

District: Forest Grove

Date: August 29, 2024

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$702,157.26	\$0.00	\$702,157.26
		Project Work:	(\$85,980.00)
		Advertised Value:	\$616,177.26

District: Forest Grove

Date: August 29, 2024

Timber Description

Location:

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	13	0	98
Western Hemlock / Fir	13	0	98

Volume by Grade	28	3S & 4S 6"- 11"	Total
Douglas - Fir	103	1,655	1,758
Western Hemlock / Fir	142	1,122	1,264
Total	245	2,777	3,022

Comments: LOCAL POND VALUES, JULY 2024

OTHER CONIFERS: STUMPAGE PRICE = POND VALUE - WESTERN HEMLOCK LOGGING COST \$114.21 = \$511.69 - \$397.48

RED ALDER AND OTHER HARDWOODS: STUMPAGE PRICE = POND VALUE - DOUG-FIR LOGGING COST \$123.77 = \$495 - \$371.23

WESTERN REDCEDAR AND OTHER CEDARS: STUMPAGE PRICE = POND VALUE - DOUG-FIR LOGGING COST \$843.77 = \$1,215 - \$371.23

BRANDING AND PAINTING ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$5.00/GAL

HAULING COST ALLOWANCE = \$1,250/DAY

OTHER COSTS (WITH PROFIT & RISK ADDED): N/A

OTHER COSTS (NO PROFIT & RISK ADDED):

EQUIPMENT CLEANING: 3 PIECES @ \$1,000/PIECE = \$3,000

MACHINE TIME TO BLOCK/WATERBAR ROADS AND SKID TRAILS: 30 HOURS X \$200/HOUR = \$6,000

TOTAL OTHER COSTS (NO P&R) = \$9,000

ROAD MAINTENANCE (INCLUDES SPOT ROCKING, GRADING, & ROLLING): MOVE IN: \$4,673.90 GENERAL ROAD MAINT: 11.52 miles X \$2,297.87 = \$26,471.50 TOTAL ROAD MAINTENANCE: \$31,145.40 / 3,022 MBF = \$10.31 /MBF

District: Forest Grove

Date: August 29, 2024

	Logg	ing Conditions
Combination#: 1	Douglas - Fir Western Hemlock / Fir	27.89% 47.46%
Logging System:	Cable: Medium Tower >40 - <70	Process: Harvester Head Delimbing
yarding distance: tree size:	Medium (800 ft) Small / Thinning 12in (130 Bft/tree), 12-1	downhill yarding: No 17 logs/MBF
loads / day: cost / mbf:	8 \$269.53	bd. ft / load: 3700
machines:	Log Loader (A) Forwarder Harvester Tower Yarder (Medium)	
Combination#: 2	Douglas - Fir Western Hemlock / Fir	72.11% 52.54%
Logging System:	Shovel	Process: Harvester Head Delimbing
yarding distance: tree size:	Medium (800 ft) Small / Thinning 12in (130 Bft/tree), 12-1	downhill yarding: No 17 logs/MBF
loads / day:	13	bd. ft / load: 3700
cost / mbf:	\$207.90	
machines:	Forwarder Harvester	

District: Forest Grove

Date: August 29, 2024

Logging Costs			
Operating Seasons: 2.00 Profit Risk: 10%			
Project Costs: \$85,980.00	Other Costs (P/R): \$0.00		
Slash Disposal: \$0.00	Other Costs: \$9,000.00		

Miles of Road		Road Maintenance:	\$10.31
Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	4.5
Western Hemlock / Fir	\$0.00	3.0	4.0

District: Forest Grove

Date: August 29, 2024

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$225.09	\$10.52	\$2.90	\$94.44	\$0.00	\$33.30	\$0.00	\$2.00	\$2.98	\$371.23
Western H	emlock	/ Fir							
\$237.15	\$10.52	\$2.90	\$106.25	\$0.00	\$35.68	\$0.00	\$2.00	\$2.98	\$397.48

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$688.52	\$317.29	\$0.00
Western Hemlock / Fir	\$0.00	\$511.69	\$114.21	\$0.00

District: Forest Grove

Date: August 29, 2024

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	1,758	\$317.29	\$557,795.82
Western Hemlock / Fir	1,264	\$114.21	\$144,361.44

	Gross Timber Sale Value			
	Recovery:	\$702,157.26		
Prepared By:	Shamus Smith	Phone: 503-359-7404		

TIMBER SALE SUMMARY Scatter Shield #FG-341-2025-W01021-01

- 1. <u>Location</u>: Portions of Sections 3, 4, 5, 8, 9, and 18, T3N, R6W, W.M., Tillamook County, Oregon.
- <u>Type of Sale</u>: The Timber Sale Area is 238 acres. It consists of Four Moderate Partial Cut Units, and one Right-of-Way Unit. Unit 1 (PC-M) is 50 acres, Unit 2 (PC-M) is 31 acres, Unit 3 (PC-M) is 139 acres, Unit 4 (PC-M) is 15 acres, and Unit 5 (R/W) is 3 acres. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. <u>Revenue Distribution</u>: 100% BOF; 100% Tillamook County.
- 4. <u>Sale Acreage</u>: Acres are net of Stream Buffers and road prisms. Acreage was determined using ESRI ArcMap GIS Pro software.
- 5. <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in August of 2024. For more information, see Cruise Report.
- 6. <u>Timber Description</u>: The Timber Sale Area consists of a well-stocked, 40-52 year-old stand of Douglas-fir with minor components of western hemlock, red alder, and noble fir. The following table summarizes ODF cruise estimates for harvestable trees in these stands.

Sale Unit	Net Acres	Average DBH	Trees/Acre	Net MBF/Acre
Unit 1	50	12	147	12.6
Unit 2	31	16	110	13.6
Unit 3	139	13	111	11.7
Unit 4	15	14	132	20.9
Unit 5	*	*	*	*

* = see the Cruise Report

- 7. <u>Topography and Logging Method</u>: Slopes within the Timber Sale Area range from 5% to 60% with variable aspects. Unit 1 is 91% ground-based yarding and 9% cable-based yarding. Unit 2 is 89% ground-based yarding and 11% cable-based yarding. Unit 3 is 38% ground-based yarding and 62% cable-based yarding. Unit 4 is 100% ground-based yarding. The average horizontal skid trail length is 500 feet and the maximum is approximately 1,000 feet. The average cable yarding road length is 600 feet and the maximum is approximately 1,500 feet.
- 8. <u>Access</u>: All access to the Timber Sale Area is on surfaced roads. From Forest Grove, travel north on Highway 47 through Banks then merge onto Highway 26 west-bound and continue for approximately 20 miles. Between the 31 and the 32 mile markers, turn left onto Salmonberry Road and continue for 1.2 miles to Section 10 Road. To access Unit 1, turn right on Section 10 Road and continue 500 feet. To access Units 2, 3, and 4, continue on Salmonberry Road for 1 mile to Rock Creek Ridge Road and turn right. Travel for 1 mile on Rock Creek Ridge Road to Unit 2 and another 0.5 mile to access Unit 3. To access Unit 4, continue on Salmonberry Road 1.8 miles to North Fork Salmonberry Road and turn right. Continue on North Fork Salmonberry Road for 2.3 miles to Unit 4.

9. Projects:

694.54
004.04
546.07
0-0.07
890.00

PROJECT	COST SUMMARY	SHEET	
Timber Sale:	Scatter		
Sale Number:	FG-341-2025	-W01021-01	
PROJECT NO. 1: ROAD IMPROVEMENT			
	Road Segment	Length	Cost
	A to B	130+00	\$9,827.50
	C to D	41+00	\$8,441.03
	E to F	88+00	\$4,683.90
	G to H	17+00	\$1,555.85
	I to J	3+50	\$625.58
	K to L	31+00	\$5,338.91
	M to N	26+00	\$4,418.07
		336+50 stations	
		6.37 miles	
Total Rock =			
	663 cy	1½" - 0	
	284 cy	3" - 0	
		Move-in =	\$2,848.55
		TOTAL PROJECT COST =	\$37,739.39

PROJECT NO. 2: DIRT ROAD CONSTRUCTION

Road Segment	Length	Cost
O to P	16+50	\$6,993.90
Q to R	8+00	\$4,195.59
S to T	5+00	\$2,210.51
U to V	5+50	\$2,633.23
W to X	6+00	\$2,647.08
Y to Z	5+00	\$2,301.26
	16+50 stations	
	0.31 miles	
	Move-in =	\$1,712.97
	TOTAL PROJECT COST =	\$22,694.54

Road Segment	Length	Cost
K to L	2+00	\$529.25
M to N	26+00	\$1,760.75
O to P	16+50	\$3,387.75
Q to R	8+00	\$1,673.50
S to T	5+00	\$1,069.50
T to V3	17+50	\$5,014.75
U to V	5+50	\$1,110.25
V1 to V2	26+00	\$7,056.30
W to X	6+00	\$1,194.62
Y to Z	5+00	\$1,069.50
	117+50 stations	
	2.23 miles	
	Move-in =	\$1,679.90
	TOTAL PROJECT COST =	\$25,546.07

Timber Sale: Scatter Shield Sale Number

Sale Number: FG-341-2025-W01021-01

Equipment	Total
Grader	\$341.99
Roller & Compactor	\$327.12
Excavator	\$1,679.90
Dozer	\$1,679.90
Dump Truck	\$298.71
Water Truck	\$233.90
	<u>TOTAL MOVE-IN COSTS = _\$4,561.52</u>

PROJECT No. 3 MOVE-IN, WITHIN AREA MOVE, & CLEANING COSTS

Equipment

Excavator

Total \$1,679.90

TOTAL MOVE-IN COSTS = \$1,679.90

	SUM	MARY OF C	CONSTRUC	CTION COST				
Timber Sale:		Scatter Shi	eld		Sale	Number:	FG-341-202	5-W01021-01
Road Segment:		A to B		_	Impr	ovement:	130+00	stations
				-			2.46	miles
PROJECT NO. 1: ROAD IMPROVEMENT								
IMPROVEMENT								
Clearing & grubbing (scatter)	0.50	ac @	\$1,692.00	per acre =			\$846.00	
Clean culvert inlet & outlet, scatter waste	9	ea @	\$27.50	per ea =			\$247.50	
Develop waste area	1	ea @	\$175.00	per ea =			\$175.00	
Construct settling pond	6	ea @	\$27.50	per ea =			\$165.00	
Excavate & load	18	су @	\$1.94	per cy =			\$34.92	
Haul to Waste Area No. 3	23	cy @	\$1.67	per cy =			\$38.41	
Compact waste area	23	cy @	\$0.35	per cy =			\$8.05	
Improve turnout	5	ea @	\$36.30	per ea =			\$181.50	
Improve turnaround	1	ea @	\$45.37	per ea =			\$45.37	
Grade, ditch, & roll	130.00	sta @	\$39.70	per sta =			\$5,161.00	
				тоти			T COSTS =	\$6,902.75
CULVERTS				<u>1017</u>			100313 =	\$0,902.75
Markers & Stakes	_							
Culvert markers	6	ea @	\$12.00	per ea =			\$72.00	
	-		•	F		•	* · =· • •	
					τοται	CUI VER	T COSTS =	\$72.00
ROCK	_				101712			Q12.00
	Rock	Base	Haul Cost	Placemen	+/			
	Size	Cost \$/cy	s/cy	Processing Cos		Total CY	Rock Cost	
	Size	COSt a/Cy	⊅/Су	FIDCessing Co	ы ә/су			
Surfacing rock		•	•					
Spot Rock	3" - 0	\$1.45	\$9.17	\$1.35		200	\$2,394.00	
				Sub	ototal =	200	\$2,394.00	
			Totals		Rock =	200		
			TOLAIS		3'' - 0			
					3-0	200		
					TC		K COSTS =	\$2.394.00
					<u>. </u>			÷=,0000

EROSION CONTROL					
Grass seed & fertilizer	0.50	ac @	\$697.50	per ac =	\$348.75
Straw mulch bale	10	ea @	\$11.00	per ea =	\$110.00

TOTAL EROSION CONTROL COSTS = \$458.75

TOTAL PROJECT COST = \$9,827.50

Road Segment:Improvement: $41+00$ stations milesPROJECT NO. 1: ROAD IMPROVEMENTIMPROVEMENTIMPROVEMENTClearing & grubbing (scatter)0.48a $@$ \$1,692.00per are =\$812.16Clearing & grubbing (scatter)0.48a $@$ \$27.50per ea =\$27.50per ea =\$27.50per ea =\$27.50Develop waste area1ea $@$ \$27.50per ea =\$175.00Construct setting pond6ea $@$ \$31.97Construct setting pond6ea $@$ \$31.97Compact waste area23cy $@$ \$0.35per ey =\$34.92Haul to Wastea Area No. 123cy $@$ \$0.35per ey =\$34.93Improve turnout3ea $@$ \$36.30per ea =\$1627.00TOTAL IMPROVEMENT COSTS =\$3.036.5MOKTOTAL IMPROVEMENT COSTS =\$3.036.5Subgrade rockSubgrade rockSubgrade rockSubgrade rockSubgrade rockSubgrade rock <th>Timber Sale:</th> <th></th> <th>IARY OF C Scatter Shi</th> <th></th> <th>TION COST</th> <th>Sale Number:</th> <th>FG-341-202</th> <th>5-\\/\01021-01</th>	Timber Sale:		IARY OF C Scatter Shi		TION COST	Sale Number:	FG-341-202	5-\\/\01021-01
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					-		41+00	stations
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	PROJECT NO. 1: ROAD IMPROVEMENT							
Clean culvert intel & outlet, scatter waste 1 ea @ $$27.50$ per ea = $$27.50$ Develop waste area 1 ea @ $$175.00$ per ea = $$175.00$ Construct settling pond 6 ea @ $$27.50$ per ea = $$165.00$ Excavate & load 18 cy @ $$1.39$ per cy = $$34.92$ Haul to Wastea Area No. 1 23 cy @ $$13.9$ per cy = $$31.97$ Compact waste area 23 cy @ $$30.35$ per cy = $$8.05$ Improve turnout 3 ea @ $$36.30$ per ea = $$108.90$ Improve turnaround 1 ea @ $$45.37$ per ea = $$108.90$ Improve turnaround 1 ea @ $$45.37$ per ea = $$108.90$ Improve turnaround $$1.00$ sta @ $$39.70$ per sta = $$108.90$ Improve turnaround $$1.00$ sta @ $$39.70$ per sta = $$108.90$ Improve turnaround $$1.00$ sta @ $$39.70$ per sta = $$108.90$ Improve turnaround $$1.00$ sta @ $$39.70$ per sta = $$108.90$ Improve turnaround $$1.00$ sta @ $$39.70$ per sta = $$108.90$ Improve turnaround $$1.00$ sta @ $$39.70$ per sta = $$108.90$ Improve turnaround $$1.00$ sta @ $$39.70$ per sta = $$108.90$ Improve turnaround $$1.00$ sta @ $$39.70$ per sta = $$108.90$ Improve turnaround $$1.00$ sta @ $$39.70$ per sta = $$108.90$ Improve turnaround $$1.00$ sta @ $$39.70$ per sta = $$108.90$ Improve turnaround $$1.00$ sta @ $$39.70$ per sta = $$108.90$ Improve turnaround $$1.45$ $$3.59$ $$0.85$ $$84$ $$494.76$ Subgrade rock Subgrade rock Subgrade rock $$11.45$ $$3.59$ $$0.85$ $$84$ $$494.76$ Suffacing Rock $$11.45$ $$3.59$ $$0.85$ $$84$ $$494.76$ Subtotal = $$615$ $$4.464.90$ Subtotal = $$615$ $$4.464.90$ EROSION CONTROL Grass seed & fertilizer Suraw mulch bale 10 ea @ $$11.00$ per ac = $$334.80$ Straw mulch bale 10 ea @ $$11.00$ per ea = $$110.00$	IMPROVEMENT							
Develop waste area 1 ea @ \$175.00 per ea = \$175.00 Construct settling pond 6 ea @ \$27.50 per ea = \$165.00 Excavate & load 18 cy @ \$1.39 per cy = \$34.92 Haul to Wastea Area No. 1 23 cy @ \$1.39 per cy = \$\$31.97 Compact waste area 23 cy @ \$0.35 per cy = \$\$8.05 Improve turnout 3 ea @ \$\$45.37 per ea = \$\$108.90 Improve turnaround 1 ea @ \$\$45.37 per ea = \$\$108.90 Improve turnaround 1 ea @ \$\$45.37 per ea = \$\$1,627.70 TOTAL IMPROVEMENT COSTS = \$\$3,036.5 ROCK TOTAL IMPROVEMENT COSTS = \$\$3,036.5 ROCK Subgrade rock Subtotal = 84 \$\$	Clearing & grubbing (scatter)	0.48	ac @	\$1,692.00	per acre =		\$812.16	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Clean culvert inlet & outlet, scatter waste	1	ea @	\$27.50	per ea =		\$27.50	
Excavate & bad18cy @\$1.94per cy =\$34.92Haul to Wastea Area No. 123cy @\$1.39per cy =\$31.97Compact waste area23cy @\$30.35per cy =\$8.05Improve turnout3ea @\$36.30per ea =\$108.90Improve turnaround1ea @\$45.37per ea =\$45.37Grade, ditch, & roll41.00sta @\$39.70per sta =\$1.627.70TOTAL IMPROVEMENT COSTS =\$3,036.5ROCKNot RockBaseHaul CostPlacement/ Processing Cost \$/cyTotal CY Rock CostSubgrade rockSubgrade rockSurfacing rock1½" - 0\$2.32\$3.59\$0.8584\$494.76Subtotal =615\$4,464.90Subtotal =615\$4,464.90TotalsAll Rock = 699Surfacing Rock1½" - 0\$2.32\$3.59\$1.35615\$4,464.90Compace \$46 fertilizerO.48ac @\$697.50per ac =\$334.80EROSION CONTROLGrass seed & fertilizer0.48ac @\$697.50per ac =\$334.80Straw mulch bale0ea @\$11.00per ea =\$334.80	Develop waste area	1	ea @	\$175.00	per ea =		\$175.00	
Haul to Wastea Area No. 123cy @\$1.39per cy =\$31.97Compact waste area23cy @\$0.35per cy =\$8.05Improve turnout3ea @\$36.30per ea =\$108.90Improve turnaround1ea @\$45.37per ea =\$45.37Grade, ditch, & roll41.00sta @\$39.70per sta =\$1,627.70TOTAL IMPROVEMENT COSTS =\$3,036.5ROCKTOTAL IMPROVEMENT COSTS =\$3,036.5Subgrade rockSubgrade rockPlacement/ Subgrade reinforcement70\$1.45\$3.59\$0.8584\$494.76Subgrade rockSubgrade reinforcement3" - 0\$1.45\$3.59\$0.8584\$494.76Surfacing rockSubtotal =615\$4.464.90Subtotal =615\$4.464.90TotalsAll Rock = 6991½" - 0\$2.32\$3.59\$1.35615\$4.464.90TotalsAll Rock = 6991½" - 0\$2.32\$3.59\$1.35615\$4.464.90TotalsAll Rock = 6991½" - 0\$2.32\$3.59\$1.35615\$4.464.90TOTAL ROCK COSTS = _\$4.959.6EROSION CONTROLGrass seed & fertilizer0.48ac @\$697.50per ac =\$334.8010ea @\$11.00per ea =\$110.00	Construct settling pond	6	ea @	\$27.50	per ea =		\$165.00	
Compact waste area23 $c'y @$ $\$0.35$ per $cy =$ $\$8.05$ Improve turnout3ea @ $\$36.30$ per ea = $\$108.90$ Improve turnaround1ea @ $\$45.37$ per ea = $\$1627.70$ Grade, ditch, & roll41.00sta @ $\$39.70$ per sta = $\underbrace{1627.70}$ TOTAL IMPROVEMENT COSTS = $\$3,036.5$ ROCKTOTAL IMPROVEMENT COSTS = $\$3,036.5$ RockBase SizeHaul Cost V/cyPlacement/ Processing Cost \$/cyTotal CY Rock CostSubgrade rockSubgrade rockSubgrade rockSutfacing rockSulfacing rockSulfacing Rock11/2" - 0\$2.32\$3.59\$1.35615\$4,464.90Subtotal =615\$4,464.90Subtotal =615\$4,464.90Subtotal =615\$4,464.90Subtotal =615\$4,464.90Subtotal =615\$4,464.90Subtotal =615\$4,959.6TOTAL ROCK COSTS =\$49.959.6 <t< td=""><td>Excavate & load</td><td>18</td><td>су @</td><td>\$1.94</td><td>per cy =</td><td></td><td>\$34.92</td><td></td></t<>	Excavate & load	18	су @	\$1.94	per cy =		\$34.92	
Improve turnout3ea @\$36.30per ea =\$108.90Improve turnaround1ea @\$45.37per ea =\$45.37Grade, ditch, & roll41.00sta @\$39.70per sta =\$1.627.70TOTAL IMPROVEMENT COSTS =\$3,036.5ROCKTOTAL IMPROVEMENT COSTS =\$3,036.5ROCKSubgrade rockSubgrade rockSuffacing rockSuffacing Rock11½" - 0\$2.32\$3.59\$1.62Subtotal = 615\$4,464.90Subtotal = 615\$4,969.6TOTAL ROCK COSTS =\$4,959.6EROSION CONTROLGrass seed & fertilizer0.48ac @10ea @\$11.00per ea =\$334.80\$10\$110.00per ea =\$334.80<	Haul to Wastea Area No. 1	23	су @	\$1.39	per cy =		\$31.97	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Compact waste area	23	cy @	\$0.35	per cy =		\$8.05	
Grade, ditch, & roll41.00sta @ \$39.70per sta = $$1,627.70$ TOTAL IMPROVEMENT COSTS = \$3,036.5ROCKRockBase Cost \$/cyPlacement/ Processing Cost \$/cyTotal CY Rock CostSubgrade rockSubgrade reinforcement3" - 0\$1.45\$3.59\$0.8584\$494.76Subgrade reinforcement3" - 0\$1.45\$3.59\$0.85\$1.35\$615\$4,464.90Sutracing Rock1½" - 0\$2.32\$3.59\$1.35\$615\$4,464.90TotalsAll Rock = 699TotalsAll Rock = 699TOTAL ROCK COSTS = \$4,959.6EROSION CONTROLGrass seed & fertilizer0.48ac @ \$697.50per ac = \$334.8010ea @ \$11.00	Improve turnout	3	ea @	\$36.30	per ea =		\$108.90	
$\frac{\text{ROCK}}{\text{Size}} = \frac{\text{ROCK}}{\text{Size}} + \frac{\text{Rock}}{\text{Size}} + \frac{\text{Base}}{\text{Cost}} + \frac{\text{Haul Cost}}{\text{Sycy}} + \frac{\text{Placement}}{\text{Processing Cost}} + \frac{\text{Rock Cost}}{\text{Rock Cost}} + \frac{\text{Rock Cost}}{\text{Subgrade rock}} + \frac{\text{Subgrade rock}}{\text{Subgrade reinforcement}} + \frac{\text{Subgrade rock}}{\text{Subtral}} + \frac{\text{Subtral}}{\text{Subtral}} + \text{$	Improve turnaround	1	ea @	\$45.37	per ea =		\$45.37	
$\frac{\text{ROCK}}{\text{Size}} = \frac{\text{ROCK}}{\text{Size}} + \frac{\text{Rock}}{\text{Size}} + \frac{\text{Base}}{\text{Cost}} + \frac{\text{Haul Cost}}{\text{Sycy}} + \frac{\text{Placement}}{\text{Processing Cost}} + \frac{\text{Rock Cost}}{\text{Rock Cost}} + \frac{\text{Rock Cost}}{\text{Subgrade rock}} + \frac{\text{Subgrade rock}}{\text{Subgrade reinforcement}} + \frac{\text{Subgrade rock}}{\text{Subtral}} + \frac{\text{Subtral}}{\text{Subtral}} + \text{$	Grade, ditch, & roll	41.00	sta @	\$39.70	per sta =		\$1,627.70	
ROCKRock SizeBase Cost \$/cyHaul Cost \$/cyPlacement/ Processing Cost \$/cyTotal CY Rock CostSubgrade rock								A A AAA FT
Rock SizeBase Cost \$/cyHaul Cost \$/cyPlacement/ Processing Cost \$/cyTotal CY Rock CostSubgrade rock	DOOK				TOTAL	MPROVEMEN	$\Pi COSTS =$	\$3,036.57
SizeCost \$/cy\$/cyProcessing Cost \$/cyTotal CYRock CostSubgrade rock	RUCK	•						
SizeCost \$/cy\$/cyProcessing Cost \$/cyTotal CYRock CostSubgrade rock		Rock	Base	Haul Cost	Placement/			
Subgrade rock Subgrade reinforcement $3" - 0$ $\$1.45$ $\$3.59$ $\$0.85$ 84 $\$494.76$ Subgrade reinforcement $3" - 0$ $\$1.45$ $\$3.59$ $\$0.85$ 84 $\$494.76$ Surfacing rock Subtotal = 84 $\$494.76$ Surfacing Rock $11/2" - 0$ $\$2.32$ $\$3.59$ $\$1.35$ 615 $\$4,464.90$ Subtotal = 615 $\$4,464.90$ Subtotal = 615 $\$4,464.90$ Totals All Rock = 699 $11/2" - 0$ 84 8494.76 EROSION CONTROL Grass seed & fertilizer 0.48 ac @ $\$697.50$ per ac = $\$334.80$ $\$34.80$ $\$10$ per ea @ $\$11.00$ per ea = $\$3110.00$						S/CV Total CY	Rock Cost	
Subgrade reinforcement $3" - 0$ $\$1.45$ $\$3.59$ $\$0.85$ $\$4$ $\$494.76$ Subtotal = 84 $\$494.76$ Surfacing rock $11/2" - 0$ $\$2.32$ $\$3.59$ $\$1.35$ 615 $\$4,464.90$ Subtotal = 615 $\$4,464.90$ Subtotal = 615 $\$4,464.90$ Totals All Rock = 699 $11/2" - 0$ 615 $$3" - 0$ 84 EROSION CONTROL Output Output Output $8c @ $ $\$697.50$ per ac = $\$334.80$ $\$334.80$ $\$110.00$ per ea = $\$334.80$ $\$110.00$ $\$110.00$ per ea = $\$334.80$ $\$110.00$ $\$110.00$ $\$110.00$ $\$110.00$ $\$110.00$ $\$110.00$ $\$110.00$ $\$110.00$ $\$110.00$ $\$110.00$ $\$110.00$ $\$110.00$ $\$110.00$ $\$110.00$ $\$110.00$ $\$110.00$ $\$110.00$ $\$10$ $\$110.00$ $\$110.00$ $\$10$ $\$10$ $\$10$ $\$10$ $\$10$ $\$10$ $\$10$ $\$10$ $\$10$ $\$10$ $\$10$ $\$10$ $\$10$ $\$10$ $\$10$ <		0120	003ι φ/σγ	φ/Ογ	T TOCCSSING COSt	φ/Ογ		
Surfacing rock Surfacing Rock $1\frac{1}{2}$ " - 0 \$2.32 \$3.59 \$1.35 615 \$4,464.90 Subtotal = 615 \$4,464.90 615 \$4,464.90 Totals All Rock = 699 $1\frac{1}{2}$ " - 0 615 \$4,464.90 Totals All Rock = 699 $1\frac{1}{2}$ " - 0 615 \$4,464.90 Totals All Rock = 699 $1\frac{1}{2}$ " - 0 615 \$4,464.90 Totals All Rock = 699 $1\frac{1}{2}$ " - 0 84 \$494.76 EROSION CONTROL Grass seed & fertilizer 0.48 ac @ \$697.50 per ac = \$334.80 Straw mulch bale 10 ea @ \$11.00 per ea = \$110.00					-			
Surfacing rock 1½" - 0 \$2.32 \$3.59 \$1.35 615 \$4,464.90 Subtotal = 615 \$4,464.90 Subtotal = 615 \$4,464.90 Totals All Rock = 699 $1½" - 0$ 615 $3" - 0$ 84 TOTAL ROCK COSTS = \$4,959.6 Grass seed & fertilizer 0.48 ac @ \$697.50 per ac = \$334.80 Straw mulch bale 10 ea @ \$11.00 per ea = \$110.00	Subgrade reinforcement	3" - 0	\$1.45	\$3.59		-		
Surfacing Rock $1\frac{1}{2}$ " - 0 \$2.32 \$3.59 \$1.35 615 \$4,464.90 Subtotal = 615 \$4,464.90 Totals All Rock = 699 $1\frac{1}{2}$ " - 0 615 $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{$					Subto	otal = 84	\$494.76	
Subtotal = 615 \$4,464.90 Totals All Rock = 699 1½" - 0 615 3" - 0 84 TOTAL ROCK COSTS = \$4,959.6 Grass seed & fertilizer 0.48 ac @ \$697.50 per ac = \$334.80 Straw mulch bale 10 ea @ \$11.00 per ea = \$110.00					-			
TotalsAll Rock =699 $1'/_2" - 0$ 615 $3" - 0$ 84TOTAL ROCK COSTS = \$4,959.6Grass seed & fertilizer0.48ac @\$697.50per ac =\$334.80Straw mulch bale10ea @\$11.00per ea =\$110.00	Surfacing Rock	1½" - 0	\$2.32	\$3.59				
1½" - 0 615 1½" - 0 615 3" - 0 84 TOTAL ROCK COSTS = \$4,959.6 Grass seed & fertilizer 0.48 ac @ \$697.50 per ac = \$334.80 Straw mulch bale 10 ea @ \$11.00 per ea = \$110.00					Subto	tal = 615	\$4,464.90	
$\frac{11/2" - 0 615}{3" - 0 84}$ $\frac{1}{2}$							-	
3" - 0 84 TOTAL ROCK COSTS = \$4,959.6 TOTAL ROCK COSTS = \$4,959.6 Grass seed & fertilizer 0.48 ac @ \$697.50 per ac = \$334.80 Straw mulch bale 10 ea @ \$11.00 per ea = \$110.00				Totals	All Ro	ck = 699		
EROSION CONTROL O.48 ac @ \$697.50 per ac = \$334.80 Straw mulch bale 10 ea @ \$11.00 per ea = \$110.00								
EROSION CONTROL 0.48 ac @ \$697.50 per ac = \$334.80 Grass seed & fertilizer 0.48 ac @ \$11.00 per ea = \$110.00					3	8" - 0 84		
EROSION CONTROL 0.48 ac @ \$697.50 per ac = \$334.80 Grass seed & fertilizer 0.48 ac @ \$11.00 per ea = \$110.00								
Grass seed & fertilizer 0.48 ac @ \$697.50 per ac = \$334.80 Straw mulch bale 10 ea @ \$11.00 per ea = \$110.00						TOTAL ROC	K COSTS =	\$4,959.66
Straw mulch bale 10 ea @ \$11.00 per ea = \$110.00	EROSION CONTROL							
	Grass seed & fertilizer	0.48	ac @	\$697.50	per ac =		\$334.80	
	Straw mulch bale	10	ea @	\$11.00	per ea =		\$110.00	
TOTAL EROSION CONTROL COSTS = $$444.80$								
					TOTAL EROS	SION CONTRO	LCOSTS =	\$444.80

TOTAL PROJECT COST = \$8,441.03

	SUM	MARY OF	CONSTRU	CTION COST			
Timber Sale:	5	Scatter Shie	əld	_	Sale Number:	FG-341-2025	-W01021-01
Road Segment:		E to F			Improvement:	88+00	stations
					-	1.67	miles
PROJECT NO. 1: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	0.34	ac @	\$1,692.00	per acre =		\$575.28	
Improve turnout	5	ea @	\$36.30	per ea =		\$181.50	
Improve turnaround	1	ea @	\$45.37	per ea =		\$45.37	
Grade, ditch, & roll	88.00	sta @	\$39.70	per sta =	-	\$3,493.60	
				тот		NT COSTS =	\$4,295.75
CULVERTS							
Markers & Stakes							
Culvert markers	8	ea @	\$12.00	per ea =	-	\$96.00	
					TOTAL CULVE	RT COSTS =	\$96.00
EROSION CONTROL							
Grass seed & fertilizer	0.34	ac @	\$697.50	per ac =		\$237.15	
Straw mulch bale	5	ea @	\$11.00	per ea =	-	\$55.00	
				TOTAL E	ROSION CONTR	<u>OL COSTS =</u>	\$292.15
					TOTAL PROJ	ECT COST =	\$4,683.90

Timber Sale:		ARY OF C Scatter Shie		TION COST	Sale Number:	FG-341-202	5-W01021-01
Road Segment:		G to H		-	Improvement:	17+00 0.32	stations miles
PROJECT NO. 1: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	0.20	ac @	\$1,692.00	per acre =		\$338.40	
Improve turnout	2	ea @	\$36.30	per ea =		\$72.60	
Construct turnaround	1	ea @	\$90.75	per ea =		\$90.75	
Improve landing	1	ea @	\$172.70	per ea =		\$172.70	
Grade, ditch, & roll	17.00	sta @	\$39.70	per sta =		\$674.90	
				TOTAL	IMPROVEMENT	r costs =	\$1,349.35
CULVERTS							
Markers & Stakes							
Culvert markers	1	ea @	\$12.00	per ea =		\$12.00	
				Ţ	OTAL CULVER	COSTS =	\$12.00
EROSION CONTROL							
Grass seed & fertilizer	0.20	ac @	\$697.50	per ac =		\$139.50	
Straw mulch bale	5	ea @	\$11.00	per ea =		\$55.00	
				TOTAL ERO	SION CONTROI	<u>COSTS =</u>	\$194.50

TOTAL PROJECT COST = \$1,555.85

Timber Sale:		IARY OF C		TION COST	Sale Number:	FG-341-202	5-W01021-01
Road Segment:		I to J		-	Improvement:	3+50 0.07	stations miles
PROJECT NO. 1: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	0.04	ac @	\$1,692.00	per acre =		\$67.68	
Improve turnout	2	ea @	\$36.30	per ea =		\$72.60	
Construct turnaround	1	ea @	\$90.75	per ea =		\$90.75	
Improve landing	1	ea @	\$172.70	per ea =		\$172.70	
Grade, ditch, & roll	3.50	sta @	\$39.70	per sta =		\$138.95	
				TOTAL		T COSTS =	\$542.68
EROSION CONTROL							
Grass seed & fertilizer	0.04	ac @	\$697.50	per ac =		\$27.90	
Straw mulch bale	5	ea @	\$11.00	per ea =		\$55.00	
				TOTAL ERC	DSION CONTRO	L COSTS =	\$82.90
					TOTAL PROJE	<u>CT COST =</u>	\$625.58

