

District: Forest Grove

Date: September 19, 2023

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$2,598,664.05	\$9,780.40	\$2,608,444.45
		Project Work:	(\$199,700.00)
		Advertised Value:	\$2,408,744.45

District: Forest Grove

Date: September 19, 2023

Timber Description

Location: Portions of section 17, T4N, R5W, W.M. Columbia County, OR.

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	23	0	98
Western Hemlock / Fir	12	0	98
Alder (Red)	17	0	95
Maple	14	0	95

Volume by Grade	2S	3S	4S	Camprun	Total
Douglas - Fir	4,697	1,162	0	0	5,859
Western Hemlock / Fir	0	0	9	0	9
Alder (Red)	0	0	0	53	53
Maple	0	0	0	27	27
Total	4,697	1,162	9	80	5,948

Comments: LOCAL POND VALUES, JUNE 2023

WESTERN REDCEDAR AND OTHER CEDARS: STUMPAGE PRICE = POND VALUE - DOUG-FIR LOGGING COST \$822.01 = \$1,151 - \$328.99

NOBLE FIR AND OTHER CONIFERS: STUMPAGE PRICE = POND VALUE - WESTERN HEMLOCK LOGGING COST \$204.23 = \$562.00 - \$357.77

BRANDING AND PAINTING ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$5.00/GAL

HAULING COST ALLOWANCE = \$1,250/DAY

OTHER COSTS (WITH PROFIT & RISK ADDED): N/A

OTHER COSTS (NO PROFIT & RISK ADDED):

EQUIPMENT CLEANING: 3 PIECES @ \$1,000/PIECE = \$3,000

MACHINE TIME TO BLOCK/WATERBAR ROADS AND SKID TRAILS: 30 HOURS X \$150/HOUR = \$4,500

TOTAL OTHER COSTS (NO P&R) = \$7,500

SLASH TREATMENT: 50 ACRES X \$250/ACRE = \$12,500

ROAD MAINTENANCE (INCLUDES SPOT ROCKING, GRADING, & ROLLING): MOVE IN: \$1,580.37 GENERAL ROAD MAINT: 12.65 miles X \$2,354.05 = \$29,778.73 TOTAL ROAD MAINTENANCE: \$31,359.10 / 5,948 MBF = \$5.27/MBF

District: Forest Grove

Date: September 19, 2023

	Logę	jing Conditions
Combination#: 1	Douglas - Fir	100.00%
	Western Hemlock / Fir	100.00%
	Alder (Red)	100.00%
	Maple	100.00%
Logging System:	Shovel	Process: Harvester Head Delimbing
yarding distance:	Short (400 ft)	downhill yarding: No
tree size:	Mature / Regen Cut (900 Bft/tree), 3-5 I	ogs/MBF
loads / day:	14	bd. ft / load: 4600
cost / mbf:	\$155.28	
machines:	Forwarder	
	Harvester	

District: Forest Grove

Date: September 19, 2023

Logging Costs		
Operating Seasons: 2.00	Profit Risk: 10%	
Project Costs: \$199,700.00	Other Costs (P/R): \$0.00	
Slash Disposal: \$12,500.00	Other Costs: \$0.00	

Miles of Road		Road Maintenance:	\$5.27
Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	2.0	4.6
Western Hemlock / Fir	\$0.00	2.0	4.0
Alder (Red)	\$0.00	3.0	3.5
Maple	\$0.00	3.0	3.5

District: Forest Grove

Date: September 19, 2023

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$155.28	\$5.38	\$1.48	\$138.59	\$0.00	\$30.07	\$2.10	\$2.00	\$0.00	\$334.90
Western H	emlock	/ Fir							
\$155.28	\$5.38	\$1.48	\$159.38	\$0.00	\$32.15	\$2.10	\$2.00	\$0.00	\$357.77
Alder (Red	 I)								
\$155.28	\$5.53	\$1.48	\$125.00	\$0.00	\$28.73	\$2.10	\$2.00	\$0.00	\$320.12
Maple									
\$155.28	\$5.53	\$1.48	\$125.00	\$0.00	\$28.73	\$2.10	\$2.00	\$0.00	\$320.12

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$778.12	\$443.22	\$0.00
Western Hemlock / Fir	\$0.00	\$562.00	\$204.23	\$0.00
Alder (Red)	\$0.00	\$493.00	\$172.88	\$0.00
Maple	\$0.00	\$343.00	\$22.88	\$0.00

District: Forest Grove

Date: September 19, 2023

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00
Maple	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	5,859	\$443.22	\$2,596,825.98
Western Hemlock / Fir	9	\$204.23	\$1,838.07
Alder (Red)	53	\$172.88	\$9,162.64
Maple	27	\$22.88	\$617.76

Gross Timber Sale Value

Recovery: \$2,608,444.45

Prepared By: SHAMUS SMITH

Phone: 503-357-2191

TIMBER SALE SUMMARY Clear Connection #FG-341-2024-W01015-01

- 1. Location: Portions of Sections 17, T4N, R5W, W.M., Columbia County, Oregon.
- 2. <u>Type of Sale</u>: The Timber Sale Area consists of one 117 acre Modified Clearcut. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. <u>Revenue Distribution</u>: 100% BOF; 100% Columbia County.
- 4. <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS Pro software.
- 5. <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in July of 2023. For more information, see Cruise Report.
- 6. <u>Timber Description</u>: The Timber Sale Area consists of a well-stocked, 76-84 year-old stand of Douglas-fir with minor components of western hemlock, red alder, and bigleaf maple. This timber stand has an average of 222 ft² of basal area, an average Douglas-fir DBH of 23 inches. The estimated average net Douglas-fir volume is approximately 50.1 MBF per acre.
- 7. <u>Topography and Logging Method</u>: Slopes within the Timber Sale Area range from 5% to 35% with variable aspects. The Timber Sale Area is 100% ground-based yarding. The average horizontal skid trail length is 400 feet and the maximum is approximately 800 feet.

8. Access:

Sale Advertisement Route Due to Blockage:

Access to the Timber Sale Area is on surfaced all-weather roads. From Forest Grove, travel north on Highway 47 through Banks then merge onto Highway 26 westbound and continue for approximately 11.5 miles to Timber Road. Turn right on Timber Road and proceed north for approximately 5.1 miles to Clear Creek Road. Turn left on Clear Creek Road and proceed for 0.5 miles to the Weyerhaeuser gate. Proceed right to Columbia River Mainline. Turn left onto Columbia River Mainline and proceed 0.3 miles to a road intersection. Turn right at the intersection onto an unnamed road and proceed for 1.2 miles to a road intersection. Turn left at the intersection onto an unnamed road and proceed for 1.2 miles to a road intersection. Turn left at the intersection onto an unnamed road and proceed for 2.3 miles to Pit Road. Turn right on Pit Road and follow for 0.4 miles to access the western portion of the Timber Sale Area. There are two gates along this route that will require a key which can be obtained from the Forest Grove District Office.

