

Sale FG-341-2026-W01200-01

District: Forest Grove Date: June 16, 2025

## **Cost Summary**

|                            | Conifer        | Hardwood          | Total          |
|----------------------------|----------------|-------------------|----------------|
| Gross Timber<br>Sale Value | \$2,732,970.10 | \$0.00            | \$2,732,970.10 |
|                            |                | Project Work:     | (\$294,290.00) |
|                            |                | Advertised Value: | \$2,438,680.10 |



## Timber Sale Appraisal Sunday Prime Sale FG-341-2026-W01200-01

District: Forest Grove Date: June 16, 2025

## **Timber Description**

#### Location:

Stand Stocking: 20%

| Specie Name   | AvgDBH | Amortization (%) | Recovery (%) |
|---------------|--------|------------------|--------------|
| Douglas - Fir | 24     | 0                | 98           |

| Volume by Grade | 28    | 3S & 4S 6"-<br>11" | Total |
|-----------------|-------|--------------------|-------|
| Douglas - Fir   | 3,646 | 960                | 4,606 |
| Total           | 3,646 | 960                | 4,606 |

Comments: LOCAL POND VALUES, APRIL 2025

WESTERN REDCEDAR AND OTHER CEDARS STUMPAGE PRICE = POND VALUE MINUS DOUGLAS-

FIR LOGGING COST:

\$937.48 = \$1,180.00 - \$242.52

WESTERN HEMLOCK AND OTHER CONIFERS STUMPAGE PRICE = POND VALUE MINUS DOUGLAS-

FIR LOGGING COST:

\$329.48 = \$572.00 - \$242.52

RED ALDER AND OTHER HARDWOODS STUMPAGE PRICE = POND VALUE MINUS DOUGLAS-FIR

LOGGING COST:

\$253.48 = \$496.00 - \$242.52

BRANDING AND PAINTING ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$5.00/GAL

HAULING COST ALLOWANCE = \$1,250/DAY

OTHER COSTS (WITH PROFIT & RISK ADDED): N/A

OTHER COSTS (NO PROFIT & RISK ADDED):

EQUIPMENT CLEANING: 3 PIECES @ \$1,000/PIECE = \$3,000

MACHINE TIME TO BLOCK/WATERBAR ROADS AND SKID TRAILS:

20 HOURS X \$200/HOUR = \$4,000

MACHINE TIME TO PILE LANDING SLASH AND SORT FIREWOOD:

20 HOURS X \$200/HOUR = \$4,000

WEYERHAEUSER ROAD MAINT & ROCKWEAR FEE: \$45,704.73

TOTAL OTHER COSTS (NO P&R) = \$56,704.73

SLASH TREATMENT: 50 ACRES X \$250/ACRE = \$12,500.00

ROAD MAINTENANCE (INCLUDES MOVE-IN, ROLLING & SPOT ROCKING):

3

MOVE IN: \$2,013.28

GENERAL ROAD MAINT: 10.53 miles X \$2,506.29 = \$26,391.23 TOTAL ROAD MAINTENANCE: \$28,404.51 / 4,606 MBF = \$6.17/MBF



Sale FG-341-2026-W01200-01

District: Forest Grove Date: June 16, 2025

### **Logging Conditions**

Combination#: 1 Douglas - Fir 100.00%

**Logging System:** Shovel **Process:** Harvester Head Delimbing

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 20 bd. ft / load: 4700

cost / mbf: \$106.38
machines: Forwarder

Harvester

6/16/25 4



## Sale FG-341-2026-W01200-01

District: Forest Grove Date: June 16, 2025

## **Logging Costs**

**Operating Seasons: 2.00** 

Profit Risk: 10%

Project Costs: \$294,290.00

Other Costs (P/R): \$0.00

**Slash Disposal:** \$12,500.00

**Other Costs:** \$56,704.73

#### Miles of Road

Road Maintenance:

\$6.17

| Dirt | Rock<br>(Contractor) | Rock<br>(State) | Paved |
|------|----------------------|-----------------|-------|
| 0.0  | 0.0                  | 0.0             | 0.0   |

#### **Hauling Costs**

| Species       | \$/MBF | Trips/Day | MBF / Load |
|---------------|--------|-----------|------------|
| Douglas - Fir | \$0.00 | 3.0       | 4.7        |

6/16/25 5



Sale FG-341-2026-W01200-01

District: Forest Grove Date: June 16, 2025

## **Logging Costs Breakdown**

| Logging   | Road<br>Maint | Fire<br>Protect | Hauling | Other<br>P/R appl | Profit &<br>Risk | Slash<br>Disposal | Brand & Paint | Other   | Total    |
|-----------|---------------|-----------------|---------|-------------------|------------------|-------------------|---------------|---------|----------|
| Douglas - | Fir           |                 |         |                   |                  |                   |               |         |          |
| \$106.38  | \$6.29        | \$1.91          | \$90.42 | \$0.00            | \$20.50          | \$2.71            | \$2.00        | \$12.31 | \$242.52 |

| Specie        | Amortization | Pond Value | Stumpage | Amortized |
|---------------|--------------|------------|----------|-----------|
| Douglas - Fir | \$0.00       | \$835.87   | \$593.35 | \$0.00    |



## Sale FG-341-2026-W01200-01

District: Forest Grove Date: June 16, 2025

#### **Summary**

#### Amortized

| Specie        | MBF | Value  | Total  |
|---------------|-----|--------|--------|
| Douglas - Fir | 0   | \$0.00 | \$0.00 |

#### Unamortized

| Specie        | MBF   | Value    | Total          |
|---------------|-------|----------|----------------|
| Douglas - Fir | 4,606 | \$593.35 | \$2,732,970.10 |

#### **Gross Timber Sale Value**

**Recovery:** \$2,732,970.10

Prepared By: Mark Savage Phone: 503-359-7437

6/16/25 7

# TIMBER SALE SUMMARY Sunday Prime #FG-341-2026-W01200-01

- **1.** <u>Location</u>: Portions of Sections 13 & 14, T1S, R6W, W.M., Washington County, Oregon.
- **2.** <u>Type of Sale</u>: This timber sale is a 103 net acre Clearcut. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. Revenue Distribution: 100% BOF, Washington County.
- **4.** <u>Sale Acreage</u>: Acres are net of Stream Buffers and road prisms. Acreage was determined using ESRI ArcMap GIS Pro software.
- **5.** <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in April and May of 2025. For more information see Cruise Report.
- **Timber Description:** The Timber Sale Area consists of 68 year old Douglas-fir stand. The stand has an average of 215 ft<sup>2</sup> of basal area (all species), an average Douglas-fir DBH of 24 inches, and an estimated average net Douglas-fir volume of approximately 46.1 MBF per acre.
- 7. <u>Topography and Logging Method</u>: Slopes within the sale areas range from 5% to 40%, and variable in aspect. The timber sale is 100% ground-based Yarding. The average horizontal skid trail length is approximately 400 feet with a maximum of approximately 1,000 feet.
- **8.** Access: All access to the Timber Sale Area is on surfaced roads. From Forest Grove, proceed south on Highway 47 for 15 miles. Turn right onto Pike Road and continue for 4.5 miles. Pike Road then becomes Turner Creek Road. Continue down Turner Creek Road for 4 miles and there is a Weyerhaeuser gate that requires a key. Continue through this gate on Turner Creek Road for 4.5 miles. Turn right onto North Fork Trask River Road and continue for 1.5 miles and there is a Weyerhaeuser gate that requires a key. Continue through this gate on North Fork Trask River Road for 2.8 miles to Sunday Creek Road. Turn right on Sunday Creek Road and follow for 4.2 miles to access the northwestern portion of the Timber Sale Area.

#### 9. Projects:

Project No. 1: Road Improvement, Surface Rock Replacement,

and Maintenance \$294,037.67

Project No. 2: Road Blocking \$252.33

Total Credit for all Projects (rounded)

\$294,290.00

#### PROJECT COST SUMMARY SHEET

Timber Sale: Sunday Prime
Sale Number: FG-341-2026-W01200-01

#### PROJECT NO. 1: ROAD IMPROVEMENT, SURFACE ROCK REPLACEMENT, AND MAINTENANCE

|              | Road Segment | Length               | Cost         |
|--------------|--------------|----------------------|--------------|
| _            | A to B       | 227+00               | \$16,031.78  |
|              | B to C       | 279+40               | \$226,720.90 |
|              | D to E       | 38+70                | \$31,964.49  |
|              | F to G       | 10+90                | \$12,530.60  |
| _            |              | 556+00 stations      |              |
|              |              | 10.53 miles          |              |
| Total Rock = |              |                      |              |
|              | 912 cy       | 1½" - 0              |              |
|              | 10,777 cy    | 4" - 0               |              |
|              | 409 cy       | Riprap               |              |
|              |              | Move-in =            | \$6,789.90   |
|              |              | TOTAL PROJECT COST = | \$294,037.67 |

#### **PROJECT NO. 2: ROAD BLOCKING**

| Road Segment | Length               | Cost     |
|--------------|----------------------|----------|
| V1 to V2     | 21+64                | \$246.50 |
|              | 21+64 stations       |          |
|              | 0.41 miles           |          |
|              |                      |          |
|              | Move-in =            | \$5.83   |
|              | TOTAL PROJECT COST = | \$252.33 |

**TOTAL CREDITS = \$294,290.00** 

Timber Sale: Sunday Prime Sale Number: FG-341-2026-W01200-01

| Equipment                               | Total      |
|-----------------------------------------|------------|
| Brush Cutter                            | \$552.62   |
| Grader                                  | \$577.74   |
| Roller & Compactor                      | \$552.62   |
| Excavator - Equipment Cleaning Required | \$2,079.64 |
| Dozer - Equipment Cleaning Required     | \$2,079.64 |
| Dump Truck                              | \$497.56   |
| Water Truck                             | _ \$455.91 |