$\frac{PROVEMENT}{\text{learing forditer}} = \frac{5609.12}{12} = ea (@ $1.692.00 \text{ per acre} = $609.12} = $609.12} = 0.36 ac (@ $1.692.00 \text{ per acre} = $609.12} = $609.12} = 0.37 + 12 ea (@ $1.39 \text{ per cy} = $609.12} = $609.12} = 500,000 = 500$		SUM	MARY OF	CONSTRU	ICTION COST				
Roject No. 1: ROAD IMPROVEMENT APROVEMENT APROVEMENT Bering & grubbing (scatter) 0.36 ac @ \$1.692.00 per acre = \$300.0 Detaring & grubbing (scatter) 12 ea @ \$27.50 per ea = \$300.0 Excavate & Iodal 36 cy @ \$1.34 per cy = \$66.24 Haul 46 cy @ \$1.34 per cy = \$16.90 Oprove tunaout 3 ea @ \$51.50 per ea = \$16.30 Iprove tunaout 3 ea @ \$45.37 per ea = \$16.30 Iprove tunaout 1 ea @ \$45.37 per ea = \$16.30 Iprove tunaout 1 ea @ \$45.37 per ea = \$17.20.0 Index is the are \$1.720.00 per ea = \$345.40 States \$200 sta @ \$366.00 per sta = \$345.40 Culvert markers 3 ea @ \$12.00 per ea = \$36.00 OCK TOTAL CULVERT COSTS = \$36.00 \$36.00 \$36.00 OCK Total Subtolal = \$46.544 \$46.44 Spot Rock 1½*-0 \$2.32 \$5.61	Timber Sale:		Scatter Shi	eld	_	Sale Number:	FG-341-2025	-W01021-01	
Image: Second State Provided P	Road Segment:		K to L		-	Improvement:			
$\frac{PROVEMENT}{\text{learing pord}} 12 ea (a) $$21,692.00 per acre = $$609.12 onstruct setting pord 12 ea (a) $$27,50 per ea = $$330.00 exaves & load 36 cv (a) $$1.39 per cv = $$9,84 Haul 46 cv (a) $$1.39 per cv = $$9,84 Compact waste area 46 cv (a) $$1.39 per cv = $$63.00 per acre = $$1,610 mprove turnout 3 ea (a) $$36.30 per acre = $$1,610 mprove turnout 1 ea (a) $$36.30 per acre = $$1,730.00 onstruct landing 2.00 sta (a) $$36.30 per acre = $$1,730.00 onstruct landing 1 ea (a) $$36.40 per acre = $$1,730.00 onstruct landing 1 ea (a) $$36.50 per sta = $$1,730.00 onstruct landing 1 ea (a) $$36.50 per sta = $$1,730.00 onstruct landing 1 ea (a) $$36.50 per sta = $$1,230.70 onstruct landing 1 ea (a) $$36.50 per sta = $$1,230.70 onstruct landing 1 ea (a) $$36.50 per sta = $$1,230.70 onstruct landing 1 ea (a) $$36.50 per sta = $$1,230.70 onstruct landing 1 ea (a) $$12.50 per acre = $$36.00 onstruct landing $$39.70 per sta = $$36.00 ock 10 VERTS arrives a $$12.00 per ea = $$36.00 ock 10 VERTS arrives a $$12.00 per ea = $$36.00 ock 10 VERTS arrives a $$12.00 per ea = $$36.00 ock 10 VERTS arrives a $$12.00 per ea = $$36.00 ock 10 VERTS arrives a $$11.00 sta (a) $$12.50 per acre = $$36.00 ock 10 VERTS arrives a $$11.00 sta (a) $$12.50 per acre = $$36.00 ock 10 VERTS arrives a $$11.00 per ea = $$36.00 ock 10 VERTS arrives a $$11.00 per ea = $$36.00 ock 10 VERTS arrives a $$11.00 per ea = $$36.00 ock 10 VERTS arrives a $$11.00 per ea = $$36.00 ock 10 VERTS arrives a $$31.50 per acre = $$251.10 ortical product cost arrives a $$30.50 per acre = $$251.10 ortical per acre = $$251.10 ortical per acre = $$251.10 per ea = $$251.10 ortical per acre = $$251.50 ortical per acre = $$251.50 ortical per acre = $$251.50 ortical per acre =$						-	0.59	miles	
$\bering & grubbing (scatter) & 0.36 & ac @ $1.632.00 per acre = $609.12 \\ construct setting pond & 12 & ea @ $275.00 per ea = $533.00 \\ Excavate & load & 36 & cy @ $1.34 per cy = $68.84 \\ Haul & 46 & cy @ $1.35 per cy = $58.84 \\ Compact waste area & 46 & cy @ $0.35 per cy = $516.10 \\ prove turnout & 3 & ea @ $263.00 per ea = $108.90 \\ prove turnout & 3 & ea @ $245.37 per ea = $108.90 \\ prove turnout & 1 & ea @ $245.37 per ea = $153.70 \\ prove turnout & 1 & ea @ $245.37 per ea = $15.32 \\ prove turnout & 1 & ea @ $245.37 per ea = $15.32 \\ prove turnout & 1 & ea @ $245.37 per ea = $15.32 \\ prove turnout & 3 & ea @ $12.00 per ea = $1.7.32.00 \\ nated, etch, & roll & 31.00 & sta @ $245.40 per ea = $345.40 \\ nated, etch, & roll & 31.00 & sta @ $12.00 per ea = $36.00 \\ \hline ULVERTS & $120.70 \\ \hline ULVERTS & $120.70 \\ \hline Cock & $100 per ea = $36.00 \\ \hline Cock & $120 per ea = $36.00 \\ \hline Cock & $120 per ea = $36.00 \\ \hline Cock & $100 per ea = $36.00 \\ \hline Cock & 10	PROJECT NO. 1: ROAD IMPROVEMENT								
onstruct setting pond 12 ee @ \$27.50 per ea = \$330.00 Excavate & load 36 cy @ \$1.39 per cy = \$63.84 Haul 46 cy @ \$1.39 per cy = \$63.94 Compact waste area 46 cy @ \$0.35 per ca = \$108.90 nprove turnaround 1 ea @ \$263.30 per aa = \$108.90 nprove turnaround 1 ea @ \$45.37 per aa = \$108.90 nprove turnaround 1 ea @ \$45.47 per aa = \$108.90 nstruct landing 2.00 sta @ \$45.40 per sta = \$1.732.00 onstruct landing 1.00 sta @ \$38.70 per sta = \$1.230.70 ULVERTS TOTAL CULVERT COSTS = \$4.551.37 CUlvet markers 3 ea @ \$12.00 per ea = \$36.00 OCK TOTAL CULVERT COSTS = \$4.551.37 \$36.00 OCK TOTAL CULVERT COSTS = \$36.00 \$36.00 OCK Total Sac @ \$12.00 per ea = \$36.00 OCK Total Subtatal = 48 \$445.44 Subracing reack 1½" - 0 \$2.32 \$5.61 \$1.35 48 \$445.44 Totals All Rook =	IMPROVEMENT								
Excavate & load 36 cv @ \$1:94 per cy = \$68.94 Haul 46 cv @ \$1:39 per cy = \$68.34 Compact waste area 46 cv @ \$1:39 per cy = \$16.10 nprove turnout 3 ea @ \$26.30 per cy = \$16.10 nprove turnout 1 ea @ \$263.30 per ca = \$108.90 prove turnout 1 ea @ \$245.40 per ca = \$1.722.00 onstruct landing 1 ea @ \$245.40 per ca = \$345.40 rade, dich, & roll 31.00 sta @ \$2345.40 per ca = \$1.230.70 TOTAL IMPROVEMENT COSTS = \$4.551.37 TOTAL CULVERT COSTS = \$4.551.37 TOTAL CULVERT COSTS = \$4.551.37 TOTAL CULVERT COSTS = \$4.551.37 OCK TOTAL CULVERT COSTS = \$4.60.00 Subtotal = 48 Subtotal	Clearing & grubbing (scatter)	0.36	ac @	\$1,692.00	per acre =		\$609.12		
Haul 46 $c'' @ S 0.35$ per $c'' = S63.94$ Compact waste area 46 $c'' @ S 0.35$ per $c' = S16.10$ prove turnout 3 ea @ \$45.37 per ea = \$108.90 prove turnout 1 ea @ \$45.37 per ea = \$13.20.70 onstruct landing 2.00 sta @ \$45.67.00 per sta = \$1.230.70 \$12.230.70 ULVERTS TOTAL IMPROVEMENT COSTS = \$4.551.33 \$445.44 ULVERTS arkers & \$18ks TOTAL CULVERT COSTS = \$36.00 Colvert markers 3 ea @ \$12.00 per ea = \$36.00 OCK TOTAL CULVENT COSTS = \$36.00 S66.00 OCK TOTAL CULVENT COSTS = \$36.00 OCK Totals All Rock = 48 1½" - 0 \$2.32 \$5.61 \$1.35 44.544.44 Spot Rock 1½" - 0 \$2.23 \$5.61 \$1.35 \$44.544.44 Spot Rock 1½" - 0 \$2.23 \$5.61 \$1.35 \$44.54.44 Spot Rock 1½" - 0	Construct settling pond		ea @		per ea =				
$ \begin{array}{c} \text{Compact waste area} & 46 & \text{cy} @ $0.35 & \text{per } \text{cy} = & $16.10 \\ \text{prove turnound} & 1 & ea @ $36.30 & \text{per } \text{ca} = & $46.37 \\ \text{pproach to landing} & 2.00 & \text{sta} @ $36.60 & \text{per } \text{sta} = & $47.732.00 \\ \text{onstruct landing} & 1 & ea @ $345.40 & \text{per } \text{ca} = & $345.37 \\ \text{pproach to landing} & 1 & ea @ $345.40 & \text{per } \text{ca} = & $345.40 \\ \text{rade, fitch, & roll} & 31.00 & \text{sta} @ $39.70 & \text{per } \text{sta} = & $1.230.70 \\ \hline \text{TOTAL IMPROVEMENT COSTS} = & $4.551.37 \\ \hline \text{ULVERTS} & & & & & & & & & & & & & & & & & & &$									
prove turnout 3 e @ \$36.30 per ea = \$108.30 prove turnout 1 ea @ \$45.37 per ea = \$45.37 proach to landing 2.00 sta @ \$466.00 per sta = \$1,732.00 onstruct landing 1 ea @ \$345.40 per ea = \$345.40 TOTAL IMPROVEMENT COSTS = \$4,551.37 ULVERTS TOTAL CULVERT COSTS = \$4,551.37 ULVERTS TOTAL CULVERT COSTS = \$4,551.37 ULVERTS Culvert markers 3 ea @ \$12.00 per ea = <u>\$360.00</u> OCK TOTAL CULVERT COSTS = <u>\$4,551.37</u> OCK TOTAL CULVERT COSTS = <u>\$4,551.37</u> Core <u>Street Cost \$/cy</u> Per ea = <u>\$360.00</u> OCK TOTAL CULVERT COSTS = <u>\$4,551.37</u> TOTAL CULVERT COSTS = <u>\$4,551.37</u> OCK TOTAL CULVERT COSTS = <u>\$4,551.37</u> OCK TOTAL CULVERT COSTS = <u>\$4,551.37</u> OCK TOTAL CULVERT COSTS = <u>\$4,551.37</u> OCK TOTAL CULVERT COSTS = <u>\$4,544</u> Subtotal = <u>48</u> <u>1/2" - 0</u> \$2.32 <u>\$5.61</u> <u>\$1.35</u> <u>48</u> <u>\$445.44</u> Subtotal = <u>48</u> <u>\$445.44</u> Totals <u>AII Rock = <u>48</u> <u>1/2" - 0</u> <u>48</u> TOTAL ROCK COSTS = <u>\$445.44</u> <u>Subtotal = 48</u> <u>\$445.44</u> <u>TOTAL ROCK COSTS = <u>\$445.44</u> <u>TOTAL ROCK COSTS = <u>\$445.44</u> <u>TOTAL ROCK COSTS = <u>\$445.44</u> <u>TOTAL ROCK COSTS = <u>\$445.44</u> <u>TOTAL PROJECT COST = <u>\$5,338.97</u> TOTAL PROJECT COST = <u>\$5,338.97</u> ROJECT NO. 3: ROAD BLOCKING AND VACATING LOCK ONSTUCI TAIK trap <u>1</u> ea @ \$60.50 per ea = <u>\$60.50</u> ip & narrow landing <u>1</u> ea @ \$165.00 per ea = <u>\$60.50</u> ip & narrow landing <u>1</u> ea @ \$165.00 per ea = <u>\$165.00</u> <u>TOTAL BLOCKING COSTS = <u>\$225.50</u> ROSION CONTROL TOTAL BLOCKING COSTS = <u>\$178.20</u> CUCK</u></u></u></u></u></u></u>									
prove turnaround 1 ea @ \$45.37 per ea = \$1.732.00 per star = \$1.732.00 per star = \$1.732.00 per star = \$1.732.00 per star = \$1.230.70 per star = \$31.230.70 per star = \$32.50 per star = \$	•						+		
porosch to landing 2.00 state @ \$866.00 per state \$1,732.00 onstruct landing 1 es @ \$345.40 per state \$1,732.00 state @ \$345.40 per state \$1,230.70 per s					•				
Image: construct landing1ea @\$345.40per ea =\$345.40Index, ditch, & roll31.00sta @\$39.70per sta =\$1,230.70IDTAL IMPROVEMENT COSTS =\$4,551.32IDTAL IMPROVEMENT COSTS =\$4,551.32OCTAL CULVERT COSTS =\$36.00OCTAL CULVERT COSTS =\$36.00OCKIDTAL CULVERT COSTS =\$36.00IDTAL CULVERT COSTS =\$36.00IDTAL ROCK COSTS =\$36.00OCKIDTAL ROCKIDTAL ROCK COSTS =\$36.00IDTAL ROCK COSTS =\$36.00IDTAL ROCK COSTS =\$36.00IDTAL ROCK COSTS =\$36.00IDTAL ROCK COSTS =\$345.44IDTAL ROCK COSTS =\$445.44Subtotal = 48\$445.44IDTAL ROCK COSTS =\$445.44IDTAL ROCK COSTS =\$251.10IDTAL ROCK COSTS =\$									
rade, ditch, & roll 31.00 sta @ \$39.70 per sta = $\underline{$1,230.70}$ TOTAL IMPROVEMENT COSTS = $\underline{$4,551.33}$ TOTAL IMPROVEMENT COSTS = $\underline{$4,551.33}$ TOTAL CULVERTS arkers & Stakes Culvert markers Culvert markers Cost Cost Cost Cost Cost Cost Cost Cost Cost Culvert Cost Stat Subtatal = 48 Stat Culvert Cost Stat Cost Culvert Cost Stat Culvert Cost Stat Culvert Cost Stat Culvert Cost Stat Culvert Culvert Culvert Cost Stat Subtatal = 48 Stat Culvert Culvert Culvert Culvert Culvert Culvert Subtatal = 48 Stat Stat Culvert Culvert Culvert Culvert Subtatal = 48 Stat Culvert Culvert Stat Culvert Culvert Culvert Culvert Stat Culver					•				
$\frac{\text{TOTAL IMPROVEMENT COSTS} = $4,551.37}{\text{Curver markers} & $3 \text{ takes} \\ \text{Curver markers} & $3 & ea @ $12.00 & per ea = $36.00 \\ \hline \text{TOTAL CULVERT COSTS} = $36.00 \\ \hline \text{OCK} & \hline \text{TOTAL CULVERT COSTS} = $36.00 \\ \hline \text{OCK} & \hline \text{TOTAL CULVERT COSTS} = $36.00 \\ \hline \text{OCK} & \hline \text{TOTAL CULVERT COSTS} = $36.00 \\ \hline \text{OCK} & \hline \text{TOTAL CULVERT COSTS} = $36.00 \\ \hline \text{OCK} & \hline \text{Surfacing rock} \\ \hline \text{Spot Rock} & 11/s^* - 0 & $2.32 & $5.61 & $1.35 & 48 & $445.44 \\ \hline \text{Spot Rock} & 11/s^* - 0 & $2.32 & $5.61 & $1.35 & 48 & $445.44 \\ \hline \text{Spot Rock} & 11/s^* - 0 & $2.32 & $5.61 & $1.35 & 48 & $445.44 \\ \hline \text{Spot Rock} & 11/s^* - 0 & $2.32 & $5.61 & $1.35 & 48 & $445.44 \\ \hline \text{Spot Rock} & 11/s^* - 0 & $2.32 & $5.61 & $1.35 & 48 & $445.44 \\ \hline \text{Spot Rock} & 11/s^* - 0 & $2.32 & $5.61 & $1.35 & 48 & $445.44 \\ \hline \text{Spot Rock} & 11/s^* - 0 & $2.32 & $5.61 & $1.35 & 48 & $445.44 \\ \hline \text{Spot Rock} & 11/s^* - 0 & $48 & $1/s^* - 0 & $5 & $ea @ $11.00 & $per ea = $$55.00 & $TOTAL ENCOSITE $$ $$50.00 & $TOTAL ENCOSITE $$ $$53.38.97 & $TOTAL ENCOSING CONTROL $$COSITS = $$53.38.97 & $TOTAL BLOCKING COSITS = $$50.50 & $TOTAL BLOCKING COSITS = $$525.50 & $TOTAL BLOCKING COSITS = $$525.50 & $TOTAL BLOCKING COSITS = $$225.50 & $TOTAL BLOCKING COSITS = $$125.55 & $ulch $$ 0.18 & ac @ $$990.00 & per ac = $$125.55 & $1/s0.20 & $1/s$					•				
ULVERTS larkers & Stakes Culvert markers3ea @ \$12.00per ea =\$36.00COCKTOTAL CULVERT COSTS =\$36.00OCKTOTAL CULVERT COSTS =\$36.00OCKTOTAL CULVERT COSTS =\$36.00OCKTOTAL CULVERT COSTS =\$36.00Surfacing rockSinfacing rockSinfacing rockSinfacing rockSinfacing rockTOTAL COLVERT COSTS =\$36.00Surfacing rockSurfacing rockSurfacing rockSinfacing rockSurfacing rock <th colspa<="" td=""><td>Grade, ditch, & roll</td><td>31.00</td><td>sta @</td><td>\$39.70</td><td>per sta =</td><td>-</td><td>\$1,230.70</td><td></td></th>	<td>Grade, ditch, & roll</td> <td>31.00</td> <td>sta @</td> <td>\$39.70</td> <td>per sta =</td> <td>-</td> <td>\$1,230.70</td> <td></td>	Grade, ditch, & roll	31.00	sta @	\$39.70	per sta =	-	\$1,230.70	
larkers & Stakes Culvert markers3ea @\$12.00per ea = $\underline{$36.00}$ TOTAL CULVERT COSTS = $\underline{$36.00}$ OCKTOTAL CULVERT COSTS = $\underline{$36.00}$ Surfacing rockSurfacing rockSpot RockSize $Cost$ Solot Cost $\underline{$12,00}$ Processing Cost $\underline{$(cy)}$ Total CYRock CostSurfacing rockSpot Rock $11/2^* - 0$ $\underline{$2.32}$ $\underline{$5.61}$ $\underline{$1.35}$ $\underline{$48}$ $\underline{$445.44}$ TotalsTotalsTOTAL ROCK COSTS = $\underline{$445.44}$ Solototal = $\underline{$48}$ TOTAL ROCK COSTS = $\underline{$445.44}$ TOTAL ROCK COSTS = $\underline{$55.00}$ TOTAL ROOSION CONTROLCOS					TOTA	L IMPROVEME	NT COSTS =	\$4,551.37	
Culver markers3ea @\$12.00per ea =\$36.00TOTAL CULVERT COSTS =\$36.00OCKSuffacing rockSurfacing rockSpot Rock1½* - 0\$2.32\$5.61\$1.3548\$445.44Subtotal =AB1½* - 0\$2.32\$5.61\$1.3548\$445.44Subtotal =48\$445.44Subtotal =48\$445.44TotalsAll Rock =48TotalsAll Rock =48TOTAL ROCK COSTS =\$445.44TotalsAll Rock =48TOTAL ROCK COSTS =\$445.44TotalsAll Rock =48TOTAL ROCK COSTS =\$445.44TOTAL ROCK COSTS =\$445.44TotalsAll Rock =48TOTAL ROCK COSTS =\$445.44TotalsIntervention of the state of the st		•							
$\frac{\text{IOTAL CULVERT COSTS} = $36.00}{\text{OCK}}$ $\frac{\text{Rock}}{\text{Size}} \frac{\text{Base}}{\text{Cost} \$/\text{cy}} \frac{\text{Haul Cost}}{\$/\text{cy}} \frac{\text{Placement/}}{\text{Processing Cost} \$/\text{cy}} \frac{\text{Total CY}}{\text{Rock Cost}}$ $\frac{\text{Surfacing rock}}{\text{Spot Rock}}$ $\frac{\text{Surfacing rock}}{11\%' - 0 $2.32 $5.61 $1.35 $48 $445.44}$ $\frac{\text{Subtotal} = 48 $445.44}{11\%' - 0 $48 $445.44}$ $\frac{\text{Totals}}{11\%' - 0 $48 $445.44}$ $\frac{\text{Totals}}{11\%' - 0 $48 $445.44}$ $\frac{\text{Totals}}{11\%' - 0 $48 $445.44}$ $\frac{\text{Total CV COSTS} = $445.44 $44 445.44 $\frac{\text{COSION CONTROL}}{11\%' - 0 $48 $445.44}$ $\frac{\text{ROSION CONTROL}}{5 $ea @ $11.00 $per ac = $$251.10 $per ac = $$55.00 $total $100 $per ac = $$$55.00 $total $100 $per ac = $$$55.00 $total $100 $per ac = $$$$105.00 $total $100 $per ac = $$$$100 $total $100 $per ac = $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$		2	<u></u>	¢12.00	por 02 -		¢36.00		
OCKRock SizeBase Cost \$/cyHaul Cost \$/cyPlacement/ Processing Cost \$/cyTotal CY Rock CostSurfacing rockISpot Rock11½" - 0\$2.32\$5.61\$1.3548\$445.44Subtotal =48\$445.44Subtotal =48\$445.44TotalsAll Rock =48\$445.44TotalsAll Rock =481½" - 0\$2.32\$5.61\$1.3548\$445.44TotalsAll Rock =48TotalsAll Rock =48Total SolutionTotal SolutionTotal Rock costs =\$445.44Total Rock costs =\$445.44Total Rock costs =\$445.44Total Rock costs =\$445.44 <td cols<="" td=""><td>Cuivent markers</td><td>5</td><td>ea w</td><td>φ12.00</td><td>per ea =</td><td>-</td><td>\$30.00</td><td></td></td>	<td>Cuivent markers</td> <td>5</td> <td>ea w</td> <td>φ12.00</td> <td>per ea =</td> <td>-</td> <td>\$30.00</td> <td></td>	Cuivent markers	5	ea w	φ12.00	per ea =	-	\$30.00	
Rock SizeBase Cost \$/cyHaul Cost \$/cyPlacement/ Processing Cost \$/cyTotal CY Rock CostSpot Rock $1\%^* - 0$ \$2.32\$5.61\$1.3548\$445.44Spot Rock $1\%^* - 0$ \$2.32\$5.61\$1.3548\$445.44TotalsAll Rock = 48 $1\%^* - 0$ TotalsAll Rock = 48 $1\%^* - 0$ TOTAL ROCK COSTS = \$445.44Subtotal = 48State: 1TotalsAll Rock = 48 $1\%^* - 0$ TOTAL ROCK COSTS = \$445.44TOTAL PROJECT COST = \$251.10TOTAL EROSION CONTROL COSTS = \$306.10TOTAL PROJECT COST = \$60.50Per ea = \$60.50TOTAL BLOCKING COSTS = \$	DOCK					TOTAL CULVE	RT COSTS =	\$36.00	
$\frac{\text{Size}}{\text{Spot Rock}} \underbrace{\text{Cost }\text{S/cy}}_{\text{Spot Rock}} \underbrace{\text{Processing Cost }\text{S/cy}}_{\text{Iotal CY}} \underbrace{\text{Rock Cost}}_{\text{Rock}} \underbrace{\text{Rock Cost}}_{\text{Spot Rock}}$ $\frac{\text{Size}}{\text{Spot Rock}} \underbrace{1/4^{n} - 0}_{\text{S2.32}} \underbrace{\text{S5.61}}_{\text{S1.35}} \underbrace{\text{S1.35}}_{\text{48}} \underbrace{\text{S445.44}}_{\text{S445.44}}$ $\underbrace{\text{Subtotal} = 48}_{\text{S445.44}}$ $\text{Subto$	RUCK			1					
$\frac{\text{Size}}{\text{Spot Rock}} \underbrace{\text{Cost } \frac{1}{2}/\text{cy}}{\text{Spot Rock}} \underbrace{\text{Subtotal}}_{1\frac{1}{2}^{\text{w}} - 0} \underbrace{\text{S2.32}}_{2.32} \underbrace{\text{S5.61}}_{31.35} \underbrace{\text{S1.35}}_{48} \underbrace{\text{S445.44}}_{48} \underbrace{\text{S445.44}}_{3445.44} \\ \hline \underbrace{\text{Subtotal}}_{1\frac{1}{2}^{\text{w}} - 0} \underbrace{\text{48}}_{48} \underbrace{\text{S445.44}}_{1\frac{1}{2}^{\text{w}} - 0} \underbrace{\text{S2.32}}_{12^{\text{w}} - 0} \underbrace{\text{S1.35}}_{48} \underbrace{\text{S445.44}}_{48} \underbrace{\text{S445.44}}_{48} \underbrace{\text{S445.44}}_{1\frac{1}{2}^{\text{w}} - 0} \underbrace{\text{S1.35}}_{48} \underbrace{\text{S445.44}}_{48} \underbrace{\text{S445.44}}_{1\frac{1}{2}^{\text{w}} - 0} \underbrace{\text{S1.35}}_{12^{\text{w}} - 0} \underbrace{\text{48}}_{48} \underbrace{\text{S445.44}}_{1\frac{1}{2}^{\text{w}} - 0} \underbrace{\text{S1.35}}_{12^{\text{w}} - 0} \underbrace{\text{48}}_{1\frac{1}{2}^{\text{w}} - 0} \underbrace{\text{S1.35}}_{12^{\text{w}} - 0} \underbrace{\text{48}}_{1\frac{1}{2}^{\text{w}} - 0} \underbrace{\text{S1.35}}_{12^{\text{w}} - 0} \underbrace{\text{48}}_{1\frac{1}{2}^{\text{w}} - 0} \underbrace{\text{S1.35}}_{12^{\text{w}} - 0} \underbrace{\text{S1.35}}_{12^{\text$		Rock	Base	Haul Cost	Placement/	-			
Spot Rock $1\frac{1}{2}$ " - 0\$2.32\$5.61\$1.3548\$445.44Subtotal = 48\$445.44Subtotal = 48Subtotal = 48 <td c<="" td=""><td></td><td>Size</td><td>Cost \$/cy</td><td>\$/cy</td><td>Processing Cost</td><td>\$/cy</td><td>Rock Cost</td><td></td></td>	<td></td> <td>Size</td> <td>Cost \$/cy</td> <td>\$/cy</td> <td>Processing Cost</td> <td>\$/cy</td> <td>Rock Cost</td> <td></td>		Size	Cost \$/cy	\$/cy	Processing Cost	\$/cy	Rock Cost	
Spot Rock $1\frac{1}{2}$ " - 0\$2.32\$5.61\$1.3548\$445.44Subtotal = 48\$445.44Subtotal = 48Subtotal = 48 <td c<="" td=""><td>Surfacing rock</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>Surfacing rock</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Surfacing rock							
TotalsInterval and interval and i		1½" - 0	\$2.32	\$5.61	\$1.35	48	\$445.44		
$\frac{112^{\circ} - 0}{48}$ $\frac{112^{\circ} - 0}{128}$ $\frac{112^{\circ} - 0}{18}$ \frac					Subto	otal = 48	\$445.44		
$\frac{112^{\circ} - 0}{48}$ $\frac{112^{\circ} - 0}{128}$ $\frac{112^{\circ} - 0}{18}$ \frac				T ()	A# D	1 10			
TOTAL ROCK COSTS = \$445.44TOTAL ROCK COSTS = \$445.44TOTAL ROCK COSTS = \$445.44TOTAL ROCK COSTS = \$251.10per ac = \$251.10TOTAL EROSION CONTROL COSTS = \$306.10TOTAL EROSION CONTROL COSTS = \$306.10TOTAL PROJECT COST = \$5,338.91COTAL PROJECT COST = \$5,338.91COCKONSTRUCT tank trap1ea @ \$60.50POTAL BLOCKING COSTS = \$225.50COCKCOTAL BLOCKING COSTS = \$225.50COTAL BLOCKING COSTS = \$225.50ROSION CONTROLTOTAL BLOCKING COSTS = \$225.50COTAL BLOCKING COSTS = \$125.55SOSION CONTROLTOTAL BLOCKING COSTS = \$125.55SIGSION CONTROL </td <td></td> <td></td> <td></td> <td>lotais</td> <td></td> <td></td> <td></td> <td></td>				lotais					
ROSION CONTROL rass seed & fertilizerrass seed & fertilizer0.36ac @\$697.50per ac =\$251.10traw mulch bale5ea @\$11.00per ea =\$55.00TOTAL EROSION CONTROL COSTS =\$306.10TOTAL PROJECT COST =\$306.10DOCKOnstruct tank trap1ea @\$60.501ea @\$165.00POTAL BLOCKING COSTS =\$225.50TOTAL BLOCKING COSTS =\$225.50ROSION CONTROLTOTAL BLOCKING COSTS =\$225.50TOTAL BLOCKING COSTS =\$125.55LUCH0.18ac @\$990.00POTAL SCISS\$178.20					·	ı			
rass seed & fertilizer 0.36 ac @ \$697.50 per ac = \$251.10 traw mulch bale 5 ea @ \$11.00 per ea = \$55.00 TOTAL EROSION CONTROL COSTS = \$306.10 TOTAL PROJECT COST = \$306.10 Intervalue of the second s						<u>TOTAL RO</u>	<u>CK COSTS =</u>	\$445.44	
traw mulch bale 5 ea @ \$11.00 per ea =\$55.00 TOTAL EROSION CONTROL COSTS =\$306.10 TOTAL PROJECT COST =\$5,338.91 TOTAL PROJECT COST =\$5,338.91 TOTAL PROJECT COST =\$5,338.91 TOTAL PROJECT COST =\$5,338.91 TOTAL PROJECT COST =\$5,338.91 PROJECT NO. 3: ROAD BLOCKING AND VACATING LOCK onstruct tank trap 1 ea @ \$60.50 per ea =\$60.50 ip & narrow landing 1 ea @ \$60.50 per ea =\$60.50 I ea @ \$165.00 per ea =\$165.00 TOTAL BLOCKING COSTS =\$225.50 ROSION CONTROL rass seed & fertilizer 0.18 ac @ \$697.50 per ac =\$178.20	EROSION CONTROL		0	* ** *			*		
TOTAL EROSION CONTROL COSTS = \$306.10 TOTAL PROJECT COST = \$5,338.91 TOTAL PROJECT COST = \$5,338.91 ROJECT NO. 3: ROAD BLOCKING AND VACATING LOCK onstruct tank trap 1 ea @ \$60.50 per ea = \$60.50 ip & narrow landing 1 ea @ \$165.00 per ea = \$165.00 TOTAL BLOCKING COSTS = \$225.50 ROSION CONTROL rass seed & fertilizer 0.18 ac @ \$697.50 per ac = \$125.55 lulch 0.18 ac @ \$990.00 per ac = \$178.20					•				
TOTAL PROJECT COST = \$5,338.91 ROJECT NO. 3: ROAD BLOCKING AND VACATING LOCK onstruct tank trap ip & narrow landing 1 ea @ \$60.50 per ea = \$60.50 per ea = \$60.50 \$165.00 ROSION CONTROL rass seed & fertilizer 0.18 ac @ \$697.50 per ac = \$125.55 \$178.20	Straw mulch bale	5	ea @	\$11.00	per ea =	-	\$55.00		
ROJECT NO. 3: ROAD BLOCKING AND VACATING LOCK onstruct tank trap 1 ea @ \$60.50 per ea = \$60.50 ip & narrow landing 1 ea @ \$165.00 per ea = \$165.00 TOTAL BLOCKING COSTS = \$225.50 ROSION CONTROL rass seed & fertilizer 0.18 ac @ \$697.50 per ac = \$125.55 lulch 0.18 ac @ \$990.00 per ac = \$178.20					TOTAL ER	OSION CONTR	OL COSTS =	\$306.10	
ROJECT NO. 3: ROAD BLOCKING AND VACATING LOCK									
LOCK onstruct tank trap 1 ea @ \$60.50 per ea = \$60.50 ip & narrow landing 1 ea @ \$165.00 per ea = \$165.00 TOTAL BLOCKING COSTS = \$225.50 ROSION CONTROL rass seed & fertilizer 0.18 ac @ \$697.50 per ac = \$125.55 lulch 0.18 ac @ \$990.00 per ac = \$178.20						TOTAL PROJ	ECT COST =	\$5,338.91	
LOCK onstruct tank trap 1 ea @ \$60.50 per ea = \$60.50 ip & narrow landing 1 ea @ \$165.00 per ea = \$165.00 TOTAL BLOCKING COSTS = \$225.50 ROSION CONTROL rass seed & fertilizer 0.18 ac @ \$697.50 per ac = \$125.55 lulch 0.18 ac @ \$990.00 per ac = \$178.20									
onstruct tank trap 1 ea @ \$60.50 per ea = \$60.50 ip & narrow landing 1 ea @ \$165.00 per ea = \$165.00 TOTAL BLOCKING COSTS = \$225.50 ROSION CONTROL rass seed & fertilizer 0.18 ac @ \$697.50 per ac = \$125.55 lulch 0.18 ac @ \$990.00 per ac = \$178.20	PROJECT NO. 3: ROAD BLOCKING AND V	ACATING	ì						
onstruct tank trap 1 ea @ \$60.50 per ea = \$60.50 ip & narrow landing 1 ea @ \$165.00 per ea = \$165.00 TOTAL BLOCKING COSTS = \$225.50 ROSION CONTROL rass seed & fertilizer 0.18 ac @ \$697.50 per ac = \$125.55 lulch 0.18 ac @ \$990.00 per ac = \$178.20	BLOCK								
ip & narrow landing 1 ea @ \$165.00 per ea = \$165.00 <u>TOTAL BLOCKING COSTS = \$225.50</u> <u>ROSION CONTROL</u> rass seed & fertilizer 0.18 ac @ \$697.50 per ac = \$125.55 0.18 ac @ \$990.00 per ac = \$178.20	Construct tank trap	1	ea @	\$60.50	per ea =		\$60.50		
ROSION CONTROL 0.18 ac @ \$697.50 per ac = \$125.55 value 0.18 ac @ \$990.00 per ac = \$178.20	Rip & narrow landing	1	ea @	\$165.00	per ea =		\$165.00		
ROSION CONTROL 0.18 ac @ \$697.50 per ac = \$125.55 value 0.18 ac @ \$990.00 per ac = \$178.20					-	TOTAL BI OCKI	NG COSTS =	\$225.50	
rass seed & fertilizer 0.18 ac @ \$697.50 per ac = \$125.55 Julch 0.18 ac @ \$990.00 per ac = \$178.20					-			<i> </i>	
ulch 0.18 ac @ \$990.00 per ac = \$178.20		0.40		#007 = 0			MAGE 55		
					•				
TOTAL EROSION CONTROL COSTS = \$303.75	Mulch	0.18	ac @	\$990.00	per ac =	-	\$178.20		
······································					TOTAL ER	OSION CONTR	OL COSTS =	\$303.75	

TOTAL PROJECT COST = \$529.25

SUMMARY OF CONSTRUCTION COST									
Timber S	Sale:	Scatter Shi	eld	_	Sale Number:	FG-341-2025	5-W01021-01		
Road Segn	nent:	M to N			Improvement:	26+00	stations		
				_		0.49	miles		
PROJECT NO. 1: ROAD IMPROVEMEN	Т								
IMPROVEMENT									
Clearing & grubbing (scatter)	0.90) ac @	\$1,692.00	per acre =		\$1,522.80			
Improve turnout	3	ea @	\$36.30	per ea =		\$108.90			
Construct tank trap	2	ea @	\$60.50	per ea =		\$121.00			
Develop waste area	1	ea @	\$175.00	per ea =		\$175.00			
Improve turnaround	1	ea @	\$45.37	per ea =		\$45.37			
Improve landing	1	ea @	\$172.70	per ea =		\$172.70			
Grade & roll (outslope)	15.7	0 sta @	\$35.50	per sta =		\$557.35			
Grade, ditch, & roll	26.0	0 sta @	\$39.70	per sta =	-	\$1,032.20			
					TOTAL IMPROVEME	NT COSTS =	\$3,735.32		
EROSION CONTROL									
Grass seed & fertilizer	0.90) ac@	\$697.50	per	ac =	\$627.75			
Straw mulch bale	5	ea @	\$11.00	per	ea =	\$55.00			
				<u>TOT</u>	AL EROSION CONTR	OL COSTS =	\$682.75		

TOTAL PROJECT COST = \$4,418.07

PROJECT NO. 3: ROAD BLOCKIN	NG AND VACATING	i				
BLOCK						
Construct tank trap	1	ea @	\$60.50	per ea =	\$60.50	
Construct waterbar	6	ea @	\$30.25	per ea =	\$181.50	
					TOTAL BLOCKING COSTS =	\$242.00
EROSION CONTROL						
Grass seed & fertilizer	0.90	ac @	\$697.50	per ac =	\$627.75	
Mulch	0.90	ac @	\$990.00	per ac =	\$891.00	
						• · - · • - -

TOTAL EROSION CONTROL COSTS = \$1,518.75

TOTAL PROJECT COST = \$1,760.75

	SUMM	ARY OF C	ONSTRUC	TION COS	-		
Timber Sale:	S	Scatter Shi	eld	_	Sale Number:	FG-341-20	25-W01021-01
Road Segment:		O to P		-	Construction:	16+50 0.31	stations miles
PROJECT NO. 2: DIRT ROAD CONSTRU	ICTION						
CONSTRUCTION							
Clearing & grubbing (scatter)	1.90	ac @	\$1,692.00	per ac =		\$3,214.80	
Balanced road construction	14.80	sta @	\$120.00	per sta =		\$1,776.00	
Drift	1.70	sta @	\$198.00	per sta =		\$336.60	
Turnout	3	ea @	\$72.60	per ea =		\$217.80	
Turnaround	1	ea @	\$90.75	per ea =		\$90.75	
Roadside landing	1	ea @	\$181.50	per ea =		\$181.50	
Landing	1	ea @	\$345.40	per ea =		\$345.40	
Grade, ditch, & roll	16.50	sta @	\$39.70	per sta =	-	\$655.05	_
				TOTA		ON COSTS =	\$6,817.90
EROSION CONTROL							
Winterization blocking	1	ea @	\$55.00	per ea =		\$55.00	
Winterization waterbarring	4	ea @	\$30.25	per ea =	-	\$121.00	_
				TOTAL EF	ROSION CONTR	OL COSTS =	\$176.00

TOTAL PROJECT COST = \$6,993.90

PROJECT NO. 3: ROAD BLOCK	NG AND VACAT	ING			
BLOCK Construct tank trap Construct waterbar	1	ea @ ea @	\$60.50 \$30.25	per ea = per ea =	\$60.50 \$121.00
					TOTAL BLOCKING COSTS = \$181.50
EROSION CONTROL Grass seed & fertilizer Mulch	1.90 1.90	ac @ ac @	\$697.50 \$990.00	per ac = per ac =	\$1,325.25 \$1,881.00

TOTAL EROSION CONTROL COSTS = \$3,206.25

TOTAL PROJECT COST = \$3,387.75

SUMMARY OF CONSTRUCTION COST

Timber Sale: Road Segment:		ARY OF CO Scatter Shi Q to R		TION COST - -	Sale Number: <u>FG-341-2025-W01021-01</u> Construction: <u>8+00</u> stations 0.15 miles				
PROJECT NO. 2: DIRT ROAD CONSTRUCTION									
CONSTRUCTION									
Clearing & grubbing (scatter)	0.92	ac @	\$1,692.00	per ac =	\$1,556.64				
Balanced road construction	8.00	sta @	\$120.00	per sta =	\$960.00				
Cutslope layback 3+20 to 4+70									
Excavate & load	167	су @	\$1.90	per cy =	\$317.30				
Haul	217	су @	\$1.30	per cy =	\$282.10				
Shape and compact waste material	217	су @	\$0.30	per cy =	\$65.10				
Turnout	2	ea @	\$72.60	per ea =	\$145.20				
Turnaround	1	ea @	\$90.75	per ea =	\$90.75				
Landing	1	ea @	\$345.40	per ea =	\$345.40				
Grade, ditch, & roll	8.00	sta @	\$39.70	per sta =	\$317.60				
				TOTAL C	CONSTRUCTION COSTS = \$4,080.09				
EROSION CONTROL									
Winterization blocking	1	ea @	\$55.00	per ea =	\$55.00				
Winterization waterbarring	2	ea @	\$30.25	per ea =	\$60.50				

TOTAL EROSION CONTROL COSTS = \$115.50

TOTAL PROJECT COST = \$4,195.59

BLOCK						
Construct tank trap	1	ea @	\$60.50	per ea =	\$60.50	
Construct waterbar	2	ea @	\$30.25	per ea =	\$60.50	
				TOTAL B	LOCKING COSTS =	\$121.00
EROSION CONTROL						
Grass seed & fertilizer	0.92	ac @	\$697.50	per ac =	\$641.70	
Mulch	0.92	ac @	\$990.00	per ac =	\$910.80	