Haul Route Directions:

Access to the Timber Sale Area is on surfaced all-weather roads. From Forest Grove, travel north on Highway 47 through Banks then merge onto Highway 26 westbound and continue for approximately 20 miles to McGregor Road, which is just before mile marker 29. Turn right on McGregor Road and continue for approximately 8 miles to Eastside Grade. Turn left onto Eastside Grade and continue for 2.5 miles to the road block in the northwest corner of Section 17, as shown on Exhibit A. The remainder of the haul route follows the new construction road to Eastside Grade to the northwest portion of the Timber Sale Area.

9. Projects:

Project No. 1:	Rocked Road Construction
Project No. 2:	Road Improvement
Project No. 3:	Road Vacating

\$15,923.87 \$138,193.01 \$45,583.12

Total Credit for all Projects

\$199,700.00

PROJECT COST SUMMARY SHEET

Timber Sale:	Clear Connection
Sale Number:	FG-341-2024-W001015-01

PROJECT NO. 1: ROCKED ROAD CONSTRUCTION

	Road Segment	Length	Cost
-	C to D	7+40	\$15,372.88
-	0.00	7+40 stations	<i>Q10,012.00</i>
		0.14 miles	
Total Rock =		0.14 miles	
	су	1½" - 0	
	529 cy	4" - 0	
	12 cy	Large Riprap	
	12 Cy	Large Riprap	
		Move-in =	\$550.83
		TOTAL PROJECT COST =	\$15,923.71
			φ1 3,923. /1
PROJECT NO. 2: ROAD IMPROVEMENT			
	Road Segment	Length	Cost
-	A to B	493+75	\$26,351.87
	B to C	18+40	\$2,236.61
	D to E	50+75	\$3,010.50
	E to F	66+00	\$57,667.03
	G to H	12+20	\$15,585.14
	I to J	20+50	\$18,820.22
	K to L	13+40	\$9,739.97
-		675+00 stations	· ·
		12.78 miles	
Total Rock =			
	144 cy	1½" - 0	
	5,511 cy	4" - 0	
	12 cy	Riprap	
		Move-in =	\$4,780.32
		TOTAL PROJECT COST =	\$138,191.66
PROJECT NO. 3: ROAD VACATING			
	Road Segment	Lenath	Cost
-	V1 to V2	2+75	\$7,397.62
	V3 to V4	29+65	\$36,610.15
-	v J IU V4	32+40 stations	ψου,010.15
		0.61 miles	
Total Rock =		0.01 111165	
	100 cy	Riprap	
		Move-in =	\$1,576.86
		TOTAL PROJECT COST =	\$45,584.62
		TOTAL CREDITS =	\$199.700.00
			,

Timber Color			NSTRUCTI		Number	FC 244 2024 V	N004045 04
Timber Sale:		ear Connec	tion	-	Number:		
Road Segment:		A to B		_ Impr	rovement:	493+75 9.35	stations miles
					_	9.55	Times
PROJECT NO. 2: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	1.50	ac @	\$1,692.00	per acre =		\$2,538.00	
Clean culvert inlet & outlet, scatter waste	2	ea @	\$27.50	per ea =		\$55.00	
Construct settling pond	6	ea @	\$27.50	per ea =		\$165.00	
Grade, ditch, & roll	493.75	sta @	\$39.65	per sta =		\$19,577.19	
				TOTAL	IMPROVE	MENT COSTS =	\$22,335.19
CULVERTS							
Culverts and Bands	-						
24" Diameter	30	lf @	\$31.90	per lf =		\$957.00	
30" Diameter	40	lf @	\$42.95	per If =		\$1,718.00	
Markers & Stakes							
Culvert markers	3	ea @	\$12.00	per ea =		\$36.00	
Additional Installation Cost							
Repair culvert outlet at: 445+85,							
452+95, 468+40	1.50	hrs @	\$192.50	per hr =		\$288.75	
				Т(VERT COSTS =	\$2,999.75
ROCK	_			<u> </u>			+_,
				Placement/			
	Rock Size	Base	Haul Cost	Processing	Total CY	Rock Cost	
		Cost \$/cy	\$/cy	Cost \$/cy			
Subgrade rock				000τ φ/0γ			
Bedding and backfill	1½" - 0	\$8.53	\$2.24	\$0.55	24	\$271.68	
Douang and baokin	1/2 0	<i>Q</i> 0.00	¥=:= :	Subtotal =	24	\$271.68	
			Totals	All Rock =	24		
				1½" - 0	24		
					τοται β	ROCK COSTS =	\$271.68
EROSION CONTROL					<u> </u>		+=:
Grass seed & fertilizer	1.50	ac @	\$467.50	por oo .		\$701.25	
Straw mulch bale	1.50	ac @ ea @	\$467.50 \$11.00	per ac =		\$701.25 \$44.00	
	4	ea	φ11.00	per ea =	-	Φ44.00	
				TOTAL ERO	SION CON	TROL COSTS =	\$745.25

TOTAL PROJECT COST = \$26,351.87

	-		TRUCTION				
Timber Sale:				-			4-W001015-01
Road Segment:		B to C		Impro	ovement:	18+40	stations
						0.35	miles
PROJECT NO. 2: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	0.22	ac @	\$1,692.00	per acre =		\$372.24	
Grade, ditch, & roll	18.40	sta @	\$39.65	per sta =		\$729.56	
				TOTAL IMPRO		T COSTS =	\$1,101.80
CULVERTS							
Culverts and Bands							
18" Diameter	30	lf @	\$22.05	per lf =		\$661.50	
Markers & Stakes							
Culvert markers	3	ea @	\$12.00	per ea =		\$36.00	
Additional Installation Cost						• · • • • • •	
Repair culvert inlet at: 8+30, 11+95	1	hrs @	\$192.50			\$192.50	
				TOTAL (CULVER	<u>T COSTS =</u>	\$890.00
ROCK							
	Rock	Page	Haul Cost	Placement/			
	Size	Base Cost \$/cy	\$/cy	Processing ⁻	Total CY	Rock Cost	
	SIZE	COSt Ø/Cy	ф/Су	Cost \$/cy			
Subgrade rock							
Bedding and backfill	1½" - 0	\$8.53	\$2.75	\$0.55	12	\$141.96	
				Subtotal =	12	\$141.96	
			Totals	All Rock =	12		
				1½" - 0	12		
				тот	AL ROCI	<u> COSTS =</u>	\$141.96
EROSION CONTROL							·
Grass seed & fertilizer	0.22	ac @	\$467.50	per ac =		\$102.85	
			<u>тот</u>	AL EROSION C	<u>CONTRO</u>	L COSTS =	\$102.85
				τοται	PROJE	<u>CT COST =</u>	\$2,236.61
						=	ψ2,200.01

