

District: Forest Grove

Date: January 22, 2025

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$2,251,918.74	\$2,639.52	\$2,254,558.26
		Project Work:	(\$45,798.00)
		Advertised Value:	\$2,208,760.26

District: Forest Grove

Date: January 22, 2025

Timber Description

Location:

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	20	0	98
Western Hemlock / Fir	19	0	98
Alder (Red)	23	0	95

Volume by Grade	2S	3S & 4S 6"- 11"	Camprun	Total
Douglas - Fir	4,000	1,390	0	5,390
Western Hemlock / Fir	42	20	0	62
Alder (Red)	0	0	26	26
Total	4,042	1,410	26	5,478

Comments: LOCAL POND VALUES, NOVEMBER 2024

NOBLE FIR AND OTHER CONIFERS: STUMPAGE PRICE = POND VALUE - WESTERN HEMLOCK LOGGING COST \$181.32 = \$513.39 - \$332.07

WESTERN REDCEDAR AND OTHER CEDARS STUMPAGE PRICE = POND VALUE MINUS DOUGLAS-FIR LOGGING COST: \$867.47 = \$1,185 - \$317.53

BRANDING AND PAINTING ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$5.00/GAL

HAULING COST ALLOWANCE = \$1,250/DAY

OTHER COSTS (WITH PROFIT & RISK ADDED):

INTERMEDIATE SUPPORTS/TAIL RIGGING: 5 @ \$1000 EACH = \$5000

TOTAL OTHER COSTS (WITH PROFIT & RISK ADDED) = \$5000

OTHER COSTS (NO PROFIT & RISK ADDED):

EQUIPMENT CLEANING: 3 PIECES @ \$1,000/PIECE = \$3,000

MACHINE TIME TO BLOCK/WATERBAR ROADS AND SKID TRAILS: 8 HOURS X \$200/HOUR = \$1600

MACHINE TIME TO PILE LANDING SLASH: 24 HOURS X \$200/HOUR = \$4800

TOTAL OTHER COSTS (NO P&R) = \$9400

SLASH TREATMENT: 3 ACRES X \$250/ACRE = \$750

ROAD MAINTENANCE (INCLUDES SPOT ROCKING, GRADING, & ROLLING): MOVE IN: \$1,244.16 GENERAL ROAD MAINT: 3.8 miles X \$2,609.21 = \$9,914.99 TOTAL ROAD MAINTENANCE: \$11,159.15/ 5,478 MBF = \$2.04/MBF

District: Forest Grove

Date: January 22, 2025

	Loggi	ng Conditions
Combination#: 1	Douglas - Fir Western Hemlock / Fir Alder (Red)	97.00% 97.00% 97.00%
Logging System:	Cable: Large Tower >=70	Process: Harvester Head Delimbing
yarding distance: tree size:	Long (1,500 ft) Mature / Regen Cut (900 Bft/tree), 3-5 log	downhill yarding: No gs/MBF
loads / day:	10	bd. ft / load: 4800
cost / mbf:	\$178.73	
machines:	Log Loader (A) Forwarder Harvester Tower Yarder (Large)	
Combination#: 2	Douglas - Fir	3.00%
	Western Hemlock / Fir	3.00%
	Alder (Red)	3.00%
Logging System:	Shovel	Process: Harvester Head Delimbing
yarding distance: tree size:	Short (400 ft) Mature / Regen Cut (900 Bft/tree), 3-5 log	downhill yarding: No gs/MBF
loads / day:	10	bd. ft / load: 4800
cost / mbf:	\$208.33	
machines:	Forwarder Harvester	

District: Forest Grove

Date: January 22, 2025

Logging Costs		
Operating Seasons: 2.00	Profit Risk: 15%	
Project Costs: \$45,798.00	Other Costs (P/R): \$5,000.00	
Slash Disposal: \$750.00	Other Costs: \$9,400.00	

Miles of Road		Road Maintenance:	52.04
Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	4.8
Western Hemlock / Fir	\$0.00	3.0	4.2
Alder (Red)	\$0.00	3.0	3.0

District: Forest Grove

Date: January 22, 2025

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$179.62	\$2.08	\$1.60	\$88.55	\$0.91	\$40.91	\$0.14	\$2.00	\$1.72	\$317.53
Western H	emlock	/ Fir							
\$179.62	\$2.08	\$1.60	\$101.19	\$0.91	\$42.81	\$0.14	\$2.00	\$1.72	\$332.07
Alder (Red	I)								
\$179.62	\$2.14	\$1.60	\$145.83	\$0.91	\$49.52	\$0.14	\$2.00	\$1.72	\$383.48

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$733.24	\$415.71	\$0.00
Western Hemlock / Fir	\$0.00	\$513.39	\$181.32	\$0.00
Alder (Red)	\$0.00	\$485.00	\$101.52	\$0.00

District: Forest Grove

Date: January 22, 2025

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	5,390	\$415.71	\$2,240,676.90
Western Hemlock / Fir	62	\$181.32	\$11,241.84
Alder (Red)	26	\$101.52	\$2,639.52

Gross Timber Sale Value		
Recovery:	\$2,254,558.26	
Prepared By: Kenton Burns	Phone: 503-359-7477	

TIMBER SALE SUMMARY Rock Music #FG-341-2025-W01195-01

- 1. Location: Portions of Sections 21 & 22, T4N, R6W, W.M., Clatsop County, Oregon.
- 2. <u>Type of Sale</u>: This timber sale is a 106 net acre Clearcut. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. <u>Revenue Distribution</u>: 100% BOF, Clatsop County.
- 4. <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS software.
- 5. <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in December of 2025. For more information see Cruise Report.
- 6. <u>Timber Description</u>: The Timber Sale Area consists of an over-stocked 58-76 year old Douglas-fir stand with minor amounts of western hemlock, western redcedar, true firs, and hardwoods. The stand has an average of 251 ft² of basal area (all species), an average Douglas-fir DBH of 20 inches, and an estimated average net Douglas-fir volume of approximately 49.9 MBF per acre.
- 7. <u>Topography and Logging Method</u>: Slopes within the sale areas range from 5% to 80%, and variable in aspect. The timber sale is 3% ground-based yarding and 97% cable yarding. The average cable corridor length is 1,600 feet and the average horizontal skid trail length is approximately 60 feet.
- 8. <u>Access:</u> Access to the Timber Sale Area is on surfaced all-weather roads. From Forest Grove, travel north on Highway 47 through Banks then merge onto Highway 26 westbound and continue for approximately 20 miles to McGregor Road, which is just before mile marker 29. Turn right on McGregor Road and continue for approximately 2.9 miles. Turn left off of McGregor Road and proceed straight for approximately 0.4 miles. Then staying to the right, proceed for 0.3 miles to the Timber Sale Area.

