruised. - All trees were graded using the segment system. - Nested fixed plot cruise for all submerchantable material (5" to 9" DBH). #### TREE HEIGHT: All trees were measured to a fixed diameter outside bark. This height is usually taken as high up the bole as possible, where the cruiser can clearly see the bole, and the taper remains constant (usually 6 or 8 inches). The log segments are broken out and graded accordingly. #### **MINIMUM D.B.H:** 9.0" DBH. #### **DIAMETER STANDARDS:** 1" diameter class ## BTR: Standard ratios were used. See attached species tables. ## **FORM FACTOR:** Form factor was measured or estimated at 16' for each tree. Each tree was assigned its own FF. # **FORM POINT:** All trees were sighted at DBH. # **VOLUME COMPUTATION:** All cruise data was input and run at the district on Atterbury's Super Ace program. ## **FINAL CRUISE RESULTS:** | CV% | SE% | ACRES | |------|-----|-------| | 46.8 | 7.1 | 138 | #### **TIMBER DESCRIPTION** ## **SAWLOG VOLUME:** This volume was obtained from the variable plot cruise. All material graded camprun. See grade table for minimum standards. # **TOTAL SAWLOG VOLUME** | Species | Ave. DBH | Acres | Gross
Vol/Acre
(bf) | Net Vol/Acre
(bf) | Net Sale
Vol (Mbf) | |----------------|----------|-------|---------------------------|----------------------|-----------------------| | Ponderosa pine | 19.1 | 221 | 2,490 | 2,451 | 542 | | Sugar pine | 18.5 | 221 | 1,335 | 1,316 | 291 | | White fir | 14.5 | 221 | 1417 | 1417 | 313 | | | | Total | 5,242 | 5,184 | 1,146 | **TOTAL NET SAWLOG VOLUME: 1,146 MBF** # **GREEN PULP VOLUME:** This volume was obtained from the variable plot cruise and a nested fixed plot cruise. All material was graded green pulp, see grade table for minimum standards. # FIXED PLOT CRUISE | Species | Ave.
DBH | Acres | Net
Vol/Acre
(bf) | Net Sale
Vol (Mbf) | | |---------------|-------------|-------|-------------------------|-----------------------|--| | Sugar pine | 9.1 | 221 | 32 | 7 | | | Incense cedar | 6.8 | 221 | 50 | 11 | | | White fir | 6.7 | 221 | 25 | 6 | | | | | Total | 107 | 24 | | **TOTAL GREEN PULP VOLUME: 24 Mbf** | TC | TL | OGST | VВ | | | | Lo | g Stoc | k Tab | le - M | BF | | | | | | | | | | |------------|---------------------|----------|------|-----|-----------------|-----|-------|--------------|-------|------------|---------|-------------|---------|----------|-----------|-------|----------------------|------------------------|-------|-----| | | | | | | | | Pro | oject: | | СНО |)P | | | | | | | | | | | Т03 | T03W R007 S27 TVARI | | | | | | | | | | | | | | | | | 7 S27 T | VARI | | | Twp
03V | | Rg
00 | - | | ec Tr
27 139 | act | | Type
VARI | | Acres 221. | | Plots
22 | Samp | le Trees | 5 |] | Page
Date
Fime | 1
5/28/20
