

District: Forest Grove

Date: May 25, 2023

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$3,349,787.97	\$0.00	\$3,349,787.97
		Project Work:	(\$207,855.00)
		Advertised Value:	\$3,141,932.97

District: Forest Grove

Date: May 25, 2023

Timber Description

Location:

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	23	0	98
Western Hemlock / Fir	27	0	98

Volume by Grade	2S	3S & 4S 6"- 11"	3S 12"+	Total
Douglas - Fir	5,887	1,405	0	7,292
Western Hemlock / Fir	171	30	12	213
Total	6,058	1,435	12	7,505

Comments: LOCAL POND VALUES, APRIL 2023

WESTERN REDCEDAR AND OTHER CEDARS: STUMPAGE PRICE = POND VALUE - DOUG-FIR LOGGING COST \$814.85 = \$1,146 - \$331.15

RED ALDER AND OTHER HARDWOODS: STUMPAGE PRICE = POND VALUE - DOUG-FIR LOGGING COST \$177.85 = \$509 - \$331.15

BRANDING AND PAINTING ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$5.00/GAL

HAULING COST ALLOWANCE = \$1,250/DAY

OTHER COSTS (WITH PROFIT & RISK ADDED): N/A

OTHER COSTS (NO PROFIT & RISK ADDED):

EQUIPMENT CLEANING: 3 PIECES @ \$1,000/PIECE = \$3,000

MACHINE TIME TO BLOCK/WATERBAR ROADS AND SKID TRAILS: 30 HOURS X \$150/HOUR = \$4,500

MACHINE TIME TO PILE LANDING SLASH: 10 HOURS X \$150/HOUR = \$1,500

TOTAL OTHER COSTS (NO P&R) = \$9,000

SLASH TREATMENT: 35 ACRES X \$250/ACRE = \$8,750

ROAD MAINTENANCE (INCLUDES SPOT ROCKING, GRADING, & ROLLING): MOVE IN: \$2,729.79 GENERAL ROAD MAINT: 11.96 miles X \$2,153.94 = \$25,761.12 TOTAL ROAD MAINTENANCE: \$28,490.91 / 7,505 MBF = \$3.80/MBF

District: Forest Grove

Date: May 25, 2023

	Log	ging Conditions
Combination#: 1	Douglas - Fir Western Hemlock / Fir	53.67% 23.96%
Logging System: yarding distance: tree size:	Cable: Medium Tower >40 - <70 Short (400 ft) Mature / Regen Cut (900 Bft/tree), 3-	Process: Harvester Head Delimbing downhill yarding: No 5 logs/MBF
loads / day: cost / mbf: machines:	12 \$144.53 Log Loader (A) Forwarder Harvester Tower Yarder (Medium)	bd. ft / load: 4600
Combination#: 2	Douglas - Fir Western Hemlock / Fir	46.33% 76.04%
Logging System: yarding distance: tree size: loads / day: cost / mbf:	Shovel Short (400 ft) Mature / Regen Cut (900 Bft/tree), 3- 16 \$135.87	Process: Harvester Head Delimbing downhill yarding: No 5 logs/MBF bd. ft / load: 4600
machines:	Forwarder Harvester	

District: Forest Grove

Date: May 25, 2023

Logging Costs			
Operating Seasons: 2.00 Profit Risk: 15%			
Project Costs: \$207,855.00	Other Costs (P/R): \$0.00		
Slash Disposal: \$8,750.00	Other Costs: \$9,000.00		

Miles of Road		Road Maintenance: \$	3.80
Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	2.0	4.6
Western Hemlock / Fir	\$0.00	2.0	4.0

District: Forest Grove

Date: May 25, 2023

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$140.52	\$3.88	\$1.17	\$138.59	\$0.00	\$42.62	\$1.17	\$2.00	\$1.20	\$331.15
Western H	emlock	/ Fir							
\$137.94	\$3.88	\$1.17	\$159.38	\$0.00	\$45.36	\$1.17	\$2.00	\$1.20	\$352.10

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$784.90	\$453.75	\$0.00
Western Hemlock / Fir	\$0.00	\$544.79	\$192.69	\$0.00

District: Forest Grove

Date: May 25, 2023

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	7,292	\$453.75	\$3,308,745.00
Western Hemlock / Fir	213	\$192.69	\$41,042.97

Gross Tim	Gross Timber Sale Value			
Recovery:	\$3,349,787.97			
Prepared By: MARK SAVAGE	Phone: 503-359-7437			

TIMBER SALE SUMMARY Front Nine #FG-341-2024-W00943-01

- 1. <u>Location</u>: Portions of Sections 19, 20, 29 and 30, T3N, R6W, W.M., Tillamook County, Oregon.
- 2. <u>Type of Sale</u>: The Timber Sale Area is 155 acres, comprised of three Modified Clearcut Units and one Right-of-Way Timber Unit. Unit 1 is 46 acres, Unit 2 is 31 acres, Unit 3 is 77 acres, and Unit 4 is 1 acre. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. <u>Revenue Distribution</u>: 100% BOF; 100% Tillamook County (5601).
- 4. <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS Pro software.
- 5. <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in May of 2023. For more information, see Cruise Report.
- 6. <u>Timber Description</u>: The Timber Sale Area consists of a well-stocked, thinned 62-81 year-old stand of Douglas-fir with minor components of western hemlock, noble fir, and red alder. This timber stand has an average of 240 ft² of basal area, an average Douglas-fir DBH of 23 inches. The estimated average net Douglas-fir volume is approximately 47.2 MBF per acre.
- 7. <u>Topography and Logging Method</u>: Slopes within the Timber Sale Area range from 5% to 80% with variable aspects. Unit 1 is 74% cable-based yarding and 26% ground-based yarding. Unit 2 is 100% ground-based yarding. Unit 3 is 63% cable-based yarding and 37% ground-based yarding. Unit 4 is 100% ground-based yarding. The average cable road length is 500 feet and the maximum is approximately 1,110 feet. The average horizontal skid trail length is 300 feet and the maximum is approximately 500 feet.
- 8. <u>Access</u>: All access to the Timber Sale Area is on surfaced all-weather roads. From Forest Grove, travel north on Highway 47 through Banks then merge onto Highway 26 west-bound and continue for approximately 20 miles. Between the 31 and the 32 mile markers, turn left onto the Salmonberry Road and continue for approximately 6.5 miles to access the eastern portion of Unit 1. Continue on Salmonberry Road for an additional 0.6 miles to access the eastern portion of Unit 2. Continue on Salmonberry Road for an additional 0.2 miles to access the northern portion of Unit 4. Continue on Salmonberry Road for an additional 0.4 miles to access the southern portion of Unit 3.

9. Projects:

Project No. 1: Rocked Road Construction	\$7,157.79
Project No. 2: Road Improvement	\$191,067.25
Project No. 3: Road Vacating	\$9,629.96

Total Credit for all Projects

\$207,855.00

PROJECT COST SUMMARY SHEET

Timber Sale: Sale Number:	Front FG-341-2024		
PROJECT NO. 1: ROCKED ROAD CONSTRU	CTION		
	Road Segment	Length	Cost
	L to M	7+35	\$6,275.16
		7+35 stations	
		0.14 miles	
Total Rock =			
	702 cy	Jaw-run	
		Move-in =	\$231.92
		TOTAL PROJECT COST =	\$6,507.08
		10% FUEL ADJUSTMENT =	\$7,157.79

PROJECT NO. 2: ROAD IMPROVEMENT

-	Road Segment A to B B to C D to E F to G H to I J to K Point N	Length 462+70 46+10 105+30 19+55 58+20 6+20 - 698+05 stations 13.22 miles	Cost \$19,148.00 \$8,891.27 \$67,899.40 \$17,154.77 \$48,259.24 \$4,636.24 \$1,517.80
Total Rock =	649 cy 9,787 cy 72 cy	Jaw-run	
		Move-in =	\$6,190.77
		<u>TOTAL PROJECT COST =</u> <u>10% FUEL ADJUSTMENT =</u>	\$173,697.49 \$191,067.25
PROJECT NO. 3: ROAD VACATING			
	Road Segment V1 to V2 V3 to V4 V5 to V6 V7 to V8	Length 3+57 31+65 1+25 7+95 44+42 stations 0.84 miles	Cost \$1,600.00 \$4,519.75 \$1,176.00 \$1,146.75
		Move-in =	\$312.02
		TOTAL PROJECT COST = 10% FUEL ADJUSTMENT =	\$8,754.52 \$9,629.96

TOTAL CREDITS = \$188,959.09

TOTAL CREDITS WITH 10% FUEL ADJUSTMENT = \$207,855.00

SUMMARY OF CONSTRUCTION COST

Timber Sale	e:	Front Nine	9	_	Sale Number:	FG-341-2024	-W00943-01
Road Segmen	t:	A to B		_	Improvement:	462+70 8.76	stations miles
PROJECT NO. 2: ROAD IMPROVEMENT							
IMPROVEMENT							
Construct roadside landing	3	ea @	\$165.00	per ea =		\$495.00	
Construct tank trap	3	ea @	\$55.00	per ea =		\$165.00	
Construct waterbar	16	ea @	\$27.50	per ea =		\$440.00	
Grade, ditch, & roll	462.70	sta @	\$36.00	per sta =		\$16,657.20	

ROCK

TOTAL IMPROVEMENT COSTS = \$17,757.20

	Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placement/ Processing Cost \$/cy	Total CY	Rock Cost
Surfacing rock						
Roadside landing	Jaw-run	\$1.60	\$2.06	\$1.22	285	\$1,390.80
				Subtotal =	285	\$1,390.80
			Totals	All Rock =	285	
				Jaw-run	285	

TOTAL ROCK COSTS = \$1,390.80

TOTAL PROJECT COST = \$19,148.00

	SUMM	IARY OF C	ONSTRUC	TION COST				
Timber Sale:		Front Nin	е	_				4-W00943-01
Road Segment:		B to C		-	Impr	ovement:	46+10 0.87	stations miles
PROJECT NO. 2: ROAD IMPROVEMENT								
IMPROVEMENT								
Clearing & grubbing (scatter)	0.53	ac @	\$1,078.00	per acre =			\$571.34	
Construct settling pond	3	ea @	\$25.00	per ea =			\$75.00	
Improve roadside landing	1	ea @	\$82.50	per ea =			\$82.50	
Grade, ditch, & roll	46.10	sta @	\$36.00	per sta =			\$1,659.60	
				TOTAL		OVEMEN	<u> COSTS =</u>	\$2,388.44
CULVERTS	_						_	
Culverts and Bands								
18" Diameter	100	lf @	\$20.00	per If =			\$2,000.00	
24" Diameter	50	lf @	\$29.00	per lf =			\$1,450.00	
Markers & Stakes								
Culvert markers	8	ea @	\$10.00	per ea =			\$80.00	
Additional Culvert Cost		_						
Culvert at 46+10, repair inlet	0.5	hrs @	\$175.00	•			\$87.50	
DOOK				-	TOTAL	CULVER	<u> COSTS =</u>	\$3,617.50
ROCK	-			•				
	Rock	Base	Haul Cost	Placemen	t/			
	Size	Cost \$/cy		Processing Cos	-	Total CY	Rock Cost	
Subgrade rock								
Bedding and backfill	1½" - 0	\$2.01	\$12.77	\$0.50		96	\$1,466.88	
⊢¥	_		• ·	Sub	ototal =	96	\$1,466.88	
Surfacing rock							+	
Spot rock	Jaw-run		\$0.90	\$1.22		250	\$930.00	
Roadside landing	Jaw-run	\$1.60	\$0.90	\$1.22	- 1 - 1 - 1	60	\$223.20	
				Sut	ototal =	310	\$1,153.20	
			Totals	All F	Rock =	406		
					1½" - 0	96		
				J	law-run	310		
					TO	TAL ROCI	<u> COSTS =</u>	\$2,620.08
EROSION CONTROL								
Grass seed & fertilizer	0.53	ac @	\$425.00	per ac =			\$225.25	
Straw mulch bale	4	ea @	\$10.00	per ea =			\$40.00	
				TOTAL ERO		CONTRO		\$265.25
						CONTRO	100313 =	φ205.25

