

Sale FG-341-2025-W01017-01

District: Forest Grove Date: February 20, 2025

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$2,100,852.16	\$0.00	\$2,100,852.16
		Project Work:	(\$233,173.00)
		Advertised Value:	\$1,867,679.16

2/20/25

Sale FG-341-2025-W01017-01

District: Forest Grove Date: February 20, 2025

Timber Description

Location:

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	20	0	98
Western Hemlock / Fir	14	0	98

Volume by Grade	2\$	3S & 4S 6"- 11"	Total	
Douglas - Fir	3,052	1,130	4,182	
Western Hemlock / Fir	0	8	8	
Total	3,052	1,138	4,190	

Comments: LOCAL POND VALUES, DECEMBER 2024

NOBLE FIR AND OTHER CONIFERS:

STUMPAGE PRICE = POND VALUE - WESTERN HEMLOCK LOGGING COST

\$269.66 = \$532 - \$262.34

WESTERN REDCEDAR AND OTHER CEDARS:

STUMPAGE PRICE = POND VALUE - DOUG-FIR LOGGING COST:

\$953.62 = \$1,189 - \$235.38

RED ALDER AND OTHER HARDWOODS:

STUMPAGE PRICE = POND VALUE - DOUG-FIR LOGGING COST

\$249.62 = \$485 - \$235.38

BRANDING AND PAINTING ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$5.00/GAL

HAULING COST ALLOWANCE = \$1,250/DAY

OTHER COSTS (WITH PROFIT & RISK ADDED):

TRUCK ASSIST: 100 HOURS @ \$70/HOUR = \$7,000

INTERMEDIATE SUPPORTS/TAIL RIGGING: 8 @ \$800 EACH = \$6,400

TOTAL OTHER COSTS (WITH PROFIT & RISK ADDED) = \$13,400

OTHER COSTS (NO PROFIT & RISK ADDED):

EQUIPMENT CLEANING: 3 PIECES @ \$1,000/PIECE = \$3,000

MACHINE TIME TO BLOCK/WATERBAR ROADS AND SKID TRAILS:

16 HOURS X \$200/HOUR = \$3,200

MACHINE TIME TO PILE LANDING SLASH:

24 HOURS X \$200/HOUR = \$4,800

TOTAL OTHER COSTS (NO P&R) = \$11,000

SLASH TREATMENT: 25 ACRES X \$250/ACRE = \$6,250

ROAD MAINTENANCE (INCLUDES SPOT ROCKING, GRADING, & ROLLING):

MOVE IN: \$3,872.62

GENERAL ROAD MAINT: 4.36 miles X \$2,428.67 = \$10,589

TOTAL ROAD MAINTENANCE: \$14,461.62/4,190 MBF = \$3.45/MBF

2/20/25

Sale FG-341-2025-W01017-01

District: Forest Grove Date: February 20, 2025

Logging Conditions

Combination#: 1 Douglas - Fir 47.52%

Western Hemlock / Fir 47.00%

Logging System: Shovel Process: Harvester Head Delimbing

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 25 bd. ft / load: 4600

cost / mbf: \$86.96
machines: Forwarder

Harvester

Combination#: 2 Douglas - Fir 52.48%

Western Hemlock / Fir 53.00%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 15 bd. ft / load: 4600

cost / mbf: \$115.62

machines: Log Loader (A)

Forwarder Harvester

Tower Yarder (Medium)

Sale FG-341-2025-W01017-01

District: Forest Grove Date: February 20, 2025

Logging Costs

Operating Seasons: 2.00

Profit Risk: 15%

Project Costs: \$233,173.00

Other Costs (P/R): \$13,400.00

Slash Disposal: \$6,250.00

Other Costs: \$11,000.00

Miles of Road

Road Maintenance:

\$3.45

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load	
Douglas - Fir	\$0.00	3.0	4.8	
Western Hemlock / Fir	\$0.00	3.0	3.8	

Sale FG-341-2025-W01017-01

District: Forest Grove Date: February 20, 2025

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas - Fir									
\$102.00	\$3.52	\$2.09	\$88.55	\$3.20	\$29.90	\$1.49	\$2.00	\$2.63	\$235.38
Western Hemlock / Fir									
\$102.15	\$3.52	\$2.09	\$111.84	\$3.20	\$33.42	\$1.49	\$2.00	\$2.63	\$262.34

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$737.22	\$501.84	\$0.00
Western Hemlock / Fir	\$0.00	\$532.00	\$269.66	\$0.00

Sale FG-341-2025-W01017-01

District: Forest Grove Date: February 20, 2025

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total		
Douglas - Fir	4,182	\$501.84	\$2,098,694.88		
Western Hemlock / Fir	8	\$269.66	\$2,157.28		

Gross Timber Sale Value

Recovery: \$2,100,852.16

Prepared By: Colton Turner Phone: 971-464-1676

TIMBER SALE SUMMARY Finger Creek #FG-341-2025-W01017-01

- **1.** <u>Location</u>: Portions of Sections 17 & 20, T2N, R5W, W.M., Washington County, Oregon.
- 2. <u>Type of Sale</u>: This timber sale is a 118 net acre Clearcut. It consists of one Clearcut unit and one Right-of-Way unit. Unit 1 (CC) is 117 Acres and Unit 2 (R/W) is 1 acre. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. Revenue Distribution: 100% BOF, Washington County.
- **4.** <u>Sale Acreage</u>: Acres are net of Stream Buffers and road prisms. Acreage was determined using ESRI ArcMap GIS Pro software.
- **5.** <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in January of 2025. For more information see Cruise Report.
- **6.** <u>Timber Description</u>: The Timber Sale Area consists of 77 to 78 year old Douglas-fir stand with minor amounts of western hemlock, western redcedar, Noble Fir, and hardwoods. The stand has an average of 186 ft² of basal area (all species), an average Douglas-fir DBH of 20 inches, and an estimated average net Douglas-fir volume of approximately 35.4 MBF per acre.
- 7. <u>Topography and Logging Method</u>: Slopes within the sale areas range from 5% to 80%, and variable in aspect. The timber sale is 47% ground-based Yarding and 53% cable Yarding. The average cable corridor length is 700 feet and the average horizontal skid trail length is approximately 500 feet.
- 8. Access: All access to the Timber Sale Area is on surfaced roads. From Forest Grove, travel 7 miles west on Highway 8 to its intersection with Highway 6. Turn left onto Highway 6 and proceed for approximately 8.8 miles to Rogers Road. Turn right onto Rogers Road and proceed for 0.8 miles to Plantation Road. Note that this portion of the haul route crosses through Gales Creek Campground. Turn right onto Plantation Road and proceed for 1.3 miles and turn onto unnamed spur to access the western portion of Unit 2. Proceed for 0.4 miles to enter the western portion of Unit 1. There are gates along this route that may require a key which can be obtained at the Forest Grove District Office.

9. Projects:

Project No. 1: Rocked Road Construction \$132,803.41 Project No. 2: Road Improvement \$100,369.59

PROJECT COST SUMMARY SHEET

Timber Sale: Finger Creek
Sale Number: FG-341-2025-W01017-01

PROJECT NO. 1: ROCKED ROAD CONSTRUCTION

Road Segment	Length	Cost
B to C	29+25	\$71,700.37
D to E	3+15	\$9,158.84
F to G	14+50	\$38,928.32
L to M	2+70	\$10,481.13
	40+60 stations	

49+60 stations 0.94 miles

Total Rock =

264 cy 1½" - 0 4,507 cy 3" - 0 30 cy Riprap

Move-in = \$2,534.75

TOTAL PROJECT COST = \$132,803.41

PROJECT NO. 2: ROAD IMPROVEMENT

_	Road Segment	Length	Cost
•	A to B	104+75	\$45,255.87
	H to I	47+65	\$32,937.69
	J to K	10+55	\$10,739.12
	N to O	5+45	\$9,521.21
•		168+40 stations	
		3.19 miles	
Total Rock =			
	1,920 cy	1½" - 0	
	2,796 cy	3" - 0	
	12 cy	36"- 24" Riprap	
		Move-in =	\$1,915.70