2:23:4 | | | | | S | So (| Fr | Log | Gross | % | Net | % | | | Net Vol | ume by | Scaling | Diamet | er in Inc | ches | | | | | | Spp | T | rt d | e | Len | MBF | Def | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 | 40+ | | PP | | CR | CR | 17 | 16 | | 16 | 3.0 | | | 7 | 3 | 6 | | | | | | | | | PP | | CR | CR | | 47 | | 47 | 8.6 | | | 10 | 36 | | | | | | | | | | PP | | CR | CR | 34 | 488 | 1.8 | 479 | 88.4 | | | 17 | 78 | 112 | 26 | 81 | 129 | | 37 | | | | PP | | | Tota | als | 550 | 1.6 | 542 | 47.0 | | | 34 | 117 | 117 | 26 | 81 | 129 | | 37 | | | | SP | | CR | CR | 17 | 26 | | 26 | 8.9 | | | 6 | 9 | 11 | | | | | | | | | SP | | CR | CR | 27 | 13 | 4.3 | 12 | 4.1 | | | 3 | 9 | | | | | | | | | | SP | | CR | CR | 32 | 13 | 5.3 | 12 | 4.1 | | | | | | 12 | | | | | | | | SP | | CR | CR | 34 | 243 | 1.3 | 240 | 80.5 | | | | 23 | 72 | 51 | 73 | 21 | | | | | | SP | | CR | GP | 15 | 7 | | 7 | 2.4 | | | 7 | | | | | | | | | | | SP | | | Tota | als | 302 | 1.4 | 298 | 25.8 | | | 17 | 41 | 83 | 63 | 73 | 21 | | | | | | WF | | CR | CR | 17 | 37 | | 37 | 11.7 | | 1 | 24 | 12 | | • | | • | | | | | | WF | | CR | CR | 27 | 12 | | 12 | 3.7 | | | 12 | | | | | | | | | | | WF | | CR | CR | 34 | 265 | | 265 | 84.5 | | 4 | 20 | 69 | 58 | 63 | 14 | 19 | 19 | | | | | WI | F | | Tota | als | 313 | | 313 | 27.2 | | 5 | 56 | 80 | 58 | 63 | 14 | 19 | 19 | | | | | Total | All S | Species | | | 1,166 | 1.1 | 1,153 | 100.0 | | 5 | 107 | 239 | 258 | 152 | 168 | 168 | 19 | 37 | | | | T | FSPCST | GR | | | | Specie | s, Sort (
Project | Grade - Boar
: CHO | | ot Vo | ume | s (Тур | e) | | |] | Page
Date
Time | 5 | 1
/28/202
::23:42 | | |--------------------|---------------|---------------------|----|-------------|---------------|-----------------------|----------------------|-----------------------|-----|----------------|------------------|---------|---------------|------------------|------------------|-----------------|----------------------|----------|-------------------------|----------------------| | T03W
Twp
03W |) | S27 T
Rge
007 | | Sec | Tract
39 | | Type
VAR | | | Plots | | Sample | e Trees
59 | | CuFt | T03
BdI
E | | R007 S2 | 7 TVA | RI | | | | | | % | | | | | Per | cent No | et Boa | rd Foot | Volume | : | | A۱ | verag | ge Log | | Ţ | | Spp | S So | | | Net
BdFt | Bd. I
Def% | Ft. per Acre
Gross | Net | Total
Net MBF | 4-5 | Log Sc
6-11 | ale Dia
12-16 | | | Lengt
21-30 3 | h
31-35 36-99 | Ln l
Ft l | | Bd
Ft | CF/
Lf | Logs
Per
/Acre | | PP | C | R C | 'R | 100 | 1.6 | 2,490 | 2,451 | 542 | | 50 | 30 | 20 | 3 | 9 | 88 | 30 | 10 | 155 | 1.15 | 15. | | PP | Totals | | | 47 | 1.6 | 2,490 | 2,451 | 542 | | 50 | 30 | 20 | 3 | 9 | 88 | 30 | 10 | 155 | 1.15 | 15. | | SP | C | | R | 97 | 1.4 | 1,335 | 1,316 | 291 | | 46 | 47 | 7 | 9 | 4 | 87 | 28 | | 139 | 1.19 | 9. | | SP | C | R G | iΡ | 3 | | 32 | 32 | 7 | | 100 | | | 100 | | | 15 | 7 | 20 | 0.33 | 1. | | SP | Totals | | | 26 | 1.4 | 1,367 | 1,348 | 298 | | 47 | 46 | 7 | 11 | 4 | 85 | 26 | 10 | 122 | 1.12 | 11 | | WF | C | R C | R | 100 | | 1,417 | 1,417 | 313 | 1 | 62 | 24 | 12 | 12 | 4 | 85 | 27 | 8 | 99 | 0.83 | 14 | | WF | Total | s | | 27 | | 1,417 | 1,417 | 313 | 1 | 62 | 24 | 12 | 12 | 4 | 85 | 27 | 8 | 99 | 0.83 | 14 | | Type T | otals | | | | 1.1 | 5,275 | 5,216 | 1,153 | 0 | 52 | 33 | 15 | 7 | 6 | 86 | 28 | 9 | 127 | 1.04 | 41 | | TC TSTATS | | | | | ST