TOTAL PROJECT COST = \$8,891.27

	Timber Sale:	SUMMARY OF CONSTRUCTI Front Nine			Sale Number:		1-\\/\00943-01	
	ad Segment:			-	mprovement:	105+30	stations	
			0.01		-	inprovonion.	1.99	miles
ROJECT NO. 2: ROAD IMPRO	OVEMENT							
MPROVEMENT								
learing & grubbing (scatter)		1.21	ac @	\$1,078.00	per acre =		\$1,304.38	
lean culvert inlet & outlet, scatte	er waste	12	ea @	\$25.00	per ea =		\$300.00	
ank Slough End-haul								
Excavate & load		100	cy @	\$1.64	per cy =		\$164.00	
Haul		130	cy @	\$1.00	per cy =		\$130.00	
Compact waste area		130	cy @	\$0.30	per cy =		\$39.00	
nprove turnout		3	ea @	\$33.00	per ea =		\$99.00	
pproach to landing		0.5	sta @		per sta =		\$345.00	
construct roadside landing		1	ea @		per ea =		\$165.00	
nprove landing		2	ea @		per ea =		\$314.00	
Grade, ditch, & roll	1	05.30	sta @	\$36.00	per sta =		\$3,790.80	
		00.00	0.00	<i>QUUICE</i>				
					<u>TOTAL I</u>	MPROVEMEN	IT COSTS =	\$6,651.1
ULVERTS								
ulverts and Bands								
18" Diameter		30	lf @	\$20.00	per lf =		\$600.00	
larkers & Stakes								
Culvert markers		5	ea @	\$10.00	per ea =		\$50.00	
dditional Culvert Cost								
Culvert at 89+60, repair inlet		0.5	hrs @	\$175.00	per hr =		\$87.50	
					тс	TAL CULVER	T COSTS =	\$737.50
OCK								
		Rock	Base	Haul Cost	Placement/			
						Total CY	Rock Cost	
		Size	Cost \$/cy	\$/cy	Processing Cost \$	/cy		
Subgrade rock								
Bedding and backfill	1	1⁄2" - 0	\$2.01	\$9.35	\$0.50	24	\$284.64	
					Subtot	al = 24	\$284.64	
Surfacing rock		aw-run	\$6.97	\$3.00	\$1.22	4,422	\$49,482.18	
Junction		aw-run	\$6.97	\$3.00	\$1.22	144	\$1,611.36	
Turnout		aw-run	\$6.97	\$3.00	\$1.22	57	\$637.83	
Traction rock	1	½" - 0	\$2.01	\$9.35	\$0.50	337	\$3,996.82	
Approach to landing		aw-run	\$6.97	\$3.00	\$1.22	21	\$234.99	
Roadside landing		aw-run	\$6.97	\$3.00	\$1.22	95	\$1,063.05	
Landing		aw-run	\$6.97	\$3.00	\$1.22	240	\$2,685.60	
Landing	Ja	aw-run	φ0.97	φ3.00	Subtot	-		
					300101	al = 5,316	\$59,711.83	
				Totals	All Roc	k = 5,340		
					4471	0.001		
					11/2	- 0 361		
					1½ Jaw-			

EROSION CONTROL Grass seed & fertilizer

______ 1.21 ac @ \$425.00

TOTAL EROSION CONTROL COSTS = \$514.25

per ac =

TOTAL PROJECT COST = \$67,899.40

\$514.25

				CTION COST	- · · · ·		
Timber Sale		Front Nin	е	-	Sale Number:		
Road Segmen	t:	F to G		-	Improvement:	<u>19+55</u> 0.37	stations miles
						0.37	miles
PROJECT NO. 2: ROAD IMPROVEMENT							
IMPROVEMENT							
Roadside brushing	0.37	mi @	\$1,550.00	per mi =		\$573.50	
Clean culvert inlet & outlet, scatter waste Cutslope layback	4	ea @	\$25.00	per ea =		\$100.00	
Excavate & load	238	су @	\$1.64	per cy =		\$390.32	
Haul	309	су @		per cy =		\$182.31	
Shape and compact waste material	309	cy @		per cy =		\$92.70	
Construct turnaround	1	ea @	\$82.50	per ea =		\$82.50	
Construct roadside landing	2	ea @	\$165.00	per ea =		\$330.00	
Excavate, place and & compact fill	250	су @		per cy =		\$1,135.00	
Improve landing	1	ea @		per ea =		\$110.00	
Grade, ditch, & roll	19.55	sta @	\$36.00	per sta =		\$703.80	
				TOTA		IT COSTS =	\$3,700.13
CULVERTS							
Culverts and Bands	20	14 @	¢00.00			¢000.00	
18" Diameter Markers & Stakes	30	lf @	\$20.00	per lf =		\$600.00	
Culvert markers	4	ea @	\$10.00	201 00		\$40.00	
Cuivent markers	4	ea 🤐	φ10.00	per ea =		+	AO 4 O OO
ROCK					TOTAL CULVER	(100515 =	\$640.00
	Deals	Deee		Discomen	•/		
	Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placemen Processing Cos	I l otal (CY	Rock Cost	
	Size		<i>ψ/</i> С у	Trocessing Cos	st ψ/Cy		
Subgrade rock			· · · ·	1 • • •			
Bedding and backfill	1½" - 0	\$2.01	\$9.59	\$0.50	24	\$290.40	
	-			Sub	ototal = 24	\$290.40	
Surfacing rock	Jaw-run	\$6.97	¢2.20	\$1.22	821	¢0.254.40	
Surfacing rock Turnaround	Jaw-run		\$3.20 \$3.20	\$1.22	20	\$9,351.19 \$227.80	
Roadside landing	Jaw-run		\$3.20	\$1.22	190	\$2,164.10	
Landing	Jaw-run	\$6.97	\$3.20	\$1.22	60	\$683.40	
Landing	Jaw Tun	ψ0.57	ψ0.20		ototal = 1,091	\$12,426.49	
			Totals	All F	Rock = 1,115		
					1½" - 0 24		
				J	aw-run 1,091		
						K COSTS =	\$12,716,89
EROSION CONTROL					<u>101/121/00</u>		ψ12,7 10.00
Grass seed & fertilizer	0.23	ac @	\$425.00	per ac =		\$97.75	
				·			A A 7 7 7 7 7
				TOTALER	OSION CONTRO	DLCOSIS =	\$97.75

TOTAL PROJECT COST = \$17,154.77

			CONSTRUC	TION COS			
Timber Sale:		Front Nine	e	-	Sale Number:	FG-341-202	4-W00943-01
Road Segment:		H to I		_	Improvement:	58+20	stations
				-		1.10	miles
PROJECT NO. 2: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	0.67	ac @	\$1,078.00	per acre =	:	\$722.26	
Roadside brushing	1.10	mi @	\$1,550.00	per mi =		\$1,705.00	
Clean culvert inlet & outlet, scatter waste	3	ea @	\$25.00	per ea =		\$75.00	
Improve turnout	3	ea @	\$33.00	per ea =		\$99.00	
Improve turnaround	1	ea @	\$41.25	per ea =		\$41.25	
Construct roadside landing	1	ea @	\$165.00	per ea =		\$165.00	
Improve roadside landing	1	ea @	\$82.50	per ea =		\$82.50	
Improve landing	1	ea @	\$110.00	per ea =		\$110.00	
Grade, ditch, & roll	58.20	sta @	\$36.00	per sta =		\$2,095.20	
					TOTAL IMPROVEMEN	IT COSTS =	\$5,095.21
CULVERTS						_	
Culverts and Bands							
18" Diameter	120	lf @	\$20.00	per lf =		\$2,400.00	
24" Diameter	120	lf @	\$29.00	per If =		\$3,480.00	
Markers & Stakes							
Culvert markers	10	ea @	\$10.00	per ea =		\$100.00	
					TOTAL CULVER	T COSTS =	\$5,980.00
ROCK							

	Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placement/ Processing Cost \$/cy	Total CY	Rock Cost
Subgrade rock						
Bedding and backfill	1½" - 0	\$2.01	\$9.29	\$0.50	168	\$1,982.40
				Subtotal =	168	\$1,982.40
Surfacing rock						
Surfacing rock	Jaw-run	\$6.97	\$4.25	\$1.22	2,444	\$30,403.36
Junction	Jaw-run	\$6.97	\$4.25	\$1.22	72	\$895.68
Turnout	Jaw-run	\$6.97	\$4.25	\$1.22	57	\$709.08
Turnaround	Jaw-run	\$6.97	\$4.25	\$1.22	14	\$174.16
Construct roadside landing	Jaw-run	\$6.97	\$4.25	\$1.22	95	\$1,181.80
Roadside landing	Jaw-run	\$6.97	\$4.25	\$1.22	60	\$746.40
Landing	Jaw-run	\$6.97	\$4.25	\$1.22	60	\$746.40
				Subtotal =	2,802	\$34,856.88

Totals	All Rock =	2,970
	1½" - 0	168
	Jaw-run	2,802

<u>TOTAL ROCK COSTS =</u> \$36,839.28

EROSION CONTROL					
Grass seed & fertilizer	0.67	ac @	\$425.00	per ac =	\$284.75
Straw mulch bale	6	ea @	\$10.00	per ea =	\$60.00

TOTAL EROSION CONTROL COSTS = \$344.75

TOTAL PROJECT COST = \$48,259.24

Timber Sale:		IARY OF C		TION COST	Sale	Number:	FG-341-202	24-W00943-01
Road Segment:		J to K		-	Impro	ovement:	6+20	stations
							0.12	miles
PROJECT NO. 2: ROAD IMPROVEMENT								
IMPROVEMENT								
Clearing & grubbing (scatter)	0.08	ac @	\$1,078.00	per acre =			\$86.24	
Roadside brushing	0.12	mi @	\$1,550.00	per mi =			\$186.00	
Improve landing	1	ea @	\$110.00	per ea =			\$110.00	
Grade, ditch, & roll	6.20	sta @	\$36.00	per sta =			\$223.20	
				TOTAL	IMPRO		T COSTS =	\$605.44
ROCK								· · · · · · · · · · · · · · · · · · ·
	Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placement Processing Cos		Total CY	Rock Cost	
Surfacing rock								
Surfacing rock	Jaw-run	\$6.97	\$4.30	\$1.22		260	\$3,247.40	
Landing	Jaw-run	\$6.97	\$4.30	\$1.22		60	\$749.40	
				Sub	total =	320	\$3,996.80	
			Totals		ock = aw-run	320 320		
					<u>тот</u>	AL ROCH	<u> COSTS =</u>	\$3,996.80
EROSION CONTROL Grass seed & fertilizer	0.08	ac @	\$425.00	per ac =			\$34.00	
				<u>TOTAL ERO</u>	SION (CONTRO	L COSTS =	\$34.00

TOTAL PROJECT COST = \$4,636.24

	SUMM	ARY OF CO	ONSTRUCT	ION COST			
Timber Sale:		Front Nin	е		Sale Number:	FG-341-2	024-W00943-01
Road Segment:		L to M		-	Construction:		stations
						0.14	miles
PROJECT NO. 1: ROCKED ROAD CONS	STRUCTI	ON					
CONSTRUCTION							
Clearing & grubbing (scatter)	0.85	ac @	\$1,078.00	per ac =		\$916.30	
Balanced road construction	3.80	sta @	\$110.00	per sta =		\$418.00	
Drift	3.55	sta @	\$180.00	per sta =		\$639.00	
Turnaround	1	ea @	\$82.50	per ea =		\$82.50	
Landing	1	ea @	\$314.00	per ea =		\$314.00	
Grade, ditch, & roll	7.35	sta @		per sta =		\$264.60	
				TOTAL CO	ONSTRUCTION	V COSTS =	\$2,634.40
ROCK	_						
		_		Placemer	nt/		1
	Rock	Base	Haul Cost	Processir		Rock Cost	
	Size	Cost \$/cy	\$/cy	Cost \$/c	•		
Surfacing rock							4
Base rock	Jaw-run	\$1.60	\$2.06	\$1.22	478	\$2,332.64	
Junction	Jaw-run	\$1.60	\$2.06	\$1.22	24	\$117.12	
Turnaround	Jaw-run		\$2.06	\$1.22	20	\$97.60	
Landing	Jaw-run	\$1.60	\$2.06	\$1.22	180	\$878.40	
				Subto	tal = 702	\$3,425.76	
			Totals	All Ro	ck = 702	1	
			TOLAIS		-run 702		
				Juli	•		
					TOTAL ROCH	< COSTS =	\$3,425.76
EROSION CONTROL							
Grass seed & fertilizer	0.43	ac @	\$500.00	per ac =		\$215.00	_
			<u>T(</u>	OTAL EROS	ION CONTRO	L COSTS =	\$215.00
				Ţ	OTAL PROJE	<u>CT COST =</u>	\$6,275.16

SUMMARY OF CONSTRUCTION COST Timber Sale: Front Nine Sale Number: FG-341-2024-W00943-01 Road Segment: Point N PROJECT NO. 2: ROAD IMPROVEMENT Additional Culvert Cost Trim culvert outlet 1 hrs @ \$175.00 per hr = \$175.00 TOTAL CULVERT COSTS = \$175.00 ROCK Haul Cost Placement/ Base Rock Size Total CY Rock Cost Cost \$/cy Processing Cost \$/cy \$/cy Subgrade rock Energy dissipator \$1,342.80 \$1,342.80 Large Riprap \$3.87 \$13.18 \$1.60 72 Subtotal = 72 Totals All Rock = 72 Large Riprap 72 TOTAL ROCK COSTS = \$1,342.80

