

District: Forest Grove

Date: October 03, 2024

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$1,569,643.74	\$9,450.00	\$1,579,093.74
		Project Work:	(\$183,125.00)
		Advertised Value:	\$1,395,968.74

District: Forest Grove

Date: October 03, 2024

Timber Description

Location:

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	19	0	98
Western Hemlock / Fir	15	0	98
Alder (Red)	11	0	95

Volume by Grade	2S	3S & 4S 6"- 11"	Camprun	Total
Douglas - Fir	2,520	865	0	3,385
Western Hemlock / Fir	79	62	0	141
Alder (Red)	0	0	54	54
Total	2,599	927	54	3,580

Comments: LOCAL POND VALUES, AUGUST 2024

OTHER CONIFERS STUMPAGE PRICE = POND VALUE - WESTERN HEMLOCK LOGGING COST \$215.24 = \$505.24 - \$290.00

WESTERN REDCEDAR AND OTHER CEDARS STUMPAGE PRICE = POND VALUE MINUS DOUGLAS-FIR LOGGING COST: \$943.54/MBF = \$1,200/MBF - \$256.46/MBF

BRANDING AND PAINTING ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$5.00/GAL

HAULING COST ALLOWANCE = \$1,250/DAY

OTHER COSTS (WITH PROFIT & RISK ADDED): N/A

OTHER COSTS (NO PROFIT & RISK ADDED):

EQUIPMENT CLEANING: 3 PIECES @ \$1,000/PIECE = \$3,000

MACHINE TIME TO BLOCK/WATERBAR ROADS AND SKID TRAILS: 30 HOURS X \$200/HOUR = \$6,000

MACHINE TIME TO PILE LANDING SLASH: 28 HOURS X \$200/HOUR = \$5,600

TOTAL OTHER COSTS (NO P&R) = \$14,600

SLASH TREATMENT: 10 ACRES X \$250/ACRE = \$2,500

ROAD MAINTENANCE (INCLUDES SPOT ROCKING, GRADING, & ROLLING): MOVE IN: \$4,231.80 GENERAL ROAD MAINT: 11.50 miles X \$2,382.13 = \$27,394.50 TOTAL ROAD MAINTENANCE: \$31,626.30 / 3,580 MBF = \$8.83 /MBF

District: Forest Grove

Date: October 03, 2024

	Logging	Conditions
Combination#: 1	Douglas - Fir Western Hemlock / Fir Alder (Red)	81.00% 81.00% 81.00%
Logging System:	Cable: Medium Tower >40 - <70	Process: Harvester Head Delimbing
yarding distance: tree size:	Medium (800 ft) Mature / Regen Cut (900 Bft/tree), 3-5 logs/ME	downhill yarding: No BF
loads / day:	25	bd. ft / load: 5002
cost / mbf:	\$63.80	
machines:	Log Loader (A) Forwarder Harvester Tower Yarder (Medium)	
Combination#: 2	Douglas - Fir	19.00%
	Western Hemlock / Fir	19.00%
	Alder (Red)	19.00%
Logging System:	Shovel	Process: Manual Falling/Delimbing
yarding distance: tree size:	Short (400 ft) Mature / Regen Cut (900 Bft/tree), 3-5 logs/MB	downhill yarding: No BF
loads / day:	25	bd. ft / load: 4940
cost / mbf:	\$80.97	
machines:	Shovel Logger	

District: Forest Grove

Date: October 03, 2024

Logging Costs		
Operating Seasons: 2.00	Profit Risk: 15%	
Project Costs: \$183,125.00	Other Costs (P/R): \$0.00	
Slash Disposal: \$2,500.00	Other Costs: \$14,600.00	

Miles of Road		Road Maintenance:	\$8.83
Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	2.0	4.6
Western Hemlock / Fir	\$0.00	2.0	3.8
Noble Fir	\$0.00	2.0	4.0
Alder (Red)	\$0.00	2.0	3.5

District: Forest Grove

Date: October 03, 2024

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$67.06	\$9.01	\$2.45	\$138.59	\$0.00	\$32.57	\$0.70	\$2.00	\$4.08	\$256.46
Western H	emlock	/ Fir							
\$67.06	\$9.01	\$2.45	\$167.76	\$0.00	\$36.94	\$0.70	\$2.00	\$4.08	\$290.00
Alder (Red	I)								
\$67.06	\$9.27	\$2.45	\$187.50	\$0.00	\$39.94	\$0.70	\$2.00	\$4.08	\$313.00

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$711.20	\$454.74	\$0.00
Western Hemlock / Fir	\$0.00	\$505.24	\$215.24	\$0.00
Alder (Red)	\$0.00	\$488.00	\$175.00	\$0.00

District: Forest Grove

Date: October 03, 2024

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	3,385	\$454.74	\$1,539,294.90
Western Hemlock / Fir	141	\$215.24	\$30,348.84
Alder (Red)	54	\$175.00	\$9,450.00

Gross Timber Sale Value		
Recovery:	\$1,579,093.74	
Prepared By: Adrian Torres	Phone: 503-359-7460	

TIMBER SALE SUMMARY Final Round #FG-341-2025-W01158-01

- 1. Location: Portions of Section 1, T2N, R6W, W.M., Washington County, Oregon.
- 2. <u>Type of Sale</u>: This timber sale is 95 net acres of Modified Clearcut. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. <u>Revenue Distribution</u>: 100% BOF; 100% Washington County
- 4. <u>Sale Acreage</u>: Acres are net of Stream Buffers, Green Tree Retention Areas, and road prisms. Acreage was determined using ESRI ArcMap GIS Pro software.
- 5. <u>Cruise</u>: The Timber Sale was cruised by ODF timber cruisers in September of 2024. For more information, see Cruise Report.
- 6. <u>Timber Description</u>: The Timber Sale Area consists of a well-stocked, 75 year-old stand of Douglas-fir with minor components of western hemlock, noble fir, western redcedar and red alder. This timber stand has an average of 194.8 ft² of basal area and an average Douglas-fir DBH of 19 inches. The estimated average net Douglas-fir volume is approximately 35.6 MBF per acre.
- 7. <u>Topography and Logging Method</u>: Slopes within the Timber Sale Area range from 5% to 80% with north aspect. The Timber Sale Area is 19% ground-based yarding and 81% cable-based yarding. The average horizontal skid trail length is 150 feet and the maximum is approximately 620 feet. The average cable yarding road length is 480 feet and the maximum is approximately 1,280 feet.
- 8. <u>Access</u>: Access to the Timber Sale Area is on surfaced roads. From Forest Grove, travel north on Highway 47 through Banks then merge onto Highway 26 westbound and continue for approximately 11.5 miles to Timber Road and turn left. Continue for 3 miles to Cochran Road and turn right. Continue for 3.8 miles to Round Top Road and turn left. Continue on Round Top Road for 3.5 miles to access the Timber Sale Area.