TOTAL MOVE-IN COSTS = \$6,795.73

| Timber Sale:                       |         | Sunday Pri    |                           | 11014 0001  | Sale       | Number:             | FG-341-202           | 26-W01200-01 |  |
|------------------------------------|---------|---------------|---------------------------|-------------|------------|---------------------|----------------------|--------------|--|
| Road Segment:                      |         | A to B        |                           | •           | Impr       | ovement:            | 227+00               | stations     |  |
| _                                  |         |               |                           | •           |            |                     | 4.30                 | miles        |  |
| PROJECT NO. 1: ROAD IMPROVEMENT, S | URFACE  | ROCK RE       | PLACEMEN                  | IT, AND MAI | NTENANC    | E                   |                      |              |  |
| IMPROVEMENT                        |         |               |                           |             |            |                     |                      |              |  |
| Clearing & grubbing (scatter)      | 2.61    | ac @          | \$1,353.60                | per acre =  |            |                     | \$3,532.90           |              |  |
| Grade, ditch, & roll               | 227.00  | sta @         | \$41.00                   | per sta =   |            |                     | \$9,307.00           |              |  |
|                                    |         |               |                           | TO          | TAL IMPR   | OVEMEN <sup>-</sup> | COSTS =              | \$12,839.90  |  |
| CULVERTS                           |         |               |                           |             |            |                     |                      |              |  |
| Culverts and Bands                 | •       |               |                           |             |            |                     |                      |              |  |
| 18" Diameter                       | 50      | If @          | \$22.10                   | per If =    |            |                     | \$1,105.00           |              |  |
| Markers & Stakes                   |         |               |                           |             |            |                     |                      |              |  |
| Culvert markers                    | 1       | ea @          | \$12.00                   | per ea =    |            |                     | \$12.00              |              |  |
|                                    |         |               |                           |             | TOTAL      | CULVER <sup>*</sup> | <u>r costs = </u>    | \$1,117.00   |  |
| ROCK                               | •       |               |                           |             |            |                     |                      |              |  |
|                                    | Rock    | Base          | Haul Cost                 | Placen      | nent/      |                     |                      |              |  |
|                                    | Size    | Cost \$/cv    | \$/cv                     |             |            | Total CY            | Rock Cost            |              |  |
|                                    |         | <del>-,</del> | <del>*</del> , - <b>,</b> |             |            |                     |                      |              |  |
| Subgrade rock Bedding and backfill | 1½" - 0 | \$3.00        | ¢7.00                     | \$0.6       | 20         | 24                  | COE 4 40             |              |  |
| Bedding and backilli               | 1/2 - 0 | \$3.00        | \$7.00                    |             | Subtotal = | 24                  | \$254.40<br>\$254.40 |              |  |
|                                    |         |               |                           |             | Subtotal – | 24                  | Ψ254.40              |              |  |
|                                    |         |               | Totals                    | l l         | All Rock = | 24                  |                      |              |  |
|                                    |         |               |                           |             | 1½" - 0    | 24                  |                      |              |  |
|                                    |         |               |                           |             |            |                     |                      |              |  |
|                                    |         |               |                           |             | <u>TO</u>  | TAL ROC             | COSTS =              | \$254.40     |  |
| EROSION CONTROL                    |         |               |                           |             |            |                     |                      |              |  |
| Grass seed & fertilizer            | 2.61    | ac @          | \$697.50                  | per ac =    |            |                     | \$1,820.48           |              |  |
|                                    |         |               |                           | TOTAL F     | EROSION    | CONTRO              | L COSTS =            | \$1,820.48   |  |
|                                    |         |               |                           |             |            |                     |                      | , .,         |  |
|                                    |         |               |                           |             | TOTA       |                     | CT COST =            | ¢16 021 79   |  |
|                                    |         |               |                           |             | IUIA       | LPRUJE              | CT COST =            | \$16,031.78  |  |

 Timber Sale:
 Sunday Prime
 Sale Number:
 FG-341-2026-W01200-01

 Road Segment:
 B to C
 Improvement:
 279+40
 stations

 5.29
 miles

|                                                                           |           |              |                       | 5.29 miles         |
|---------------------------------------------------------------------------|-----------|--------------|-----------------------|--------------------|
| PROJECT NO. 1: ROAD IMPROVEMENT, S                                        | SURFACE I | ROCK REP     | LACEMENT, AND MAINTEN | IANCE              |
| MPROVEMENT                                                                |           |              |                       |                    |
| Clearing & grubbing (scatter)                                             | 3.21      | ac @         | \$1,353.60 per acre = | \$4,345.06         |
| Roadside brushing                                                         | 5.29      | mi @         | \$850.00 per mi =     | \$4,496.50         |
| Cutslope layback                                                          |           |              |                       |                    |
| Excavate & load                                                           | 376       | cy @         | \$1.94 per cy =       | \$729.44           |
| Haul                                                                      | 489       | су @         | \$8.42 per cy =       | \$4,117.38         |
| Shape and compact waste material ouble ditch & end-haul waste (Waste Area | 489       | cy @         | \$0.40 per cy =       | \$195.60           |
| lo. 1)                                                                    | 1.3       | sta @        | \$66.00 per sta =     | \$85.80            |
| Haul                                                                      | 9         | су @         | \$8.42 per cy =       | \$75.78            |
| Shape and compact waste material                                          | 9         | cy @         | \$0.40 per cy =       | \$3.60             |
| ree draining fill end-haul waste (Waste Area                              | ,         | _            | ***                   | 4=00.04            |
| Excavate & load                                                           | 361       | cy @         | \$1.94 per cy =       | \$700.34           |
| Haul                                                                      | 469       | cy @         | \$5.24 per cy =       | \$2,457.56         |
| Shape and compact waste material                                          | 469       | cy @         | \$0.40 per cy =       | \$187.60           |
| Clean culvert inlet & outlet, scatter waste                               | 8         | ea @         | \$27.50 per ea =      | \$220.00           |
| Clean culvert inlet & outlet, end-haul waste                              | 2         | oo @         | \$27.50 per ea =      | \$55.00            |
| Waste Area No. 1)  Haul waste material                                    | 1         | ea @<br>cy @ | \$8.42 per cy =       | \$8.42             |
| Shape and compact waste material                                          | 1         |              | \$0.40 per cy =       | \$0.42             |
| Clean culvert inlet & outlet, end-haul waste                              | 1         | cy @         | ф0.40 рег су –        | φ0.40              |
| Waste Area No. 2)                                                         | 1         | ea @         | \$27.50 per ea =      | \$27.50            |
| Haul waste material                                                       | 1         | cy @         | \$5.24 per cy =       | \$5.24             |
| Shape and compact waste material                                          | 1         | cy @         | \$0.40 per cy =       | \$0.40             |
| nd-haul waste from Culvert Nos. 2-5, 11-14,                               | 16-19     |              |                       |                    |
| Haul (Waste Area No. 1)                                                   | 288       | cy @         | \$8.42 per cy =       | \$2,424.96         |
| Compact waste area                                                        | 288       | cy @         | \$0.40 per cy =       | \$115.20           |
| nd-haul waste from Culvert Nos. 22, 23, 28,                               | 29        |              |                       |                    |
| Haul (Waste Area No. 2)                                                   | 96        | су @         | \$5.24 per cy =       | \$503.04           |
| Compact waste area                                                        | 96        | cy @         | \$0.40 per cy =       | \$38.40            |
| ill reconstruction (2+80)                                                 |           | _            |                       |                    |
| Excavate & load existing fill                                             | 68        | cy @         | \$1.94 per cy =       | \$131.92           |
| Haul suitable fill material to staging area                               | 88        | cy @         | \$0.25 per cy =       | \$22.00            |
| Shape staged material                                                     | 88        | cy @         | \$0.40 per cy =       | \$35.20            |
| Load material @ staged material                                           | 72<br>70  | cy @         | \$1.80 per cy =       | \$129.60           |
| Haul fill material from staging area                                      | 72<br>70  | cy @         | \$0.25 per cy =       | \$18.00<br>\$43.30 |
| Place and compact fill ill reconstruction (102+80)                        | 72        | cy @         | \$0.60 per cy =       | \$43.20            |
| Excavate & load existing fill                                             | 80        | cy @         | \$1.94 per cy =       | \$155.20           |
| Haul suitable fill material to staging area                               | 104       | cy @         | \$0.30 per cy =       | \$31.20            |
| Shape staged material                                                     | 104       | cy @         | \$0.40 per cy =       | \$41.60            |
| Load material @ staged material                                           | 85        | cy @         | \$1.80 per cy =       | \$153.00           |
| Haul fill material from staging area                                      | 85        | cy @         | \$0.30 per cy =       | \$25.50            |
| Place and compact fill                                                    | 85        | cy @         | \$0.60 per cy =       | \$51.00            |
| ill reconstruction (122+70)                                               |           | , 0          | , ,                   | **                 |
| Excavate & load existing fill                                             | 240       | cy @         | \$1.94 per cy =       | \$465.60           |
| Haul suitable fill material to staging area                               | 312       | cy @         | \$0.50 per cy =       | \$156.00           |
| Shape staged material                                                     | 312       | cy @         | \$0.40 per cy =       | \$124.80           |
| Load material @ staged material                                           | 247       | cy @         | \$1.80 per cy =       | \$444.60           |
| Haul fill material from staging area                                      | 247       | cy @         | \$0.50 per cy =       | \$123.50           |
| Place and compact fill                                                    | 247       | cy @         | \$0.60 per cy =       | \$148.20           |
| Pump culvert installation                                                 | 1         | day @        | \$165.00 per day =    | \$165.00           |
| onstruct settling pond                                                    | 22        | ea @         | \$27.50 per ea =      | \$605.00           |
| Haul waste material (Waste Area No. 1)                                    | 29        | cy @         | \$8.42 per cy =       | \$244.18           |
| Shape and compact waste material                                          | 29        | cy @         | \$0.40 per cy =       | \$11.60            |
| construct settling pond                                                   | 13        | ea @         | \$27.50 per ea =      | \$357.50           |
| Haul waste material (Waste Area No. 2)                                    | 17        | cy @         | \$5.24 per cy =       | \$89.08            |
| Shape and compact waste material                                          | 17        | cy @         | \$0.40 per cy =       | \$6.80             |
| Y" Junction                                                               | 1.00      | sta @        | \$60.00 per sta =     | \$60.00            |
| mprove turnout                                                            | 11        | ea @         | \$36.30 per ea =      | \$399.30           |
| Grade, ditch, & roll                                                      | 279.40    | sta @        | \$41.00 per sta =     | \$11,455.40        |