	SUMMARY						
Timber Sale:		ar Connectio	n	_ Sa	le Number:	FG-341-20	24-W001015-01
Road Segment:		C to D		C	onstruction:		stations
						0.14	miles
PROJECT NO. 1: ROCKED ROAD CONS	TRUCTION						
CONSTRUCTION							
Clearing & grubbing (scatter)	0.85	ac @	\$1,692.00	per ac =		\$1,438.20	
Balanced road construction	7.40	sta @	\$120.00	per sta =		\$888.00	
Forest Road Gate							
20' Gate Construction & Installation	1	ea @	\$5,236.00			\$5,236.00	
Construct tank trap	1	ea @		per ea =		\$55.00	
Grade, ditch, & roll	7.40	sta @	\$39.65	per sta =		\$293.41	
			-	TOTAL CON			\$7,910.61
CULVERTS			-		511100110	100010 -	ψι,910.01
Culverts and Bands							
18" Diameter	30	lf @	\$22.05	per lf =		\$661.50	
Markers & Stakes		_	• • • •	F -			
Culvert markers	1	ea @	\$12.00	per ea =		\$12.00	
5001/				<u>TOTA</u>	L CULVER	T COSTS =	\$673.50
ROCK							
		Base	Haul Cost	Placement/			
	Rock Size	Cost \$/cy	\$/cy	Processing	Total CY	Rock Cost	
		COSt Ø/Cy	φ/су	Cost \$/cy			
Surfacing rock							
Base rock	4" - 0	\$1.18	\$9.46	\$1.35	481	\$5,767.19	
Junction	4" - 0	\$1.18	\$9.46	\$1.35	48	\$575.52	
Blocking Boulders	36" - 24"	\$2.05	\$14.06	\$1.35	12	\$209.56	
				Subtotal =	= 541	\$6,552.27	
			Totals		E 4 4	1	
			Totals	All Rock = 4" - (
				36" - 24		-	
				30 - 24	12	J	
				<u>T</u> (OTAL ROC	K COSTS =	\$6,552.27
EROSION CONTROL							
Grass seed & fertilizer	0.43	ac @	\$550.00	per ac -		\$236.50	
G1033 3660 & 161111261	0.43	ac @	φ000.00	per ac =		φ <u>2</u> 30.30	

TOTAL EROSION CONTROL COSTS = \$236.50

TOTAL PROJECT COST = \$15,372.88

Timber Sale:	Clear Connection		Sale Number:	FG-341-2024	4-W001015-01	
Road Segment:		D to E		Improvement:	50+75 0.96	stations miles
PROJECT NO. 2: ROAD IMPROVEMENT						
IMPROVEMENT						
Clearing & grubbing (scatter)	0.59	ac @	\$1,692.00	per acre =	\$998.28	
Grade, ditch, & roll	50.75	sta @	\$39.65	per sta =	\$2,012.23	
				TOTAL IMPROVEMEN	T COSTS =	\$3,010.51
				TOTAL PROJE	<u>CT COST =</u>	\$3,010.51

			STRUCTIO				
Timber Sale	-	Clear Connection		_ Sale	Number:	FG-341-2024	-W001015-01
Road Segment		E to F		Impi	ovement:	66+00	stations
						1.25	miles
PROJECT NO. 2: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	0.76	ac @	\$2.199.60	per acre =		\$1,671.69	
Oversize pile relocation	500	су @	\$8.15	per cy =		\$4,075.00	
Haul oversize pile	500	cy @	\$0.76	per cy=		\$380.00	
Tank trap removal	3	ea @				\$181.50	
Clean culvert inlet & outlet, scatter waste	2	ea @		per ea =		\$55.00	
Construct settling pond	6	ea @		per ea =		\$165.00	
Improve turnout	4	ea @	+	per ea =		\$145.20	
Grade, ditch, & roll	66.00	sta @		per sta =		\$2,616.90	
	00.00	0.4 0	<i>Q</i> OOOOO				
0				TOTAL IM	PROVEME	<u>ENT COSTS =</u>	\$9,290.29
CULVERTS	-						
Culverts and Bands			• •••			* •••••	
18" Diameter	180	lf @		per lf =		\$3,969.00	
24" Diameter	60	lf @	\$31.90	per lf =		\$1,914.00	
Markers & Stakes		-	• ·			•	
Culvert markers	9	ea @	\$12.00	per ea =		\$108.00	
				<u>TOT</u>	AL CULVE	<u> RT COSTS =</u>	\$5,991.00
ROCK	-						
		_		Placement/			
	Rock	Base	Haul Cost	Processing	Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	Cost \$/cy			
Subgrade rock							
Bedding and backfill	1½" - 0	\$8.53	\$5.94	\$0.55	96	\$1,441.92	
Energy dissipator	24" - 12"	\$2.05	\$16.91	\$1.75	12	\$248.52	
				Subtotal =	108	\$1,690.44	
Surfacing rock	1						
Surfacing rock	4" - 0	\$1.18	\$11.27	\$1.35	2,772	\$38,253.60	
Junction	4" - 0	\$1.18	\$11.27	\$1.35	72	\$993.60	
Turnout	4" - 0	\$1.18	\$11.27	\$1.35	76	\$1,048.80	
				Subtotal =	2,920	\$40,296.00	
			Totals	All Rock =	3,028		
				1½" - 0	96		
				4" - 0	2,920		
				24" - 12"	12		
							\$11 086 11
				-		OCK COSTS =	ψ41,300.44
EROSION CONTROL			¢ 407 50				
Grass seed & fertilizer	0.76	ac @	\$467.50	per ac =		\$355.30	
Straw mulch bale	4	ea @	\$11.00	per ea =		\$44.00	