9.	Projects:	
	Project No. 1: Rocked Road Construction	\$10,546.77
	Project No. 2: Road Improvement	\$161,508.29
	Project No. 3: Test Drilling	\$1,992.00
	Project No. 4: Road Vacating	\$9,077.94
	Total Credit for all Projects	\$183,125.00

PROJECT COST SUMMARY SHEET

Timber Sale:	Final Round
Sale Number:	FG-341-2025-W01158-01
Prepared By:	Natalie Lubischer
Reviewed By:	Tom Kennedy

PROJECT NO. 1: ROCKED ROAD CONSTRUCTION

		0.60 miles	
-	Road Segment V1 to V2	Length 31+45 31+45 stations	Cost \$7,298.63
PROJECT NO. 4: ROAD VACATING			
		TOTAL PROJECT COST =	\$1,992.00
		Move-in =	\$545.00
Location Bell Bottom G Round Top G	s Quarry Quarry	Sites 3 3	Cost \$516.00 \$931.00
PROJECT NO. 3: TEST DRILLING			
		TOTAL PROJECT COST =	\$161,508.29
		Move-in =	\$5,359.55
	3,215 cy 1,773 cy 156 cy	1½" - 0 Jaw-run Riprap	
Total Rock =		461+10 stations 8.73 miles	
-	G to H I to J	20+55 163+65	\$2,808.23 \$21,463.50
	B to C E to F	63+70 59+80	\$72,223.56 \$17,720.09
-	Road Segment	Length	Cost
PROJECT NO. 2: ROAD IMPROVEMENT			
			\$10,546.77
	321 cy	Jaw-run Move-in =	\$349.99
Total Rock =		0.06 miles	
-	C to D	3+10 3+10 stations	\$10,196.78

	SUM	MARY OF C	CONSTRUC	TION COST			
Timber Sale:		Final Rour	nd	_	Sale Number:	FG-341-202	5-W01158-01
Road Segment:		A to B			Improvement:	317+05	stations
				-		6.00	miles
PROJECT NO. 2: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	3.64	ac @	\$1,353.60	per acre =		\$4,927.10	
Roadside brushing	1.34	mi @	\$850.00	per mi =		\$1,139.00	
Clean ditch & scatter waste material	0.60	sta @	\$66.00	per sta =		\$39.60	
Clean culvert inlet & outlet, scatter waste	3	ea @	\$27.50	per ea =		\$82.50	
Clean or construct settling pond & end-haul	04	@	Ф <u>о</u> д со				
waste (48+95, 91+85 & 120+20)	21	ea @	\$27.50	per ea =		\$577.50	
Haul	27	су @	\$2.09	per cy =		\$56.43	
Compact waste area	27	су @	\$0.35	per cy =		\$9.45	
Clean or construct settling pond & end-haul	36	63 Ø	\$27.50	per ea -		¢000 00	
waste (189+40, 192+25, 222+50, & 248+50)	50	ea 🖷	ψ21.00	per ea -		ψ330.00	
Haul	51	су @	\$1.94	per cy =		\$98.94	
Compact waste area	51	су @	\$0.35	per cy =		\$17.85	
Powerline locate service	2	hrs @	\$300.00	per hr =		\$600.00	
Grade & roll	317.05	sta @	\$35.45	per sta =		\$11,239.42	
				TOTAL	IMPROVEMEN	NT COSTS =	\$19.777.79
CULVERTS							+ - 1 -
Markers & Stakes	-						
Culvert markers	7	ea @	\$12.00	per ea =		\$84.00	
				т	OTAL CULVER	RT COSTS =	\$84.00
ROCK				—			
	-						
	Rock	Base	Haul Cost	Placement/	Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	Processing Cost	\$/cy		
Surfacing rock						11	
Surfacing rock	1½" - 0	\$1.24	\$9.35	\$1.35	1,788	\$21,348.72	
Curve widening	1½" - 0	\$1.24	\$9.06	\$1.35	15	\$174.75	
				Subto	otal = 1,803	\$21,523.47	
			Tatala		alt 1 000	1	
			Totals		CK = 1,803	-	
				12	2 - 0 1,803	1	
						CK COSTS -	\$21 523 47
							Ψ= 1,020.41
Cross acad & fortilizar	0.00	aa @	¢607 50			COE4 40	
Grass seed & Terrillizer	0.36	ac @	\$697.50 \$000.00	per ac =		\$251.10 ¢207.00	
Straw multin acre	0.30	ace	φ 9 90.00	per ac =		φ297.00	
				TOTAL ERO	SION CONTRO	<u> OL COSTS =</u>	\$548.10

TOTAL PROJECT COST = \$41,933.36

	SUMN	ARY OF C	CONSTRUC	TION COS	ST		
Timber Sale:		Final Roun	nd		Sale Number:	FG-341-202	5-W01158-01
Road Segment:		B to C			Improvement:	63+70	stations
				-		1.21	miles
PROJECT NO. 2: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	0.74	ac @	\$1,353.60	per acre =	=	\$1,001.66	
Roadside brushing	0.80	mi @	\$850.00	per mi =		\$680.00	
Clean culvert inlet & outlet, scatter waste	1	ea @	\$27.50	per ea =		\$27.50	
End-haul waste from Culvert Nos. 5 & 6							
Haul waste material	48	су @	\$1.82	per cy =		\$87.36	
Shape and compact waste material	48	су @	\$0.35	per cy =		\$16.80	
Bank slough/ unstable material removal							
Excavate & load	68	су @	\$3.23	per cy =		\$219.64	
Haul	88	су @	\$1.84	per cy =		\$161.92	
Shape and compact waste material	88	су @	\$0.35	per cy =		\$30.80	
Construct settling pond	3	ea @	\$27.50	per ea =		\$82.50	
Haul	4	су @	\$1.77	per cy =		\$7.08	
Compact waste area	4	су @	\$0.35	per cy =		\$1.40	
Improve turnout	4	ea @	\$36.30	per ea =		\$145.20	
Construct turnout	1	ea @	\$72.60	per ea =		\$72.60	
Construct roadside landing	1	ea @	\$181.50	per ea =		\$181.50	
Excavate, place and & compact fill	120	су @	\$1.94	per cy =		\$232.80	
Improve roadside landing	1	ea @	\$90.75	per ea =		\$90.75	
Powerline locate service	2	hrs @	\$300.00	per hr =		\$600.00	
Grade, ditch, & roll	63.70	sta @	\$39.65	per sta =		\$2,525.70	
					TOTAL IMPROVEMEN	NT COSTS =	\$6,165.21
CULVERTS							
Culverts and Bands	-						
18" Diameter	160	lf @	\$22.05	per lf =		\$3,528.00	
24" Diameter	30	lf @	\$31.90	per If =		\$957.00	
Markers & Stakes							
Culvert markers	6	ea @	\$12.00	per ea =		\$72.00	
						T COSTS -	\$4 557 00

ROCK

TOTAL CULVERT COSTS = \$4,557.00

	Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placement/ Processing Cost \$/cy	Total CY	Rock Cost
Subgrade rock						
Bedding and backfill	1½" - 0	\$1.24	\$16.52	\$0.55	144	\$2,636.64
Energy dissipator	Riprap	\$5.62	\$7.78	\$1.75	12	\$181.80
		-		Subtotal =	156	\$2,818.44
Surfacing rock	T					
Surfacing rock (0+00 to 63+70)	1½" - 0	\$1.24	\$16.52	\$1.35	956	\$18,269.16
Surfacing rock (16+90 to 63+70)	Jaw-run	\$13.68	\$7.78	\$1.35	1,451	\$33,097.31
Curve widening	1½" - 0	\$1.24	\$16.52	\$1.35	12	\$229.32
Junction	1½" - 0	\$1.24	\$16.52	\$1.35	60	\$1,146.60
Turnout (Improve)	Jaw-run	\$13.68	\$7.78	\$1.35	56	\$1,277.36
Turnout (Construct)	Jaw-run	\$13.68	\$7.78	\$1.35	29	\$661.49
Roadside landing (Improve)	Jaw-run	\$13.68	\$7.78	\$1.35	47	\$1,072.07
Roadside landing (Construct)	Jaw-run	\$13.68	\$7.78	\$1.35	95	\$2,166.95
				Subtotal =	2,706	\$57,920.26