TOTAL PROJECT COST = \$1,673.50

	SUMM	ARY OF CO	ONSTRUCT	TION COST		
Timber Sale:		Scatter Shi	eld	-	Sale Number: FG-341-20)25-W01021-01
Road Segment:		S to T		_	Construction: 5+00	stations
					0.09	miles
PROJECT NO. 2: DIRT ROAD CONSTRU						
CONSTRUCTION						
Clearing & grubbing (scatter)	0.58	ac @	\$1,692.00	per ac =	\$981.36	
Balanced road construction	5.00	sta @	\$120.00	per sta =	\$600.00	
Landing	1	ea @	\$345.40	per ea =	\$345.40	
Grade, ditch, & roll	5.00	sta @	\$39.70	per sta =	\$198.50	
				TOTAL C	CONSTRUCTION COSTS =	\$2,125.26
EROSION CONTROL						
Winterization blocking	1	ea @	\$55.00	per ea =	\$55.00	
Winterization waterbarring	1	ea @	\$30.25	per ea =	\$30.25	
			Ţ	OTAL ERO	SION CONTROL COSTS =	\$85.25
					TOTAL PROJECT COST =	\$2,210.51
PROJECT NO. 3: ROAD BLOCKING AND		TING				
BLOCK						
Construct tank trap	1	ea @	\$60.50	per ea =	\$60.50	
Construct waterbar	1	ea @	\$30.25	per ea =	\$30.25	
				тс	DTAL BLOCKING COSTS =	\$90.75
EROSION CONTROL						

ERUSION CONTROL	_			
Grass seed & fertilizer	0.58	ac @	\$697.50 per ac =	\$404.55
Mulch	0.58	ac @	\$990.00 per ac =	\$574.20

TOTAL EROSION CONTROL COSTS = \$978.75

TOTAL PROJECT COST = \$1,069.50

SUMMARY OF CONSTRUCTION COST									
Timber Sale:	Timber Sale:		Sale Num	ber: <u>FG-341-20</u>	25-W01021-01				
Road Segment:	T to V3		Vaca	ting: 17+50	stations				
				0.33	miles				
PROJECT NO. 3: ROAD BLOCKING AND VACATING									
VACATE									
Construct waterbar	3	ea @	\$30.25 per ea =	\$90.75					
Rip dirt road surface	17.50	sta @	\$27.50 per sta =	\$481.25					
Excavate fill & sidecast pullback	175.00	су @	\$2.33 per cy =	\$407.75					
Rip & narrow landing	2	ea @	\$165.00 per ea =	\$330.00					
Remove existing culverts	2	ea @	\$165.00 per ea =	\$330.00					
			TOTAL	VACATE COSTS =	<u>= \$1,639.75</u>				
EROSION CONTROL									
Grass seed & fertilizer	2.00	ac @	\$697.50 per ac =	\$1,395.00					
Mulch	2.00	ac @	\$990.00 per ac =	\$1,980.00					
			TOTAL EROSION CO	ONTROL COSTS =	\$3,375.00				

TOTAL PROJECT COST = \$5,014.75

	SUMM	ARY OF CO	ONSTRUCT	TION COST					
Timber Sale:		Scatter Shi	eld	_	Sale Number:	FG-341-2	025-W01021-01		
Road Segment:		U to V		_	Construction:	5+50	stations		
						0.10	miles		
PROJECT NO. 2: DIRT ROAD CONSTRU	PROJECT NO. 2: DIRT ROAD CONSTRUCTION								
CONSTRUCTION									
Clearing & grubbing (scatter)	0.64	ac @	\$1,692.00	per ac =		\$1,082.88			
Balanced road construction	4.50	sta @	\$120.00	per sta =		\$540.00			
Drift	1.00	sta @	\$198.00	per sta =		\$198.00			
Turnout	1	ea @	\$72.60	per ea =		\$72.60			
Turnaround	1	ea @	\$90.75	per ea =		\$90.75			
Landing	1	ea @	\$345.40	per ea =		\$345.40			
Grade, ditch, & roll	5.50	sta @	\$39.70	per sta =		\$218.35	_		
				TOTAL C	ONSTRUCTIO	N COSTS =	\$2,547.98		
EROSION CONTROL									
Winterization blocking	1	ea @	\$55.00	per ea =		\$55.00			
Winterization waterbarring	1	ea @	\$30.25	per ea =		\$30.25	_		
			<u>T</u>	OTAL ERO	SION CONTRO	L COSTS =	\$85.25		

TOTAL PROJECT COST = \$2,633.23

PROJECT NO. 3: ROAD BLOCKING AND VACATING								
BLOCK Construct waterbar	1	ea @	\$30.25	per ea =	\$30.25			
				Ţ	OTAL BLOCKING COSTS =	\$30.25		
EROSION CONTROL Grass seed & fertilizer Mulch	0.64 0.64	ac @ ac @	\$697.50 \$990.00		\$446.40 \$633.60			

TOTAL EROSION CONTROL COSTS = \$1,080.00

TOTAL PROJECT COST = \$1,110.25

SUMMARY OF CONSTRUCTION COST					
Timber Sale:	Timber Sale:		Sale Number	r: FG-341-20	25-W01021-01
Road Segment:	V1 to V2		Vacating	g: 26+00	stations
				0.49	miles
PROJECT NO. 3: ROAD BLOCK			G		
VACATE					
Construct tank trap	1	ea @	\$60.50 per ea =	\$60.50	
Construct waterbar	5	ea @	\$30.25 per ea =	\$151.25	
Rip dirt road surface	26.00	sta @	\$27.50 per sta =	\$715.00	
Excavate fill & sidecast pullback	260.00	су @	\$2.33 per cy =	\$605.80	
Rip & narrow landing	2	ea @	\$165.00 per ea =	\$330.00	
Remove existing puncheon	1	ea @	\$165.00 per ea =	\$165.00	_
			TOTAL VAC	ATE COSTS =	\$2,027.55
EROSION CONTROL					
Grass seed & fertilizer	2.98	ac @	\$697.50 per ac =	\$2,078.55	
Mulch	2.98	ac @	\$990.00 per ac =	\$2,950.20	_
			TOTAL EROSION CONT	ROL COSTS =	\$5,028.75

TOTAL PROJECT COST = \$7,056.30

	SUMM	ARY OF CO	ONSTRUC ⁻	FION COST		
Timber Sale:		Scatter Shi	eld		Sale Number: FG-341-20	25-W01021-01
Road Segment:		W to X		_	Construction: 6+00	stations
					0.11	miles
PROJECT NO. 2: DIRT ROAD CONSTRU	CTION					
CONSTRUCTION						
Clearing & grubbing (scatter)	0.69	ac @	\$1,692.00	per ac =	\$1,167.48	
Balanced road construction	6.00	sta @	\$120.00	per sta =	\$720.00	
Turnaround	1	ea @	\$90.75	per ea =	\$90.75	
Landing	1	ea @	+	per ea =	\$345.40	
Grade, ditch, & roll	6.00	sta @	\$39.70	per sta =	\$238.20	
				TOTAL C	CONSTRUCTION COSTS =	\$2,561.83
EROSION CONTROL						
Winterization blocking	1	ea @	\$55.00	per ea =	\$55.00	
Winterization waterbarring	1	ea @	\$30.25	per ea =	\$30.25	
			Ţ	OTAL ERO	SION CONTROL COSTS =	\$85.25
					TOTAL PROJECT COST =	\$2,647.08
PROJECT NO. 3: ROAD BLOCKING AND	VACAT	ING				
		-				
BLOCK Construct waterbar	1	ea @	\$30.25	per ea =	\$30.25	

				<u>TOT</u> /	AL BLOCKING COSTS =	\$30.25
EROSION CONTROL						
Grass seed & fertilizer	0.69	ac @	\$697.50	per ac =	\$481.27	
Mulch	0.69	ac @	\$990.00	per ac =	\$683.10	

TOTAL EROSION CONTROL COSTS = \$1,164.37

TOTAL PROJECT COST = \$1,194.62

Timber Sale:		ARY OF CO Scatter Shi		FION COST	- Sale Number: FG-341-20	725-11/01021-01
Road Segment:		Y to Z		-	Construction: 5+00 0.09	stations miles
PROJECT NO. 2: DIRT ROAD CONSTRU						
CONSTRUCTION						
Clearing & grubbing (scatter)	0.58	ac @	\$1,692.00	per ac =	\$981.36	
Balanced road construction	5.00	sta @	\$120.00	per sta =	\$600.00	
Turnaround	1	ea @	\$90.75	per ea =	\$90.75	
Landing	1	ea @	\$345.40	per ea =	\$345.40	
Grade, ditch, & roll	5.00	sta @	\$39.70	per sta =	\$198.50	_
				TOTAL C	CONSTRUCTION COSTS =	\$2,216.01
EROSION CONTROL						
Winterization blocking	1	ea @	\$55.00	per ea =	\$55.00	
Winterization waterbarring	1	ea @	\$30.25	per ea =	\$30.25	_
			т	OTAL ERO	SION CONTROL COSTS =	\$85.25
			_			
					TOTAL PROJECT COST =	\$2,301.26
PROJECT NO. 3: ROAD BLOCKING AND	JVACAI	ING				
BLOCK		-	•		• ·	
Construct tank trap	1	ea @	\$60.50	per ea =	\$60.50	
Construct waterbar	1	ea @	\$30.25	per ea =	\$30.25	-
				<u>TC</u>	DTAL BLOCKING COSTS =	\$90.75
EROSION CONTROL						
Cross acad & fortilizer	0 50	~	¢607 50	nor 00 -	¢101 FF	

Grass seed & fertilizer	0.58	ac @	\$697.50 per ac =	\$404.55
Mulch	0.58	ac @	\$990.00 per ac =	\$574.20

TOTAL EROSION CONTROL COSTS = \$978.75

TOTAL PROJECT COST = \$1,069.50

	oer Sale: Number: e Name:	Scatter Shield FG-341-2025-W01021-01 Camp 5 Stockpile			
Total truck y		284 cy 284 cy	_(truck measure)	-	
Move-in Move in loader Move in Dump Trucks				Subtotal =	\$149.29 \$4.13 \$153.42
3" - 0 Base Cost Load dump truck \$	60.90	/ cy x	284	Per CY = cy = Subtotal = Per CY =	\$0.55 \$255.60 \$255.60 \$0.90

3"-0 Cost = **\$1.45/cy**

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

	Timber Sale: _ Sale Number: _ Stockpile Name: _	FG-341-202	er Shield 25-W01021-01 Ridge Stockpile	-	
	1 1/2" - 0: _ Total truck yardage:	663 cy 663 cy	_(truck measure)		
Move-in			_		
Move in loader Move in Dump Truc	ks				\$837.79 \$103.62
				Subtotal = Per CY =	\$941.41 \$1.42/cv
1 1/2" - 0 Base Cost					φ1112, 0 <u>y</u>
Load dump truck	\$0.90	/ cy x	663	_cy = Subtotal = _ Per CY =	\$596.70 \$596.70 \$0.90

1 1/2"-0 Cost = **\$2.32/cy**

CRUISE REPORT Scatter Shield #FG-341-2025-W01021-01

1. LOCATION: Portions of Sections 3, 4, 5, 8, 9, and 18, T3N, R6W, W.M., Tillamook County, Oregon.

2. CRUISE DESIGN:

Pre-cruise evaluation indicated that the stand's average DBH is approximately 13 inches with a Coefficient of Variation of 60%. For sales of this size and approximate value, ODF cruise standards require a Sampling Error of 9% at a 68% Confidence Level, and a minimum sample size of 100 graded trees. Statistical analysis indicated that 61 variable radius grade plots utilizing a 20 BAF prism would produce an adequate sample size.

3. SAMPLING METHOD:

The Timber Sale Area was cruised in August of 2024. Unit 1, Unit 2, Unit 3, and Unit 4 were sampled with 61 variable radius grade plots. Plots falling on or near existing roads or no-harvest areas were offset 1 chain. In Unit 1 and Unit 2, cruisers chose 'Take' trees as though thinning from below to achieve a residual basal area target of 130 ft². In Unit 3 and Unit 4, cruisers chose "Take" trees as though thinning from below to achieve a residual basal area target of 120 ft². The Unit 5 Right-of-Way volume was determined by manual math with information provided by SuperAce report statistics and acreage obtained through ArcGIS PRO software.

4. CRUISE RESULTS:

353 Douglas-fir, western hemlock, and noble fir "Take" trees were measured and graded producing a cumulative Sampling Error of 9.3% on the Basal Area and 10.2% on the Board Foot Volume for Douglas-fir.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following Columbia River Log Scale grade rules and favored 40 foot segments.

- a) **Height Standards:** Total tree heights were measured to the nearest foot. For conifers, bole heights were calculated to a six inch top.
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors: Measured for each grade tree using a form point of 16 feet.

6. DATA PROCESSING

- a) **Volumes and Statistics:** Cruise estimates and sampling statistics were derived from Super Ace 2008 cruise software
- b) **Deductions:** Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.

7. CRUISERS: The sale was cruised by ODF cruisers Adrian Torres, Shamus Smith, Colton Turner, and Mark Savage.

Prepared by:	Shamus Smith	8/22/2024
		Date
Reviewed by:	Mark Savage	8/26/2024

RESIDUAL STAND SPECIFICATIONS

SALE NAME: Scatter Shield SALE NUMBER: FG-341-2024-W01021-01

Unit 1

Residual QMD assumption (from leave tree cruise information) = Target Relative Density =

15
34

18 31

17

29

	Minimum	Target	Maximum
Relative Density	31	34	36
Basal Area	120	130	140
Trees per Acre	98	106	114

Unit 2

Residual QMD assumption (from leave tree cruise information) =	=	
Target Relative Density =		

	Minimum	Target	Maximum
Relative Density	28	31	33
Basal Area	120	130	140
Trees per Acre	68	74	79

Unit 3

Residual QMD assumption (from leave tree cruise information) = Target Relative Density =

	Minimum	Target	Maximum
Relative Density	27	29	32
Basal Area	110	120	130
Trees per Acre	70	76	82

Unit 4

Residual QMD assumption (from leave tree cruise information) = Target Relative Density =

19
28

	Minimum	Target	Maximum
Relative Density	25	28	30
Basal Area	110	120	130
Trees per Acre	56	61	66

TC PSTATS						ROJECT ROJECT		STICS			PAGE DATE	1 8/22/2024
rwp RG	E S	SC	TRACT		ТҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt
03N 06 T3N R6V		18 09	0000+ U. 0000- Un		00PC '	THR		235.00	61	732	S	W
			•	<u></u>		TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		Р	LOTS	TREES		PER PLOT		TREES		TREES		
TOTAL			61	732		12.0						
CRUISE DBH COUN REFOREST COUNT BLANKS 100 %			61	732		12.0		47,641		1.5		
	-				STA	ND SUMM	ARY					
			MPLE REES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG FIR-	·L		262	56.9	16.5	93	20.8	84.2	11,635	11,618	2,800	2,800
DOUG FIR-	S		3	.9	13.7	74	0.3	1.0				
DOUG FIR-	T		214	70.8	13.2	84	18.5	67.2	7,464	7,418	1,876	1,876
WHEMLOC			77	16.6	17.0	87	6.3	26.1	3,763	3,731	897	897
WHEMLOC			110	37.6	13.5	75	10.1	37.1	4,195	4,175	1,043	1,043
NOB FIR-L			27	5.5	17.6	90	2.2	9.3	1,222	1,214	310	310
NOB FIR-T			29	11.7	12.6	77	2.8	10.1	1,156	1,156	279	279
R ALDER-L			6	2.3	13.2	72	0.6	2.2	238	235	57	57
WR CEDAR TOTAL	κ−L		4 7 <i>32</i>	.3 202.7	27.6 14.7	90 85	0.3 <i>62,2</i>	1.4 238.6	197 <i>29,870</i>	183 <i>29,730</i>	50 7, <i>312</i>	50 <i>7,312</i>
CONTIDES	68.1		TS OF THI IMES OUT		VOLUME	WILL BE V	/ITHIN TH	IE SAMPLE E	RROR			
CL 68.	68.1 1		IMES OUT	COF 100 THE		SAMPLE	TREES -	BF		OF TREES R		INF. POP.
CL 68. SD: 1.	68.1 1 0		IMES OUT COEFF VAR.%	5 OF 100 THE S.E.%		SAMPLE .OW	TREES - AVG	BF HIGH		¢ OF TREES RI 5	EQ. 10	INF. POP. 1
CL 68. SD: <u>L</u> . DOUG FIR-	68.1 1 0 L		IMES OUT	COF 100 THE		SAMPLE	TREES -	BF				
CL 68. SD: 1. DOUG FIR-1 DOUG FIR-2	68.1 1 0 L S		IMES OUT COEFF VAR.% 60.1	5 OF 100 THE <u>S.E.%</u> 3.7		SAMPLE OW 236	AVG 245	BF HIGH 254				
CL 68. SD: L. DOUG FIR- DOUG FIR- DOUG FIR-	68.1 1 0 L S T		IMES OUT COEFF VAR.% 60.1 53.4	5 OF 100 THE S.E.%		SAMPLE .OW	TREES - AVG	BF HIGH				
CL 68. SD: 1. DOUG FIR-1 DOUG FIR-1	68.1 1 0 L S T K-L		IMES OUT COEFF VAR.% 60.1	C OF 100 THE <u>S.E.%</u> 3.7 3.7		SAMPLE .OW 236 126	2 TREES - AVG 245 131	BF HIGH 254 136				
CL 68. SD: 1,1 DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC	68.1 1 0 L S T K-L		IMES OUT COEFF VAR.% 60.1 53.4 54.6	S.E.% S.E.% 3.7 3.7 6.2		SAMPLE .OW 236 126 248	2 TREES - AVG 245 131 264	BF HIGH 254 136 280				
CL 68. SD: 1, DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC	68.1 1 0 L S T K-L		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0	S.E.% S.E.% 3.7 3.7 6.2 5.1		SAMPLE OW 236 126 248 135	2 TREES - AVG 245 131 264 142	BF HIGH 254 136 280 149				
CL 68. SD: L, DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC NOB FIR-L NOB FIR-T R ALDER-L	68.1 1 0 L s T K-L K-T		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0	S.E.% S.E.% 3.7 6.2 5.1 6.0 11.8 34.3		SAMPLE OW 236 126 248 135 230 123 96	TREES - <u>AVG</u> 245 131 264 142 245 139 147	BF HIGH 254 136 280 149 260 156 197				
CL 68. SD: 1, DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC NOB FIR-L NOB FIR-T R ALDER-L WR CEDAR	68.1 1 0 L s T K-L K-T		COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8	S.E.% S.E.% 3.7 6.2 5.1 6.0 11.8 34.3 50.8		SAMPLE OW 236 126 248 135 230 123 96 357	TREES - <u>AVG</u> 245 131 264 142 245 139 147 725	BF HIGH 254 136 280 149 260 156 197 1,093		5	10	1
CL 68. SD: 1, DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC NOB FIR-L NOB FIR-T R ALDER-L	68.1 1 0 L s T K-L K-T		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0	S.E.% S.E.% 3.7 6.2 5.1 6.0 11.8 34.3		SAMPLE OW 236 126 248 135 230 123 96	TREES - <u>AVG</u> 245 131 264 142 245 139 147	BF HIGH 254 136 280 149 260 156 197				
CL 68. SD: 1,1 DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC WHEMLOC NOB FIR- NOB FIR- R ALDER-L WR CEDAR TOTAL CL 68.	68.1 1 0 L S T K-L K-T -L 1		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF	S.E.% 3.7 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6	I	SAMPLE .OW 236 126 248 135 230 123 96 357 190 SAMPLE	TREES - AVG 245 131 264 142 245 139 147 725 <i>195</i> TREES -	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF	#	5 204 9 OF TREES RI	10 51 EQ.	
CL 68. SD: 1,1 DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC WHEMLOC NOB FIR- R ALDER-L WR CEDAR TOTAL CL 68. SD: 1,1	68.1 1 0 L S T K-L K-T -L 1 0		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF VAR.%	S.E.% 3.7 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6 S.E.%	I	SAMPLE .OW 236 126 248 135 230 123 96 357 190 SAMPLE OW	TREES - AVG 245 131 264 142 245 139 147 725 <i>195</i> TREES - AVG	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF HIGH	#	5 204	<u>10</u> 51	1
CL 68. SD: 1,1 DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC WHEMLOC NOB FIR- R ALDER-L WR CEDAR TOTAL CL 68. SD: 1,0 DOUG FIR-	68.1 1 0 L S T K-L K-T -L 1 0 L		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF	S.E.% 3.7 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6	I	SAMPLE .OW 236 126 248 135 230 123 96 357 190 SAMPLE	TREES - AVG 245 131 264 142 245 139 147 725 <i>195</i> TREES -	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF	#	5 204 9 OF TREES RI	10 51 EQ.	
CL 68. SD: 1,1 DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC WHEMLOC NOB FIR- NOB FIR- R ALDER-L WR CEDAR TOTAL CL 68. SD: 1,0	68.1 1 0 L S T K-L K-T -L 1 0 L S		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF VAR.%	S.E.% 3.7 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6 S.E.%	I	SAMPLE .OW 236 126 248 135 230 123 96 357 190 SAMPLE OW	TREES - AVG 245 131 264 142 245 139 147 725 <i>195</i> TREES - AVG	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF HIGH	#	5 204 9 OF TREES RI	10 51 EQ.	
CL 68. SD: 1,1 DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC WHEMLOC NOB FIR- R ALDER-L WR CEDAR TOTAL CL 68. SD: 1,0 DOUG FIR- DOUG FIR-	68.1 1 0 L S T K-L K-T -L 1 0 L S F		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF VAR.% 51.8	S.E.% 3.7 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6 S.E.% 3.2	I	SAMPLE .OW 236 126 248 135 230 123 96 357 190 SAMPLE OW 56	TREES - AVG 245 131 264 142 245 139 147 725 195 TREES - AVG 58	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF HIGH 60	#	5 204 9 OF TREES RI	10 51 EQ.	
CL 68. SD: 1,1 DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC WHEMLOC NOB FIR- R ALDER-L WR CEDAR TOTAL CL 68. SD: 1,0 DOUG FIR- DOUG FIR- DOUG FIR-	68.1 1 0 L S T K-L K-T 1 0 L S F K-L		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF VAR.% 51.8 54.1	S.E.% 3.7 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6 S.E.% 3.2 3.7	I	SAMPLE .OW 236 126 248 135 230 123 96 357 190 SAMPLE OW 56 32	TREES - AVG 245 131 264 142 245 139 147 725 <i>195</i> TREES - AVG 58 33	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF HIGH 60 35	#	5 204 9 OF TREES RI	10 51 EQ.	
CL 68. SD: 1,1 DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC WHEMLOC NOB FIR-1 R ALDER-L NOB FIR-5 R ALDER-L WR CEDAR TOTAL CL 68. DOUG FIR-1 DOUG FIR-5 DOUG FIR-5 1,0 DOUG FIR-5 NOH FIR-5 WHEMLOC WHEMLOC WHEMLOC NOB FIR-1	68.1 1 0 L S T K-L K-T 1 0 L S F K-L		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF VAR.% 51.8 54.1 49.2 55.5 32.4	S.E.% 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6 S.E.% 3.2 3.7 5.6 5.3 6.4	I	SAMPLE OW 236 126 248 135 230 123 96 357 190 SAMPLE OW 56 32 60 34 59	TREES - AVG 245 131 264 142 245 139 147 725 <i>195</i> TREES - AVG 58 33 63 36 63 36 63	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF HIGH 60 35 67 38 67	#	5 204 9 OF TREES RI	10 51 EQ.	
CL 68. SD: 1, DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC WHEMLOC NOB FIR- R ALDERL WR CEDAR TOTAL CL 68. SD: 1,0 DOUG FIR- DOUG FIR- DOUG FIR- SD: 1,0 DOUG FIR- NOB FIR- NOB FIR- NOB FIR- NOB FIR- NOB FIR-	68.1 1 0 L S T K-L K-T 1 0 L S T K-L K-T		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF VAR.% 51.8 54.1 49.2 55.5 32.4 65.3	S.E.% 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6 S.E.% 3.2 3.7 5.6 5.3 6.4 12.3	I	SAMPLE OW 236 126 248 135 230 123 96 357 <i>190</i> SAMPLE OW 56 32 60 34 59 30	AVG AVG 245 131 264 142 245 139 147 725 195 TREES - AVG 58 33 63 36 63 34	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF HIGH 60 35 67 38 67 38 67 39	#	5 204 9 OF TREES RI	10 51 EQ.	
CL 68. SD: 1,1 DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC WHEMLOC WHEMLOC WHEMLOC NOB FIR- R NOB FIR- R R ALDERL WR CEDAR TOTAL CL CL 68. DOUG FIR- 1,0 NOB FIR- 1,0 NOB FIR- 1,0 NOB FIR- 1	68.1 1 0 L S T K-L K-T 1 0 L S T K-L K-T		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF VAR.% 51.8 54.1 49.2 55.5 32.4 65.3 73.2	S.E.% 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6 S.E.% 3.2 3.7 5.6 5.3 6.4 12.3 32.6	I	SAMPLE OW 236 126 248 135 230 123 96 357 <i>190</i> SAMPLE OW 56 32 60 34 59 30 24	TREES - AVG 245 131 264 142 245 139 147 725 <i>195</i> TREES - AVG 58 33 63 36 63 36 63 34 36	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF HIGH 60 35 67 38 67 38 67 39 48	#	5 204 9 OF TREES RI	10 51 EQ.	
CL 68. SD: 1, DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC WHEMLOC NOB FIR- R ALDER-L WR CEDAR TOTAL CL 68. SD: 1,0 DOUG FIR- DOUG FIR- DOUG FIR- SD: 1,0 CL 068. SD: 1,0 CL 068. SD: 1,0 SD: 1,0	68.1 1 0 L S T K-L K-T 1 0 L S T K-L K-T		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF VAR.% 51.8 54.1 49.2 55.5 32.4 65.3 73.2 79.6	S.E.% 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6 S.E.% 3.2 3.7 5.6 5.3 6.4 12.3 32.6 45.5	I	SAMPLE OW 236 126 248 135 230 123 96 357 <i>190</i> SAMPLE OW 56 32 60 34 59 30 24 104	TREES - AVG 245 131 264 142 245 139 147 725 <i>195</i> TREES - AVG 58 33 63 36 63 36 63 34 36 190	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF HIGH 60 35 67 38 67 38 67 39 48 277	#	5 204 4 OF TREES RI 5	51 EQ. 10	
CL 68. SD: 1,1 DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC NOB FIR- R ALDER-L WR CEDAR TOTAL CL 68. SD: 1,0 DOUG FIR- DOUG FIR- DOUG FIR- DOUG FIR- NOB FIR- WHEMLOCC WHEMLOCC NOB FIR-L NOB FIR-L NOB FIR-L NOB FIR-L NOB FIR-L	68.1 1 0 L S T K-L K-T 1 0 L S T K-L K-T -L -L		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF VAR.% 51.8 54.1 49.2 55.5 32.4 65.3 73.2 79.6 66.1	S.E.% 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6 S.E.% 3.2 3.7 5.6 5.3 6.4 12.3 32.6	I	SAMPLE OW 236 126 248 135 230 123 96 357 190 SAMPLE OW 56 32 60 34 59 30 24 104 47	TREES - AVG 245 131 264 142 245 139 147 725 <i>195</i> TREES - AVG 58 33 63 36 63 34 36 190 48	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF HIGH 60 35 67 38 67 38 67 39 48	#	5 204 9 OF TREES RI 5 175	<u>51</u> EQ. <u>10</u>	
CL 68. SD: 1,1 DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC NOB FIR- R ALDER-L WR CEDAR TOTAL CL 68. SD: 1,0 DOUG FIR- DOUG FIR- DOUG FIR- DOUG FIR- NOB FIR- NOB FIR- R ALDER-L WR CEDAR- TOTAL CL 68.1	68.1 1 0 L S T K-L K-T 1 0 L S T K-L K-T -L L L S I		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF VAR.% 51.8 54.1 49.2 55.5 32.4 65.3 73.2 79.6 66.1 COEFF	S.E.% 3.7 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6 S.E.% 3.2 3.7 5.6 5.3 6.4 12.3 32.6 45.5 2.4	L	SAMPLE OW 236 126 248 135 230 123 96 357 190 SAMPLE OW 56 32 60 34 59 30 24 104 47 TREES/A	TREES - AVG 245 131 264 142 245 139 147 725 195 TREES - AVG 58 33 63 36 63 34 36 190 48 CRE	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF HIGH 60 35 67 38 67 38 67 39 48 277 49	#	5 204 205 TREES RI 5 175 OF PLOTS RE	<u>51</u> EQ. <u>10</u> 44 GQ.	
CL 68. SD: 1, DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC WHEMLOC NOB FIR- R ALDER-L WR CEDAR TOTAL CL 68. SD: 1,0 DOUG FIR- DOUG FIR- DOUG FIR- DOUG FIR- DOUG FIR- CL 68. SD: 1,0 CL 68. SD: 1,0 CL 68. CD CL 68. CD CL 68. CD CL 68. CD CL 68. CD CL 68. CD CD CL 68. CD CD CD CD CD CD CD CD CD CD	68.1 1 0 L S T K-L K-T 1 0 L S F K-L K-T -L -L 1 0 -L -L		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF VAR.% 51.8 54.1 49.2 55.5 32.4 65.3 73.2 79.6 66.1 COEFF VAR.%	S.E.% 3.7 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6 3.2 3.7 5.6 5.3 6.4 12.3 32.6 45.5 2.4 S.E.%	L	SAMPLE OW 236 126 248 135 230 123 96 357 190 SAMPLE 0W 56 32 60 34 59 30 24 104 47 TREES/A OW	TREES - AVG 245 131 264 142 245 139 147 725 <i>195</i> TREES - AVG 58 33 63 36 63 34 36 190 48	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF HIGH 60 35 67 38 67 38 67 39 48 277	#	5 204 9 OF TREES RI 5 175	<u>51</u> EQ. <u>10</u>	
CL 68. SD: 1, DOUG FIR- DOUG FIR- DOUG FIR- WHEMLOC WHEMLOC WHEMLOC NOB FIR- R ALDER-L WR CEDAR TOTAL CL 68. SD: 1,0 DOUG FIR- DOUG FIR- DOUG FIR- DOUG FIR- DOUG FIR- NOB FIR- NOB FIR- WHEMLOCC WHEMLOCC NOB FIR- R ALDER-L WR CEDAR- TOTAL CL 68.	68.1 1 0 L S T K-L K-T 1 0 L S T K-L K-T -L -L		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF VAR.% 51.8 54.1 49.2 55.5 32.4 65.3 73.2 79.6 66.1 COEFF	S.E.% 3.7 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6 S.E.% 3.2 3.7 5.6 5.3 6.4 12.3 32.6 45.5 2.4	L	SAMPLE OW 236 126 248 135 230 123 96 357 190 SAMPLE OW 56 32 60 34 59 30 24 104 47 TREES/A	AVG AVG 245 131 264 142 245 139 147 725 195 TREES - AVG 58 33 63 36 63 34 36 190 48 CRE AVG	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF HIGH 60 35 67 38 67 38 67 39 48 277 49 HIGH	#	5 204 205 TREES RI 5 175 OF PLOTS RE	<u>51</u> EQ. <u>10</u> 44 GQ.	
CL 68. SD: 1,1 DOUG FIR-1 DOUG FIR-2 WHEMLOC WHEMLOC NOB FIR-1 R ALDER-L WR CEDAR TOTAL CL 68. SD: 1,0 DOUG FIR-1 DOUG FIR-1 OUG FIR-1 DOUG FIR-1 DOUG FIR-1 NOB FIR-1 NOB FIR-1 NOB FIR-1 NOB FIR-1 NOB FIR-1 NOB FIR-1 R ALDER-L WR CEDAR- TOTAL CL 68.1 SD: 1,0 DOUG FIR-1 NOB FIR-2 NOB FIR-1 R ALDER-L WR CEDAR- TOTAL	68.1 1 0 L S T K-L K-T 1 0 L S T K-L K-T -L -L -L		IMES OUT COEFF VAR.% 60.1 53.4 54.6 54.0 30.6 62.7 77.0 88.8 71.6 COEFF VAR.% 51.8 54.1 49.2 55.5 32.4 65.3 73.2 79.6 66.1 COEFF VAR.% 53.3	S.E.% 3.7 6.2 5.1 6.0 11.8 34.3 50.8 2.6 3.2 3.7 5.6 5.3 6.4 12.3 32.6 45.5 2.4 S.E.% 6.8	L	SAMPLE OW 236 126 248 135 230 123 96 357 190 SAMPLE 0W 56 32 60 34 59 30 24 104 47 TREES/A OW 53	TREES - AVG 245 131 264 142 245 139 147 725 195 TREES - AVG 58 33 63 36 63 34 36 190 48 CRE AVG 57	BF HIGH 254 136 280 149 260 156 197 1,093 200 CF HIGH 60 35 67 38 67 38 67 39 48 277 49 HIGH 61	#	5 204 205 TREES RI 5 175 OF PLOTS RE	<u>51</u> EQ. <u>10</u> 44 GQ.	