9. Projects:

Project No. 1: Rocked Road Construction	\$34,184.82
Project No. 2: Road Improvement	\$6,792.73
Project No. 3: Stream Enhancement	\$4,820.45

Total Credit for all Projects (rounded) \$45,798.00

PROJEC	PROJECT COST SUMMARY SHEET									
Timber Sale:	Rock I									
Sale Number:	FG-341-2025	-W01195-01								
PROJECT NO. 1: ROCKED ROAD CONSTRUCTION										
-	Road Segment A to B	Length 14+00 14+00 stations 0.27 miles	Cost \$30,848.58							
Total Rock =	1,480 cy	4" - 0								
		Move-in =	\$3,336.24							
		TOTAL PROJECT COST =	\$34,184.82							
PROJECT NO. 2: ROAD IMPROVEMENT										
-	Road Segment C to D	Length 38+55 38+55 stations	Cost \$6,129.80							
Total Rock =		0.73 miles								
	332 cy	4" - 0 Move-in =	\$662.93							
		TOTAL PROJECT COST =	\$6,792.73							
PROJECT NO. 3: STREAM ENHANCEMENT										
-	Segment SE1 to SE2 SE3 to SE4	Sites 4 3 8 Sites	Cost \$3,000.00 \$1,350.00							
		Move-in =	\$470.45							
		TOTAL PROJECT COST =	\$4,820.45							
		<u>TOTAL CREDITS =</u>	\$45,798.00							

Timber Sale		-		TON COST		lumbor	EC 241 20	NO1105 01	
Road Segment	-	Rock Music A to B			Construction: 1			G-341-2025-W01195-01 <u>14+00</u> stations 0.27 miles	
PROJECT NO. 1: ROCKED ROAD CON	STRUCTI	ON					0.2.		
CONSTRUCTION									
Clearing & grubbing (scatter)	1.61	ac @	\$1,692.00	per ac =			\$2,724.12		
Balanced road construction	14.00	sta @	\$120.00	per sta =			\$1,680.00		
Full Bench End-haul									
Excavate & load	2,820	cy @	\$1.94	per cy =			\$5,470.80		
Haul	3,666	cy @	\$1.06	per cy =			\$3,885.96		
Shape and compact waste material	3,666	cy @	\$0.35	per cy =			\$1,283.10		
Turnout	1	ea @	\$72.60	per ea =			\$72.60		
Turnaround	2	ea @	\$90.75	per ea =			\$181.50		
Approach to landing	1.80	sta @	\$120.00	per sta =			\$216.00		
Landing	2	ea @	\$345.40	per ea =			\$690.80		
Grade, ditch, & roll	14.00	sta @	\$39.65	per sta =			\$555.10	_	
				TOTAL		TRUCTI	ON COSTS =	<u>\$16,759.98</u>	
CULVERTS	_								
Culverts and Bands									
18" Diameter	30	lf @	\$22.05	per lf =			\$661.50		
Markers & Stakes									
Culvert markers	1	ea @	\$12.00	per ea =			\$12.00	-	
					TOTAL	CULVE	RT COSTS =	\$673.50	
ROCK	_								
	Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placeme Processi Cost \$/e	ing T	otal CY	Rock Cost		

	Size	COSt Ø/Cy	ф/Су	Cost \$/cy		
Surfacing rock						
Base rock	4" - 0	\$1.33	\$5.96	\$1.35	910	\$7,862.40
Junction	4" - 0	\$1.33	\$5.96	\$1.35	24	\$207.36
Turnout	4" - 0	\$1.33	\$5.96	\$1.35	29	\$250.56
Turnaround	4" - 0	\$1.33	\$5.96	\$1.35	40	\$345.60
Approach to landing	4" - 0	\$1.33	\$5.96	\$1.35	117	\$1,010.88
Landing	4" - 0	\$1.33	\$5.96	\$1.35	360	\$3,110.40
				Subtotal =	1,480	\$12,787.20

Totals

All Rock = 1,480 4" - 0 1,480

TOTAL ROCK COSTS = \$12,787.20

EROSION CONTROL

Grass seed & fertilizer

0.81

ac @ \$780.00 per ac =

\$627.90

TOTAL EROSION CONTROL COSTS = \$627.90

TOTAL PROJECT COST = \$30,848.58

		-		TION COST				
Timber Sale:				_ 5	Sale Number:	FG-341-2025	5-W01195-01	
Road Segment:		C to D		I	mprovement:	38+55	stations	
					-	0.73	miles	
PROJECT NO. 2: ROAD IMPROVEMENT								
MPROVEMENT								
Clearing & grubbing (scatter)	0.45	ac @	\$1,692.00	per acre =		\$761.40		
Clean ditch & scatter waste material	7.50	sta @	\$66.00	per sta =		\$495.00		
mprove landing	1	ea @	\$172.70	per ea =		\$172.70		
Grade & roll (outslope)	1.00	sta @	\$35.45	per sta =		\$35.45		
Grade, ditch, & roll	37.55	sta @	\$39.65	per sta =		\$1,488.858		
				TOTAL	IMPROVEME	NT COSTS =	\$3,063.41	
CULVERTS	-							
Culverts and Bands								
Markers & Stakes Culvert markers	5	ea @	\$12.00			\$60.00		
Cuiven markers	Э	ea @	\$12.00	per ea =			* ~~ ~~	
ROCK				<u>10</u>	OTAL CULVE	RICOSIS =	\$60.00	
	Rock	Base	Haul Cost	Placement/				
	Size	Cost \$/cy	\$/cy	Processing Cost \$/	cy Total CY	Rock Cost		
Surfacing rock								
Surfacing rock	4" - 0	\$1.33	\$5.43	\$1.35	202	\$1,638.22		
Turnaround	4" - 0	\$1.33	\$5.43	\$1.35	10.0	\$81.10		
Landing	4" - 0	\$1.33	\$5.43	\$1.35	120.0	\$973.20		
				Subtota	al = 332	\$2,692.52		
			Totals	All Rock	(= 332			
			rotaio		- 0 332			
					TOTAL ROO	<u> CK COSTS =</u>	\$2,692.52	
EROSION CONTROL								
Grass seed & fertilizer	0.45	ac @	\$697.50	per ac =		\$313.88		
							\$313.88	