TOTAL PROJECT COST = \$1,517.80

	SUMMAR'	Y OF CO	NSTRUC [®]	TION COS	т		
Timber Sale:	Timber Sale	e:		Sale	FG-341-20	-2024-W00943-01	
Road Segment:	V1 to V2				Vacating:	3+57 0.07	stations miles
PROJECT NO. 3: ROAD VAC	ATING						
Construct tank trap	1	ea @	\$55.00	per ea =		\$55.00	
Construct waterbar	3	ea @	\$27.50	per ea =		\$82.50	
Rip rocked road surface	3.57	sta @	\$50.00	per sta =		\$178.50	
Stream channel development	250	су @	\$3.28	per sta =		\$820.00	
Rip & narrow landing	1	ea @	\$150.00	per ea =		\$150.00	
Remove existing culverts	1	ea @	\$150.00	per ea =		\$150.00	
Grass seed & fertilizer	0.16	ac @	\$425.00	per ac =		\$68.00	
Mulch	0.16	ac @	\$600.00	per ac =		\$96.00	
				<u>TOTA</u>		T COST =	\$1,600.00

	SUMMARY	OF CO	NSTRUC	TION COS	ST		
Timber Sale:	Timber Sale:		Sale Number: FG-341-2024-W00943-				
Road Segment:	V3 to V4		-		Vacating:	31+65	stations
						0.60	miles
PROJECT NO. 3: ROAD VACA	TING						
Construct tank trap	1	ea @	\$55.00	per ea =		\$55.00	
Construct waterbar	16	ea @	\$27.50	per ea =		\$440.00	
Rip rocked road surface	31.65	sta @	\$50.00	per sta =		\$1,582.50	
Stream channel development	200	су @	\$3.28	per sta =		\$656.00	
Construct ditchout	1	ea @	\$150.00	per ea =		\$150.00	
Remove existing culverts	1	ea @	\$150.00	per ea =		\$150.00	
Grass seed & fertilizer	1.45	ac @	\$425.00	per ac =		\$616.25	
Mulch	1.45	ac @	\$600.00	per ac =		\$870.00	
				<u>TOTA</u>	L PROJE	<u>CT COST =</u>	\$4,519.75

SUMMARY OF CONSTRUCTION COST

Timber Sale:	Timber Sale:			Sale	Number:	FG-341-2	024-W00943-01
Road Segment:	V5 to V6				Vacating:	1+25 0.02	stations miles
PROJECT NO. 3: ROAD VAC	ATING						
Rip rocked road surface	1.25	sta @	\$50.00	per sta =		\$62.50	
Stream channel development	275	су @	\$3.28	per sta =		\$902.00	
Remove existing puncheon	1	ea @	\$150.00	per ea =		\$150.00	
Grass seed & fertilizer	0.06	ac @	\$425.00	per ac =		\$25.50	
Mulch	0.06			per ac =		\$36.00	
				<u>T0TA</u>	L PROJE	<u>CT COST =</u>	\$1,176.00

	SUMMARY	OF CO	NSTRUCTION COST						
Timber Sale:	Timber Sale:		Sale Number: FG-341-2024-W0094						
Road Segment:	V7 to V8		Vaca	ating: <u>7+95</u> stations					
				0.15miles					
PROJECT NO. 3: ROAD VACA									
Construct tank trap	1	ea @	\$55.00 per ea =	\$55.00					
Construct waterbar	6	ea @	\$27.50 per ea =	\$165.00					
Rip rocked road surface	7.95	sta @	\$50.00 per sta =	\$397.50					
Rip & narrow landing	1	ea @	\$150.00 per ea =	\$150.00					
Grass seed & fertilizer	0.37	ac @	\$425.00 per ac =	\$157.25					
Mulch	0.37	ac @	\$600.00 per ac =	\$222.00					
			<u>TOTAL PR</u>	OJECT COST = \$1,146.75					

 Timber Sale:
 Front Nine
 Sale Number:
 FG-341-2024-W00943-01

PROJECT No. 1, 2 & 3 MOVE-IN, WITHIN AREA MOVE, & CLEANING COSTS

Equipment	Total	
Brush Cutter	\$618.89	
Grader	\$1,036.40	
Roller (smooth/grid) & Compactor	\$618.89	
Excavator (Large) - Equipment Cleaning	\$2,036.40	
Dozer (Large) - Equipment Cleaning	\$2,080.98	
Dump Truck (10cy +)	\$172.65	
Water Truck (2,500 Gal)	\$170.50	
	TOTAL MOVE-IN COSTS =	\$6,734.71

QUARRY DEVELOPMI	ENT & CRU	SHING COST 3	SUMMARY	
Timber Sale:	Fro	nt Nine		
Sale Number:	FG-341-202	24-W00943-01	-	
Quarry Name:	Salm	nonback	_	
Jaw-run: _ Riprap:	9,192 cy 72 cy	_(truck measure (truck measure	,	
Total truck yardage:			-)	
Total in place yardage:	7,501 cy	-		
Oversize - Pile:	5%			
Swell:	130%	_		
Compaction:	116%	_		
Move-in & Other Base Cost				
Quarry development & overburden remov	val			\$1,444.44
Equipment cleaning & move in excavator				\$2,036.40
Equipment cleaning & move in dozer				\$2,002.30
Move in & setup drill				\$623.52
Move in loader				\$904.07
Move in & setup crusher				\$1,002.30
Move in Dump Trucks				\$504.00
Clean up quarry				\$500.00
			Subtotal =	\$9,017.03
			Per CY =	\$0.97/cy
Jaw-run Base Cost				+
Drill & shoot \$2.80	/ cy x	7,443	cy =	\$20,840.40
Oversize - Pile \$0.80	/ cy x	484	cy =	\$387.20
Load crusher \$0.80	/ cy x	9,191	cy =	\$7,352.80
Crush (Jaw-run) \$2.10	/ cy x	9,191	cy =	\$19,301.10
Load dump truck \$0.80	/ cy x	9,191	cy =	\$7,352.80
			Subtotal =	\$55,234.30
			Per CY =	\$6.00/cy
Riprap Base Cost				•
Rip rock \$2.10	/ cy x	72	_cy =	\$151.20
Load dump truck \$0.80	/ cy x	72	_cy =	\$57.60
			Subtotal =	\$208.80
			Per CY =	\$2.90/cy
Jaw-run Base Cost =	\$6.97/cy			
Riprap Base Cost =		-		
	<i>wordtroy</i>	-		

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

Timber S Sale Numl Stockpile Na	ber:	Front FG-341-2024 Carr		-	
-Jaw Total truck yarda	_	1,297 cy 1,297 cy	_(truck measu	re)	
Move-in					
Move in loader					\$918.61
Move in Dump Trucks					\$125.07
·				Subtotal =	\$1,043.68
				Per CY =	\$0.80/cy
Jaw-run Base Cost				_	
Load dump truck \$0.80)	/ cy x	1,297	cy = Subtotal = Per CY =	\$1,037.60 \$1,037.60 \$0.80

Jaw-Run Cost = **\$1.60/cy**

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

	Timber Sale: Sale Number: Stockpile Name:	FG-341-202	t Nine 4-W00943-01 eek Ridge	_	
	1 1/2" - 0: Total truck yardage:	649 cy 649 cy	_(truck meas	ure)	
<u>Move-in</u> Move in loader Move in Dump Trucl	ks				\$686.44 <u>\$100.32</u> \$786.76
1 1/2"-0 Base Cost				Per CY =	\$1.21/cy
Load dump truck	\$0.80	/ cy x	649	_cy = Subtotal = _ Per CY =	\$519.20 \$519.20 \$0.80

1 1/2"-0 Cost = **\$2.01/cy**

CRUISE REPORT Front Nine #FG-341-2024-W00943-01

1. LOCATION:

Portions of Sections 19, 20, 29 and 30, T3N, R6W, W.M., Tillamook County, Oregon.

2. CRUISE DESIGN:

The timber cruise was designed using an estimated coefficient of variation (CV) of 52%, average stand diameter of 14 inches, sampling error (SE) of 9% and a minimum of 100 grade trees.

3. SAMPLING METHOD:

The Timber Sale Area was cruised in May of 2023 with 33 variable radius grade plots using a 40 BAF prism. Plots were laid out as follows: Unit 1 & Unit 2 = 6 chain x 5 chain grid, and Unit 3 = 6 chain x 6 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

4. CRUISE RESULTS:

198 trees were measured and graded producing a standard error of 5.6% on the Douglas-fir Basal Area and 5.7% on the Douglas-fir Net Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following the Official Log Scaling and Grading Rules as adopted by the NW Log Rules Advisory Group. 40 foot segments were favored.

- a) **Height Standards:** Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors: Measured for each grade tree using a form point of 16 feet.

6. DATA PROCESSING:

- a) **Volumes and Statistics:** Cruise estimates and sampling statistics were derived from SuperAce 2008 cruise software.
- b) **Deductions:** The following percent volume deductions are by species to account for the hidden defect and breakage. For conifers two percent was deducted.
- **7. CRUISERS:** The sale was cruised by ODF cruisers Shamus Smith and Colton Turner.