Totals	All Rock =	2,862
	1½" - 0	1,172
	Jaw-run	1,678
	Riprap	12

TOTAL ROCK COSTS = \$60,738.70

						φοσ,ι σσιι
EROSION CONTROL						
Grass seed & fertilizer	0.86	ac @	\$697.50	per ac =	\$599.85	
Straw mulch acre	0.12	ac @	\$990.00	per ac =	\$118.80	
Straw mulch bale	4	ea @	\$11.00	per ea =	\$44.00	

TOTAL EROSION CONTROL COSTS = \$762.65

TOTAL PROJECT COST = \$72,223.56

	SUMM	ARY OF CO	ONSTRUC ⁻	TION COST			
Timber Sale:		Final Rour	nd		Sale Number:	FG-341-202	5-W01158-01
Road Segment:		C to D		- (Construction:	3+10	stations
-				-		0.06	miles
PROJECT NO. 1: ROCKED ROAD CONS	STRUCTI	ON					
CONSTRUCTION							
Clearing & grubbing (scatter)	0.36	ac @	\$1,692.00	per ac =		\$609.12	
Balanced road construction	3.10	sta @	\$120.00	per sta =		\$372.00	
Landing	1	ea @	\$242.00	per ea =		\$242.00	
Grade, ditch, & roll	3.10	sta @	\$39.65	per sta =		\$122.91	
							¢1 346 03
CULVERTS						<u> 1 00010 –</u>	\$1,540.05
Culverts and Bands							
18" Diameter	40	lf @	\$22.05	per If =		\$882.00	
Markers & Stakes							
Culvert markers	1	ea @	\$12.00	per ea =		\$12.00	
				то			#004.00
ROCK				<u>10</u>	TAL CULVER	100313 =	ро94.00
		_		Placement	'		
	Rock	Base	Haul Cost	Processing	Total CY	Rock Cost	
	Size	Cost \$/cy	\$∕су	Cost \$/cy			
Surfacing rock							
Base rock	Jaw-run	\$13.68	\$9.32	\$1.35	202	\$4,918.70	
Junction	Jaw-run	\$13.68	\$9.32	\$1.35	24	\$584.40	
Landing	Jaw-run	\$13.68	\$9.32	\$1.35	95	\$2,313.25	
				Subtota	l = 321	\$7,816.35	
			Totals	All Rock	x = 321		
				Jaw-r	un 321		
					TOTAL ROC	K COSTS =	\$7,816.35
							·
Cross and & fortilizor	0.19		¢700.00	nor 00 -		¢140.40	
Glass seeu a leiliizei	0.10	ac @	φ/ου.00	per ac =		φ140.40	
				TOTAL EROS	ON CONTRO	<u>)L COSTS =</u>	\$140.40

TOTAL PROJECT COST = \$10,196.78

	SUMM	IARY OF C	ONSTRUC	TION COS	ST		
Timber Sale:		Final Roun	d		Sale Number:	FG-341-202	5-W01158-01
Road Segment:		E to F			Improvement:	59+80	stations
<u> </u>						1.13	miles
PROJECT NO. 2: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	0.69	ac @	\$1,692.00	per acre =	-	\$1,167.48	
Roadside brushing	1.13	mi @	\$1,100.00	per mi =		\$1,243.00	
Clean culvert inlet & outlet, end-haul waste	1	ea @	\$27.50	per ea =		\$27.50	
Haul waste material	1	су @	\$1.79	per cy =		\$1.79	
Shape and compact waste material	1	cy @	\$0.35	per cy =		\$0.35	
End-haul waste from Culvert Nos. 8 - 12							
Haul waste material	120	су @	\$1.85	per cy =		\$222.00	
Shape and compact waste material	120	cy @	\$0.35	per cy =		\$42.00	
Construct settling pond	3	ea @	\$27.50	per ea =		\$82.50	
Haul waste material	4	су @	\$1.89	per cy =		\$7.56	
Shape and compact waste material	4	cy @	\$0.35	per cy =		\$1.40	
Improve turnout	5	ea @	\$36.30	per ea =		\$181.50	
Construct roadside landing	1	ea @	\$181.50	per ea =		\$181.50	
Excavate, place and & compact fill	120	cy @	\$1.94	per cy =		\$232.80	
Grade & roll (outslope)	26.95	sta @	\$16.95	per sta =		\$456.80	
Grade, ditch, & roll	32.85	sta @	\$39.65	per sta =		\$1,302.50	
					TOTAL IMPROVEMEN	T COSTS =	\$5.150.68
CULVERTS					<u>· · · · · · · · · · · · · · · · · · · </u>		<i>+•,•••••</i>
Culverts and Bands							
18" Diameter	30	lf @	\$22.05	per lf =		\$661.50	
24" Diameter	90	lf @	\$31.90	per lf =		\$2,871.00	
30" Diameter	40	lf @	\$42.95	per lf =		\$1,718.00	
Markers & Stakes				•			
Culvert markers	5	ea @	\$12.00	per ea =		\$60.00	
Additional Installation Cost				•		-	
Flume removal at 30+50	0.5	hrs @	\$192.50	per hr =	_	\$96.25	
					TOTAL CULVER	T COSTS =	\$5,406.75

ROCK

	Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placement/ Processing Cost \$/cy	Total CY	Rock Cost
Subgrade rock			•		•	
Bedding and backfill	1½" - 0	\$1.24	\$16.52	\$0.55	120	\$2,197.20
Energy dissipator	Riprap	\$5.62	\$13.96	\$1.75	72	\$1,535.76
				Subtotal =	192	\$3,732.96
Surfacing rock						
Roadside landing	Jaw-run	\$13.68	\$13.96	\$1.35	95	\$2,754.05
				Subtotal =	95	\$2,754.05

Totals

All Rock =	287
1½" - 0	120
Jaw-run	95
Riprap	72

TOTAL ROCK COSTS = \$6,487.01

EROSION CONTROL					
Grass seed & fertilizer	0.74	ac @	\$697.50	per ac =	\$516.15
Straw mulch acre	0.05	ac @	\$990.00	per ac =	\$49.50
Straw mulch bale	10	ea @	\$11.00	per ea =	\$110.00

TOTAL EROSION CONTROL COSTS = \$675.65

TOTAL PROJECT COST = \$17,720.09

		SUMN	ARY OF C	ONSTRUC	TION COS	Т		
	Timber Sale:		Final Rour	nd		Sale Number:	FG-341-2025	5-W01158-01
R	load Segment:		G to H			Improvement:	20+55	stations
							0.39	miles
PROJECT NO. 2: ROAD IMPR	ROVEMENT							
IMPROVEMENT								
Clearing & grubbing (scatter)		0.24	ac @	\$1,692.00	per acre =		\$406.08	
Roadside brushing		0.39	mi @	\$1,550.00	per mi =		\$604.50	
Contruct turnout		2	ea @	\$72.60	per ea =		\$145.20	
Construct turnaround		1	ea @	\$90.75	per ea =		\$90.75	
Approach to landing		1.30	sta @	\$120.00	per sta =		\$156.00	
Construct roadside landing		1	ea @	\$181.50	per ea =		\$181.50	
Construct landing		1	ea @	\$242.00	per ea =		\$242.00	
Grade, ditch, & roll		20.55	sta @	\$39.65	per sta =		\$814.80	
]	TOTAL IMPROVEMEN	IT COSTS =	\$2,640.83
EROSION CONTROL								
Grass seed & fertilizer		0.24	ac @	\$697.50	per	ac =	\$167.40	
					<u>TOTA</u>	L EROSION CONTRO	L COSTS =	\$167.40