TOTAL PROJECT COST = \$6,129.80

SUMMARY OF CONSTRUCTION COST

Timber Sale:	Rock Music	Sale Number:	FG-341-2	025-W01195-01
Sites:	SE1 to SE2	Construction:	4	Sites

PROJECT NO. 4: STREAM ENHANCEMENT

CONSTRUCTION

Log transportation and placement

20 ea @ \$150.00 per ea =

\$3,000.00

 TOTAL IMPROVEMENT COSTS =
 \$3,000.00

 TOTAL PROJECT COST =
 \$3,000.00

SUMMARY OF CONSTRUCTION COST

 Timber Sale:
 Rock Music
 Sale Number:
 FG-341-2025-W01195-01

 Sites:
 SE3 to SE4
 Construction:
 3
 Sites

PROJECT NO. 4: STREAM ENHANCEMENT

Log transportation and placement

IMPROVEMENT

9 ea @ \$150.00 per ea =

\$1,350.00

 TOTAL IMPROVEMENT COSTS =
 \$1,350.00

 TOTAL PROJECT COST =
 \$1,350.00

Timber Sale: Rock Music

Sale Number: FG-341-2025-W01195-01

PROJECT No. 1 & 2 MOVE-IN. WITHIN AREA MOVE. & CLEANING COSTS	

Equipment	Total
Grader	\$236.85
Roller (smooth/grid) & Compactor	\$226.55
Excavator (Large) - Equipment Cleaning	\$1,501.61
Dozer (Large) - Equipment Cleaning	\$1,501.61
Dump Truck (10cy +)	\$816.11
Water Truck (2,500 Gal)	\$186.90
	TOTAL MOVE-IN COSTS = \$4,469.62

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

Timber Sale: Sale Number: Stockpile Name:	FG-341-202	Music 5-W01195-01 c Stockpile	-	
4" - 0: Total truck yardage:	, ,	_(truck measu 	ıre)	
Move-in				
Move in loader				\$680.00
Move in Dump Trucks				\$90.00
·			Subtotal =	\$770.00
			Per CY =	\$0.43
4"-0 Base Cost				
Load dump truck \$0.90	/ су х	1,812	_cy = Subtotal = Per CY =	\$1,630.80 \$1,630.80 \$0.90

4"-0 Cost = **\$1.33/cy**

CRUISE REPORT Rock Music #FG-341-2025-W01195-01

1. LOCATION: Portions of Sections 21 & 22, T4N, R6W, W.M., Clatsop County, Oregon.

2. CRUISE DESIGN: Pre-cruise evaluation indicated that the stand's average DBH is approximately 18 inches with a Coefficient of Variation of about 55%. For sales of this size and approximate value, ODF cruise standards require a Sampling Error of 9% at a 68% confidence level, and a minimum sample size of 100 graded trees. Statistical analysis indicated that 37 variable radius plots utilizing a 40 BAF prism would produce an adequate sample size.

3. SAMPLING METHOD: The Timber Sale Area was cruised in December 2024. The Timber Sale Area was sampled with 37 variable radius grade plots laid out on a 6 chain x 4 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain

4. CRUISE RESULTS: 232 trees were measured and graded producing a cumulative Sampling Error of 4.6% on the Douglas-fir Basal Area and 4.1% on the Douglas-fir Board Foot Volume.

5. TREE MEASUREMENT AND GRADING: All sample trees were measured and graded following Columbia River Log Scale grade rules and favored 40 foot segments.

- a) **Height Standards:** Total tree heights were measured to the nearest foot. For conifers, bole heights were calculated to a six inch top. For hardwoods, bole heights were calculated to a seven inch top.
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors: Measured for each grade tree using a form point of 16 feet.

5. DATA PROCESSING

- a) **Volumes and Statistics:** Cruise estimates and sampling statistics, were derived from Super Ace 2008 cruise software
- b) Deductions: For conifers, two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage. For hardwoods, five percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.

6. CRUISERS: The sale was cruised by ODF cruisers Kenton Burns, Mark Savage, and Colton Turner.

Prepared by:	Kenton Burns	12/1/2024
	Name	Date
Reviewed by:	Mark Savage	12/1/2024
•	Name	Date