TOTAL PROJECT COST = \$57,667.03

TOTAL EROSION CONTROL COSTS = \$399.30

S Timber Sale:		OF CONS	STRUCTION ction		nber: FG-341-202	24-W001015-0 ²
Road Segment:				Improven		stations miles
PROJECT NO. 2: ROAD IMPROVEMENT						
IMPROVEMENT						
Clearing & grubbing (scatter)	0.15	ac @	\$2,199.60	per acre =	\$329.94	
Clean culvert inlet & outlet, scatter waste	2	ea @	\$27.50	per ea =	\$55.00	
Improve turnout	1	ea @	\$36.30	per ea =	\$36.30	
Construct turnaround	1	ea @	\$90.75	per ea =	\$90.75	
Improve landing	1	ea @	\$121.00	per ea =	\$121.00	
Excavate, place and & compact fill	250	су @		per cy =	\$2,700.00	
Grade, ditch, & roll	12.20	sta @		per sta =	\$483.73	
				TOTAL IMPROVE	MENT COSTS =	\$3,816.72
CULVERTS						<i>\</i> \\\\\\\\\\\\\
Culverts and Bands	-					
24" Diameter	30	lf @	\$22.05	per lf =	\$661.50	
Markers & Stakes	00	. 0	QLL .00		\$661.66	
Culvert markers	3	ea @	\$12.00	per ea =	\$36.00	
	-		* · _ · e ·		VERT COSTS =	\$697.50
ROCK					<u>_vert costs =</u>	4097.50
						1
	Rock	Base	Haul Cost	Placement/		
	Size	Cost \$/cy	\$/cy		ICY Rock Cost	
	0.20	000t φ/ 0y	<i>, y</i>	Cost \$/cy		
Subgrade rock						
Bedding and backfill	1½" - 0	\$8.53	\$5.85	Ŧ	2 \$179.16	
	-			Subtotal = 1	2 \$179.16	
Surfacing rock	41 0		.			1
Surfacing rock	4" - 0	\$1.18	\$11.21	T	47 \$8,889.78	
Turnout	4" - 0	\$1.18	\$11.21	Ŧ	4 \$329.76	
Turnaround	4" - 0	\$1.18	\$11.21	÷	0 \$274.80	
Landing	4" - 0	\$1.18	\$11.21	\$1.35 9	5 \$1,305.30	
				Subtotal = 78	36 \$10,799.64	
			Totals		98	
					2	
				4" - 0 78	36	
				τοται	ROCK COSTS =	\$1በ 07ዩ ጶባ
					1.001.00013 =	ψι0,370.00
EROSION CONTROL	0.45	.	¢167 50	DOT 00	ድፖር ፈር	
Grass seed & fertilizer	0.15	ac @	\$467.50	per ac =	\$70.12	
Straw mulch bale	2	ea @	\$11.00	per ea =	\$22.00	
			тот	AL EROSION CON	TROL COSTS =	\$92.12
			<u></u>			ψυΖ.1Ζ

TOTAL PROJECT COST = \$15,585.14

					Neverlage	FO 044 000	
Timber Sale: Road Segment:			ction			20+50	stations
						0.39	miles
PROJECT NO. 2: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	0.24	ac @	\$2,538.00	per acre =		\$609.12	
Improve turnout	1	ea @	\$36.30	per ea =		\$36.30	
Construct turnaround	1	ea @	\$90.75	per ea =		\$90.75	
Improve landing	1	ea @	\$121.00	per ea =		\$121.00	
Grade, ditch, & roll	20.50	sta @	\$39.65	per sta =		\$812.82	
				TOTAL IMPR		IT COSTS =	\$1,669.99
CULVERTS						1	+ ,
Markers & Stakes	•						
Culvert markers	1	ea @	\$12.00	per ea =		\$12.00	
Additional Installation Cost							
Repair culvert outlet at: 20+00	0.5	hrs @	\$192.50	per hr =		\$96.25	
				TOTAL	CULVER	T COSTS =	\$108.25
ROCK						-	
		_		Placement/			
	Rock	Base	Haul Cost	Processing	Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	Cost \$/cy			
Surfacing rock						<u> </u>	
Surfacing rock	4" - 0	\$1.18	\$11.45	\$1.35	1,087	\$15,196.26	
Turnout	4" - 0	\$1.18	\$11.45	\$1.35	24	\$335.52	
Turnaround	4" - 0	\$1.18	\$11.45	\$1.35	20	\$279.60	
Landing	4" - 0	\$1.18	\$11.45	\$1.35	80	\$1,118.40	
				Subtotal =	1,211	\$16,929.78	
			T ()		4.044	1	
			Totals	All Rock =	1,211		
				4" - 0	1,211	l	
				тс		K COSTS =	\$16 929 78
				<u>10</u>			ψ10,020.10
EROSION CONTROL	0.04	.	¢467 50	0.04		¢110.00	
Grass seed & fertilizer	0.24	ac @	\$467.50	per ac =		\$112.20	
			тот	AL EROSION	CONTRO	<u> L COSTS =</u>	\$112.20

TOTAL PROJECT COST = \$18,820.22

S Timber Sale:	SUMMARY OF CONSTRUCTION				4-W001015-01		
Road Segment:	-	K to L	cuon	-		<u>13+40</u> 0.25	stations miles
PROJECT NO. 2: ROAD IMPROVEMENT							
IMPROVEMENT Clearing & grubbing (scatter)	0.16			per acre =		\$270.72	
Improve turnout Grade, ditch, & roll	1 13.40	ea @ sta @	+	per ea = per sta =		\$36.30 \$531.31	
ROCK				TOTAL IMPR	OVEMEN	T COSTS =	\$838.33
	Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placement/ Processing Cost \$/cy	Total CY	Rock Cost	
Surfacing rock				•		•	
Surfacing rock	4" - 0	\$1.18	\$12.33	\$1.35	563	\$8,366.18	
Junction	4" - 0	\$1.18	\$12.33	\$1.35	12	\$178.32	
Turnout	4" - 0	\$1.18	\$12.33	\$1.35	19	\$282.34	
			Totals	Subtotal = All Rock = 4" - 0	594 594 594	\$8,826.84	
				<u>T0</u>	TAL ROC	K COSTS =	\$8,826.84
EROSION CONTROL Grass seed & fertilizer	0.16	ac @	\$467.50	per ac =		\$74.80	
			<u>TOT</u> ,	AL EROSION	CONTRO	L COSTS =	\$74.80

TOTAL PROJECT COST = \$9,739.97

	SUMIN	IARY OF CO	UNSTRUCTION COST	
Timber Sale:	Timber Sale:			Sale Number: FG-341-2024-W001015-01
Road Segment:	V1 to V2			Vacating: 2+75 stations
				0.05 miles
PROJECT NO. 3: ROAD VAC	ATING			
Coffer dam installation	2	ea @ 🖇	6750.00 per ac =	\$1,500.00
Silt fence installation	170	ft @	\$4.75 per ac =	\$807.50
Existing fill removal End-haul(0+75)			
Excavate & load	265	су @	\$1.69 per cy =	\$447.85
Haul waste area No. 2	345	су @	\$0.23 per cy =	\$79.35
Compact waste area	345	су @	\$0.35 per cy =	\$120.75
Existing fill removal End-haul(1+90)			
Excavate & load	204	су @	\$1.94 per cy =	\$395.76
Haul waste area No. 1	265	cy @	\$1.16 per cy =	\$307.40
Compact waste area	265	cy @	\$0.35 per cy =	\$92.75
Existing waste area removal E	nd-haul(1+90)			
Excavate & load	150	cy @	\$1.69 per cy =	\$253.50
Haul waste area No. 1	195	cy @	\$1.16 per cy =	\$226.20
Compact waste area	195	cy @	\$0.35 per cy =	\$68.25
Stream channel widening	2	hrs @ \$	225.00 per hr =	\$450.00
Construct ditchout	1	ea @	\$30.25 per cy =	\$30.25
Construct waterbar	1		\$30.25 per ea =	\$30.25
Straw mulch (bale)	9		\$11.00 per ea =	\$99.00
Grass seed and fertilizer	0.35		550.00 per ac=	\$192.50
			•	