TOTAL PROJECT COST = \$2,808.23

	SUMM	IARY OF C	ONSTRUC	TION COST				
Timber Sale:		Final Rour	nd		Sale N	lumber:	FG-341-202	5-W01158-01
Road Segment:		I to J		-	Improv	ement:	163+65	stations
C C				-			3.10	miles
PROJECT NO. 2: ROAD IMPROVEMENT								
IMPROVEMENT								
Clearing & grubbing (scatter)	1.88	ac @	\$1,353.60	per acre =			\$2,544.76	
Roadside brushing	0.29	mi @	\$850.00	per mi =			\$246.50	
Clean culvert inlet & outlet, scatter waste	4	ea @	\$27.50	per ea =			\$110.00	
Clean culvert inlet & outlet, end-haul waste								
(144+30 & 146+20)	2	ea @	\$27.50	per ea =			\$55.00	
Haul waste material	1	су @	\$3.69	per cy =			\$3.69	
Shape and compact waste material	1	су @	\$0.35	per cy =			\$0.35	
End-haul waste from Culvert Nos. 13 - 17								
Haul	120	су @	\$2.83	per cy =			\$339.60	
Compact waste area	120	су @	\$0.35	per cy =			\$42.00	
Construct settling ponds	72	ea @	\$27.50	per ea =			\$1,980.00	
Haul waste material	94	су @	\$3.34	per cy =			\$313.96	
Shape and compact waste material	94	cy @	\$0.35	per cy =			\$32.90	
Powerline locate service	2	hrs @	\$300.00	per hr =			\$600.00	
Grade & roll	163.65	sta @	\$35.45	per sta =			\$5,801.39	
				TOTA		/EMEN	T COSTS =	\$12,070.15
CULVERTS	_						_	
Culverts and Bands								
18" Diameter	70	lf @	\$22.05	per lf =			\$1,543.50	
24" Diameter	100	lf @	\$31.90	per lf =			\$3,190.00	
Markers & Stakes								
Culvert markers	8	ea @	\$12.00	per ea =			\$96.00	
					TOTAL C	ULVER	T COSTS =	\$4,829.50
ROCK	-							
	Pock	Basa	Haul Cost	Placaman	+/			
	Size	Cost \$/cv	\$/cv	Processing Co	st \$/cv	otal CY	Rock Cost	
			<i>4, 2</i>	, i i i i i i i i i i i i i i i i i i i				
Subgrade rock Rodding and backfill	11/" 0	¢1 04	¢11.00	¢0.55		120	¢1 524 90	
Epergy dissipator	1/2 - U Rinran	\$5.62	\$10.13	\$0.33 \$1.75		72	\$1,334.00	
Energy dissipator	Пріар	ψ0.02	ψ10.15	φ1.75 Sul	htotal =	192	\$2,794,80	
						102	φ2,704.00	
			Totals	All F	Rock =	192	1	
			. otalo	7	1½" - 0	120		
					Riprap	72		
							1	
					<u>TOTA</u>	L ROCI	K COSTS =	\$2,794.80
EROSION CONTROL	_							
Grass seed & fertilizer	2.06	ac @	\$697.50	per ac =			\$1,436.85	
Straw mulch acre	0.18	ac @	\$990.00	per ac =			\$178.20	
Straw mulch bale	14	ea @	\$11.00	per ea =			\$154.00	
				TOTAL FRO			L COSTS =	\$1 769 05
								÷.,

TOTAL PROJECT COST = \$21,463.50

	SUMM	IARY OF CO	ONSTRUC	TION COST			
Timber Sale:		Final Roun	d		Sale Number:	FG-341-202	5-W01158-01
Road Segment:		V1 to V2		_	Improvement:	31+45	stations
				-	·	0.60	miles
PROJECT NO. 4: ROAD VACATING							
VACATING							
Construct tank trap	1	ea @	\$60.50	per ea =		\$60.50	
Fill removal End-haul (5+25)							
Excavate & load	28	су @	\$1.94	per cy =		\$54.32	
Haul waste material	36	су @	\$1.02	per cy =		\$36.72	
Compact waste area	36	су @	\$0.35	per cy =		\$12.60	
Fill removal End-haul (16+05)							
Excavate & load	37	су @	\$1.94	per cy =		\$71.78	
Haul waste material	48	су @	\$1.30	per cy =		\$62.40	
Compact waste area	48	су @	\$0.35	per cy =		\$16.80	
Fill removal End-haul (22+70)							
Excavate & load	114	су @	\$1.94	per cy =		\$221.16	
Haul waste material	148	су @	\$1.60	per cy =		\$236.80	
Compact waste area	148	су @	\$0.35	per cy =		\$51.80	
Rip rocked road surface	31.45	sta @	\$55.00	per sta =		\$1,729.75	
Rip rocked approach to landing road surface	2.05	sta @	\$55.00	per sta =		\$112.75	
Rip & narrow landing	3	ea @	\$165.00	per ea =		\$495.00	
Remove existing culverts	4	ea @	\$165.00	per ea =		\$660.00	
					TOTAL VACATING	G COSTS =	\$3.822.38
EROSION CONTROL							, . ,
Grass seed & fertilizer	2.06	ac @	\$697.50	per ac	=	\$1,436.85	
Straw mulch acre	2.06	ac @	\$990.00	per ac	=	\$2,039.40	

TOTAL EROSION CONTROL COSTS = \$3,476.25

TOTAL PROJECT COST = \$7,298.63

		SI	JMMARY TE	ST DRILLI	NG COST					
	Timber Sale:		Final Roun	d	_	Sale Number:	FG-341-2025-W01158-01			
	Quarry Names:		Bell Bottom	า	_	Test Drilling:	6	sites		
	_		Round Top)	_					
PROJECT NO. 3: TEST DRI	LLING									
DRILLING & REPORTING										
Bell Bottom										
Test drills & drill reports		3	ea @	\$172.00	pre ea =		\$516.00			
Round Top										
Test drills & drill reports		3	ea @	\$172.00	pre ea =		\$516.00			
Prep and clean up quarry	/	1	ea @	\$415.00	pre ea =		\$415.00			
					TOTAL DRILLIN	IG & REPORTING	<u> COSTS =</u>	\$931.00		

TOTAL PROJECT COST = \$931.00

т	imber Sale: Final Round	Sale Number:	FG-341-2025-W01158-01			
PROJECT No. 1 & 2 MOVE-IN, W	ITHIN AREA MOVE, & CLE	ANING COSTS				
Equipment			Total			
Drill			\$265.60			
Brush Cutter			\$254.05			
Grader			\$265.60			
Loader			\$279.05			
Roller			\$254.05			
Excavator - Equipment Cleaning			\$1,550.36			
Dozer - Equipment Cleaning			\$1,550.36			
Dump Truck			\$231.23			
Water Truck			\$209.59			
Vacuum truck			\$849.65			
		TOTAL MOVE-IN C	OSTS =	\$5,709.54		
PROJECT No. 3 MOVE-IN, WITHI	N AREA MOVE, & CLEANII	NG COSTS				
Equipment			Total			
Move in & setup drill			\$545.00			
		TOTAL MOVE-IN C	OSTS =	\$545.00		
PROJECT No. 4 MOVE-IN, WITHI	N AREA MOVE, & CLEANII	NG COSTS				
Equipment			Total			
Excavator - Equipment Cleaning			\$1,550.36			
Dump Truck			\$228.95			