TOTAL IMPROVEMENT COSTS = \$36,487.20

|                         |                | SUM     | MARY OF     | CONSTRUC  | CTION COST   |            |          |              |              |
|-------------------------|----------------|---------|-------------|-----------|--------------|------------|----------|--------------|--------------|
|                         | Timber Sale:   | ;       | Sunday Prir | ne        |              | Sale       | Number:  | FG-341-2026  | 6-W01200-01  |
|                         | Road Segment:  | В       | to C Contin | nued      |              | Impr       | ovement: | 279+40       | stations     |
|                         |                |         |             |           |              |            |          | 5.29         | miles        |
| PROJECT NO. 1: ROAD IN  | MPROVEMENT, SI | URFACE  | ROCK REI    | PLACEMEN  | IT, AND MAIN | TENANC     | E        |              |              |
| CULVERTS                | ·              |         |             |           | •            |            |          |              |              |
| Culverts and Bands      |                |         |             |           |              |            |          |              |              |
| 18" Diameter            |                | 570     | If @        | \$22.10   | per If =     |            |          | \$12,597.00  |              |
| 24" Diameter            |                | 370     | If @        |           |              |            |          | \$11,840.00  |              |
| 30" Diameter            |                | 50      | If @        |           | per If =     |            |          | \$2,160.00   |              |
| Markers & Stakes        |                |         | O           | ·         | •            |            |          |              |              |
| Culvert markers         |                | 35      | ea @        | \$12.00   | per ea =     |            |          | \$420.00     |              |
|                         |                |         |             |           |              | TOTA       | AL CULVE | RT COSTS =   | \$27,017.00  |
| ROCK                    |                |         |             |           |              |            |          |              |              |
|                         |                | Rock    | Base        | Haul Cost | Placem       | ent/       |          |              |              |
|                         |                | Size    | Cost \$/cy  | \$/cy     |              |            | Total CY | Rock Cost    |              |
| Subgrade rock           |                |         | ,           |           |              |            |          |              |              |
| Bedding and backfill    |                | 1½" - 0 | \$1.23      | \$12.40   | \$0.6        | <u> </u>   | 744      | \$10,587.92  |              |
| Energy dissipator       |                | Riprap  | \$3.00      | \$12.80   | \$1.8        |            | 48       | \$844.80     |              |
| Energy dissipator       | l              | Ττιριαρ | ψ5.00       | Ψ12.00    |              | Subtotal = | 792      | \$11,432.72  |              |
| Surfacing rock          |                |         |             |           |              |            |          | , ,          |              |
| Surfacing rock          |                | 4" - 0  | \$1.23      | \$12.40   | \$1.4        | )          | 8,661    | \$130,184.14 |              |
| Junction                |                | 4" - 0  | \$1.23      | \$12.40   | \$1.4        | )          | 156      | \$2,344.85   |              |
| Y-Junction              |                | 4" - 0  | \$1.23      | \$12.40   | \$1.4        | )          | 72       | \$1,082.24   |              |
| Turnout                 |                | 4" - 0  | \$1.23      | \$12.40   | \$1.4        | )          | 154      | \$2,314.79   |              |
| Rock Berm               |                | 1½" - 0 | \$1.23      | \$12.40   | \$1.4        |            | 48       | \$721.49     |              |
| Free Draining Fill      |                | Riprap  | \$3.00      | \$12.80   | \$1.8        |            | 361      | \$6,353.60   |              |
|                         |                |         |             |           | 9            | Subtotal = | 9,452    | \$143,001.10 |              |
|                         |                |         |             | Totals    | А            | II Rock =  | 10,244   | 1            |              |
|                         |                |         |             |           | , ,          | 1½" - 0    |          |              |              |
|                         |                |         |             |           |              | 4" - 0     |          |              |              |
|                         |                |         |             |           |              | Riprap     | 409      |              |              |
|                         |                |         |             |           |              | •          |          | 1            |              |
|                         |                |         |             |           |              | I          | OTAL RO  | CK COSTS =   | \$154,433.82 |
| EROSION CONTROL         |                |         |             |           |              |            |          |              |              |
| Grass seed & fertilizer |                | 3.21    | ac @        |           | per ac =     |            |          | \$2,238.98   |              |
| Straw mulch acre        |                | 6.21    | ac @        |           | per ac =     |            |          | \$6,147.90   |              |
| Straw mulch bale        |                | 36      | ea @        | \$11.00   | per ea =     |            |          | \$396.00     |              |

TOTAL EROSION CONTROL COSTS = \$8,782.88

TOTAL PROJECT COST = \$226,720.90

| Timber Sale:                                |         | Sunday Pri | CONSTRUC<br>me |                | Sale Number:        | FG-341-202  | 6-W01200-0        |
|---------------------------------------------|---------|------------|----------------|----------------|---------------------|-------------|-------------------|
| Road Segment:                               |         | D to E     |                | -              | Improvement:        |             | stations<br>miles |
| PROJECT NO. 1: ROAD IMPROVEMENT, S          | URFACE  | ROCK RE    | PLACEMEN       | NT. AND MAINTE | NANCE               |             |                   |
| MPROVEMENT                                  |         |            |                | ,              |                     |             |                   |
| Clearing & grubbing (scatter)               | 0.44    | ac @       | \$1,353.60     | per acre =     |                     | \$595.58    |                   |
| Roadside brushing                           | 0.73    | mi @       |                | per mi =       |                     | \$620.50    |                   |
| Clean culvert inlet & outlet, scatter waste | 1       | ea @       |                | per ea =       |                     | \$27.50     |                   |
| Y" Junction                                 | 1.00    | sta @      |                | per sta =      |                     | \$60.00     |                   |
| mprove turnout                              | 2       | ea @       |                | per ea =       |                     | \$72.60     |                   |
| Construct turnaround                        | 1       | ea @       |                | per ea =       |                     | \$91.00     |                   |
| mprove turnaround                           | 1       | ea @       |                | per ea =       |                     | \$45.50     |                   |
| Grade, ditch, & roll                        | 38.70   | sta @      |                | per sta =      |                     | \$1,393.20  |                   |
| rade, alteri, a ren                         | 00.70   | 0.0.0      | Ψ00.00         | •              |                     |             | <b>#2 005 0</b>   |
| CULVERTS                                    |         |            |                | TOTAL          | <u>L IMPROVEMEN</u> | 11 00313 -  | \$2,905.88        |
| Culverts and Bands                          | -       |            |                |                |                     |             |                   |
| 18" Diameter                                | 60      | If @       | \$22 10        | per If =       |                     | \$1,326.00  |                   |
| Markers & Stakes                            | 00      | @          | Ψ22.10         | por ii         |                     | Ψ1,020.00   |                   |
| Culvert markers                             | 2       | ea @       | \$12.00        | per ea =       |                     | \$24.00     |                   |
| Carvert markers                             | _       | 04 W       | Ψ12.00         | •              | TOTAL CULVER        |             | ¢4 250 00         |
| ROCK                                        |         |            |                | •              | TOTAL CULVER        | 1 00313 -   | \$1,350.00        |
| COOK                                        |         |            |                |                |                     |             |                   |
|                                             | Rock    | Base       | Haul Cost      | Placement      | ,                   |             |                   |
|                                             | Size    | Cost \$/cy |                | Processing Cos | L Lotal (:Y         | Rock Cost   |                   |
|                                             | Size    | Cost \$/cy | ф/Су           | Frocessing Cos | т ф/Су              |             |                   |
| Subgrade rock                               |         |            |                |                |                     |             |                   |
| Bedding and backfill                        | 1½" - 0 | \$1.23     | \$17.71        | \$0.60         | 48                  | \$937.97    |                   |
|                                             |         |            |                | Sub            | total = 48          | \$937.97    |                   |
| Surfacing rock                              |         |            |                |                |                     |             |                   |
| Surfacing rock                              | 4" - 0  | \$1.23     | \$17.71        | \$1.40         | 1,200               | \$24,409.29 |                   |
| Junction                                    | 4" - 0  | \$1.23     | \$17.71        | \$1.40         | 12                  | \$244.09    |                   |
| 100' Y-Junction                             | 4" - 0  | \$1.23     | \$17.71        | \$1.40         | 31                  | \$630.57    |                   |
| Turnout                                     | 4" - 0  | \$1.23     | \$17.71        | \$1.40         | 28                  | \$569.55    |                   |
| Turnaround (Improve)                        | 4" - 0  | \$1.23     | \$17.71        | \$1.40         | 10                  | \$203.41    |                   |
| Turnaround (Construct)                      | 4" - 0  | \$1.23     | \$17.71        | \$1.40         | 20                  | \$406.82    |                   |
|                                             |         |            |                | Sub            | total = 1,301       | \$26,463.74 |                   |
|                                             |         |            |                |                |                     | •           |                   |
|                                             |         |            | Totals         | All R          | ock = 1,349         |             |                   |
|                                             |         |            |                | 1              | 1/2" - 0 48         |             |                   |
|                                             |         |            |                |                | 4" - 0 1,301        |             |                   |
|                                             |         |            |                |                |                     |             |                   |
|                                             |         |            |                |                | TOTAL ROC           | K COSTS =   | \$27,401.7        |
|                                             |         |            |                |                |                     |             |                   |
| ROSION CONTROL                              |         | _          |                |                |                     |             |                   |
| ROSION CONTROL<br>Grass seed & fertilizer   | 0.44    | ac @       | \$697.50       | per ac =       |                     | \$306.90    |                   |
|                                             | 0.44    | ac @       | \$697.50       |                | OSION CONTRO        |             | \$306.90          |