TOTAL PROJECT COST = \$100,369.59

<u>TOTAL CREDITS = \$233,173.00</u>

Timber Sale:		Finger Creek		_	Sale Number: _		FG-341-202	5-W01017-01
Road Segment:		A to B		_	Impro	ovement:	104+75	stations
							1.98	miles
PROJECT NO. 2: ROAD IMPROVEMENT								
IMPROVEMENT								
Clearing & grubbing (scatter)	1.21	ac @	\$1,353.60	per acre =			\$1,637.86	
Clean ditch & end-haul waste material	1.20	sta @	\$66.00	per sta =			\$79.20	
Haul waste material	9	cy @		per cy =			\$20.79	
Shape and compact waste material	9	су @	\$0.35	per cy =			\$3.15	
End-haul waste from Culvert Nos. 2-11, 14-								
16, & 18 Haul waste material	96	cy @	\$2.31	per cy =			\$221.76	
Shape and compact waste material	125	cy @		per cy =			\$43.75	
Clean culvert inlet & outlet, end-haul waste	1	ea @		per ea =			\$27.50	
Haul waste material	2	су @	\$2.31	per cy =			\$4.62	
Shape and compact waste material	2	су @	\$0.35	per cy =			\$0.70	
Construct ditchout	3	ea @		per ea =			\$150.00	
Haul waste material	4 4	cy @		per cy =			\$9.24 \$1.40	
Compact waste area Construct settling pond	4 15	су @ ea @		per cy = per ea =			\$1.40 \$412.50	
Haul waste material	20	cy @	\$2.31	per cy =			\$46.20	
Compact waste area	20	cy @		per cy =			\$7.00	
Improve turnout	6	ea @		per ea =			\$217.80	
Grade, ditch, & roll	104.75	sta @	\$39.65	per sta =			\$4,153.34	
				TOTA	AL IMPR	OVEMEN	NT COSTS =	\$7,036.81
CULVERTS							·	**,,******
Culverts and Bands	-							
18" Diameter	440	If @	\$22.05	per If =			\$9,702.00	
24" Diameter	160	If @	\$31.90	per If =			\$5,104.00	
Markers & Stakes	40	0	#40.00				#046.00	
Culvert markers	18	ea @	\$12.00	per ea =	TOTAL	01111/55	\$216.00	#45 000 00
ROCK					TOTAL	CULVER	RT COSTS =	\$15,022.00
ROOK	-	1	1	1				
	Rock	Base	Haul Cost	Placement	t/	Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	Processing Cos	st \$/cy	Total CT	NOCK COST	
Subgrade rock			<u> </u>	1	I			
Bedding and backfill	1½" - 0	\$1.26	\$1.87	\$0.55		432	\$1,589.76	
Energy dissipator	Riprap	\$8.38	\$1.87	\$1.75		12	\$144.00	
				Sub	ototal =	444	\$1,733.76	
Surfacing rock								
Surfacing rock (47+95 to 81+50 & 81+50 to 99+25)	1½" - 0	\$1.26	\$1.87	\$1.35		770	\$3,449.60	
Base rock (81+50 to 99+25)	3" - 0	\$13.64	\$1.87	\$1.35		550	\$9,273.00	
Surfacing rock (99+55 to 104+75)	1½" - 0	\$1.26	\$1.87	\$1.35		78	\$349.44	
Base rock	3" - 0	\$13.64	\$1.87	\$1.35		244	\$4,113.84	
Junction (47+95)	1½" - 0	\$1.26	\$1.87	\$1.35		24	\$107.52	
Junction (81+50 & 99+55)	3" - 0	\$13.64	\$1.87	\$1.35		48	\$809.28	
Turnout	3" - 0	\$13.64	\$1.87	\$1.35		70	\$1,180.20	
Turnout (103+80)	3" - 0	\$13.64	\$1.87	\$1.35	ototal =	29 1,813	\$488.94 \$19,771.82	
				Sul	วเบเลเ –	1,013	Φ19,771.02	
			Totals	All F	Rock =	2,257		
					1½" - 0	1,304		
					3" - 0	941		
					Riprap	12		
						TAL DOG	N OOCTO	#04 F05 50
					10	TAL RUC	CK COSTS =	ֆ∠1,505.58
EROSION CONTROL	4.07	_	# 007.55				A055 50	
Grass seed & fertilizer	1.37	ac @	\$697.50	per ac =			\$955.58	
Straw mulch acre Straw mulch bale	0.41 30	ас @ ea @	\$990.00 \$11.00	per ac = per ea =			\$405.90 \$330.00	
Chaw Maior baic	30	caw	ψ11.00	•				
				TOTAL ER	ROSION	CONTRO	OL COSTS =	\$1,691.48
					<u>TOT</u> A	L PROJE	CT COST =	\$45,255.87
								•

Timber Sale: Finger Creek Sale Number: FG-341-2025-W01017-01

Road Segment: B to C Page. 1 Construction: 29+25 stations

0.55 miles

PROJECT NO. 1: ROCKED ROAD CON	STRUCTI	ON					
CONSTRUCTION							
Clearing & grubbing (scatter)	3.36	ac @	\$1,692.00	per ac =		\$5,685.12	
Clean ditch & end-haul waste material			***			4400.40	
(0+00 to 2+85)	1.85	sta @	\$66.00	per sta =		\$122.10	
Haul waste material	13	cy @	\$1.91	per cy =		\$24.83	
Balanced road construction	28.10	sta @		per sta =		\$3,372.00	
Drift	1.15	sta @	\$198.00	per sta =		\$227.70	
Construct ditch-out	4	ea @		per ea =		\$200.00	
Haul waste material (3+15)	3	cy @		per cy =		\$5.73	
Compact waste area	3	cy @	\$0.35	per cy =		\$1.05	
Full bench road construction (18+00 to 19	+20)						
Excavate & load	996	cy @	\$2.51	per cy =		\$2,499.96	
Haul to Waste Area	1,295	cy @	\$2.25	per cy =		\$2,913.75	
Shape and compact waste material	1,295	cy @	\$0.30	per cy =		\$388.50	
Fill construction (2+40 to 3+15)	•	, 0		, ,			
Excavate & load	417	cy @	\$1.94	per cy =		\$808.98	
Haul fill material	542	cy @	\$1.19	per cy =		\$644.98	
Place and compact fill	542	cy @		per cy =		\$1,734.40	
Construct settling pond (Large)	2	ea @	\$27.50	per ea =		\$55.00	
Haul waste material	18	cy @		per cy =		\$34.38	
Compact waste area	18	cy @		per cy =		\$6.30	
Turnout	4	ea @		per ea =		\$290.40	
Roadside landing	1	ea @		per ea =		\$181.50	
Grade, ditch, & roll	29.25	sta @	\$39.65	per sta =		\$1,159.76	
, , , ,		O	,	•			
				TOTAL CON	ISTRUCTION	ON COSTS =	\$20,356.44
CULVERTS	_						
Culverts and Bands							
18" Diameter	140	If @	\$22.05	per If =		\$3,087.00	
Markers & Stakes		_					
Culvert markers	4	ea @	\$12.00	per ea =		\$48.00	
				TOT	AL CULVE	RT COSTS =	\$3,135.00
ROCK	_			<u>101</u>	, LE OOLVEI	50010-	ψο, 100.00
				Placement/		1	
	Rock	Base	Haul Cost	Processing	Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	Cost \$/cy	10.0.0	I ISON COST	
Surfacing rock		l		υσοι φιση	1	<u> </u>	
Base rock	3" - 0	\$13.64	\$2.31	\$1.35	1,875	\$32,437.50	
1 ()	0 0	0.0.01	42.01	\$ 1.05	1,0.0	0445.00	

3" - 0

3" - 0

1½" - 0

3" - 0

1½" - 0

3" - 0

1½" - 0

1½" - 0

Riprap

\$13.64

\$13.64

\$1.26

\$13.64

\$1.26

\$13.64

\$1.26

\$1.26

\$2.31

\$2.31

\$2.31

\$2.31

\$2.31

\$2.31

\$2.31

\$2.31

\$0.53

Junction

Turnout

Traction rock (Spot rock)

Roadside landing

Approaches

Approaches

Bank armor

Surfacing rock

Footing embedment

	Subtotal =	2,318	\$38,598.88
Totals	All Rock =	2,318	
	44711 0		

\$1.35

\$1.35

\$1.35

\$1.35

\$1.35

\$1.35

\$1.35

\$1.35

\$1.35

24

116

38

95

30

94

12

4

30

All Rock = 2,318 1½" - 0 84 3" - 0 2,204 Riprap 30

TOTAL ROCK COSTS = \$38,598.88

\$415.20 \$2,006.80

\$186.96

\$1,643.50

\$147.60

\$1,626.20

\$59.04

\$19.68

\$56.40

 Timber Sale:
 Finger Creek
 Sale Number:
 FG-341-2025-W01017-01

 Road Segment:
 B to C Page. 2
 Construction:
 2+40 stations miles

PROJECT NO. 1: ROCKED ROAD CONSTRU	CTION	l				
40' LOG STRINGER BRIDGE INSTALLATION						
Site Prep						
Clearing & grubbing						
Haul waste material	48	cy @	\$1.91	per cy =	\$91.68	
Shape and compact waste material	48	cy @	\$0.35	per cy =	\$16.80	
Stream channel development		, 0	•	. ,	·	
Excavate & load	16	cy @	\$1.94	per cy =	\$31.04	
Haul waste material	21	cy @	\$1.19	per cy =	\$24.99	
Place and compact waste material	21	cy @	\$3.20	per cy =	\$67.20	
Subgrade preparation & compaction		, 0		, ,		
Grade & roll	2.40	sta @	\$39.65	per sta =	\$95.16	
Soil sill construction		_				
Excavate & load	10	cy @	\$1.94	per cy =	\$19.40	
Haul fill material	13	cy @	\$1.19	per cy =	\$15.47	
Place and compact fill	13	cy @	\$3.20	per cy =	\$41.60	
Construct bridge				, ,		
Haul logs	16	ea @	\$29.88	per ea =	\$478.08	
Place logs	8	hrs @	\$192.50	per hr =	\$1,540.00	
Cable wrapping and clamp placement	8	hrs @	\$60.00	per hr =	\$480.00	
Materials						
Cable (3/4")	650	If @	\$1.80	per If =	\$1,170.00	
Clamps	40	ea @	\$2.84	ea =	\$113.60	
Geotextile	50	sq. yd. @	\$7.50	sq. yd. =	\$375.00	
Bridge approach fill construction						
Excavate & load	238	cy @	\$1.94	per cy =	\$461.72	
Haul fill material	309	cy @	\$1.19	per cy =	\$367.71	
Place and compact fill	309	cy @	\$3.20	per cy =	\$988.80	
				TOTAL	CONSTRUCTION COSTS =	\$6,378.25
EROSION CONTROL & STREAM ISOLATION						
Silt fencing	100	ft @	\$4.84	perft =	\$484.00	
Miscellaneous erosion control measures	1	ea @	\$1,000.00	•	\$1,000.00	
Grass seed & fertilizer	1.86	ac @		per ac =	\$1,450.80	
Straw mulch (acre)	0.30	ac @		per ac =	\$297.00	
()		&	7	1	+30.100	
				TOTAL ER	ROSION CONTROL COSTS =	\$3,231.80