ROCK

TOTAL VACATE COST= \$5,101.31

	Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placement/ Processing Cost \$/cy	Total CY	Rock Cost
Rock						
Bank Armoring	36" - 24"	\$2.05	\$17.06	\$3.85	100	\$2,296.31
				Subtotal =	100	\$2,296.31

Totals All Rock =

Large Riprap

100

100

TOTAL ROCK COSTS =

\$2,296.31

TOTAL PROJECT COST = \$7,397.62

SUMMARY OF CONSTRUCTION COST

Timber Sale:	Timber Sale:		_	Sale Number:	FG-341-202	24-W001015-01
Road Segment:	V3 to V4		-	Vacating:	29+65	stations
			-		0.56	miles
PROJECT NO. 3: ROAD VACAT	ING					
Construct tank trap	1	ea @	\$60.50	per ea =	\$60.50	
Rip dirt road surface	5.45	5 sta @	\$27.50	per sta =	\$149.88	
Rip rocked road surface	11.5	5 sta @	\$55.00	per sta =	\$635.25	
Sidecast pullback (0+00 to 5+45)	242	2 cy @	\$2.33	per cy =	\$5,643.26	
Sidecast pullback (6+65 to 12+45) 451	1 cy@	\$2.33	per cy =	\$10,510.63	
Sidecast pullback (20+10 to 27+0	0) 306 ⁻			per cy =	\$7,146.11	
Oversize pile relocation	500	cy @	\$8.15	per cy =	\$4,075.00	
Fill removal End-haul (16+50)						
Excavate & load	714	- cy @	\$1.94	per cy =	\$1,385.16	
Haul to waste area No. 3	928			per cy =	\$668.16	
Compact waste area	928	-		per cy =	\$324.80	
Fill removal End-haul (22+00 & 22	2+80)					
Excavate & load	300	cy @	\$1.94	per cy =	\$582.00	
Haul to waste area No. 4	390	cy @	\$0.79	per cy =	\$308.10	
Compact waste area	390	-		per cy =	\$136.50	
Stream channel widening	3	hrs @		per hr =	\$675.00	
Remove existing culverts	7	ea @		per ea =	\$1,155.00	
Grass seed and fertilizer	2.48	3 ac @	\$550.00	per ac=	\$1,364.00	
Straw mulch (acre)	2.48	3 ac @	\$660.00	per ac =	\$1,636.80	
Straw mulch (bale)	14	ea @	\$11.00	per ea =	\$154.00	

SUMMARY OF CONSTRUCTION COST

TOTAL PROJECT COST = \$36,610.15

Timber Sale: Clear Connection

Sale Number: FG-341-2024-W001015-01

PROJECT Nos. 1, 2 & 3 MOVE-IN, WITHIN AREA MOVE, & CLEANING COSTS							
Equipment	Total						
Grader	\$444.75						
Roller (smooth/grid) & Compactor	\$425.41						
Excavator (Med.) - Equipment Cleaning	\$1,440.77						
Excavator (Large) - Equipment Cleaning	\$1,951.64						
Dozer (Large) - Equipment Cleaning	\$1,912.64						
Dump Truck (10cy +)	\$381.24						
Water Truck (2,500 Gal)	\$350.96						
	TOTAL MOVE-IN COSTS = \$6,908.02						

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

Sale		6-341-2024	onnection -W001015-01 reek Stockpile		
1 Total truck y		144 cy 144 cy	(truck measure)		
Move-in					
Move in loader					\$976.61
Move in Dump Trucks				_	\$123.00
				Subtotal =	\$1,099.61
				Per CY =	\$7.63/cy
1 1/2"-0 Base Cost					
Load dump truck \$	60.90	/ cy x	144	cy = Subtotal = _ Per CY =	\$129.60 \$129.60 \$0.90

1 1/2"-0 Cost = **\$8.53/cy**

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

	Timber Sale: Sale Number: Stockpile Name:	FG-341-2024	onnection 4-W001015-01 c Stockpile		
	4" - 0: Riprap: Boulders: Total truck yardage:	6,040 cy 12 cy 112 cy 6,164 cy	_(truck measu (truck measu (truck measu	re)	
Move-in Move in excavator Move in loader Move in Dump Trucks					\$935.07 \$832.68 \$100.32
4"-0 Base Cost				Subtotal = Per CY =	\$1,868.07 \$0.30/cy
Load dump truck	\$0.90	/ cy x	6,040	cy = Subtotal = Per CY =	\$5,436.00 \$5,436.00 \$0.88
Riprap (24" - 12") Base Cost					
Load dump truck	\$1.75	/ cy x	12	cy = Subtotal = Per CY =	\$21.00 \$21.00 \$1.75
Boulders (36" - 24") Base Cost Load dump truck	\$1.75	/ cy x	112	cy = Subtotal =	\$196.00 \$196.00
	4"-0 Cost =	\$1.18/cy	_	Per CY =	\$1.75
	Riprap Cost = Blocking Boulder Cost =	\$2.05/cy \$2.05/cy	_		

CRUISE REPORT Clear Connection #FG-341-2024-W001015-01

1. LOCATION:

Portions of Sections 17, T4N, R5W, W.M., Columbia County, Oregon.

2. CRUISE DESIGN:

The timber cruise was designed using an estimated coefficient of variation (CV) of 60%, average stand diameter of 22 inches, sampling error (SE) of 9% and a minimum of 100 grade trees.

3. SAMPLING METHOD:

The Timber Sale Area was cruised in July of 2023 with 27 variable radius grade plots using a 40 BAF prism. Plots were laid out 6 chain x 5 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

4. CRUISE RESULTS:

150 trees were measured and graded producing a standard error of 6.2% on the Douglas-fir Basal Area and 8.2% on the Douglas-fir Net Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following the Official Log Scaling and Grading Rules as adopted by the NW Log Rules Advisory Group. 40 foot segments were favored.

- a) **Height Standards:** Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors: Measured for each grade tree using a form point of 16 feet.