PROJEC | TATIST | ICS
CHOP | | | PAGE
DATE 5 | 1
5/28/2025 | |---|-------------------------|---|---|------------|---|--|--|----------------|--|---|---------------------------------| | TWP RO | GE. | SECT TR | ACT | | TYPE | | RES | PLOTS | TREES | CuFt | BdFt | | 03W 00 |)7 | 27 139 | 9 | | VARI | | 221.00 | 22 | 113 | 1 | Е | | | | | | , | TREES | | ESTIMATED
FOTAL | | ERCENT
AMPLE | | | | | | PLOTS | TREES | | PER PLOT | | TREES | TI | REES | | | | TOTAL | | 22 | 113 | | 5.1 | | | | | | | | CRUISE | | 10 | 59 | | 5.9 | | 6,844 | | .9 | | | | DBH COU | | | | | | | | | | | | | REFOREST | Γ | 10 | ~ · | | | | | | | | | | COUNT | | 12 | 54 | | 4.5 | | | | | | | | BLANKS
100 % | | | | | | | | | | | | | 100 /0 | | | | STAN | ND SUMM. | ARY | | | | | | | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | P PINE | | 20 | 11.9 | 19.1 | 46 | 5.4 | 23.6 | 2,490 | 2,451 | 550 | | | SUG PINE | | 17 | 8.0 | 18.5 | 41 | 3.5 | 15.0 | 1,367 | 1,348 | 320 | 320 | | WHITE F | | 22 | 11.0 | 14.5 | 42 | 3.3 | 12.7 | 1,417 | 1,417 | 319 | 319 | | TOTAL | | 59 | 31.0 | 17.4 | 43 | 12.3 | 51.4 | 5,275 | 5,216 | 1,189 | 1,189 | | | 68.1 T | COEFF | F 100 THE VO | LUME WIL | | TREES - | | | OF TREES I | REO. | INF. POP. | | SD: 1. | | VAR.% | S.E.% | LO | OW SAME | AVG | HIGH | π | 5 | 10 | IN . 1 OI . | | P PINE | | 113.5 | 26.0 | | 255 | 345 | 434 | | - | - | | | | | | | | 201 | 220 | 275 | | | | | | SUG PINE | | 62.2 | 15.5 | | 201 | 238 | 275 | | | | | | WHITE F | | 94.7 | 20.6 | | 159 | 200 | 242 | | | | | | | | 94.7
104.0 | | | | | | | 432 | 108 | 4 | | WHITE F
TOTAL | .1 % | 94.7 | 20.6
13.5 | | 159
225
SAMPLE | 200
260
2 TREES - | 242
295 | # | 432
OF TREES I | | INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. | - | 94.7
104.0
COEFF
VAR.% | 20.6
13.5
S.E.% | LO | 159
225
SAMPLE
DW | 200
260
2 TREES -
AVG | 242
295
CF
HIGH | # | | | INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE | - | 94.7
104.0
COEFF
VAR.%
90.2 | 20.6
13.5
S.E.%
20.7 | LC | 159
225
SAMPLE
DW
57 | 200
260
2 TREES -
AVG
72 | 242
295
CF
HIGH
87 | # | OF TREES I | REQ. | INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. | - | 94.7
104.0
COEFF
VAR.% | 20.6
13.5
S.E.% | LC | 159
225
SAMPLE
DW | 200
260
2 TREES -
AVG | 242
295
CF
HIGH | # | OF TREES I | REQ. | INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F | - | 94.7
104.0
COEFF
VAR.%
90.2
56.3 | 20.6
13.5
S.E.%
20.7
14.1 | LO | 159
225
SAMPLE
DW
57
48 | 200
260
2 TREES -
AVG
72
56 | 242
295
CF
HIGH
87
64 | # | OF TREES I | REQ. | INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL | - | 94.7
104.0
COEFF
VAR.%
90.2
56.3
82.9 | 20.6
13.5
S.E.%
20.7
14.1
18.1 | L | 159
225
SAMPLE
57
48
36
50 | 200
260
2 TREES -
AVG
72
56
43
57 | 242
295
CF
HIGH
87
64
51 | | OF TREES I
5 | REQ.
10
70 | INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL | 0 .1 % | 94.7
104.0
COEFF
VAR.%
90.2
56.3
82.9
84.0 | 20.6
13.5
S.E.%
20.7
14.1
18.1 | | 159
225
SAMPLE
57
48
36 | 200
260
2 TREES -
AVG
72
56
43
57 | 242
295
CF
HIGH
87
64
51 | | OF TREES F 5 282 OF PLOTS F | REQ.