TOTAL PROJECT COST = \$71,700.37

	SUMM	ARY OF CO	NSTRUCT	TON COST			
Timber Sale:		Finger Cre	ek	Sa	le Number:	FG-341-20)25-W01017-01
Road Segment:		D to E		Co	nstruction:	3+15	stations
5				-		0.06	miles
PROJECT NO. 1: ROCKED ROAD CONS	TRUCTI	ON					
CONSTRUCTION							
Clearing & grubbing (scatter)	0.37	ac @	\$1,692.00	per ac =		\$626.04	
Balanced road construction	3.15		\$120.00			\$378.00	
Roadside landing	1	ea @	\$181.50	per ea =		\$181.50	
Landing	1	ea @	\$242.00	per ea =		\$242.00	
Grade, ditch, & roll	3.15	sta @	\$39.65	per sta =		\$124.90	
				TOTAL CONS	TRUCTIO	N COSTS =	\$1,552.44
ROCK							
	Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placement/ Processing Cost \$/cy	Total CY	Rock Cost	
Surfacing rock		<u>. </u>	<u> </u>				
Base rock	3" - 0	\$13.64	\$2.81	\$1.35	205	\$3,649.00	İ
Junction	3" - 0	\$13.64	\$2.81	\$1.35	24	\$427.20	İ
Roadside landing	3" - 0	\$13.64	\$2.81	\$1.35	95	\$1,691.00	İ
Landing	3" - 0	\$13.64	\$2.81	\$1.35	95	\$1,691.00	İ
				Subtotal =	419	\$7,458.20	I
			Totals	All Rock = 3" - (]	
				TO	TAL ROC	K COSTS =	\$7,458.20
EROSION CONTROL						 ',	
Grass seed & fertilizer	0.19	ac @	\$780.00	per ac =		\$148.20	
			<u>T</u>	OTAL EROSION	I CONTRO	L COSTS =	\$148.20
						•	

TOTAL PROJECT COST = \$9,158.84

Sale Number: FG-341-2025-W01017-01 Timber Sale: Finger Creek Road Segment: F to G Construction: 14+50 stations 0.27 miles PROJECT NO. 1: ROCKED ROAD CONSTRUCTION CONSTRUCTION Clearing & grubbing (scatter) 1.67 ac @ \$1,692.00 per ac = \$2,825.64 Balanced road construction 11.75 sta @ \$120.00 per sta = \$1,410.00 Drift 2.75 sta @ \$198.00 per sta = \$544.50 Construct ditch-out 2 ea @ \$50.00 per ea = \$100.00 Fill construction Excavate & load 350 \$1.94 per cy = \$679.00 cy @ Haul fill material 455 cy @ \$0.70 per cy = \$318.50 Place and compact fill 455 cy @ \$3.20 per cy = \$1,456.00 Turnout 2 ea @ \$72.60 per ea = \$145.20 Turnaround 1 ea @ \$90.75 per ea = \$90.75 Approach to landing 2.15 sta @ \$120.00 per sta = \$258.00 Landing 1 ea @ \$242.00 per ea = \$242.00 Landing 1 ea @ \$345.40 per ea = \$345.40 Grade, ditch, & roll 14.50 sta @ \$39.65 per sta = \$574.93 **TOTAL CONSTRUCTION COSTS =** \$8,989.92 **CULVERTS** Culverts and Bands 18" Diameter 40 If @ \$22.05 per If = \$882.00 Markers & Stakes Culvert markers \$12.00 per ea = 1 ea @ \$12.00 TOTAL CULVERT COSTS = \$894.00 **ROCK** Placement/ Haul Cost Rock Base Processing Total CY Rock Cost Cost \$/cy Size \$/cy Cost \$/cy Surfacing rock 3" - 0 943 \$17,351.20 \$13.64 \$3.41 \$1.35 Base rock \$3.41 3" - 0 \$13.64 \$1.35 48 \$883.20 Junction 3" - 0 \$1,067.20 \$13.64 \$3.41 \$1.35 58 Turnout 3" - 0 \$13.64 \$3.41 \$1.35 20 \$368.00 Turnaround 1½" - 0 \$3.41 180 \$1,083.60 Traction rock \$1.26 \$1.35 3" - 0 Approach to landing \$3.41 140 \$13.64 \$1.35 \$2,576.00 3" - 0 \$3.41 95 \$13.64 \$1.35 \$1,748.00 Landing 3" - 0 \$3.41 \$1.35 180 \$13.64 \$3,312.00 Landing Subtotal = 1,664 \$28,389.20 Totals All Rock = 1,664 1½" - 0 180 3" - 0 1,484 TOTAL ROCK COSTS = \$28,389.20 **EROSION CONTROL** Grass seed & fertilizer 0.84 ac @ \$780.00 per ac = \$655.20

TOTAL EROSION CONTROL COSTS =

TOTAL PROJECT COST = \$38,928.32

\$655.20

				CHON COST			
Timber Sale:		Finger Cre	ek	-	•	FG-341-2025	5-W01017-01
Road Segment:		H to I		_	mprovement:	47+65	stations
						0.90	miles
PROJECT NO. 2: ROAD IMPROVEMENT							_
-							
IMPROVEMENT Clearing & grubbing (scatter)	0.55	മറ @	\$1.692.00	per acre =		\$930.60	
Road re-alignment construction (39+60 to	0.55	ac w	ψ1,032.00	per acre –		ψ930.00	
40+70)							
Excavate & load	616	су @	\$1.94	per cy =		\$1,195.04	
Improve turnout	4	ea @		per cy =		\$145.20	
Construct turnaround	1	ea @		per ea =		\$90.75	
Excavate, place and & compact fill	156	cy @		per cy =		\$708.24	
Construct roadside landing	3	ea @				\$544.50	
Excavate, place and & compact fill	170	cy @	\$4.54	per cy =		\$771.80	
Improve roadside landing	1	ea @		per ea =		\$90.75	
Grade, ditch, & roll	47.65	sta @		per sta =		\$1,889.32	
Grade, alteri, a reli	47.00	314 66	ψ00.00	•		<u>.</u>	
0.41.45550				TOTAL	<u>IMPROVEMEI</u>	NT COSTS =	\$6,366.20
CULVERTS Culverte and Banda							
Culverts and Bands	450	и О	#00.05	15		#0.007.50	
18" Diameter	150	If @	\$22.05	per If =		\$3,307.50	
Markers & Stakes	•		040.00			# 00.00	
Culvert markers	3	ea @	\$12.00	per ea =		\$36.00	
Additional Installation Cost	0	h @	#400 F0			#205.00	
Culvert No. 25 Installation	2	hrs @	\$192.50	•		\$385.00	
DOOK				<u>TC</u>	OTAL CULVE	RT COSTS =	\$3,728.50
ROCK							
	Rock	Base	Haul Cost	Placement/			
	Size	Cost \$/cy	\$/cy	Processing Cost \$	Total CY	Rock Cost	
	SIZE	COSt \$/Cy	φ/су	Frocessing Cost of	Cy		
Subgrade rock							
Bedding and backfill	1½" - 0	\$1.26	\$3.49	\$0.55	72	\$381.60	
	1			Subtot	al = 72	\$381.60	
Surfacing rock							
Base rock (Road re-alignment)	3" - 0	\$13.64	\$3.49	\$1.35	72	\$1,330.56	
Surfacing rock (0+00 to 17+65)	3" - 0	\$13.64	\$3.49	\$1.35	547	\$10,108.56	
Surfacing rock (17+65 to 47+65)	1½" - 0	\$1.26	\$3.49	\$1.35	450	\$2,745.00	
Junction	1½" - 0	\$1.26	\$3.49	\$1.35	24	\$146.40	
Y - Junction	1½" - 0	\$1.26	\$3.49	\$1.35	24	\$146.40	
Turnout	3" - 0	\$13.64	\$3.49	\$1.35	56	\$1,034.88	
Turnaround	3" - 0 1½" - 0	\$13.64	\$3.49	\$1.35 \$1.35	20	\$369.60	
Curve widening (39+60 to 40+70) Roadside landing (Improve)	3" - 0	\$1.26 \$13.64	\$3.49 \$3.49	\$1.35 \$1.35	10 47	\$61.00 \$868.56	
Roadside landing (Improve) Roadside landing (Construct)	3" - 0	\$13.64	\$3.49	\$1.35	285		
Roadside landing (Construct)	3 - 0	φ13.0 4	φ3.49	Subtot		\$5,266.80 \$22,077.76	
				Subtot	ai – [1,555	Ψ22,011.10	
			Totals	All Roc	k = 1,607		
			Totals	11/2"			
					- 0 1,027		
					1,021		
					TOTAL ROO	CK COSTS =	\$22,459.36
EROSION CONTROL							. ,
Grass seed & fertilizer	0.55	ac @	\$697.50	per ac =		\$383.63	
C. 255 5554 & TOTALLEST	0.00	40 66	ψοσ1.00	•			
				TOTAL EROS	SION CONTRO	OL COSTS =	\$383.63
						_	_
				7	TOTAL PROJI	ECT COST =	\$32,937.69
					. J		702,001.00