6. DATA PROCESSING:

- a) **Volumes and Statistics:** Cruise estimates and sampling statistics were derived from SuperAce 2008 cruise software.
- b) **Deductions:** The following percent volume deductions are by species to account for the hidden defect and breakage. For conifers two percent was deducted. For hardwoods five percent was deducted.
- 7. CRUISERS: The sale was cruised by Shamus Smith

Prepared by	: Shamus Smith	8-10-2023

Reviewed by:	Mark Savage	8-10-2023
	-	Date

TC PSTA	ATS				OJECT S OJECT		TICS NECT			PAGE DATE	1 8/2/2023
ГWP	RGE	SC TRACT	,	ГҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt
04N	05	17 U1		00MC			117.00	27	151	S	W
					TREES]	ESTIMATED TOTAL		ERCENT		
		PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL	L	27	151		5.6						
CRUIS DBH C REFOR COUN BLANE 100 %	COUNT REST T	27	151		5.6		9,394		1.6		
100 %				STAI	ND SUMM	ARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOUG	FIR	144	71.2	23.4	137	44.1	213.3	51,169	51,101	10,543	10,543
DOUG		1	.3	29.0	145	0.3	1.5	21,109	01,101	10,010	10,010
R ALD		2	2.0	16.5	94	0.7	3.0	478	478	108	108
BL MA		2	2.7	14.3	79	0.8	3.0	240	240	84	84
WR CE	EDAR	1	2.2	11.0	44	0.4	1.5	67	67	27	27
WHEM	ILOCK	1	1.9	12.0	58	0.4	1.5	75	75	28	28
TOTA	L	151	80.3	22.6	130	47.1	223.7	52,029	51,961	10,789	10,789
CL SD:	68.1 1.0	COEFF VAR.%	S.E.%	L	SAMPLE OW	TREES - AVG	BF HIGH	#	OF TREES R 5	EQ. 10	INF. POP.
DOUG	110	60.5	5.0		958	1,008	1,059				
DOUG											
R ALD		11.8	11.0		214	240	266				
BL MA WR CE		37.2	34.8		62	95	128				
	ILOCK										
TOTA		64.7	5.3		916	967	1,017		167	42	1
CL SD:	68.1 1.0	COEFF VAR.%	S.E.%	T	SAMPLE OW	TREES - AVG	HIGH	#	OF TREES R 5	EQ. 10	INF. POP.
DOUG		53.9	4.5	L	194	203	212		5	10	1
DOUG											
R ALD	ER	16.3	15.3		46	54	63				
BL MA		32.2	30.2		23	33	43				
WR CE											
	ILOCK I	58.0	47		196	105	204		124	21	,
TOTA	L	58.0	4.7		186	195	204		134	34	1
CL	68.1	COEFF			TREES/A			#	OF PLOTS R	-	INF. POP.
	1.0	VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	1
SD:	~ ~ ~				65	71	78				
SD: DOUG	FIR	47.6	9.3				1				
SD: DOUG DOUG	FIR FIR-S	519.6	101.9			0					
SD: DOUG DOUG R ALD	FIR FIR-S ER	519.6 519.6	101.9 101.9		1	2	4				
SD: DOUG DOUG	FIR FIR-S ER APLE	519.6	101.9		1						
SD: DOUG DOUG R ALD BL MA	FIR FIR-S ER APLE EDAR	519.6 519.6 368.4	101.9 101.9 72.2		1	2 3	4 5				
SD: DOUG DOUG R ALD BL MA WR CE	FIR-S FIR-S PER APLE EDAR ILOCK	519.6 519.6 368.4 519.6	101.9 101.9 72.2 101.9		1 73	2 3 2	4 5 5		93	23	1
SD: DOUG DOUG R ALD BL MA WR CE WHEM	FIR-S FIR-S PER APLE EDAR ILOCK	519.6 519.6 368.4 519.6 519.6	101.9 101.9 72.2 101.9 101.9		73	2 3 2 2	4 5 5 4 88		93 OF PLOTS R		INF. POP.
SD: DOUG DOUG R ALD BL MA WR CE WHEM TOTA	FIR FIR-S FI	519.6 519.6 368.4 519.6 519.6 47.3	101.9 101.9 72.2 101.9 101.9	L	73	2 3 2 2 80	4 5 5 4 88	#			
SD: DOUG DOUG R ALD BL MA WR CE WHEM TOTA	FIR FIR-S ER APLE EDAR fLOCK L 68.1 1.0	519.6 519.6 368.4 519.6 519.6 47.3 COEFF	101.9 101.9 72.2 101.9 101.9 <i>9.3</i>	L	73 BASAL A	2 3 2 2 80 AREA/ACI	4 5 4 88 RE	#	OF PLOTS R	EQ.	INF. POP.
SD: DOUG DOUG R ALD BL MA WR CE WHEM TOTAN CL SD: DOUG DOUG	FIR FIR-S FIR-S FIR-S FIR FIR-S	519.6 519.6 368.4 519.6 519.6 47.3 COEFF VAR.%	101.9 101.9 72.2 101.9 101.9 9.3 <u>S.E.%</u> 6.2 101.9	L	73 BASAL A OW	2 3 2 80 AREA/ACI AVG 213 1	4 5 4 88 RE HIGH 227 3	#	OF PLOTS R	EQ.	INF. POP.
SD: DOUG DOUG R ALD BL MA WR CE WHEM TOTA SD: DOUG	FIR FIR-S EER APLE EDAR fLOCK L 68.1 1.0 FIR FIR-S EER	519.6 519.6 368.4 519.6 519.6 47.3 COEFF VAR.% 31.6	101.9 101.9 72.2 101.9 101.9 9.3 S.E.% 6.2	L	73 BASAL A OW	2 3 2 80 AREA/ACI AVG 213	4 5 4 88 RE HIGH 227	#	OF PLOTS R	EQ.	INF. POP.

TC PSI	TATS				PROJECT PROJECT		<u>STICS</u> NNECT			PAGE DATE	2 8/2/2023
гwр	RGE	SC	TRACT	ТҮР	E	AC	CRES	PLOTS	TREES	CuFt	BdFt
04N	05	17	U1	00M0	C		117.00	27	151	l S	W
CL	68.1		COEFF		BASAI	AREA/AC	CRE		# OF PLO	TS REQ.	INF. POP
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
WR C	EDAR		519.6	101.9		1	3				
WHE	MLOCK		519.6	101.9		1	3				
TOT	AL		31.5	6.2	210	224	238		41	10	5
CL	68.1		COEFF		NET B	F/ACRE			# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU DOU	G FIR G FIR-S		41.8	8.2	46,917	51,101	55,285				
R AL	DER		519.6	101.9		478	964				
BL M	APLE		361.0	70.8	70	240	410				
WR C	EDAR		519.6	101.9		67	136				
WHE	MLOCK		519.6	101.9		75	152				
TOT	AL		42.5	8.3	47,634	51,961	56,289		75	19	8
CL	68.1		COEFF		NET C	UFT FT/AG	CRE		# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR		37.2	7.3	9,773	10,543	11,312				
DOU	G FIR-S										
R AL	DER		519.6	101.9		108	217				
BL M	APLE		360.4	70.7	25	84	143				
WR C	EDAR		519.6	101.9		27	54				
WHE	MLOCK		519.6	101.9		28	56				
TOT	AL		38.0	7.4	9,985	10,789	11,592		60	15	7