TC PS7	FATS					PROJECT project		STICS ATSH			PAGE DATE	2 8/22/2024
ГWP	RGE	SC	TRACT		TYPE		A	CRES	PLOTS	TREES	CuFt	BdFt
03N T3N	06 R6W	18 09	000+ Unit	1	00PC 00PC	THR		235.00	61	732	S	W
CL	68.1		COEFF	•		TREES	ACRE			# OF PLOT	S REQ.	INF. POF
SD:	1.00		VAR.	S.E.%		LOW	AVG	HIGH		5	10	15
WHE	MLOCK-T	,	135.5	17.3		31	38	44				
	FIR-L		188.2	24.1		4	6	7				
NOB	FIR-T		181.4	23.2		9	12	14				
R AL	DER-L		409.7	52.4		1	2	3				
	CEDAR-L		454.0	58.1		0	0	1				
TOT			31.9	4.1		194	203	211		41	10	5
CL	68.1		COEFF			BASAI	AREA/AG	CRE		# OF PLOTS R	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%		LOW	AVG	HIGH		5	10	15
DOU	G FIR-L		40.7	5.2		80	84	89				
	G FIR-S		566.2	72.4		0	1	2				
DOU	G FIR-T		72.9	9.3		61	67	73				
	MLOCK-L		118.2	15.1		22	26	30				
	MLOCK-T		123.6	15.8		31	37	43				
	FIR-L		175.5	22.5		7	9	11				
	FIR-T		203.7	26,1		7	10	13				
	DER-L		402.6	51.5		1	2	3				
	CEDAR-L		471.6	60.3		1	-	2				
тот			23.2	3.0		231	239	246		21	5	2
CL	68.1		COEFF			NFT B	F/ACRE			# OF PLOTS R	ΕO	INF. POP.
			VAR.%	S.E.%		LOW	AVG	HIGH		5	10	15
SD:	1.0							12,253		<u>_</u>	10	15
	G FIR-L		42.7	5.5		10,983	11,618	12,255				
	G FIR-S		7 0.0				7 410	0.174				
	G FIR-T		79.8	10.2		6,661	7,418	8,174				
	MLOCK-L		125.9	16.1		3,130	3,731	4,332				
	MLOCK-T		124.3	15.9		3,511	4,175	4,839				
	FIR-L		180.4	23.1		934	1,214	1,495				
	FIR-T		229.8	29.4		816	1,156	1,496				
	DER-L		389.5	49.8		118	235	352				
	CEDAR-L		470.0	60.1		73	183	293		26	6	3
TOT	AL		25.4	3.2		28,766	29,730	30,695				
	68.1		COEFF				UFT FT/A			# OF PLOTS R	•	INF. POP.
	1.0		VAR.%	<u>S.E.%</u>		LOW	AVG	HIGH		5	10	15
	G FIR-L G FIR-S		41.2	5.3		2,653	2,800	2,948				
2000	G FIR-T		78.4	10.0		1,687	1,876	2,064				
DOU	MLOCK-L		122.5	15.7		756	897	1,037				
			126.8	16.2		874	1,043	1,212				
WHE	MI OCK-T					240	310	381				
WHE WHE	MLOCK-T		178 1	22 R								
WHE WHE NOB	FIR-L		178.1 230 5	22.8 29.5								
WHE WHE NOB	FIR-L FIR-T		230.5	29.5		197	279	361				
WHE WHE NOB NOB	FIR-L											

TC PSPCSTGR

Species, Sort Grade - Board Foot Volumes (Project)

	THR		Гу00РС Ту00РС		٣		Project: Acres	SC	ATSH 235.(Page Date Time		1 22/202 :15:06	24
			%				r —	Perc	ent of N	Vet Boar	d Foot	Volume					Avera	ige Log	3	Logs
	SS	o Gr	Net	Bd. Ft	. per Acre		Total	J	Log Sca	ile Dia.			Log L	ength		Ln	Dia	Bd	CF/	Per
Spp	Т	rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF 1	r	2M	30	.3	3,580	3,571	839	6	8	76	10	6	13	15	66	30	9	141	1.12	25.
DF 1		3M	66	.1	7,656	7,648	1,797	5	81	14	10	5	26	30	39	30	8	86	0.68	89.
DF J		4M	4		399	399	94		100			30	46	16	7	22	6	27	0.37	14
DF 1	[otals		39	.1	11,635	11,618	2,730	5	59	33	3	6	22	25	46	29	8	90	0.74	128
DF 1	г	CU										-				12	9		0.00	1.
	Г	2M	5	1.6	437	430	101	3		97		3			97		11	190	1.30	2.
DF 1	Г	3M	78	.7	5,823	5,784	1,359	0	98	2		0		3	97	39	8	95	0.61	60.
DF 1	Г	4M	17		1,204	1,204	283		100			25	44	10	21	25	6	32	0.32	37.
DF T	Cotals		25	.6	7,464	7,418	1,743	0	92	7		4	7	4	85	34	7	73	0.55	102.
DF S	S	CU														30	7		0.00	1.
DF 1	fotals												_			30	7		0.00	1.
*****		011														20	6		0.00	
WH 1 WH 1		CU 2M	10	1.5	454	447	105			100			8		92	39	13	234	1.43	1.
WH 1		3M	74	.3	3,098	3,088	726	1	95	5		1	2	2	95	38	8	104	0.68	29.
WH 1		4M	16	.5	643	640	150	-	100	-		24	45	5	25	25	6	32	0.34	20.
WH '	Total	5	14	.5	4,195	4,175	981	0	85	14		4	9	2	84	33	8	79	0.61	52.
WH I		ĊU														13	16		0.00	
WH I		2M	44	1.9	1,709	1,677	394	10	3	73	13	10	12	30	48	26	9	129	1.14	13.
WH I		3M	48		1,792	1,792	421	4	82	14		4	7	10	79	33	9	110	0.79	16.
WH I		4M	8		262	262	62		100			32	56	7	5	21	6	26	0.40	10.
WH '	Total	5	13	.8	3,763	3,731	877	7	48	40	6	9	12	19	60	27	8	94	0.82	39.
		23.4	65	0	804	700	100	17		83		17		9	74	26	8	109	1.05	7.
NF L NF L		2M 3M	65 31	.9	806 375	799 375	188 88	17 3	89	85 9		3	17	9 18	63	33	8	90	0.68	4.
NF L		4M	4		41	41	10		100	-		35	65	10		21	6	26	0.39	1.
				,				10		67		10			(0		0	02	0.05	13.
NF T			4	.6	1,222	1,214	285	12	31	57		13	7	11	68	28	8	93	0.85	
NF T		2M	13		155	155	36		100	100	ł				100		13	228	1.34	
NF I		3M	62 25		713 288	713	167 68		100 100			10	49	3 28	97 14	39 28	8 6	106 37	0.65 0.33	6. 7.'
NF T		4M				288														
NF T	otals		4		1,156	1,156	272		87	13		2	12	9	77	34	7	76	0.54	15.:
RC L		2M	78	9.0	158	143	34		3	36	61		31	42	27	31	14	289	2.45	
RC L	,	3M	22		40	40	9	9	22	69		9	69		22	22	9	90	1.29	
RC L	,	4M															5		0.00	
RC T	otals		1	7.2	197	183	43	2	7	43	48	2	39	33	26	23	11	171	2.00	1.
RA L		2M	18		43	43	10			100					100	40	14	290	1.63	
RA L		3M	48	2.5	116	113	26		60	40					100	40	9	124	0.76	
RA L		4M	34		79	79	19		100				70	30		28	7	50	0.45	1.0
RA T	otals		1	1.2	238	235	55		62	38			24	10	66	33	8	89	0.66	2.0
-	_							_			_			_					_	

тС	PSTNDSU	M				5	Stand 7	Fable S	ummary				Page Date:	1 <u>8/22/20</u>	24
T03N	R06W S1	8 Ty00PC					Projec	t S	CATSH				Time:	4:15:0	7PM
1	THRU RR6W S(09 Ty00PC					Acres		235.0)0			Grown Year:		
s				Tot	Trees/	BA/	Logs	Average Net	e Log Net	Theres (Net	Net		 Fotals	
Spc T	DBH	Sample Trees	FF 16'	Av Ht	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Cunits	MBF
DF L	12	8	87	79	3.360	2.64	5.27	12.3	48.3	1.85	65	254	435	153	60
DFL	13	14	87	84	4.960	4.57	9.46	13.2	50.6	3.56	125	478	836	293	112
DFL	14	35 24	88 87	88 88	10.604 6.513	11.34 7.99	21.20 15.60	16.1 15.3	67.6 64.6	9.71 6.80	341 239	1,433 1,008	2,283 1,598	801 561	337 237
DF L DF L	15 16	24 36	88	00 92	8.216	11.47	18.51	20.3	85.6	10.70	375	1,585	2,514	882	373
DFL	10	30	88	95	6.225	9.81	14.90	21.9	91.1	9.31	327	1,358	2,188	768	319
DFL	18	33	88	101	5.750	10.16	14.49	24.7	101.4	10.19	358	1,469	2,395	840	345
DF L	19	21	88	99	3.400	6.70	7.34	32.6	128.7	6.81	239	944	1,602	562	222
DF L	20	28	88	99	4.154	9.06	10.76	30.0	120.4	9.20	323	1,295	2,161	758	304
DF L	21	11	88	102	1.384	3.33	3.60	34.5	142.7	3.54	124	514	833	292	121
DF L	22	11	89	111	1.274	3.36	3.82	34.6	150.4	3.77	132	575	887	311	135
DF L	23	2	89 88	126 92	.226	.65 1.37	.88 1.31	32.8	154.0 146.1	.82 1.32	29 46	136 191	194 311	68 109	32 45
DFL	24 25	4 1	88 89	92 124	.436 .105	.37	1.31 .32	35.5 52.0	146.1 246.7	.47	46 16	78	110	39	43
DF L DF L	23 26	2	89	124	.105	.30	.52	39.2	240.7 185.0	.47	30	144	204	72	34
DFL	28	- 1	90	137	.084	.36	.42	42.0	212.0	.50	18	89	118	41	21
DFL	36	1	89	98	.051	.36	.25	51.1	266.0	.37	13	67	87	30	16
DF L	Totals	262	88	93	56.937	84.25	128.90	21.7	90.1	79.81	2,800	11,618	18,755	6,581	2,730
DF T	8	4	86	73	3.639	1.27	3.64	4.7	22.4	.48	17	81	114	40	19
DF T	9	5	86	71	3.577	1.58	3.58	7.7	37.1	.78	27	133	183	64	31
DF T	10	9	86	70	5.326	2.91	5.33	10.7	51.5	1.62	57	275	381	134	65
DF T	11	21	87	78	9.863	6.51	9.86	15.0	61.8	4.22	148	609	992	348	143
DF T	12 13	26 24	88 87	83 85	10.528 8.619	8.27 7.94	10.85 11.92	18.1 17.5	68.4 66.7	5.60 5.94	196 208	743 795	1,316 1,395	462 490	174 187
DF T DF T	15	38	88	88	11.145	11.91	20.33	17.3	67.4	9.99	351	1,369	2,348	824	322
DFT	15	28	88	89	7.111	8.73	13.40	19.9	79.0	7.61	267	1,059	1,789	628	249
DFT	16	15	88	93	3.135	4.38	6.01	23.1	94.1	3.96	139	566	932	327	133
DF T	17	22	88	95	4.293	6.77	8.63	26.0	102.9	6.39	224	888	1,501	527	209
DF T	18	11	87	99	1.866	3.30	3.73	30.7	116.7	3.26	114	435	767	269	102
DF T	19	6	88	94	1.026	2.02	2.23	31.0	114.1	1.97	69	255	464	163	60
DF T	20	3	87	101	.433	.94	.87	38.6	137.6	.95	33	119	224	79	28
DFT	21 24	1 1	87 89	103 92	.122 .114	.29 .36	.24 .23	45.2 53.9	175.0 210.0	.31 .35	11 12	43 48	74 82	26 29	10 11
DF T DF T	Totals	214	87	92 84	70.797	67.18	100.85	18.6	73.5	53.46	1,876	7,418	12,562	4,408	1,743
WHT	8	4	88	57	4.108	1.43	4.11	4.9	25.0	.64	20	103	12,302	47	24
WHT	9	2	89	62	1.475	.65	1.47	8.4	39.0	.40	12	58	93	29	14
WHT	10	5	89	68	3.286	1.79	3.29	12.0	60.0	1.26	39	197	296	93	46
WHT	11	3	89	68	1.448	.96	1.45	14.9	63.8	.69	22	92	162	51	22
WНТ	12	11	90	75	4.854	3.81	4.85	18.8	71.1	2.92	91	345	686	214	81
WHT	13	17	89	76	6.257	5.77	7.03	19.9	78.2	4.48	140	550	1,052	329	129
WH T	14	16	90	81	5.009	5.35	7.84	19.3	77.6	4.85	152	609 577	1,141	357 328	143 135
WHT	15 16	13 9	90 90	85 81	3.496 2.170	4.29 3.03	6.75 4.34	20.7 21.7	85.4 86.3	4.47 3.01	140 94	577 375	1,050 707	328 221	88
WНТ WНТ	10	9 10	90 91	81 84	2.170	3.46	4.34	25.9	103.2	3.65	94 114	454	858	268	107
WHT	18	7	89	85	1.309	2.31	2.42	31.2	115.5	2.41	75	279	566	177	66
WHT	19	6	90	86	1.032	2.03	2.06	33.5	126.9	2.21	69	262	520	163	62
WHT	20	4	87	83	.567	1.24	.97	41.3	138.9	1.28	40	135	301	94	32
wнт	21	2	91	81	.298	.72	.60	38.5	157.5	.73	23	94	173	54	22
WНТ	22	1	87	96	.111	.29	.22	52.2	210.0	.37	12	47	87	27	11
WHT	Totals	110	90	75	37.619	37.15	51.81	20.1	80.6	33.38	1,043	4,175	7,844	2,451	981
WHL	12	1	91	75	.456	.36	.46	18.5	70.0	.27	8	32	64	20	8

TC	PSTNDSU	ЛМ				S	Stand 7	Fable Si	ummary				Page Date:	2 <u>8/22/20</u>	24
T03N	R06W S1	8 Ty00PC					Projec	t S	CATSH				Time:	4:15:0'	7PM
	fhru rr6w S(09 Ty00PC					Acres		235.0	0			Grown Year:		
		<u> </u>		Tot				Average	e Log		Net	Net	·		
S Spc Т	DBH	Sample Trees	FF 16'	Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Totals Cunits	MBF
WHL	13	5	91	80	1.945	1.79	3.89	13.4	55.0	1.67	52	214	392	123	50
WHL	14	4	92	83	1.341	1.43	2.68	16.8	70.0	1.44	45	188	339	106	44
WHL	15	9	91	86	2.492	3.06	5.51	18.5	81.7	3.27	102	451	769	240	106
WHL	16	11	91	85	2.731	3.81	5.88	21.5 23.4	90.3 100.0	4.05 2.84	127 89	531 380	952 667	298 208	125 89
WH L WH L	17 18	7 13	92 90	95 84	1.557 2.415	2.45 4.27	3.80 5.83	23.4	86.7	4.28	134	505	1,005	314	119
WHL	19	5	90	95	.844	1.66	2.35	26.7	112.8	2.01	63	265	471	147	62
WHL	20	5	91	87	.762	1.66	2.29	25.0	98.8	1.83	57	226	429	134	53
WHL	21	9	91	93	1,237	2.98	3.44	32.5	135.3	3.57	112	465	839	262	109
WHL	22	3	89	98	.358	.94	1.16	31.1	130.4	1.16	36	151	272	85	36
WHL	23	2	92	128	.248	.72	.99	35.8	172.5	1.14	36	171	268	84	40
WHL	24	1	92	89 100	.114	.36	.34	38.7	136.7 130.0	.42 .35	13 11	47 52	100 83	31 26	11 12
WH L WH L	26 29	1 1	86 87	100 110	.080 .064	.29 .29	.40 .32	27.9 38.2	130.0 168.0	.35 .39	11	52	83 92	20 29	12
WHL	Totals	77	91	87	16.644	26.08	39.33	22.8	94.9	28.69	897	3,731	6,742	2,107	877
NF L	13	3	90	80	1.108	1.02	1.83	15.1	60.6	.66	28	111	156	65	26
NF L	14	1	90	83	.335	.36	.67	16.3	70.0	.26	11	47	62	26	11
NF L	15	1	90	86	.239	.29	.72	13.1	56.7	.22	9	41	53	22	10
NF L	16	1	91	93	.257	.36	.51	22.9	90.0	.28	12	46	66	28	11
NF L	17	2	91	89 02	.420	.66	.84 2.84	26.5 21.3	107.3 83.6	.53 1.45	22 61	90 237	126 341	52 142	21 56
NF L	18 19	5 4	91 90	93 98	1.014 .695	1.79 1.37	2.84 1.90	21.5	83.8 102.8	1.43	49	196	275	115	46
NF L NF L	20	4	89	100	.099	.65	.90	25.9	98.5	.56	23	88	131	55	21
NFL	21	6	91	90	.894	2.15	2.24	32.7	123.3	1.76	73	276	413	172	65
NF L	22	2	89	95	.247	.65	.60	37.2	136.9	.54	22	83	127	53	19
NF L	Totals	27	90	90	5.508	9.31	13.05	23.8	93.1	7.45	310	1,214	1,750	729	285
NF T	8	1	90	77	.871	.30	.87	4.6	20.0	.10	4	17	23	9	4
NF T	9	3	90	63	2.311	1.02	2.31	8,2	39.5	.45	19	91	106	44	21
NF T	10	3	90	70	1,972	1.08	1.97	11.7	56.7	.55	23	112	130	54	26
NF T	11	3	90	70 79	1.547	1.02	1.55	14.0	56.0 70.0	.52	22 8	87 32	122 48	51 20	20 8
NF T	12 13	1 1	91 91	78 87	.456 .330	.36 .30	.46 .33	18.5 22.7	70.0 90.0	.20 .18	8 7	32 30	48 42	18	° 7
NF T NF T	15	3	91 90	87 82	.955	1.02	.55 1.57	18.8	90.0 76.4	.71	30	120	167	70	28
NFT	15	2	91	84	.584	.72	.88	24.0	100.0	.51	21	88	119	50	21
NFT	16	5	91	92	1.284	1.79	2.57	23.1	94.0	1.42	59	241	335	139	57
NF T	17	3	90	93	.682	1.08	1.36	26.8	108.3	.88	37	148	207	86	35
NF T	18	1	91	95	.203	.36	.41	31.5	125.0	.31	13	51	72	30	12
NF T NF T	19 20	1 2	90 90	98 93	.149 .329	.29 .72	.30 .66	37.0 38.1	150.0 145.0	.26 .60	11 25	45 95	62 141	26 59	10 22
NFT	Totals	29	90	77	11.672	10.06	15.23	18.3	75.9	6.70	279	1,156	1,573	656	272
RAL	9	1	92	78	.811	.36	.81	8.6	50.0	.19	7	41	45	16	10
RAL	13	2	88	62	.778	.72	.78	21.5	75.0	.46	17	58	108	39	14
RAL	15	1	91	71	.292	.36	.29	30.2	110.0	.24	9	32	57	21	8
RAL	17	I	92	87	.227	.36	.45	28.1	120.0	.35	13	55	83	30 28	13 12
RAL	21	1	91	78	.149	.36	.30	39.9	165.0	.33	12	49			
RAL	Totals	6	90	72	2.258	2.15	2.63	21.7	89.1	1.57	57	235	370	134	55
RCL	24	1	81	62	.114	.36	.34	26.1	90.0	.21	9 26	31 92	49 144	21 61	7 22
RCL	26 43	2 1	81 80	103 113	.194 .036	.72 .36	.58 .14	44.8 103.4	158.3 420.0	.61 .35	26 15	92 60	81	35	14
RC L	43	1	80	113	.050	.50	.14	103.4	420.0		15	00	01	55	

тс	PSTNDSU	м.				1	Stand 7	Fable S	ummary				Page Date:	3 <u>8/22/2</u>)24
5	ΓHRU	8 Ty00PC)9 Ty00PC					Project Acres	t S	CATSH 235.0	0			Time: Grown Year:	4:15:(07PM
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
RC L	Totals	4	81	90	.344	1.43	1.07	46.6	171.3	1.17	50	183	275	117	43
DF S DF S	13 14	1 2	88 86	83 69	.330 .620	.30 .66									
DF S	Totals	3	87	74	.949	.97									
Totals		732	88	85	202.728	238.57	352.87	20.7	84.3	212.22	7,312	29,730	49,871	17,183	6,987

TC	PLOGSTVB

Log Stock Table - MBF

	TH				1		Proje Acre		ATSH 235.00				1 2/2024 15:05PM
TT3	N RI	R6W S09 T						-					
Spp	S T	So Gr rt de	Log Len	Gross MBF	Def %	Net MBF	% Spc	2-3 4-5	Net Volume by 6-7 8-9	Scaling Diame 10-11 12-13		20-23 24-29	30-39 40+
					/0	MDF	.2	4-5	0-7 8-5	10-11 12-15	14-15 10 15	2023 2123	0000
DF DF	L L	2M 2M				8	.2	8					
DF	L	2M 2M				18	.6	18					
DF	L	2M				16	.6	16					
DF	L	2M				8	.3	8					
DF	L	2M				9	.3				9		
DF	L	2M				4	.2				4		
DF	L	2M				48	1.7		2	4	4 8 20	10	
DF	L	2M				5	.2		0		4		
DF	L	2M				40	1.5		5	12 1	2 10		
DF	L	2M	31	11		11	.4				11		
DF	L	2M	32	41		41	1.5		3	1	4 5 19		
DF	L	2M	33	5		5	.2				5		
DF	L	2M	34	57	2.5	56	2.0		2	5	4		
DF	L	2M	35	16	2,3	16	.6		1		7 7		
DF	L	2M	36	80		79	2.9		6	7	3		
DF	L	2M	37	34		34	1.3		5	3	0		
DF	L	2M	38	93		93	3.4		9	4	0 31	13	
DF	L	2M	39	26		26	1.0		2	1	5 9		
DF	L	2M	40	316		316	11.6		12	19	2 74 37		
DF	L	2M	41	3		3	.1		3				
DF	L	3M	11	3		3	.1	3					
DF	ĩ	3M				5	.2	5					
DF	L	3M				4	.1	4					
DF	L	3M		15		15	.6	15					
DF	L	3M		12		12	.5	12					
DF	L	3M				10	.4	10			1		
DF	L	3M		13		13	.5	13					
DF	L	3M	18	19		19	.7	19					
DF	L	3M	19	3		3	.1	3			1		
DF	L	3M	21	4		4	.2		4				
DF	L	3M	22	4		4	.1		4				
DF	L	3M	24	13		13	.5		5	7			
DF	L	3M	25	5		5	.2		5				
OF	L	3M	26	47		47	1.7		5 5	25 1	2		
OF	L	3M	27	23		23	.8		10	8	5	.	
OF	L	3M	28	72		72	2.6		15 5	51			
OF	L	3M	29	26		26	.9		5	13	7		

тс	PLO	GSTVB					Log S	Stock	Table -	MBF								
	TH	06W S18 T IRU R6W S09 T					Proje Acres		SCA	ATSH 235	5.00					Page Date Time		2 2/2024 15:05PM
	s	So Gr	Log	Gross	Def	Net	%		1	Net Volu	me by S	Scaling I	Diamete	er in Inche	es			
Spp	Т		Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11		14-15	16-19	20-23	24-29	30-39 40+
DF	L	3M	1 30	270		270	9.9			36	- 11	133	49	41		ĺ		
DF	L	3M	1 31	58		58	2.1			10		42		7				
DF	L	3M	1 32	186		186	6.8			46	7	111	7		15			
DF	L	3M	1 33	52		52	1.9			14		30	7					
DF	L	3M	1 34	199		199	7.3			39		85	37	15	23			
DF	L	3M	1 35	52		52	1.9			14		38						
DF	L	3M	1 36	146		146	5.4			33		98	16					
DF	L	3M	1 37	28		28	1.0			4		16	8					
DF	L	3M	1 38	31		31	1.1			31		ĺ						
DF	L	3M	í 40	501		499	18.3			75	171	246	7					
DF	L	4M	1 12	2		2	.1			2								
DF	L	4M	1 13	4		4	.1			4								
DF	L	4M	1 16	1		1	.1			1								
DF	L	4M	[17	9		9	.3			9						1		
DF	L	4M	[18	8		8	.3			8								
DF	L	4M	1 20	4		4	.1			4								
DF	L	4M	[21	2		2	.1			2								
DF	L	4M	1 22	3		3	.1			3								
DF	L	4M	23	8		8	.3			8								
DF	L	4M	25	1		1	.0			1								
DF	L	4M	[26	5		5	.2			5								
DF	L	4M	[27	3		3	.1			3								
DF	L	4M	28	8		8	.3			8								
DF	L	4M	29	3		3	.1			. 3								
DF	L	4M	30	11		11	.4			11								
DF	L	4M	31	4		4	.2			4								
DF	L	4M		5		5	.2			5								
DF	L	4M		6		6	.2			6								
DF	L	4M		3		3.	.1			3								
DF	L	4M	40	4		4	.1			4						<u> </u>		
DF		Totals		2,734		2,730	39.1		138	465	233	919	609	209	133	13	10	
DF	Т	2M		3		3	.1		3				10	5				
DF	T T	2M 2M		10 90	1.8	10 89	.6 5.1						10 71	18				
DF	Т	2M			1.0					<u> </u>			/1					
DF	Т	3M		3		3	.2		3									
DF	Т	3M		22		22	1.2			22								
DF	Т	3M	34	12		12	.7			3			9	_				

TC	PLO	GSTVB					Log S	Stock T	able -	MBF								
	ΤH	06W S18 Ty RU R6W S09 T					Proje Acre		SCA	TSH 235	5.00					Page Date Time		3 2/2024 15:05PM
	s		Log	Gross	Def	Net	%		1	let Volu	me by S	caling D	liamete	e <u>r in Inch</u>	ies	<u>r</u>		
Spp	т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
DF	Т	3M	36	13	3.0	12	.7			12								
DF	Т	3M	38	10		10	.6			10								
DF	Т	3M	40	1,309		1,300	74.6			355	556	369	20					
DF	т	4M	16	15		15	.8			15								
DF	т	4M	18	23		23	1.3			23								
DF	Т	4M	20	33		33	1.9			33								
DF	Т	4M	22	32		32	1.8			32								
DF	Т	4M	23	6		6	.4			6								
DF	Т	4M	24	11		11	.6			11								
DF	Т	4M	26	15		15	.8			15								
DF	Т	4M	28	24		24	1.3			24								
DF	Т	4M	30	38		38	2.2			38								
DF	Т	4M	31	2		2	.1			2							٠	
DF	Т	4M		19		19	1.1			19								
DF	Т	4M		8		8				8								
DF	Т	4M		31		31	1.8			31								
DF	Т	4M	40	28		28	1.6			28								
DF		Totals		1,754		1,743	24.9		6	685	556	369	110	18				
WН	Т	2M	28	9		9	.9							9				
WH	Т	2M	40	98	1.6	96	9.8						77	20				
WH	т	3M	11	3	33.3	2	.2		2									
WН	т	3M	14	2		2	.2		2									
WH	т	3M	20	2		2	.2				2							
WH	т	3M	21	6		6	.7					6				l		
WH	Т	3M	27	8		8	.8						8					
WH	Т	3M	32	11		11	1.1			2		9						
WH	Т	3M	34	3		3	.3			3						Ì		
WΗ	Т	3M	36	11		11	1.2			11								
WH	Т	3M	38	4		4	.4			4								
WH	Т	3M	40	678		677	69.0			98	284	268	27					
WН	т	4M	16	7		7	.7			7								
WН	т	4M	- 1	4		4	.4			4								
wн	т	4M	20	25		25	2.6			25								
WН	т	4M	22	25		25	2.5			25						I		
WH	т	4M	24	6		6	.6			6								
WН	т	4M	26	10		10	1.0			10								
														<u> </u>				

тс 1	PLO	GSTVB					Log	Stock	Table -	MBF				<u>. </u>					
Í	TH	06W S18 Ty IRU R6W S09 T <u>y</u>					Proje Acre		SCA	ТSН 235	5.00					Page Date Time		4 2/2024 15:05PM	
	s	So Gr	Log	Gross	Def	Net	%		1	Vet Volu	me by S	caling Di	iamete	r in Inche	s				
Spp	Т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11 1	12-13	14-15	16-19	20-23	24-29	30-39 40)+
WН	Т	4M	28	14		14	1.4			14									
WН	Т	4M	30	14	5.4	13	1.3			9	4								
WН	Т	4M	34	8		8	.8			8									
WH	Т	4M	36	29		29	2.9			29									
WH	Т	4M	40	9		9	.9			9									
WН		Totals		986		981	14.0		4	264	290	283	111	28					
WH	L	2M	16	2		2	.2		2										
WH	L	2M	17	13		13	1.5		13										
wн	L	2M	18	15	2.4	14	1.6		14										
WН	L	2M	19	8	6.5	8	.9		8										
WН	L	2M	20	4		4	.5		4										
WН	L	2M	26	7		7	.8								7				
WН	L	2M	27	3		3	.4						3						
WH	L	2M	28	13		13				1				4	8				
WH	L	2M	30		6.0	23						5	10			8			
WH	L	2M	32		5.5	20				3			12		4				
WH	L	2M	33			20							20	•	1.2				
WH	L	2M	34		1.4	63							21	29	13				
WH	L	2M	35		2.1	. 17				3			6 10	11 46					
WH	L	2M	36		7.7	60 19				3			10	40 9	10				
wн wн	L	2M 2M	37 38		7.7	8								8	10				
wн	L L	21vi 2M	39			11								11					
WH	L	2M 2M	40			90							37	12	40	*			
WH	L	3M	14	1		1	.2		- 1										
WH	L	3M				3	.3		3										
	L	3M				8	.9		8										
WH	L	3M	17	5		5	.6		5										
WH	L	3M	28	6		6	.7					6							
WH	L	3M	30	23		23	2.6					16	7						
WH	L	3M	31	9		9	1.0						9						
WH	L	3M	32	27		27	3.1			2		7		18					
WH	L	3M	34	7		7	.8						7						
WH	L	3M	40	328		328	37,4			10	104	194	10	10					
WH	L	3M	41	4		4	.4			4									
WH	L	4M	14	2		2	.2			2									
WH	L	4M	15	5		5	.6			5									

тс	PLOGSTVB

Log Stock Table - MBF

TC	PLO	GSTVB				Log S	Stock Tabl	e - N	MBF									
	TH	06W S18 Ty IRU R6W S09 T <u>y</u>				Proje Acre		CAT	ГSН 235	.00	<u> </u>				Page Date Time		5 2/2024 15:05PM	
	s		Log		Def Net	%		N	et Volu	ne by S	Scaling D	iamete	<u>r in Inche</u>	es			1	
Spp	Т	rt de	Len	MBF	% MBF	Spc	2-3 4-5	;	6-7	8-9	10-11	12-13	14-15	16-19	20-23 2	24-29	30-39 4	0+
WН	L	4M	16	4	4	.4			4									
WН	L	4M	18	3	3	.3			3									
WН	L	4M	20	7	7	.8			7									
WН	L	4M			6				6									
WН	L	4M			8				8									
WН	L	4M			2				2									
WH	L	4M			3				3									
WH	L	4M			8				8									
WH	L	4M			1	.2			1									
WH	L	4M			7	.8			7						1			
WH	L	4M		1	1	.2			1									
WH	L	4M		3	3				3									
WH	L	4M	40	3	3	.3	ļ		3									
WH		Totals		884	877			58	85	104	229	153	158	82	8			
NF	L	2M	17	2	2	.6		2				1						
NF	L	2M	18		15			15										
NF	L	2M	19		7			7										
NF	L	2M	20	8	8			8										
NF	L	2M	33		8								8		ĺ			
NF	L	2M	35		8							8						
NF	L	2M	36	45	45							27	18					
NF	L	2M	38	30	30							23	7					
NF	L	2M	39	9	9							9						
NF	L	2M	40	57	3.1 55	19.3		\square				27	28					
NF	L	3M	15	2	2	.8		2								1		
NF	L	3M	28	8	8	2.7			2	5								
NF	L	3M	30	7	7	2.6					7							
NF	L	3M	34	15	15	5.4			8			8						
NF	L	3M	36	2	2	.7			2									
NF	L	3M	40	53	53	18.6				26	27							
NF	L	4M	13	2	2	.6		╈	2									
NF	L	4M	13	2	2	.6			2									
NF		4M	23	2	2	.0			1									
NF	L	4M	26	2	2	.5			2									
NF	L	4M	28	2	2	.6			2									
NF	L	4M	30	1	1	.5			1									
- 1-		1111	-	1	1				•									

Т	R06W S18 T HRU RR6W S09 T					Proje Acre		ATSH 23:	5.00					Page Date Time		6 2/2024 15:05PM
Spp 7		Log Len	Gross MBF	Def %	Net MBF	% Spc	2-3 4-5	Net Volu 6-7	<u>me by S</u> 8-9	Scaling D 10-11		r in Inche 14-15	2 s 16-19	20-23 2	24-29	30-39 40-
NF	Total		287		285	4.1	34	22	31	35	102	61				
NF 7	2M	[40	36		36	13.4					36		-			
NF 7	3M	32	5		5	1.9		5								
NF 1	3M	i 36	4		4	1.6		4								
NF 7	3№	[40	158		158	58.1		32	40	86						
NF 7	2 4M	[20	7		7	2.4		7								
NF 1	2 4M	1 22	2		2	.9		2								
NF I	4M	26	6		6	2.1		6								
NF I	1 4M	28	11		11	4.0		11								
NF 1	2 4M	30	14		14	5.3		14								
NF I			16		16	5.8		16		1						
NF T			3		3	1.1		3								
NF T	· 4M	38	9		9	3.4		9								
NF	Totals		272		272	3.9		109	40	86	36					
RC L			8	14.3	7	15.9		[_		7			
RC L	1		4	18.8	3	6.9		₁			3					
RC L RC L			1 10	9.8	1. 9	1.6 21.4		1							9	
RC L			5	9.4	5	11.3		0						5	ŕ	
RC L			9		9	21.3							9			
		12				1.9	1					<u>_</u>				
RC L RC L			1		6	1.9	1						6			
RC L RC L			2		2	4.8			2				U			
										<u> </u>						
RC RA L	Totals 2M		46	7.2	43 10	.6 18.4	1	1	2		3		22	5	9	
KA L	21/1	40	10		10	10.4						10				
RA L	3М	40	27	2.5	26	48.0			16		11					
RA L	4M	22	1		1	2.5		1								
RA L	4M	24	2		2	3.9		2								
RA L	4M	28	10		10	17.3		10								
RA L	4M	34	5		5	9.9		5								
RA	Totals		56	1.2	55	.8		19	16		11	10				
Fotal	All Species		7,019		6,987	100.0	241						237	25	20	