Prepared by: Mark Savage 5-22-2023

Reviewed by: Mark Savage 5-22-2023

	FATS					OJECT : OJECT	STATIS FRN	TICS TNINE			PAGE DATE	1 5/18/2023
WP	RGE	SC	TRACT		TYPE		AC	RES	PLOTS	TREES	CuFt	BdFt
T3N T3N T3N	R6 R6W R6W	19 29 29	00U3 00U1 00U2	mbined	00MC 00MC 00MC			154.00	33	204	S	W
						TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
]	PLOTS	TREES		PER PLOT		TREES		TREES		
	ISE COUNT DREST NT NKS		33 33	204 204		6.2 6.2		14,015		1.5		
					STA	ND SUMM	ARY					
			AMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOU	G FIR		193	83.6	22.7	121	49.2	234.5	48,340	48,175	10,520	10,520
	G FIR-S		6	5.5	15.5	40	1.8	7.2	·		,	,
NOB	FIR		2	.3	38.7	165	0.4	2.3	683	683	127	127
WHE	EMLOCK		3	1.6	20.2	115	0.8	3.7	729	729	165	165
тот	AL		204	91.0	22.3	116	52.4	247.6	49,752	49,587	10,812	10,812
CL SD:	68.1 1.0		COEFF VAR.%	S.E.%	L	SAMPLI OW	E TREES - AVG	BF HIGH	:	# OF TREES R 5	EQ. 10	INF. POP.
DOU	IG FIR		68.2	4.9		812	854	896				
DOU	G FIR-S											
DOU NOB			32.0	30.0		1,792	2,560	3,328				
NOB WHE	FIR EMLOCK		59.0	40.8		318	537	756		212	52	
NOB WHE TOT	FIR EMLOCK AL		59.0 73.0			318 798	537 841	756 884		213	53	
NOB WHE TOT CL	FIR EMLOCK AL 68.1		59.0 73.0 COEFF	40.8 5.1		318 798 SAMPLI	537 <i>841</i> E TREES -	756 <i>884</i> CF		# OF TREES R	EQ.	INF. POP.
NOB WHE TOT CL SD:	FIR EMLOCK CAL 68.1 1.0		59.0 73.0 COEFF VAR.%	40.8 5.1 S.E.%	L	318 798 SAMPLI OW	537 <i>841</i> E TREES - AVG	756 <i>884</i> CF HIGH				INF. POP.
NOB WHE TOT CL SD: DOU	FIR EMLOCK AL 68.1 1.0 IG FIR		59.0 73.0 COEFF	40.8 <i>5.1</i>	L	318 798 SAMPLI	537 <i>841</i> E TREES -	756 <i>884</i> CF		# OF TREES R	EQ.	INF. POP.
NOB WHE TOT CL SD: DOU	FIR EMLOCK CAL 68.1 1.0 IG FIR IG FIR-S		59.0 73.0 COEFF VAR.%	40.8 5.1 S.E.%	I	318 798 SAMPLI OW	537 <i>841</i> E TREES - AVG	756 <i>884</i> CF HIGH		# OF TREES R	EQ.	2. INF. POP. 1.
NOB WHE TOT CL SD: DOU DOU NOB	FIR EMLOCK CAL 68.1 1.0 IG FIR IG FIR-S		59.0 73.0 COEFF VAR.% 59.5	40.8 5.1 S.E.% 4.3	<u>I</u>	318 798 SAMPLI OW 172	537 <i>841</i> E TREES - <u>AVG</u> 180	756 <i>884</i> CF HIGH 187		# OF TREES R	EQ.	INF. POP.
NOB WHE TOT CL SD: DOU DOU NOB	FIR EMLOCK AL 68.1 1.0 G FIR G FIR-S FIR EMLOCK		59.0 73.0 COEFF VAR.% 59.5 29.8	40.8 5.1 S.E.% 4.3 27.9	L	318 798 SAMPLI OW 172 341	537 841 E TREES - AVG 180 473	756 884 CF HIGH 187 604		# OF TREES R	EQ.	INF. POP. 1
NOB WHE TOT CL SD: DOU DOU NOB WHE	FIR EMLOCK AL 68.1 1.0 IG FIR IG FIR FIR EMLOCK AL		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9	40.8 5.1 S.E.% 4.3 27.9 37.3	L	318 798 SAMPLI OW 172 341 75 169	537 841 E TREES - AVG 180 473 120 176	756 884 CF HIGH 187 604 165		# OF TREES R	2EQ. 10 41	INF. POP.
NOB WHE TOT CL SD: DOU DOU NOB WHE TOT	FIR EMLOCK AL 68.1 1.0 IG FIR IG FIR FIR EMLOCK AL		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2	40.8 5.1 S.E.% 4.3 27.9 37.3		318 798 SAMPLI OW 172 341 75	537 841 E TREES - AVG 180 473 120 176	756 884 CF HIGH 187 604 165		# OF TREES R 5 164	2EQ. 10 41	INF. POP. 1 <i>J.</i> INF. POP.
NOB WHE TOT CL SD: DOU DOU NOB WHE TOT CL SD:	FIR EMLOCK AL 68.1 1.0 IG FIR IG FIR-S FIR EMLOCK AL 68.1		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2 COEFF	40.8 5.1 <u>S.E.%</u> 4.3 27.9 37.3 4.5		318 798 SAMPLI OW 172 341 75 169 TREES/A	537 841 E TREES - AVG 180 473 120 176 ACRE	756 884 CF HIGH 187 604 165 <i>184</i>		# OF TREES R 5 164 # OF PLOTS R	2EQ. 10 41 REQ.	INF. POP. 1 <i>J.</i> INF. POP.
NOB WHE TOT CL SD: DOU DOU NOB WHE TOT CL SD: DOU DOU	FIR EMLOCK AL 68.1 1.0 IG FIR G FIR-S FIR EMLOCK AL 68.1 1.0 IG FIR IG FIR-S		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2 COEFF VAR.% 66.9 351.9	40.8 5.1 S.E.% 4.3 27.9 37.3 4.5 S.E.% 11.6 61.2		318 798 SAMPLI OW 172 341 75 169 TREES/2 OW 74 2	537 841 E TREES - AVG 180 473 120 176 ACRE AVG 84 6	756 884 CF HIGH 187 604 165 184 HIGH 93 9		# OF TREES R 5 164 # OF PLOTS R	2EQ. 10 41 REQ.	INF. POP. 1 <i>J.</i> INF. POP.
NOB WHE TOT CL SD: DOU DOU NOB WHE TOT CL SD: DOU DOU NOB	FIR EMLOCK AL 68.1 1.0 1G FIR G FIR-S FIR MLOCK AL 68.1 1.0 IG FIR G FIR-S FIR		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2 COEFF VAR.% 66.9 351.9 410.4	40.8 5.1 S.E.% 4.3 27.9 37.3 4.5 S.E.% 11.6 61.2 71.4		318 798 SAMPLI OW 172 341 75 169 TREES/2 OW 74 2 0	537 841 E TREES - AVG 180 473 120 176 ACRE AVG 84 6 0	756 884 CF HIGH 187 604 165 184 HIGH 93 9 0		# OF TREES R 5 164 # OF PLOTS R	2EQ. 10 41 REQ.	INF. POP. 1 <i>J.</i> INF. POP.
NOB WHE TOT CL SD: DOU DOU NOB WHE TOT CL SD: DOU DOU NOB	FIR EMLOCK AL 68.1 1.0 G FIR G FIR-S FIR G FIR-S G FIR G FIR-S G FIR G FIR-S FIR EMLOCK		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2 COEFF VAR.% 66.9 351.9 410.4 345.0	40.8 5.1 S.E.% 4.3 27.9 37.3 4.5 S.E.% 11.6 61.2 71.4 60.0		318 798 SAMPLI OW 172 341 75 169 TREES/2 OW 74 2 0 1	537 841 E TREES - AVG 180 473 120 176 ACRE AVG 84 6 0 2	756 884 CF HIGH 187 604 165 184 HIGH 93 9 0 3		# OF TREES R 5 164 # OF PLOTS R 5	2EQ. 10 41 REQ. 10	INF. POP. 1 <i>I</i> INF. POP. 1
NOB WHE TOT CL SD: DOU DOU NOB WHE TOT CL SD: DOU DOU NOB WHE TOT	FIR EMLOCK AL 68.1 1.0 G FIR G FIR-S FIR MLOCK AL G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S G FIR-S G FIR-S G FIR-S G FIR-S G FIR-S G FIR G FIR-S G FIR G FIR-S G FIR G FIR-S G FIR G FIR-S G FIR G FIR-S G		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2 COEFF VAR.% 66.9 351.9 410.4 345.0 75.8	40.8 5.1 S.E.% 4.3 27.9 37.3 4.5 S.E.% 11.6 61.2 71.4		318 798 SAMPLI OW 172 341 75 169 TREES/ OW 74 2 0 1 79	537 841 E TREES - AVG 180 473 120 176 ACRE AVG 84 6 0 2 91	756 884 CF HIGH 187 604 165 184 HIGH 93 9 0 3 103	-	# OF TREES R 5 164 # OF PLOTS R 5 230	2EO. 10 41 REQ. 10 57	INF. POP. 1. <i>I</i> a INF. POP. 1. 2a
NOB WHE TOT CL SD: DOU DOU NOB WHE TOT CL SD: DOU DOU NOB WHE TOT	FIR EMLOCK AL 68.1 1.0 G FIR G FIR-S FIR MLOCK AL G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S G FIR-S G FIR-S G FIR-S G FIR-S G FIR G FIR-S G FIR-S G FIR G FIR G FIR-S G FIR G FIR G FIR G FIR-S G FIR G FIR G FIR-S G FIR G FI		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2 COEFF VAR.% 66.9 351.9 410.4 345.0 75.8 COEFF	40.8 5.1 8.E.% 4.3 27.9 37.3 4.5 8.E.% 11.6 61.2 71.4 60.0 13.2	I	318 798 SAMPLI OW 172 341 75 169 TREES/ OW 74 2 0 1 79 BASAL	537 841 E TREES - AVG 180 473 120 176 ACRE AVG 84 6 0 2 91 AREA/AC	756 884 CF HIGH 187 604 165 184 HIGH 93 9 0 3 103 RE	-	# OF TREES R 5 164 # OF PLOTS R 5 230 # OF PLOTS R	2EQ. 10 41 2EQ. 10 57 257 257	INF. POP. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
NOB WHE TOT CL SD: DOU DOU NOB WHE TOT CL SD: CL SD:	FIR EMLOCK AL 68.1 1.0 IG FIR G FIR 68.1 1.0 IG FIR IG FIR IG FIR 5 FIR G FIR-S FIR EMLOCK AL 68.1 1.0		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2 COEFF VAR.% 66.9 351.9 410.4 345.0 75.8	40.8 5.1 S.E.% 4.3 27.9 37.3 4.5 S.E.% 11.6 61.2 71.4 60.0	I	318 798 SAMPLI OW 172 341 75 169 TREES/ OW 74 2 0 1 79	537 841 E TREES - AVG 180 473 120 176 ACRE AVG 84 6 0 2 91 AREA/AC AVG	756 884 CF HIGH 187 604 165 184 HIGH 93 9 0 3 103	-	# OF TREES R 5 164 # OF PLOTS R 5 230	2EO. 10 41 REQ. 10 57	INF. POP. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
NOB WHE TOT CL SD: DOU DOU NOB WHE TOT CL SD: CL SD: CL SD: DOU	FIR EMLOCK AL 68.1 1.0 G FIR G FIR-S FIR MLOCK AL G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S G FIR-S G FIR-S G FIR-S G FIR-S G FIR G FIR-S G FIR-S G FIR G FIR G FIR-S G FIR G FIR G FIR G FIR-S G FIR G FIR G FIR-S G FIR G FI		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2 COEFF VAR.% 66.9 351.9 410.4 345.0 75.8 COEFF VAR.%	40.8 5.1 S.E.% 4.3 27.9 37.3 4.5 S.E.% 11.6 61.2 71.4 60.0 13.2 S.E.%	I	318 798 SAMPLI OW 172 341 75 169 TREES/ OW 74 2 0 1 79 BASAL 2 OW	537 841 E TREES - AVG 180 473 120 176 ACRE AVG 84 6 0 2 91 AREA/AC	756 884 CF HIGH 187 604 165 184 HIGH 93 9 0 3 103 RE HIGH	-	# OF TREES R 5 164 # OF PLOTS R 5 230 # OF PLOTS R	2EQ. 10 41 2EQ. 10 57 257 257	INF. POP. 1. <i>I</i> a INF. POP. 1. 2a
NOB WHE TOT CL SD: DOU NOB WHE TOT CL SD: CL SD: CL SD: CL SD:	FIR EMLOCK AL 68.1 1.0 10 FIR 10 FIR 50 FIR 68.1 1.0 10 FIR 68.1 1.0 10 FIR 50		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2 COEFF VAR.% 66.9 351.9 410.4 345.0 75.8 COEFF VAR.% 32.2	40.8 5.1 S.E.% 4.3 27.9 37.3 4.5 S.E.% 11.6 61.2 71.4 60.0 13.2 S.E.% 5.6	I	318 798 SAMPLI OW 172 341 75 169 TREES/ OW 74 2 0 1 79 BASAL 2 OW 221	537 841 E TREES - AVG 180 473 120 176 ACRE AVG 84 6 0 2 91 AREA/AC AVG 234	756 884 CF HIGH 187 604 165 184 HIGH 93 9 0 3 103 RE HIGH 248	-	# OF TREES R 5 164 # OF PLOTS R 5 230 # OF PLOTS R	2EQ. 10 41 2EQ. 10 57 257 257	INF. POP. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
NOB WHE TOT CL SD: DOU DOU NOB WHE TOT CL SD: CL SD: CL SD: DOU DOU NOB WHE	FIR EMLOCK AL 68.1 1.0 G FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S G FIR G FIR-S G FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2 COEFF VAR.% 66.9 351.9 410.4 345.0 75.8 COEFF VAR.% 32.2 215.6 399.8 321.4	40.8 5.1 S.E.% 4.3 27.9 37.3 4.5 S.E.% 11.6 61.2 71.4 60.0 13.2 S.E.% 5.6 37.5 69.5 55.9	I	318 798 SAMPLI OW 172 341 75 169 TREES/ OW 74 2 0 1 79 BASAL 2 OW 221 4 1 2	537 841 E TREES - AVG 180 473 120 176 ACRE AVG 84 6 0 2 91 AREA/AC AVG 234 7 2 4	756 884 CF HIGH 187 604 165 184 HIGH 93 9 0 3 103 RE HIGH 248 10 4 6	-	# OF TREES R 5 164 # OF PLOTS R 5 230 # OF PLOTS R 5	2EQ. 10 41 REQ. 10 57 REQ. 10	INF. POP. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
NOB WHE TOT CL SD: DOU NOB WHE TOT CL SD: CL SD: CL SD: DOU DOU NOB	FIR EMLOCK AL 68.1 1.0 G FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S G FIR G FIR-S G FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2 COEFF VAR.% 66.9 351.9 410.4 345.0 75.8 COEFF VAR.% 32.2 215.6 399.8	40.8 5.1 S.E.% 4.3 27.9 37.3 4.5 S.E.% 11.6 61.2 71.4 60.0 13.2 S.E.% 5.6 37.5 69.5	I	318 798 SAMPLI OW 172 341 75 169 TREES/ OW 74 2 0 1 79 BASAL 2 OW 221 4 1	537 841 E TREES - AVG 180 473 120 176 ACRE AVG 84 6 0 2 91 AREA/AC AVG 234 7 2	756 884 CF HIGH 187 604 165 184 HIGH 93 9 0 3 103 RE HIGH 248 10 4	-	# OF TREES R 5 164 # OF PLOTS R 5 230 # OF PLOTS R	2EQ. 10 41 2EQ. 10 57 257 257	INF. POP. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
NOB WHE TOT CL SD: DOU DOU NOB WHE TOT CL SD: CL SD: CL SD: DOU DOU NOB WHE TOT	FIR EMLOCK AL 68.1 1.0 G FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S G FIR G FIR-S G FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2 COEFF VAR.% 66.9 351.9 410.4 345.0 75.8 COEFF VAR.% 32.2 215.6 399.8 321.4	40.8 5.1 S.E.% 4.3 27.9 37.3 4.5 S.E.% 11.6 61.2 71.4 60.0 13.2 S.E.% 5.6 37.5 69.5 55.9	I	318 798 SAMPLI OW 172 341 75 169 TREES/ OW 74 2 0 1 79 BASAL 2 OW 221 4 1 2	537 841 E TREES - AVG 180 473 120 176 ACRE AVG 84 6 0 2 91 AREA/AC AVG 234 7 2 4 248	756 884 CF HIGH 187 604 165 184 HIGH 93 9 0 3 103 RE HIGH 248 10 4 6		# OF TREES R 5 164 # OF PLOTS R 5 230 # OF PLOTS R 5	2EO. 10 41 2EO. 10 57 2EO. 10 9	INF. POP. 1: 10 10 10 10 10 10 10 10 10 10
NOB WHE TOT CL SD: DOU DOU NOB WHE TOT CL SD: DOU DOU NOB WHE TOT CL SD: CL	FIR EMLOCK AL G 68.1 1.0 G FIR G FIR-S FIR G FIR-S FIR MLOCK AL G FIR G FIR-S G FIR G FIR-S FIR G FIR-S FIR G FIR-S G FIR G FIR-S G FIR-S		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2 COEFF VAR.% 66.9 351.9 410.4 345.0 75.8 COEFF VAR.% 32.2 215.6 399.8 321.4 29.4	40.8 5.1 S.E.% 4.3 27.9 37.3 4.5 S.E.% 11.6 61.2 71.4 60.0 13.2 S.E.% 5.6 37.5 69.5 55.9	L	318 798 SAMPLI OW 172 341 75 169 TREES/ OW 74 2 0 1 79 BASAL 0 1 79 BASAL 0 1 221 4 1 2 235	537 841 E TREES - AVG 180 473 120 176 ACRE AVG 84 6 0 2 91 AREA/AC AVG 234 7 2 4 248	756 884 CF HIGH 187 604 165 184 HIGH 93 9 0 3 103 RE HIGH 248 10 4 6		# OF TREES R 5 164 # OF PLOTS R 5 230 # OF PLOTS R 5 35	2EO. 10 41 2EO. 10 57 2EO. 10 9	INF. POP. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
NOB WHE TOT CL SD: DOU DOU NOB WHE TOT CL SD: DOU DOU NOB WHE TOT CL SD: CL SD: DOU DOU NOB	FIR EMLOCK AL 68.1 1.0 G FIR G FIR-S FIR MLOCK AL 68.1 1.0 G FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S FIR G FIR-S G FIR G FIR-S G FIR G FIR-S G FIR G FIR-S G FIR G FIR-S G FIR G FIR-S G FIR-S G FIR G FIR-S G FIR G FIR-S G FIR-S G FIR G FIR-S G FIR		59.0 73.0 COEFF VAR.% 59.5 29.8 53.9 64.2 COEFF VAR.% 66.9 351.9 410.4 345.0 75.8 COEFF VAR.% 32.2 215.6 399.8 321.4 29.4 COEFF	40.8 5.1 S.E.% 4.3 27.9 37.3 4.5 S.E.% 11.6 61.2 71.4 60.0 13.2 S.E.% 5.6 37.5 69.5 55.9 5.1		318 798 SAMPLI OW 172 341 75 169 TREES/ OW 74 2 0 1 79 BASAL 0 1 79 BASAL 0 1 2 2 35 NET BF/	537 841 E TREES - AVG 180 473 120 176 ACRE AVG 84 6 0 2 91 AREA/AC AVG 234 7 2 4 248 /ACRE	756 884 CF HIGH 187 604 165 184 HIGH 93 9 0 3 103 RE HIGH 248 10 4 6 260		# OF TREES R 5 164 # OF PLOTS R 5 230 # OF PLOTS R 5 35 # OF PLOTS R	2EQ. 10 41 2EQ. 10 57 2EQ. 10 9 29 2EQ.	INF. POP. 1 INF. POP. 1 INF. POP. 1 INF. POP.