TOTAL PROJECT COST = \$31,964.49

|                                    | SUMN    | MARY OF C  | ONSTRUC    | TION COST    |                     |                   |                   |
|------------------------------------|---------|------------|------------|--------------|---------------------|-------------------|-------------------|
| Timber Sale:                       |         | Sunday Pri | me         |              | Sale Numbe          | er: FG-341-202    | 26-W01200-01      |
| Road Segment:                      |         | F to G     |            | •            | Improvemer          | nt: 10+90         | stations          |
| · ·                                |         |            |            | •            | ·                   | 0.21              | miles             |
| PROJECT NO. 1: ROAD IMPROVEMENT, S | HDEACE  | DUCK DE    | DI ACEMEN  | IT AND MAIN  | TENANCE             |                   |                   |
|                                    | UKLACE  | ROCK KE    | PLACEIVILI | TI, AND MAIN | TENANCE             |                   |                   |
| IMPROVEMENT                        |         | _          |            |              |                     | 4                 |                   |
| Clearing & grubbing (scatter)      | 0.13    |            | \$1,353.60 |              |                     | \$175.97          |                   |
| Construct roadside landing         | 1       | ea @       |            |              |                     | \$181.50          |                   |
| Grade, ditch, & roll               | 10.90   | sta @      | \$36.00    | per sta =    |                     | \$392.40          |                   |
|                                    |         |            |            | TOTA         | AL IMPROVEME        | NT COSTS =        | \$749.87          |
| CULVERTS                           |         |            |            |              | -                   | -                 | ,                 |
| Culverts and Bands                 | -       |            |            |              |                     |                   |                   |
| 18" Diameter                       | 60      | If @       | \$22.10    | per If =     |                     | \$1,326.00        |                   |
| Markers & Stakes                   |         | Ŭ          | •          | •            |                     | , ,               |                   |
| Culvert markers                    | 2       | ea @       | \$12.00    | per ea =     |                     | \$24.00           |                   |
|                                    |         | Ŭ          |            | •            | TOTAL CULVE         |                   | \$1,350.00        |
| ROCK                               |         |            |            |              |                     |                   | ψ.,σσσ.σσ         |
|                                    | -       | ı          |            | I            |                     |                   |                   |
|                                    | Rock    | Base       | Haul Cost  | Placeme      | ent/                | V Daak Caat       |                   |
|                                    | Size    | Cost \$/cy | \$/cy      | Processing C | ost \$/cy   Total C | Y Rock Cost       |                   |
| Subgrade rock                      |         |            |            |              | ļ.                  |                   |                   |
| Bedding and backfill               | 1½" - 0 | \$1.23     | \$18.90    | \$0.60       | 48                  | \$995.09          |                   |
| Dodding and backing                | 172 0   | ψ1.20      | ψ10.00     |              | ubtotal = 48        | \$995.09          |                   |
| Surfacing rock                     | 1       |            |            |              | abtotal 10          | ψοσο.σσ           |                   |
| Surfacing rock                     | 4" - 0  | \$1.23     | \$18.90    | \$1.40       | 338                 | \$7,277.50        |                   |
| Roadside landing (Construct)       | 4" - 0  | \$1.23     | \$18.90    | \$1.40       |                     | \$2,045.45        |                   |
|                                    | •       |            |            | S            | ubtotal = 433       | \$9,322.96        |                   |
|                                    |         |            |            |              | •                   |                   |                   |
|                                    |         |            | Totals     | Al           | Rock = 481          |                   |                   |
|                                    |         |            |            |              | 1½" - 0 48          |                   |                   |
|                                    |         |            |            |              | 4" - 0 433          |                   |                   |
|                                    |         |            |            |              |                     |                   |                   |
|                                    |         |            |            |              | TOTAL RO            | <u>CK COSTS =</u> | \$10,318.05       |
| EROSION CONTROL                    |         |            |            |              |                     |                   |                   |
| Grass seed & fertilizer            | 0.13    | ac @       | \$697.50   | per ac =     |                     | \$90.68           |                   |
| Straw mulch bale                   | 2       | ea @       | \$11.00    | per ea =     |                     | \$22.00           |                   |
|                                    |         | -          |            |              | 2001011 2011==      |                   | <b>0.4.4.6.00</b> |
|                                    |         |            |            | TOTAL EF     | ROSION CONTR        | OL COSTS =        | \$112.68          |
|                                    |         |            |            |              |                     |                   |                   |
|                                    |         |            |            |              | TOTAL PROJ          | ECT COST =        | \$12,530.60       |

|                     | Timber Sale:  |   | Sunday Prime |         | _        | Sale Number: | FG-341-20 | 026-W01200-01 |
|---------------------|---------------|---|--------------|---------|----------|--------------|-----------|---------------|
|                     | Road Segment: |   | V1 to V2     |         | _        | Vacating:    | 21+65     | stations      |
|                     |               |   |              |         |          |              | 0.41      | miles         |
| PROJECT NO. 2: ROAD | BLOCKING      |   |              |         |          |              |           |               |
| VACATE              |               |   |              |         |          |              |           |               |
| Construct waterbar  |               | 6 | ea@          | \$31.00 | per ea = |              | \$186.00  |               |
| Construct tank trap |               | 1 | ea @         | \$60.50 | per ea = |              | \$60.50   | _             |
|                     |               |   |              |         | TOTAL I  | MPROVEMENT   | COSTS =   | \$246.50      |
|                     |               |   |              |         |          | TOTAL PROJE  | CT COST = | \$246.50      |

#### **QUARRY DEVELOPMENT & CRUSHING COST SUMMARY**

Timber Sale: Sunday Prime Sale Number: FG-341-2026-W01200-01 Rock Source Name: Barney (truck measure) 1 1/2" - 0: 912 cv 10,777 cy (truck measure) 4" - 0: 409 cy (truck measure) Riprap: 12,098 cy Total truck yardage: Total in place yardage: Swell: 130% 116% Compaction: Move-in & Other Base Cost Move in excavator with cleaning \$2,252.53 Move in loader \$1,101.86 Move in Dump Trucks \$400.95 Clean up quarry \$250.00 Subtotal = \$4,005.34 Per CY = \$0.33/cy 1 1/2" - 0 Base Cost Load dump truck \$0.90 / cy x 912 cy = \$820.80 Subtotal = \$820.80 Per CY = \$0.90 4" - 0 Base Cost Load dump truck \$0.90 10,777 cy = \$9,699.30 / cy x \$9,699.30 Subtotal = Per CY = \$0.90 Riprap Base Cost Rip rock \$2.30 / cy x 315 cy = \$724.50 Load dump truck \$0.90 / cy x 409 cy = \$368.10 \$1,092.60 Subtotal = Per CY = \$2.67/cy

> 1 1/2" - 0 Base Cost = \$1.23/cy 4" - 0 Base Cost = \$1.23/cy Riprap Base Cost = \$3.00/cy

# CRUISE REPORT Sunday Prime #FG-341-2026-W01200-01

#### 1. LOCATION:

Portions of Sections 13 & 14, T1S, R6W, W.M., Washington County, Oregon.

#### 2. CRUISE DESIGN:

The timber cruise was designed using an estimated coefficient of variation (CV) of 50%, average stand diameter of 21 inches, sampling error (SE) of 9% and a minimum of 100 grade trees.

#### 3. SAMPLING METHOD:

The Timber Sale Area was cruised in April and May of 2025 with variable radius grade plots using a 40 BAF prism. Plots were laid out on a 5 chain x 5 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

#### 4. CRUISE RESULTS:

161 trees were measured and graded producing a standard error of 4.8% on the Douglas-fir Basal Area and 5% on the Douglas-fir Net Board Foot Volume.

#### 5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following the Official Log Scaling and Grading Rules as adopted by the NW Log Rules Advisory Group. 40 foot segments were favored.

- a) **Height Standards:** Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) **Form Factors:** Measured for each grade tree using a form point of 16 feet.

#### 6. DATA PROCESSING:

- a) **Volumes and Statistics:** Cruise estimates and sampling statistics were derived from SuperAce 2008 cruise software.
- b) **Deductions:** The following percent volume deductions are by species to account for the hidden defect and breakage. For conifers two percent was deducted.
- **7. CRUISERS:** The sale was cruised by Mark Savage and Adrian Torres.

| Prepared by: | Mark Savage | 4-22-2025 |
|--------------|-------------|-----------|
|              |             | Date      |
| Reviewed by: | Mark Savage | 4-22-2025 |
| <u> </u>     | -           | Date      |