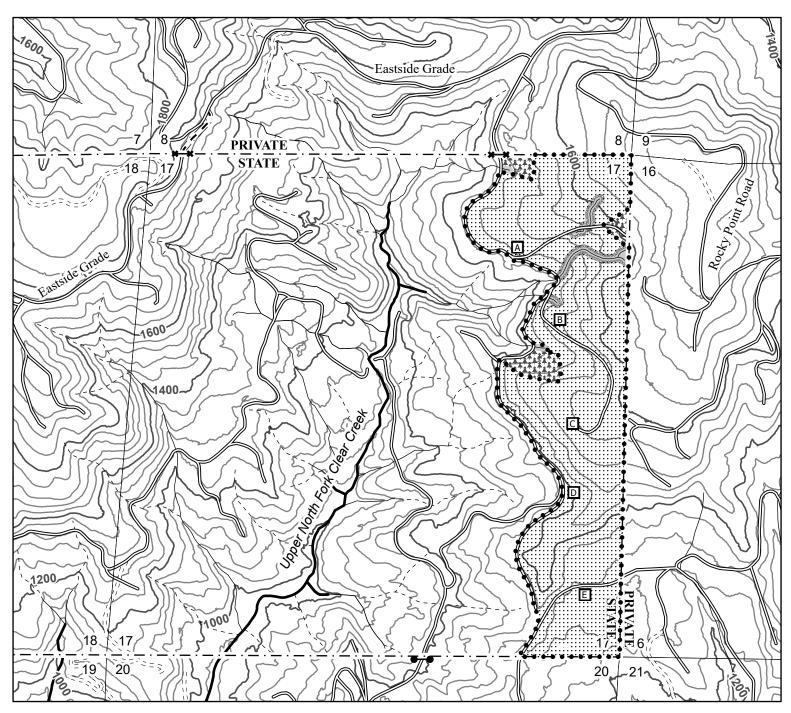
TC	C PSPCSTGR Species, Sort Grade - Board Foot Volumes (Project)																		
T0	T04N R05W S17 Ty00MC 117.00				Project: CONNECT									Page Date	8/2	1 2/2023			
						Acres		117.	00							Time	3	:39:46	PM
		%					Perc	ent of I	Net Boar	rd Foot	Volume					Avera	ige Log	3	Logs
	S So Gr	Net	Bd. Ft.	. per Acre		Total		Log Sc	ale Dia.			Log	Length		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	CU														8	18		0.00	.5
DF	2M	80	.2	41,031	40,966	4,793			35	65				100	40	17	475	2.28	86.3
DF	3M	17	.0	8,977	8,974	1,050		89	10	1	1		3	96	39	9	118	0.79	76.0
DF	4M	3		1,161	1,161	136		100			14	45	15	26	27	6	36	0.38	31.9
DF	Totals	98	.1	51,169	51,101	5,979		18	29	53	0	1	1	98	37	12	263	1.45	194.6
RA	CR	100		478	478	56		61	39			9	12	79	33	9	119	0.81	4.0
RA	Totals	1		478	478	56		61	39			9	12	79	33	9	119	0.81	4.0
WH	4M	100		75	75	9		100				100			30	6	40	0.49	1.9
wн	Totals	0		75	75	9		100				100			30	6	40	0.49	1.9
		100						100				100						0.40	
RC	4M	100		67	67	8		100				100			28	6	30	0.43	2.2
RC	Totals	0		67	67	8		100				100			28	6	30	0.43	2.2
BM	CR	100		240	240	28		100						100	39	8	90	0.81	2.7
BM	Totals	0		240	240	28		100						100	39	8	90	0.81	2.7
Tota	ls		0.1	52,029	51,961	6,079		19	29	52	0	1	1	97	37	12	253	1.41	205.4

TC	PSTNDSU	М				S	Stand T	Table Su	ımmary				Page Date:	1 8/2/2023	3
T04N	R05W S17	7 Ty00MC		117.00			Project	C	ONNECT				Time:	3:39:47	'PM
							Acres		117.0)			Grown Year:		
s		a 1	- FF	Tot		D A //	T	Average Net	e Log Net	T (Net	Net		Totals	
Spc T	DBH	Sample Trees	FF 16'	Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Cu.Ft.	Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Cunits	MBF
DF	11	1	85	86	2.245	1.48	2.24	14.8	60.0	.95	33	135	111	39	16
DF	13	4	87	105	6.429	5.93	11.25	16.0	64.3	5.13	180	723	600	211	85
DF	14	3	86	107	4.158	4.44	6.93	20.1	88.0	3.96	139	610	464	163	71
DF	16	1	88	104	1.061	1.48	2.12	24.0	100.0	1.45	51	212	170	60	25
DF	17	4	87	118	3.760	5.93	8.46	27.6	117.8	6.64	233	996	777	273	117
DF	18	6	87	131	5.030	8.89	11.74	32.2	137.1	10.77	378	1,610	1,260	442	188
DF	20	7	87	133	4.753	10.37	12.90	35.7	156.3	13.13	461	2,017	1,536	539	236
DF	21	1	88	142	.616	1.48	1.85	39.9	196.7	2.10	74	363	246	86	43
DF	22	12	87	143	6.734	17.78	20.20	42.1	196.4	24.26	851	3,968	2,839	996	464
DF	23	5	86	140	2.567	7.41	7.19	48.5	216.4	9.93	348	1,556	1,161	408	182
DF	24	15	87	142	7.074	22.22	21.22	50.6	235.1	30.59	1,073	4,989	3,578	1,256	584
DF	25	7	86	149	3.042	10.37	9.56	54.9	256.4	14.96	525	2,451	1,751	614	287
DF	26	10	87	154	4.018	14.81	13.26	58.5	287.6	22.12	776	3,813	2,588	908	446
DF	27	4	88	151	1.490	5.93	4.47	68.1	336.7	8.67	304	1,505	1,015	356	176
DF	28	19	87	158	6.583	28.15	21.48	70.7	360.5	43.27	1,518	7,743	5,063	1,777	906
DF	29	6	88	157	1.938	8.89	5.49	73.1	378.2	11.44	401	2,077	1,339	470	243
DF	30	9	86	167	2.716	13.33	9.96	74.8	385.5	21.25	745	3,839	2,486	872	449
DF	31	5	85	154	1.413	7.41	4.52	84.8	408.8	10.93	384	1,849	1,279	449	216
OF	32	10	85	152	2.653	14.81	8.22	92.6	455.2	21.71	762	3,743	2,540	891	438
DF	33	1	83	134	.249	1.48	.75	91.0	416.7	1.94	68	312	227	80	36
DF	34	4	85	162	.940	5.93	3.29	98.7	503.6	9.25	325	1,657	1,083	380	194
DF	36	4	86	173	.838	5.93	3.14	109.1	592.0	9.77	343	1,861	1,143	401	218
DF	38	2	86	165	.376	2.96	1.32	126.9	687.1	4.76	167	905	557	195	106
OF	39	1	86	172	.179	1.48	.54	154.6	863.3	2.36	83	463	276	97	54
OF	40	1	84	170	.170	1.48	.51	157.5	863.3	2.29	80	440	268	94	51
OF	42	2	84	164	.308	2.96	.92	172.7	918.3	4.55	160	848	532	187	99
OF	43	1	83	159	.147	1.48	.59	135.8	710.0	2.27	80	417	266	93	49
DF	Totals	145	87	137	71.487	214.81	194.13	54.3	263.2	300.46	10,543	51,101	35,154	12,335	5,979
RA	16	1	89	89	1.061	1.48	2.12	24.0	110.0	1.40	51	233	164	60	27
RA	17	1	90	100	.940	1.48	1.88	30.2	130.0	1.56	57	244	183	67	29
RA	Totals	2	89	94	2.001	2.96	4.00	26.9	119.4	2.96	108	478	347	126	56
BM	13	1	78	67	1.607	1.48	1.61	25.4	70.0	1.08	41	113	127	48	13
ЗМ	16	1	77	96	1.061	1.48	1.06	40.4	120.0	1.13	43	127	133	50	15
BM	Totals	2	78	79	2.668	2.96	2.67	31.3	89.9	2.22	84	240	259	98	28
WH	12	1	76	58	1.886	1.48	1.89	14.7	40.0	.89	28	75	104	33	9
WH	Totals	1	76	58	1.886	1.48	1.89	14.7	40.0	.89	28	75	104	33	9
RC	11	1	84	44	2.245	1.48	2.24	12.0	30.0	.63	27	67	74	31	8
RC	Totals	1	84	44	2.245	1.48	2.24	12.0	30.0	.63	27	67	74	31	8
Totals		151	86	130	80.287	223.70	204.93	52.6	253.6	307.16	10,789	51,961	35,938	12,623	6,079