TC PSTATS	s					OJECT OJECT	STATIS ROC	TICS MUS			PAGE DATE	1 12/27/2024
TWP R	RGE	SC	TRACT	,	ГҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt
T4N R	6	22	00U1	(00CC			106.00	37	234	S	W
						TREES		ESTIMATED TOTAL		ERCENT SAMPLE		
		I	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL			37	234		6.3						
CRUISE DBH COU REFORE: COUNT BLANKS 100 %	ST		37	234		6.3		12,028		1.9		
					STAN	ND SUMM	ARY					
			MPLE FREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG FI	IR		228	110.3	20.2	120	54.8	246.5	52,259	51,995	11,072	11,072
DOUG FI			2	1.2	18.0	67	0.5	2.2				
WHEMLO			3	1.6	19.3	117	0.7	3.2	591	591	140	140
R ALDER TOTAL	ĸ		1 234	.4 113.5	23.0 20.2	125 119	0.2 56.3	1.1 253.0	285 53,135	255 52,841	56 11,267	56 11,267
CONFIL			ITS OF THE FIMES OUT		VOLUME	WILL BE V	VITHIN TH	IE SAMPLE E	RROR			
CL 6	58.1		COEFF			SAMPLI	E TREES -	BF	#	OF TREES R	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	1.
DOUG FI			73.5	4.9		756	795	834				
DOUG FI	IR-S											
WHEMLO R ALDER			22.9	15.9		306	363	421				
			22.9 74.6	15.9 <i>4.9</i>		306 744	363 782	421 820		222	56	2.
R ALDEF TOTAL						744		820	#	222 OF TREES R		2. INF. POP.
R ALDER TOTAL CL 6 SD:	R 58.1 1.0		74.6 COEFF VAR.%	4.9 S.E.%	L	744 SAMPLI	782 E TREES - AVG	820 CF HIGH	#			
R ALDER TOTAL CL 6 SD: DOUG FI	R 58.1 <u>1.0</u> IR		74.6 COEFF	4.9	Lo	744 SAMPLI	782 E TREES -	820 CF	#	OF TREES R	EQ.	INF. POP.
R ALDER TOTAL CL 6 SD:	R 58.1 1.0 IR IR-S OCK		74.6 COEFF VAR.%	4.9 S.E.%	L	744 SAMPLI	782 E TREES - AVG	820 CF HIGH	#	OF TREES R	EQ.	INF. POP.
R ALDER TOTAL CL 6 SD: DOUG FI DOUG FI WHEML	R 58.1 1.0 IR IR-S OCK R		74.6 COEFF VAR.% 65.2	4.9 S.E.% 4.3	L	744 SAMPLI DW 156	782 E TREES - AVG 163	820 CF HIGH 170	#	OF TREES R	EQ.	INF. POP.
R ALDER TOTAL	R 58.1 1.0 IR IR-S OCK R		74.6 COEFF VAR.% 65.2 12.4	4.9 S.E.% 4.3 8.6	L	744 SAMPLI DW 156 81	782 E TREES - <u>AVG</u> 163 88 160	820 CF HIGH 170 96		OF TREES R	EQ. 10 44	INF. POP. 1
R ALDER TOTAL CL 6 SD: DOUG FI DOUG FI WHEMLO R ALDER TOTAL	R 58.1 1.0 IR IR-S OCK R		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.%	4.9 S.E.% 4.3 8.6 4.3 S.E.%		744 SAMPLI DW 156 81 154 TREES/4 DW	782 E TREES - <u>AVG</u> 163 88 <i>160</i> ACRE <u>AVG</u>	820 CF HIGH 170 96 <i>167</i> HIGH		OF TREES R 5 175	EQ. 10 44	INF. POP. 1. 1.
R ALDER TOTAL CL 6 SD: DOUG FI WHEMLO R ALDER TOTAL CL 6 SD:	R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6		744 SAMPLI DW 156 81 154 TREES/4 DW 101	782 E TREES - <u>AVG</u> 163 88 <i>160</i> ACRE <u>AVG</u> 110	820 CF HIGH 170 96 167 HIGH 120		OF TREES R 5 175 OF PLOTS R	EQ. 10 44 EQ.	INF. POP. <u>1</u> <i>1</i> INF. POP.
R ALDER TOTAL CL 6 SD: DOUG FI WHEMLO R ALDER TOTAL CL 6 SD: DOUG FI DOUG FI	R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4 439.6	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6 72.2		744 SAMPLI DW 156 81 154 TREES/A DW 101 0	782 E TREES - <u>AVG</u> 163 88 <i>160</i> ACRE <u>AVG</u> 110 1	820 CF HIGH 170 96 167 HIGH 120 2		OF TREES R 5 175 OF PLOTS R	EQ. 10 44 EQ.	INF. POP. <u>1</u> <i>1</i> INF. POP.
R ALDER TOTAL CL 6 SD: DOUG FI WHEMLO R ALDER TOTAL CL 6 SD: DOUG FI DOUG FI DOUG FI	R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4 439.6 350.0	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6 72.2 57.5		744 SAMPLI DW 156 81 154 TREES/A DW 101 0 1	782 2 TREES - AVG 163 88 160 ACRE AVG 110 1 2	820 CF HIGH 170 96 167 HIGH 120 2 3		OF TREES R 5 175 OF PLOTS R	EQ. 10 44 EQ.	INF. POP. <u>1</u> <i>1</i> INF. POP.
R ALDER TOTAL CL 6 SD: DOUG FI WHEMLO R ALDER TOTAL CL 6 SD: DOUG FI DOUG FI	R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4 439.6	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6 72.2		744 SAMPLI DW 156 81 154 TREES/A DW 101 0	782 E TREES - <u>AVG</u> 163 88 <i>160</i> ACRE <u>AVG</u> 110 1	820 CF HIGH 170 96 167 HIGH 120 2		OF TREES R 5 175 OF PLOTS R	EQ. 10 44 EQ.	INF. POP. <u>1</u> <i>1</i> INF. POP.
R ALDER TOTAL	R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4 439.6 350.0 608.3 50.3	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6 72.2 57.5 99.9		744 SAMPLI DW 156 81 154 TREES/A DW 101 0 1 0 104	782 E TREES - <u>AVG</u> 163 88 160 ACRE AVG 110 1 2 0 113	820 CF HIGH 170 96 167 HIGH 120 2 3 1 123	#	OF TREES R 5 175 OF PLOTS R 5 101	EQ. 10 44 EQ. 10 25	INF. POP. 1 INF. POP. 1 1
R ALDER TOTAL CL 6 SD: DOUG FI WHEMLO R ALDER TOTAL CL 6 NHEMLO R ALDER TOTAL	R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4 439.6 350.0 608.3	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6 72.2 57.5 99.9	L	744 SAMPLI DW 156 81 154 TREES/A DW 101 0 1 0 104	782 E TREES - AVG 163 88 160 ACRE AVG 110 1 2 0	820 CF HIGH 170 96 167 HIGH 120 2 3 1 123	#	⁴ OF TREES R 5 <i>175</i> ² OF PLOTS R 5	EQ. 10 44 EQ. 10 25	INF. POP. 1 <i>I</i> <i>I</i> INF. POP. 1
R ALDER TOTAL CL 6 SD: DOUG FI WHEMLO R ALDER TOTAL CL 6 SD: DOUG FI DOUG FI DOUG FI DOUG FI DOUG FI CL 6 CL 6	R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R 58.1 1.0		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4 439.6 350.0 608.3 50.3 COEFF	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6 72.2 57.5 99.9 8.3	L	744 SAMPLI DW 156 81 154 TREES/A DW 101 0 104 BASAL A	782 E TREES - AVG 163 88 160 ACRE AVG 110 1 2 0 113 AREA/ACI	820 CF HIGH 170 96 167 HIGH 120 2 3 1 123 RE	#	OF TREES R 5 175 OF PLOTS R 5 101 OF PLOTS R	EQ. 10 44 EQ. 10 25 EQ.	INF. POP. 1. INF. POP. 1. INF. POP.