				TION COST			
Timber Sale:		Finger Cre	ek	_	Sale Number	: FG-341-202	5-W01017-01
Road Segment:		J to K		_	Improvement	10+55	stations
						0.20	miles
PROJECT NO. 2: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	0.13	ac @	\$1,353.60	per acre =		\$175.97	
Remove large stump	1	ea @	\$90.75	per ea =		\$90.75	
"Y" Junction (Reconstruction)							
Excavate & scatter	117	cy @	\$1.94	per cy =		\$226.98	
Grade, ditch, & roll	1.05	sta @	\$39.65	per sta =		\$41.63	
Improve turnout	1	ea @	\$36.30	per ea =		\$36.30	
Improve turnaround	1	ea @	\$45.38	per ea =		\$45.38	
Grade, ditch, & roll	10.55	sta @	\$39.65	per sta =		\$418.31	
				TOTA	L IMPROVEMEN	IT COSTS =	\$1,035.32
CULVERTS				<u> </u>			ψ.,σσσ.σ <u>=</u>
Culverts and Bands							
18" Diameter	50	If @	\$22.05	per If =		\$1,102.50	
Markers & Stakes		Ŭ		•		, ,	
Culvert markers	1	ea @	\$12.00	per ea =		\$12.00	
		Ŭ		•	TOTAL CULVER	T COSTS =	\$1,114.50
ROCK				•	TO THE GOLVET	_	ψ1,111.00
		1			1	1	
	Rock	Base	Haul Cost	Placemen	nt/	Rock Cost	
	Size	Cost \$/cy	\$/cy	Processing Co	st \$/cy	Rock Cost	
Subgrade rock				1			
Bedding and backfill	1½" - 0	\$1.26	\$4.71	\$0.55	24	\$156.48	
				Sul	btotal = 24	\$156.48	
Surfacing rock							
Base rock (Junction reconstruction)	3" - 0	\$13.64	\$4.71	\$1.35	68	\$1,339.60	
Surfacing rock	3" - 0	\$13.64	\$4.71	\$1.35	327	\$6,441.90	
Junction	1½" - 0	\$1.26	\$4.71	\$1.35	12	\$87.84	
Turnout	3" - 0	\$13.64	\$4.71	\$1.35	14	\$275.80	
Turnaround	3" - 0	\$13.64	\$4.71	\$1.35	10	\$197.00	
				Sul	btotal = 431	\$8,342.14	
			Totals	All I	Rock = 455	1	
			rotalo		1½" - 0 36	1	
					3" - 0 419	1	
					0 0 1.0	_	
					TOTAL ROC	K COSTS =	\$8,498.62
EROSION CONTROL							
Grass seed & fertilizer	0.13	ac @	\$697.50	per ac =	:	\$90.68	
				TOTAL ER	OSION CONTRO	L COSTS =	\$90.68
						_	
					TOTAL PROJE	CT COST =	\$10,739.12
						=	Ţ: - ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Timber Sale:			ek	Sa	le Number:	FG-341-20)25-W01017-01
Road Segment:		L to M		_ C	onstruction:		stations miles
						0.05	Tilles
PROJECT NO. 1: ROCKED ROAD CONS	STRUCT	ON					
CONSTRUCTION							
Clearing & grubbing (scatter)	0.31		\$1,692.00			\$524.52	
Drift	2.70		\$198.00			\$534.60	
Turnaround	1	ea @	\$90.75	per ea =		\$90.75	
Landing	1	ea @	\$345.40	per ea =		\$345.40	
Grade, ditch, & roll	2.70	sta @	\$39.65	per sta =		\$107.06	
				TOTAL CONS	STRUCTIO	N COSTS =	\$1,602.33
CULVERTS	_						
Culverts and Bands	_						
18" Diameter	40	If @	\$22.05	per If =		\$882.00	
Markers & Stakes							
Culvert markers	1	ea @	\$12.00	per ea =		\$12.00	ı
				TOTA	I CUIVER	T COSTS =	\$894.00
ROCK				1017	LOOLVER	1 00010 =	Ψ004.00
				Placement/			
	Rock	Base	Haul Cost	Processing	Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	Cost \$/cy			
Surfacing rock						_	•
Base rock	3" - 0	\$13.64	\$4.66	\$1.35	176	\$3,458.40	
Junction	3" - 0	\$13.64	\$4.66	\$1.35	24	\$471.60	
Turnaround	3" - 0	\$13.64	\$4.66	\$1.35	20	\$393.00	
Landing	3" - 0	\$13.64	\$4.66	\$1.35	180	\$3,537.00	
				Subtotal	= 400	\$7,860.00	
			Totals	All Rock	= 400	1	
				3" -			
				T	OTAL ROC	K COSTS =	\$7,860.00
EROSION CONTROL				_			· ·
Grass seed & fertilizer	0.16	ac @	\$780.00	per ac =		\$124.80	
		J		OTAL EROSION			\$124.80
			<u></u>	CIAL LINGSIGI	1 0011110	<u> </u>	ψ124.00
				TOT	AL DROJE	CT COST =	¢10 404 43
				<u>101</u>	AL FRUJE	<u> </u>	\$10,481.13

	SUMN	MARY OF C	ONSTRUC	TION COST			
Timber Sale:		Finger Cre	ek	_	Sale Number:	FG-341-202	25-W01017-01
Road Segment:		N to O		_	Improvement:	5+45	stations
				='		0.10	miles
PROJECT NO. 2: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	0.07	ac @	\$1,353.60	per acre =		\$94.75	
"Y" Junction (Improvement)	1.15	sta @	\$120.00	per sta =		\$138.00	
"Y" Junction (Reconstruction)		_					
Haul from H to I	255	cy @	\$0.75	per cy =		\$191.25	
Compact fill	255	cy @	\$0.35	per cy =		\$89.25	
Construct turnaround		, 0					
Haul from H to I	24	cy @	\$0.75	per cy =		\$18.00	
Compact fill	24	cy @		per cy =		\$8.40	
Reconstruct landing	1	ea @		per ea =		\$242.00	
Haul from H to I	337	cy @	\$0.75	per cy =		\$252.75	
Compact fill	337	cy @		per cy =		\$117.95	
Grade & roll (outslope)	5.45	sta @		per sta =		\$193.20	
Grade a roll (outslope)	0.40	ota w	ψουτο	•			
				<u>TOTAL IN</u>	<u> MPROVEMEN</u>	T COSTS =	\$1,345.55
ROCK							
[_					
	Rock	Base	Haul Cost		. Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	Processing Cost \$	s/cy Total or		
Surfacing rock							
Base rock (Junction reconstruction)	3" - 0	\$13.64	\$4.88	\$1.35	52	\$1,033.24	
Surfacing rock	3" - 0	\$13.64	\$4.88	\$1.35	242	\$4,808.54	
Turnaround	3" - 0	\$13.64	\$4.88	\$1.35	20	\$397.40	
Landing	3" - 0	\$13.64	\$4.88	\$1.35	95	\$1,887.65	
		•	•	Subtot	al = 409	\$8,126.83	
						=	
			Totals	All Roo			
				3	" - 0 409		
					TOTAL BOO	K COSTS -	#0.400.00
					TOTAL ROC	K COS15 =	\$8,126.83
EROSION CONTROL							
Grass seed & fertilizer	0.07	ac @	\$697.50	per ac =		\$48.83	
				TOTAL EROSI		I COSTS =	\$48.83
				I O I AL LINOSI	ON CONTRO		ψτυ.υυ
				<u>T(</u>	<u>OTAL PROJE</u>	CT COST =	\$9,521.21

Timber Sale: Finger Creek Sale Number: FG-341-2025-W01017-01

TOTAL MOVE-IN COSTS = \$4,450.46

Equipment	Total
Grader	\$321.45
Roller (smooth/grid) & Compactor	\$307.48
Excavator (Large) - Equipment Cleaning	\$1,645.07
Dozer (Large) - Equipment Cleaning	\$1,645.07
Dump Truck (10cy +)	\$277.72
Water Truck (2,500 Gal)	\$253.67

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

	Timber Sale:	Finger Creek			
	Sale Number:	FG-341-202	25-W01017-01	_	
	Stockpile Name:	Gale	s Creek	<u>.</u>	
	1 1/2" - 0:	2,184 cy	(truck measure)		
	Total truck yardage:	2,184 cy	_		
Move-in					
Move in loader					\$738.29
Move in Dump Trucks					\$97.02
				Subtotal =	\$835.31
				Per CY =	\$0.38/cy
1 1/2"-0 Base Cost					
Load dump truck	\$0.90	/ cy x	2,147	cy =	\$1,932.30
				Subtotal =	\$1,932.30
				Per CY =	\$0.88