| TC PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ΓATS                                                                                                                                                        |                                                                                                                     |                                                                                            |                            | JECT<br>JECT                                                                     | STATIS<br>SUN                                                                                                                              | STICS<br>PRIME                                                                     |        |                                                                         | PAGE<br>DATE                                    | 1<br>5/6/2025                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------|
| WP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RGE                                                                                                                                                         | SC TRACT                                                                                                            | Γ                                                                                          | TYPE                       |                                                                                  | AC                                                                                                                                         | RES                                                                                | PLOTS  | TREES                                                                   | CuFt                                            | BdFt                                                                                                 |
| T1S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R6                                                                                                                                                          | 13 00U1                                                                                                             |                                                                                            | 00MC                       |                                                                                  |                                                                                                                                            | 103.00                                                                             | 30     | 164                                                                     | S                                               | W                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                     |                                                                                            |                            | TREES                                                                            |                                                                                                                                            | ESTIMATED<br>TOTAL                                                                 |        | ERCENT<br>SAMPLE                                                        |                                                 |                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             | PLOTS                                                                                                               | TREES                                                                                      | P                          | ER PLOT                                                                          |                                                                                                                                            | TREES                                                                              |        | TREES                                                                   |                                                 |                                                                                                      |
| TOTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AI.                                                                                                                                                         | 30                                                                                                                  | 164                                                                                        |                            | 5.5                                                                              |                                                                                                                                            |                                                                                    |        |                                                                         |                                                 |                                                                                                      |
| CRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                             | 30                                                                                                                  | 164                                                                                        |                            | 5.5                                                                              |                                                                                                                                            | 7,450                                                                              |        | 2.2                                                                     |                                                 |                                                                                                      |
| DBH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COUNT                                                                                                                                                       |                                                                                                                     |                                                                                            |                            |                                                                                  |                                                                                                                                            |                                                                                    |        |                                                                         |                                                 |                                                                                                      |
| REFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OREST                                                                                                                                                       |                                                                                                                     |                                                                                            |                            |                                                                                  |                                                                                                                                            |                                                                                    |        |                                                                         |                                                 |                                                                                                      |
| COU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NT                                                                                                                                                          |                                                                                                                     |                                                                                            |                            |                                                                                  |                                                                                                                                            |                                                                                    |        |                                                                         |                                                 |                                                                                                      |
| BLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NKS                                                                                                                                                         |                                                                                                                     |                                                                                            |                            |                                                                                  |                                                                                                                                            |                                                                                    |        |                                                                         |                                                 |                                                                                                      |
| 100 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                           |                                                                                                                     |                                                                                            |                            |                                                                                  |                                                                                                                                            |                                                                                    |        |                                                                         |                                                 |                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                     |                                                                                            | STAN                       | D SUMM                                                                           | ARY                                                                                                                                        |                                                                                    |        |                                                                         |                                                 |                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             | SAMPLE                                                                                                              | TREES                                                                                      | AVG                        | BOLE                                                                             | REL                                                                                                                                        | BASAL                                                                              | GROSS  | NET                                                                     | GROSS                                           | NET                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             | TREES                                                                                                               | /ACRE                                                                                      | DBH                        | LEN                                                                              | DEN                                                                                                                                        | AREA                                                                               | BF/AC  | BF/AC                                                                   | CF/AC                                           | CF/AC                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G FIR                                                                                                                                                       | 161                                                                                                                 | 71.2                                                                                       | 23.5                       | 136                                                                              | 44.3                                                                                                                                       | 214.7                                                                              | 47,104 | 47,003                                                                  | 10,253                                          | 10,253                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G FIR-S                                                                                                                                                     | 3                                                                                                                   | 1.2                                                                                        | 25.0                       | 140                                                                              | 0.8                                                                                                                                        | 4.0                                                                                |        |                                                                         |                                                 |                                                                                                      |
| TOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AL                                                                                                                                                          | 164                                                                                                                 | 72.3                                                                                       | 23.5                       | 136                                                                              | 45.1                                                                                                                                       | 218.7                                                                              | 47,104 | 47,003                                                                  | 10,253                                          | 10,253                                                                                               |
| CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 68.1                                                                                                                                                        | COEFF                                                                                                               |                                                                                            |                            |                                                                                  | E TREES -                                                                                                                                  |                                                                                    | #      | OF TREES R                                                              |                                                 | INF. POP.                                                                                            |
| SD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                                                                                                                                                         | VAR.%                                                                                                               | S.E.%                                                                                      | LO                         | W                                                                                | AVG                                                                                                                                        |                                                                                    |        |                                                                         | 10                                              | 1:                                                                                                   |
| DOLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CET                                                                                                                                                         | 510                                                                                                                 | 4.0                                                                                        |                            |                                                                                  |                                                                                                                                            | HIGH                                                                               |        | 5                                                                       | 10                                              |                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G FIR                                                                                                                                                       | 54.2                                                                                                                | 4.3                                                                                        |                            | 813                                                                              | 850                                                                                                                                        | 886                                                                                |        |                                                                         | 10                                              |                                                                                                      |
| DOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G FIR-S                                                                                                                                                     |                                                                                                                     |                                                                                            |                            | 813                                                                              | 850                                                                                                                                        | 886                                                                                |        |                                                                         |                                                 |                                                                                                      |
| TOT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G FIR-S                                                                                                                                                     | 55.0                                                                                                                | 4.3                                                                                        |                            | 813<br>808                                                                       | 850<br>844                                                                                                                                 | 886<br>881                                                                         |        | 121                                                                     | 30                                              | 1.5                                                                                                  |
| TOT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G FIR-S<br>AL<br>68.1                                                                                                                                       | 55.0<br>COEFF                                                                                                       | 4.3                                                                                        |                            | 813<br>808<br>SAMPLI                                                             | 850<br>844<br>E TREES -                                                                                                                    | 886<br>881<br><b>CF</b>                                                            | #      | 121<br>OF TREES R                                                       | <i>30</i> EQ.                                   | IS INF. POP.                                                                                         |
| DOU<br>TOT:<br>CL<br>SD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68.1<br>1.0                                                                                                                                                 | 55.0<br>COEFF<br>VAR.%                                                                                              | 4.3<br>5 S.E.%                                                                             | LO                         | 813<br>808<br><b>SAMPLI</b><br>W                                                 | 850<br>844<br>E <b>TREES -</b><br>AVG                                                                                                      | 886<br>881<br><b>CF</b><br>HIGH                                                    | #      | 121                                                                     | 30                                              | 1. INF. POP.                                                                                         |
| DOU<br>TOT<br>CL<br>SD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68.1<br>1.0<br>G FIR                                                                                                                                        | 55.0<br>COEFF                                                                                                       | 4.3                                                                                        | LO                         | 813<br>808<br>SAMPLI                                                             | 850<br>844<br>E TREES -                                                                                                                    | 886<br>881<br><b>CF</b>                                                            | #      | 121<br>OF TREES R                                                       | <i>30</i> EQ.                                   | 1. INF. POP.                                                                                         |
| DOU<br>TOT<br>CL<br>SD:<br>DOU<br>DOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G FIR-S AL 68.1 1.0 G FIR G FIR-S                                                                                                                           | 55.0<br>COEFF<br>VAR.%<br>47.4                                                                                      | 4.3<br>S.E.%<br>3.7                                                                        | LO                         | 813<br>808<br><b>SAMPLI</b><br>W<br>175                                          | 850<br>844<br>E <b>TREES -</b><br>AVG<br>181                                                                                               | 886<br>881<br><b>CF</b><br>HIGH<br>188                                             | #      | 121<br>OF TREES R<br>5                                                  | 30<br>EQ.<br>10                                 | 13<br>INF. POP.<br>13                                                                                |
| CL<br>SD:<br>DOU<br>DOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G FIR-S AL 68.1 1.0 G FIR G FIR-S AL                                                                                                                        | 55.0<br>COEFF<br>VAR.%<br>47.4<br>48.2                                                                              | 4.3<br>5 S.E.%<br>3.7<br>3.8                                                               | LO                         | 813<br>808<br>SAMPLI<br>W<br>175<br>173                                          | 850<br>844<br>E TREES -<br>AVG<br>181<br>180                                                                                               | 886<br>881<br><b>CF</b><br>HIGH                                                    |        | 121<br>OF TREES R<br>5                                                  | 30<br>EQ. 10                                    | 13<br>INF. POP.<br>13                                                                                |
| CL SD: DOU TOT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G FIR-S AL  68.1 1.0 G FIR G FIR-S AL  68.1                                                                                                                 | 55.0<br>COEFF<br>VAR.%<br>47.4<br>48.2<br>COEFF                                                                     | 4.3<br>S.E.%<br>3.7<br>3.8                                                                 |                            | 813<br>808<br>SAMPLI<br>W<br>175<br>173<br>TREES/A                               | 850<br>844<br>E TREES -<br>AVG<br>181<br>180                                                                                               | 886<br>881<br>CF<br>HIGH<br>188                                                    |        | 121 OF TREES R 5 93 OF PLOTS R                                          | 30<br>EQ. 10                                    | INF. POP.  1:  10  INF. POP.                                                                         |
| DOU TOT: CL SD: DOU TOT: CL SD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G FIR-S AL  68.1 1.0 G FIR G FIR-S AL  68.1 1.0                                                                                                             | 55.0<br>COEFF<br>VAR.%<br>47.4<br>48.2<br>COEFF<br>VAR.%                                                            | 4.3 S.E.% 3.7 3.8 S.E.% S.E.%                                                              | LO                         | 813<br>808<br>SAMPLI<br>W<br>175<br>173<br>TREES/A                               | 850<br>844<br>E TREES -<br>AVG<br>181<br>180<br>ACRE<br>AVG                                                                                | 886 881  CF HIGH 188 187                                                           |        | 121<br>OF TREES R<br>5                                                  | 30<br>EQ. 10                                    | 13<br>INF. POP.<br>15                                                                                |
| CL SD: DOU TOT: CL SD: DOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G FIR-S AL  68.1 1.0 G FIR G FIR-S AL  68.1 1.0 G FIR                                                                                                       | 55.0<br>COEFF<br>VAR.%<br>47.4<br>48.2<br>COEFF<br>VAR.%<br>45.1                                                    | 4.3  S.E.%  3.7  3.8  S.E.%  8.4                                                           |                            | 813<br>808<br>SAMPLI<br>W<br>175<br>173<br>TREES/A                               | 850<br>844<br>E TREES -<br>AVG<br>181<br>180<br>ACRE<br>AVG<br>71                                                                          | 886 881  CF HIGH 188  187  HIGH 77                                                 |        | 121 OF TREES R 5 93 OF PLOTS R                                          | 30<br>EQ. 10                                    | INF. POP.  1:  10  INF. POP.                                                                         |
| CL SD: CL SD: DOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G FIR-S AL  68.1 1.0 G FIR-S AL  68.1 1.0 G FIR G FIR-S G FIR-S G FIR                                                                                       | 55.0<br>COEFF<br>VAR.%<br>47.4<br>48.2<br>COEFF<br>VAR.%                                                            | 4.3 S.E.% 3.7 3.8 S.E.% S.E.%                                                              |                            | 813<br>808<br>SAMPLI<br>W<br>175<br>173<br>TREES/A                               | 850<br>844<br>E TREES -<br>AVG<br>181<br>180<br>ACRE<br>AVG                                                                                | 886 881  CF HIGH 188 187                                                           |        | 121 OF TREES R 5 93 OF PLOTS R                                          | 30<br>EQ. 10                                    | 13<br>INF. POP.<br>13<br>10<br>INF. POP.                                                             |
| CL SD: CL SD: DOU TOT. SD: DOU TOT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G FIR-S AL  68.1 1.0 G FIR G FIR-S AL  68.1 1.0 G FIR G FIR-S AL                                                                                            | 55.0<br>COEFF<br>VAR.%<br>47.4<br>48.2<br>COEFF<br>VAR.%<br>45.1<br>547.7<br>43.2                                   | 4.3  S.E.%  3.7  3.8  S.E.%  8.4  101.7  8.0                                               |                            | 813<br>808<br>SAMPLI<br>W<br>175<br>173<br>TREES/A<br>W<br>65                    | 850<br>844<br>E TREES -<br>AVG<br>181<br>180<br>ACRE<br>AVG<br>71<br>1<br>72                                                               | 886 881  CF HIGH 188  187  HIGH 77 2 78                                            | #      | 121 OF TREES R 5 93 OF PLOTS R 5                                        | 30<br>EQ. 10<br>23<br>EQ. 10                    | 13<br>INF. POP.<br>13<br>10<br>INF. POP.                                                             |
| CL SD: DOU TOT CL SD: CL CL CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G FIR-S AL  68.1 1.0 G FIR-S AL  68.1 1.0 G FIR G FIR-S AL  68.1 1.0 G FIR G FIR-S AL                                                                       | 55.0  COEFF VAR.% 47.4  48.2  COEFF VAR.% 45.1 547.7 43.2  COEFF                                                    | 4.3  S.E.%  3.7  3.8  S.E.%  8.4  101.7  8.0                                               | LO                         | 813 808 SAMPLI W 175 173 TREES/A W 65 67 BASAL                                   | 850<br>844<br>E TREES -<br>AVG<br>181<br>180<br>ACRE<br>AVG<br>71<br>1<br>72<br>AREA/AC                                                    | 886 881  CF HIGH 188  187  HIGH 77 2 78                                            | #      | 121 OF TREES R 5 93 OF PLOTS R 5                                        | 30 EQ. 10 23 EQ. 10 19 EQ.                      | 13 INF. POP. 13 INF. POP. 15 INF. POP.                                                               |
| DOU TOT:  CL SD: DOU TOT: CL SD: DOU TOT: CL SD: CL SD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G FIR-S AL  68.1 1.0 G FIR-S AL  68.1 1.0 G FIR G FIR-S AL  68.1 1.0 G FIR G FIR-S AL                                                                       | 55.0  COEFF VAR.% 47.4  48.2  COEFF VAR.% 45.1 547.7 43.2  COEFF VAR.%                                              | 4.3  S.E.%  3.7  3.8  S.E.%  8.4  101.7  8.0  S.E.%                                        |                            | 813 808 SAMPLI W 175 173 TREES/A W 65 67 BASAL A                                 | 850<br>844<br>E TREES -<br>AVG<br>181<br>180<br>ACRE<br>AVG<br>71<br>1<br>72<br>AREA/AC                                                    | 886 881  CF HIGH 188  187  HIGH 77 2 78  RE HIGH                                   | #      | 121 OF TREES R 5 93 OF PLOTS R 5                                        | 30<br>EQ. 10<br>23<br>EQ. 10                    | 13 INF. POP. 13 INF. POP. 15 INF. POP.                                                               |
| CL SD: DOU TOT CL SD: DOU TOT CL SD: DOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G FIR-S AL  68.1 1.0 G FIR G FIR-S AL  68.1 1.0 G FIR G FIR-S AL  68.1 1.0 G FIR                                                                            | 55.0  COEFF VAR.% 47.4  48.2  COEFF VAR.% 45.1 547.7 43.2  COEFF VAR.% 25.7                                         | 4.3  S.E.%  3.7  3.8  S.E.%  8.4  101.7  8.0  S.E.%  4.8                                   | LO                         | 813 808 SAMPLI W 175 173 TREES/A W 65 67 BASAL                                   | 850<br>844<br>E TREES -<br>AVG<br>181<br>180<br>ACRE<br>AVG<br>71<br>1<br>72<br>AREA/AC<br>AVG<br>215                                      | 886 881  CF HIGH 188  187  HIGH 77 2 78  RE HIGH 225                               | #      | 121 OF TREES R 5 93 OF PLOTS R 5                                        | 30 EQ. 10 23 EQ. 10 19 EQ.                      | 13 INF. POP. 13 INF. POP. 15 INF. POP.                                                               |
| CL SD: DOU TOT CL SD: DOU TOT CL SD: DOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G FIR-S AL  68.1 1.0 G FIR G FIR-S AL  68.1 1.0 G FIR G FIR-S AL  68.1 1.0 G FIR G FIR-S AL                                                                 | 55.0  COEFF VAR.% 47.4  48.2  COEFF VAR.% 45.1 547.7 43.2  COEFF VAR.%                                              | 4.3  S.E.%  3.7  3.8  S.E.%  8.4  101.7  8.0  S.E.%  4.8  101.7                            | LO                         | 813 808 SAMPLI W 175 173 TREES/A W 65 67 BASAL A                                 | 850<br>844<br>E TREES -<br>AVG<br>181<br>180<br>ACRE<br>AVG<br>71<br>1<br>72<br>AREA/AC                                                    | 886 881  CF HIGH 188  187  HIGH 77 2 78  RE HIGH 225 8                             | #      | 121 OF TREES R 5 93 OF PLOTS R 5 77 OF PLOTS R 5                        | 30 EQ. 10 23 EQ. 10 19 EQ. 10                   | INF. POP.  INF. POP.  INF. POP.  INF. POP.                                                           |
| DOU TOT.  CL SD: DOU TOT.  CL SD: DOU TOT.  CL SD: DOU TOT.  CL SD: DOU TOT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68.1<br>1.0<br>G FIR-S<br>AL<br>68.1<br>1.0<br>G FIR-S<br>AL<br>68.1<br>1.0<br>G FIR-S<br>AL<br>68.1<br>1.0<br>G FIR-S<br>AL                                | 55.0  COEFF VAR.% 47.4  48.2  COEFF VAR.% 45.1  547.7  43.2  COEFF VAR.% 25.7  547.7  23.9                          | 4.3  S.E.%  3.7  3.8  S.E.%  8.4  101.7  8.0  S.E.%  4.8  101.7  4.4                       | LO                         | 813 808 SAMPLI W 175 173 TREES/A W 65 67 BASAL A W 204                           | 850<br>844<br>E TREES -<br>AVG<br>181<br>180<br>ACRE<br>AVG<br>71<br>1<br>72<br>AREA/ACI<br>AVG<br>215<br>4<br>219                         | 886 881  CF HIGH 188  187  HIGH 77 2 78  RE HIGH 225                               | #      | 121 OF TREES R 5  93 OF PLOTS R 5  77 OF PLOTS R 5                      | 30 EQ. 10 23 EQ. 10 19 EQ. 10                   | 1. INF. POP. 1: 10 INF. POP. 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:                                  |
| CL SD: DOU TOT CL SD: DOU TOT CL SD: CL SC CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G FIR-S AL  68.1 1.0 G FIR G FIR-S AL                                      | 55.0  COEFF VAR.% 47.4  48.2  COEFF VAR.% 45.1  547.7  43.2  COEFF VAR.% 25.7  547.7  23.9  COEFF                   | 4.3  S.E.%  3.7  3.8  S.E.%  8.4  101.7  8.0  4.8  101.7  4.4                              | LO                         | 813 808 SAMPLI W 175 173 TREES/A W 65 67 BASAL A W 204 209 NET BF/               | 850 844 E TREES - AVG 181  180 ACRE AVG 71 1 72 AREA/AC AVG 215 4 219                                                                      | 886 881  CF HIGH 188  187  HIGH 77 2 78  RE HIGH 225 8 228                         | #      | 121 OF TREES R 5 93 OF PLOTS R 5 OF PLOTS R 5                           | 30 EQ. 10 23 EQ. 10 19 EQ. 10 6 EQ.             | 13. INF. POP. 13. INF. POP. 13. INF. POP. 13. INF. POP.                                              |
| CL SD: DOU TOT CL SD: C | G FIR-S AL  68.1 1.0 G FIR G FIR-S AL                                      | 55.0  COEFF VAR.% 47.4  48.2  COEFF VAR.% 45.1  547.7  43.2  COEFF VAR.% 25.7  547.7  23.9                          | 4.3  S.E.%  3.7  3.8  S.E.%  8.4  101.7  8.0  S.E.%  4.8  101.7  4.4                       | LO                         | 813 808 SAMPLI W 175 173 TREES/A W 65 67 BASAL A W 204 209 NET BF/               | 850<br>844<br>E TREES -<br>AVG<br>181<br>180<br>ACRE<br>AVG<br>71<br>1<br>72<br>AREA/ACI<br>AVG<br>215<br>4<br>219                         | 886 881  CF HIGH 188  187  HIGH 77 2 78  RE HIGH 225 8                             | #      | 121 OF TREES R 5  93 OF PLOTS R 5  77 OF PLOTS R 5                      | 30 EQ. 10 23 EQ. 10 19 EQ. 10                   | 13. INF. POP. 13. INF. POP. 13. INF. POP. 13. INF. POP.                                              |
| CL SD: DOU TOT CL SD: DOU TOT CL SD: DOU TOT TOT CL SD: DOU TOT CL SD: DOU TOT CL SD: DOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G FIR-S AL  68.1 1.0 G FIR G FIR-S AL                                      | 55.0  COEFF VAR.% 47.4  48.2  COEFF VAR.% 45.1  547.7  43.2  COEFF VAR.% 25.7  547.7  23.9  COEFF VAR.%             | 4.3  S.E.%  3.7  3.8  S.E.%  8.4  101.7  8.0  S.E.%  4.8  101.7  4.4                       | LO                         | 813 808 SAMPLH W 175 173 TREES/A W 65 67 BASAL A W 204 209 NET BF/W              | 850 844 E TREES - AVG 181  180 ACRE AVG 71 1 72 AREA/AC AVG 215 4 219 ACRE AVG                                                             | 886 881  CF HIGH 188  187  HIGH 77 2 78  RE HIGH 225 8 228  HIGH                   | #      | 121 OF TREES R 5 93 OF PLOTS R 5 OF PLOTS R 5                           | 30 EQ. 10 23 EQ. 10 19 EQ. 10 6 EQ.             | 13. INF. POP. 13. INF. POP. 13. INF. POP. 13. INF. POP.                                              |
| CL SD: DOU TOT CL SD: DOU TOT CL SD: DOU TOT TOT CL SD: DOU TOT CL SD: DOU TOT CL SD: DOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G FIR-S AL  68.1 1.0 G FIR G FIR-S AL           | 55.0  COEFF VAR.% 47.4  48.2  COEFF VAR.% 45.1  547.7  43.2  COEFF VAR.% 25.7  547.7  23.9  COEFF VAR.%             | 4.3  S.E.%  3.7  3.8  S.E.%  8.4  101.7  8.0  S.E.%  4.8  101.7  4.4                       | LO<br>LO<br>LO             | 813 808 SAMPLE W 175 173 TREES/E W 65 67 BASAL E W 204 209 NET BF/W 4,637        | 850 844 E TREES - AVG 181  180 ACRE AVG 71 1 72 AREA/AC AVG 215 4 219 ACRE AVG                                                             | 886 881  CF HIGH 188  187  HIGH 77 2 78  RE HIGH 225 8 228  HIGH                   | #      | 121 OF TREES R 5 93 OF PLOTS R 5 OF PLOTS R 5                           | 30 EQ. 10 23 EQ. 10 19 EQ. 10 6 EQ.             | 15. INF. POP. 15. 15. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17                                         |
| CL SD: DOU TOT CL SD: DOU DOU TOT CL SD: DOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G FIR-S AL  68.1 1.0 G FIR G FIR-S AL           | 55.0  COEFF VAR.%  47.4  48.2  COEFF VAR.%  45.1  547.7  43.2  COEFF VAR.%  25.7  547.7  23.9  COEFF VAR.%  27.1    | 4.3  S.E.%  3.7  3.8  S.E.%  8.4  101.7  8.0  S.E.%  4.8  101.7  4.4  5.0  5.0  5.0        | LO<br>LO<br>LO             | 813 808 SAMPLI W 175 173 TREES/A W 65 67 BASAL A W 204 209 NET BF/W 4,637        | 850 844 E TREES - AVG 181  180 ACRE AVG 71 1 72 AREA/AC AVG 215 4 219 ACRE AVG 47,003                                                      | 886 881  CF HIGH 188  187  HIGH 77 2 78  RE HIGH 225 8 228  HIGH 49,369 49,369     | #      | 121  OF TREES R 5  93  OF PLOTS R 5  77  OF PLOTS R 5  24  OF PLOTS R 5 | 30 EQ. 10 23 EQ. 10 19 EQ. 10 6 EQ. 10          | 13 INF. POP. 15 INF. POP. 15 INF. POP. 15                                                            |
| CL SD: DOU TOT. CL SD: CL SD: CCL SC.  | G FIR-S AL  68.1 1.0 G FIR G FIR-S AL                                      | 55.0  COEFF VAR.% 47.4  48.2  COEFF VAR.% 45.1  547.7  43.2  COEFF VAR.% 25.7  547.7  23.9  COEFF VAR.% 27.1        | 4.3  S.E.%  3.7  3.8  S.E.%  8.4  101.7  8.0  S.E.%  4.8  101.7  4.4  5.5  S.E.%  5.0  5.0 | LO<br>LO<br>LO             | 813 808 SAMPLH W 175 173 TREES/A W 65 67 BASAL A W 204 209 NET BF/W 4,637 NET CU | 850<br>844<br>E TREES -<br>AVG<br>181<br>180<br>ACRE<br>AVG<br>71<br>1<br>72<br>AREA/AC<br>AVG<br>215<br>4<br>219<br>ACRE<br>AVG<br>47,003 | 886 881  CF HIGH 188  187  HIGH 77 2 78  RE HIGH 225 8 228  HIGH 49,369 49,369     | #      | 121 OF TREES R 5 93 OF PLOTS R 5 77 OF PLOTS R 5 24 OF PLOTS R 5        | 30 EQ. 10 23 EQ. 10 19 EQ. 10 6 EQ. 10          | 13. INF. POP. 15. 10. INF. POP. 15. 15. INF. POP. 15. 16. 17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18 |
| CL SD: DOU TOT CL SD: DOU TOT CL SD: DOU TOT TOT CL SD: DOU TOT TOT CL SD: DOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G FIR-S AL  68.1  1.0  G FIR G FIR-S AL | 55.0  COEFF VAR.% 47.4  48.2  COEFF VAR.% 45.1  547.7  43.2  COEFF VAR.% 25.7  547.7  23.9  COEFF VAR.% 27.1  COEFF | 4.3  S.E.%  3.7  3.8  S.E.%  8.4  101.7  8.0  S.E.%  4.8  101.7  4.4  S.E.%  5.0  5.0  5.0 | LO<br>LO<br>4-<br>44<br>LO | 813 808 SAMPLH W 175 173 TREES/A W 65 67 BASAL A W 204 209 NET BF/W 4,637 NET CU | 850 844 E TREES - AVG 181  180 ACRE AVG 71 1 72 AREA/AC 215 4 219 ACRE AVG 47,003 47,003 FT FT/AC                                          | 886 881  CF HIGH 188  187  HIGH 77 2 78  RE HIGH 225 8 228  HIGH 49,369 49,369  RE | #      | 121  OF TREES R 5  93  OF PLOTS R 5  77  OF PLOTS R 5  24  OF PLOTS R 5 | 30 EQ. 10 23 EQ. 10 19 EQ. 10 6 EQ. 10 8 EQ. 10 | INF. POP.  INF. POP.  INF. POP.  INF. POP.  INF. POP.                                                |