SUMMARY OF CONSTRUCTION COST

TOTAL MOVE-IN COSTS =

\$1,779.31

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

	Timber Sale:	Fina	Round		
	Sale Number:	FG-341-202	25-W01158-01		
	Stockpile Name:	Ing	gersoll		
	1 1/2" - 0:	3,215 cy	(truck measure)		
	Total truck yardage:	3,215 cy	_		
Move-in					
Move in loader					\$795.93
Move in Dump Trucks					\$302.18
				Subtotal =	\$1,098.11
				Per CY =	\$0.34/cy
1 1/2"-0 Base Cost					
Load dump truck	\$0.90	/ cy x	3,215	cy =	\$2,893.50
				Subtotal =	\$2,893.50
				Per CY =	\$0.90

1 1/2"-0 Cost = \$1.24/cy

Timber Sale: Sale Number: Quarry Name:	Fina FG-341-20 Bel	al Round 025-W01158-01 I Bottom		
Riprap: Jaw-run: Total truck vardage:	156 cy 2,094 cy 2,250 cy	(truck measure) (truck measure)		
Total in place yardage:	1,822 cy	_		
Oversize - Pile: Swell: Compaction:	5% 130% 116%	_		
Move-in & Other Base CostEquipment cleaning & move in excavator Move in & setup drill Move in loader Move in & setup crusher Move in dump trucks Clean up quarryJaw-run Base CostDrill & shoot\$3.10 \$0.80 Coversize - PileDoad crusher \$0.90 Screen rock\$0.90 \$2.31 Load dump truckCrush (Jaw-run)\$2.31 \$0.90	/ cy x / cy x	1,696 2,205 110 2,095 2,095 2,095 2,095 2,095	Subtotal = Per CY = Cy = Cy = Cy = Cy = Cy = Cy = Cy = Cy	\$2,222.39 \$744.77 \$1,064.29 \$1,743.34 \$468.00 \$500.00 \$6,742.79 \$2.99/cy \$5,257.60 \$1,764.00 \$88.00 \$1,885.50 \$6,683.05 \$4,839.45 \$1,885.50 \$22,403.10 \$10.69/cy
Riprap Boulder Base CostRip rock\$2.30Load dump truck\$1.75	/ cy x / cy x	<u>60</u> 156	cy = _cy = _ Subtotal = _ Per CY = _	\$138.00 \$273.00 \$411.00 \$2.63