1 1/2"-0 Base Cost = **\$1.26/cy**

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

Т	imber Sale:	Fing	ger Creek		
Sa	le Number:	FG-341-20)25-W01017-01	_	
Qu	arry Name:	Gal	es Creek	-	
	3" - 0:	7,303 cy	(truck measure)		
	Riprap:	12 cy	`		
Total tru	ck yardage:	7,315 cy	_ ` ′		
	ce yardage:	6,252 cy	_		
Ove	rsize - Pile:	10%			
3.0	Swell:	130%	_		
C	compaction:	116%			
Move-in & Other Base Cost	_				
Quarry development & overburden r	emoval				\$30,707.07
Equipment cleaning & move in exca					\$1,814.67
Equipment cleaning & move in doze					\$1,826.49
Move in & setup drill					\$439.20
Move in loader					\$738.29
Move in & setup crusher					\$3,534.31
Move in Dump Trucks					\$195.30
Gradation tests	\$78.65 <i>l</i>	2,000cy x	4	tests =	\$314.60
Clean up quarry	Ψ10.00 1	2,000cy X		_ 10313 -	\$500.00
Gloan up quarry				Subtotal =	\$40,069.93
				Per CY =	\$5.48/cy
3"-0 Base Cost				_	φο. το/ογ
Drill & shoot	\$3.10	/ cy x	6,242	cy =	\$19,350.20
Oversize - Pile	\$0.80	/ cy x	775	cy =	\$620.00
Load crusher	\$0.90	/ cy x	7,303	cy =	\$6,572.70
Crush (3" - 0)	\$3.63	/ cy x	7,303	cy =	\$26,509.89
Load dump truck	\$0.90	/ cy x	7,303	cy =	\$6,572.70
				Subtotal =	\$59,625.49
				Per CY =	\$8.16/cy
36"-24" Riprap Base Cost	i			_	
Rip rock	\$2.10	/ cy x	12	_cy =	\$25.20
Load dump truck	\$0.80	/ cy x	12	cy =	\$9.60
				Subtotal =	\$34.80
				Per CY =	\$2.90/cy

3"-0 Base Cost = \$13.64/cy
Riprap Base Cost = \$8.38/cy

CRUISE REPORT Finger Creek #FG-341-2025-W01017-01

1. LOCATION:

Portions of Sections 17 & 20, T2N, R5W, W.M., Washington County, Oregon.

2. CRUISE DESIGN:

The timber cruise was designed using an estimated coefficient of variation (CV) of 52%, average stand diameter of 19 inches, sampling error (SE) of 9% and a minimum of 100 grade trees.

3. SAMPLING METHOD:

The Timber Sale Area was cruised in January of 2025 with variable radius grade plots using a 40 BAF prism. Plots were laid out on a 5 chain x 5 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

4. CRUISE RESULTS:

181 trees were measured and graded producing a standard error of 6.2% on the Douglas-fir Basal Area and 6.5% on the Douglas-fir Net Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following the Official Log Scaling and Grading Rules as adopted by the NW Log Rules Advisory Group. 40 foot segments were favored.

- a) **Height Standards:** Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors: Measured for each grade tree using a form point of 16 feet.

6. DATA PROCESSING:

- a) **Volumes and Statistics:** Cruise estimates and sampling statistics were derived from SuperAce 2008 cruise software.
- b) **Deductions:** The following percent volume deductions are by species to account for the hidden defect and breakage. For conifers two percent was deducted.
- **7. CRUISERS:** The sale was cruised by Mark Savage, Adrian Torres, Nicole Howard, and Colton Turner.

Prepared by:	Colton Turner	1-28-2025
		Date
Reviewed by:	Mark Savage	1-28-2025
· —		Date