| TC   | C PSPCSTGR Species, Sort Grade - Board Foot Volumes (Project) |      |        |            |        |                   |       |               |          |        |        |       |       |       |    |                      |        |                       |       |
|------|---------------------------------------------------------------|------|--------|------------|--------|-------------------|-------|---------------|----------|--------|--------|-------|-------|-------|----|----------------------|--------|-----------------------|-------|
| ТТ   | TT1S RR6W S13 Ty00MC 103.00                                   |      |        |            |        | Project:<br>Acres | SUN   | NPRI<br>103.0 |          |        |        |       |       |       |    | Page<br>Date<br>Time |        | 1<br>6/2025<br>0:53:1 |       |
|      |                                                               | %    |        |            |        |                   | Perce | ent of N      | let Boar | d Foot | Volume |       |       |       |    | Avera                | age Lo | g                     | Logs  |
|      | S So Gr                                                       | Net  | Bd. Ft | . per Acre |        | Total             | I     | Log Sca       | ıle Dia. |        |        | Log I | ength |       | Ln | Dia                  | Bd     | CF/                   | Per   |
| Spp  | T rt ad                                                       | BdFt | Def%   | Gross      | Net    | Net MBF           | 4-5   | 6-11          | 12-16    | 17+    | 12-20  | 21-30 | 31-35 | 36-99 | Ft | In                   | Ft     | Lf                    | /Acre |
| DF   | CU                                                            |      |        |            |        |                   |       |               |          |        |        |       |       |       | 6  | 20                   |        | 0.00                  | .9    |
| DF   | 2M                                                            | 79   | .3     | 37,284     | 37,191 | 3,831             |       |               | 48       | 52     |        |       |       | 100   | 40 | 16                   | 423    | 2.19                  | 88.0  |
| DF   | 3M                                                            | 19   | .1     | 8,934      | 8,927  | 919               |       | 100           | 0        |        |        | 1     | 9     | 90    | 38 | 8                    | 107    | 0.72                  | 83.4  |
| DF   | 4M                                                            | 2    |        | 885        | 885    | 91                |       | 100           |          |        | 29     | 71    |       |       | 22 | 6                    | 27     | 0.36                  | 32.6  |
| DF   | Totals                                                        | 100  | .2     | 47,104     | 47,003 | 4,841             |       | 21            | 38       | 42     | 1      | 2     | 2     | 96    | 36 | 11                   | 229    | 1.38                  | 205.0 |
| Tota | ıls                                                           |      | 0.2    | 47,104     | 47,003 | 4,841             |       | 21            | 38       | 42     | 1      | 2     | 2     | 96    | 36 | 11                   | 229    | 1.38                  | 205.0 |