10
70 | INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. | 0 .1 % | 94.7
104.0
COEFF
VAR.%
90.2
56.3
82.9
84.0
COEFF | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9 | | 159
225
SAMPLE
DW
57
48
36
50
TREES/A | 200
260
2 TREES -
AVG
72
56
43
57 | 242
295
CF HIGH 87 64 51 63 | | OF TREES I
5 | 70 REQ. | INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE | 0 .1 % | 94.7
104.0
COEFF
VAR.%
90.2
56.3
82.9
84.0
COEFF
VAR.%
86.5
94.9 | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7 | | 159
225
SAMPLE
DW
57
48
36
50
TREES/A
DW
10
6 | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8 | 242
295
CF
HIGH
87
64
51
63
HIGH
14 | | OF TREES F 5 282 OF PLOTS F | 70 REQ. | | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F | 0 .1 % | 94.7
104.0
COEFF
VAR.%
90.2
56.3
82.9
84.0
COEFF
VAR.%
86.5
94.9
150.0 | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7
32.7 | | 159
225
SAMPLE
DW
57
48
36
50
TREES/A
DW
10
6
7 | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11 | 242
295
CF
HIGH
87
64
51
63
HIGH
14
10
15 | | OF TREES I 5 282 OF PLOTS I 5 | 70 REQ. 10 | INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL | 1 % | 94.7
104.0
COEFF
VAR.%
90.2
56.3
82.9
84.0
COEFF
VAR.%
86.5
94.9
150.0
57.9 | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7 | | 159
225
SAMPLE
DW
57
48
36
50
TREES/A
DW
10
6
7
27 | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11
31 | 242
295
CF
HIGH
87
64
51
63
HIGH
14
10
15
35 | # | OF TREES F 5 282 OF PLOTS F 5 | 70
REO. 10 | INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. | 1 % 0 | 94.7
104.0
COEFF
VAR.%
90.2
56.3
82.9
84.0
COEFF
VAR.%
86.5
94.9
150.0
57.9 | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7
32.7
12.6 | LC | 159
225
SAMPLE
DW
57
48
36
50
TREES/A
DW
10
6
7
27
BASAL A | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11
31 | 242
295
CF
HIGH 87 64 51 63 HIGH 14 10 15 35 | # | OF TREES I 5 282 OF PLOTS I 5 140 OF PLOTS I | 70 REQ. 10 35 REQ. | INF. POP. INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. CL: 68. | 1 % 0 | 94.7
104.0
COEFF
VAR.%
90.2
56.3
82.9
84.0
COEFF
VAR.%
86.5
94.9
150.0
57.9
COEFF
VAR.% | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7
32.7
12.6 | LC | 159
225
SAMPLE
DW
57
48
36
50
TREES/A
DW
10
6
7
27
BASAL A | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11
31 | 242
295
CF
HIGH
87
64
51
63
HIGH
14
10
15
35 | # | OF TREES F 5 282 OF PLOTS F 5 | 70
REO. 10 | INF. POP. INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE CL: 68. | 1 % | 94.7
104.0
COEFF
VAR.%
90.2
56.3
82.9
84.0
COEFF
VAR.%
86.5
94.9
150.0
57.9
COEFF
VAR.% | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7
32.7
12.6
S.E.% | LC | 159
225
SAMPLE
DW
57
48
36
50
TREES/A
DW
10
6
7
27
BASAL A
DW | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11
31
AREA/ACE
AVG | 242
295
CF
HIGH 87 64 51 63 HIGH 14 10 15 35 RE HIGH 28 | # | OF TREES I 5 282 OF PLOTS I 5 140 OF PLOTS I | 70 REQ. 10 35 REQ. | INF. POP. INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE SUG PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. | 1 % | 94.7