TC PST	'ATS				PROJECT PROJECT		STICS NTNINE			PAGE DATE	2 5/18/2023
ТWP	RGE	SC	TRACT	TYPE	2	A	CRES	PLOTS	TREES	CuFt	BdFt
T3N T3N T3N	R6 R6W R6W	19 29 29	00U3 00U1 00U2	00MC 00MC 00MC			154.00	33	204	S	W
CL	68.1		COEFF		NET B	F/ACRE			# OF PLOT	S REQ.	INF. POP
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
WHE	MLOCK		325.9	56.7	316	729	1,143				
TOT	AL		30.6	5.3	46,951	49,587	52,223		37	9	4
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS R	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
	G FIR		31.5	5.5	9,944	10,520	11,096				
	G FIR-S										
NOB			399.9	69.5	39	127	215				
WHE	MLOCK		323.6	56.3	72	165	258				
TOT	AL		28.9	5.0	10,267	10,812	11,356		33	8	4

TC PSPCSTGR

Species, Sort Grade - Board Foot Volumes (Project)

TT	3N RR6W S19 ⁻ 3N RR6W S29 ⁻	Гу00МС	1	77.00 46.00 31.00		Project: Acres	FR	NTNI 154.0								Page Date Time		1 18/202 01:19:	23
	3N RR6W S29	Ty00MC		31.00															
		%					Per	cent of N	vet Boar	d Foot	Volume					Avera	age Log		Logs
	S So Gr	Net		per Acre		Total		Log Sc:	ale Dia.			Log I	Length		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	CU														21	12		0.00	1.8
DF	2M	80	.4	39,054	38,888	5,989			40	60	1	0		99	40	16	430	2.21	90.5
DF	3M	17		8,303	8,303	1,279		100			0	1	9	90	38	8	101	0.73	82.4
DF	4M	3		984	984	151		100			38	62			21	6	27	0.38	36.8
DF	Totals	97	.3	48,340	48,175	7,419		19	32	49	1	2	1	95	36	11	228	1.39	211.4
DF	S CU														18	8		0.00	6.1
DF	Totals														18	8		0.00	6.1
WH	2M	62		455	455	70			55	45				100	40	16	395	2.05	1.2
WH	3M	35		255	255	39		100						100	39	9	120	0.76	2.1
WH	4M	3		20	20	3		100			48	52			21	6	24	0.45	.8
wн	Totals	1		729	729	112		38	35	28	1	1		97	36	10	179	1.13	4.1
NF	2M	99		678	678	104			10	90				100	40	20	804		.8
NF	4M	1		5	5	1		100			100				14	9	30	0.61	.2
NF	Totals	1		683	683	105		1	10	90	1			99	36	19	673	3.50	1.0
Tota	ls		0.3	49,752	49,587	7,636		19	32	49	1	2	1	95	35	11	223	1.37	222.6

TC	PSTNDSUI	М				S	Stand 7	Table St	ummary				Page Date:	1 5/18/202	23
TT3N	RR6W S2	9 Ty00MC 9 Ty00MC 9 Ty00MC		77.0 46.0 31.0	0		Project Acres	t F	RNTNINI 154.0				Time: Grown Year:	3:01:21	IPM
s				Tot				Average	~		Net	Net	0-0-0-0	Totals	
Spc T	DBH	Sample Trees	FF 16'	Av Ht	Trees/ Acre	BA // Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Cunits	MBF
DF	9	1	86	58	2.604	1.15	2.60	7.1	30.0	.53	18	78	81	28	12
DF	10	1	86	66	2.109	1.15	2.11	10.8	50.0	.65	23	105	100	35	16
DF	12	1	87	89	1.592	1.25	3.18	10.9	45.0	.99	35	143	152	53	22
DF	13	3 3	86	97 92	3.960	3.65	6.67 5.79	15.9	63.6	3.02	106	424 453	466 494	163 173	65 70
DF	14 15	5 1	86 87	92 95	3.456 1.019	3.69 1.25	2.04	19.4 19.3	78.2 75.0	3.21 1.12	113 39	153	494 172	60	70 24
DF DF	15	4	86	100	3.510	4.90	7.02	23.6	73.0 98.6	4.71	165	692	726	255	107
DF DF	10	4	87	108	3.011	4.75	6.02	28.6	118.7	4.90	105	715	755	265	110
DF	18	8	86	114	5.659	10.00	12.03	31.4	125.3	10.78	378	1,507	1,660	582	232
DF	19	5	87	121	3.174	6.25	7.62	33.0	134.2	7.15	251	1,022	1,102	387	157
DF	20	6	86	127	3.438	7.50	10.31	31.5	130.6	9.26	325	1,346	1,427	501	207
DF	21	11	86	118	5.611	13.50	12.72	43.0	173.0	15.58	547	2,200	2,399	842	339
DF	22	15	86	124	6.989	18.45	17.73	44.4	188.6	22.44	787	3,343	3,455	1,212	515
DF	23	13	87	131	5.402	15.59	16.21	43.5	193.5	20.07	704	3,135	3,091	1,085	483
DF	24	21	86	133	8.218	25.82	24.26	48.7	217.7	33.68	1,182	5,281	5,187	1,820	813
DF	25	7	87	140	2.473	8.43	7.42	54.0	249.6	11.42	401	1,851	1,759	617	285
DF	26	13	86	135	4.333	15.97	12.67	59.2	265.2	21.39	751	3,361	3,295	1,156	518
DF	27	9	86	143	2.763	10.98	8.29	64.3	297.0	15.18	533	2,462	2,338	820	379
DF	28	9	86	140	2.592	11.08	8.06	66.9	314.4	15.36	539	2,533	2,365	830	390
DF	29	6	87 86	147	1.568	7.19	5.20	69.2	346.1	10.26	360	1,801	1,580	554	277
DF	30 31	8 4	86 86	154 130	1.954 .903	9.59 4.73	6.82 2.48	73.7 84.0	370.3 402.4	14.32 5.94	503 209	2,525 999	2,206 915	774 321	389 154
DF	32	12	86	150	2.573	4.75	7.92	92.5	402.4	20.89	733	3,677	3,217	1,129	566
DF DF	33	4	86	151	.790	4.69	2.56	91.6	470.9	6.69	235	1,207	1,030	362	186
DF	34	7	86	145	1.330	8.38	3.99	104.7	521.7	11.91	418	2,082	1,834	644	321
DF	35	1	85	136	.172	1.15	.52	106.6	510.0	1.57	55	263	242	85	41
DF	36	5	85	146	.840	5.94	2.68	110.2	554.2	8.43	296	1,487	1,298	455	229
DF	37	2	85	145	.320	2.39	.96	115.5	610.0	3.16	111	586	487	171	90
DF	38	3	85	138	.451	3.55	1.35	124.7	619.5	4.81	169	838	740	260	129
DF	39	2	85	146	.288	2.39	.86	136.1	696.7	3.35	118	602	516	181	93
DF	41	1	87	139	.130	1.19	.39	148.4	780.0	1.65	58	305	255	89	47
DF	42	2	86	154	.244	2.35	.86	145.3	776.9	3.54		665	545	191	102
DF	48	1	85	161	.095	1.19	.29	225.2	1170.0	1.83	64	334	282	99	51
DF	Totals	193		121	83.569	234.48		50.2	229.8		10,520	48,175	46,171	16,200	7,419
WH	16	1	87		.824	1.15	1.65	28.7	120.0	1.51		198	233	73	
WH WH	22 26	1 1	88 87	119 130	.474 .339	1.25 1.25	1.42 1.02	38.6 62.2	166.7 290.0	1.76 2.02		237 295	270 312	84 97	36 45
WH	Totals	3	87	115	1.636	3.65	4.09	40.5	178.6	5.29		729	815	255	
NF	35	1		167	.172	1.15	.69	93.3	495.0	1.54			237	99	52
NF	44	1		159	.109	1.15	.33	190.7	1046.7	1.54			230	96	
NF	Totals	2	86	164	.281	2.30	1.02	124.6	672.5	3.04	127	683	468	195	105
DF S	8	1	78	40	3.295	1.15									
DF S	17	1	70	33	.793	1.25									
DF S	22	1	98	18	.453	1.19									
DF S	25	1	74	36	.367	1.25									
DF S	26	1	37	20	.324	1.19									
DF S	27	1	89	119	.289	1.15									
DF S	Totals	6	76	40	5.521	7.19									
Totals		204	86	116	91.007	247.62	214.73	50.3	230.9	308.14	10,812	49,587	47,454	16,650	7,636

TC PLO	GSTVB				Log S	Stock 7	Fable -	MBF								
TT3N R	R6W S19 Ty R6W S29 Ty R6W S29 Ty	/00MC	4	7.00 6.00 1.00	Proje Acre		FRN	NTNINE 154						Page Date Time		1 8/2023)1:19PM
s		Log		Def Net	%				-	-		r in Inche				
Spp Т		Len	MBF	% MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
DF	2M		3								3					
DF	2M		36										20		36	
DF	2M											9	20			
DF DF	2M										822	945	2343	1135	615	59
Dr	2M	40	5,940		/9.8						022	945	2343	1155	015	57
DF	3M	16	1	1	.0					1						
DF	3M	20	1	1	.0				1							
DF	3M	22	2	2	.0					2	2					
DF	3M	28	2	2					2							
DF	3M	30	13						4	9)					
DF	3M				1			25	4	2						
DF	3М	34	77	77	1.0			66	9	2	2					
DF	3M							37	9							
DF	3M							11	2							
DF	3M	40	1,091	1,091	14.7	ļ		172	380	539)					
DF	4M	12	4	4	.1			4								
DF	4M	14	12	12	.2			11	1							
DF	4M	16	21	21				18	2							
DF	4M	18	11	11	.2			11								
DF	4M	20	9	9	.1			7	2							
DF	4M	22	9	9	.1			9								
DF	4M	24	14	14	.2			14								
DF	4M	26	36	36	5.5			36								
DF	4M	28	6	6	5 .1			6								
DF	4M	30	28	28	.4			28								
DF	Totals		7,444	7,419	97.2			457	416	55'	7 826	955	2363	1135	651	59
WH	2M	40	70	70	62.4						13	26	31			
WH	3M	38	8		6.8			8		1						
WH	3M								9	2	3					
	514	0			20.1						_					
WH	4M	16	1	1	1.3			1								
WH	4M	28	2	2	2 1.4			2		1						
WH	Totals	;	112	112	2 1.5			11	9	2	3 13	26	31			
NF	2M	i 40	104	104	99.2			1		1	5	5	16		47	31
NE					<u> </u>				1					-		<u> </u>
NF	4M	[14	1		.8				1							
				1 - 1 - 10 - 10 - 10 - 10 - 10 - 10 - 1												