| TC  | PSTNDSUM          |        | Stand Tal | ole Summary | ] | Page        | 1          |
|-----|-------------------|--------|-----------|-------------|---|-------------|------------|
|     |                   |        |           |             | 1 | Date:       | 5/6/2025   |
| TT1 | S RR6W S13 Ty00MC | 103.00 | Project   | SUNPRIME    | 7 | Гime:       | 10:53:12AM |
|     |                   |        | Acres     | 103.00      | ( | Grown Year: |            |

| S<br>Spc T | DBH    | Sample<br>Trees | FF<br>16' | Tot<br>Av<br>Ht | Trees/<br>Acre | BA/<br>Acre | Logs<br>Acre | Average<br>Net<br>Cu.Ft. | e Log<br>Net<br>Bd.Ft. | Tons/<br>Acre | Net<br>Cu.Ft.<br>Acre | Net<br>Bd.Ft.<br>Acre | Tons   | Totals<br>Cunits | MBF   |
|------------|--------|-----------------|-----------|-----------------|----------------|-------------|--------------|--------------------------|------------------------|---------------|-----------------------|-----------------------|--------|------------------|-------|
| DF         | 12     | 2               | 86        | 95              | 3.395          | 2.67        | 6.79         | 11.0                     | 45.0                   | 2.13          | 75                    | 306                   | 219    | 77               | 31    |
| DF         | 14     | 1               | 86        | 111             | 1.247          | 1.33        | 2.49         | 18.7                     | 85.0                   | 1.33          | 47                    | 212                   | 137    | 48               | 22    |
| DF         | 15     | 2               | 87        | 121             | 2.173          | 2.67        | 4.35         | 23.4                     | 105.0                  | 2.89          | 102                   | 456                   | 298    | 105              | 47    |
| DF         | 16     | 4               | 86        | 121             | 3.820          | 5.33        | 9.55         | 21.8                     | 96.0                   | 5.92          | 208                   | 917                   | 610    | 214              | 94    |
| DF         | 17     | 1               | 86        | 114             | .846           | 1.33        | 1.69         | 29.1                     | 120.0                  | 1.40          | 49                    | 203                   | 145    | 51               | 21    |
| DF         | 18     | 4               | 87        | 136             | 3.018          | 5.33        | 9.05         | 26.3                     | 108.3                  | 6.79          | 238                   | 981                   | 700    | 246              | 101   |
| DF         | 19     | 8               | 87        | 133             | 5.417          | 10.67       | 15.58        | 30.2                     | 127.4                  | 13.40         | 470                   | 1,984                 | 1,380  | 484              | 204   |
| DF         | 20     | 5               | 86        | 138             | 3.056          | 6.67        | 9.17         | 34.0                     | 147.3                  | 8.88          | 311                   | 1,351                 | 914    | 321              | 139   |
| DF         | 21     | 10              | 86        | 138             | 5.543          | 13.33       | 16.63        | 37.3                     | 165.7                  | 17.66         | 620                   | 2,755                 | 1,819  | 638              | 284   |
| DF         | 22     | 14              | 86        | 139             | 7.071          | 18.67       | 21.21        | 42.0                     | 190.2                  | 25.37         | 890                   | 4,036                 | 2,613  | 917              | 416   |
| DF         | 23     | 11              | 86        | 140             | 5.083          | 14.67       | 15.25        | 46.4                     | 206.7                  | 20.15         | 707                   | 3,152                 | 2,075  | 728              | 325   |
| DF         | 24     | 17              | 86        | 139             | 7.215          | 22.67       | 21.22        | 50.4                     | 219.0                  | 30.48         | 1,070                 | 4,647                 | 3,140  | 1,102            | 479   |
| DF         | 25     | 3               | 86        | 148             | 1.173          | 4.00        | 3.52         | 56.4                     | 247.8                  | 5.66          | 199                   | 872                   | 583    | 205              | 90    |
| DF         | 26     | 13              | 85        | 144             | 4.701          | 17.33       | 14.10        | 59.8                     | 270.3                  | 24.05         | 844                   | 3,812                 | 2,477  | 869              | 393   |
| DF         | 27     | 7               | 85        | 142             | 2.347          | 9.33        | 7.38         | 61.5                     | 278.2                  | 12.94         | 454                   | 2,052                 | 1,333  | 468              | 211   |
| DF         | 28     | 8               | 85        | 143             | 2.495          | 10.67       | 7.80         | 67.2                     | 308.4                  | 14.92         | 524                   | 2,404                 | 1,537  | 539              | 248   |
| DF         | 29     | 10              | 85        | 150             | 2.907          | 13.33       | 8.72         | 77.6                     | 374.0                  | 19.28         | 677                   | 3,261                 | 1,986  | 697              | 336   |
| DF         | 30     | 11              | 85        | 144             | 2.988          | 14.67       | 8.96         | 80.2                     | 380.3                  | 20.49         | 719                   | 3,409                 | 2,110  | 741              | 351   |
| DF         | 31     | 8               | 85        | 147             | 2.035          | 10.67       | 6.36         | 84.4                     | 408.0                  | 15.30         | 537                   | 2,595                 | 1,576  | 553              | 267   |
| DF         | 32     | 7               | 86        | 153             | 1.671          | 9.33        | 5.01         | 95.2                     | 459.5                  | 13.61         | 478                   | 2,304                 | 1,402  | 492              | 237   |
| DF         | 33     | 4               | 85        | 143             | .898           | 5.33        | 2.69         | 97.6                     | 472.5                  | 7.50          | 263                   | 1,273                 | 772    | 271              | 131   |
| DF         | 34     | 1               | 86        | 143             | .211           | 1.33        | .63          | 102.6                    | 493.3                  | 1.85          | 65                    | 313                   | 191    | 67               | 32    |
| DF         | 35     | 4               | 85        | 159             | .798           | 5.33        | 2.39         | 118.8                    | 622.5                  | 8.11          | 284                   | 1,491                 | 835    | 293              | 154   |
| DF         | 36     | 2               | 85        | 159             | .377           | 2.67        | 1.32         | 107.9                    | 555.7                  | 4.06          | 143                   | 734                   | 418    | 147              | 76    |
| DF         | 37     | 1               | 85        | 150             | .179           | 1.33        | .54          | 128.1                    | 656.7                  | 1.96          | 69                    | 352                   | 202    | 71               | 36    |
| DF         | 38     | 2               | 84        | 158             | .339           | 2.67        | 1.19         | 119.2                    | 628.6                  | 4.02          | 141                   | 745                   | 414    | 145              | 77    |
| DF         | 40     | 1               | 85        | 163             | .153           | 1.33        | .46          | 156.5                    | 846.7                  | 2.04          | 72                    | 388                   | 211    | 74               | 40    |
| DF         | Totals | 161             | 86        | 136             | 71.158         | 214.67      | 204.06       | 50.2                     | 230.3                  | 292.21        | 10,253                | 47,003                | 30,097 | 10,560           | 4,841 |
| DF S       | 25     | 3               | 86        | 140             | 1.173          | 4.00        |              |                          |                        |               |                       |                       |        |                  |       |
| DF S       | Totals | 3               | 86        | 140             | 1.173          | 4.00        |              |                          |                        |               |                       |                       |        |                  |       |
| Totals     |        | 164             | 86        | 136             | 72.331         | 218.67      | 204.06       | 50.2                     | 230.3                  | 292.21        | 10,253                | 47,003                | 30,097 | 10,560           | 4,841 |