R ALDER TOTAL CL 6 SD: DOUG FI WHEMLO R ALDER TOTAL CL 6 SD: CL 6 SD: CL 6 SD:	R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR 58.1 58.1 1.0 IR		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4 439.6 350.0 608.3 50.3 COEFF VAR.%	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6 72.2 57.5 99.9 8.3 S.E.%	L	744 SAMPLI DW 156 81 154 TREES/A DW 101 0 100 104 BASAL A DW	782 E TREES - AVG 163 88 160 ACRE AVG 110 1 2 0 113 AREA/ACI AVG	820 CF HIGH 170 96 167 HIGH 120 2 3 1 123 RE HIGH	#	OF TREES R 5 175 OF PLOTS R 5 101 OF PLOTS R	EQ. 10 44 EQ. 10 25 EQ.	INF. POP. 1. INF. POP. 1. INF. POP.
R ALDER TOTAL CL 6 SD: DOUG FI WHEMLO R ALDER TOTAL CL 6 SD: DOUG FI DOUG FI CL 6 SD: CL 6 SD: SD: CL 6 SD: SD: CL 6 SD: SD: CL 6 SD: SD: CL 6 SD: SD: SD: SD: SD: SD: SD: SD: SD: SD:	R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4 439.6 350.0 608.3 50.3 COEFF VAR.% 28.0 424.1 341.3	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6 72.2 57.5 99.9 8.3 S.E.% 4.6 69.7 56.1	L	744 SAMPLI DW 156 81 154 TREES/A DW 101 0 104 BASAL A DW 235 1 1	782 2 TREES - AVG 163 88 160 ACRE AVG 110 1 2 0 113 AREA/ACI AVG 246 2 3	820 CF HIGH 170 96 167 HIGH 120 2 3 1 123 RE HIGH 258 4 5	#	OF TREES R 5 175 OF PLOTS R 5 101 OF PLOTS R	EQ. 10 44 EQ. 10 25 EQ.	INF. POP. 1. INF. POP. 1. INF. POP.
R ALDER TOTAL	R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4 439.6 350.0 608.3 50.3 COEFF VAR.% 28.0 424.1 341.3 608.3	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6 72.2 57.5 99.9 8.3 S.E.% 4.6 69.7 56.1 99.9	L	744 SAMPLI DW 156 81 154 TREES/A DW 101 0 104 BASAL A DW 235 1 0 1 0	782 E TREES - AVG 163 88 160 ACRE AVG 110 1 2 0 113 AREA/ACI AVG 246 2 3 1	820 CF HIGH 170 96 167 167 120 2 3 1 123 RE HIGH 258 4 5 2	#	OF TREES R 5 175 OF PLOTS R 5 101 OF PLOTS R 5	EQ. 10 44 EQ. 10 25 EQ. 10	INF. POP. 1 INF. POP. 1 INF. POP. 1
R ALDER TOTAL	R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4 439.6 350.0 608.3 50.3 COEFF VAR.% 28.0 424.1 341.3 608.3 26.9	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6 72.2 57.5 99.9 8.3 S.E.% 4.6 69.7 56.1	L	744 SAMPLI DW 156 81 154 TREES/A DW 101 0 104 BASAL A DW 235 1 0 242	782 E TREES - AVG 163 88 160 ACRE AVG 110 1 2 0 113 AREA/ACI AVG 246 2 3 1 253	820 CF HIGH 170 96 167 HIGH 120 2 3 1 123 RE HIGH 258 4 5	#	OF TREES R 5 175 OF PLOTS R 5 101 OF PLOTS R 5 29	EQ. 10 44 EQ. 10 25 EQ. 10 7	INF. POP. 1 INF. POP. 1 INF. POP. 1
R ALDER TOTAL CL 6 SD: DOUG FI WHEMLO R ALDER TOTAL CL 6 SD: CL 6 SD: DOUG FI DOUG FI DOUG FI DOUG FI DOUG FI DOUG FI DOUG FI DOUG FI CL 6	R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4 439.6 350.0 608.3 50.3 COEFF VAR.% 28.0 424.1 341.3 608.3 26.9 COEFF	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6 72.2 57.5 99.9 8.3 S.E.% 4.6 69.7 56.1 99.9 4.4		744 SAMPLI DW 156 81 154 TREES/A DW 101 0 104 BASAL A DW 235 1 1 0 242 NET BF/	782 E TREES - AVG 163 88 160 ACRE AVG 110 1 2 0 113 AREA/ACI AVG 246 2 3 1 253 ACRE	820 CF HIGH 170 96 167 HIGH 120 2 3 1 123 RE HIGH 258 4 5 2 264	#	OF TREES R 5 175 OF PLOTS R 5 101 OF PLOTS R 5 29 COF PLOTS R	EQ. 10 EQ. 10 EQ. 10 25 EQ. 10 7 EQ.	INF. POP. 1. INF. POP. 1. INF. POP. 1. INF. POP.
R ALDER TOTAL	R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R 58.1 1.0		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4 439.6 350.0 608.3 50.3 COEFF VAR.% 28.0 424.1 341.3 608.3 26.9 COEFF VAR.%	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6 72.2 57.5 99.9 8.3 S.E.% 4.6 69.7 56.1 99.9 4.4 S.E.%		744 SAMPLI DW 156 81 154 TREES/2 DW 101 0 104 BASAL 2 DW 235 1 0 242 NET BF/ DW	782 AVG 163 88 160 ACRE AVG 110 1 2 0 113 AREA/ACI AVG 246 2 3 1 253	820 CF HIGH 170 96 167 HIGH 120 2 3 1 123 RE HIGH 258 4 5 2 264 HIGH	#	OF TREES R 5 175 OF PLOTS R 5 101 OF PLOTS R 5 29	EQ. 10 44 EQ. 10 25 EQ. 10 7	INF. POP. 1 INF. POP. 1 INF. POP. 1
R ALDER TOTAL CL 6 SD: DOUG FI WHEMLO R ALDER TOTAL CL 6 SD: CL 6 SD: DOUG FI DOUG FI DOUG FI DOUG FI DOUG FI DOUG FI DOUG FI CL 6	R 58.1 1.0 IR SOCK R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4 439.6 350.0 608.3 50.3 COEFF VAR.% 28.0 424.1 341.3 608.3 26.9 COEFF	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6 72.2 57.5 99.9 8.3 S.E.% 4.6 69.7 56.1 99.9 4.4		744 SAMPLI DW 156 81 154 TREES/A DW 101 0 104 BASAL A DW 235 1 1 0 242 NET BF/	782 E TREES - AVG 163 88 160 ACRE AVG 110 1 2 0 113 AREA/ACI AVG 246 2 3 1 253 ACRE	820 CF HIGH 170 96 167 HIGH 120 2 3 1 123 RE HIGH 258 4 5 2 264	#	OF TREES R 5 175 OF PLOTS R 5 101 OF PLOTS R 5 29 COF PLOTS R	EQ. 10 EQ. 10 EQ. 10 25 EQ. 10 7 EQ.	INF. POP. 1. INF. POP. 1. INF. POP. 1. INF. POP.
R ALDER TOTAL	R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR-S OCK R 58.1 1.0 IR IR IR-S OCK R		74.6 COEFF VAR.% 65.2 12.4 66.2 COEFF VAR.% 52.4 439.6 350.0 608.3 50.3 COEFF VAR.% 28.0 424.1 341.3 608.3 26.9 COEFF VAR.%	4.9 S.E.% 4.3 8.6 4.3 S.E.% 8.6 72.2 57.5 99.9 8.3 S.E.% 4.6 69.7 56.1 99.9 4.4 S.E.%		744 SAMPLI DW 156 81 154 TREES/2 DW 101 0 104 BASAL 2 DW 235 1 0 242 NET BF/ DW	782 AVG 163 88 160 ACRE AVG 110 1 2 0 113 AREA/ACI AVG 246 2 3 1 253	820 CF HIGH 170 96 167 HIGH 120 2 3 1 123 RE HIGH 258 4 5 2 264 HIGH	#	OF TREES R 5 175 OF PLOTS R 5 101 OF PLOTS R 5 29 COF PLOTS R	EQ. 10 EQ. 10 EQ. 10 25 EQ. 10 7 EQ.	INF. POP. 1. INF. POP. 1. INF. POP. 1. INF. POP.