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

Jaw-run Base Cost = \$13.68/cy Riprap Cost = \$5.62/cy

TC PSTA	ATS			PR	OJECT S	<u>STATIS</u> FINA	<u>STICS</u> ALROU	FICS PAGE LROU DATE			
TWP	RGE	SC TRACT	1	ТҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt
02N	06	01 00U1		00MC			95.00	39	192	S	W
					TREES		ESTIMATED TOTAL	PE SA	RCENT AMPLE		
		PLOTS	TREES		PER PLOT		TREES]	TREES		
TOTAL	_	39	192		4.9						
CRUISE DBH CO REFOR COUNT BLANK	E OUNT REST T KS	39	192		4.9		9,925		1.9		
100 /0				STA	ND SUMM	ARY					
			TREE		DOLE	DEI	DACAL	CDOGG	NICT	CDOSS	
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOUG	FIR	175	87.9	19.4	120	40.8	179.5	36,492	36,356	8,003	8,003
DOUG I	FIR-S	2	1.3	16.7	64	0.5	2.1				
WHEM	ILOCK	8	7.1	14.6	80	2.1	8.2	1,119	1,099	267	267
R ALDE	ER	5	7.6	11.1	77	1.5	5.1	597	597	135	135
TOTAI	IK T	102	.0 104 5	20.1	124	0.4 45.7	2.1	407	407	89 8 404	89 8 404
CONFI	68	3.1 TIMES OU	JT OF 100 TH	E VOLUME	WILL BE W	/ITHIN TH	IE SAMPLE E	RROR			
CL SD:	68.1	COEFF		т	SAMPLE	TREES -	BF	# (OF TREES R	EQ.	INF. POP.
SD:	<u>1.0</u>	VAR.%	S.E.%	L	672	AVG 705	HIGH 729		5	10	15
DOUG	FIR-S	00.0	4.0		075	705	750				
WHEM	ILOCK	76.4	28.8		176	248	319				
R ALDI	ER	91.1	45.3		55	100	145				
NOB FI	IR	29.4	27.5		558	770	982				
TOTAI	L	65.6	4.7		633	664	695		172	43	19
CL	68.1	COEFF			SAMPLE	TREES -	CF	# (OF TREES R	EQ.	INF. POP.
SD:	1.0	VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	15
DOUG	FIR FIR	55.0	4.2		147	153	160				
WHEM	FIK-S	76.0	28.7		43	61	78				
R ALDI	ER	90.9	45.2		12	23	33				
NOB FI	IR	25.8	24.1		127	167	207				
TOTAI	-					107	207				
CI	L	60.1	4.3		138	144	207 151		144	36	16
	L 68.1	60.1 COEFF	4.3		138 TREES/A	144 ACRE	207 151	# (144 DF PLOTS R	36 EQ.	16 INF. POP.
SD:	68.1 1.0	60.1 COEFF VAR.%	4.3 S.E.%	L	138 TREES/A	144 ACRE AVG	207 151 HIGH	# (144 DF PLOTS RI 5	36 EQ. 10	16 INF. POP. 15
SD: DOUG I	68.1 1.0 FIR	60.1 COEFF VAR.% 89.8	4.3 S.E.% 14.4	L	138 TREES/A OW 75	144 ACRE AVG 88	207 151 HIGH 101	# (144 DF PLOTS RI 5	36 EQ. 10	16 INF. POP. 15
SD: DOUG I DOUG I	68.1 1.0 FIR FIR-S	60.1 COEFF VAR.% 89.8 475.1	4.3 S.E.% 14.4 76.0	L	138 TREES/A OW 75 0	144 ACRE AVG 88 1	207 151 HIGH 101 2	# (144 DF PLOTS RI 5	36 EQ. 10	16 INF. POP. 15
SD: DOUG I DOUG I WHEMI	68.1 1.0 FIR FIR-S ILOCK	60.1 COEFF VAR.% 89.8 475.1 333.6	4.3 S.E.% 14.4 76.0 53.4	L	138 TREES/A OW 75 0 3	144 ACRE AVG 88 1 7	207 151 HIGH 101 2 11	# (144 DF PLOTS RI 5	36 EQ. 10	16 INF. POP. 15
SD: DOUG I DOUG I WHEMI R ALDE	L 68.1 1.0 FIR FIR-S ILOCK ER	60.1 COEFF VAR.% 89.8 475.1 333.6 624.5	4.3 S.E.% 14.4 76.0 53.4 99.9	L	138 TREES/A OW 75 0 3 0	144 ACRE AVG 88 1 7 8	207 151 HIGH 101 2 11 15	# (144 DF PLOTS RI 5	36 EQ. 10	16 INF. POP. 15
SD: DOUG I DOUG I WHEMI R ALDE NOB FI	L 68.1 FIR FIR-S ILOCK ER IR	60.1 COEFF VAR.% 89.8 475.1 333.6 624.5 443.7 22.6	4.3 S.E.% 14.4 76.0 53.4 99.9 71.0	L	138 TREES/A OW 75 0 3 0 0 0	144 ACRE AVG 88 1 7 8 1 104	207 151 HIGH 101 2 11 15 1 128	# (144 DF PLOTS RI 5	36 EQ. 10	16 INF. POP. 15
SD: DOUG 1 DOUG 1 WHEM. R ALDF NOB FI TOTAI	L 68.1 1.0 FIR FIR-S ILOCK ER IR L	60.1 COEFF VAR.% 89.8 475.1 333.6 624.5 443.7 82.6	4.3 S.E.% 14.4 76.0 53.4 99.9 71.0 <i>13.2</i>	L	138 TREES/A OW 75 0 3 0 0 91	144 ACRE AVG 88 1 7 8 1 104	207 151 101 2 11 15 1 118	# (144 DF PLOTS R 5 272	36 EQ. 10 68	16 INF. POP. 15 30
CL SD: DOUGI DOUGI WHEM R ALDE NOB FI TOTAL	68.1 1.0 FIR FIR-S ILOCK ER IR L 68.1	60.1 COEFF VAR.% 89.8 475.1 333.6 624.5 443.7 82.6 COEFF	4.3 S.E.% 14.4 76.0 53.4 99.9 71.0 13.2	L	138 TREES/A OW 75 0 3 0 0 91 BASAL A	144 ACRE AVG 88 1 7 8 1 104 AREA/ACI	207 151 HIGH 101 2 11 15 1 118 RE	# (144 DF PLOTS RI 5 272 DF PLOTS RI	36 EQ. 10 68 EQ.	16 INF. POP. 15 30 INF. POP.
SD: DOUG I DOUG I WHEM R ALDI NOB FI TOTAI CL SD:	68.1 1.0 FIR FIR-S ILOCK ER IR L 68.1 1.0	60.1 COEFF VAR.% 89.8 475.1 333.6 624.5 443.7 82.6 COEFF VAR.%	4.3 S.E.% 14.4 76.0 53.4 99.9 71.0 <i>13.2</i> S.E.%	L	138 TREES/A OW 75 0 3 0 0 91 BASAL A OW 160	144 ACRE AVG 88 1 7 8 1 104 AVG AVG	207 151 HIGH 101 2 11 15 1 118 RE HIGH	# (144 DF PLOTS RI 5 272 DF PLOTS RI 5	36 EQ. 10 68 EQ. 10	16 INF. POP. 15 30 INF. POP. 15
CL SD: DOUG1 DOUG1 WHEM R ALDI NOB FI TOTAL CL SD: DOUG1 DOUG1	68.1 1.0 FIR FIR-S ILOCK ER IR L 68.1 1.0 FIR FIR	60.1 COEFF VAR.% 89.8 475.1 333.6 624.5 443.7 82.6 COEFF VAR.% 36.8	4.3 S.E.% 14.4 76.0 53.4 99.9 71.0 13.2 S.E.% 5.9 60.7	L	138 TREES/A OW 75 0 3 0 91 BASAL A OW 169	107 144 ACRE AVG 88 1 7 8 1 104 AVG 179 2	207 151 HIGH 101 2 11 15 1 118 RE HIGH 190 2	# (144 DF PLOTS RI 5 272 DF PLOTS RI 5	36 EQ. 10 68 EQ. 10	16 INF. POP. 15 30 INF. POP. 15
CL SD: DOUG I WHEM R ALDH NOB FI TOTAL CL SD: DOUG I DOUG I	68.1 1.0 FIR FIR-S ILOCK ER IR L 68.1 1.0 FIR FIR-S ILOCY	60.1 COEFF VAR.% 89.8 475.1 333.6 624.5 443.7 82.6 COEFF VAR.% 36.8 435.7 254.5	4.3 S.E.% 14.4 76.0 53.4 99.9 71.0 13.2 S.E.% 5.9 69.7 40.7	L	138 TREES/A OW 75 0 3 0 91 BASAL A OW 169 1 5	107 144 ACRE AVG 88 1 7 8 1 104 AREA/ACI AVG 179 2 8	207 151 HIGH 101 2 11 15 1 118 RE HIGH 190 3 12	# (144 DF PLOTS RI 5 272 DF PLOTS RI 5	36 EQ. 10 68 EQ. 10	16 INF. POP. 15 30 INF. POP. 15
CL SD: DOUG DOUG WHEM R ALDI NOB FI TOTAI CL SD: DOUG DOUG DOUG WHEM R ALDI	L 68.1 1.0 FIR FIR-S ILOCK ER IR ER 68.1 1.0 FIR FIR-S ILOCK ER	60.1 COEFF VAR.% 89.8 475.1 333.6 624.5 443.7 82.6 COEFF VAR.% 36.8 435.7 254.5 624 5	4.3 S.E.% 14.4 76.0 53.4 99.9 71.0 13.2 S.E.% 5.9 69.7 40.7 99.9	L	138 TREES/A OW 75 0 3 0 0 91 BASAL A OW 169 1 5 0	144 ACRE AVG 88 1 7 8 1 7 8 1 104 AVG 179 2 8 5	207 151 HIGH 101 2 11 15 1 118 RE HIGH 190 3 12 10	#(144 DF PLOTS RI 5 272 DF PLOTS RI 5	36 EQ. 10 68 EQ. 10	16 INF. POP. 15 30 INF. POP. 15
SD: DOUG : DOUG : WHEM: R ALDI NOB FI TOTAI CL SD: DOUG I DOUG I WHEMI R ALDI NOB FI	L 68.1 1.0 FIR FIR-S ILOCK ER IR 68.1 1.0 FIR FIR-S ILOCK ER IR	60.1 COEFF VAR.% 89.8 475.1 333.6 624.5 443.7 82.6 COEFF VAR.% 36.8 435.7 254.5 624.5 435.7	4.3 S.E.% 14.4 76.0 53.4 99.9 71.0 <i>13.2</i> S.E.% 5.9 69.7 40.7 99.9 69.7	L	138 TREES/A OW 75 0 3 0 0 91 BASAL A OW 169 1 5 0 1	107 144 ACRE AVG 1 104 AVG 179 2 8 5 2	207 151 HIGH 101 2 11 15 1 118 RE HIGH 190 3 12 10 3	# (144 DF PLOTS RI 5 272 DF PLOTS RI 5	36 EQ. 10 68 EQ. 10	16 INF. POP. 15 30 INF. POP. 15

TC PSI	ATS				PROJECT PROJECT	<u>r stati</u> fin	<u>STICS</u> ALROU			PAGE DATE	2 9/18/2024
TWP	RGE	SC	TRACT	TYI	PE	A	CRES	PLOTS	TREES	CuFt	BdFt
02N	06	01	00U1	00M	IC		95.00	39	192	S	W
CL	68.1		COEFF		NET B	F/ACRE			# OF PLOTS R	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU DOU	G FIR G FIR-S		40.1	6.4	34,024	36,356	38,687				
WHE	MLOCK		239.1	38.2	679	1,099	1,520				
R AL	DER		624.5	99.9	1	597	1,193				
NOB	FIR		435.8	69.7	123	407	691				
TOT	4L		33.8	5.4	36,377	38,459	40,540		46	11	5
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS R	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR		39.3	6.3	7,500	8,003	8,506				
DOU	G FIR-S										
WHE	MLOCK		238.3	38.1	165	267	369				
R AL	DER		624.5	99.9	0	135	270				
NOB	FIR		435.7	69.7	27	89	151				
TOT	AL		32.9	5.3	8,047	8,494	8,941		43	11	5