TC PL	200	STVB					Log S	stock	Table -	MBF								
TT3N	RR	R6W S19 T R6W S29 T R6W S29 T	Гу00МС		77.00 46.00 31.00		Proje Acre		FRN	TNINE 154						Page Date Time	5/1	2 8/2023)1:19PM
	s	So Gr	Log	Gross	Def	Net	%		1	yet Volui	ne by S	caling	Diamete	r in Inch	es			
Spp	т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
NF		Total	s	10	5	105	1.4				1		5	5	16		47	31
Total	otal All Species 7,662									468	425	580	843	986	2410	1135	699	90

TC PSTATS				DJECT S DJECT		<u>TICS</u> fnine			PAGE DATE	1 5/18/2023
TWP RGE	SC TRACT]	ГҮРЕ		ACI	RES	PLOTS	TREES	CuFt	BdFt
T3N R6	29 00UI Vr	vit 1	00MC			46.00	10	56	S	W
				TREES]	ESTIMATED TOTAL		PERCENT SAMPLE		
	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL	10	56		5.6						
CRUISE DBH COUNT REFOREST COUNT BLANKS 100 %	10	56		5.6		2,568		2.2		
			STAN	ND SUMM	ARY					
	SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG FIR	54	53.2	27.3	137	41.4	216.0	51,292	51,121	10,512	10,512
DOUG FIR-S	2	2.6	23.8	19	1.6	8.0	, –	,	, -	*
TOTAL	56	55.8	27.1	131	43.0	224.0	51,292	51,121	10,512	10,512
CL 68.1 SD: 1.0	COEFF VAR.%	S.E.%	L	SAMPLI OW	E TREES - AVG	BF HIGH	i	# OF TREES F 5	REQ. 10	INF. POP.
DOUG FIR DOUG FIR-S	53.3	7.2	Ľ	1,124	1,212	1,299				
TOTAL	57.6	7.7		1,078	1,168	1,258		133	33	1.
CL 68.1	COEFF			SAMPLI	E TREES -	CF		# OF TREES F	REQ.	INF. POP.
SD: 1.0	VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	1
DOUG FIR	47.4	6.4		228	244	259				
DOUG FIR-S										
	52.0	6.9		219	235	251		108	27	1.
DOUG FIR-S TOTAL CL 68.1		6.9		TREES/2	ACRE			# OF PLOTS F	REQ.	INF. POP.
DOUG FIR-S TOTAL CL 68.1 SD: 1.0	<i>52.0</i> COEFF VAR.%	6.9 S.E.%	L	TREES/2 OW	ACRE AVG	HIGH	:			INF. POP.
DOUG FIR-S TOTAL CL 68.1 SD: 1.0 DOUG FIR	52.0 COEFF VAR.% 50.9	6.9 S.E.% 17.0	L	TREES/2 OW 44	ACRE AVG 53	HIGH 62		# OF PLOTS F	REQ.	INF. POP.
DOUG FIR-S TOTAL CL 68.1 SD: 1.0	<i>52.0</i> COEFF VAR.%	6.9 S.E.%	L	TREES/2 OW	ACRE AVG	HIGH		# OF PLOTS F	REQ.	INF. POP. 1
DOUG FIR-S TOTAL CL 68.1 SD: 1.0 DOUG FIR DOUG FIR-S TOTAL	52.0 COEFF VAR.% 50.9 214.4 48.8	6.9 S.E.% 17.0 71.3	L	TREES /2 OW 44 1 47	ACRE AVG 53 3 56	HIGH 62 4 65		# OF PLOTS F 5 106	REQ. 10 26	INF. POP. 1
DOUG FIR-S TOTAL CL 68.1 SD: 1.0 DOUG FIR DOUG FIR-S	52.0 COEFF VAR.% 50.9 214.4	6.9 S.E.% 17.0 71.3		TREES /2 OW 44 1 47	ACRE AVG 53 3	HIGH 62 4 65		# OF PLOTS F 5	REQ. 10 26	INF. POP. 1 1. INF. POP.
DOUG FIR-S TOT CL 68.1 SD: 1.0 DOUG FIR DOUG FIR-S TOT 68.1	52.0 COEFF VAR.% 50.9 214.4 48.8 COEFF	6.9 S.E.% 17.0 71.3 16.3		TREES/2 OW 44 1 47 BASAL 2	ACRE AVG 53 3 56 AREA/AC	HIGH 62 4 65 RE		# OF PLOTS F 5 106 # OF PLOTS F	REQ. 10 26 REQ.	INF. POP. 1 <i>1</i> . INF. POP.
DOUG FIR-S TOT CL 68.1 SD: 1.0 DOUG FIR DOUG FIR-S TOT CL 68.1 SD: 1.0 DOUG FIR DOUG FIR DOUG FIR DOUG FIR DOUG FIR DOUG FIR	52.0 COEFF VAR.% 50.9 214.4 48.8 COEFF VAR.% 41.1 210.8	6.9 S.E.% 17.0 71.3 16.3 S.E.% 13.7 70.2		TREES/2 OW 44 1 47 BASAL 2 OW 186 2	ACRE AVG 53 3 56 AREA/AC AVG 216 8	HIGH 62 4 65 RE HIGH 246 14		# OF PLOTS F 5 106 # OF PLOTS F 5	REQ. 10 26 REQ. 10	INF. POP. 1
DOUG FIR-S TOT CL 68.1 SD: 1.0 DOUG FIR DOUG FIR-S TOTAL CL 68.1 SD: 1.0 DOUG FIR	52.0 COEFF VAR.% 50.9 214.4 48.8 COEFF VAR.% 41.1	6.9 S.E.% 17.0 71.3 16.3 S.E.% 13.7		TREES/4 OW 44 1 47 BASAL 4 OW 186	ACRE AVG 53 3 56 AREA/AC AVG 216	HIGH 62 4 65 RE HIGH 246		# OF PLOTS F 5 106 # OF PLOTS F	REQ. 10 26 REQ.	INF. POP. 1 <i>I.</i> INF. POP. 1
DOUG FIR-S TOT	52.0 COEFF VAR.% 50.9 214.4 48.8 COEFF VAR.% 41.1 210.8 37.8 COEFF	6.9 S.E.% 17.0 71.3 16.3 S.E.% 13.7 70.2 12.6	L	TREES/A OW 44 1 47 BASAL A OW 186 2 196 NET BF/	ACRE AVG 53 3 56 AREA/AC AVG 216 8 224 //ACRE	HIGH 62 4 65 RE HIGH 246 14 252		# OF PLOTS F 5 106 # OF PLOTS F 5 63 # OF PLOTS F	REQ. 10 26 REQ. 10 16 REQ. 10 16 REQ.	INF. POP. 1
DOUG FIR-S TOT J CL 68.1 SD: 1.0 DOUG FIR DOUG FIR SD: 1.0 DOUG FIR DOUG FIR DOUG FIR DOUG FIR CL 68.1 SD: 1.0 CL 68.1 SD: 68.1 SD: 1.0	52.0 COEFF VAR.% 50.9 214.4 48.8 COEFF VAR.% 41.1 210.8 37.8 COEFF VAR.%	6.9 S.E.% 17.0 71.3 16.3 S.E.% 13.7 70.2 12.6 S.E.%	L	TREES/A OW 44 1 47 BASAL A OW 186 2 196 NET BFA OW	ACRE AVG 53 3 56 AREA/AC AVG 216 8 224 /ACRE AVG	HIGH 62 4 65 RE HIGH 246 14 252 HIGH		# OF PLOTS F 5 106 # OF PLOTS F 5 63	REQ. 10 26 REQ. 10 16	1 <i>I.</i> INF. POP. 1
DOUG FIR-S TOT J CL 68.1 SD: 1.0 DOUG FIR TOT J CL 68.1 SD: 1.0 DOUG FIR DOUG FIR DOUG FIR CL 68.1 SD: 1.0 CL 68.1 SD: 1.0 CL 68.1 SD: 1.0 DOUG FIR CL 68.1 SD: 1.0 DOUG FIR	52.0 COEFF VAR.% 50.9 214.4 48.8 COEFF VAR.% 41.1 210.8 37.8 COEFF	6.9 S.E.% 17.0 71.3 16.3 S.E.% 13.7 70.2 12.6	L	TREES/A OW 44 1 47 BASAL A OW 186 2 196 NET BF/	ACRE AVG 53 3 56 AREA/AC AVG 216 8 224 //ACRE	HIGH 62 4 65 RE HIGH 246 14 252		# OF PLOTS F 5 106 # OF PLOTS F 5 63 # OF PLOTS F	REQ. 10 26 REQ. 10 16 REQ. 10 16 REQ.	INF. POP. 1
DOUG FIR-S TOT J CL 68.1 SD: 1.0 DOUG FIR DOUG FIR SD: 1.0 DOUG FIR DOUG FIR DOUG FIR DOUG FIR CL 68.1 SD: 1.0 CL 68.1 SD: 68.1 SD: 1.0	52.0 COEFF VAR.% 50.9 214.4 48.8 COEFF VAR.% 41.1 210.8 37.8 COEFF VAR.%	6.9 S.E.% 17.0 71.3 16.3 S.E.% 13.7 70.2 12.6 S.E.%	L	TREES/A OW 44 1 47 BASAL A OW 186 2 196 NET BFA OW	ACRE AVG 53 3 56 AREA/AC AVG 216 8 224 /ACRE AVG	HIGH 62 4 65 RE HIGH 246 14 252 HIGH		# OF PLOTS F 5 106 # OF PLOTS F 5 63 # OF PLOTS F	REQ. 10 26 REQ. 10 16 REQ. 10 16 REQ.	INF. POP. 1 INF. POP. 1 INF. POP. 1
DOUG FIR-S TOT → CL 68.1 SD: 1,0 DOUG FIR DOUG FIR SD: 1,0 DOUG FIR TOT →	52.0 COEFF VAR.% 50.9 214.4 48.8 COEFF VAR.% 41.1 210.8 37.8 COEFF VAR.% 43.1	6.9 S.E.% 17.0 71.3 16.3 S.E.% 13.7 70.2 12.6 S.E.% 14.4	L	TREES/A OW 44 1 47 BASAL A OW 186 2 196 NET BF/ OW 43,784	ACRE AVG 53 3 56 AREA/AC AVG 216 8 224 /ACRE AVG 51,121	HIGH 62 4 65 RE HIGH 246 14 252 HIGH 58,457 58,457		# OF PLOTS F 5 106 # OF PLOTS F 5 63 # OF PLOTS F 5	REQ. 10 26 REQ. 10 16 REQ. 10 21	INF. POP. 1
DOUG FIR-S TOTAL CL 68.1 SD: 1,0 DOUG FIR DOUG FIR SD: 1,0 DOUG FIR TOTAL	52.0 COEFF VAR.% 50.9 214.4 48.8 COEFF VAR.% 41.1 210.8 37.8 COEFF VAR.% 43.1 43.1	6.9 S.E.% 17.0 71.3 16.3 S.E.% 13.7 70.2 12.6 S.E.% 14.4	L	TREES/A OW 44 1 47 BASAL A OW 186 2 196 NET BF/ OW 43,784	ACRE AVG 53 3 56 AREA/AC AVG 216 8 224 /ACRE AVG 51,121 51,121	HIGH 62 4 65 RE HIGH 246 14 252 HIGH 58,457 58,457		# OF PLOTS F 5 106 # OF PLOTS F 5 63 # OF PLOTS F 5 82	REQ. 10 26 REQ. 10 16 REQ. 10 21	INF. POP. 1 INF. POP. 1 INF. POP. 1
DOUG FIR-S TOT→ CL 68.1 DOUG FIR DOUG FIR-S TOT→ CL 68.1 SD: 1,0 DOUG FIR DOUG FIR-S TOT→ CL 68.1 SD: 1,0 DOUG FIR-S TOT→ CL 68.1	52.0 COEFF VAR.% 50.9 214.4 48.8 COEFF VAR.% 41.1 210.8 37.8 COEFF VAR.% 43.1 43.1 COEFF	6.9 S.E.% 17.0 71.3 16.3 S.E.% 13.7 70.2 12.6 S.E.% 14.4 14.4	L	TREES/A OW 44 1 47 BASAL A OW 186 2 196 NET BF/ OW 43,784 (3,784 NET CU	ACRE AVG 53 3 56 AREA/AC AVG 216 8 224 /ACRE AVG 51,121 51,121 FT FT/AC	HIGH 62 4 65 RE HIGH 246 14 252 HIGH 58,457 58,457 RE		# OF PLOTS F 5 106 # OF PLOTS F 5 63 # OF PLOTS F 5 82 # OF PLOTS F	REQ. 10 26 REQ. 10 16 REQ. 10 21 REQ.	INF. POP. 1 INF. POP. 1 INF. POP. 1 INF. POP.