TC PSI	TATS				PROJECT		<u>STICS</u> CMUS			PAGE DATE	2 12/27/2024
TWP	RGE	SC	TRACT	ТҮР			CRES	PLOTS	TREES	CuFt	
T4N	R6	22	00U1	00CC	2		106.00	37	234	S	W
CL	68.1		COEFF		NET B	F/ACRE			# OF PLOTS	REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
тот	AL		25.2	4.1	50,651	52,841	55,030		25	25 6	
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS RE	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR		25.6	4.2	10,606	11,072	11,537				
DOU	G FIR-S										
WHE	MLOCK		348.1	57.2	60	140	219				
R AL	DER		608.3	99.9	0	56	111				
TOT	AL		24.5	4.0	10,813	11,267	11,721		24	6	3

TC	PSPC	CSTGR		S	pecies, S	ort Gra	de - Board Fo	oot Volu	imes	(Pro	oject)								
ТТ	'4N RI	R6W S22	Ty00CC		106.00		Project: Acres	ROCI	MUS)6.00								Page Date Time		1 /27/2(:33:29	024
	s	So Gr	% Net	Bd. Ft	. per Acre								Ln	-	ige Log Bd	g CF/	Logs Per			
Spp		rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5 6-	11 12	2-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF DF DF DF		CU 2M 3M 4M	74 23 3	.6 .1	38,830 11,939 1,490	38,583 11,922 1,490	4,090 1,264 158		00 00	41 0	59	1 34	0 1 60	0 4	98 95 7	18 40 39 21	12 16 8 6	430 100 26	0.00 2.14 0.66 0.34	7.5 89.8 119.2 57.6
DF	Total	ls	98	.5	52,259	51,995	5,511		26	30	44	2	2	1	95	35	10	190	1.16	274.1
WH WH WH		2M 3M 4M	68 24 8		407 142 43	407 142 43	43 15 5		10 00 00	00		23	77		100 100	40 40 21	13 9 6	256 120 27	1.46 0.71 0.38	1.6 1.2 1.6
WH	Tota	als	1		591	591	63		31 (69		2	6		93	33	9	135	0.97	4.4
RA RA	Tota	R	100	10.5	285 285	255 255	27			29 29	66 66	4			96 96	33 33		227 227	1.52	1.1
Tota		13	0	0.6	53,135	52,841	5,601	2		31	44	2	2	1	96	35			1.32	279.5