TC PST	ATS					OJECT OJECT	STATIS FINO	STICS GRCRK			PAGE DATE	1 2/6/2025
ΓWP	RGE	SC	TRACT	r	ГҮРЕ			RES	PLOTS	TREES	CuFt	BdFt
T2N	R5	17	00U1		00MC		110	117.00	39	190	S	W
								ESTIMATED	PI	ERCENT		
						TREES		TOTAL		AMPLE		
		I	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA	L		39	190		4.9						
CRUI	SE		39	190		4.9		12,277		1.5		
DBH (COUNT											
REFO	REST											
COUN												
BLAN												
100 %	1				CITE LA							
		SA	MPLE	TREES	AVG	ND SUMM BOLE	AKY REL	BASAL	GROSS	NET	GROSS	NET
			TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOUG	G FIR		161	72.7	20.4	127	36.6	165.1	36,168	36,112	7,652	7,652
	G FIR-S		9	5.4	17.7	81	2.2	9.2	,	*	,	.,
BL M	APLE		19	25.9	11.8	68	5.7	19.5	1,168	1,168	336	330
WHE	MLOCK		1	1.0	14.0	65	0.3	1.0	67	67	23	2
TOTA	A L		190	104.9	18.5	109	45.4	194.9	37,403	37,347	8,011	8,01
CL	68.1		COEFF			SAMPLI	E TREES -	BF	#	OF TREES R	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	
SD:	1.0 G FIR		VAR.% 63.6	S.E.% 5.0	LO	OW 687	AVG 724	HIGH 760		5	10	
DOUG	110				LO					5	10	
DOUG DOUG BL M.	G FIR G FIR-S APLE				LO					5	10	
DOUG DOUG BL M. WHE!	G FIR G FIR-S APLE MLOCK		63.6 217.2	5.0 51.2	L	687 50	724 103	760 155				
DOUG DOUG BL M. WHEN	G FIR G FIR-S APLE MLOCK		63.6 217.2 78.5	5.0	L	687 50 588	724 103 624	760 155 659		246	62	
DOUG BL M. WHEN TOTA	G FIR G FIR-S APLE MLOCK AL 68.1		63.6 217.2 78.5 COEFF	5.0 51.2 5.7		687 50 588 SAMPLI	724 103 624 E TREES -	760 155 659 CF	#	246 OF TREES R	<i>62</i> EQ.	INF. POP.
DOUG BL M. WHEN TOTA CL SD:	G FIR G FIR-S APLE MLOCK AL 68.1 1.0		63.6 217.2 78.5 COEFF VAR.%	5.0 51.2 5.7 S.E.%		687 50 588 SAMPLI DW	724 103 624 E TREES - AVG	760 155 659 CF HIGH	#	246	62	INF. POP.
DOUG DOUG BL M. WHEN TOTA CL SD:	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR		63.6 217.2 78.5 COEFF	5.0 51.2 5.7		687 50 588 SAMPLI	724 103 624 E TREES -	760 155 659 CF	#	246 OF TREES R	<i>62</i> EQ.	INF. POP.
DOUG DOUG BL M. WHEN TOTA CL SD: DOUG DOUG	G FIR G FIR-S APLE MLOCK AL 68.1 1.0		63.6 217.2 78.5 COEFF VAR.%	5.0 51.2 5.7 S.E.%		687 50 588 SAMPLI DW	724 103 624 E TREES - AVG	760 155 659 CF HIGH	#	246 OF TREES R	<i>62</i> EQ.	INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M.	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S		63.6 217.2 78.5 COEFF VAR.% 56.1	5.0 51.2 5.7 S.E.% 4.4		50 588 SAMPLI OW 143	724 103 624 E TREES - AVG 149	760 155 659 CF HIGH 156	#	246 OF TREES R	<i>62</i> EQ.	INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M.	G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK		63.6 217.2 78.5 COEFF VAR.% 56.1	5.0 51.2 5.7 S.E.% 4.4		50 588 SAMPLI OW 143	724 103 624 E TREES - AVG 149	760 155 659 CF HIGH 156	#	246 OF TREES R	<i>62</i> EQ.	INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN	G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3	5.0 51.2 5.7 S.E.% 4.4 51.4		50 588 SAMPLI DW 143 15	724 103 624 E TREES - AVG 149 31 130	760 155 659 CF HIGH 156 47		246 OF TREES R 5	62 EQ. 10	INF. POP.
DOUG BL M. WHEN TOTA CL. SD: DOUG BL M. WHEN TOTA	G FIR-S APLE MLOCK AL 68.1 1.0 G FIR-S G FIR-S APLE MLOCK AL		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2	5.0 51.2 5.7 S.E.% 4.4 51.4	L	588 SAMPLI DW 143 15 123	724 103 624 E TREES - AVG 149 31 130	760 155 659 CF HIGH 156 47		246 OF TREES R 5	62 EQ. 10	INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD:	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4	L	50 588 SAMPLI DW 143 15 123 TREES/A	724 103 624 E TREES - AVG 149 31 130 ACRE AVG 73	760 155 659 CF HIGH 156 47 137 HIGH 80		246 OF TREES R 5 203 OF PLOTS R	62 EQ. 10	INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG DOUG	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5 257.3	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4 41.2	L	50 588 SAMPLI DW 143 15 123 TREES/ADW 66 3	724 103 624 E TREES - AVG 149 31 130 ACRE AVG 73 5	760 155 659 CF HIGH 156 47 137 HIGH 80 8		246 OF TREES R 5 203 OF PLOTS R	62 EQ. 10	INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M.	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR MLOCK AL 68.1 1.0 G FIR MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5 257.3 252.2	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4 41.2 40.3	L	50 588 SAMPLI DW 143 15 123 TREES/A DW 66 3 15	724 103 624 E TREES - AVG 149 31 130 ACRE AVG 73 5 26	760 155 659 CF HIGH 156 47 137 HIGH 80 8 8 36		246 OF TREES R 5 203 OF PLOTS R	62 EQ. 10	INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN WHEN	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 MLOCK AL MLOCK AL MLOCK AL MLOCK MLOC		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5 257.3 252.2 624.5	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4 41.2 40.3 99.9	L	50 588 SAMPLI DW 143 15 123 TREES/A DW 66 3 15 0	724 103 624 ETREES - AVG 149 31 130 ACRE AVG 73 5 26 1	760 155 659 CF HIGH 156 47 137 HIGH 80 8 36 2		246 OF TREES R 5 203 OF PLOTS R 5	62 EQ. 10 51 EQ. 10	INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA DOUG BL M. WHEN TOTA	G FIR-S APLE MLOCK AL 68.1 1.0 G FIR-S APLE MLOCK AL 68.1 1.0 G FIR-S APLE MLOCK AL 68.1 1.0 G FIR-S APLE MLOCK AL		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5 257.3 252.2 624.5 66.1	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4 41.2 40.3	L	50 588 SAMPLI DW 143 15 123 TREES/A DW 66 3 15 0 94	724 103 624 E TREES - AVG 149 31 130 ACRE AVG 73 5 26 1 105	760 155 659 CF HIGH 156 47 137 HIGH 80 8 8 36 2 116	#	246 OF TREES R 5 203 OF PLOTS R 5	62 EQ. 10 51 EQ. 10	INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL DOUG BL M. WHEN TOTA	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR-S APLE MLOCK AL 68.1 1.0 G FIR-S APLE MLOCK AL 68.1 68.1 68.1 68.1 68.1		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5 257.3 252.2 624.5 66.1 COEFF	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4 41.2 40.3 99.9 10.6	L	50 588 SAMPLI DW 143 15 123 TREES/A DW 66 3 15 0 94 BASAL A	724 103 624 E TREES - AVG 149 31 130 ACRE AVG 73 5 26 1 105 AREA/ACI	760 155 659 CF HIGH 156 47 137 HIGH 80 8 36 2 116 RE	#	246 OF TREES R 5 203 OF PLOTS R 5	62 EQ. 10 51 EQ. 10 44 EQ.	INF. POP. INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD:	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR-S APLE MLOCK AL 68.1 1.0 G FIR-S APLE MLOCK AL 68.1 1.0 G FIR-S APLE MLOCK AL 68.1 1.0 G FIR-S APLE MLOCK AL 68.1 1.0		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5 257.3 252.2 624.5 66.1 COEFF VAR.%	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4 41.2 40.3 99.9 10.6 S.E.%	L	50 588 SAMPLI DW 143 15 123 TREES/A DW 66 3 15 0 94 BASAL A	724 103 624 E TREES - AVG 149 31 130 ACRE AVG 73 5 26 1 105 AREA/ACI AVG	760 155 659 CF HIGH 156 47 137 HIGH 80 8 36 2 116 RE HIGH	#	246 OF TREES R 5 203 OF PLOTS R 5	62 EQ. 10 51 EQ. 10	INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M.	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5 257.3 252.2 624.5 66.1 COEFF VAR.% 39.0	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4 41.2 40.3 99.9 10.6 S.E.% 6.2	L	50 588 SAMPLI DW 143 15 123 TREES/A DW 66 3 15 0 94 BASAL A DW 155	724 103 624 E TREES - AVG 149 31 130 ACRE AVG 73 5 26 1 105 AREA/ACI AVG 165	760 155 659 CF HIGH 156 47 137 HIGH 80 8 36 2 116 RE HIGH 175	#	246 OF TREES R 5 203 OF PLOTS R 5	62 EQ. 10 51 EQ. 10 44 EQ.	INF. POP. INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M.	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR-S APLE MLOCK AL 68.1 1.0 G FIR-S G FIR-S G FIR-S G FIR-S G FIR-S G FIR-S G FIR-S		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5 257.3 252.2 624.5 66.1 COEFF VAR.%	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4 41.2 40.3 99.9 10.6 S.E.%	L	50 588 SAMPLI DW 143 15 123 TREES/A DW 66 3 15 0 94 BASAL A	724 103 624 E TREES - AVG 149 31 130 ACRE AVG 73 5 26 1 105 AREA/ACI AVG	760 155 659 CF HIGH 156 47 137 HIGH 80 8 36 2 116 RE HIGH	#	246 OF TREES R 5 203 OF PLOTS R 5	62 EQ. 10 51 EQ. 10 44 EQ.	INF. POP. INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M.	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR-S APLE MLOCK AL 68.1 1.0 G FIR-S G FIR-S G FIR-S G FIR-S G FIR-S G FIR-S G FIR-S		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5 257.3 252.2 624.5 66.1 COEFF VAR.% 39.0 210.0	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4 41.2 40.3 99.9 10.6 S.E.% 6.2 33.6	L	687 50 588 SAMPLI DW 143 15 123 TREES/A DW 66 3 15 0 94 BASAL A DW 155 6	724 103 624 ETREES - AVG 149 31 130 ACRE AVG 73 5 26 1 105 AREA/ACI AVG 165 9	760 155 659 CF HIGH 156 47 137 HIGH 80 8 36 2 116 RE HIGH 175 12	#	246 OF TREES R 5 203 OF PLOTS R 5	62 EQ. 10 51 EQ. 10 44 EQ.	INF. POP. INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD:	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL ML 68.1 MLOCK AL 68.1 MLOCK AL 68.1 MLOCK AL 68.1 MLOCK AL 68.1 MLOCK		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5 257.3 252.2 624.5 66.1 COEFF VAR.% 39.0 210.0 215.1	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4 41.2 40.3 99.9 10.6 S.E.% 6.2 33.6 34.4	L	687 50 588 SAMPLI DW 143 15 123 TREES/A DW 66 3 15 0 94 BASAL A DW 155 6 13	724 103 624 ETREES - AVG 149 31 130 ACRE AVG 73 5 26 1 105 AREA/ACI AVG 165 9 19	760 155 659 CF HIGH 156 47 137 HIGH 80 8 36 2 116 RE HIGH 175 12 26	#	246 OF TREES R 5 203 OF PLOTS R 5	62 EQ. 10 51 EQ. 10 44 EQ.	INF. POP. INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL ML 68.1 MLOCK AL 68.1 MLOCK AL 68.1 MLOCK AL 68.1 MLOCK AL 68.1 MLOCK		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5 257.3 252.2 624.5 66.1 COEFF VAR.% 39.0 210.0 215.1 624.5	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4 41.2 40.3 99.9 10.6 S.E.% 6.2 33.6 34.4 99.9	L	687 50 588 SAMPLI DW 143 15 123 TREES/A DW 66 3 15 0 94 BASAL A DW 155 6 13 0	724 103 624 E TREES - AVG 149 31 130 ACRE AVG 73 5 26 1 105 AREA/ACI AVG 165 9 19 1 195	760 155 659 CF HIGH 156 47 137 HIGH 80 8 36 2 116 RE HIGH 175 12 26 2	#	246 OF TREES R 5 203 OF PLOTS R 5 174 OF PLOTS R 5	62 EQ. 10 51 EQ. 10 44 EQ. 10	INF. POP. INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M.	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 68.1 1.0		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5 257.3 252.2 624.5 66.1 COEFF VAR.% 39.0 210.0 215.1 624.5 37.1 COEFF VAR.%	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4 41.2 40.3 99.9 10.6 S.E.% 6.2 33.6 34.4 99.9 5.9 S.E.%	L	687 50 588 SAMPLI DW 143 15 123 TREES/A DW 66 3 15 0 94 BASAL A DW 155 6 13 0 183 NET BF/	724 103 624 E TREES - AVG 149 31 130 ACRE AVG 73 5 26 1 105 AREA/ACI AVG 165 9 19 1 195 ACRE AVG	760 155 659 CF HIGH 156 47 137 HIGH 80 8 36 2 116 RE HIGH 175 12 26 2 206 HIGH	#	246 OF TREES R 5 203 OF PLOTS R 5 174 OF PLOTS R 5	62 EQ. 10 51 EQ. 10 44 EQ. 10	INF. POP. INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG CL SD: SD: CL SD: SD: SD: SD: SD: SD: SD: SD: SD: SD:	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5 257.3 252.2 624.5 66.1 COEFF VAR.% 39.0 210.0 215.1 624.5 37.1 COEFF	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4 41.2 40.3 99.9 10.6 S.E.% 6.2 33.6 34.4 99.9 5.9	L	687 50 588 SAMPLI DW 143 15 123 TREES/A DW 66 3 15 0 94 BASAL A DW 155 6 13 0 183 NET BF/	724 103 624 E TREES - AVG 149 31 130 ACRE AVG 73 5 26 1 105 AREA/ACI AVG 165 9 19 1 195 ACRE	760 155 659 CF HIGH 156 47 137 HIGH 80 8 36 2 116 RE HIGH 175 12 26 2 206	#	246 OF TREES R 5 203 OF PLOTS R 5 174 OF PLOTS R 5	62 EQ. 10 51 EQ. 10 44 EQ. 10	INF. POP. INF. POP.
DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M. WHEN TOTA CL SD: DOUG BL M.	G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 G FIR G FIR-S APLE MLOCK AL 68.1 1.0 68.1 1.0		63.6 217.2 78.5 COEFF VAR.% 56.1 218.3 71.2 COEFF VAR.% 58.5 257.3 252.2 624.5 66.1 COEFF VAR.% 39.0 210.0 215.1 624.5 37.1 COEFF VAR.%	5.0 51.2 5.7 S.E.% 4.4 51.4 5.2 S.E.% 9.4 41.2 40.3 99.9 10.6 S.E.% 6.2 33.6 34.4 99.9 5.9 S.E.%	L	687 50 588 SAMPLI DW 143 15 123 TREES/A DW 66 3 15 0 94 BASAL A DW 155 6 13 0 183 NET BF/	724 103 624 E TREES - AVG 149 31 130 ACRE AVG 73 5 26 1 105 AREA/ACI AVG 165 9 19 1 195 ACRE AVG	760 155 659 CF HIGH 156 47 137 HIGH 80 8 36 2 116 RE HIGH 175 12 26 2 206 HIGH	#	246 OF TREES R 5 203 OF PLOTS R 5 174 OF PLOTS R 5	62 EQ. 10 51 EQ. 10 44 EQ. 10	INF. POP. INF. POP.