TC	PSPCSTGR

Species, Sort Grade - Board Foot Volumes (Project)

TT	3N RR6W	S29 7	Гу00МС		46.00		Project: Acres	FR	NTNI 46.(Page Date Time		1 18/202 25:53	
			%					Per	cent of N	let Boar	d Foot	Volume					Avera	ige Log	3	Logs
	S So G	r	Net	Bd. Ft.	per Acre		Total		Log Sca	ile Dia.			Logl	ength		. Ln	Dia	Bd	CF/	Per
Spp	T nta	nd	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	C	U														24	13		0.00	3.1
DF	2	М	90	.4	46,493	46,321	2,131			24	76	2	0		98	39	17	505	2.49	91.6
DF	3	М	9		4,509	4,509	207		100			1	2	19	79	37	8	92	0.78	49.2
DF	4	М	1		291	291	13		100			20	80			24	6	29	0.45	9.9
DF	Totals		100	.3	51,292	51,121	2,352		9	22	69	2	1	2	96	37	13	332	1.83	154.0
DF	s c	CU														16	15		0.00	2.6
DF	Totals															16	15		0.00	2.6
Tota	ls			0.3	51,292	51,121	2,352		9	22	69	2	1	2	96	37	13	327	1.82	156.6

TC P	PSTNDSUM	М				S	Stand T	[able St	ummary				Page Date:	1 5/18/20	123
TT3N	RR6W S2	29 Ty00MC		46.00]		Project	t F	RNTNINE				Time:	2:25:55	5PM
							Acres		46.0	0			Grown Year:		
S		Sample	FF	Tot Av	Trees/	BA/	Logs	Average Net	Net	Tons/	Net Cu.Ft.	Net Bd.Ft.		Totals	
Spc T	DBH	Trees	16'	Ht	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	14	1	84	59	3.742	4.00	3.74	22.4	60.0	2.38	84	225	110	38	3 10
DF	17	1	86	102	2.538	4.00	5.08	27.8	115.0	4.03	141	584	185	65	
DF	21	1	86		1.663	4.00	4.99		150.0	5.32			245	86	
DF	23	3	89		4.159	12.00	12.48		231.1	17.47		<i>'</i>	804	282	
DF	24	6	86		7.639	24.00	22.92	50.1	227.8	32.75		5,220	1,507	529	
DF	25	4	87		4.694	16.00	14.08		255.8	21.69		· · · ·	998	350	
DF	26	5	87		5.424	20.00	15.19		285.7	27.09		,	1,246	437	
DF	27	3	87		3.018	12.00	9.05		308.9	16.80			773	271	
DF	28	3	87		2.806	12.00	9.35		328.0	17.77			818	287	
DF	29	2	87		1.744	8.00			411.7	11.99			552	194	
DF	30	2	88		1.630	8.00			373.8			· ·	600	211	
DF	31	3	86	133	2.289	12.00	6.11		423.7			· · · ·	700	246	
DF	32	6	86	152	4.297	24.00	12.89		479.4		,		1,613	566	
DF	33	2	85		1.347	8.00	4.04		433.3	10.09		, i	464	163	
DF	34	3	86		1.903	12.00	5.71	105.3	520.0	17.14		<i>'</i>	788	277	
DF	36	2	86		1.132	8.00		122.5	643.3	11.85		, i	545	191	
DF	37	2	85		1.071	8.00		115.5	610.0	10.58		·	487	171	
DF	39	2	85		.964	8.00			696.7			· · · ·	516	181	
DF	41	1	87		.436	4.00		148.4	780.0				255	89	
DF	42	1	86		.416	4.00			767.5			<i>'</i>	297	104	
DF	48	1	85	161	.318	4.00	.95	225.2	1170.0	6.13	215	1,117	282	99	9 51
DF	Totals	54	86	137	53.232	216.00	150.81	69.7	339.0	299.60	10,512	51,121	13,782	4,836	5 2,352
DF S	22	1	98	18	1.515	4.00							ſ .	_	
DF S	26	1	37	20	1.085	4.00			I				I		
DF S	Totals	2	73	19	2.600	8.00									
Totals		56	86	131	55.832	224.00	150.81	69.7	339.0	299.60	10,512	51,121	13,782	4,836	6 2,352

	DI O	COTT
TC	PLU	GSTVB

	C . 1	70 I I	MODE
Log	Stock	Table	- MBF

TT3N R	R6W S29 1	у00МС	4	6.00	Proje Acres		FRN	TNINE 46	.00					Page Date Time		1 8/2023 25:53PM
s	So Gr	Log	Gross	Def Net	%		1	vet Volur	ne by S	caling I	Diamete	r in Inche	s			
Ѕрр Т	rt de	Len	MBF	% MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
DF	2N	1 12	3	3	.1						3					
DF	2N	1 20	36	36	1.5										36	
DF	2N	1 30	9	9	.4							9				
DF	2N	1 40	2,090	2,082	88.6						174	162	850	560	278	59
DF	3N	1 16	1	1	.0					1						
DF	31	1 28	2	2	.1				2							
DF	31	4 30	2	2	.1				2							
DF	31	4 32	16	16	.7			14		2						
DF	31	1 34	23	23	1.0			14	9							
DF	31	4 36	2	2	.1				2							
DF	31	4 38	5	5	.2			3	2							
DF	31	4 40	157	157	6.7			39	32	86						
DF	41	4 12	1	1	.0			1								
DF	41	1 14	1	1	.0			1								
DF	41	1 18	1	1	.0			1								
DF	41	1 24	3	3	.1			3								
DF	41	1 26	2	2	.1			2								
DF	41	A 28	4	4	.2			4								
DF	41	A 30	2	2	.1			2								
DF	Tota	ls	2,359	2,352	100.0			82	49	89	177	171	850	560	313	59
Total	All Spec	es	2,359	2,352	100.0			82	49	89	177	171	850	560	313	59

TC PST	ГАТЅ					D <mark>JECT (</mark> Dject		<u>TICS</u> fnine			PAGE DATE	1 5/18/2023
ГWP	RGE	SC	TRACT	T	YPE		ACI	RES	PLOTS	TREES	CuFt	BdFt
T3N	R6	29	00U2	úł 2°	0MC			31.00	7	43	S	W
						TREES	I	ESTIMATED TOTAL		PERCENT SAMPLE		
		1	PLOTS	TREES		PER PLOT		TREES		TREES		
TOT	AL		7	43		6.1						
	COUNT DREST NT NKS		7	43		6.1		3,371		1.3		
					STAN	ND SUMM	ARY					
			AMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOU	JG FIR		38	85.4	21.6	112	46.7	217.1	48,335	48,085	9,989	9,989
DOU	JG FIR-S		2	17.8	10.8	46	3.5	11.4				
NOB			2	1.4	38.7	165	1.8	11.4	3,393	3,393	629	629
	EMLOCK		1	. 4.1	16.0	107	1.4	5.7	982		235	235 10,853
тот	AL		43	108.7	20.4	101	54.5	245.7	52,710	52,460	10,853	10,833
	-	8.1		OF 100 THE	VOLUME			IE SAMPLE E				
CL	68.1		COEFF	SE0/	Ţ	SAMPLI DW	E TREES - AVG	BF HIGH		# OF TREES I 5	REQ. 10	INF. POP.
SD:	<u>1.0</u> JG FIR		VAR.% 64.7	S.E.% 10.5	Ľ	933	1,042	1,152			10	1
	JG FIR-S		32.0	30.0		1,792	2,560	3,328				
	EMLOCK		73.7	11.2		928	1,046	1,163		217	54	2
101	AL			11.2								
CL	68.1		COEFF	0.5.0/	Ţ		E TREES -			# OF TREES I	•	INF. POP.
SD:	<u>1.0</u> JG FIR		VAR.% 59.6	<u>S.E.%</u> 9.7	L	OW 190	AVG 210	HIGH 230		5	10	1
	JG FIR-S		29.8	27.9		341	473	604				
	EMLOCK		68.0	10.4		187	209	231		185	46	2
тот			00.0	10.4		107	207	251		100		
TOT	(0.1		COFFE			TDEEC	CDE			HOEDIOTEI		INF. POP.
CL	68.1		COEFF VAR %	SE%	L	TREES/2		HIGH		# OF PLOTS 1 5	-	1
CL SD:			COEFF VAR.% 106.0	S.E.% 43.2	L	TREES/2 OW 49	ACRE AVG 85	HIGH 122		# OF PLOTS 1 5	REQ. 10	1
CL SD: DOU	1.0		VAR.%		L	ow	AVG				-]
CL SD: DOU DOU	1.0 JG FIR JG FIR-S 3 FIR		VAR.% 106.0 240.6 176.7	43.2 97.9 71.9	L	OW 49	AVG 85 18 1	122 35 2			-	1
CL SD: DOU DOU NOE WHI	1.0 JG FIR JG FIR-S 3 FIR EMLOCK		VAR.% 106.0 240.6 176.7 264.6	43.2 97.9 71.9 107.7	L	0W 49 0 0	AVG 85 18 1 4	122 35 2 8		5	10	
CL SD: DOU DOU	1.0 JG FIR JG FIR-S 3 FIR EMLOCK TAL		VAR.% 106.0 240.6 176.7 264.6 119.1	43.2 97.9 71.9	Ŀ	OW 49 0	AVG 85 18 1	122 35 2		657	10 164	7
CL SD: DOU DOU NOE WHI TOT	1.0 JG FIR JG FIR-S 3 FIR EMLOCK TAL 68.1		VAR.% 106.0 240.6 176.7 264.6 <i>119.1</i> COEFF	43.2 97.9 71.9 107.7 <i>48.5</i>		0W 49 0 56 BASAL	AVG 85 18 1 4 <i>109</i> AREA/AC	122 35 2 8 <i>161</i> RE		5 657 # OF PLOTS)	<u>10</u> 164 REQ.	7 INF. POP.
CL SD: DOU DOU NOE WHI TOT CL SD:	1.0 JG FIR JG FIR-S 3 FIR EMLOCK FAL 68.1 1.0		VAR.% 106.0 240.6 176.7 264.6 <i>119.1</i> COEFF VAR.%	43.2 97.9 71.9 107.7 <i>48.5</i> S.E.%		OW 49 0 56 BASAL 2 OW	AVG 85 18 1 4 109 AREA/AC AVG	122 35 2 8 <i>161</i> RE HIGH		657	10 164	7 INF. POP.
CL SD: DOU NOE WHI TOT CL SD: DOU	1.0 JG FIR JG FIR-S 3 FIR EMLOCK TAL 68.1 1.0 JG FIR		VAR.% 106.0 240.6 176.7 264.6 <i>119.1</i> COEFF VAR.% 31.7	43.2 97.9 71.9 107.7 <i>48.5</i> S.E.% 12.9		OW 49 0 56 BASAL 0 0 8 89	AVG 85 18 1 4 109 AREA/AC AVG 217	122 35 2 8 161 RE HIGH 245		5 657 # OF PLOTS)	<u>10</u> 164 REQ.	7 INF. POP. 1
CL SD: DOU NOE WHI TOT CL SD: DOU	1.0 JG FIR JG FIR-S 3 FIR EMLOCK FAL 68.1 1.0		VAR.% 106.0 240.6 176.7 264.6 <i>119.1</i> COEFF VAR.%	43.2 97.9 71.9 107.7 <i>48.5</i> S.E.%		OW 49 0 56 BASAL 2 OW	AVG 85 18 1 4 109 AREA/AC AVG	122 35 2 8 <i>161</i> RE HIGH		5 657 # OF PLOTS)	<u>10</u> 164 REQ.	7 INF. POP.
CL SD: DOU NOE WHI TOT CL SD: DOU DOU	1.0 JG FIR JG FIR-S 3 FIR EMLOCK TAL 68.1 1.0 JG FIR JG FIR-S		VAR.% 106.0 240.6 176.7 264.6 <i>119.1</i> COEFF VAR.% 31.7 170.8	43.2 97.9 71.9 107.7 <i>48.5</i> S.E.% 12.9 69.5		OW 49 0 56 BASAL 4 OW 189 3	AVG 85 18 1 4 109 AREA/AC AVG 217 11	122 35 2 8 161 RE HIGH 245 19		5 657 # OF PLOTS)	<u>10</u> 164 REQ.	7 INF. POP.
CL SD: DOU NOE WHI TOT CL SD: DOU DOU	1.0 JG FIR JG FIR-S 3 FIR EMLOCK 68.1 1.0 JG FIR JG FIR-S 3 FIR EMLOCK		VAR.% 106.0 240.6 176.7 264.6 <i>119.1</i> COEFF VAR.% 31.7 170.8 170.8	43.2 97.9 71.9 107.7 <i>48.5</i> S.E.% 12.9 69.5 69.5		OW 49 0 56 BASAL 4 OW 189 3	AVG 85 18 1 4 109 AREA/AC AVG 217 11 11	122 35 2 8 161 RE HIGH 245 19 19		5 657 # OF PLOTS)	<u>10</u> 164 REQ.	7 INF. POP.
CL SD: DOU NOE WHI TOT CL SD: DOU NOE WHI	1.0 JG FIR JG FIR-S 3 FIR EMLOCK 68.1 1.0 JG FIR JG FIR-S 3 FIR EMLOCK CAL		VAR.% 106.0 240.6 176.7 264.6 <i>119.1</i> COEFF VAR.% 31.7 170.8 170.8 264.6	43.2 97.9 71.9 107.7 <i>48.5</i> S.E.% 12.9 69.5 69.5 107.7		OW 49 0 56 BASAL 2 OW 189 3 3	AVG 85 18 1 4 109 AREA/AC AVG 217 11 11 6 246	122 35 2 8 161 RE HIGH 245 19 19 12		5 657 # OF PLOTS 1 5	<u>10</u> <u>164</u> REQ. <u>10</u> 7	7 INF. POP. I
CL SD: DOU NOE WHI TOT CL SD: DOU DOU NOE WHI TOT	1.0 JG FIR JG FIR-S 3 FIR EMLOCK 68.1 1.0 JG FIR JG FIR-S 3 FIR EMLOCK FAL 68.1		VAR.% 106.0 240.6 176.7 264.6 <i>119.1</i> COEFF VAR.% 31.7 170.8 170.8 264.6 <i>23.8</i>	43.2 97.9 71.9 107.7 <i>48.5</i> S.E.% 12.9 69.5 69.5 107.7	L	OW 49 0 56 BASAL 4 OW 189 3 3 222	AVG 85 18 1 4 109 AREA/AC AVG 217 11 11 6 246	122 35 2 8 161 RE HIGH 245 19 19 12		5 657 # OF PLOTS 1 5 26	<u>10</u> <u>164</u> REQ. <u>10</u> 7	7 INF. POP. 1
CL SD: DOU NOE WHI TOT CL SD: DOU NOE WHI TOT	1.0 JG FIR JG FIR-S 3 FIR EMLOCK 68.1 1.0 JG FIR JG FIR-S 3 FIR EMLOCK FAL 68.1		VAR.% 106.0 240.6 176.7 264.6 119.1 COEFF VAR.% 31.7 170.8 170.8 264.6 23.8 COEFF	43.2 97.9 71.9 107.7 <i>48.5</i> S.E.% 12.9 69.5 69.5 107.7 <i>9.7</i>	L	OW 49 0 56 BASAL 4 OW 189 3 3 222 NET BF/	AVG 85 18 1 4 109 AREA/AC AVG 217 11 11 6 246 //ACRE	122 35 2 8 161 RE HIGH 245 19 19 12 270		5 657 # OF PLOTS 1 5 26 # OF PLOTS 1	<u>10</u> <u>164</u> REQ. <u>10</u> 7 REQ.	7 INF. POP. I
CL SD: DOU NOE WHI TOT CL SD: DOU NOE WHI TOT CL SD: CL SD: DOU NOE	1.0 JG FIR JG FIR-S 3 FIR EMLOCK 68.1 1.0 JG FIR JG FIR-S 3 FIR EMLOCK 68.1 1.0 JG FIR JG FIR JG FIR		VAR.% 106.0 240.6 176.7 264.6 <i>119.1</i> COEFF VAR.% 31.7 170.8 170.8 264.6 <i>23.8</i> COEFF VAR.%	43.2 97.9 71.9 107.7 <i>48.5</i> S.E.% 12.9 69.5 69.5 107.7 <i>9.7</i> S.E.%	L	OW 49 0 56 BASAL 4 OW 189 3 3 222 NET BF/ OW	AVG 85 18 1 4 109 AREA/AC AVG 217 11 11 6 246 /ACRE AVG	122 35 2 8 161 RE HIGH 245 19 19 12 270 HIGH		5 657 # OF PLOTS 1 5 26 # OF PLOTS 1	<u>10</u> <u>164</u> REQ. <u>10</u> 7 REQ.	INF. POP.