104.0
COEFF
VAR.%
90.2
56.3
82.9
84.0
COEFF
VAR.%
86.5
94.9
150.0
57.9
COEFF
VAR.% | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7
32.7
12.6 | LC | 159
225
SAMPLE
DW
57
48
36
50
TREES/A
DW
10
6
7
27
BASAL A | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11
31 | 242
295
CF
HIGH
87
64
51
63
HIGH
14
10
15
35 | # | OF TREES I 5 282 OF PLOTS I 5 140 OF PLOTS I | 70 REQ. 10 35 REQ. | INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE WHITE F TOTAL CL: 68. SD: 1. P PINE WHITE F TOTAL CL: 68. SD: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. | 1 % | 94.7
104.0
COEFF
VAR.%
90.2
56.3
82.9
84.0
COEFF
VAR.%
86.5
94.9
150.0
57.9
COEFF
VAR.% | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7
32.7
12.6
S.E.%
17.7
17.8 | LC | 159
225
SAMPLE
DW
57
48
36
50
TREES/A
DW
10
6
7
27
BASAL A
DW
19
12 | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11
31
AREA/ACE
AVG
24
15 | 242
295
CF
HIGH 87 64 51 63 HIGH 14 10 15 35 RE HIGH 28 18 | # | OF TREES I 5 282 OF PLOTS I 5 140 OF PLOTS I | 70 REQ. 10 35 REQ. | INF. POP. INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE SUG PINE SUG PINE SUG PINE SUG PINE SUG PINE WHITE F | 1 %
0 | 94.7
104.0
COEFF
VAR.%
90.2
56.3
82.9
84.0
COEFF
VAR.%
86.5
94.9
150.0
57.9
COEFF
VAR.% | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7
32.7
12.6
S.E.%
17.7
17.8
28.1 | LC | 159
225
SAMPLE
DW
57
48
36
50
TREES/A
DW
10
6
7
27
BASAL A
DW
19
12
9 | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11
31
AREA/ACH
AVG
24
15
13
51 | 242
295
CF
HIGH 87 64 51 63 HIGH 14 10 15 35 RE HIGH 28 18 16 | # | OF TREES I 5 282 OF PLOTS I 5 140 OF PLOTS I 5 | 70 REQ. 10 35 REQ. 10 20 | INF. POP. INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. | 1 % 0
1 % 0 | 94.7
104.0
COEFF
VAR.%
90.2
56.3
82.9
84.0
COEFF
VAR.%
86.5
94.9
150.0
57.9
COEFF
VAR.%
81.1
81.6
128.7
43.4 | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7
32.7
12.6
S.E.%
17.7
17.8
28.1 | LC | 159
225
SAMPLE
DW
57
48
36
50
TREES/A
DW
10
6
7
27
BASAL A
DW
19
12
9
46 | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11
31
AREA/ACH
AVG
24
15
13
51 | 242
295
CF
HIGH 87 64 51 63 HIGH 14 10 15 35 RE HIGH 28 18 16 | # | 282 OF PLOTS F 5 140 OF PLOTS F 5 | 70 REQ. 10 35 REQ. 10 20 | INF. POP. INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. | 1 % 0
1 % 0 | 94.7
104.0
COEFF
VAR.%
90.2
56.3
82.9
84.0
COEFF
VAR.%
86.5
94.9
150.0
57.9
COEFF
VAR.%
81.1
81.6
128.7
43.4
COEFF
VAR.% | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7
32.7
12.6
S.E.%
17.7
17.8
28.1
9.5
S.E.% | LO | 159
225
SAMPLE
DW
57
48
36
50
TREES/A
DW
10
6
7
27
BASAL A
DW
19
12
9
46
NET BF/A
DW
2,013 | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11
31
AREA/ACH
AVG
24
15
13
51
ACRE
AVG
24
24
24
24
24
25
24
25
26
27
27
28
28
29
20
20
20
20
20
20
20
20
20
20 | 242
295
CF
HIGH 87 64 51 63 HIGH 14 10 15 35 RE HIGH 28 18 16 56 HIGH 2,888 | # | OF TREES I 5 282 OF PLOTS I 5 140 OF PLOTS I 5 | 70 REQ. 10 35 REQ. 10 20 REQ. | INF. POP. INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. | 1 % 0