TC PST	ATS				PROJECT PROJECT		STICS GRCRK			PAGE DATE	2 2/6/2025
TWP	RGE	\mathbf{SC}	TRACT	TYPI	E	A	CRES	PLOTS	TREES	CuFt	BdFt
T2N	R5	17	00U1	00MC			117.00	39	190	S	W
CL	68.1		COEFF		NET B	F/ACRE			# OF PLOTS	S REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
TOTA	AL		38.1	6.1	35,068	37,347	39,627		58	15	6
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS RE	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOUG	G FIR		40.3	6.5	7,158	7,652	8,146				
DOUG	G FIR-S										
BL M	APLE		217.2	34.7	219	336	453				
WHE	MLOCK		624.5	99.9	0	23	46				
TOTA	AL		37.3	6.0	7,533	8,011	8,489		56	14	6

TC PSPCSTGR Species, Sort Grade - Board Foot Volumes (Project)																				
TT	'2N RR	5W S17	Ту00МС	! 1	117.00		Project:	FI	NGRO	CRK							Page		1	
							Acres		117.	00							Date Time		6/2025 :04:23	
			%					Per	cent of l	Net Boar	rd Foot	Volume					Avera	ige Log	g	Logs
		So Gr	Net		per Acre		Total			ale Dia.			Log	Length		Ln	Dia	Bd	CF/	Per
Spp	T	rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF		CU														7	18		0.00	1.1
DF		2M	72	.2	26,405	26,357	3,084			48	52				100	40	16	401	1.98	65.8
DF		3M	25	.1	8,852	8,844	1,035		100			0	1	5	95	39	8	102	0.65	87.1
DF		4M	3		912	912	107		100			34	61		4	21	6	25	0.33	35.8
DF	Totals	S	97	.2	36,168	36,112	4,225		27	35	38	1	2	1	96	36	10	190	1.13	189.8
DF	S	CU														30	9		0.00	10.5
DF	Totals	5														30	9		0.00	10.5
BM BM		CU CR	100		1,168	1,168	137		85	6	9	23	49	6	23	6 25	7 8	50	0.00	26.3 23.5
BM		CK	100		1,108	1,106	157		83	0	9	23	49	0	23	23	0	30	0.57	25.3
BM	Total	s	3		1,168	1,168	137		85	6	9	23	49	6	23	15	7	23	0.46	49.8
WH		3M	100		67	67	8		100						100	40	7	70	0.59	1.0
WH	Total	ls	0		67	67	8		100						100	40	7	70	0.59	1.0
Tota	ıls			0.1	37,403	37,347	4,370		29	34	37	2	3	1	94	31	10	149	1.02	251.1

TC	PSTNDSUM		Stand Table Summary	Page	1	
				Date:	2/6/2025	
ТТ	2N RR5W S17 Tv00MC	117.00	Project FINCPCPK	Time:	4.04.24PM	

Acres 117.00 Grown Year:

				Tot				Average	e Log		Net	Net			
S	DDII	Sample	FF	Av	Trees/	BA/	Logs	Net Cu Et	Net	Tons/	Cu.Ft.	Bd.Ft.	Т	Totals	MDE
Spc T	DBH	Trees	16'	Ht	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	10	2	86	85	3.761	2.05	3.76	12.8	60.0	1.37	48	226	160	56	26
DF	11	3	88	105	4.662	3.08	9.32	10.1	46.7	2.69	95	435	315	111	51
DF	12	2	89	109	2.612	2.05	5.22	13.5	60.0	2.01	71	313	235	83	37
DF	13	1	89	99	1.113	1.03	2.23	14.6	60.0	.93	33	134	108	38	16
DF	14	5	89		4.797	5.13	9.59	19.6	88.0	5.35	188	844	627	220	99
DF	15	6	88		5.015	6.15	10.03	23.1	102.5	6.59	231	1,028	771	271	120
DF	16 17	8 2	89 89	120 130	5.876 1.301	8.21 2.05	14.69 3.25	22.2 27.2	97.0 120.0	9.31 2.52	327 88	1,425 390	1,089 295	382 104	167
DF	18	7	88		4.063	7.18	10.45	27.7	114.4	8.24	289	1,196	965	338	46 140
DF DF	19	7	88		3.646	7.18	10.43	29.9	132.4	9.31	327	1,448	1,089	382	169
DF	20	10	88		4.701	10.26	14.10	33.8	152.0	13.58	477	2,144	1,589	558	251
DF	21	7	88		2.985	7.18	8.95	36.8	168.1	9.39	329	1,505	1,098	385	176
DF	22	10	88		3.885	10.26	11.27	42.5	196.2	13.64	478	2,211	1,595	560	259
DF	23	13	88		4.621	13.33	13.86	45.8	210.3	18.11	635	2,915	2,119	743	341
DF	24	11	88	142	3.591	11.28	10.77	50.7	231.5	15.58	547	2,494	1,822	639	292
DF	25	10	88	144	3.009	10.26	8.73	58.8	280.0	14.62	513	2,443	1,711	600	286
DF	26	11	88	148	3.060	11.28	9.46	60.2	286.8	16.22	569	2,712	1,898	666	317
DF	27	11	88	144	2.837	11.28	8.77	64.4	312.1	16.09	564	2,737	1,882	660	320
DF	28	9	88	148	2.159	9.23	6.72	69.6	357.1	13.32	467	2,399	1,558	547	281
DF	29	7	88	151	1.565	7.18	5.37	69.8	359.2	10.67	374	1,927	1,249	438	226
DF	30	7	88		1.463	7.18	4.81	74.8	374.3	10.24	359	1,799	1,198	420	210
DF	31	2	89	151	.391	2.05	1.17	92.8	486.7	3.11	109	571	363	127	67
DF	32	4	87	139	.735	4.10	2.20	90.5	454.2	5.68	199	1,001	665	233	117
DF	33	1	89	154	.173	1.03	.52	106.3	563.3	1.57	55	292	184	64	34
DF	34 37	1 3	87 88	164 158	.163 .412	1.03 3.08	.65 1.51	89.1 110.1	485.0 600.0	1.65 4.74	58 166	316 907	193 555	68 195	37 106
DF DF	38	1	87		.130	1.03	.39	139.3	770.0	1.55	54	301	181	64	35
DF					.130	1.03	.39	139.3			34				
DF	Totals	161	88	127	72.727	165.13	188.74	40.5	191.3	218.08	7,652	36,112	25,516	8,953	4,225
BM	9	2	81	63	4.643	2.05	2.32	6.2	30.0	.38	14	70	44	17	8
BM	10	4	80	68	7.522	4.10	7.52	6.5	27.5	1.29	49	207	151	57	24
BM	11	4	81	61	6.216	4.10	6.22	11.7	45.0	1.93	73	280	225	85	33
BM	13	3	83	66	3.338	3.08	3.34	16.5	53.3	1.46	55	178	171	65	21
BM	14	3	74	80	2.878	3.08	2.88	23.4	60.0	1.79	67	173	209	79	20
BM	16	1	74	101	.735	1.03	.73	34.7	110.0	.68	25	81	79	30	9
BM	21 42	1	73 73		.426 .107	1.03 1.03	.43 .11	47.5 303.8	170.0 1010.0	.54 .86	20 32	72 108	63 100	24 38	8
BM															
BM	Totals	19	80	68	25.866	19.49	23.54	14.3	49.6	8.91	336	1,168	1,043	393	
WH	14	1	89	65	.959	1.03	.96	23.8	70.0	.73	23	67	85	27	8
WH	Totals	1	89	65	.959	1.03	.96	23.8	70.0	.73	23	67	85	27	8
DF S	12	1	88	80	1.306	1.03									
DF S	15	2	85	76	1.672	2.05									
DF S	18	1	86	110	.580	1.03									
DF S	21	2	87	72	.853	2.05									
DF S	22	1	88		.389	1.03									
DF S	23	1	84		.355	1.03									
DF S	29	1	87	81	.224	1.03									
DF S	Totals	9	86	81	5.378	9.23									
Totals		190	86	109	104.930	194.87	213.25	37.6	175.1	227.73	8,011	37,347	26,644	9,373	4,370