| TC PLOGSTVB Log Stock Table - MBF |   |                         |      |       |                        |       |                                          |                 |     |     |     |       |                                      |       |       |       |       |       |     |
|-----------------------------------|---|-------------------------|------|-------|------------------------|-------|------------------------------------------|-----------------|-----|-----|-----|-------|--------------------------------------|-------|-------|-------|-------|-------|-----|
| TT1S RR6W S13 Ty00MC 103.00       |   |                         |      |       | Project: SUNI<br>Acres |       |                                          | PRIME<br>103.00 |     |     |     |       | Page 1 Date 5/6/2025 Time 10:53:10AM |       |       |       |       |       |     |
|                                   | s | So Gr Log Gross Def Net |      |       | %                      |       | Net Volume by Scaling Diameter in Inches |                 |     |     |     |       | ı                                    |       | 1     |       |       |       |     |
| Spp                               | Т | rt de                   | Len  | MBF   | %                      | MBF   | Spc                                      | 2-3             | 4-5 | 6-7 | 8-9 | 10-11 | 12-13                                | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 | 40+ |
| DF                                |   | 2N                      | I 40 | 3,840 |                        | 3,831 | 79.1                                     |                 |     |     |     |       | 515                                  | 817   | 1362  | 911   | 226   |       |     |
| DF                                |   | 3N                      | 1 26 | 2     |                        | 2     | .1                                       |                 |     |     | 2   |       |                                      |       |       |       |       |       |     |
| DF                                |   | 3M                      | I 30 | 7     |                        | 7     | .1                                       |                 |     | 7   |     |       |                                      |       |       |       |       |       |     |
| DF                                |   | 3M                      | I 32 | 42    |                        | 42    | .9                                       |                 |     | 34  | 9   |       |                                      |       |       |       |       |       |     |
| DF                                |   | 3N                      | I 34 | 38    |                        | 38    | .8                                       |                 |     | 37  | 2   |       |                                      |       |       |       |       |       |     |
| DF                                |   | 3N                      | I 36 | 28    |                        | 28    | .6                                       |                 |     | 24  | 4   |       |                                      |       |       |       |       |       |     |
| DF                                |   | 3M                      | I 38 | 15    |                        | 15    | .3                                       |                 |     | 15  |     |       |                                      |       |       |       |       |       |     |
| DF                                |   | 3N                      | I 40 | 787   |                        | 787   | 16.2                                     |                 |     | 90  | 203 | 490   | 4                                    |       |       |       |       |       |     |
| DF                                |   | 4N                      | I 12 | 2     |                        | 2     | .0                                       |                 |     | 1   | 1   |       |                                      |       |       |       |       |       |     |
| DF                                |   | 4N                      | I 14 | 7     |                        | 7     | .2                                       |                 |     | 7   |     |       |                                      |       |       |       |       |       |     |
| DF                                |   | 4N                      | I 16 | 5     |                        | 5     | .1                                       |                 |     | 5   |     |       |                                      |       |       |       |       |       |     |
| DF                                |   | 4N                      | I 18 | 2     |                        | 2     | .0                                       |                 |     | 2   |     |       |                                      |       |       |       |       |       |     |
| DF                                |   | 4N                      | 1 20 | 9     |                        | 9     | .2                                       |                 |     | 9   |     |       |                                      |       |       |       |       |       |     |
| DF                                |   | 4N                      | 1 22 | 3     |                        | 3     | .1                                       |                 |     | 3   |     |       |                                      |       |       |       |       |       |     |
| DF                                |   | 4N                      | I 24 | 20    |                        | 20    | .4                                       |                 |     | 20  |     |       |                                      |       |       |       |       |       |     |
| DF                                |   | 4N                      | I 26 | 10    |                        | 10    | .2                                       |                 |     | 10  |     |       |                                      |       |       |       |       |       |     |
| DF                                |   | 4N                      | 1 28 | 17    |                        | 17    | .3                                       |                 |     | 17  |     |       |                                      |       |       |       |       |       |     |
| DF                                |   | 4N                      | I 30 | 15    |                        | 15    | .3                                       |                 |     | 15  |     |       |                                      |       |       |       |       |       |     |
| DF                                |   | Total                   | s    | 4,852 |                        | 4,841 | 100.0                                    |                 |     | 296 | 221 | 490   | 519                                  | 817   | 1362  | 911   | 226   |       |     |

296

221

490

519

817 1362

911

226

100.0

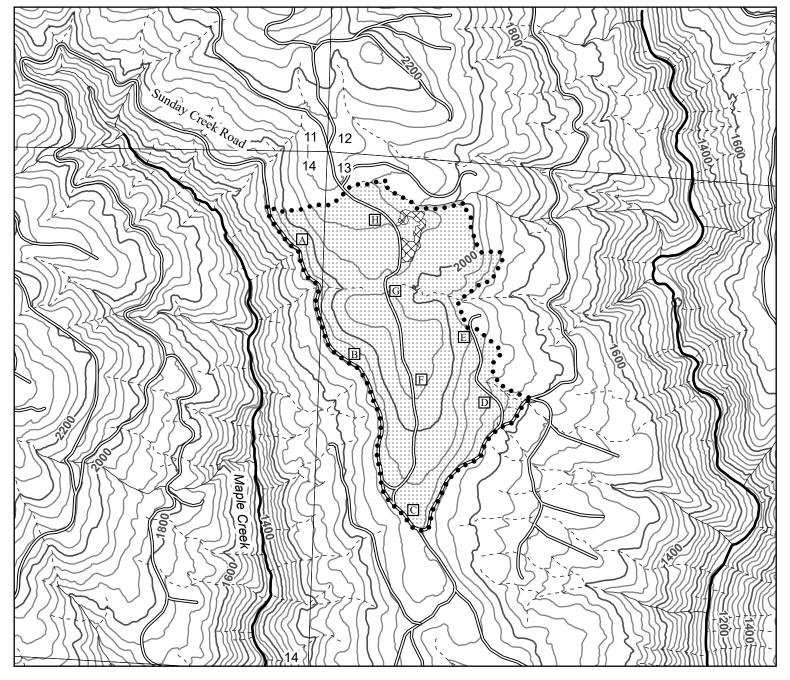
4,841

Total

All Species

4,852

#### **Volume Summary**


(Shown in MBF)

#### Sunday Prime FG-341-2026-W01200-01 June 2025

#### **TIMBER SALE AREA: Clearcut (103 Acres)**

| SPECIES     |                 | 2 SAW | 3 SAW | 4 SAW | TOTAL |  |
|-------------|-----------------|-------|-------|-------|-------|--|
|             | Cruise Volume   | 3,720 | 892   | 88    | 4,700 |  |
| Douglas fir | Hidden D&B (2%) | (74)  | (18)  | (2)   | (94)  |  |
| Douglas-fir | NET TOTAL       | 3,646 | 874   | 86    | 4,606 |  |
|             | % of Total      | 79    | 19    | 2     |       |  |

<sup>\*\*\*</sup>Approximately 141 MBF of Douglas-fir was removed from this volume estimate to account for Purchaser select live trees to be reserved.



#### Legend

- • Timber Sale Boundary
- Surfaced Road
- Type-F Stream
- Type-N Stream Perennial
- --- Type-N Stream Seasonal
- Stream Buffer
- Tractor Yarding Area
- ☐ Tractor Landing
- Non Harvestable Area
- Section Line
- ——— 40 Foot Contour Band
- 200 Foot Contour Band

#### LOGGING PLAN

FOR TIMBER SALE CONTRACT #FG-341-2026-W01200-01 SUNDAY PRIME PORTIONS OF SECTIONS 13 & 14, T1S, R6W, W.M., WASHINGTON COUNTY, OREGON

> Forest Grove District GIS June, 2025

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1:12,000

1 inch = 1,000 feet

N

APROXIMATE NET ACRES

TRACTOR CABLE

TOTAL 103 0