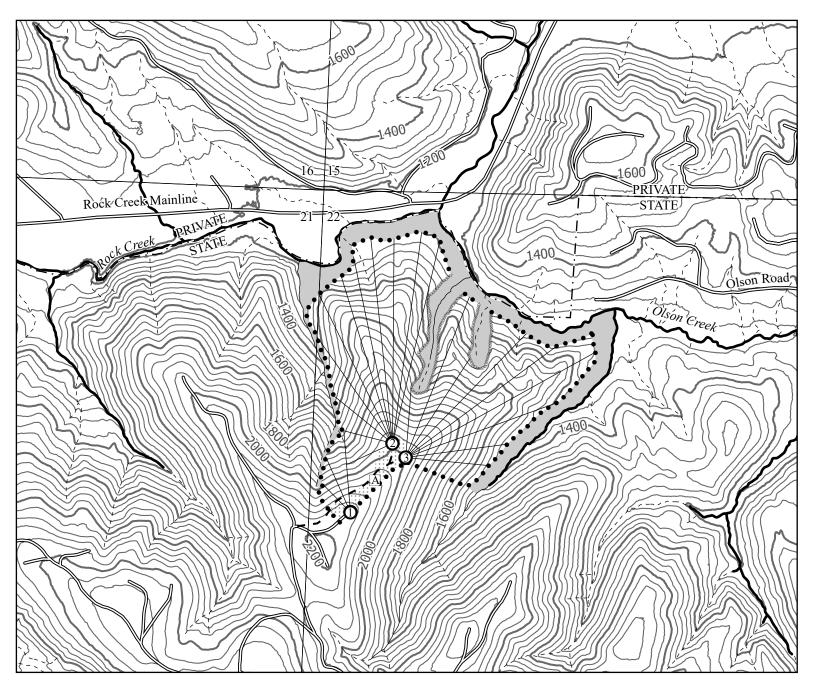
TC I	PSTNDSU	М				8	Stand 7	Table St	ummary				Page Date:	1 12/27/2	024
TT4N	RR6W S2	22 Ty00CC		106.00			Project	t R	OCMUS				Time:		
							Acres		106.0	0			Grown Year:		
				Tot	-			Average	e Log		Net	Net			
S	DBH	Sample	FF	Av	Trees/	BA/	Logs	Net	Net	Tons/	Cu.Ft.	Bd.Ft.	T	Totals	
Spc Т	DBH	Trees	16'	Ht	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	10	2	86	79	3.964	2.16	3.96	11.2	50.0	1.26	44	198	134	47	21
DF	11	7	88	91	11.467	7.57	19.66	10.4	44.2	5.85	205	868	620	218	92
DF	12	6	88	98	8.259	6.49	15.14	13.2	56.4	5.69	200	853	604	212	90
DF	13	3	88	100	3.519	3.24	7.04	14.6	60.0	2.93	103	422	311	109	45
DF	14	8	88	105	8.090	8.65	16.18	18.6	81.9	8.60	302	1,325	911	320	140
DF	15	8	87	110	7.048	8.65	14.10	22.3	96.9	8.97	315	1,365	951	334	145
DF	16	6	89	109	4.646	6.49	9.29	23.1	101.7	6.12	215	945	649	228	100
DF	17	12	88	117	8.230	12.97	17.83	28.5	119.6	14.51	509	2,133	1,538	540	226
DF	18	8	88	122	4.894	8.65	11.62	30.9	127.4	10.22	359	1,480	1,084	380	157
DF	19	2	86	123	1.098	2.16	2.75	32.6	130.0	2.55	89	357	270	95	38
DF	20	19	89	126	9.415	20.54	25.27	35.0	152.2	25.24	886	3,845	2,676	939	408
DF	21	11	86	118	4.944	11.89	12.58	37.9	165.7	13.59	477	2,086	1,440	505	221
DF	22	10	88	132	4.095	10.81	11.47	41.4	191.8	13.54	475	2,199	1,436	504	233
DF	23	12	88	137	4.496	12.97	13.49	45.7	208.3	17.56	616	2,810	1,862	653	298
DF	24	8	88	137	2.753	8.65	8.26	50.0	224.6	11.77	413	1,855	1,248	438	197
DF	25	8	88	139	2.537	8.65	7.61	55.8	257.1	12.11	425	1,957	1,283	450	207
DF	26	12	88	142	3.519	12.97	10.85	59.1	280.3	18.27	641	3,041	1,937	680	322
DF	27	10	87	143	2.719	10.81	8.43	61.5	295.2	14.77	518	2,488	1,566	549	264
DF	28	14	86	144	3.540	15.14	10.62	66.2	318.1	20.03	703	3,378	2,124	745	358
DF	29	9	86	145	2.121	9.73	6.60	73.6	363.2	13.84	486	2,397	1,468	515	254
DF	30	12	86	149	2.643	12.97	8.37	78.0	385.5	18.59	652	3,226	1,971	692	342
DF	31	6	87	156	1.238	6.49	4.13	83.2	423.0	9.78	343	1,745	1,037	364	185
DF	32	9	86	157	1.742	9.73	5.81	89.1	457.3	14.74	517	2,656	1,562	548	282
DF	33	11	86	159	2.002	11.89	6.73	94.3	484.3	18.09	635	3,262	1,918	673	346
DF	34	3	86	166	.514	3.24	1.89	96.6	511.8	5.19	182	965	550	193	102
DF	35	5	87	157	.809	5.41	2.59	106.7	574.4	7.87	276	1,487	835	293	158
DF	37	5	86	160	.724	5.41	2.61	107.1	583.9	7.95	279	1,522	843	296	161
DF	38	1	85	168	.137	1.08	.55	110.2	600.0	1.72	61	329	183	64	35
DF	40	2	85	149	.248	2.16	.87	125.1	665.7	3.09	108	577	328	115	61
DF	46	1	79	166	.094	1.08	.28	133.5	793.3	1.07	38	223	113	40	24
DF	Totals	230	88	119	111.504	248.65	266.56	41.5	195.1	315.55	11,072	51,995	33,448	11,736	5,511
WH	17	1	94	134	.686	1.08	2.06	26.9	130.0	1.77	55	267	188	59	28
WH	20	1	89	125	.496	1.08	1.49	33.7	143.3	1.60	50	213	170	53	23
WH	22	1	84	78	.410	1.08	.82	41.8	135.0	1.09	34	111	116	36	12
WH	Totals	3	90	117	1.591	3.24	4.36	32.0	135.5	4.47	140	591	473	148	63
RA	23	1	94	125	.375	1.08	1.12	49.6	226.7	1.53	56	255	162	59	27
RA	Totals	1	94	125	.375	1.08	1.12	49.6	226.7	1.53	56	255	162	59	27
Totals		234	88	119	113.470	252.97	272.05	41.4	194.2	321.54	11,267	52,841	34,084	11,943	5,601