 TC PLOGSTVB
 Log Stock Table - MBF

 TT2N RR5W S17 Ty00MC
 117.00
 Project: FINGRCRK Acres 117.00
 Date 2/6/2025

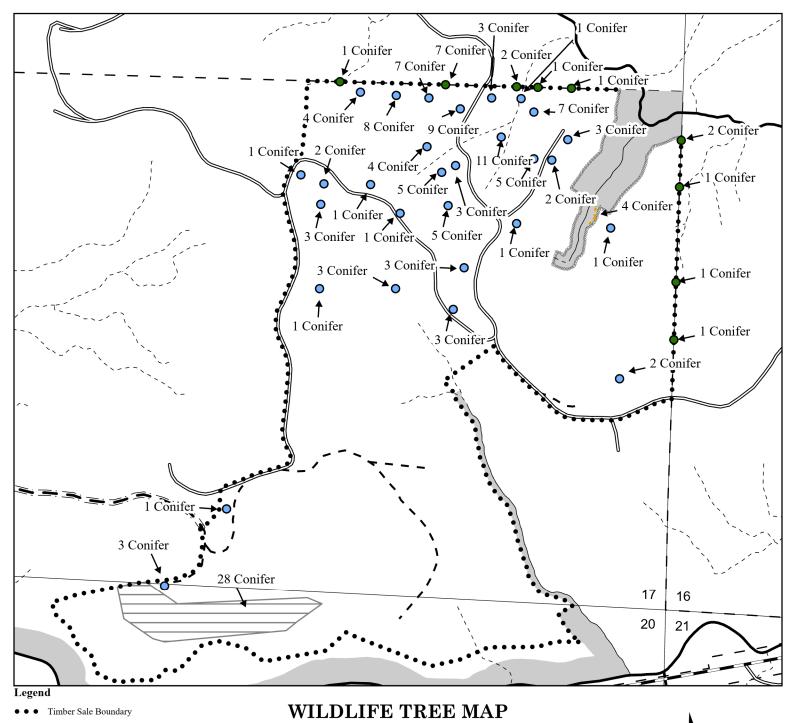
 Time 4:04:22PM

S	So Gr	Log	Gross	Def Net	%		1	let Volu	me by S	caling l	Diamete	r in Inch	es				
Spp T		Len	MBF	% MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
OF	2M	40	3,089	3,084	73.0						495	632	1208	623	125		
OF	3M	20	1	1	.0				1								
OF	3M	22	1	1	.0				1								
DF	3M	28	3	3	.1			3									
DF	3M	30	3	3	.1			1	1								
DF	3M	32	13	13	.3			12	2								
DF	3M	34	34	34	.8			32	2								
DF	3M	36	25	25	.6			25									
DF	3M	38	30	30	.7			28	2								
DF	3M	40	927	926	21.9			172	268	486							
DF	4M	12	7	7	.2			6	0								
DF	4M	14	11	11	.3			11	0								
DF	4M	16	4	4	.1			4									
DF	4M	18	5	5	.1			5									
DF	4M	20	9	9	.2			9									
DF	4M	22	23	23	.5			23									
DF	4M	24	12	12	.3			12									
DF	4M	26	8	8	.2			8									
DF	4M	28	9	9	.2			9									
DF	4M	30	14	14	.3			14									
DF	4M	38	5	5	.1			5									
DF	Totals		4,232	4,225	96.7			378	277	486	495	632	1208	623	125		
BM	CR	16	7	7	4.8			7									
BM	CR	18	5	5	4.0			5									
BM	CR	20	19	19				8	11								
BM	CR			16				7				8					
BM	CR			18				18									
BM	CR			33				9	15	9							
BM	CR			8				8									
BM	CR			11				11									
ВМ	CR	40	20	20	15.0			8							13		
ВМ	Totals		137	137				81	25	9	1	8			13		
WH	3M	40	8	8	100.0			8									
WH	Totals		8	8	.2			8									
Γotal	All Specie	s	4,376	4,370	100.0			467	302	496	495	640	1208	623	137		

Volume Summary

(Shown in MBF)

Finger Creek FG-341-2025-W01017-01 February 2025


UNIT 1: Clearcut (117 Acres)

SPECIES		2 SAW	3 SAW	4 SAW	CAMP RUN	TOTAL
	Cruise Volume	3,084	1,035	107	0	4,226
Douglas fir	Hidden D&B (2%)	(62)	(21)	(2)	(0)	(85)
Douglas-fir	NET TOTAL	3,022	1,014	105	0	4,141
	% of Total	73	24	3	0	
	Cruise Volume	0	8	0	0	8
Western	Hidden D&B (2%)	(0)	(0)	(0)	(0)	(0)
Hemlock	NET TOTAL	0	8	0	0	8
	% of Total	0	100	0	0	

UNIT 2: Right-of-Way (1 Acre)

SPECIES		2 SAW	3 SAW	4 SAW	CAMP RUN	TOTAL
	Cruise Volume	31	10	1	0	42
Douglas fir	Hidden D&B (2%)	(1)	(0)	(0)	0	(1)
Douglas-fir	NET TOTAL	30	10	1	0	41
	% of Total	74	24	2	0	

SALE TOTAL									
SPECIES	2 SAW	3 SAW	4 SAW	CAMP RUN	TOTAL				
Douglas-fir	3,052	1,024	106	0	4,182				
Western Hemlock	0	8	0	0	8				
Total	3,052	1,032	106	0	4,190				

Posted Stream Buffer Boundary

ODF Ownership Boundary

GTRA Inner Gorge

Wildlife Tree

Green Tree

Paved Road

--- Paved Road

Surfaced Road

New Construction Road

Posted Right-of-Way Boundary

Type-F Stream

Type-N Stream Perennial

--- Type-N Stream Seasonal

Unposted Mid-Slope Retention Area

Stream Buffer

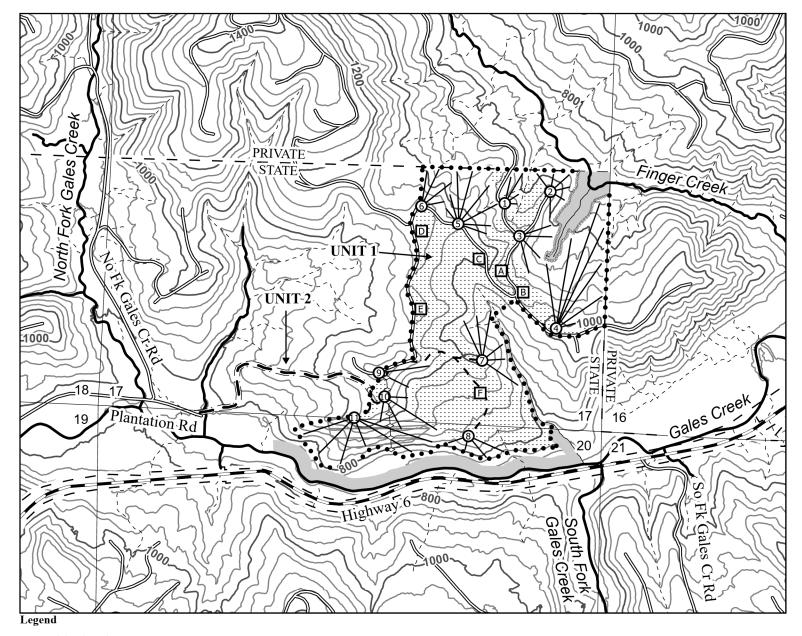
Section Lines

FOR TIMBER SALE CONTRACT #FG-341-2025-W01017-01 FINGER CREEK PORTIONS OF SECTIONS 17 & 20, T2N, R5W, W.M WASHINGTON COUNTY, OREGON

> Forest Grove District GIS January, 2025

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

> 1:6,000 1 inch = 1,200 feet


0 250 500 1,000 Feet H

APROXIMATE NET ACRES

UNIT 1 117 ACRES (CC) UNIT 2 1 ACRE (R/W)

TOTAL 118 ACRES

	Wild Life Trees											
Acres	Wild Life Trees	Green Trees	Inner Gorge Trees	Mid Slope Area	Purchaser Select Green	Purchaser Select Snags	TPA					
Acres	Wild Life Trees	Green frees	fillier Gorge Trees	Trees	Trees	i dichaser select shags	IIA					
118	103	17	4	28	90	240	4.1					

● ● ■ Timber Sale Boundary

Posted Right-of-Way Boundary

Posted Stream Buffer Boundary

ODF Ownership Boundary

Paved Road

Surfaced Road

New Construction Road

Type-F Stream

Type-N Stream Perennial

- - - Type-N Stream Seasonal

Stream Buffer

Unposted Mid-Slope Retention Area

Cable Yarding Area

Tractor Yarding Area

Tractor Landing

O Cable Landing

Section Lines

40 Foot Contour Bands

200 Foot Contour Bands

LOGGING PLAN

FOR TIMBER SALE CONTRACT #FG-341-2025-W01017-01 FINGER CREEK PORTIONS OF SECTIONS 17 & 20, T2N, R5W, W.M WASHINGTON COUNTY, OREGON

> Forest Grove District GIS February, 2025

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1:12,000

1 inch = 12,000 feet

0	500	1,000	2,000
			Feet

APROXIMATE NET ACRES			
TRA	ACTOR	CABLE	
UNIT 1 UNIT 2	55 1	62 0	

ADDOVIMATE MET ACRES

01(11 2		
TOTAL	56	62