1 % 0 | 94.7 104.0 COEFF VAR.% 90.2 56.3 82.9 84.0 COEFF VAR.% 86.5 94.9 150.0 57.9 COEFF VAR.% 81.1 81.6 128.7 43.4 COEFF VAR.% 81.9 87.9 | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7
32.7
12.6
S.E.%
17.7
17.8
28.1
9.5
S.E.%
17.8
19.2 | LO | 159
225
SAMPLE
DW
57
48
36
50
TREES/A
DW
10
6
7
27
BASAL A
DW
19
12
9
46
NET BF/A
DW
2,013
1,090 | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11
31
AREA/ACE
AVG
24
15
13
51
ACRE
AVG
24
15
13
51
ACRE
AVG
24
15
13
13
13
13
14
15
16
17
18
18
18
18
18
18
18
18
18
18 | 242 295 CF HIGH 87 64 51 63 HIGH 14 10 15 35 RE HIGH 28 18 16 56 HIGH 2,888 1,606 | # | OF TREES I 5 282 OF PLOTS I 5 140 OF PLOTS I 5 | 70 REQ. 10 35 REQ. 10 20 REQ. | INF. POP. INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE TOTAL CL: 68. SD: 1. P PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. | 1 % 0
1 % 0 | 94.7 104.0 COEFF VAR.% 90.2 56.3 82.9 84.0 COEFF VAR.% 86.5 94.9 150.0 57.9 COEFF VAR.% 81.1 81.6 128.7 43.4 COEFF VAR.% 81.9 87.9 138.2 | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7
32.7
12.6
S.E.%
17.7
17.8
28.1
9.5
S.E.%
17.8
19.2
30.1 | L(| 159
225
SAMPLE
DW
57
48
36
50
TREES/A
DW
10
6
7
27
BASAL A
DW
19
12
9
46
NET BF/A
DW
2,013
1,090
990 | 200
260
2TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11
31
AREA/ACH
AVG
24
15
13
51
ACRE
AVG
24
15
13
51
ACRE
AVG
24
15
13
43
43
43
43
43
43
43
43
43
4 | 242 295 CF HIGH 87 64 51 63 HIGH 14 10 15 35 RE HIGH 28 18 16 56 HIGH 2,888 1,606 1,845 | # | 282 OF PLOTS I 5 140 OF PLOTS I 5 79 OF PLOTS I 5 | 70 REQ. 10 35 REQ. 10 20 REQ. 10 | INF. POP. INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. | 1 % 0
1 % 0 | 94.7 104.0 COEFF VAR.% 90.2 56.3 82.9 84.0 COEFF VAR.% 86.5 94.9 150.0 57.9 COEFF VAR.% 81.1 81.6 128.7 43.4 COEFF VAR.% 81.9 87.9 138.2 46.2 | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7
32.7
12.6
S.E.%
17.7
17.8
28.1
9.5
S.E.%
17.8
19.2 | L(| 159
225
SAMPLE
DW
57
48
36
50
TREES/A
DW
10
6
7
27
BASAL A
DW
19
12
9
46
NET BF/A
DW
2,013
1,090
990
4,691 | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11
31
AREA/ACH
AVG
24
15
13
51
ACRE
AVG
24
15
13
51
ACRE
AVG
24
15
13
51
ACRE
AVG
24
15
13
51
ACRE
AVG
24
15
13
51
ACRE
AVG
24
15
13
51
51
51
51
51
51
51
51
51
51 | 242 295 CF HIGH 87 64 51 63 HIGH 14 10 15 35 RE HIGH 28 18 16 56 HIGH 2,888 1,606 1,845 5,742 | # | 282 OF PLOTS F 5 140 OF PLOTS F 5 79 OF PLOTS F 5 | 70 REQ. 10 35 REQ. 10 20 REQ. 10 | INF. POP. INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE SUG PINE SUG PINE SUG PINE SUG PINE WHITE F TOTAL CL: 68. | 1 % 0
1 % 0
1 % 0 | 94.7 104.0 COEFF VAR.% 90.2 56.3 82.9 84.0 COEFF VAR.% 86.5 94.9 150.0 57.9 COEFF VAR.% 81.1 81.6 128.7 43.4 COEFF VAR.% 81.9 87.9 138.2 46.2 COEFF | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7
32.7
12.6
S.E.%
17.7
17.8
28.1
9.5
S.E.%
17.8
19.2
30.1
10.1 | LC | 159 225 SAMPLE DW 57 48 36 50 TREES/A DW 10 6 7 27 BASAL A DW 19 12 9 46 NET BF/ DW 2,013 1,090 990 4,691 NET CUI | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11