TC PSTA	ATS					OJECT OJECT	STATIS SCA				PAGE DATE	1 8/22/2024
ГWР	RGE	SC	TRACT		ГҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt
T3N	R6	09	00U1		00PC			50.00	14	170	S	W
						TREES	·	ESTIMATED TOTAL		PERCENT SAMPLE		
		P	LOTS	TREES		PER PLOT		TREES		TREES		
TOTAL	L		14	170		12.1						
CRUIS DBH C REFOR COUN BLANN	E COUNT REST T		14	170		12.1		12,311		1.4		
100 %					075.4							
						ND SUMM			~~ ~ ~ ~ ~		00000	
			MPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET CF/AC
DOVIC		1	REES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	
DOUG			83	92.5	15.3	94 84	30.3	118.6	16,495	16,445	3,883	3,883
DOUG			2	2.9	13.5	84	0.8	2.9	10.072	10.072	2 (42	2 (/2
DOUG			70	127.1	12.0	85	28.9	100.0	10,853	10,853	2,643	2,643
	ILOCK-L		2	1.5	18.7	82	0.7	2.9	395	377	94	94
	ILOCK-T		6	7.5	14.5	80	2.2	8,6	1,057	1,057	252	252
NOB FI			2	2.5	14.6	87	0.7	2.9	354	354	89	89
NOB FI			5	12.4	10.3	78	2.2	7.1	722	722	163	163
TOTAL	L		170	246.2	13.4	88	66.2	242.9	29,876	29,808	7,123	7,123
CL	68 68.1	.1 1	COEFF	OF 100 THE	VOLUME		TREES -	IE SAMPLE E BF		OF TREES R	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	1
DOUG DOUG			32,9	3.6								
	FIR-S			5,0		186	193	200				
DOUG			48.7	5.8		186 95	193 100	200				
WHEM	FIR-T		48.7	5.8		95	100	106			·	
WHEM	FIR-T ILOCK-L ILOCK-T		48.7 34.7	5.8 32.5		95 179	100 265	106 351				
WHEM WHEM NOB FI	FIR-T ILOCK-L ILOCK-T IR-L		48.7 34.7 38.4	5.8 32.5 17.1		95 179 134	100 265 162	106 351 189				
WHEM WHEM	FIR-T ILOCK-L ILOCK-T IR-L IR-T		48.7 34.7 38.4 53.0	5.8 32.5 17.1 49.7		95 179 134 81	100 265 162 160	106 351 189 239		103	26	I
WHEM WHEM NOB FI NOB FI TOTAI	FIR-T ILOCK-L ILOCK-T IR-L IR-T		48.7 34.7 38.4 53.0 60.9	5.8 32.5 17.1 49.7 30.3		95 179 134 81 52	100 265 162 160 74 <i>149</i>	106 351 189 239 96 <i>154</i>		<i>103</i> # OF TREES R		<i>I</i> INF. POP.
WHEM WHEM NOB FI NOB FI TOTAI	FIR-T ILOCK-L ILOCK-T IR-L IR-T L		48.7 34.7 38.4 53.0 60.9 50.9	5.8 32.5 17.1 49.7 30.3	L	95 179 134 81 52 <i>143</i>	100 265 162 160 74 <i>149</i>	106 351 189 239 96 <i>154</i>	#			INF. POP.
WHEM WHEM NOB FI NOB FI TOTAL CL SD: DOUG	FIR-T ILOCK-L ILOCK-T IR-L IR-T L 68.1 1.0 FIR-L		48.7 34.7 38.4 53.0 60.9 50.9 COEFF	5.8 32.5 17.1 49.7 30.3 <i>3.9</i>	L	95 179 134 81 52 <i>143</i> SAMPLE	100 265 162 160 74 <i>149</i> TREES -	106 351 189 239 96 <i>154</i> CF	#	OF TREES R	EQ.	INF. POP.
WHEM WHEM NOB FI TOTAI CL SD: DOUG	FIR-T ILOCK-L ILOCK-T IR-L IR-T L 68.1 1.0 FIR-L FIR-S		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3	5.8 32.5 17.1 49.7 30.3 3.9 S.E.% 3.9	L	95 179 134 81 52 <i>143</i> SAMPLE OW 44	100 265 162 160 74 <i>149</i> TREES - AVG 46	106 351 189 239 96 <i>154</i> CF <u>HIGH</u> 48	#	OF TREES R	EQ.	INF. POP.
WHEM WHEM NOB FI NOB FI TOTAI	FIR-T ILOCK-L ILOCK-T IR-L IR-T L 68.1 1.0 FIR-L FIR-S FIR-T		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1	5.8 32.5 17.1 49.7 30.3 3.9 <u>S.E.%</u> 3.9 5.7	L	95 179 134 81 52 <i>143</i> SAMPLE OW 44 23	100 265 162 160 74 <i>149</i> TREES - AVG 46 25	106 351 189 239 96 <i>154</i> CF <u>HIGH</u> 48 26	#	OF TREES R	EQ.	INF. POP.
WHEM WHEM NOB FI TOTAI CL SD: DOUG I DOUG I DOUG I DOUG I	FIR-T ILOCK-L ILOCK-T IR-L IR-T L 68.1 1.0 FIR-L FIR-S FIR-T LOCK-L		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6	5.8 32.5 17.1 49.7 30.3 3.9 <u>S.E.%</u> 3.9 5.7 35.3	L	95 179 134 81 52 <i>143</i> SAMPLE OW 44 23 43	100 265 162 160 74 <i>149</i> TREES - AVG 46 25 66	106 351 189 239 96 <i>154</i> CF <u>HIGH</u> 48 26 89	#	OF TREES R	EQ.	INF. POP.
WHEM WHEM NOB FI NOB FI TOTAI	FIR-T ILOCK-L ILOCK-T IR-L IR-T L 68.1 1.0 FIR-L FIR-S FIR-T LOCK-L LOCK-T		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6	5.8 32.5 17.1 49.7 30.3 3.9 S.E.% 3.9 5.7 35.3 18.9	L	95 179 134 81 52 <i>143</i> SAMPLE OW 44 23 43 32	100 265 162 160 74 <i>149</i> TREES - AVG 46 25 66 39	106 351 189 239 96 <i>154</i> CF <u>HIGH</u> 48 26 89 46	#	OF TREES R	EQ.	INF. POP.
WHEM WHEM NOB FI NOB FI TOTAI	FIR-T ILOCK-L ILOCK-T IR-L 68.1 1.0 FIR-L FIR-S FIR-T LOCK-L LOCK-T R-L		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6 49.0	5.8 32.5 17.1 49.7 30.3 3.9 S.E.% 3.9 5.7 35.3 18.9 45.9	L	95 179 134 81 52 <i>143</i> SAMPLE OW 44 23 43 32 22	100 265 162 160 74 <i>149</i> TREES - AVG 46 25 66 39 40	106 351 189 239 96 <i>154</i> CF <u>HIGH</u> 48 26 89 46 58	#	OF TREES R	EQ.	INF. POP.
WHEM WHEM NOB FI NOB FI TOTAI	FIR-T ILOCK-L ILOCK-T IR-L 68.1 1.0 FIR-L FIR-S FIR-T LOCK-L LOCK-T R-L R-T		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6	5.8 32.5 17.1 49.7 30.3 3.9 S.E.% 3.9 5.7 35.3 18.9	L	95 179 134 81 52 <i>143</i> SAMPLE OW 44 23 43 32	100 265 162 160 74 <i>149</i> TREES - AVG 46 25 66 39	106 351 189 239 96 <i>154</i> CF <u>HIGH</u> 48 26 89 46	#	OF TREES R	EQ.	INF. POP. 1
WHEM WHEM NOB FI TOTAL CL SD: DOUG 1 DOUG 1 DOUG 1 DOUG 1 WHEM WHEM NOB FI NOB FI TOTAL	FIR-T ILOCK-L IR-T IR-T L 68.1 1.0 FIR-L FIR-S FIR-T LOCK-L LOCK-T R-L R-T L		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6 49.0 67.0 51.8	5.8 32.5 17.1 49.7 30.3 3.9 S.E.% 3.9 5.7 35.3 18.9 45.9 33.3	L	95 179 134 81 52 <i>143</i> SAMPLE 0W 44 23 43 32 22 11 <i>34</i>	100 265 162 160 74 <i>149</i> TREES - AVG 46 25 66 39 40 17 <i>36</i>	106 351 189 239 96 <i>154</i> CF <u>HIGH</u> 48 26 89 46 58 23		4 OF TREES R 5 107	EQ. 10 27	INF. POP. 1
WHEM WHEM NOB FI TOTAL CL SD: DOUG I DOUG I DOUG I WHEMI NOB FI NOB FI TOTAL	FIR-T LLOCK-L LLOCK-T IR-L 68.1 1.0 FIR-L FIR-S FIR-T LOCK-L LOCK-T IR-L R-T L C 68.1		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6 49.0 67.0 51.8 COEFF	5.8 32.5 17.1 49.7 30.3 3.9 <u>S.E.%</u> 3.9 5.7 35.3 18.9 45.9 33.3 <i>4.0</i>		95 179 134 81 52 <i>143</i> SAMPLE 0W 44 23 43 32 22 11 <i>34</i> TREES/A	100 265 162 160 74 149 TREES - AVG 46 25 66 39 40 17 36 CRE	106 351 189 239 96 <i>154</i> CF <u>HIGH</u> 48 26 89 46 58 23 <i>37</i>		4 OF TREES R 5 107 OF PLOTS R	EQ. 10 27 EQ.	INF. POP. 1 INF. POP.
WHEM WHEM NOB FI TOTAL CL SD: DOUG 1 DOUG 1 DOUG 1 WHEM WHEM NOB FI TOTAL CL SD:	FIR-T LLOCK-L LLOCK-T IR-L 68.1 1.0 FIR-L FIR-S FIR-T LLOCK-L LOCK-T R-L R-T L C 68.1 1.0		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6 49.0 67.0 51.8 COEFF VAR.%	5.8 32.5 17.1 49.7 30.3 3.9 S.E.% 3.9 5.7 35.3 18.9 45.9 33.3 4.0 S.E.%		95 179 134 81 52 <i>143</i> SAMPLE 0W 44 23 43 32 22 11 34 TREES/A 0W	100 265 162 160 74 149 TREES - AVG 46 25 66 39 40 17 36 CRE AVG	106 351 189 239 96 <i>154</i> CF <u>HIGH</u> 48 26 89 46 58 23 37 HIGH		4 OF TREES R 5 107	EQ. 10 27	INF. POP. 1 INF. POP.
WHEM WHEM NOB FI TOTAL CL SD: DOUG 1 DOUG 1 WHEM WHEM NOB FI TOTAL CL SD: DOUG 1	FIR-T ILOCK-L ILOCK-T IR-T L 68.1 1.0 FIR-L FIR-S FIR-T LOCK-L LOCK-T IR-L R-T L 68.1 1.0 FIR-L FIR-L		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6 49.0 67.0 51.8 COEFF VAR.% 20.3	5.8 32.5 17.1 49.7 30.3 3.9 S.E.% 3.9 5.7 35.3 18.9 45.9 33.3 4.0 S.E.% 5.6		95 179 134 81 52 <i>143</i> SAMPLE 0W 44 23 43 32 22 11 <i>34</i> TREES/A	100 265 162 160 74 149 TREES - AVG 46 25 66 39 40 17 36 CRE AVG 92	106 351 189 239 96 <i>154</i> CF <u>HIGH</u> 48 26 89 46 58 23 37 HIGH 98		4 OF TREES R 5 107 OF PLOTS R	EQ. 10 27 EQ.	INF. POP. 1 1. INF. POP.
WHEM WHEM NOB FI TOTAL CL SD: DOUG 1 DOUG 1 DOUG 1 NOB FI TOTAL CL SD: DOUG 1 DOUG 1	FIR-T LLOCK-L LLOCK-T IR-L IR-T L 68.1 1.0 FIR-L FIR-S FIR-T LLOCK-T IR-L C FIR-L FIR-L FIR-S		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6 49.0 67.0 51.8 COEFF VAR.% 20.3 374.2	5.8 32.5 17.1 49.7 30.3 3.9 S.E.% 3.9 5.7 35.3 18.9 45.9 33.3 4.0 S.E.% 5.6 103.6		95 179 134 81 52 <i>143</i> SAMPLE OW 44 23 43 32 22 11 34 TREES/A OW 87	100 265 162 160 74 149 TREES - AVG 46 25 66 39 40 17 36 CRE AVG 92 3	106 351 189 239 96 <i>154</i> CF <u>HIGH</u> 48 26 89 46 58 23 37 HIGH 98 6		4 OF TREES R 5 107 OF PLOTS R	EQ. 10 27 EQ.	INF. POP. 1 INF. POP.
WHEM WHEM NOB FI NOB FI TOTAL CL SD: DOUG 1 DOUG 1 DOUG 1 NOB FI TOTAL CL SD: DOUG 1 DOUG 1 DOUG 1 DOUG 1	FIR-T LLOCK-L IR-L IR-T L 68.1 1.0 FIR-L FIR-S FIR-T LOCK-L LOCK-T R-L R-T L 68.1 1.0 FIR-L FIR-L FIR-S FIR-T		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6 49.0 67.0 51.8 COEFF VAR.% 20.3 374.2 48.9	5.8 32.5 17.1 49.7 30.3 3.9 S.E.% 3.9 5.7 35.3 18.9 45.9 33.3 4.0 S.E.% 5.6 103.6 13.5		95 179 134 81 52 <i>143</i> SAMPLE OW 44 23 43 32 22 11 34 TREES/A OW 87 110	100 265 162 160 74 149 TREES - AVG 46 25 66 39 40 17 36 CRE AVG 92 3 127	106 351 189 239 96 <i>154</i> CF <u>HIGH</u> 48 26 89 46 58 23 37 HIGH 98 6 144		4 OF TREES R 5 107 OF PLOTS R	EQ. 10 27 EQ.	INF. POP. 1 INF. POP.
WHEM WHEM NOB FI TOTAL CL SD: DOUG 1 DOUG 1 DOUG 1 NOB FI TOTAL CL SD: DOUG 1 DOUG 1 DOUG 1 DOUG 1 DOUG 1 DOUG 1 DOUG 1 DOUG 1	FIR-T LLOCK-L IR-L IR-T L 68.1 1.0 FIR-L FIR-S FIR-T LOCK-L C FIR-L FIR-S FIR-T LOCK-L		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6 49.0 67.0 51.8 COEFF VAR.% 20.3 374.2 48.9 260.5	5.8 32.5 17.1 49.7 30.3 3.9 <u>S.E.%</u> 3.9 5.7 35.3 18.9 45.9 33.3 4.0 <u>S.E.%</u> 5.6 103.6 13.5 72.2		95 179 134 81 52 <i>143</i> SAMPLE 0W 44 23 43 32 22 11 <i>34</i> TREES/A 0W 87 110 0	100 265 162 160 74 149 TREES - AVG 46 25 66 39 40 17 36 CRE AVG 92 3 127 2	106 351 189 239 96 <i>154</i> CF <u>HIGH</u> 48 26 89 46 58 23 <i>37</i> <u>HIGH</u> 98 6 144 3		4 OF TREES R 5 107 OF PLOTS R	EQ. 10 27 EQ.	INF. POP. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
WHEM WHEM NOB FI TOTAL CL SD: DOUG 1 DOUG 1 DOUG 1 NOB FI TOTAL CL SD: DOUG 1 DOUG 1 D	FIR-T LLOCK-L IR-L IR-T L 68.1 1.0 FIR-L FIR-S FIR-T LOCK-L C FIR-L FIR-S FIR-T LOCK-L LOCK-L LOCK-T		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6 49.0 67.0 51.8 COEFF VAR.% 20.3 374.2 48.9 260.5 199.6	5.8 32.5 17.1 49.7 30.3 3.9 <u>S.E.%</u> 3.9 5.7 35.3 18.9 45.9 33.3 4.0 <u>S.E.%</u> 5.6 103.6 13.5 72.2 55.3		95 179 134 81 52 <i>143</i> SAMPLE OW 44 23 43 32 22 11 34 TREES/A OW 87 110	100 265 162 160 74 149 TREES - AVG 46 25 66 39 40 17 36 CRE AVG 92 3 127 2 7	106 351 189 239 96 <i>154</i> CF HIGH 48 26 89 46 58 23 37 HIGH 98 6 144 3 12		4 OF TREES R 5 107 OF PLOTS R	EQ. 10 27 EQ.	INF. POP. 1 INF. POP.
WHEM WHEM NOB FI TOTAL CL SD: DOUG 1 DOUG 1 DOUG 1 WHEM NOB FI DOUG 1 DOUG 1 DO	FIR-T LLOCK-L IR-L IR-T L 68.1 1.0 FIR-L FIR-S FIR-T LOCK-L COCK-L FIR-S FIR-T LOCK-L LOCK-L LOCK-T R-L		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6 49.0 67.0 51.8 COEFF VAR.% 20.3 374.2 48.9 260.5 199.6 374.2	5.8 32.5 17.1 49.7 30.3 3.9 <u>S.E.%</u> 3.9 5.7 35.3 18.9 45.9 33.3 4.0 <u>S.E.%</u> 5.6 103.6 13.5 72.2 55.3 103.6		95 179 134 81 52 <i>143</i> SAMPLE DW 44 23 43 32 22 11 <i>34</i> TREES/A DW 87 110 0 3	100 265 162 160 74 149 TREES - AVG 46 25 66 39 40 17 36 CRE AVG 92 3 127 2 7 2	106 351 189 239 96 <i>154</i> CF HIGH 48 26 89 46 58 23 37 HIGH 98 6 144 3 12 5		4 OF TREES R 5 107 OF PLOTS R	EQ. 10 27 EQ.	INF. POP. 1 1. INF. POP.
WHEM WHEM NOB FI TOTAL CL SD: DOUG 1 DOUG 1 DOUG 1 NOB FI TOTAL CL SD: DOUG 1 DOUG 1 D	FIR-T LLOCK-L IR-L IR-T L 68.1 1.0 FIR-L FIR-S FIR-T LOCK-L COCK-T R-L FIR-S FIR-T LOCK-L LOCK-L LOCK-T R-L R-T		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6 49.0 67.0 51.8 COEFF VAR.% 20.3 374.2 48.9 260.5 199.6 374.2 202.8	5.8 32.5 17.1 49.7 30.3 3.9 <u>S.E.%</u> 3.9 5.7 35.3 18.9 45.9 33.3 4.0 <u>S.E.%</u> 5.6 103.6 13.5 72.2 55.3 103.6 56.2		95 179 134 81 52 <i>143</i> SAMPLE OW 44 23 43 32 22 11 <i>34</i> TREES/A OW 87 110 0 3 5	100 265 162 160 74 149 TREES - AVG 46 25 66 39 40 17 36 CRE AVG 92 3 127 2 7 2 12	106 351 189 239 96 <i>154</i> CF <u>HIGH</u> 48 26 89 46 58 23 <i>37</i> HIGH 98 6 144 3 12 5 19		4 OF TREES R 5 107 OF PLOTS R 5	EQ. 10 27 EQ. 10	INF. POP. 1 1 1 1 1 1 1 1
WHEM WHEM NOB FI TOTAL CL SD: DOUG I DOUG I DOUG I WHEMI NOB FI TOTAL DOUG I DOUG I DOUG I DOUG I DOUG I DOUG I DOUG I DOUG I DOUG I DOUG I TOTAL	FIR-T ILOCK-L IR-L IR-T L 68.1 1.0 FIR-L FIR-S FIR-T LOCK-L LOCK-T R-T L FIR-S FIR-T LOCK-L LOCK-T R-T LOCK-L LOCK-T R-T		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6 49.0 67.0 51.8 COEFF VAR.% 20.3 374.2 48.9 260.5 199.6 374.2 202.8 28.6	5.8 32.5 17.1 49.7 30.3 3.9 <u>S.E.%</u> 3.9 5.7 35.3 18.9 45.9 33.3 4.0 <u>S.E.%</u> 5.6 103.6 13.5 72.2 55.3 103.6		95 179 134 81 52 143 SAMPLE DW 44 23 43 32 22 11 34 TREES/A DW 87 110 0 3 5 227	100 265 162 160 74 149 TREES - AVG 46 25 66 39 40 17 36 CRE AVG 92 3 127 2 7 2 7 2 12 246	106 351 189 239 96 154 CF HIGH 48 26 89 46 58 23 37 HIGH 98 6 144 3 12 5 19 266	#	⁴ OF TREES R 5 <i>107</i> OF PLOTS R 5 <i>35</i>	EQ. 10 27 EQ. 10	INF. POP. 1 INF. POP. 1
WHEM WHEM NOB FI TOTAL CL SD: DOUG I DOUG I DOUG I WHEMI NOB FI TOTAL DOUG I DOUG I DOUG I DOUG I DOUG I DOUG I DOUG I DOUG I DOUG I DOUG I TOTAL	FIR-T LLOCK-L IR-L IR-T L 68.1 1.0 FIR-L FIR-S FIR-T LOCK-L COCK-T R-L FIR-S FIR-T LOCK-L LOCK-L LOCK-T R-L R-T		48.7 34.7 38.4 53.0 60.9 50.9 COEFF VAR.% 35.3 48.1 37.6 42.6 49.0 67.0 51.8 COEFF VAR.% 20.3 374.2 48.9 260.5 199.6 374.2 202.8	5.8 32.5 17.1 49.7 30.3 3.9 <u>S.E.%</u> 3.9 5.7 35.3 18.9 45.9 33.3 4.0 <u>S.E.%</u> 5.6 103.6 13.5 72.2 55.3 103.6 56.2	L(95 179 134 81 52 <i>143</i> SAMPLE OW 44 23 43 32 22 11 <i>34</i> TREES/A OW 87 110 0 3 5	100 265 162 160 74 149 TREES - AVG 46 25 66 39 40 17 36 CRE AVG 92 3 127 2 7 2 7 2 12 246	106 351 189 239 96 154 CF HIGH 48 26 89 46 58 23 37 HIGH 98 6 144 3 12 5 19 266	#	4 OF TREES R 5 107 OF PLOTS R 5	EQ. 10 27 EQ. 10	1

TC PSI	TATS				PROJECT PROJECT		<u>STICS</u> Atsh			PAGE DATE	2 8/22/202
Т₩Р	RGE	SC	TRACT	TYP	E	A	CRES	PLOTS	TREES	CuFt	BdFt
T3N	R6	09	00U1	00PC			50.00	14	170	S	W
DOU	G FIR-L		15.5	4.3	113	119	124				
DOU	G FIR-S		374.2	103.6		3	6				
DOU	G FIR-T		61.3	17.0	83	100	117				
WHE	MLOCK-L	,	254.2	70.4	1	3	5				
WHE	MLOCK-1	•	176.4	48.9	4	9	13				
NOB	FIR-L		374.2	103.6		3	6				
NOB	FIR-T		235.7	65.3	2	7	12				
TOT	AL		27.6	7.6	224	243	261	_	33	8	
CL	68.1		COEFF		NET B	F/ACRE			# OF PLOTS RI	EQ.	INF. POP
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	
	G FIR-L G FIR-S		19.8	5.5	15,544	16,445	17,346				
DOUG	G FIR-T		69.8	19.3	8,754	10,853	12,953				
WHE	MLOCK-L	,	254.4	70.5	111	377	643				
WHE	MLOCK-T		176.1	48.8	541	1,057	1,572				
NOB	FIR-L		374.2	103.6		354	722				
NOB	FIR-T		254.8	70.6	212	722	1,231				
ΤΟΤΑ	AL		27.9	7.7	27,503	29,808	32,114		33	8	
CL	68.1		COEFF		NET C	UFT FT/AC	CRE		# OF PLOTS RE	EQ.	INF. POP
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	
	G FIR-L G FIR-S		19.2	5.3	3,676	3,883	4,089				
DOU	G FIR-T		70.1	19.4	2,130	2,643	3,156				
WHE	MLOCK-L		254.8	70.6	28	94	160				
WHE	MLOCK-T		172.3	47.7	132	252	373				
NOB	FI R-L		374.2	103.6		89	182				
NOB	FIR-T		267.9	74.2	42	163	283				
TOTA	4L		29.0	8.0	6,551	7,123	7,696		36	9	

TC	PSPCSTGR

Species, Sort Grade - Board Foot Volumes (Project)

TT	'3N RI	R6W S09	Ty00PC		50.00		Project Acres	:	SCAT £	SH 50.0(0							Page Date Time		1 22/202 :11:55	24
			%						Percent	of Ne	et Boar	d Foot	Volume	_				Avera	ige Log	3	Logs
		So Gr	Net	Bd. Ft	. per Acre		Total		Log	Scal	e <u>Dia</u> .		_	Log	Length		Ln	Dia	Bd	CF/	Per
Spp	Т	rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5 6-1	1	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	L	2M	19	1.1	3,229	3,193		160		24	76			8	9	82	37	9	136	0.93	23.5
DF	L	3M	80	.1	13,142	13,128		656		98	2			24	50	27	32	8	84	0.60	157.1
DF	L	4M	1		124	124		6	1	00				100			28	6	34	0.33	3.7
DF	Total	ls	55	.3	16,495	16,445		822		33	17			21	41	37	33	8	89	0.64	184.3
DF	Т	CU															16	6		0.00	1.8
DF	т	3M	78		8,494	8,494		425	1	00						100	40	8	87	0.54	97.5
DF	Т	4M	22		2,359	2,359		118	- 1)0			22	44	4	31	25	6	33	0.31	71.3
DF	Total	s	36		10,853	10,853		543	10	00			5	9	1	85	33	7	64	0.46	170.6
DF	S	CU															28	8		0.00	5.8
DF	Total	s															28	8		0.00	5.8
NF	T	3M	62		451	451		23		00						100	40	8	89	0.53	5.1
NF	Т	4M	38		270	270	-	14	10	00			40		60		24	6	31	0.26	8.7
NF	Total	s	2		722	722		36	10	00			15		22	63	30	7	53	0.39	13.7
NF	L	3M	100		354	354		18	:	57	43			44	56		30	8	72	0.60	4.9
NF	Total	s	1		354	354		18	1	57	43			44	56		30	8	72	0.60	4.9
WH		3М	89		948	948		47		5	15					100	40	9	127	0.73	7.5
WH	T	4M	11		109	109		5	10	0			67	33			21	6	28	0.42	4.0
WН	Tota	ls	4		1,057	1,057		53	8	6	14		7	3		90	33	8	93	0.66	11.4
WH	L	2M	51	8.3	214	196		10	1	5	85				85	15	35	11	165	1.19	1.2
WH	L	3M	49		181	181		9	2	5	75			75	25		31	9	100	0.78	1.8
wн	Tota	ls	1	4.5	395	377		19	2	0	80			36	56	8	33	10	126	0.96	3.0
Total				0.2	29,876	29,808		1,490	8		11		2	16	25	56	33	8	76	0,55	393,7

TC 1	PSTNDSU	M					Stand 7	l'able Si	ummary				Page Date:	1 <u>8/22/202</u>	24
TT3N	RR6W SO)9 Ty00PC		50	.00		Project	t S	CATSH				Time:	4:11:56	PM
							Acres		50.0	0			Grown Year:		
S S T	DDU	Sample	FF	Tot Av	Trees/	BA/	Logs	Average Net	Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	Terre	Totals	MDE
Spc T	DBH	Trees	16'	Ht	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons		MBF
DF L	12 13	3 7	87	85 90	5.457 10.849	4.29 10.00	10.91 21.70	10.4	41.7	3.24 8.41	114 295	455 1,178	162 420	57 147	
DF L DF L	13	21	88 88	90 93	28.063	30.00	54,79	13.6 17.5	54.3 78.8	8.41 27.27	957	4,316	1,363	478	
DFL	15	10	88	96	11.641	14.29	23.28	19.7	87.5	13.06	458	2,037	653	229	
DFL	16	16	88	95	16.370	22.86	32.74	23.4	100.9	21.86	767	3,305	1,093	384	
DFL	17	8	88	96	7.250	11.43	14.50	26.1	108.7	10,79	378	1,577	539	189	
DFL	18	5	88	101	4.042	7.14	8.08	31.8	123.0	7.32	257	994	366	129	
DFL	19	6	88	95	4.353	8.57	8.71	34.4	130.8	8.54	300	1,139	427	150	
DFL	20	5	88	100	3.274	7.14	7.20	35.5	142.7	7.28	256	1,028	364	128	
DFL	21	2	88	95	1.188	2.86	2.38	42.7	175.0	2.89	101	416	144	51	
DF L	Totals	83	88	94	92.488	118.57	184.29	21.1	89.2	110.65	3,883	16,445	5,533	1,941	
DF T	8	3	87	78	12.278	4.29	12.28	4.9	23.3	1,70	60	286	85	30	
DFT	9	2	86	75	6.467	2.86	6.47	8.2	40.0	1.51	53	259	75	26	
DF T	10	4	87	76	10.477	5.71	10.48	12.0	60.0	3.57	125	629	179	63	
DF T	11	12	87	82	25.976	17.14	25.98	15.2	62.5	11.25	395	1,623	562	197	
DF T	12	15	88	86	27.284	21.43	27.28	18.5	70.0	14.42	506	1,910	721	253	
DF T	13	9	88	91	13.949	12.86	26,35	14.4	57.6	10.80	379	1,519	540	190	
DFT	14	15	88	90	20.045	21.43	38.75	17.1	71.0	18.88	662	2,753	944	331	
DFT	15	5	88	90	5.821	7.14	11.64	19.2	77.0	6.36	223	896	318	112	
DF T	16	2	88	97	2.046	2.86	4.09	23.3	95.0	2.72	95	389	136	48	
DF T	17	3	88	97	2.719	4.29	5.44	26.6	108.3	4.13	145	589	206	72	
DFT	Totals	70	88	85	127.061	100.00	168.75	15.7	64.3	75.33	2,643	10,853	3,766	1,322	
WH T	11	1	90	69	2.165	1.43	2.16	14.8	60.0	1.03	32	130	51	16	
WHT	14	1	92	84	1.336	1.43	1.34	27.3	120.0	1.17	36	160	58	18	
WHT	15	2	91	85	2.328	2.86	4.66	19.6	87.5	2.92	91	407	146	46	
WHT	17	1	92	90	.906	1.43	1.81	27.0	110.0	1.57	49	199	78	24	
WH T	19	1	90	74	.726	1.43	1.45	29.9	110.0	1.39	43	160	70	22	
WHT	Totals	6	91	80	7.461	8.57	11.42	22.1	92.5	8.07	252	1,057	404	126	
NF T	8	1	90	77	4.093	1.43	4.09	4.6	20.0	.46	19	82	23	9	
NF T	9	1	90	70	3.234	1.43	3.23	8,7	50.0	.68	28	162	34	14	
NF T	11	1	91	82	2.165	1.43	2.16	16.3	70.0	.84	35	152	42	18	
NFT	13	1	91	87	1.550	1.43	1.55	22.7	90.0	.84	35	139	42	18	
NF T	14	1	90	87	1.336	1.43	2.67	16.8	70,0	1.08	45	187	54	22	
NFT	Totals	5	90	78	12.377	7.14	13.71	11.9	52.6	3.90	163	722	195	81	
WH L WH L	17 21	1 1	90 92	80 85	.906 .594	1.43 1.43	1.81 1.19	24.2 41.8	100.0 165.0	1.40 1.59	44 50	181 196	70 79	22 25	
	Totals	2	91	82	1.500	2.86	3.00	31.2	125.7	2,99	94	377	150	47	
	13	1	91 91	85	1.550	1.43	3.10	13.1	50.0	.97	40	155	49		
NF L NF L	13	1	91 90	85 90	.906	1.43	1.81	26.9	50.0 110.0	.97 1.17	40 49	155	49 58	20 24	
	Totals	2	91	87	2.456	2.86	4.91	18.2	72.1	2.14	89	354	107	45	
DF S	13	1	88	83	1.550	1.43									
DF S	14	1	88	85	1.336	1.43									
DF S	Totals	2	88	84	2.886	2.86									

TC	PLOGSTVB
TC .	FLOGSTYD

I

Log Stock Table - MBF

TC PL	.00	GSTVB					Log	Stock	Table -	MBE								_
TT3N	RI	R6W S09 T	y00PC	5	0.00		Proj Acre		SCA	ATSH 50	.00				Pag Dat Tim	e 8/2	1 22/2024 11:55P	
	s	So Gr	Log	Gross	Def	Net	%]	Net Volur	ne by S	Scaling Dia	mete	r in Inches				
Spp '	т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11 12	2-13	14-15 16-	19 20-23	24-29	30-39	40+
DF I	L	2M	1 28	12		12	1.5					4		8	,			
DF I	L	2M	i 30	1		1	.2			1								
DF I	L	2M	[34	8	19.0	6	.8						6					
DF I	L	2M	1 35	9	3.9	9	1.1			1				7				
DF J	L	2M	[36	24		24	2.9			2			22					
DF I	L	2M	i 37	12		12	1.4	}		5			7					
DF I	L	2M	I 38	40		40	4.8	ł		9			31					
DF I	L	2M	i 39	17		17	2.1			2			15					
DF I	L	2M	(40	35		35	4.2			11			15	9				
DF I	L	2M	41	3		3	.4			3								
DF I	L	- 3M	i 24	5		5	.7				5							
DF I	L	3M	1 25	5		5	.6				5							
	L	3M		16		16	2.0			5	5	6						
	L	3M				10	1				10							
	L	3M				24				12	5	7						
	L	3M				19					5	13						
	L	3M				77	9.4			24	11	42						
	L	3M		49		49		i i		8		42						
	L	3M				107	13.1			25	7	75						
	L	3M				35				13		15	7					
	L	3M				98				35		62						
	L	3M				37	4,5			6		31						
	L	3M				84	10.3			22		63						
	L	3M				27				3		16	8					
	L	3M				24				24		_	-					
		3M								3	21	16						
	┢																	
DF I	L	4M	26	2		2	.2			2								
DF I	L	4M	28	2		2	.2			2								
DF I	L	4M	29	3		3	.3			3								
DF	I	Totals		825		822	55.2			219	75	391	113	24				
DF 1	г	3M	36	3		3	.5			3							l	
DF 1	г	3M	38	8		8	1.4			8								
OF 1	r	3M	40	414		414	76.3			164	203	47						
DF 1	г	4M	16	4		4	.8			4								
DF T	г	4M	18	7		7	1.3			7								
OF I	г	4M	20	14		14	2.5			14							1	
DF 1	г	4M	18	7		7	1.3			7								

TC	PLOGSTVB
----	----------

Τωσ	Stock	Table	- MBF
1.02	SIUCK	IaDic	- MIDL

TT3N R	R6W S09	Гу00РС	50).00		Proje Acre		SCA).00					Page Date Time	8/2	2 2/2024 11:55P	
s Spp т	~~ ~.	Log Len	Gross MBF	Def %	Net MBF	% Spc	2-3 4	N I-5	et Volu 6-7	me by S 8-9	caling I		r in Incl 14-15	1es 16-19	20-23	24-29	30-39	40
DF T			<u> </u>		18			-	18									
DF T					6	1.1			6									
DF T	4N	1 24	8		8	1.4		Ì	8									
DF T	4N	1 26	3		3	.6			3									
DF T	4N	1 28	3		3	.6			3									
DF T	4N	1 30	13		13	2.4			13				ļ					
DF T	4N	1 32	5		5	.9			5									
DF T	4N	1 36	16		16	2.9			16									
DF T	4M	í 40	21		21	3.8			21	,	• 							
DF	Total	5	543		543	36.4			293	203	47							
NF T	3N	1 40	23		23	62.5			8	15								
NF T	4N	í 20	5		5	15.0			5									
NF T					8	22.4			8									
NF	Total	6	36		36	2.4			21	15								
NF L	3M	1 28			8	43.7			2	5					<u> </u>			
NF L	3N	1 34	10		10	56.3			2			8						
NF	Totals	3	18		18	1.2			5	5		8						
WH Т	3M	i 40	47		47	89.7			6	8	26	7						
WH Т	4M	16	2		2	3.3			2			ĺ						
WH Т	4M	18	1		1	1.4			1									
wн т	4M	20	1		1	2.2			I									
wн т	4M	30	2		2	3.4			2									
WН	Totals		53		53	3.5			12	8	26	7						
WH L	2M	34	9	6.7	8	44.1							8					
WH L	2M	36	2	16.7	1	7.9			1	1								
WH L	3М	30	7		- 7	36.0						7						
WH L	3M	32	2		2	12.0			2									
wн	Totals		20	4.5	19	1.3			4			7	8					
Total	All Specie							-+										