TC	TC PSPCSTGR Species, Sort Grade - Board Foot Volumes (Project)																		
TO	02N R06W S01 7	Гу00МС		95.00		Project: Acres	FINA	ALR(95.0	OU 0							Page Date Time	9/: 3:	1 18/202 :27:38	24 BPM
		%					Percent	t of N	et Boar	rd Foot	Volume					Aver	age Log	g	Logs
	S So Gr	Net	Bd. Ft	. per Acre		Total	Lo	g Scal	le Dia.			Log l	ength		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5 6-	-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	CU														5	19		0.00	4
DF	2M	74	.4	27.177	27.065	2.571			45	55				100	40	16	405	2.11	66.8
DF	3M	21	.3	7,768	7,744	736		100		00	0	1	3	96	39	8	99	0.64	78.3
DF	4M	5		1,546	1,546	147		100			20	65	7	8	24	6	30	0.33	51.3
DF	Totals	95	.4	36,492	36,356	3,454		26	34	41	1	3	1	95	35	10	185	1.15	196.8
DF	S CU														23	9		0.00	2.7
DF	Totals														23	9		0.00	2.7
RA	CR	100		597	597	57		75	25		9			91	35	7	72	0.46	8.3
RA	Totals	2		597	597	57		75	25		9			91	35	7	72	0.46	8.3
WH	CU														12	9		0.00	1.3
WH	2M	46	3.6	534	514	49			100					100	40	14	277	1.59	1.9
WH	3M	38		414	414	39		100			_		9	91	39	8	89	0.63	4.6
WH	4M	16		171	171	16		100			7		93		29	6	43	0.32	4.0
WH	Totals	3	1.7	1,119	1,099	104		53	47		1		18	81	33	8	94	0.70	11.8
NF	2M	81		332	332	32			53	47				100	40	16	429	2.27	.8
NF	3M	14		59	59	6		100						100	40	11	180	1.03	.3
NF	4M	5		17	17	2		100			41	59			21	6	30	0.46	.6
NF	Totals	1		407	407	39		18	43	38	2	2		96	34	12	247	1.60	1.7
Tota	als		0.4	38,614	38,459	3,654		27	34	39	1	3	1	95	35	10	174	1.09	221.2

TC	PSTNDSU	IМ				S	Stand 7	Fable S	Page Date:	1 9/18/2024					
T02N	R06W S0	1 Ty00MC		95.	00		Projec	t F	INALRO	U			Time:	3:27:3	9PM
							Acres		95.0	0			Grown Year:		
				Tot				Averag	e Log		Net	Net			
Spc T	DBH	Sample Trees	FF 16'	Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF	8	4	88	93	11.753	4.10	11.75	6.0	30.0	2.00	70	353	190	67	33
DF	9	2	88	99	4.643	2.05	4.64	10.9	60.0	1.44	51	279	137	48	26
DF	10	3	88	102	5.641	3.08	7.52	10.8	52.5	2.31	81	395	220	77	38
DF	11	2	87	99	3.108	2.05	4.66	11.9	50.0	1.58	56	233	150	53	22
DF	12	5	89	106	6.529	5.13	13.06	13.4	59.0	4.99	175	770	474	166	73
DF	14	2	8/	95 120	5.015	2.05	3.84 10.02	17.5	/5.0	6.77	0/	288	181 643	64 226	27
DF	15	4	88	120	2 938	4 10	5.88	23.7	105.8	4 56	160	698	433	152	101 66
DF	17	5	88	125	3.253	5.13	8.46	25.7	109.2	6.19	217	924	588	206	88
DF	18	4	88	124	2.322	4.10	5.80	29.6	125.0	4.90	172	725	465	163	69
DF	19	9	88	127	4.688	9.23	13.02	30.2	126.4	11.21	393	1,646	1,065	374	156
DF	20	4	87	128	1.880	4.10	5.64	32.1	135.8	5.17	181	766	491	172	73
DF	21	9	88	134	3.838	9.23	11.51	37.6	171.5	12.33	433	1,974	1,172	411	188
DF	22	5	86	129	1.943	5.13	5.44	41.0	183.6	6.36	223	999	604	212	95
DF	23	7	86	126	2.488	7.18	6.75	46.0	197.4	8.85	311	1,333	841	295	127
DF	24	15	86	138	4.897	15.38	15.02	48.4	212.2	20.70	726	3,186	1,967	690	303
DF	25	7	87	141	2.106	7.18	6.32	55.2	248.6	9.94	349	1,571	944	331	149
DF	26	16	86	140	4.451	16.41	13.35	59.5	265.6	22.63	794	3,547	2,150	754	337
DF	27	10	85	141	2.580	10.26	7.48	66.2	299.7	14.12	496	2,242	1,342	471	213
DF	28	17	80	140	4.078	17.44	12.23	69.0	322.4	24.05	844 640	3,943	2,285	802	3/5
DF	29 30	15	80 84	139	2.907	13.33	8.72 4.60	75.4	340.7	18.25	640 350	3,023 1,607	947	008 332	287
DF	31	9	86	145	1.405	9.23	4.00 5.48	84.5	409.3	13.19	463	2.242	1 253	440	213
DF	32	6	86	140	1.102	6.15	3.31	90.7	440.0	8.55	300	1.454	812	285	138
DF	34	2	84	153	.325	2.05	.98	105.4	521.7	2.93	103	509	278	98	48
DF	35	1	84	155	.154	1.03	.46	113.6	563.3	1.49	52	259	142	50	25
DF	42	1	85	171	.107	1.03	.43	138.7	767.5	1.69	59	327	160	56	31
DF	Totals	175	87	120	87.888	179.49	196.38	40.8	185.1	228.09	8,003	36,356	21,669	7,603	3,454
WH	10	1	87	55	1.880	1.03	1.88	10.2	50.0	.61	19	94	58	18	9
WH	12	2	86	69	2.612	2.05	2.61	13.7	55.0	1.14	36	144	109	34	14
WH	16	1	85	98	.735	1.03	1.47	25.4	100.0	1.19	37	147	113	35	14
WH	17	1	92	112	.651	1.03	1.30	32.3	135.0	1.35	42	176	128	40	17
WH WH	21	1 2	85 86	111	.426	2.05	.85 2.33	48.9 39.0	190.0 161.7	2.91	42 91	377	276	40 86	15 36
WH	Totals	8	87	80	7.081	8.21	10.45	25.5	105.2	8.54	267	1,099	811	254	104
RA	10	2	86	70	3.761	2.05	3.76	11.0	50.0	1.14	41	188	108	39	18
RA	11	2	90	80	3.108	2.05	3.11	16.3	70.0	1.39	51	218	132	48	21
RA	16	1	94	105	.735	1.03	1.47	29.6	130.0	1.20	43	191	114	41	18
RA	Totals	5	88	77	7.604	5.13	8.34	16.2	71.6	3.72	135	597	353	129	57
NF	24	1	86	127	.326	1.03	.98	45.5	203.3	1.07	45	199	102	42	19
NF	29	1	87	120	.224	1.03	.67	65.8	310.0	1.06	44	208	101	42	20
NF	Totals	2	86	124	.550	2.05	1.65	53.8	246.7	2.13	89	407	202	84	39
DF S	14	1	86	66	.959	1.03	_								
DF S	22	1	85	60	.389	1.03									
DF S	Totals	2	86	64	1.348	2.05									
Totals		192	87	113	104.471	196.92	216.82	39.2	177.4	242.48	8,494	38,459	23,036	8,069	3,654
			-					-							