TC	PLOGSTVB
----	----------

Log Stock Table - MBF

TC PLOGSTVB					Log Stock Table - MBF											
T04N R05W S17 Ty00MC 117.00					Project: CONNECT Acres 117.00								Page Date Time		1 /2023 39:45PM	
s	So Gr	Log	Gross	Def Net	%	Net Volume by Scaling Diameter in Inches										
Ѕрр Т	rt de	Len	MBF	% MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
DF	2N	1 40	4,801	4,7	93 80.2						420	777	1729	1416	392	58
DF	3N	1 12	10		10 .2								10			
DF	3N	1 32	18		18 .3			18								
DF	3N	1 34	12		12 .2			12								
DF	3N	1 36	24		24 .4			24								
DF	3N	1 38	14		14 .2			14								
DF	3N	1 40	972	9	72 16.3			94	331	442	48	33	22			
DF	4N	1 14	2		2 .0			2								
DF	4N	1 16	6		6.1			6								
DF	4N	1 18	4		4 .1			4								
DF	4N	1 20	9		9.1			9								
DF	4N	1 22	3		3.1			3								
DF	4N	1 24	18		.3 .3			18								
DF	4N	1 26	12		.2 12			12								
DF	4N	1 28	12		12 .2			12								
DF	4N	1 30	17		.3 17			17								
DF	4N	1 32	8		8.1			8								
DF	4N	1 34	12		12 .2			12								
DF	4N	1 38	5		5.1			5								
DF	4N	1 40	30		30 .5			22		8						
DF	Total	s	5,987	5,9	79 98.3			290	331	451	469	811	1761	1416	392	58
RA	CF	R 22	5		5 8.9			5								
RA	CF	R 32	7		7 11.8			7								
RA	CF	R 40	44		44 79.3					22	22					
RA	Total	s	56		56 .9			12		22	22					
WH	4N	1 30	9		9 100.0			9								
WH	Total	s	9		9.1			9								
RC	4N	1 28	8		8 100.0			8								
RC	Total	s	8		8.1			8								
BM	CF	R 38	13		13 46.9			13			_					
ВМ	CF	R 40	15		15 53.1				15							
BM	Total	s	28		28 .5			13	15							
Total	All Speci	es	6,087	6,0	79 100.0			331	346	473	491	811	1761	1416	392	58


VOLUME SUMMARY (Shown in MBF) Clear Connection FG-341-2024-W01015-01 August 2023

SPECIES		2 SAW	3 SAW	4 SAW	CAMP RUN	TOTAL
	Cruise Volume	4,793	1,050	136	0	5,979
Develop fir	Hidden D&B (2%)	(96)	(21)	(3)	(0)	(120)
Douglas-fir	NET TOTAL	4,697	1,029	133	0	5,859
	% of Total	80	18	2	0	
	Cruise Volume	0	0	9	0	9
Western	Hidden D&B (2%)	(0)	(0)	(0)	(0)	(0)
Hemlock	NET TOTAL	0	0	9	0	9
	% of Total	0	0	100	0	
	Cruise Volume	0	0	0	56	56
Red Alder	Hidden D&B (5%)	(0)	(0)	(0)	(3)	(3)
Red Aldel	NET TOTAL	0	0	0	53	53
	% of Total	0	0	0	100	
	Cruise Volume	0	0	0	28	28
Bigleaf	Hidden D&B (5%)	(0)	(0)	(0)	(1)	(1)
Maple	NET TOTAL	0	0	0	27	27
	% of Total	0	0	0	100	

Timber Sale Area: Modified Clearcut (117 Acres)

SALE TOTAL

SPECIES	2 SAW	3 SAW	4 SAW	CAMP RUN	TOTAL
Douglas-fir	4,697	1,029	133	0	5,859
Western Hemlock	0	0	9	0	9
Red Alder	0	0	0	53	53
Bigleaf Maple	0	0	0	27	27
Total	4,697	1,029	142	80	5,948

Legend

Legenu
Timber Sale Boundary
Posted Stream Buffer Boundary
L → ODF Ownership Boundary
Right-of-Way Boundary
Surfaced Road
$\equiv \equiv \equiv$ Unsurfaced Road
 New Road Construction
Type-F Stream
Type-N Stream - Perennial
Type-N Stream - Seasonal
Stream Buffer
Tractor Yarding Area
Tractor Landing
tatatatatatatatatatatatatatatatatatata
Gate
₩ ₩ Road Block

Section Lines

40 Foot Contour Band

200 Foot Contour Band

LOGGING PLAN

FOR TIMBER SALE CONTRACT #FG-341-2024-W01015-01 CLEAR CONNECTION PORTIONS OF SECTIONS 17, T4N, R5W, W.M., COLUMBIA COUNTY, OREGON

Forest Grove District GIS September, 2023 This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1:12,000

1 inch = 1,000 feet

APPROXIMATE NET ACRES = 117