TC PSTA	ATS					OJECT OJECT		STICS ATSH			PAGE DATE	1 8/22/2024
WP	RGE	SC	TRACT		ГҮРЕ		AC	CRES	PLOTS	TREES	CuFt	BdFt
T3N	R6	09	00U2		00PC			31.00	9	114	S	W
						TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		I	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAI	L		9	114		12.7						
CRUIS DBH C REFOF COUN BLANF 100 %	COUNT REST T		9	114		12.7		5,623		2.0		
					STA	ND SUMM	ARY					
		SA	MPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
			TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOUG	FIR-L		33	44.1	17.5	89	17.6	73.3	9,808		2,391	2,391
DOUG			26	50.2	14.5	81	15.2	57.8	6,344	6,247	1,657	1,657
	ILOCK-L		20	22.4	19.1	88	10.2	44.4	6,174	6,125	1,546	1,546
	ILOCK-L		30	58.7	19.1	78	17.6	66.7	7,156	7,089	1,958	1,958
NOB F			4	4.8	14.4	78 94	2.1	8.9	1,163	1,163	302	302
			4	4.8 1.1	18.4 19.0	94 98	0.5	8.9 2.2	339	339	83	83
NOB FI			1 114	1.1 181.4	19.0 16.0	98 83	0.5 63,3	2.2 253.3	339 30,983		83 7,937	83 7,937
CONF	IDENCE 68		ITS OF THE		VOLUME	WILL BE V	VITHIN TI	HE SAMPLE E	RROR			
CT	68.1		COEFF									
CL				/			TREES -		i	OF TREES R	-	INF. POP.
SD:	1.0		VAR.%	S.E.%	L	OW	AVG	HIGH	; 	# OF TREES R 5	EQ. 10	INF. POP1
SD: DOUG	1.0 FIR-L		VAR.% 39.1	6.8	L	OW 233	AVG 250	HIGH 267	· · · ····		-	
SD:	1.0 FIR-L		VAR.% 39.1 52.2	6.8 10.4	L	OW 233 136	AVG 250 152	HIGH 267 168	i		-	
SD: DOUG DOUG	1.0 FIR-L		VAR.% 39.1	6.8	L	OW 233 136 274	AVG 250 152 313	HIGH 267 168 352			-	
SD: DOUG DOUG WHEM	1.0 FIR-L FIR-T		VAR.% 39.1 52.2	6.8 10.4	L	OW 233 136	AVG 250 152	HIGH 267 168 352 164			-	
SD: DOUG DOUG WHEM	1.0 FIR-L FIR-T ILOCK-L ILOCK-T		VAR.% 39.1 52.2 53.7	6.8 10.4 12.3	L	OW 233 136 274	AVG 250 152 313	HIGH 267 168 352			-	
SD: DOUG DOUG WHEM WHEM	1.0 FIR-L FIR-T ILOCK-L ILOCK-T IR-L		VAR.% 39.1 52.2 53.7 57.6	6.8 10.4 12.3 10.7	L	OW 233 136 274 132	AVG 250 152 313 148	HIGH 267 168 352 164			-	
SD: DOUG DOUG WHEM WHEM NOB FI	1.0 FIR-L FIR-T ILOCK-L ILOCK-T IR-L IR-T		VAR.% 39.1 52.2 53.7 57.6	6.8 10.4 12.3 10.7	L	OW 233 136 274 132	AVG 250 152 313 148	HIGH 267 168 352 164	, ,		-	
SD: DOUG DOUG WHEM WHEM NOB FI NOB FI TOTAI	1.0 FIR-L FIR-T ILOCK-L ILOCK-T IR-L IR-T		VAR.% 39.1 52.2 53.7 57.6 26.3	6.8 10.4 12.3 10.7 15.0	L	OW 233 136 274 132 221 201	AVG 250 152 313 148 260	HIGH 267 168 352 164 299 224		5	10 33	1
SD: DOUG DOUG WHEM WHEM NOB FI NOB FI TOTAI	1.0 FIR-L FIR-T ILOCK-L ILOCK-T IR-L IR-T L		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8	6.8 10.4 12.3 10.7 15.0		OW 233 136 274 132 221 201	AVG 250 152 313 148 260 213	HIGH 267 168 352 164 299 224		5	10 33	1
SD: DOUG DOUG WHEM WHEM NOB FI NOB FI TOTAI	1.0 FIR-L FIR-T ILOCK-L ILOCK-T IR-L IR-T L 68.1 1.0		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF	6.8 10.4 12.3 10.7 15.0 5.4		OW 233 136 274 132 221 201 SAMPLE	AVG 250 152 313 148 260 213 TREES -	HIGH 267 168 352 164 299 224 CF		5 <i>134</i> # OF TREES R	10 	1
SD: DOUG DOUG WHEM WHEM NOB FI NOB FI TOTAI	1.0 FIR-L FIR-T ILOCK-L ILOCK-T IR-L IR-T L 68.1 1.0 FIR-L		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.%	6.8 10.4 12.3 10.7 15.0 5.4 S.E.%		OW 233 136 274 132 221 201 SAMPLE OW	AVG 250 152 313 148 260 213 2 TREES - AVG	HIGH 267 168 352 164 299 224 CF HIGH		5 <i>134</i> # OF TREES R	10 	1
SD: DOUG DOUG WHEM WHEM NOB FI TOTAL TOTAL SD: DOUG	1.0 FIR-L FIR-T ILOCK-L ILOCK-T IR-L IR-T L 68.1 1.0 FIR-L		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6	6.8 10.4 12.3 10.7 15.0 5.4 S.E.% 6.5		OW 233 136 274 132 221 201 SAMPLE OW 57	AVG 250 152 313 148 260 213 2 TREES - AVG 61	HIGH 267 168 352 164 299 224 CF HIGH 65		5 <i>134</i> # OF TREES R	10 	1
SD: DOUG WHEM WHEM NOB FI TOTAL CL SD: DOUG DOUG WHEM	1.0 FIR-L FIR-T ILOCK-L ILOCK-T IR-L IR-T L 68.1 1.0 FIR-L FIR-L FIR-T		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2	6.8 10.4 12.3 10.7 15.0 5.4 S.E.% 6.5 10.6		OW 233 136 274 132 221 201 SAMPLE OW 57 36	AVG 250 152 313 148 260 213 2 TREES - AVG 61 41	HIGH 267 168 352 164 299 224 CF HIGH 65 45		5 <i>134</i> # OF TREES R	10 	1
SD: DOUG WHEM WHEM NOB FI TOTAL CL SD: DOUG DOUG WHEM	1.0 FIR-L FIR-T ILOCK-L ILOCK-T IR-L 68.1 1.0 FIR-L FIR-L FIR-T LOCK-L LOCK-T		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6	6.8 10.4 12.3 10.7 15.0 5.4 S.E.% 6.5 10.6 10.5		OW 233 136 274 132 221 201 SAMPLE OW 57 36 70	AVG 250 152 313 148 260 213 2 TREES - AVG 61 41 78	HIGH 267 168 352 164 299 224 CF HIGH 65 45 86		5 <i>134</i> # OF TREES R	10 	1
SD: DOUG WHEM WHEM NOB FI TOTAL CL SD: DOUG DOUG WHEM	1.0 FIR-L FIR-T ILOCK-L ILOCK-T IR-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-T R-L		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5	6.8 10.4 12.3 10.7 15.0 5.4 S.E.% 6.5 10.6 10.5 10.5		OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37	AVG 250 152 313 148 260 213 2 TREES - AVG 61 41 78 41	HIGH 267 168 352 164 299 224 CF HIGH 65 45 86 46		5 <i>134</i> # OF TREES R	10 	1
SD: DOUG DOUG WHEM WHEM NOB FI TOTAL CL SD: DOUG DOUG DOUG WHEM WHEM NOB FI	1.0 FIR-L FIR-T LOCK-L LOCK-T R-T 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-L LOCK-L LOCK-T R-L R-T		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5	6.8 10.4 12.3 10.7 15.0 5.4 S.E.% 6.5 10.6 10.5 10.5		OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37	AVG 250 152 313 148 260 213 2 TREES - AVG 61 41 78 41	HIGH 267 168 352 164 299 224 CF HIGH 65 45 86 46		5 <i>134</i> # OF TREES R	10 	1
SD: DOUG WHEM WHEM NOB FI TOTAI CL SD: DOUG DOUG WHEM WHEM NOB FI NOB FI NOB FI	1.0 FIR-L FIR-T LOCK-L LOCK-T R-T 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-L LOCK-L LOCK-T R-L R-T		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5 32.0	6.8 10.4 12.3 10.7 15.0 5.4 S.E.% 6.5 10.6 10.5 10.5 18.3		OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37 56	AVG 250 152 313 148 260 213 273 2TREES - AVG 61 41 78 41 69 55	HIGH 267 168 352 164 299 224 CF HIGH 65 45 86 46 81		5 <i>134</i> # OF TREES R 5	<u> 10 </u>	1 1 1
SD: DOUG WHEM WHEM NOB FI TOTAI CL SD: DOUG DOUG WHEM WHEM NOB FI NOB FI NOB FI	1.0 FIR-L FIR-T LOCK-L LOCK-T IR-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-T R-L R-T L L		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5 32.0 52.7	6.8 10.4 12.3 10.7 15.0 5.4 S.E.% 6.5 10.6 10.5 10.5 18.3	L	OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37 56 52	AVG 250 152 313 148 260 213 273 2TREES - AVG 61 41 78 41 69 55	HIGH 267 168 352 164 299 224 CF HIGH 65 45 86 46 81		5 134 ∉ OF TREES R 5 111	<u> 10 </u>	1 INF. POP. 1 1.
SD: DOUG WHEM WHEM NOB FI TOTAL CL SD: DOUG DOUG WHEM NOB FI NOB FI NOB FI TOTAL	1.0 FIR-L FIR-T LOCK-L IR-L 68.1 1.0 FIR-L FIR-L FIR-L FIR-L FIR-L FIR-L FIR-L FR-L COCK-T R-L R-L R-L R-L R-L R-L 1.0		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5 32.0 52.7 COEFF	6.8 10.4 12.3 10.7 15.0 5.4 6.5 10.6 10.5 10.5 18.3 4.9	L	OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37 56 52 TREES/A	AVG 250 152 313 148 260 213 CTREES - AVG 61 41 78 41 69 55 CRE	HIGH 267 168 352 164 299 224 CF HIGH 65 45 86 46 81 57		5 134 [#] OF TREES R 5 111 111 [#] OF PLOTS R	<u>33</u> EQ. <u>10</u> <u>28</u> EQ.	1 INF. POP. 1 INF. POP.
SD: DOUG DOUG WHEM NOB FI TOTAL CL SD: DOUG DOUG WHEM WHEM NOB FI NOB FI NOB FI TOTAL	1.0 FIR-L FIR-T LOCK-L LOCK-L IR-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-T R-L R-T L 68.1 1.0 FIR-L FIR-T		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5 32.0 52.7 COEFF VAR.%	6.8 10.4 12.3 10.7 15.0 5.4 5.4 6.5 10.6 10.5 10.5 18.3 4.9 S.E.%	L	OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37 56 52 TREES/A DW	AVG 250 152 313 148 260 213 TREES - AVG 61 41 78 41 69 55 CRE AVG	HIGH 267 168 352 164 299 224 CF HIGH 65 45 86 46 81 57 HIGH		5 134 [#] OF TREES R 5 111 111 [#] OF PLOTS R	<u>33</u> EQ. <u>10</u> <u>28</u> EQ.	1 INF. POP. 1 INF. POP.
SD: DOUG WHEM WHEM NOB FI TOTAI CL SD: DOUG WHEM NOB FI NOB FI TOTAI CL SD: CL SD: DOUG I DOUG I	1.0 FIR-L FIR-T LOCK-L LOCK-L IR-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-T R-L R-T L 68.1 1.0 FIR-L FIR-T		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5 32.0 52.7 COEFF VAR.% 50.8	6.8 10.4 12.3 10.7 15.0 5.4 5.4 6.5 10.6 10.5 10.5 18.3 4.9 S.E.% 17.9	L	OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37 56 52 TREES/A OW 36	AVG 250 152 313 148 260 213 CREES - AVG 61 41 78 41 69 55 CRE AVG 44	<u>НІGH</u> 267 168 352 164 299 224 СF НІGH 65 45 86 46 81 57 НІGH 52		5 134 [#] OF TREES R 5 111 111 [#] OF PLOTS R	<u>33</u> EQ. <u>10</u> <u>28</u> EQ.	1 INF. POP. 1 INF. POP.
SD: DOUG WHEM WHEM NOB FI TOTAI CL SD: DOUG WHEM NOB FI TOTAI CL SD: CL SD: DOUG I DOUG I DOUG I DOUG I DOUG I DOUG I	1.0 FIR-L FIR-T LOCK-L LOCK-L IR-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-T R-L R-T L 68.1 1.0 FIR-L FIR-L FIR-L FIR-L FIR-L FIR-L FIR-L		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5 32.0 52.7 COEFF VAR.% 50.8 63.0	6.8 10.4 12.3 10.7 15.0 5.4 5.4 6.5 10.6 10.5 10.5 18.3 4.9 S.E.% 17.9 22.2	L	OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37 56 52 TREES/A DW 36 39	AVG 250 152 313 148 260 213 CTREES - AVG 61 41 78 41 69 55 CRE AVG 44 50	HIGH 267 168 352 164 299 224 CF HIGH 65 45 86 46 81 57 HIGH 52 61		5 134 [#] OF TREES R 5 111 111 [#] OF PLOTS R	<u>33</u> EQ. <u>10</u> <u>28</u> EQ.	1 INF. POP. 1 INF. POP.
SD: DOUG WHEM WHEM NOB FI TOTAI CL SD: DOUG WHEM NOB FI TOTAI CL SD: CL SD: DOUG I DOUG I DOUG I DOUG I DOUG I DOUG I	1.0 FIR-L FIR-T LOCK-L LOCK-T IR-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-T R-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-L LOCK-L		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5 32.0 52.7 COEFF VAR.% 50.8 63.0 73.5	6.8 10.4 12.3 10.7 15.0 5.4 6.5 10.6 10.5 10.5 18.3 4.9 S.E.% 17.9 22.2 25.9	L	OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37 56 52 TREES/A DW 36 39 17	AVG 250 152 313 148 260 213 CTREES - AVG 61 41 78 41 69 55 CRE AVG 44 50 22	HIGH 267 168 352 164 299 224 CF HIGH 65 45 86 46 81 57 HIGH 52 61 28		5 134 [#] OF TREES R 5 111 111 [#] OF PLOTS R	<u>33</u> EQ. <u>10</u> <u>28</u> EQ.	1 INF. POP. 1 INF. POP.
SD: DOUG WHEM WHEM NOB FI TOTAI CL SD: DOUG WHEM NOB FI TOTAI CL SD: CL SD: DOUG I DOUG I DOUG I DOUG I DOUG I DOUG I DOUG I SD:	1.0 FIR-L FIR-T LOCK-L LOCK-T IR-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-T R-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-L LOCK-L LOCK-L R-L		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5 32.0 52.7 COEFF VAR.% 50.8 63.0 73.5 145.3	6.8 10.4 12.3 10.7 15.0 5.4 5.4 6.5 10.6 10.5 10.5 18.3 4.9 S.E.% 17.9 22.2 25.9 51.3	L	OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37 56 52 TREES/A DW 36 39 17 29	AVG 250 152 313 148 260 213 CTREES - AVG 61 41 78 41 69 55 CRE AVG 44 50 22 59	HIGH 267 168 352 164 299 224 CF HIGH 65 45 86 46 81 57 HIGH 52 61 28 89		5 134 [#] OF TREES R 5 111 111 [#] OF PLOTS R	<u>33</u> EQ. <u>10</u> <u>28</u> EQ.	1 INF. POP. 1 INF. POP.
SD: DOUG WHEM WHEM NOB FI TOTAI CL SD: DOUG DOUG WHEM NOB FI TOTAI CL SD: DOUG I NOB FI DOUG I DOUG I DOUG I DOUG I NOB FI NOB FI	1.0 FIR-L FIR-T LOCK-L LOCK-T IR-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-T R-L 68.1 1.0 FIR-L FIR-L FIR-L FIR-L FIR-L FIR-T LOCK-L LOCK-T R-L R-T		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5 32.0 52.7 COEFF VAR.% 50.8 63.0 73.5 145.3 128.2	6.8 10.4 12.3 10.7 15.0 5.4 6.5 10.6 10.5 10.5 18.3 4.9 S.E.% 17.9 22.2 25.9 51.3 45.2	L	OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37 56 52 TREES/A DW 36 39 17 29	AVG 250 152 313 148 260 213 TREES - AVG 61 41 78 41 69 55 CRE AVG 44 50 22 59 5	HIGH 267 168 352 164 299 224 CF HIGH 65 45 86 46 81 57 HIGH 52 61 28 89 7		5 134 [#] OF TREES R 5 111 111 [#] OF PLOTS R	<u>33</u> EQ. <u>10</u> <u>28</u> EQ.	1
SD: DOUG DOUG WHEM NOB FI TOTAI CL SD: DOUG DOUG WHEM NOB FI TOTAI CL SD: DOUG I NOB FI DOUG I NOB FI DOUG I NOB FI NOB FI NOB FI	1.0 FIR-L FIR-T LOCK-L LOCK-T IR-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-T R-L 68.1 1.0 FIR-L FIR-L FIR-L FIR-L FIR-L FIR-T LOCK-L LOCK-T R-L R-T		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5 32.0 52.7 COEFF VAR.% 50.8 63.0 73.5 145.3 128.2 300.0	6.8 10.4 12.3 10.7 15.0 5.4 6.5 10.6 10.5 10.5 18.3 4.9 S.E.% 17.9 22.2 25.9 51.3 45.2 105.9	L	OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37 56 52 TREES/A OW 36 39 17 29 3	AVG 250 152 313 148 260 213 CTREES - AVG 61 41 78 41 69 55 CCRE AVG 44 50 22 59 5 1 181	HIGH 267 168 352 164 299 224 CF HIGH 65 45 86 46 81 57 HIGH 52 61 28 89 7 2 208		5 134 4 OF TREES R 5 111 4 OF PLOTS RI 5	<u>33</u> EQ. <u>10</u> <u>28</u> EQ. <u>10</u> <u>10</u> <u>19</u>	1 INF. POP. 1 INF. POP.
SD: DOUG DOUG WHEM NOB FI TOTAI CL SD: DOUG DOUG WHEM NOB FI TOTAI CL SD: DOUG I NOB FI DOUG I NOB FI DOUG I NOB FI NOB FI NOB FI	1.0 FIR-L FIR-T LOCK-L LOCK-T IR-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-T R-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-T R-L FIR-T LOCK-L LOCK-T R-L FIR-T		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5 32.0 52.7 COEFF VAR.% 50.8 63.0 73.5 145.3 128.2 300.0 40.8	6.8 10.4 12.3 10.7 15.0 5.4 6.5 10.6 10.5 10.5 18.3 4.9 S.E.% 17.9 22.2 25.9 51.3 45.2 105.9		OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37 56 52 TREES/A DW 36 39 17 29 3 155	AVG 250 152 313 148 260 213 CTREES - AVG 61 41 78 41 69 55 CCRE AVG 44 50 22 59 5 1 181	HIGH 267 168 352 164 299 224 CF HIGH 65 45 86 46 81 57 HIGH 52 61 28 89 7 2 208		5 134 # OF TREES R 5 111 # OF PLOTS R 5 75	<u>33</u> EQ. <u>10</u> <u>28</u> EQ. <u>10</u> <u>10</u> <u>19</u>	1 INF. POP. 1 INF. POP. 1
SD: DOUG WHEM WHEM NOB FI TOTAI CL SD: DOUG WHEM NOB FI TOTAI CL SD: DOUG I DOUG I NOB FI DOUG I NOB FI NOB FI NOB FI NOB FI NOB FI	1.0 FIR-L FIR-T LOCK-L LOCK-T IR-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-T R-L 68.1 1.0 FIR-L FIR-T LOCK-L LOCK-T R-L R-T 68.1 1.0		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5 32.0 52.7 COEFF VAR.% 50.8 63.0 73.5 145.3 128.2 300.0 40.8 COEFF	6.8 10.4 12.3 10.7 15.0 5.4 6.5 10.6 10.5 10.5 18.3 4.9 S.E.% 17.9 22.2 25.9 51.3 45.2 105.9 14.4		OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37 56 52 TREES/A DW 36 39 17 29 3 155 BASAL A	AVG 250 152 313 148 260 213 CTREES - AVG 61 41 78 41 69 55 CCRE AVG 44 50 22 59 5 1 181 REA/ACI	HIGH 267 168 352 164 299 224 CF HIGH 65 45 86 46 81 57 HIGH 52 61 28 89 7 208		5 134 4 OF TREES R 5 111 4 OF PLOTS R 5 75 75 10 F PLOTS R	<u> 10</u> <u> 33</u> EQ. <u> 10</u> <u> 28</u> EQ. <u> 10</u> <u> 10</u> <u> 10</u> <u> 19</u> EQ.	1 INF. POP. 1 INF. POP. 1 INF. POP.
SD: DOUG WHEM WHEM NOB FI TOTAI CL SD: DOUG WHEM WHEM NOB FI TOTAI CL SD: DOUG I NOB FI DOUG I NOB FI NOB FI NOB FI NOB FI NOB FI NOB FI SD:	1.0 FIR-L FIR-T LOCK-L IR-L 68.1 1.0 FIR-L G8.1 1.0 FIR-L 68.1 1.0 FIR-L FIR-L FIR-L FIR-L		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5 32.0 52.7 COEFF VAR.% 50.8 63.0 73.5 145.3 128.2 300.0 40.8 COEFF VAR.%	6.8 10.4 12.3 10.7 15.0 5.4 6.5 10.6 10.5 10.5 18.3 4.9 S.E.% 17.9 22.2 25.9 51.3 45.2 105.9 14.4 S.E.%		OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37 56 52 TREES/A OW 36 39 17 29 3 155 BASAL A OW	AVG 250 152 313 148 260 213 CTREES - AVG 61 41 78 41 69 55 CCRE AVG 44 50 22 59 5 1 181 REA/ACI AVG	НІGH 267 168 352 164 299 224 СF НІGH 65 45 86 46 81 57 НІGH 52 61 28 89 7 2 208 ЗЕ НІGH		5 134 4 OF TREES R 5 111 4 OF PLOTS R 5 75 75 10 F PLOTS R	<u> 10</u> <u> 33</u> EQ. <u> 10</u> <u> 28</u> EQ. <u> 10</u> <u> 10</u> <u> 10</u> <u> 19</u> EQ.	1 INF. POP. 1 INF. POP. 1 INF. POP.
SD: DOUG WHEM WHEM NOB FI TOTAI CL SD: DOUG WHEM WHEM NOB FI TOTAI CL SD: DOUG I DOUG I WHEM NOB FI NOB FI NOB FI NOB FI NOB FI TOTAI	1.0 FIR-L FIR-T LOCK-L IR-L 68.1 1.0 FIR-L G8.1 1.0 FIR-L 68.1 1.0 FIR-L FIR-L FIR-L FIR-L		VAR.% 39.1 52.2 53.7 57.6 26.3 57.8 COEFF VAR.% 37.6 53.2 45.6 56.5 32.0 52.7 COEFF VAR.% 50.8 63.0 73.5 145.3 128.2 300.0 40.8 COEFF VAR.% 59.4	6.8 10.4 12.3 10.7 15.0 5.4 6.5 10.6 10.5 10.5 18.3 4.9 S.E.% 17.9 22.2 25.9 51.3 45.2 105.9 14.4 S.E.% 21.0		OW 233 136 274 132 221 201 SAMPLE OW 57 36 70 37 56 52 TREES/A OW 36 39 17 29 3 155 BASAL A OW 58	AVG 250 152 313 148 260 213 CTREES - AVG 61 41 78 41 69 55 CCRE AVG 44 50 22 59 5 1 181 REA/ACI AVG 73	НІGH 267 168 352 164 299 224 СF НІGH 65 45 86 46 81 57 НІGH 52 61 28 89 7 2 208 ЗЕ НІGH 89		5 134 4 OF TREES R 5 111 4 OF PLOTS R 5 75 75 10 F PLOTS R	<u> 10</u> <u> 33</u> EQ. <u> 10</u> <u> 28</u> EQ. <u> 10</u> <u> 10</u> <u> 10</u> <u> 19</u> EQ.	1 INF. POP. 1 INF. POP. 1 INF. POP.

TC PS	TATS				PROJECT PROJECT		STICS ATSH			PAGE DATE	2 8/22/2024
TWP	RGE	SC	TRACT	TY	PE	A	CRES	PLOTS	TREES	CuFt	BdFt
T3N	R6	09	00U2	00P	C		31.00	9	114	S	W
CL	68.1		COEFF		BASAI	AREA/AG	CRE		# OF PLOT	ΓS REQ.	INF. POP
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
NOB	FIR-L		118.6	41.9	5	9	13				
NOB	FIR-T		300.0	105.9		2	5				
TOT	AL		31.3	11.1	225	253	281		44	11	5
CL	68.1		COEFF		NET B	F/ACRE			# OF PLOTS F	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR-L		60.7	21.4	7,698	9,797	11,897				
DOU	G FIR-T		64.0	22.6	4,836	6,247	7,658				
WHE	MLOCK-L		77.8	27.4	4,444	6,125	7,806				
WHE	MLOCK-T		143.6	50.7	3,497	7,089	10,681				
NOB	FIR-L		118.8	41.9	676	1,163	1,651				
NOB	FIR-T		300.0	105.9		339	697				
TOT	AL		27.4	9.7	27,785	30,760	33,735		34	8	4
CL	68.1		COEFF		NET C	UFT FT/AG	CRE		# OF PLOTS F	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR-L		62.0	21.9	1,868	2,391	2,913				
DOU	G FIR-T		61.6	21.7	1,297	1,657	2,017				
WHE	MLOCK-L		75.5	26.7	1,134	1,546	1,958				
WHE	MLOCK-T		138.2	48.8	1,003	1,958	2,912				
NOB	FIR-L		118,7	41.9	176	302	429				
NOB	FIR-T		300.0	105.9		83	172				
ΤΟΤΑ	4L		29.7	10.5	7,104	7,937	8,770		40	10	4

TC PSPCSTGR

Species, Sort Grade - Board Foot Volumes (Project)

TT3N I	RR6W S09	Ty00PC		31.00		Project Acres	:	SC	ATSH 31.0				-				Page Date Time		1 22/202 :12:58	24
		%						Perc	ent of N	let Boar	rd Foot	Volume			_		Avera	ige Log	g	Logs
	So Gr	Net		. per Acre		Total		<u> </u>	Log Sca	le Dia.			Log I	.ength		Ln	Dia	Bd	CF/	Per
Spp 7	r rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF L	2M	53	.2	5,249	5,239		162	16	4	76	5	16	15	12	57	26	8	106	1.02	49.3
DF L	3M	47		4,559	4,559		141	19	66	15		19	29	46	7	22	7	61	0.67	74.5
DF L	4M												~~				5		0.00	.8
DF Tot	tals	32	.1	9,808	9,797	!	304	17	33	47	3	17	21	28	33	23	8	79	0.82	124.5
DF T	CU															22	6		0.00	1.4
DF T	2M	17	4.6	1,168	1,114		35			100					100	40	13	214	1.39	5.2
DF T	3M	71	1.0	4,434	4,391		136		100					2	98	40	8	94	0.63	46.9
DF T	4M	12		742	742		23		100			25	39	8	27	24	6	31	0.35	23.6
DF Tot	als	20	1.5	6,344	6,247		194		82	18		3	5	3	90	35	7	81	0.62	77.1
							·													
WH T	CU					2										15	6		0.00	2.4
WH T	2M	16	1.8	1,221	1,199		37			100					100	40	13	239	1.56	5.0
WH T	3M	67	.4	4,770	4,749		147		100					1	99	40	8	104	0.73	45.8
WH T	4M	17	2.1	1,165	1,141		35		100			26	35	22	18	25	6	33	0.36	34.6
WH To	otals	23	.9	7,156	7,089		220		83	17		4	6	4	86	33	8	81	0.67	87.8
WH L	2M	81	1.0	5,042	4,993		155	15	1	73	10	15	20	38	27	24	8	102	1.09	49.1
WH L	3M	19		1,132	1,132		35	24	57	19		24	38	39		19	7	57	0.77	20.0
WH L	4M																5		0.00	1.9
WH To	otals	20	.8	6,174	6,125		190	17	12	63	8	17	23	38	22	22	8	86	1.01	71.0
NF L	2M	73		855	855		27	21		79		21			79	26	8	95	1.01	9.0
NF L	3M	27		308	308		10	24	76			24	76			20	7	57	0.65	5.4
NF Tota	als	4		1,163	1,163		36	22	20	58		22	20		58	23	7	81	0.90	14.4
NF T	2M	80		271	271		8		-	100					100	40	13	240	1.34	1.1
NFT	3M	20		68	68		2		100						100	36	6	60	0.56	1,1
NF Tot:	als	1		339	339		10		20	80					100	38	10	150	0.97	2.3
								_												
Totals			0.7	30,983	30,760		954	10	50	38	2	11	14	18	56	28	8	82	0.76	377.1

	I DDAW S	09 Ty00PC		31	.00		Dwoing						Date:	8/22/20	
1151		09 1 9001 0			.00		Projec	t a	CATSH					4:12:5	9PM
							Acres		31.(00			Grown Year:		
S				Tot				Averag	~		Net	Net		Totals	
Spc Т		Sample Trees	FF 16'	Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Cunits	MBF
DF L	12	I	87	70	2.829	2.22	8.49	6.2	26.7	1.50	53	226	46	16	7
DF L	13	1	86		2.411	2.22	7.23	7.1	26.7	1.45		193	45	16	
DF L	14	1	88		2.079	2.22	6.24	10.4	46.7	1.85		291	57	20	
DFL	15 16	1 7	88 88	97 87	1.811	2.22 15.56	5.43 30.24	13,4 16.0	60.0 67.9	2.07 13.79	73 484	326	64 427	22 150	
DF L DF L	10	3	87	87 90	11.141 4.229	6.67	11.28	18.5	77.5	5.96		2,053 874	185	65	
DFL	18	4	88	93	5.030	8.89	12.58	23.4	92.0	8.40	205	1,157	260	91	36
DFL	19	3	88	91	3.386	6.67	7.90	28.5	115.7	6.42	225	914	199	70	
DFL	20	6	88	93	6.112	13.33	18.33	24.4	92.8	12.73	447	1,701	395	139	53
DF L	21	3	88	97	2.772	6.67	8.32	29.2	116.7	6.93	243	970	215	75	30
DF L	22	1	87	106	.842	2.22	2.53	32.5	150.0	2.34	82	379	73	25	12
DF L	23	1	88	108	.770	2.22	3.85	22.4	108.0	2.46	86	416	76	27	13
DF L	24	1	87	97	.707	2.22	2.12	36,9	140.0	2.23	78	297	69	24	9
DF L	Totals	33	88	89	44.119	73.33	124.53	19.2	78.7	68.13	2,391	9,797	2,112	741	304
WH T	9	1	90	70	5.030	2.22	5.03	9.3	50.0	1.49	47	252	46	14	8
WH T	11	1	87	58	3.367	2.22	3.37	13.4	60.0	1.44	45	202	45	14	6
WH T	12	2	89	73	5.659	4.44	5.66	19.1	65.0	3.46	108	368	107	33	11
WH T	13	5	88	77	12.054	11.11	12.05	21.6	82.0	8.31	260	988	258	81	31
WH T	14	5	88	78	10.394	11.11	16.63	18.7	66.3	9.97	312	1,102	309	97	34
WHT	15 16	4 3	87 87	80 83	7.243 4.775	8.89 6.67	12.68	21.0 22.6	72.9 [.] 83.3	8.52 6.92	266 216	924 796	264 214	83 67	29 25
WH T WH T	10	1	86	80	1.410	2.22	9.55 2.82	22.0	85.0	2.25	70	240	70	22	23 7
WHT	18	3	87	88	3,773	6.67	7.55	30,3	105.0	7.31	228	792	227	71	25
WHT	19	1	87	85	1.129	2.22	2.26	33.9	105.0	2.45	77	237	76	24	7
WHT	20	3	87	92	3.056	6.67	6.11	39.4	136.7	7.71	241	835	239	75	26
WH T	22	1	87	96	.842	2.22	1.68	52.2	210.0	2.81	88	354	87	27	11
WH T	Totals	30	88	78	58,731	66,67	85.38	22.9	83.0	62.64	1,958	7,089	1,942	607	220
DF T	11	4	86	71	13.469	8.89	13.47	14.5	60,0	5.55	195	808	172	60	25
DF T	12	2	87	70	5.659	4.44	5.66	17.1	60.0	2.76	97	340	86	30	11
DF T	13	1	86	73	2.411	2.22	2.41	21.1	70.0	1.45	51	169	45	16	5
DFT	14	1	88	86	2.079	2.22	4.16	15.2	55.0	1.80	63	229	56	20	7
DFT	15 16	8	87 88	84 86	14.487	17.78	27.16	19.1 21.8	72.7	14.78	519 69	1,974	458	161 22	61 9
DF T DF T	16 17	1 2	88 88	86 87	1.592 2.820	2.22 4.44	3.18 4.23	21.8 30.6	90.0 120.0	1.98 3.69	130	286 508	61 115	40	9 16
DF T DF T	17	2	87	87 92	2.820	4.44	5.03	28.6	120.0	4.10	130	528	113	40	16
DFT	19	2	87	96	2.257	4.44	4.51	33.9	122.5	4.36	153	553	135	47	10
DFT	20	2	87	98	2.037	4.44	4.07	37.7	130.0	4.38	154	530	136	48	16
DF T	21	1	87	103	.924	2.22	1.85	45.2	175.0	2.38	83	323	74	26	10
DF T	Totals	26	87	81	50.249	57.78	75.74	21.9	82.5	47.22	1,657	6,247	1,464	514	194
WHL	15	1	88	86	1.811	2.22	5.43	14.0	60.0	2.43	76	326	75	24	10
WHL	16	2	88	81	3.183	4.44	9.55	14.2	56.7	4.33	135	541	134	42	17
WHL	18	6	88	86	7.545	13.33	22.64	19.6	72.8	14.18	443	1,647	440	137	51
WHL	19 20	2 2	87 89	88 00	2.257	4.44	6.77	22.8	86.7 96.7	4.94 4.88	154 153	587 591	153	48 47	18 18
WHL	20 21	2	89 88	88 92	2.037 2.772	4.44 6.67	6.11 8.32	25.0 29.6	96.7 115.6	4.88 7.89	153 246	591 961	151 244	47 76	30
WHL WHL	21	2	87	92 95	1.684	4.44	6.73	29.0	100.0	5,16	161	673	160	70 50	21
WHL	26	1	86	100	.603	2.22	3.01	27.9	130.0	2.69	84	392	83	26	12
WHL	29	1		110	.484	2.22	2.42	38.2	168.0	2.96	93	407	92	29	13
WHL	Totals	20	88	88	22.376	44.44	70.99	21.8	86.3	49.47	1,546	6,125	1,534	479	190
		1	90	86	1.811	2.22	5.43	13.1	56.7	1.70	71	308	53	22	

TC	PSTNDSU	М				<u>}</u>	Stand 1	Table Si	ummary				Page Date:	2 8/22/2	024
TT3N	RR6W S	09 Ty00PC		31.	00		Projec Acres	t S	CATSH 31.0	0			Time: Grown Year:		59PM
S Spc Т	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
NF L	19	1	87	100	1.129	2.22	3.39	22.5	83.3	1.83	76	282	57	2	4
NF L	20	1	87	99	1.019	2.22	3.06	25.6	96.7	1.88	78	295	58	2	4
NF L	22	1	87	97	.842	2.22	2.53	30,4	110.0	1.84	77	278	57	2	4
NF L	Totals	4	88	94	4.800	8.89	14.40	21.0	80.8	7.26	302	1,163	225	9	4 3
NF T	19	1	90	98	1.129	2.22	2.26	37.0	150.0	2.00	83	339	62	2	6 1
NF T	Totals	1	90	98	1.129	2.22	2.26	37.0	150.0	2.00	83	339	62	2	6 1
						253.33	373.30	21.3	82.4	236,73	7,937	30,760	7,339	2,46	0 95

.

тС	PLO	GSTVB				Log	Stock Table -	MBF								
TT3	IN RI	R6W S09 Ty	00PC	31	.00	Proj Acre		ATSH 3	1.00					Page Date Time		1 2/2024 12:58PM
	s	So Gr		Gross	Def Net	%		<u>Net Volu</u>	me by S	Scaling D	iamete	r in Inche	s			
Spp	Т	rt de	Len	MBF	% MBF	Spc	2-3 4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40-
DF	L	2M	16	2		2	2									
DF	L	2M	18	10		10 3.2	10									
DF	L	2M	19	10		10 3.1	10									
DF	L	2M	20	4		4 1.4	4									
DF	L	2M	28			19 6.4		1			4		15			
DF	L	2M	29			4 1.4					4					
DF	L	2M	30			1.3		1								
DF	L	2M	32			6 2.1					6					
DF	L	2M	34			7 2.4					7					
DF	L	2M	35			7 2.2					7					
DF	L	2M	36			47 15.4		4			42					
DF	L	2M	37	14		14 4.6					14					
DF	L	2M	38			15 5.1						15				
DF	L	2M	40	16		16 5.3				<u> </u>		16				
DF	L	3M	11	3		3 .9	3									
DF	L	3M	12	2		2.7	2									
DF	L	3M	14	3		3.8	3	:								
DF	L	3M	15	2		2 .6	2									
DF	L	3M	16	7		7 2.4	7									
DF	L	3M	17	7		7 2.5	7									
DF	L	3M	18	3		3.9	3									
DF	L	3M	21	4		4 1.4			4							
DF	L	3M	22	4		4 1.2			4							
DF	L	3M	28	6		6 2.1				6				ļ		
DF	L	3M	30	26		26 8.5				19	7					
DF	L	3M	31	2		26		2								
DF	L	3M	32	25		25 8.4		5		21						
DF	L	3M	33	7		7 2.2				7						
DF	L	3M	34	22		22 7.3				15	7					
DF	L	3M	35	9		9 2.9		2		7						
DF	L	3M	36	9		9 3.1		2			7					
DF		Totals		304	31)4 31.9	52	17	8	75	105	32	15			
DF	Т	2M	40	36	4.6	35 17.8					26	8				<u>,</u>
DF	Т	3M	32	2		2.9		2								
DF	Т	3M	34	2		2		2								
DF	Т	3M	36	2		2 1.1		2								
DF	Т	3M	38	2		2 1.0		2		4				!		

TT	3N R	R6W S09 T	y00PC	31	.00		Proj Acre		SCA	ат ян 31.	.00					Page Date Time	8/22/	2 /2024 2:58PM
	s	So Gr	Log	Gross	Def	Net	%]	<u>Vet Volun</u>	ne by S	caling Di	amete	r in Inch	es			
Spp	Т		Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23 24	-29	30-39 4
DF	Т	3M	40	130	1.0	129	66.5			36	57	35						
DF	т	4M	16	1		1	.6			1								
DF	Т					2	1.2			2								
DF	T,	4M	20	2		2	1.2			2			:					
DF	Т	4M	22	3		3	1.6			3								
DF	Т	4M	24	2		2	.9			2								
DF	Т	4M	26	3		3	1.5			3								
DF	Т	4M	28	1		1	.7			1								
DF	Т					2	1.0			2								
DF	Т	4M	36	6		6	3.2			6								
DF		Totals		197	1.5	194	20.3			67	57	35	26	8				
WH	Т	2M	40	38	1.8	37	16.9						28	9			_	
WH	Т	3M	32	2		2	.7			2								
WН	Т	3M	38	2		2	.7			2								
WН	Т	3M	40	145		144	65.6			13	88	42						
WH	т	4M	16	4		4	1.6			4								
WН	Т	4M	18	1		1	.5			1								
WН	. Т	4M	20	4		4	2.0			4								
WН	т	4M	22	3		3	1.3			3								
WH	Т	4M	26	2		2	.9			2								
WH	Т	4M	28	4		4	1.6			4								
WH	Т	4M	30	4	16.7	4	1.7				. 4							
WH	Т	4M	34	8		8	3.5			8								
WH	Т	4M	36	6		6	2.9			6								
WH		Totals		222		220	23.0			48	92	42	28	9				
WH	L	2M				2	1.0		2	:								
WH	L	2M				13	7.0		13									
WH		2M				5	2.7 .9		5 2									
wн wн	L L	2M 2M				2	.9 .9		2									
wн	L	2M 2M	26			2	3.6		2						7			
wн	L	2101 2M	20	3		3	1.8						3					
wн	L	2M	28			13	6.8			1				4	8			
WН	L	2M	30	9	10.5	8	4.0									8		
WН	L	2M	32	18	3.3	17	9.2			1			12		4			
WH	L	2M	33	20		20	10.7						20					

TC	PLO	GSTVB				Log	Stock Tab	le -	MBF									
TT3	SN R	R6W S09 T	y00PC	3	1.00	Proje Acre		SCA	ATSH 31	.00		· , · ·			Page Date Time		3 2/2024 12:58P	
	s	So Gr	Log	Gross	Def Net	%		ľ	Vet Volur	ne by S	Scaling I	liamete	r in Inch	es				
Spp	Т	rt de	Len	MBF	% MBF	Spc	2-3 4-	5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
WH	L	2M	34	21	21	11.2						21						
WH	L	2M	36	24	24	12.6							24					
WH	L	2M	37	9	9	5.0							9					
WH	L	2M	38	8	8	4.1							8					
WН	L	3M	14	1	1	.8		1										
WH	L	3M	16	5	5	2.8		5										
WH	L	3M	17	2	2,	.8		2										
WH	L	3M	28	6	6	3.1					6							
WH	L	3M	30	7	7	3.8					7				ĺ			
WH	L	3M	32	7	7	3.6					7							
WН	L	3M	34	7	7	3.5						7				ĺ		
wн		Totals		191	190	19.9		32	2		20	64	45	19	8			
NF	L	2M	19	4	4	11.1		4										
NF	L	2M	20	2	2	4.3		2										
NF	L	2M	38	21	21	58.1						14	7					
NF	L	3M	15	2	2	6.2		2										
NF	L	3M	30	7	7	20.2					7							
NF	╡	Totals		36	36	3.8	<u> </u>	8			7	14	7					
NF	Т	2M	40	8	8	80.0						8						
NF	Т	3M	36	2	2	20.0			2									
NF	╡	Totals		10	10	1.1			2			8						
Fotal	┓	All Species	_	960	954	100.0		92	136	158	180	246	101	34	8			