TC	PLOGSTVB
----	----------

Log Stock Table - MRF

	Log Stock Table - MBF																
T02N I	R06W S01	Ту00М	2 9	95.00	Proj Acre	ect: s	FIN	ALROU 95	.00					Page Date Time	9/1 3:2	1 8/2024 27:37PM	
5	So Gr	Log	Gross	Def Net	%			Net Volu	ne by S	caling	Diamete	r in Inch	es				
Spp 7	rt de	Len	MBF	% MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40)+
DF	2	M 4	2,582	2,57	1 74.4						443	507	984	596	25	17	
DF	3	M 18	3 1		1.0						1						
DF	3	M 2	5 1		1 .0				1								
DF	3	M 2	3 1		1.0				1								
DF	3	M 2	ə 1		1.0				1								
DF	3	M 3	0 2	2	2.1			2									
DF	3	M 3	1 1		1.0			1									
DF	3	M 3	2 5	5	5 .2			5									
DF	3	M 3	3 4	ļ	4 .1			4									
DF	3	M 3-	4 5	5	5.1			5									
DF	3	M 3	5 8	3	8 .2			7	1								
DF	3	M 3	5 3	3	3.1			3									
DF	3	M 3	7 2	2	2.1			2									
DF	3	M 3	8 8	3	8 .2			8									
DF	3	M 3	€ 1		1 .0			1									
DF	3	M 4) 695	69	3 20.1			160	233	30	1						
DF	4	M 12	2 1		1 .0			1									
DF	4	M 1	3 2	2	2.1			2									
DF	4	M 1	5 4	Ļ	4.1			4									
DF	4	M 1	5 4	Ļ	4.1			4									
DF	4	M 1	7 6	5	6 .2			6									
DF	4	M 1	3 3	3	3.1			3									
DF	4	M 1) 1		1 .0			1									
DF	4	M 2	9 9)	9 .3			9									
DF	4	M 2	1 10) 1	0.3			9	1								
DF	4	M 2	2 3	}	3.1			3									
DF	4	M 2	3 5)	5 .1			5									
DF	4	м 2- м -		1 ,	1 .3												
DF	4	м 2. м 2		s 2	.7 .7			22	1								
	4	м 2 м 2	7 12	: l	2 .3			12									
	4	м 2 м 2) I	3 .4 0 2			13									
	4	м 2 м 2		, 1 ;	0 .3 5 1			10									
		M 2		,	.I .I			3									
DE		M 2		r)	2 0			4									
DF		M 2			2 .0 5 1			5									
DF	4	M 2	1	3	3 1			3									
	4			,	.1			5									

TC PLOGSTV	в
------------	---

Log Stock Table - MBF

T02	2N R	06W S01 Ty	/00MC	9	5.00	Proj Acr	ject: es	FIN	ALROU 95	.00					Page Date Time	9/1 3:2	2 8/2024 27:37PM
S So Gr Log Gross Do					Def Net	Net Volume by Scaling Diameter in Inches							s				
Spp	Т	rt de	Len	MBF	% MB	F Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
DF		4M	35	2		2 .()		2								
DF		4M	37	2		2)		2								
DF		4M	38	1		1.0)		1								
DF		4M	40	9		93	3		9								
DF		Totals		3,467	3	,454 94.5	5		343	238	301	443	507	984	596	25	17
RA		CR	20	5		5 9.5	5		5								
RA		CR	36	4		4 7.4	Ļ		4								
RA		CR	39	13		13 22.1	_		13								
RA		CR	40	35		35 61.1			21			14					
RA		Totals		57		57 1.6	5		43			14					
WH		2M	40	51	3.6	49 46.8	3					12	36				
WH		3M	32	3		3 3.3	;		3								
WH		3M	40	36		36 34.3	3		12	8	16						
WH		4M	12	0		0 .4	ŀ		0								
WH		4M	18	1		1 .7	,		1								
WH		4M	32	15		15 14.5	5		15								
WH		Totals		106	1.7	104 2.9)		32	8	16	12	36				
NF		2M	40	32		32 81.5	5					4		12	15		
NF		3M	40	6		6 14.4	Ļ				6						
NF		4M	17	1		1 1.6	5		1								
NF		4M	23	1		1 2.4	Ļ		1								
NF		Totals		39		39 1.1			2		6	4		12	15		
Total		All Specie	s	3,668		,654 100.0)		419	247	323	473	544	996	611	25	17

CRUISE REPORT Final Round #FG-341-2025-W01158-01

1. LOCATION:

Portions of Section 1, T2N, R6W, W.M., Washington County, Oregon.

2. CRUISE DESIGN:

The timber cruise was designed using an estimated coefficient of variation (CV) of 57%, average stand diameter of 25 inches, sampling error (SE) of 9% and a minimum of 100 grade trees.

3. SAMPLING METHOD:

The Timber Sale Area was cruised in September of 2024 with 39 variable radius grade plots using a 40 BAF prism. Plots were laid out 5 chain x 3 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

4. CRUISE RESULTS:

190 trees were measured and graded producing a standard error of 5.9% on the Douglas-fir Basal Area and 6.4% on the Douglas-fir Net Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following the Official Log Scaling and Grading Rules as adopted by the NW Log Rules Advisory Group. 40 foot segments were favored.

- a) **Height Standards:** Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors: Measured for each grade tree using a form point of 16 feet.

6. DATA PROCESSING:

- a) **Volumes and Statistics:** Cruise estimates and sampling statistics were derived from SuperAce 2008 cruise software.
- b) **Deductions:** The following percent volume deductions are by species to account for the hidden defect and breakage. For conifers two percent was deducted. For hardwoods five percent was deducted.
- **7. CRUISERS:** The sale was cruised by Mark Savage, Adrian Torres, and Colton Turner.

Prepared by: Adrian Torres 09-24-2024

Reviewed by: Mark Savage 09-24-2024 Date

Volume Summary (Shown in MBF) Final Round FG-341-2025-W01158-01 September 2024

SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
	Cruise Volume	2,571	736	147	0	3,454
Douglas-fir	Hidden D&B (2%)	(51)	(15)	(3)	(0)	(69)
	NET TOTAL	2,520	721	144	0	3,385
	% of Total	75	21	4	0	
	Cruise Volume	49	39	16	0	104
Western hemlock	Hidden D&B (2%)	(1)	(1)	(0)	(0)	(2)
	NET TOTAL	48	38	16	0	102
	% of Total	47	37	16	0	
	Cruise Volume	32	6	2	0	40
Noblo fir	Hidden D&B (2%)	(1)	(0)	(0)	(0)	(1)
	NET TOTAL	31	6	2	0	39
	% of Total	80	15	5	0	
	Cruise Volume	0	0	0	57	57
Red alder	Hidden D&B (5%)	(0)	(0)	(0)	(3)	(3)
	NET TOTAL	0	0	0	54	54
	% of Total	0	0	0	100	

UNIT 1: MC (95 ACRES)

SALE TOTAL										
SPECIES	2 SAW	3 SAW	4 SAW	CR	TOTAL					
Douglas-fir	2,520	721	144	0	3,385					
Western hemlock	48	38	16	0	102					
Noble fir	31	6	2	0	39					
Red alder	0	0	0	54	54					
Total	2,599	765	162	54	3,580					

Legend

- • • Timber Sale Boundary
- Posted Reserve Tree Area Boundary
- Posted Stream Buffer Boundary
- : ____ Posted Right-of-Way Boundary
- ODF Ownership Boundary
- Surfaced Road
- • New Road Construction
- Type-F Stream
- Type-N Stream Perennial
- ---- Type-N Stream Seasonal
 - Stream Buffer
 - Cable Yarding Area
 - Tractor Yarding Area
- Cable Landing
 - Reserve Tree Area
 - Recreational Trail
 - Section Line

40 Foot Contour Band

200 Foot Contour Band

LOGGING PLAN MAP

FOR TIMBER SALE CONTRACT #FG-341-2025-W01158-01 FINAL ROUND PORTIONS OF SECTION 1, T2N, R6W, W.M., WASHINGTON COUNTY, OREGON

> Forest Grove District GIS October, 2024 This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

> > 1:12,000

1 inch = 1,000 feet

500 1,000 2,000 Feet

n

APROXIMATE NET ACRES TRACTOR CABLE

TOTAL 18 77