31
AREA/ACH
AVG
24
15
13
51
ACRE
AVG
24
15
13
51
ACRE
AVG
25
ACRE
AVG
24
15
13
51
ACRE
AVG
25
ACRE
AVG
26
ACRE
AVG
27
ACRE
AVG
27
ACRE
AVG
28
ACRE
AVG
29
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE | 242 295 CF HIGH 87 64 51 63 HIGH 14 10 15 35 RE HIGH 28 18 16 56 HIGH 2,888 1,606 1,845 5,742 RE | # | OF TREES I 5 282 OF PLOTS I 5 140 OF PLOTS I 5 79 OF PLOTS I 5 | 70 REQ. 10 35 REQ. 10 20 REQ. 10 22 REQ. | INF. POP. INF. POP. INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE SUG PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. | 1 % 0
1 % 0
1 % 0 | 94.7 104.0 COEFF VAR.% 90.2 56.3 82.9 84.0 COEFF VAR.% 86.5 94.9 150.0 57.9 COEFF VAR.% 81.1 81.6 128.7 43.4 COEFF VAR.% 81.9 87.9 138.2 46.2 COEFF VAR.% | 20.6 13.5 S.E.% 20.7 14.1 18.1 10.9 S.E.% 18.9 20.7 32.7 12.6 S.E.% 17.7 17.8 28.1 9.5 S.E.% 17.8 19.2 30.1 10.1 S.E.% | LC | 159 225 SAMPLE DW 57 48 36 50 TREES/A DW 10 6 7 27 BASAL A DW 19 12 9 46 NET BF/ DW 2,013 1,090 990 4,691 NET CUI | 200
260
272
56
43
57
ACRE
AVG
12
8
11
31
AREA/ACE
AVG
24
15
13
51
ACRE
AVG
24
15
13
51
ACRE
AVG
24
15
13
51
ACRE
AVG
24
15
13
51
ACRE
AVG
24
15
13
51
ACRE
AVG
24
15
13
51
ACRE
AVG
24
15
16
17
18
18
18
18
18
18
18
18
18
18 | 242 295 CF HIGH 87 64 51 63 HIGH 14 10 15 35 RE HIGH 28 18 16 56 HIGH 2,888 1,606 1,845 5,742 RE HIGH | # | 282 OF PLOTS F 5 140 OF PLOTS F 5 79 OF PLOTS F 5 | 70 REQ. 10 35 REQ. 10 20 REQ. 10 | INF. POP. INF. POP. | | WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. SD: 1. P PINE SUG PINE WHITE F TOTAL CL: 68. | 1 % 0
1 % 0
1 % 0 | 94.7 104.0 COEFF VAR.% 90.2 56.3 82.9 84.0 COEFF VAR.% 86.5 94.9 150.0 57.9 COEFF VAR.% 81.1 81.6 128.7 43.4 COEFF VAR.% 81.9 87.9 138.2 46.2 COEFF | 20.6
13.5
S.E.%
20.7
14.1
18.1
10.9
S.E.%
18.9
20.7
32.7
12.6
S.E.%
17.7
17.8
28.1
9.5
S.E.%
17.8
19.2
30.1
10.1 | LC | 159 225 SAMPLE DW 57 48 36 50 TREES/A DW 10 6 7 27 BASAL A DW 19 12 9 46 NET BF/ DW 2,013 1,090 990 4,691 NET CUI | 200
260
2 TREES -
AVG
72
56
43
57
ACRE
AVG
12
8
11
31
AREA/ACH
AVG
24
15
13
51
ACRE
AVG
24
15
13
51
ACRE
AVG
25
ACRE
AVG
24
15
13
51
ACRE
AVG
25
ACRE
AVG
26
ACRE
AVG
27
ACRE
AVG
27
ACRE
AVG
28
ACRE
AVG
29
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE
ACRE | 242 295 CF HIGH 87 64 51 63 HIGH 14 10 15 35 RE HIGH 28 18 16 56 HIGH 2,888 1,606 1,845 5,742 RE | # | OF TREES I 5 282 OF PLOTS I 5 140 OF PLOTS I 5 79 OF PLOTS I 5 | 70 REQ. 10 35 REQ. 10 20 REQ. 10 22 REQ. | INF. POP. INF. POP. INF. POP. | | TC TST | TC TSTATS STATISTICS PAGE PROJECT CHOP DATE | | | | | | | | | | | |--------|---|------|------|-------|-------|------------------|--------|-------|-----------|---------|-----------| | TWP | RGE | SECT | TRAC | СТ | ТҮРЕ | A | CRES | PLOTS | TREES | CuFt | BdFt | | 03W | 007 | 27 | 139 | | VARI | | 221.00 | 22 | 113 | 1 | Е | | CL: | 68.1 % | CO | EFF | | NET C | NET CUFT FT/ACRE | | | # OF PLOT | ΓS REQ. | INF. POP. | | SD: | 1.0 | VA | R. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | TOTA | AL | 46 | 5.5 | 10.1 | 1,068 | 1,189 | 1,309 | | 90 | 23 | 10 |