TC PSTATS					OJECT OJECT	STATIS SCA				PAGE DATE	1 8/22/2024
TWP RGE	SC	TRACT	,	гуре		AC	RES	PLOTS	TREES	CuFt	BdFt
T3N R6	09	00U3		00PC			139.00	33	379	S	W
					TREES		ESTIMATED TOTAL		ERCENT		
	ł	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL		33	379	-	11.5						
CRUISE		33	379		11.5		26,774		1.4		
DBH COUNT REFOREST COUNT BLANKS 100 %											
	-			STA	ND SUMM	ARY					
		MPLE FREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG FIR-L		117	46.7	16.7	89	17.4	70.9	9,113	9,105	2,289	2,289
DOUG FIR-S		1	.6	14.0	56	0.2	.6				
DOUG FIR-T		79	48.5	13.5	80	13.1	47.9	4,983	4,983	1,294	1,294
WHEMLOCK-L		54	22.3	16.4	87	8.1	32.7	4,751	4,714	1,119	1,119
WHEMLOCK-T		74	47.8	13.1	74	12.4	44.8	5,116	5,098	1,236	1,236
NOB FIR-L		21	7.4	17.8	90 76	3.0	12.7	1,679	1,666	425	425
NOB FIR-T		23	15.0	13.0	76	3.9	13.9	1,620	1,620	395	395 97
R ALDER-L WR CEDAR-L		6 4	3.8 .6	13.2 27.6	72 90	1.0 0.5	3.6 2.4	402 333	397 309	97 84	97 84
WR CEDAR-L TOTAL		4 379	.0 192,6	14.8	90 81	59.7	2.4 229.7	27,998	27,892	6,938	6,938
CONFIDENCE 68		TS OF THE TIMES OUT	E SAMPLE				IE SAMPLE EI	RROR			
68 CL 68.1		TS OF THE TIMES OUT COEFF	E SAMPLE TOF 100 THE	VOLUME	WILL BE V SAMPLI	VITHIN TH	IE SAMPLE EI BF	RROR	OF TREES RI	EQ.	INF. POP.
68 CL 68.1 SD: 1.0		TS OF THE TIMES OUT	E SAMPLE	VOLUME	WILL BE V	VITHIN TH	IE SAMPLE EI	RROR			
68 CL 68.1		TS OF THE TIMES OUT COEFF VAR.%	E SAMPLE FOF 100 THE S.E.%	VOLUME	WILL BE V SAMPLI OW	VITHIN TH C TREES - AVG	IE SAMPLE EI BF HIGH	RROR	OF TREES RI	EQ.	INF. POP. 15
CL 68.1 SD: 1.0 DOUG FIR-L		TS OF THE TIMES OUT COEFF VAR.%	E SAMPLE FOF 100 THE S.E.%	VOLUME	WILL BE V SAMPLI OW	VITHIN TH C TREES - AVG	IE SAMPLE EI BF HIGH	RROR	OF TREES RI	EQ.	
CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S		TTS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9	E SAMPLE T OF 100 THE <u>S.E.%</u> 6.9 6.5 7.5	VOLUME	WILL BE V SAMPLI OW 227 120 227	VITHIN TH 2 TREES - <u>AVG</u> 244 128 246	IE SAMPLE EI BF HIGH 260 136 264	RROR	OF TREES RI	EQ.	
CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T	3.1 T	TTS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1	E SAMPLE C OF 100 THE <u>S.E.%</u> 6.9 6.5 7.5 6.3	VOLUME	WILL BE V SAMPLI OW 227 120 227 129	VITHIN TH 2 TREES - <u>AVG</u> 244 128 246 138	IE SAMPLE EI BF HIGH 260 136 264 147	RROR	OF TREES RI	EQ.	
CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L	3.1 T	TTS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5	E SAMPLE C OF 100 THE <u>S.E.%</u> 6.9 6.5 7.5 6.3 6.6	VOLUME	WILL BE V SAMPLI OW 227 120 227 129 234	VITHIN TH 2 TREES - <u>AVG</u> 244 128 246 138 250	E SAMPLE EI BF HIGH 260 136 264 147 267	RROR	OF TREES RI	EQ.	
CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L NOB FIR-T	3.1 T	TTS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6	E SAMPLE C OF 100 THE <u>S.E.%</u> 6.9 6.5 7.5 6.3 6.6 12.3	VOLUME	WILL BE V SAMPLI OW 227 120 227 129 234 129	VITHIN TH C TREES - <u>AVG</u> 244 128 246 138 250 147	E SAMPLE EI BF 11GH 260 136 264 147 267 165	RROR	OF TREES RI	EQ.	
CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L NOB FIR-T R ALDER-L	3.1 T	TTS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0	E SAMPLE C OF 100 THE <u>S.E.%</u> 6.9 6.5 7.5 6.3 6.6	VOLUME	WILL BE V SAMPLI OW 227 120 227 129 234	VITHIN TH 2 TREES - <u>AVG</u> 244 128 246 138 250	E SAMPLE E BF HIGH 260 136 264 147 267 165 197	RROR	OF TREES RI	EQ.	
CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L NOB FIR-T	3.1 T	TTS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6	E SAMPLE C OF 100 THE S.E.% 6.9 6.5 7.5 6.3 6.6 12.3 34.3	VOLUME	WILL BE V SAMPLI OW 227 120 227 129 234 129 96	VITHIN TH C TREES - <u>AVG</u> 244 128 246 138 250 147 147	E SAMPLE EI BF 11GH 260 136 264 147 267 165	RROR	OF TREES RI	EQ.	
CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L NOB FIR-T R ALDER-L WR CEDAR-L	3.1 T	TTS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8	E SAMPLE C OF 100 THE <u>S.E.%</u> 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8	VOLUME	WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 <i>188</i>	VITHIN TH C TREES - <u>AVG</u> 244 128 246 138 250 147 147 725	E SAMPLE E BF HIGH 260 136 264 147 267 165 197 1,093 205	RROR #	OF TREES RI 5	EQ. 10 65	
CL 68.1 SD: 1,0 DOUG FIR-L 00UG FIR-S DOUG FIR-T 00UG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-T R R ALDER-L WR CEDAR-L TOTAL CL 68.1 5,0 SD: 1,0	3.1 T	TS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8 80.8 COEFF VAR.%	E SAMPLE C OF 100 THE S.E.% 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8 4.1 S.E.%	VOLUME L	WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 188 SAMPLE OW	VITHIN TH 2 TREES - AVG 244 128 246 138 250 147 147 725 197 2 TREES - AVG	E SAMPLE EI BF HIGH 260 136 264 147 267 165 197 1,093 205 CF HIGH	RROR #	OF TREES RI 5 261	EQ. 10 65	15
CL 68.1 SD: 1,0 DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L CL 68.1 SD: 1,0 DOUG FIR-L	3.1 T	TTS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8 80.8 COEFF	E SAMPLE C OF 100 THE <u>S.E.%</u> 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8 <i>4.1</i>	VOLUME L	WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 188 SAMPLE	VITHIN TH 2 TREES - <u>AVG</u> 244 128 246 138 250 147 147 725 <i>197</i> 2 TREES -	E SAMPLE EI BF HIGH 260 136 264 147 267 165 197 1,093 205 CF	RROR #	261 DF TREES RI	EQ. 10 65 GQ.	1: 29 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L	3.1 T	TS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8 80.8 COEFF VAR.% 61.3	E SAMPLE C OF 100 THE S.E.% 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8 4.1 S.E.% 5.7	VOLUME L	WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 188 SAMPLE OW 56	VITHIN TH C TREES - AVG 244 128 246 138 250 147 147 725 197 C TREES - AVG 60	E SAMPLE EI BF HIGH 260 136 264 147 267 165 197 1,093 205 CF HIGH 63	RROR #	261 DF TREES RI	EQ. 10 65 GQ.	1: 29 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-S WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L UNDB FIR-T R ALDER-L WR CEDAR-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-S	3.1 T	TS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8 80.8 COEFF VAR.% 61.3 56.9	E SAMPLE C OF 100 THE S.E.% 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8 4.1 S.E.% 5.7 6.4	VOLUME L	WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 188 SAMPLE OW 56 31	VITHIN TH C TREES - AVG 244 128 246 138 250 147 147 725 197 C TREES - AVG 60 33	E SAMPLE E BF HIGH 260 136 264 147 267 165 197 1,093 205 CF HIGH 63 36	RROR #	261 DF TREES RI	EQ. 10 65 GQ.	1: 29 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L KI CL 68.1 SD: 1.0 DOUG FIR-L	3.1 T	TS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8 80.8 COEFF VAR.% 61.3 56.9 49.3	E SAMPLE C OF 100 THE S.E.% 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8 4.1 S.E.% 5.7 6.4 6.7	VOLUME L	WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 188 SAMPLE OW 56 31 54	VITHIN TH 2 TREES - AVG 244 128 246 138 250 147 147 725 197 2 TREES - AVG 60 33 58	E SAMPLE EI BF HIGH 260 136 264 147 267 165 197 1,093 205 CF HIGH 63	RROR #	261 DF TREES RI	EQ. 10 65 GQ.	1: 29 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR-L 000G FIR-S DOUG FIR-S 000G FIR-S WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L NOB FIR-T R ALDER-L NOB FIR-T GR R ALDER-L OTOTAL CL 68.1 SD: 1.0 DOUG FIR-L OOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-S OOUG FIR-S	3.1 T	TS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8 80.8 COEFF VAR.% 61.3 56.9	E SAMPLE C OF 100 THE S.E.% 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8 4.1 S.E.% 5.7 6.4	VOLUME L	WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 188 SAMPLE OW 56 31	VITHIN TH C TREES - AVG 244 128 246 138 250 147 147 725 197 C TREES - AVG 60 33	E SAMPLE E BF HIGH 260 136 264 147 267 165 197 1,093 205 CF HIGH 63 36 62	RROR #	261 DF TREES RI	EQ. 10 65 GQ.	1: 29 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-L WHEMLOCK-I CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-S DOUG FIR-S DOUG FIR-S	3.1 T	TTS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8 80.8 COEFF VAR.% 61.3 56.9 49.3 55.2	E SAMPLE C OF 100 THE S.E.% 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8 4.1 S.E.% 5.7 6.4 6.7 6.4	VOLUME L	WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 188 SAMPLE OW 56 31 54 32	VITHIN TH 2 TREES - AVG 244 128 246 138 250 147 147 725 197 2 TREES - AVG 60 33 58 34	E SAMPLE E BF HIGH 260 136 264 147 267 165 197 1,093 205 CF HIGH 63 36 62 36	RROR #	261 DF TREES RI	EQ. 10 65 GQ.	1: 29 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L WHEMLOCK-L SD: 1.0 DOUG FIR-L SD: 1.0 DOUG FIR-L DOUG FIR-L DOUG FIR-L DOUG FIR-L DOUG FIR-L NOH FIR-L	3.1 T	TTS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8 80.8 COEFF VAR.% 61.3 56.9 49.3 55.2 30.8	E SAMPLE C OF 100 THE S.E.% 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8 4.1 S.E.% 5.7 6.4 6.7 6.4 6.9	VOLUME L	WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 188 SAMPLE OW 56 31 54 32 60	VITHIN TH 2 TREES - AVG 244 128 246 138 250 147 147 725 197 2 TREES - AVG 60 33 58 34 64	E SAMPLE E BF HIGH 260 136 264 147 267 165 197 1,093 205 CF HIGH 63 36 62 36 69	RROR #	261 DF TREES RI	EQ. 10 65 GQ.	1: 29 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-L WHEMLOCK-I R ALDER-L CL 68.1 SD: 1.0 DOUG FIR-S DOUG FIR-S DOUG FIR-S DOUG FIR-S DOUG FIR-S NOB FI	3.1 T	TS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8 80.8 COEFF VAR.% 61.3 56.9 49.3 55.2 30.8 59.9 73.2 79.6	E SAMPLE C OF 100 THE S.E.% 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8 4.1 S.E.% 5.7 6.4 6.9 12.8 32.6 45.5	VOLUME L	WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 <i>I 88</i> SAMPLE OW 56 31 54 32 60 32 24 104	VITHIN TH 2 TREES - AVG 244 128 246 138 250 147 147 725 197 2 TREES - AVG 60 33 58 34 64 36 36 190	E SAMPLE E BF HIGH 260 136 264 147 267 165 197 1,093 205 CF HIGH 63 36 62 36 69 41 48 277	RROR #	OF TREES RI 5 261 DF TREES RE 5	EQ. 10 65 3Q. 10	15 15 15
CL 68.1 SD: 1.0 DOUG FIR-LDOUG FIR-SDOUG FIR-TWHEMLOCK-LWHEMLOCK-TNOB FIR-TR ALDER-LDOUG FIR-LDOUG FIR-LDOUG FIR-SDOUG FIR-SDOUG FIR-SDOUG FIR-SNOH FIR-S	3.1 T	TS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8 80.8 COEFF VAR.% 61.3 56.9 49.3 55.2 30.8 59.9 73.2	E SAMPLE C OF 100 THE S.E.% 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8 4.1 S.E.% 5.7 6.4 6.7 6.4 6.9 12.8 32.6	VOLUME L	WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 <i>188</i> SAMPLE OW 56 31 54 32 60 32 24	VITHIN TH 2 TREES - AVG 244 128 246 138 250 147 147 725 197 2 TREES - AVG 60 33 58 34 64 36 36	E SAMPLE E BF HIGH 260 136 264 147 267 165 197 1,093 205 CF HIGH 63 36 62 36 69 41 48	RROR #	261 DF TREES RI	EQ. 10 65 GQ.	1: 29 INF. POP.
$ \begin{array}{ $	3.1 T	TS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8 80.8 COEFF VAR.% 61.3 56.9 49.3 55.2 30.8 59.9 73.2 79.6 73.9 COEFF	E SAMPLE C OF 100 THE S.E.% 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8 <i>4.1</i> S.E.% 5.7 6.4 6.7 6.4 6.9 12.8 32.6 45.5 <i>3.8</i>		WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 <i>188</i> SAMPLE OW 56 31 54 32 60 32 24 104 47 TREES/A	VITHIN TH 2 TREES - AVG 244 128 246 138 250 147 147 725 197 2 TREES - AVG 60 33 58 34 64 36 190 49 CRE	E SAMPLE EI BF HIGH 260 136 264 147 267 165 197 1,093 205 CF HIGH 63 36 62 36 69 41 48 277 51	RROR#0	261 261 DF TREES RF 5 218 DF PLOTS RE	65 65 30. 10 55 30.	15 19 11 15 15 15 15 15 15 15 15 15 15 15 15
CL 68.1 SD: 1,0 DOUG FIR-L DOUG FIR-T WHEWLOCK-L WHEWLOCK-L WHEWLOCK-L WHEWLOCK-L NOB FIR-T R ALDER-L WC EDAR-L DOUG FIR-T RALDER-L DOUG FIR-T OUG FIR-L DOUG FIR-T NOB FIR-L NOUG FIR-T WHEWLOCK-L WHEMLOCK-L NOB FIR-T R ALDER-L WC EDAR-L CL 68.1 SD: 1,0	3.1 T	TS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8 80.8 COEFF VAR.% 61.3 56.9 49.3 55.2 30.8 59.9 73.2 79.6 73.9 COEFF VAR.%	E SAMPLE C OF 100 THE S.E.% 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8 4.1 S.E.% 5.7 6.4 6.7 6.4 6.9 12.8 32.6 45.5 3.8 S.E.%		WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 <i>188</i> SAMPLE OW 56 31 54 32 60 32 24 104 47 TREES/A	VITHIN TH 2 TREES - AVG 244 128 246 138 250 147 147 725 197 2 TREES - AVG 60 33 58 34 64 36 190 49 CRE AVG	E SAMPLE EI BF HIGH 260 136 264 147 267 165 197 1,093 205 CF HIGH 63 36 62 36 69 41 48 277 51 HIGH	RROR#0	261 275 278	EQ. 10 65 30. 10 55	15 29 INF. POP. 15 24
CL 68.1 SD: 1.0 DOUG FIR.1DOUG FIR.5DOUG FIR.7WHEULOCK-1WHEUTOR1WHEUTOR1NOB FIR.1R ALDER.1YOTATCL 68.1 DOUG FIR.1DOUG FIR.2DOUG FIR.1NOB FIR.2NOB FIR.2NOUG FIR.1NOB FIR.2NOB F	3.1 T	TS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8 80.8 COEFF VAR.% 61.3 56.9 49.3 55.2 30.8 59.9 73.2 79.6 73.9 COEFF VAR.% 61.7	E SAMPLE C OF 100 THE S.E.% 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8 <i>4.1</i> S.E.% 5.7 6.4 6.7 6.4 6.9 12.8 32.6 45.5 <i>3.8</i> S.E.% 10.7		WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 <i>188</i> SAMPLE OW 56 31 54 32 60 32 24 104 47 TREES/A OW 42	VITHIN TH 2 TREES - AVG 244 128 246 138 250 147 147 725 197 2 TREES - AVG 60 33 58 34 64 36 190 49 CRE AVG 47	E SAMPLE EI BF HIGH 260 136 264 147 267 165 197 1,093 205 CF HIGH 63 36 62 36 69 41 48 277 51 HIGH 52	RROR#0	261 261 DF TREES RF 5 218 DF PLOTS RE	65 65 30. 10 55 30.	15 19 11 15 15 15 15 15 15 15 15 15 15 15 15
CL 68.1 SD: 1,0 DOUG FIR-L DOUG FIR-T WHEWLOCK-L WHEWLOCK-L WHEWLOCK-L WHEWLOCK-L WHEWLOCK-L WHEWLOCK-L WHEWLOCK-L NOB FIR-T R ALDER-L WC EDAR-L DOUG FIR-T SD: 1,0 DOUG FIR-T WHEWLOCK-L WHEWLOCK-L WHEWLOCK-L WHEWLOCK-L WHEWLOCK-L WHEWLOCK-L WHEWLOCK-L WHEWLOCK-L WHEWLOCK-L NOB FIR-T R ALDER-L NOB FIR-T R ALDER-L WCEDAR-L CL 68.1 SD: 1,0	3.1 T	TS OF THE TIMES OUT COEFF VAR.% 74.8 57.8 54.9 54.1 29.5 57.6 77.0 88.8 80.8 COEFF VAR.% 61.3 56.9 49.3 55.2 30.8 59.9 73.2 79.6 73.9 COEFF VAR.%	E SAMPLE C OF 100 THE S.E.% 6.9 6.5 7.5 6.3 6.6 12.3 34.3 50.8 4.1 S.E.% 5.7 6.4 6.7 6.4 6.9 12.8 32.6 45.5 3.8 S.E.%		WILL BE V SAMPLI OW 227 120 227 129 234 129 96 357 <i>188</i> SAMPLE OW 56 31 54 32 60 32 24 104 47 TREES/A	VITHIN TH 2 TREES - AVG 244 128 246 138 250 147 147 725 197 2 TREES - AVG 60 33 58 34 64 36 190 49 CRE AVG	E SAMPLE EI BF HIGH 260 136 264 147 267 165 197 1,093 205 CF HIGH 63 36 62 36 69 41 48 277 51 HIGH	RROR#0	261 261 DF TREES RF 5 218 DF PLOTS RE	65 65 30. 10 55 30.	15 19 11 15 15 15 15 15 15 15 15 15 15 15 15

TC PSI	ATS				PROJECT		STICS ATSH			PAGE DATE	2 8/22/2024
TWP	RGE	SC	TRACT	ТҮРЕ		A	CRES	PLOTS	TREE	S Cu	Ft BdFt
T3N	R6	09	00U3	00PC			139.00	33			5 W
CL	68.1		COEFF		TREE	S/ACRE			# OF I	- PLOTS REQ.	INF. PO
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	1
WHE	MLOCK-T		94.2	16.4	40	48	56				
NOB	FIR-L		151.3	26.3	5	7	9				
NOB	FIR-T		141.6	24.6	11	15	19				
R ALI	DER-L		295.6	51.4	2	4	6				
WR C	EDAR-L		329.2	57.3	0	1	1				
TOTA	4L		29.1	5.1	183	193	202		34	8	
CL	68.1		COEFF		BASAI	L AREA/AC	CRE		# OF PLO	TS REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH	-	5	10	1
DOU	3 FIR-L		45.7	8.0	65	71	77				
DOUG	G FIR-S		574.5	99.9	0	1	1				
DOUG	J FIR-T		82.8	14.4	41	48	55				
WHE	MLOCK-L		91.4	15.9	28	33	38				
WHE	MLOCK-T		74.0	12.9	39	45	51				
NOB	FIR-L		140.7	24.5	10	13	16				
NOB	FIR-T		162.3	28.2	10	14	18				
R ALI	DER-L		290.2	50.5	2	4	5				
WR C	EDAR-L		342.5	59.6	1	2	4				
TOTA	AL.		20.0	3.5	222	230	238		16	4	
CL	68.1		COEFF		NET B	F/ACRE			# OF PLO	TS REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	1
DOUC	FIR-L		43.3	7.5	8,419	9,105	9,790				
DOUC	3 FIR-S										
DOUC	FIR-T		85.1	14.8	4,246	4,983	5,721				
WHEN	MLOCK-L		100.4	17.5	3,891	4,714	5,538				
WHEN	MLOCK-T		76.3	13.3	4,421	5,098	5,774				
NOB I	FIR-L		145.6	25.3	1,244	1,666	2,088				
NOB I	FIR-T		186.8	32.5	1,094	1,620	2,146				
R ALI	DER-L		280.2	48.7	204	397	590				
	EDAR-L		341.3	59.4	126	309	493		• •	_	
ΤΟΤΑ			25.5	4.4	26,658	27,892	29,127	•	26	6	
	68.1		COEFF	0.5.1/		UFT FT/AC			# OF PLO		INF, POP.
	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	1:
	} FIR-L } FIR-S		44.1	7.7	2,113	2,289	2,464				
	FIR-T		86.5	15.0	1,099	1,294	1,489				
	ALOCK-L		96.8	16.8	931	1,119	1,307				
	ALOCK-T		76.1	13.2	1,073	1,236	1,400				
NOB F			143,5	25.0	319	425	531				
NOB F			185.7	32.3	267	395	522				
R ALE			291.2	50.6	48	97	146				
	EDAR-L		336.9	58.6	35	84	134				
-	L		24.0	4.2	6,649	6,938	7,228		23	6	ź

TC PSPCSTGR

Species, Sort Grade - Board Foot Volumes (Project)

TT	'3N RF	R6W S09	Ty00PC]	139.00		Project: Acres	SC.	ATSH 139.0								Page Date Time		1 22/202 :14:02	24
			%					Perc	ent of 1	let Boa	rd Foot	Volume					Avera	nge Log	g	Logs
	S	So Gr	Net	Bd. Ft.	. per Acre		Total		Log Sca	ale Dia,			LogI	ength		Ln	Dia	Bd	CF/	Per
Spp		rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5		12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
		011						<u> </u>								22	6		0.00	
WH		CU	9	1.3	495	488	68			100			13		87	39	13	231	1.36	2
WH WH		2M 3M	75	.3	3,833	3,821	531	1	94	5		1	3	2	94	37	8	102	0.66	37
WH		4M	16	.5	788	788	110	1	100	5		22	49	-	29	25	6	32	0.33	24
** 11	1															 				
WH	Tota	nls	18	.4	5,116	5,098	709	1	86	13		4	11	2	83	33	8	78	0.58	65
WH	L	CU															16		0.00	
WH	L	2M	35	2.2	1,687	1,651	229	8	4	73	16	8	7	23	63	29	10	155	1.18	10
WH		3M	55		2,620	2,620	364	2	85	13		2	2	7	88	35	9	121	0.80	21
WH	L	4M	10		444	444	62	<u> </u>	100			32	56	7	5	21	6	27	0.40	16
wн	Tota	ıls	17	.8	4,751	4,714	655	4	58	33	6	7	9	13	71	29	8	95	0.78	49
-																				
DF	L	2M	39		3,560	3,560	495	6	2	77	15	6	9	19	66	30	10	163	1.27	21
DF	L	3M	54	.2	4,924	4,916	683	8	89	3		8	13	6	73	30	8	82	0.70	60
DF	L	4M	7		629	629	87		100			32	43	18	8	22	6	27	0.37	23
DF	Total	s	33	.1	9,113	9,105	1,266	7	56	31	6	9	14	12	66	28	8	87	0.77	105
DF	Т	2M	9		479	479	67	4		96		4			96	35	11	180	1,26	2
DF	Т	3M	75		3,724	3,724	518	1	98	2		1		2	97	39	8	96	0.63	39
DF	Т	4M	16		780	780	108		100			31	38	16	16	24	6	31	0.33	25
DF	Total		18		4,983	4,983	693	1	89	11		6	6	4	84	34	7	75	0,58	66
DF	S	CU	10		1,500											39	6		0.00	
								<u> </u>								<u> </u>	-			
DF	Total	s														39	6		0.00	
												16		10	7 2		0	112	1.00	10
	L	2M	69	1.1	1,173	1,160	161	16	100	84		16		10 9	73 91	26 39	8 8	112 107	1.06 0.72	10 4
NF NF	L L	3M 4M	26 5		437 69	437 69	61 10		100 100			35	65	9	91	21	° 6	26	0.72	2
INL	L	4111	5		07		10		100											
NF	Totals	s	6	.8	1,679	1,666	232	11	30	58		13	3	9	75	29	8	98	0.87	17
NF	Т	2M	12		202	202	28			100					100	40	13	225	1.34	
NF	Т	3M	63		1,027	1,027	143		100					4	96	39	8	111	0.67	9
NF	Τ	4M	25		390	390	54		100			2	61	20	17	29	6	38	0.34	10
NF	Totals	s	6		1,620	1,620	225		88	12		1	15	7	78	34	7	80	0.57	20
RC	L	2M	78	9.0	266	242	34		3	36	61		31	42	27	31	14	289	2.45	
RC	L	3M	22		67	67	9	9	22	69		9	69		22	22		90	1.29	
RC	L	4M															5		0.00	
RC	Total	s	1	7.2	333	309	43	2	7	43	48	2	39	33	26	23	11	171	2.00	1
_																				
RA	L	2M	18		73	73	10			100					100	40	14	290	1.63	
RA		3M	48	2.5	195	190	26		60	40					100	40	9	124	0.76	1
RA	L	4M	34		134	134	19		100				70	30		28	7	50	0.45	2
RA	Totals	s	1	1.2	402	397	55		62	38			24	10	66	33	8	89	0.66	4

тс	PSTNDSU	JM				1	Stand T	Table S	ummary	-	<u></u>		Page Date:	1 <u>8/22/20</u>	24
TT3N	RR6W S	09 Ty00PC		139	0.00		Project	s	CATSH				Time:	4:14:0	3PM
							Acres		139.0)0			Grown Year:		
S			- 457	Tot				Average	e Log		Net	Net			_
Spc T	DBH	Sample Trees	FF 16'	Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF L	12	4	87	77	3.087	2.42	3,09	18.5	70.0	1.63	57	216	227	80	30
DF L	13	6	87	79	3.945	3.64	6.58	14.2	52.0	2.67	94	342	371	130	48
DF L	14	13	87	83	7.370	7.88	14.74	14.8	54.6	6.20	218	805	862	302 309	112 125
OF L	15 16	13 12	87 88	83 90	6.420 5.209	7.88 7.27	16.79 12.15	13.2 19.2	53.5 78.9	6.34 6.66	222 234	899 959	881 926	309	123
DF L DF L	17	12	88		6.152	9.70	15.00	21.2	85.6	9.07	318	1,284	1,260	442	179
DF L	18	13	88		4.458	7.88	10.97	23.6	91.9	7.38	259	1,008	1,026	360	140
OF L	19	9	88	99	2.770	5.45	5.54	34.7	131.1	5.48	192	726	761	267	101
DF L	20	14	88	98	3.889	8.48	9.72	30.8	120.0	8.53	299	1,167	1,186	416	162
DFL	21	3	88	93	.756	1.82	1.76	35.7	131.4	1.79	63	232	249	87	32
OF L	22	5	89	101	1.148	3.03	3.44	32.1	126.0	3.15	110	434	438	154	60
OF L	23	1	89	141	.210	.61	.63	47.0	216.7	.84	30	137	117	41	19
OF L	24	3	88	91 124	.579	1.82	1.74	35.2	147.8	1.74	61	257	242 110	85 39	36 18
OF L	25 26	1 2	89 89	124 119	.178	.61 1.21	.53 1.32	52.0 39.2	246.7 185.0	.79 1.47	28 51	132 243	204		34
OF L OF L	28	1	90	137	.142	.61	.71	42.0	212.0	.85	30	150	118	41	21
DFL	36	1	89	98	.086	.61	,43	51.1	266.0	.62	22	114	87	30	16
OF L	Totals	117	88	89	46.727	70.91	105.14	21.8	86.6	65.23	2,289	9,105	9,066	3,181	1,266
VНТ	8	4	88	57	6.945	2.42	6.94	4.9	25.0	1.08	34	174	150	47	24
VНТ	9	1	88	55	1.372	.61	1.37	7.6	30.0	.34	10	41	47	15	6
VH T	10	5	89	68	5.556	3.03	5.56	12.0	60.0	2.13	67	333	296	93	46
₩НТ	11	1	90	76	.918 6.945	.61	.92	16.3 18.7	70.0 72.2	.48	15 130	64 502	66 578	21 181	9 70
ИНТ ИНТ	12 13	9 12	90 90	76 75	6.943 7.890	5.45 7.27	6.94 9.21	18.7	72.2	4.16 5.72	130	710	795	248	70 99
VHT	15	12	91	83	5,669	6.06	9.07	19.2	80.0	5.56	174	726	773	242	101
VHT	15	7	91	88	3.457	4.24	6.91	20.8	90.0	4.60	144	622	640	200	86
VНТ	16	6	91	80	2.604	3.64	5.21	21.3	87.5	3,55	111	456	493	154	63
VНТ	17	8	91	84	3.076	4.85	6.15	25.9	104.4	5.11	160	642	710	222	89
VНТ	18	4	91	83	1.372	2.42	2.40	31.8	122.9	2.45	76	295	340	106	41
VH Т	19	4	91	88	1.231	2.42	2.46	34.2	135.0	2.70	84	332	375	117	46
νнт	20	1	88	60	.278	.61	.28	50.3	150.0	.45	14	42	62	19 54	6 22
VHT	21	2	91	81	.504	1.21	1.01	38.5	157.5	1.24	39	159	173		
VHT	Totals		90		47.818	44.85	64.44	19.2	79.1 20.0	39.56	1,236 7	5,098 35	5,498	1,718	709 5
DFT	8 9	1 2	85 85	60 63	1.736 2.744	.61 1.21	1.74 2.74	4.2 6.8	20.0 30.0	.21 .53	19	82	29 74	26	11
OF T OF T	10	4	86	66	4.445	2.42	4.44	10.5	50.0	1.33	47	222	185	65	31
OF T	11	4	86	74	3.673	2.42	3.67	14.8	60.0	1.55	54	220	216	76	31
OF T	12	8	87	79	6.173	4.85	6.17	18.5	70.0	3.26	114	432	454	159	60
OF T	13	13	87	81	8.548	7.88	9.21	20.8	76.4	5.45	191	704	757	266	98
F T	14	14	87	82	7.937	8.48	13.04	17.4	63.9	6.47	227	833	900	316	116
FΤ	15	10	88	88	4.939	6.06	8.89	20.3	80.0	5.15	181	711	716	251	99
OF T	16	4	88	86 07	1.736	2.42	3.04	24.0	94.3	2.08	73	286	289	101	40
OFT	17	9 4	88 88	87 96	3.460	5,45 2.42	7.31 2.74	23.6 30.0	91.6 115.0	4.91 2.35	172 82	669 316	682 326	239 114	93 44
OF T OF T	18 19	4	88 88	96 93	1.372 1.231	2.42	2.74	30.0	115.0	2.33	82 83	308	320	114	44
OF T OF T	20	4	88	105	.278	.61	.56	40.1	150.0	.63	22	83	88	31	12
)FT	24	1	89	92	.193	.61	.39	53.9	210.0	.59	21	81	82	29	11
0F T	Totals	79	87	80	48.465	47.88	66.70	19.4	74.7	36.88	1,294	4,983	5,127	1,799	693
VH L	12	1	91	75	.772	.61	.77	18.5	70.0	.46	14	54	64	20	8
VH L	13	5	91	80	3.288	3.03	6.58	13.4	55.0	2.82	88	362	392	123	50
ΉL	14	4	92	83	2,268	2.42	4.54	16.8	70.0	2,44	76	317	339	106	44

TC	PSTNDSU	<u>л</u> м					Stand T	Cable Su	ummary				Page Date:	2 8/22/20	24
TT3N	RR6W S	09 Ty00PC		139.	00		Project	S	CATSH				Time:	4:14:0	BPM
							Acres		139.()0			Grown Year:		
S Spc Т	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
WHL	15	7	91	83	3.457	4.24	7.41	18.6	80.7	4.40	138	598	612	191	83
WHL	16	9	91		3.907	5.45	7.81	23.5	99.4	5.88	184	777	818	256	108
WHL	17	6	92		2.307	3.64	5.77	23.3	100.0	4.29	134	577	597	187	80
WHL	18	7	91		2.401	4.24	4.80	26.5	101.4	4.07	127	487	565	177	68
WHL	19	3	92		.923	1.82	2.46	29.0	128.8	2.29	72	317	318	99 87	44 35
WHL	20	3	92		.833	1.82	2.50	25.0	100.0 142.1	2.00 3.71	62 116	250 501	278 515	87 161	55 70
WHL	21 22	5 1	92 93		1.260 .230	3.03 .61	3.53 .46	32.8 54.7	230.0	.80	25	106	112	35	15
WH L WH L	22	1	93 92		.420	1.21	1.68	35.8	172.5	1.93	60	290	268	84	40
WHL .	24	1	92		.193	.61	.58	38.7	136.7	.72	22	79	100	31	11
WHL	Totals	54	91	87	22.258	32.73	48.88	22.9	96.4	35.81	1,119	4,714	4,977	1,555	655
NF L	13	2	90	79	1,315	1.21	1.97	16.3	66.7	.77	32	132	107	45	
NFL	14	1	90	83	.567	.61	1.13	16.3	70.0	.44	19	79	62	26	11
NFL	16	1	91	93	.434	.61	.87	22.9	90.0	.48	20	78	66	28	11
NF L	17	1	91	88	.384	.61	.77	26.1	105.0	.48	20	81	67	28	11
NF L	18	5	91	93	1.715	3.03	4.80	21.3	83.6	2.46	102	401	341	142	56
NF L	19	3	91	97	.923	1.82	2.46	26.6	108.7	1.57	66	268	219	91	37
NF L	20	1	90	100	.278	.61	.83	26.2	100.0	.52	22	83	73	30	12
NFL	21	6	91	90	1.512	3.64	3.78	32.7	123.3	2.97	124	466	413	172	65
NF L	22	1	90	93	.230	.61	.46	45.5	170.0	.50	21	78	70	29	
NF L	Totals	21	91	89	7.358	12.73	17.08	24.9	97.6	10.20	425	1,666	1,418	591	232
NF T	9	2	90	61	2.744	1.21	2.74	7.9	35.0	.52	22	96	72	30	13
NF T	10	3	90	70	3.334	1.82	3.33	11.7	56.7	.94	39	189	130	54	26
NF T	11	2	90	65	1.837	1.21	1.84	13.0	50.0	.57	24	92	80	33	13
NF T	12	1	91	78	.772	.61	.77	18.5	70.0	.34	14 34	54	48 113	20 47	8 19
NFT	14 15	2 2	90 91	81 84	1.134 .988	1.21 1.21	1.70 1.48	19.9 24.0	80.0 100.0	.81 .86	34 36	136 148	113	47 50	21
NFT	15	5	91	92	2.170	3.03	4.34	24.0	94.0	2.41	100	408	335	139	57
NF T NF T	10	3	90	93	1.153	1.82	2.31	26.8	108.3	1.49	62	250	207	86	35
NFT	18	1	91	95	.343	.61	.69	31.5	125.0	.52	22	86	72	30	12
NFT	20	2	90	93	.556	1.21	1.11	38.1	145.0	1.02	42	161	141	59	22
NF T	Totals	23	90	76	15.030	13.94	20.31	19.4	79.7	9.47	395	1,620	1,316	548	225
RAL	9	1	92	78	1.372	.61	1.37	8.6	50.0	.33	12	69	45	16	10
RAL	13	2	88	62	1.315	1.21	1.32	21.5	75.0	.78	28	99	108	39	14
RAL	15	1	91	71	.494	.61	.49	30.2	110.0	.41	15	54	57	21	8
RAL	17	1	92	87	.384	.61	.77	28.1	120.0	.59	22	92	83	30	13
RAL	21	1	91	78	.252	.61	.50	39.9	165.0	.55	20	83	77	28	12
RAL	Totals	6	90	72	3.817	3.64	4.45	21.7	89.1	2.66	97	397	370	134	55
RCL	24	1	81	62	.193	.61	.58	26.1	90.0	.36	15 44	52 156	49 144	21 61	7 22
RC L RC L	26 43	2 1	81 80	1	.329 .060	1.21 .61	.99 .24	44.8 103.4	158.3 420.0	1.04 .58	44 25	156 101	81	35	14
RCL	Totals	4	81	90	.582	2.42	1.81	46.6	171.3	1.98	84	309	275	117	43
OF S	14	1	84	56	.567	.61							·····		
OF S	Totals	1	84	56	.567	.61							<u></u>		
				81				_					28,048		

TT3N	RR6	5W S09 Ty	00PC	139	9.00		Proj Acre		ATSH 13	9.00					Page Date Time		1 2/2024 14:02PM
5			Log	Gross	Def	Net	%		Net Volu	me by S	Scaling D	iamete	er in Inche	s			r
Spp 7	[]	rt de	Len	MBF	%	MBF	Spc	2-3 4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40
WH 1		2M	28			9	1.2						9				
WH 7		2M	40	60	1.5	59	8,3					49	10				
WH 1		3M	11	3	33.3	2	.3	2									
WH 1		3M	14	2		2	.3	2									
WH 7		3M	20	2		2	.3			2							
WH 1		3M	21	6		6	.9				6						
WH 1		3M	27	8		8	1.1		1			8					
WH 1		3M	32	9		9	1.3				9						
WH 1		3M	34	3		3	.4		3								
WH 1	·	3M	36	11		11	1.6		11						ĺ		
WH 1		3M	38	3		3	.4		3								
WH 1		3M	40	486		485	68.5		78	188	200	19					
WH I		4M	16	2		2	.2		2								
WH Т		4M	18	2		2	.3		2								
WH T		4M	20	20		20	2.8	4	20								
WH Т		4M	22	22		22	3.1		22								
WH Т		4M	24	6		6	.9		6								
WH Т		4M	26	8		8	1.1		8								
WH Т		4M	28	10		10	1.4		10								
WH Т		4M	30	8		8	1.1		8								
WH T		4M	36	23		23	3.2		23								
WH T		4M	40	9		9	1.3		9								
WH		Totals		711		709	18.3	4	204	190	215	76	19				
WH L		2M	18	9	3.8	9	1.4	9									
WH L		2M	19	7	8.2	6	.9	6									
WH L		2M	20	2		2	.4	2			_						
WH L		2M	30	15	3.4	15	2.3		_		5	10					
WH L		2M	32	3	20.0	2	.3		2				01	12			
WH L		2M	34	34		34	5.1						21	13		i	
WH L		2M	35	17	2.1	17	2.5		.			6	11				
WH L		2M	36 37	35	14.0	34	5.2		1			10	22	10			
WH L		2M 2M	37 39	12 11	14.0	10 11	1.5 1.6						11	10			
WH L		2M 2M	39 40	90		90	1.0					37	11	40			
WH L		3M	15	3		3	.4	3	[
WH L		3M	16	2		2	.4	2									

5 of 1 of 2

TT3	N RJ	R6W S09 T	y00PC	139	.00		Proje Acre		SCA	TSH 139	2.00					Page Date Time		2 2/2024 14:02PM
							-											
e	S T		Log Len	Gross MBF		Net MBF	% Spc	2-3	4-5	et Volu 6-7	<u>me by S</u> 8-9	caling I 10-11		<u>r in Inche</u> 14-15	s 16-19	20-23	24-29	30-39 40-
Spp		•			70 1		~~~	2-3	_	0-7	8-9	10-11	12-15	14-15	10-19	20-23	24-27	<u> </u>
WH	L	3M		4		4	.6		4			9						
WН	L	3M		9		9	1.4					9	9					
WH	L	3M		9		9	1.4						,	18				
WH	L	3M		18		18 319	2.7 48.7			10	104	186	10	10				
WH	L	3M	40	319		319	48.7			10	104	180				<u> </u>		
WH	L	- 4M	14	2		2	.3			2								
WН	L	4M	15	5		5	.7			5								
WH	L	4M	16	4		4	.6			4								
WH	L	4M	18	3		3	.4			3								
WH	L	4M	20	7		7	1.1			7								
WH	L	4M	22	6		6	.9			6								
WH	L	4M	23	8		8	1.2			8								
WΗ	L	4M	24	2		2	.2			2								
WΗ	L	4M	25	3		3	.5			3								
WΗ	L	4M	26	8		8	1.1			8								
WH	L	4M	28	1		. 1	.2			1								
WH	L	4M	30	7		7	1.1			7								
WΗ	L	4M	31	1		1	.2			1	:							
WH	L	4M	34	3		3	.5			3						1		
WH	L	4M	40	3		3	.4			3								
WН		Totals		660		655	16.9		26	75	104	200	82	105	63			
DF	L	2M	16	2		2	.2	Ĩ	2				1					
DF	L	2M	17	8		8	.6		8									
DF	L	2M	18	8		8	.6		8									
DF	L	2M	19	7		7	.5		7									
DF	L	2M	20	4		4	.3		4									
DF	L	2M	26	9		9	.7								9	1		
DF	L	2M	27	4		4	.3						4					
DF	L	2M	28	16		16	1.3			1					5		10	
DF	L	2M		0		0	.0			0								
DF	L	2M		15		15	1.2					5		10				
DF	L	2M	31	11		11	.8								11			
DF	L	2M		35		35	2.7			3			8	5	19			
DF	L	2M	33	5		5	.4						5					
DF	L	2M	34	42		42	3.3			2			41					
DF	L	2M	36	8		8	.7						8					
DF	L	2M	37	8		8	.7						8					

TC	PLO	GSTVB					Log S	Stock T	able -	MBF									
TT3	N R	R6W S09 T	y00PC	13	9.00		Proje Acre		SCA	TSH 139	0.00					Page Date Time		3 2/2024 14:02PN	4
	s	So Gr	Log	Gross	Def	Net	%		1	let Volu	me by S	caling I	Diamete	r in Inche	s				
Spp	Т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	L	2M	38	37		37	2.9						9	15		13			
DF	L	2M	39	9		9	.7							9					
DF	L	2M	40	264		264	20.9			1			177	50	37				
DF	L	3M	12	2		2	.2		2										
DF	L	3M	13	4		4	.3		4										
DF	L	3M	14	13		13	1.0		13										
DF	L	3M	15	10		10	.8		10										
DF	L	3M	16	3		3	.2		3										
DF	L	3M	17	5		5	.4		5			ļ							
DF	L	3M	18	16		16	1.3		16										
DF	L	3M	19	3		3	.2		3										
DF	L	3M	24	7		7	.6					7							
DF	L	3M	26	19		19	1.5					19							
DF	L	3M	28	35		35	2.7					35							
DF	L	3M	30	30		30	2.4					30							
DF	L	3M	32	4		4	.3			4									
DF	L	3M	33	10		10				2		8							
DF	L	3M	34	21		21	1.6			4		8	9						
DF	L	3M	35	4		4				4									
DF	L	3M				49	3.8			5		35	9						
DF	L	3M				2	.1			2									
DF	L	3M				7	.5			7	1.50								
DF	L	3M	40	441		440	34.8			67	150	223			_				
DF	L	4M	12	2		2	.1			2									
DF	L	4M	13	4		4	.3			4									
DF	L	4M	16	1		1	.1			1									
DF	L	4M	17	9		9	.7			9									
DF	L	4M	18	8		8	.6			8									
DF	L	4M	20	4		4	.3			4									
DF	L	4M	21	2		2	.2			2									
DF	L	4M	22	3		3	.2			3									
DF	L	4M				8	.6			8									
DF	L	4M	25	1		1	.1			1							i		
DF	L	4M				3	.3			3									
DF	L	4M				3	.2			3									
DF	L	4M				6	.5			6									
OF	L	4M	30	11		11	.9			11									

TT3	N RI	R6W S09 Ty	00PC	139	.00		Proje Acre		ATSH 139	9.00					Page Date Time	8/2	4 2/2024 14:02PM
	s	So Gr	Log	Gross	Def	Net	%		Net Volu	me by S	Scaling Di	iamete	r in Inche	s			
Spp	т		Len	MBF	%	MBF	Spc	2-3 4-5	6-7	8-9	10-11		14-15	16-19	20-23	24-29	30-39 40
DF	L	4M	31	4		4	.3		4								
DF	L	4M	32	5		5	.4		5								
DF	L	4M	34	6		6	.5		6								
DF	L	4M	36	3		3	.3		3								
DF	L	4M	40	4		4	.3		4								
DF		Totals		1,267		1,266	32.6	86	189	150	370	278	89	81	13	10	
DF	Т	2M	20	3		3	.4	3							1		
DF	Т	2M	38	10		10	1.4					10					
DF	Т	2M	40	54		54	7.8					44	10				
DF	т	3M	18	3		3	.5	3									
DF	T	3M	32	2		2	.3		2								
DF	T	3M 3M	_34	9		2	1.3					9					
DF	T	3M	36	6		6	.8		6			-					
DF	Т	3M	40	497		497	71.8		127	228	142						
	ŀ						1.3		9						†		
DF	T	4M	16	9		9			13								
DF	T	4M	18	13		13 11	1.9 1.6		11								
DF	T	4M	20 22	11 6		6	.8		6								
DF DF	T T	4M 4M	22	5		5	.8		5								
DF	T	4M	28	8		8	1.2		8								
DF	T	4M	30	22		22	3.1		22								
DF	T	4M	31	22		22	.3		2								
DF	T	4M	32	8		8			8								
DF	T	4M	34	8		8	1.1		8								
DF	T	4M	36	9		9	1.3		9								
DF	Ť	4M	40	8		8	1.1		8								
DF	╉	Totals		693		693	17.9	6	243	228	142	63	10	-	<u> </u>		
	L	2M	17	2		2	.8	2			<u></u>				<u> </u>		
NF	L	2M	18	15		15	6.6	15									
NF	L	2M	19	3		3	1.2	3							1		
NF	L	2M	20	7		7	2.8	7									
NF	L	2M	33	8		8	3.6						8				
NF	L	2M	35	8		8	3.5					8			ĺ		
NF	L	2M	36	45		45	19.3					27	18				
NF	L	2M	38	9		9	3.9					9			1		
NF	L	2M	39	9		9	4.0					9					

		GSTVB							Fable -							Page		5
TT3	N RI	R6W S09 Ty	y00PC	1	39.00		Proj Acre		SCA	ATSH 139	9.00					Date Time		3 2/2024 14:02PM
	s	So Gr	Log	Gross	Def	Net	%]	<u>Vet Volu</u>	me by S	caling D	iamete	er in Inche	es			
Spp	Т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40-
NF	L	2M	40	5'	7 3.	1 55	23.8						27	28				
NF	L	3M	34		5	5	2.4			5								
NF	L	3M	36	2	2	2	.9			2								
NF	L	3M	40	53	3	53	23.0				26	27						
NF	L	4M	13		2	2	.8			2								
NF	L	4M				2				2								
NF	L	4M	23			1	.6			1								
NF	L	4M	26	2	2	2	.7			2								
NF	L	4M	28	2	2	2	.8			2								
NF	L	4M	30	i	l	1	.6			1								
NF		Totals		233	3	232	6.0		27	17	26	27	80	54				
NF	Т	2M	40	28	3	28	12.5						28					
NF	т	3M	32		5	5	2.2			5								
NF	т	3M	36	2	2	2	1.0			2								
NF	т	3M	40	135	5	135	60.2			24	25	86						
NF	Т	4M	20]		1	.5			1								
NF	т	4M	22	2		2	1.1			2								
NF	т	4M	26	e	5	6	2.5			6								
NF	т	4M	28	11		11	4.8			11								
NF	Т	4M	30	14	ļ.	14	6.3			14								
NF	т	4M	32	8	3	8	3.4			8								
NF	Т	4M	34	3	5	3	1.3			3								
NF	Т	4M	38	9)	9	4.1			9								
NF		Totals		225		225	5.8			86	25	86	28					
RC	L	2M	26	8			15.9								7			
RC	L	2M	27	4	18.8								3					
RC	L	2M	28	1		1				1			1				2	
RC	L	2M	32	10												F	9	
RC	L	2M	34	5						0					9	5		
RC	L	2M	40	9		9	21.3								9			
RC	L	3M	13	1		1	1.9		1									
RC	L	3M		6		6									6		į	
RC _	L	3M	40	2		2	4.8				2							<u> </u>
RC		Totals		46	7.2	43	1.1		1	1	2		3		22	5	9	

ТС	PLO	GSTVB					Log S	Stock 7	Table -	MBF									
TT3	N R	R6W S09 T	y00PC	13	9.00		Projo Acre		SCA	.ТSH 139	.00					Page Date Time	8/2	6 2/2024 14:02P	
	s	So Gr	Log	Gross	 Def	Net	%		1	let Volu	me by S	caling I	Diamete	r in Inch	es				
Spp	Т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
RA	L	2M	40	10		10	18.4							10					
RA	L	3M	40	27	2.5	26	48.0				16		11						
RA	L	4M	22	1		1	2.5			1									
RA	L	4M	24	2		2	3.9			2									
RA	L	4M	28	10		10	17.3			10						1			
RA	L	4M	34	5		5	9.9			5									
RA		Totals		56	1.2	55	1.4	_		19	16		11	10					
Total		All Species	5	3,892		3,877	100.0		149	834	741	1041	622	287	166	18	20		

.