TC	PLOGSTVB
----	----------

TC PLC	OGSTVB				Log	Stock 7	Fable -	MBF								
TT4N R	RR6W S22 1	Гу00CC	2 106	5.00	Proje Acre		ROO	CMUS 106	.00					Page Date Time		1 27/2024 33:28PM
s	~ ~ ~ ~	Log	Gross	Def Net	%		1	<u>Net Volui</u>	ne by S	caling D	iamete	r in Inche	es	1		
Spp т	rt de	Len	MBF	% MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
DF	2N	1 16	i 9		9.2									9		
DF	2N			1									16			
DF	2N			3							3				28	
DF	2N			1							5	12				
DF	2N			1											18	
DF	2N	4 40	4,026	4,00	0 72.6						540	722	1384	989	366	
DF	3N	1 26	1		1.0				1							
DF	3N	1 28	3		3.1			2	1							
DF	3N	1 30	2	:	2.0			1	1							
DF	3N	1 32	36	3	6.6			36								
DF	3N	1 34	17	1	7.3			17								
DF	3N	1 36		1				15		2						
DF	3N			2				28	2							
DF	3N	40	1,161	1,15	9 21.0			250	389	516		4				
DF	4N	1 12	12	1	2.2			10	1	1						
DF	4N	1 14	. 11	1	1.2			10	2							
DF	4N	1 16	5 7		7.1			7	1							
DF	4N	1 18	11	1	1.2			11	1							
DF	4N	1 20	12	1	2.2			11	1							
DF	4N	1 22	26	2	6.5			24	1							
DF	4N	1 24	14	1	4 .2			14								
DF	4N			1				18								
DF	4N			2				25								
DF	4N			1				11								
DF	4N	4 40	10	1	0 .2			10								
DF	Total		5,539	5,51				499	400	518	548		1399	997	412	
WH	2N	40	43	4	3 68.8						28	15				
WH	3N	1 40	15	1	5 24.0				15							
WH	4N	1 18	1		1 1.7			1								
WH	4N	1 22	3		3 5.6			3								
WH	Total	s	63	6	3 1.1			5	15		28	15				
RA	R	18	1		1 4.4			1								
RA	R	40	29	11.0 2	6 95.6						8		18			
RA	Total	S	30	10.5 2	7.5			1			8		18			

TC F	PLO	GSTVB					Log S	Stock	Table -	MBF									
TT4N	N RI	R6W S22	Ty00CC		106.00		Proje Acre		ROO	CMUS 106	.00					Page Date Time	12/	2 27/2024 33:28P	
	s	So Gr	Log	Gross	Def	Net	%		1	<u>vet Volur</u>	ne by S	caling E	Diamete	<u>r in Inch</u>	es	-			
Spp	Т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
Total		All Spec	ies	5,63	32	5,601	100.0			505	415	518	583	753	1417	997	412		

VOLUME SUMMARY (Shown in MBF) Rock Music FG-341-2025-W01195-01 January 2025


SPECIES		2 SAW	3 SAW	4 SAW	Camprun	TOTAL
	Cruise Volume	4,082	1,261	158	0	5,501
Douglas-fir	Hidden D&B (2%)	(82)	(25)	(4)	(0)	(111)
Douglas-III	NET TOTAL	4,000	1,236	154	0	5,390
	% of Total	74	23	3	0	
	Cruise Volume	43	15	5	0	63
Western	Hidden D&B (2%)	(1)	(0)	(0)	(0)	(1)
Hemlock	NET TOTAL	42	15	5	0	62
	% of Total	68	24	8	0	
	Cruise Volume	0	0	0	27	27
Red Alder	Hidden D&B (5%)	(0)	(0)	(0)	(1)	(1)
iteu Aluel	NET TOTAL	0	0	0	26	26
	% of Total	0	0	0	100	

TIMBER SALE AREA: Clearcut (106 ACRES)

	SAL	.E 1	ГО	T/	۹L
--	-----	------	----	----	----

SPECIES	2 SAW	3 SAW	4 SAW	Camprun	TOTAL
Douglas-fir	4,000	1,236	154	0	5,390
Western Hemlock	42	15	5	0	62
Red Alder	0	0	0	26	26
Total	4,042	1,251	159	26	5,478

*8 MBF of DF 2-SAW, and 3 MBF of DF 3-SAW was removed for Stream Enhancement.

Legend

- ••• Timber Sale Boundary
- Posted Stream Buffer Boundary
- ODF Ownership Boundary
- Surfaced Road
- - New Road Construction
- Type-F Stream
- ---- Type- N Stream Seasonal
- Stream Buffer
- Cable Yarding Area
- Tractor Yarding Area
- **O** Cable Landing
- Tractor Landing
 - Section Lines
 - 40 Foot Contour Band

- 200 Foot Contour Band

LOGGING PLAN

FOR TIMBER SALE CONTRACT #FG-341-2025-W01195-01 ROCK MUSIC PORTIONS OF SECTIONS 21 & 22, T4N, R6W, W.M. CLATSOP COUNTY, OREGON

Forest Grove District GIS

January, 2025 This product is for informational use and may not be

suitable for legal, engineering, or surveying purposes.

APROXIMATE NET ACRES

Ν

TRACTOR CABLE

1:12,000
1 inch = 1,000 feet

0 500 1,000 2,000

TOTAL 3 103