TC PST	TATS					OJECT ROJECT		STICS ATSH			PAGE DATE	1 8/22/2024
ГWP	RGE	SC '	TRACT		ТҮРЕ		AC	CRES	PLOTS	TREES	CuFt	BdFt
03N	06	18 (00U4	,	00PC			15.00	5	69) S	W
						TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PL	OTS	TREES		PER PLOT		TREES		TREES		
TOTA	AL -		5	69		13.8						
CRUI	SE		5	69		13.8		2,932		2.4		
DBH	COUNT											
REFO	OREST											
COUN												
BLAN												
100 %	, 	_										
						ND SUMM		DIGIT	00000		GROOM	
		SAM		TREES	AVG	BOLE	REL	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
		IR.	EES	/ACRE	DBH 18.9	LEN	DEN	116.0			4,780	
	G FIR-L		29 39	59.5 132.7	18.9 14.7	119 98	26.7 40.7	116.0 156.0	22,580 21,471		4,780	
	G FIR-T MLOCK-L		39 1	3.3	14.7 15.0	98 110	40.7	4.0	21,471 847		170	-
TOTA			69	195.4	16.1	104	68.8	276.0	44.898		10,108	10,108
	68	.1 TIN		C OF 100 THE	VOLUME			HE SAMPLE E				
CL SD:	68.1 1.0		COEFF VAR.%	S.E.%	T	SAMPLI .OW	E TREES - AVG	- BF HIGH		# OF TREES F 5	10 rev.	INF. POP.
	<u> </u>		25.9	5.E.76 4.9	L	377	397	416			10	
	G FIR-T		33.0	5,3		169	178	188				
	MLOCK-L											
ΤΟΤΑ	AL.		49.3	5.9		255	271	287		97	24	1
CL	68.1		COEFF			SAMPL	E TREES -	·CF		# OF TREES R	₹EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	1
	3 FIR-L		24.2	4.6		80	84	88				
	FIR-T MLOCK-L		33.9	5.4		42	44	47				
WILLI			42.7	5,1		58	61	64		73	18	
ΤΟΤΑ												DE 202
TOTA	60 1		COFFE			TDEFS/	ACDE			4 OF PLOTS R	'FO	INF POP
CL	68.1		COEFF VAR %	SE%	L	TREES/2		HIGH	i	# OF PLOTS R 5	-	INF. POP.
CL SD:	68.1 1.0 3 FIR-L		COEFF VAR.% 12.4	<u>S.E.%</u> 6.2	L	TREES/2 OW 56	ACRE AVG 60	HIGH 63	i	# OF PLOTS R	EQ. <u>10</u>	
CL SD: DOUG	1.0		VAR.%		L	OW	AVG		; 		-	
CL SD: DOUG	<u>1.0</u> 3 FIR-L		VAR.% 12.4	6.2	L	OW	AVG 60	63			-	
CL SD: DOUG	1.0 3 FIR-L 3 FIR-T MLOCK-L		VAR.% 12.4 19.7	6.2 9.8	L	OW	AVG 60 133	63 146			-	1
CL SD: DOUG DOUG	1.0 3 FIR-L 3 FIR-T MLOCK-L		VAR.% 12.4 19.7 223.6	6.2 9.8 111.1	L	OW 56 120 <i>185</i>	AVG 60 133 3	63 146 7 206		5	<u>10</u> 2	1
CL SD: DOUC DOUC WHEN TOTA	1.0 3 FIR-L 3 FIR-T MLOCK-L AL		VAR.% 12.4 19.7 223.6 11.2	6.2 9.8 111.1		OW 56 120 <i>185</i>	AVG 60 133 3 195	63 146 7 206		6	<u>10</u> 2	INF. POP.
CL SD: DOUC WHEN TOTA CL SD: DOUG	1.0 3 FIR-L 3 FIR-T MLOCK-L AL 68.1 1.0 3 FIR-L		VAR.% 12.4 19.7 223.6 11.2 COEFF	6.2 9.8 111.1 5.6 S.E.% 3.8		OW 56 120 <i>185</i> BASAL 4	AVG 60 133 3 195 AREA/AC	63 146 7 206 RE HIGH 120		5 6 # OF PLOTS R	102 REQ.	INF. POP.
CL SD: DOUC WHEN TOTA CL SD: DOUG	1.0 3 FIR-L 3 FIR-T MLOCK-L ML 68.1 1.0 3 FIR-L 3 FIR-T		VAR.% 12.4 19.7 223.6 11.2 COEFF VAR.% 7.7 10.7	6.2 9.8 111.1 5.6 S.E.% 3.8 5.3		OW 56 120 <i>185</i> BASAL 4 OW	AVG 60 133 3 <i>195</i> AREA/ACI AVG 116 156	63 146 7 206 RE HIGH 120 164		5 6 # OF PLOTS R	102 REQ.	INF. POP.
CL SD: DOUG WHEN TOTA CL SD: DOUG WHEN	1.0 3 FIR-L 3 FIR-T MLOCK-L 08.1 68.1 1.0 3 FIR-L 3 FIR-T MLOCK-L		VAR.% 12.4 19.7 223.6 11.2 COEFF VAR.% 7.7 10.7 223.6	6.2 9.8 111.1 5.6 S.E.% 3.8 5.3 111.1		OW 56 120 <i>185</i> BASAL A OW 112 148	AVG 60 133 3 195 AREA/AC AVG 116 156 4	63 146 7 206 RE HIGH 120 164 8		5 6 # OF PLOTS R 5	10 2 REQ. 10	INF. POP.
CL SD: DOUC WHEN TOTA CL SD: DOUG DOUG WHEN TOTA	1.0 3 FIR-L 3 FIR-T MLOCK-L AL 68.1 1.0 3 FIR-L 3 FIR-L 3 FIR-T MLOCK-L AL		VAR.% 12.4 19.7 223.6 11.2 COEFF VAR.% 7.7 10.7 223.6 6.1	6.2 9.8 111.1 5.6 S.E.% 3.8 5.3		OW 56 120 <i>185</i> BASAL / OW 112 148 268	AVG 60 133 3 195 AREA/ACI AVG 116 156 4 276	63 146 7 206 RE HIGH 120 164	;	5 6 # OF PLOTS R 5 2	10 2 REQ. 10 0	INF. POP.
CL SD: DOUC WHEN TOTA CL SD: DOUG DOUG WHEN TOTA	1.0 3 FIR-L 3 FIR-T MLOCK-L AL 68.1 1.0 3 FIR-L 3 FIR-T MLOCK-L AL 68.1		VAR.% 12.4 19.7 223.6 11.2 COEFF VAR.% 7.7 10.7 223.6 6.1 COEFF	6.2 9.8 111.1 5.6 S.E.% 3.8 5.3 111.1 3.0	L	OW 56 120 <i>185</i> BASAL 2 OW 112 148 268 NET BF /	AVG 60 133 3 195 AREA/ACI AVG 116 156 4 276 /ACRE	63 146 7 206 RE <u>HIGH</u> 120 164 8 284	;	5 6 # OF PLOTS R 5 2 # OF PLOTS R	10 2 REO. 10 0 REO.	INF. POP. 1 INF. POP.
CL SD: DOUG WHEN TOTA CL SD: DOUG WHEN TOTA CL SD:	1.0 3 FIR-L 3 FIR-T MLOCK-L NL 68.1 1.0 3 FIR-L 3 FIR-T MLOCK-L AL 68.1 1.0 68.1 1.0		VAR.% 12.4 19.7 223.6 11.2 COEFF VAR.% COEFF COEFF VAR.%	6.2 9.8 111.1 5.6 S.E.% 3.8 5.3 111.1 3.0 S.E.%	L	OW 56 120 <i>185</i> BASAL 2 OW 112 148 268 NET BF/ OW	AVG 60 133 3 195 AREA/ACI AVG 116 156 4 276 /ACRE AVG	63 146 7 206 RE HIGH 120 164 8 284 HIGH	;	5 6 # OF PLOTS R 5 2	10 2 REQ. 10 0	INF. POP. 1 INF. POP.
CL SD: DOUG WHEN TOTA CL SD: DOUG WHEN TOTA CL SD: DOUG	1.0 3 FIR-L 3 FIR-T MLOCK-L MLOCK-L 68.1 1.0 3 FIR-L 4 LOCK-L AL 68.1 1.0 68		VAR.% 12.4 19.7 223.6 11.2 COEFF VAR.% 7.7 10.7 223.6 6.1 COEFF VAR.% 9.6	6.2 9.8 111.1 5.6 S.E.% 3.8 5.3 111.1 3.0 S.E.% 4.8		OW 56 120 <i>185</i> BASAL 2 OW 112 148 268 NET BF / OW 21,502	AVG 60 133 3 195 AREA/ACI AVG 116 156 4 276 /ACRE AVG 22,580	63 146 7 206 RE HIGH 120 164 8 284 HIGH 23,658	;	5 6 # OF PLOTS R 5 2 # OF PLOTS R	10 2 REO. 10 0 REO.	INF. POP. 1 INF. POP.
CL SD: DOUG WHEN TOTA CL SD: DOUG WHEN TOTA CL SD: DOUG DOUG	1.0 3 FIR-L 3 FIR-T MLOCK-L MLOCK-L 68.1 1.0 3 FIR-L 4 LOCK-L AL 68.1 1.0 68		VAR.% 12.4 19.7 223.6 11.2 COEFF VAR.% COEFF COEFF VAR.%	6.2 9.8 111.1 5.6 S.E.% 3.8 5.3 111.1 3.0 S.E.%		OW 56 120 <i>185</i> BASAL 2 OW 112 148 268 NET BF/ OW	AVG 60 133 3 195 AREA/ACI AVG 116 156 4 276 /ACRE AVG	63 146 7 206 RE HIGH 120 164 8 284 HIGH	;	5 6 # OF PLOTS R 5 2 # OF PLOTS R	10 2 REO. 10 0 REO.	INF. POP. 1 INF. POP.
CL SD: DOUG WHEN TOTA CL SD: DOUG WHEN TOTA CL SD: DOUG DOUG	1.0 3 FIR-L 3 FIR-T MLOCK-L 4 68.1 1.0 3 FIR-L 4 68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0 4 1.0 6 8 1.0 4 1.0 5 5 1.0 5 5 5 5 5 5 5 5 5 5 5 5 5		VAR.% 12.4 19.7 223.6 11.2 COEFF VAR.% 7.7 10.7 223.6 6.1 COEFF VAR.% 9.6 12.5	6.2 9.8 111.1 5.6 3.8 5.3 111.1 3.0 S.E.% 4.8 6.2		OW 56 120 <i>185</i> BASAL / OW 112 148 <i>268</i> NET BF / OW 21,502 19,641	AVG 60 133 3 195 AREA/ACI AVG 116 156 4 276 /ACRE AVG 22,580 20,944	63 146 7 206 RE HIGH 120 164 8 284 HIGH 23,658 22,247	;	5 6 # OF PLOTS R 5 2 # OF PLOTS R	10 2 REO. 10 0 REO.	INF. POP. 1 INF. POP. 1
CL SD: DOUG WHEN TOTA CL SD: DOUG WHEN TOTA CL SD: DOUG DOUG WHEN TOTA	1.0 3 FIR-L 3 FIR-T MLOCK-L 4 68.1 1.0 3 FIR-L 3 FIR-L 68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		VAR.% 12.4 19.7 223.6 11.2 COEFF VAR.% 7.7 10.7 223.6 6.1 COEFF VAR.% 9.6 12.5 223.6	6.2 9.8 111.1 5.6 S.E.% 3.8 5.3 111.1 3.0 S.E.% 4.8 6.2 111.1		OW 56 120 <i>185</i> BASAL A OW 112 148 268 NET BF / OW 21,502 19,641 3,217	AVG 60 133 3 195 AREA/ACI AVG 116 156 4 276 /ACRE AVG 20,580 20,944 847 44,371	63 146 7 206 RE 120 164 8 284 <u>HIGH</u> 23,658 22,247 1,789 45,526	; ;	5 6 # OF PLOTS R 5 2 # OF PLOTS R 5 1	10 2 REQ. 10 0 REQ. 10 0	INF. POP. 1 INF. POP. 1
CL SD: DOUG WHEN TOTA CL SD: DOUG WHEN CL SD: DOUG DOUG DOUG WHEN	1.0 3 FIR-L 3 FIR-T MLOCK-L 4 68.1 1.0 3 FIR-L 4 68.1 1.0 68.1 1.0 68.1 1.0 68.1 1.0 4 1.0 6 8 1.0 4 1.0 5 5 1.0 5 5 5 5 5 5 5 5 5 5 5 5 5		VAR.% 12.4 19.7 223.6 11.2 COEFF VAR.% 7.7 10.7 223.6 6.1 COEFF VAR.% 9.6 12.5 223.6 5.2	6.2 9.8 111.1 5.6 S.E.% 3.8 5.3 111.1 3.0 S.E.% 4.8 6.2 111.1		OW 56 120 <i>185</i> BASAL A OW 112 148 268 NET BF / OW 21,502 19,641 3,217	AVG 60 133 3 195 AREA/ACI AVG 116 156 4 276 /ACRE AVG 22,580 20,944 847	63 146 7 206 RE 120 164 8 284 <u>HIGH</u> 23,658 22,247 1,789 45,526	; ;	5 6 # OF PLOTS R 5 2 # OF PLOTS R 5	10 2 REQ. 10 0 REQ. 10 0	INF. POP. 1 INF. POP. 1 INF. POP.
CL SD: DOUG WHEN TOTA CL SD: DOUG WHEN TOTA CL SD: DOUG DOUG WHEN TOTA	1.0 3 FIR-L 3 FIR-T MLOCK-L 4 68.1 1.0 3 FIR-L 3 FIR-T MLOCK-L 4 FIR-T ALOCK-L 4 68.1 1.0 68.1		VAR.% 12.4 19.7 223.6 11.2 COEFF VAR.% 7.7 10.7 223.6 6.1 COEFF VAR.% 9.6 12.5 223.6 5.2 COEFF	6.2 9.8 111.1 5.6 <u>S.E.%</u> 3.8 5.3 111.1 3.0 <u>S.E.%</u> 4.8 6.2 111.1 2.6		OW 56 120 <i>185</i> BASAL A OW 112 148 268 NET BF / OW 21,502 19,641 3,217 NET CU	AVG 60 133 3 195 AREA/ACI AVG 116 156 4 276 /ACRE AVG 22,580 20,944 847 44,371 FT FT/AC	63 146 7 206 RE 120 164 8 284 HIGH 23,658 22,247 1,789 45,526 RE	; ;	5 6 # OF PLOTS R 5 2 # OF PLOTS R 1 # OF PLOTS R	10 2 REQ. 10 0 REQ. 10 0 REQ.	1 INF. POP. 1 INF. POP. 1

TC PST	ATS				PROJECT STATISTICS PROJECT SCATSH					PAGE DATE	2 8/22/2024
тwр	RGE	SC	TRACT	ТҮР	E	A	CRES	PLOTS	TREES	CuFt	BdFt
03N	06	18	00U4	00PC	2		15.00	5	69	S	W
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS	S REQ.	INF. POI
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
WHE	MLOCK-L	,	223.6	111.1		170	359				
TOTA	4L		5.7	2.8	9,823	10,108	10,392		2	0	0

TC PSPCSTGR		S	pecies, S	ort Gra	ide - Boa	ard F	oot Volur	nes (Pi	roject	;)								
T03N R06W S	8 Ty00PC		15.00		Project Acres	:	SCATS 15	H .00							Page Date Time		1 22/202 :09:40	4
	%						Percent of	Net Boa	rd Foot	Volume					Avera	ige Lo	g	Logs
S So Gr	Net		t. per Acre		Total		Log S	cale Dia.			Logl	.ength		Ln	Dia	Bđ	CF/	Per
Spp T rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5 6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF L 2N	6		1,494	1,494		22	45	55			100			30	10	110	0.78	13.6
DF L 3M	94		21,086	21,086		316	36	64			56	37	7	31	10	132	0.89	159.9
DF Totals	51		22,580	22,580		339	37	63			59	34	7	31	10	130	0.88	173.5
DF T CL														8	11		0.00	13.1
DF T 3M	89	2.7	19,238	18,711		281	93	7				7	93	39	9	112	0.70	167.2
DF T 4M	11		2,233	2,233		33	100			17	71	12		25	6	30	0.33	75.6
DF Totals	47	2.5	21,471	20,944		314	94	6		2	8	7	83	33	8	82	0.61	255.9
	102		047	047		12	100						100	41	9	130	0.64	6.5
WH L 3M	100		847	847		13	100						100	41	7	130	0.04	0.3
WH Totals	2		847	847		13	100						100	41	9	130	0.64	6.5
Totals		1.2	44,898	44,371		666	65	35		1	33	21	45	32	9	102	0.71	435.9

,

T03N	R06W S1	8 Ty00PC		15.00			Project Acres	s s	CATSH 15.0	0			Time: Grown Year	4:09:4 	1PM
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF L	16	1	89	110	2.865	4.00	5.73	27.4	120.0	4.48	157	688	67	24	
DF L	17	3	89	113	7.613	12.00	22.84	20.8	101.1	13.55	476	2,309	203	71	
DF L	18	11	89	118	24.899	44.00	72.43	24.0	110.0	49.48	1,736	7,968	742	260	
DF L	19	3	90	120	6.095	12.00	18.28	27.4	130.0	14.27	501	2,377	214	75	
DF L	20	3	90	120	5,500	12.00	16.50	30.6	153.3	14.40	505	2,530	216	76 79	
DF L	21	3	89	127	4.989	12.00	14.97	35.0	167.8	14.95	525	2,511	224 376	132	
OF L	22	5	89	126	7.576	20.00	22.73	38.7	184.7	25.09	880	4,197	376	152	
OF L	Totals	29	89	119	59.537	116.00	173.48	27.6	130.2	136.22	4,780	22,580	2,043	717	339
OF T	9	1	89	85	9.054	4.00	9.05	8.7	50.0	2.25	79	453	34	12	7
OF T	10	1	85	61	7.334	4.00	7.33	5.5	20.0	1.14	40	147	17	6	
OF T	11	1	88	93	6.061	4.00	6.06	16.3	70.0	2.81	99	424	42	15	
OF T	12	1	88	99	5.093	4.00	10.19	12.8	55.0	3.72	131	560	56	20	
OF T	13	1	89	96	4.340	4.00	8.68	14.3	60.0	3.55	124	521	53	19	8
OF T	14	8	88	98	29,934	32.00	59.87	17.5	68.1	29.91	1,049	4,079	449	157	61
DF T	15	5	88	100	16.297	20.00	32.59	21.3	90.0	19.81	695	2,934	297 446	104 156	44 65
DFT	16	8	88	98	22.918	32.00	45.84	22.8 28.7	94.4	29.73 33,19	1,043 1,164	4,326 4,695	446 498	156	63 70
OF T OF T	17 18	8 5	88 87	109 105	20.301 11.318	32.00 20.00	40.60 22.64	28.7 32.4	115.6 124.0	20.91	1,164 734	4,895 2,807	498 314	175	42
DF T	Totals	39	88	97	132.651	156.00	242.85	21.2	86.2	147.01	5,158	20,944	2,205	774	314
WHL	15	1		110	3.259	4.00	6.52	26.1	130.0	5.44	170	847	82	25	
	Totals					4.00	6,52	26.1	130.0	5.44	170	847	82	25	
WHL	101815	1		110	3.259										
Fotals		69	88	104	195.447	276.00	422.85	23.9	104.9	288.67	10,108	44,371	4,330	1,516	666

Т03	IN R	06W S18 Ty	00PC	15	5.00		Proje Acre		SCA	ATSH 15.	00					Page Date Time		1 2/2024)9:39PM
	s	So Gr		Gross	Def	Net	%]	Net Volun	ne by S	_		in Inche	s			
Spp	Т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	1 6-19	20-23	24-29	30-39 40+
DF	L	2M	30	22		22	6.6			3		7	12					
DF	L	3M	26	12		12	3.6						12					
DF	L	3M	27	13		13	3.9					8	5					
DF	L	3M	28	7		7	2.0			3		3						
DF	L	3М	29	7		7	2.0						7					
DF	L	3M	30	138		138	40.6			11		42	43	41				
DF	L	3M	31	7		7	2.1							7				
DF	L	3M	32	49		49	14.5			12		15	7		15			
DF	L	3M	34	58		58	17.2						20	15	23			
DF	L	3M	35	2		2	.7			2								
DF	L	3M	36	4		4	1.2			4								
DF	L	3M	40	19		19	5.7			5		8	7					
DF		Totals		339		339	50.9			40		83	114	63	38			
DF	Т	3M	32	18		18	5.6			18								
DF	Т	3M	34	2		2	.5			2								
DF	Т	3M	36	2	16.7	2	.6			2								
DF	Т	3M	40	267	2.8	259	82.6			28	67	145	20					
DF	Т	4M	20	6		6	1.9			6								
DF	т	4M	22	5		5	1.6			5								
DF	т	4M	24	2		2	.5			2								
DF	Т	4M	26	3		3	.9			3								
DF	Т	4M	28	11		11	3.5			11								
DF	Т	4M	30	3		3	1.0			3								
DF	Т	4M	32	4		4	1.3			4								
DF		Totals		322	2.5	314	47.2			83	67	145	20					
WH	L	3M	40	9		9	69.2					9						
WH	L	3M	41	4		4	30.8			4								
wн		Totals		13		13	1.9			4		9						
Total		All Species		673	1.2	666	100.0			127	67	237	134	63	38			

VOLUME SUMMARY (Shown in MBF)

Scatter Shield FG-341-2025-W01021-01 August 2024

UNIT 1: PC-M (50 ACRES)

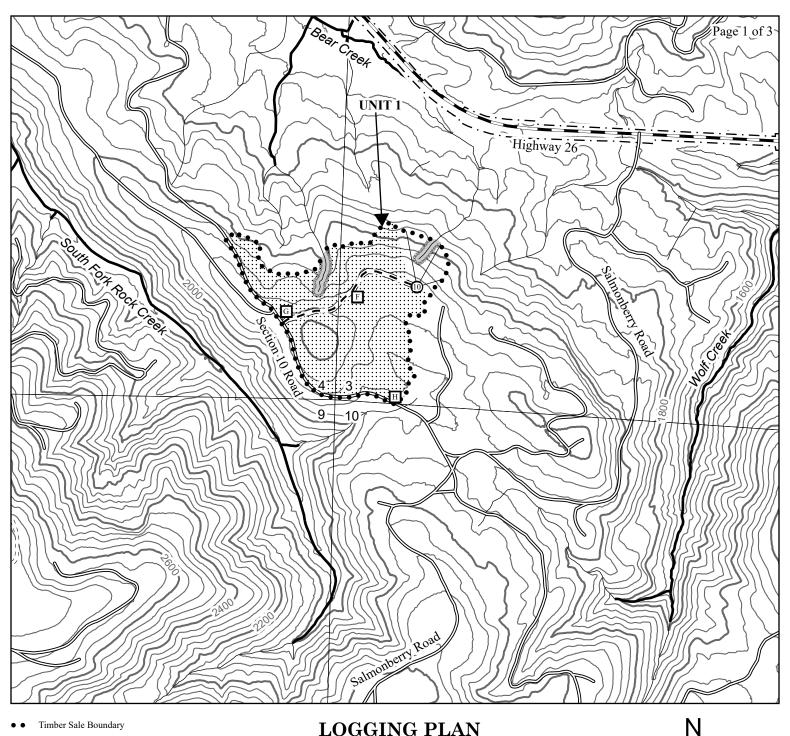
SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	0	425	118	543
Douglas-fir	Hidden D&B (2%)	(0)	(9)	(2)	(11)
Douglas-III	NET TOTAL	0	416	116	532
	% of Total	0	78	22	
	Cruise Volume	0	47	5	52
Western	Hidden D&B (2%)	(0)	(1)	(0)	(1)
Hemlock	NET TOTAL	0	46	5	51
	% of Total	0	90	10	
	Cruise Volume	0	23	14	37
Noble Fir	Hidden D&B (2%)	(0)	(0)	(0)	(0)
	NET TOTAL	0	23	14	37
	% of Total	0	62	38	

UNIT 2: PC-M (31 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	35	136	23	194
Douglas-fir	Hidden D&B (2%)	(1)	(3)	(0)	(4)
Douglas-III	NET TOTAL	34	133	23	190
	% of Total	18	70	12	
	Cruise Volume	37	147	35	219
Western	Hidden D&B (2%)	(1)	(3)	(1)	(5)
Hemlock	NET TOTAL	36	144	34	214
	% of Total	17	67	16	
	Cruise Volume	8	2	0	10
Noble Fir	Hidden D&B (2%)	(0)	(0)	(0)	(0)
	NET TOTAL	8	2	0	10
	% of Total	80	20	0	

UNIT 3: PC-M (139 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	67	518	108	693
Douglas-fir	Hidden D&B (2%)	(1)	(10)	(2)	(13)
Douglas-III	NET TOTAL	66	508	106	680
	% of Total	10	75	15	
	Cruise Volume	68	531	110	709
Western	Hidden D&B (2%)	(1)	(11)	(2)	(14)
Hemlock	NET TOTAL	67	520	108	695
	% of Total	10	75	15	
	Cruise Volume	28	143	54	225
Noble Fir	Hidden D&B (2%)	(1)	(3)	(1)	(5)
	NET TOTAL	27	140	53	220
	% of Total	12	64	24	


UNIT 4: PC-M (15 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	0	281	33	314
Douglas-fir	Hidden D&B (2%)	(0)	(6)	(1)	(7)
Douglas-III	NET TOTAL	0	275	32	307
	% of Total	0	90	10	

UNIT 5: R/W (3 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	3	39	8	50
Dougloo fir	Hidden D&B (2%)	(0)	(1)	(0)	(1)
Douglas-fir	NET TOTAL	3	38	8	49
	% of Total	6	78	16	
	Cruise Volume	3	22	4	29
Western	Hidden D&B (2%)	(0)	(0)	(0)	(0)
Hemlock	NET TOTAL	3	22	4	29
	% of Total	10	76	14	
	Cruise Volume	1	5	2	8
Noble Fir	Hidden D&B (2%)	(0)	(0)	(0)	(0)
	NET TOTAL	1	5	2	8
	% of Total	12	63	25	

SALE TOTAL							
SPECIES	2 SAW	3 SAW	4 SAW	TOTAL			
Douglas-fir	103	1,370	285	1,758			
Western Hemlock	106	732	151	989			
Noble Fir	36	170	69	275			
Total	245	2,272	505	3,022			

LOGGING PLAN

Stream Buffer Boundary Right-of-Way Boundary

ODF Ownership Boundary

Type-F Stream - Perennial

Type-N Stream - Perennial

Type-N Stream - Seasonal

- -

Ο

Highway

Surfaced Road

= = Unsurfaced Road New Road Construction

Stream Buffer :::::: Tractor Yarding Area

> Cable Yarding Area Cable Landing

- 40 Foot Contour Band

- 200 Foot Contour Band

Tractor Landing

Section Lines

FOR TIMBER SALE CONTRACT #FG-341-2025-W01021-01 SCATTER SHIELD PORTIONS OF SECTIONS 3, 4, 5, 8, 9, & 18, T3N, R6W, W.M., TILLAMOOK COUNTY, OREGON

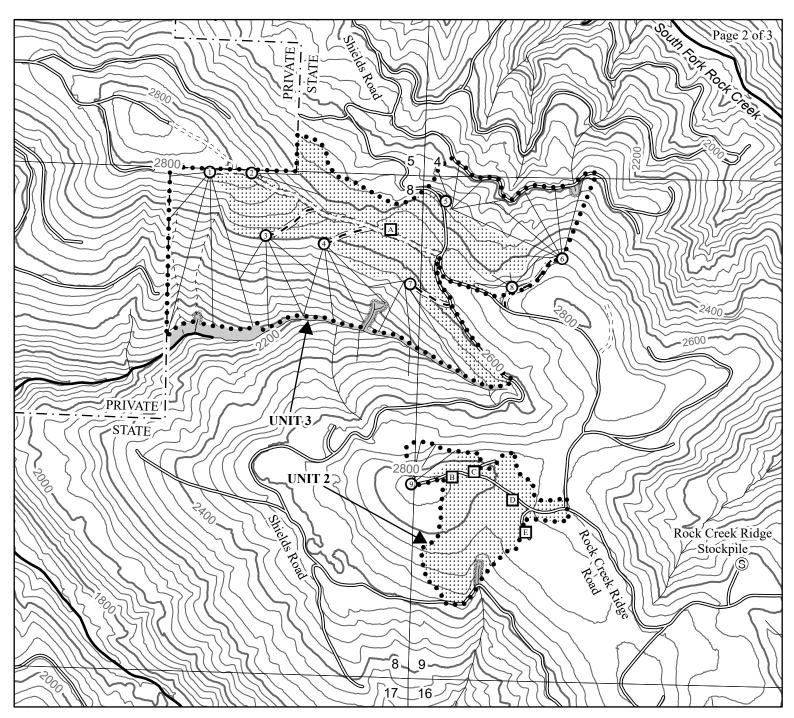
> Forest Grove GIS August 2024 This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1:12,000

1 Inch = 1,000 Feet

1,000

0


500

2,000

Feet

APROXIMATE NET ACRES

T	RACTOR	CABLE
UNIT 1	46	4
UNIT 2	28	3
UNIT 3	53	86
UNIT 4	15	
UNIT 5	3	
TOTAL	142	93

LOGGING PLAN

Timber Sale Boundary

. .

= =

_

 \cap

П

Stream Buffer Boundary Right-of-Way Boundary

____. ODF Ownership Boundary

- New Road Construction

Type-F Stream - Perennial

Type-N Stream - Perennial

Type-N Stream - Seasonal

Surfaced Road

Stream Buffer

Cable Yarding Area
 Cable Landing

40 Foot Contour Band

- 200 Foot Contour Band

Tractor Landing

Section Lines

Unsurfaced Road

FOR TIMBER SALE CONTRACT #FG-341-2025-W01021-01 SCATTER SHIELD PORTIONS OF SECTIONS 3, 4, 5, 8, 9, & 18, T3N, R6W, W.M., TILLAMOOK COUNTY, OREGON

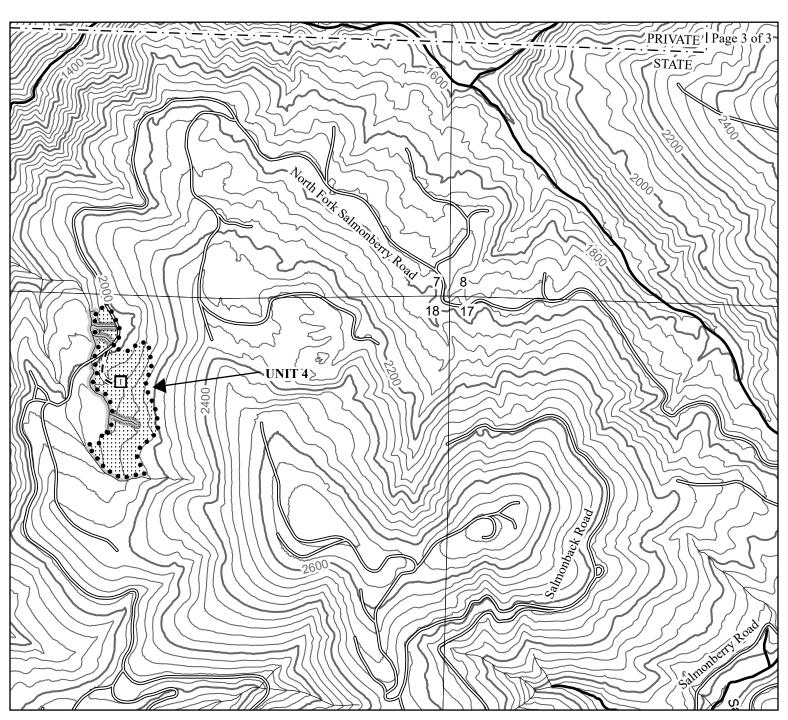
> Forest Grove GIS August 2024 This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

> > 1:12,000

1 Inch = 1,000 Feet

2,000

Feet


500 1,000

0

APROXIMATE NET ACRES

	TRACTOR	CABLE
UNIT	1 46	4
UNIT	2 28	3
UNIT	3 53	86
UNIT -	4 15	
UNIT	5 3	
TOTA	142	93
IUIA)5

LOGGING PLAN

• • • Timber Sale Boundary

Surfaced Road

= = Unsurfaced Road

Stream Buffer Tractor Yarding Area

Cable Yarding Area
 Cable Landing

40 Foot Contour Band

- 200 Foot Contour Band

Tractor Landing

Section Lines

. .

_

_

О

П

Stream Buffer Boundary Right-of-Way Boundary

____. ODF Ownership Boundary

- New Road Construction

Type-F Stream - Perennial

Type-N Stream - Perennial

Type-N Stream - Seasonal

FOR TIMBER SALE CONTRACT #FG-341-2025-W01021-01 SCATTER SHIELD PORTIONS OF SECTIONS 3, 4, 5, 8, 9, & 18, T3N, R6W, W.M., TILLAMOOK COUNTY, OREGON

> Forest Grove GIS August 2024 This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1:12,000

1 Inch = 1,000 Feet

2,000

Feet

500 1,000

0

APROXIMATE NET ACRES

T	RACTOR	CABLE
UNIT 1	46	4
UNIT 2	28	3
UNIT 3	53	86
UNIT 4	15	
UNIT 5	3	
TOTAL	142	93