TC PST	ATS				PROJECT PROJECT		STICS NTNINE			PAGE DATE	2 5/18/2023
TWP	RGE	SC	TRACT	ТҮР			CRES	PLOTS	TREES	CuFt	
T3N	R6	29	00U2	00M0	2		31.00	7	43	S	W
CL	68.1		COEFF NET BF/ACRE # OF P VAR. S.E.% LOW AVG HIGH 5								INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
тот	AL		24.6	10.0	47,206	52,460	57,713		28	7	3
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS RE	Q.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR		28.3	11.5	8,838	9,989	11,140				
DOU	G FIR-S										
NOB	FIR		170.8	69.5	192	629	1,066				
WHE	MLOCK		264.6	107.7		235	488				
TOT	AL		19.3	7.8	10,002	10,853	11,704		17	4	2

TC	PSPCSTGR

Species, Sort Grade - Board Foot Volumes (Project)

TT	3N RR6W S29 ⁻	Ту00МС		31.00		Project: Acres	FR	NTNI 31.0								Page Date Time		1 18/202 29:10	3
		%					Perc	ent of N	vet Boar	d Foot	Volume					Avera	ige Log	5	Logs
	S So Gr	Net	Bd. Ft.	per Acre		Total		Log Sca	ale Dia.			Log	ength		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	2M	80	.6	38,799	38,549	1,195			28	72				100	40	18	530	2.56	72.8
DF	3M	18		8,618	8,618	267		100				1	9	90	38	8	107	0.74	80.7
DF	4M	2		917	917	28		100			33	67			22	6	28	0.37	33.2
DF	Totals	92	.5	48,335	48,085	1,491		20	23	58	1	1	2	96	36	12	258	1.48	186.6
DF	S CU														16	8		0.00	20.7
DF	Totals														16	8		0.00	20.7
NF	2M	99		3,367	3,367	104			10	90				100	40	20	804	3.71	4.2
NF	4M	1		26	26	1		100			100				14	9	30	0.61	.9
NF	Totals	6		3,393	3,393	105		1	10	90	1			99	36	19	673	3.50	5.0
WH	3M	100		982	982	30		100						100	39	9	120	0.74	8.2
wн	Totals	2		982	982	30		100						100	39	9	120	0.74	8.2
Tota	ıls		0.5	52,710	52,460	1,626		20	21	59	1	1	1	97	34	11	238	1.43	220.6

TC I	PSTNDSUI	М				S	Stand T	able Su	immary				Page Date:	1 5/18/2	2023	
TT3N	RR6W S2	9 Ty00MC		31.00			Project Acres	F	RNTNINI 31.0				Time: Grown Year:	2:29:	:12PM	
s		Sample		Tot Av	 Trees/	BA/	Logs	Average Net	Net	Tons/	Net Cu.Ft.	Net Bd.Ft.		Totals		
Spc T	DBH	Trees	16'	Ht	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MB	F
DF	9	1	86	58	12.935	5.71	12.93	7.1	30.0	2.61	92	388	81	2	28	12
DF	10	1	86	66	10.477	5.71	10.48	10.8	50.0	3.24	114	524	100	1	35	16
DF	13	1	88	92	6.199	5.71	6.20	22.7	90.0	4.01	141	558	124		44	17
DF	16	1	87	106	4.093	5.71	8.19	24.4	105.0	5.69	200	859	176		62	27
DF	17	2	87	113	7.250	11.43	14.50	29.1	120.0	12.04	422	1,740	373	13		54
DF	21	2	87	129	4.751	11.43	11.88	42.6	194.0	14.42	506	2,304	447		57	71
DF	22	3	87	127	6.494	17.14	15.15	47.8	197.1	20.65	725	2,987	640	22		93
DF	23	5	87	125	9.903	28.57	29.71	41.6	185.3	35.23	1,236	5,506	1,092		83	171
DF	24	1	87	144	1.819	5.71	5.46	51.4	233.3	7.99	280	1,273	248		87	39
DF	25	1	86	135	1.676	5.71	5.03	53.9	233.3	7.72	271	1,173	239		84	36
DF	27	1	86	156	1.437	5.71	4.31	69.3	320.0	8.52	299	1,380	264		93	43
DF	29	2	87	167	2.492	11.43	9.97	63.5	332.5	18.05	633	3,314	560		96	103
DF	30	3	86	166	3.492	17.14	12.81	73.4	380.9	26.79	940	4,878	831		91	151
DF	31	1	88	120	1.090	5.71	3.27	74.5	343.3	6.95	244	1,123	215		76	35
DF	32	3	87	162	3.069	17.14	10.23	91.8	487.0	26.77	939	4,983	830		91	154
DF	33	2	87	167	1.924	11.43	6.73	95.2	504.3	18.27	641	3,396	566		99	105
DF	34	2	87	156	1.813	11.43	5.44	111.8	593.3	17.33			537		88	100
DF	35	1	85	136	.855	5.71	2.57	106.6	510.0	7.79		· · · ·	242		85	41
DF	36	2	85	152	1.617	11.43	5.66	102.7	517.1	16.56		2,926	513		80	91
DF	38	2	85	144	1.451	11.43	4.35	129.3	650.0	16.04	563		497		74	88
DF	42	1	85	141	.594	5.71	1.78	158.1	790.0	8.03	282	1,408	249		87	44
DF	Totals	38	87	112	85.432	217.14	186.64	53.5	257.6	284.69	9,989	48,085	8,826	3,0	97	1,491
NF	35	1	85	167	.855	5.71	3.42	93.3	495.0	7.66	319	1,693	237		99	52
NF	44	1	88		.541	5.71	1.62	190.7	1046.7	7.43			230		96	53
NF	Totals	2	86	164	1.396	11.43	5.04	124.6	672.5	15.09	629	3,393	468	1	95	105
WH	16	1	87	107	4.093	5.71	8.19	28.7	120.0	7.52	235	982	233		73	30
WH	Totals	1	87	107	4.093	5.71	8.19	28.7	120.0	7.52	235	982	233		73	30
DF S	8	1	78	40	16.370	5.71										
DF S	27	1	89	119	1.437	5.71										
DF S	Totals	2	79	46	17.807	11.43					an a ba in 15 an - 18 an -					
Totals		43	85		108.728	245.71	199.87	54.3	262.5	307.30	10,853	52,460	9,526	3,3	64	1,626

TC PLO	GSTVB					Log S	stock '	Table -	MBF									
TT3N R	R6W S29 T	y00MC	2 3	1.00		Proje Acres		FRN	JTNINE 31	.00					Page Date Time	5/1	1 8/2023 29:10P	
s	So Gr	Log	Gross	Def	Net	%		1	Net Volur	ne by S	caling l	Diamete	r in Inch	es	T			
Spp т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	2M	40	1,203		1,195	80.2						63	142	420	287	283		
DF	3M	30	2		2	.1				2								
DF	3M	32	5		5	.4			4	2								
DF	3M	34	19		19	1.2			16		2							
DF	3M	36	15		15	1.0			11	4								
DF	3М	40	226		226	15.2			23	53	151							
OF	4M	12	1		1	.0			1									
DF	4M	14	3		3	.2			2	1								
DF	4M	16	2		2	.2			2									
DF	4M	18	1		1	.1			1									
DF	4M	20	2		2	.2			1	1								
DF	4M	24	1		1	.1			1									
DF	4M	26	14		14	.9			14									
DF	4M	28	2		2	.1			2									
DF	4M	30	2		2	.1			2									
OF	Totals	;	1,498		1,491	91.7			80	62	153	63	142	/ 420	287	283		
NF	2M	40	104		104	99.2						5	5	16		47	3	1
NF	4M	14	1		. 1	.8				1								
NF	Totals		105		105	6.5				1		5	5	16		47	3	1
WH	3M	38	8		8	25.0			8									
WH	3M	40	23		23	75.0					23	;						
WH	Totals	3	30		30	1.9			8		23							
Total	All Specie	s	1,634		1,626	100.0			88	63	176	68	147	436	287	330	3	1

				OJECT (OJECT		<u>TICS</u> ININE			PAGE DATE	1 5/18/2023
WP RGE	SC TRACT	r	ГҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt
T3N R6	19 00U3 V	hit 3	00MC			77.00	16	105	S	W
				TREES		ESTIMATED TOTAL		ERCENT AMPLE		
	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL	16	105		6.6						
CRUISE DBH COUNT REFOREST COUNT BLANKS 100 %	16	105		6.6		8,076		1.3		
			STA	ND SUMM	ARY					and the second
	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOUG FIR	101	100.9	21.4	119	54.6	252.5	46,579	46,451	10,738	10,738
DOUG FIR-S	2	2.3	19.9	34	1.1	5.0				
WHEMLOCK		1.6	23.8	124	1.0	5.0	1,063	1,063	236	
TOTAL	105	104.9	21.4	117	56.7	262.5	47,642	47,514	10,974	10,974
		JT OF 100 THE	E VOLUME					00 70 70 70 7		
CL 68.1	COEFF				E TREES -		#	OF TREES R		INF. POP.
SD: 1.0			L	.OW 558	AVG 591	HIGH 624		5	10	1
DOUG FIR DOUG FIR-S	55.8	5.6		966	721	024				
WHEMLOCK	38.2	35.8		440	685	930				
TOTAL	57.6	5.6		549	582	614		132	33	1
CL 68.1	COEFF			SAMPL	E TREES -	CF	4	OF TREES R	EO	INF. POP.
SD: 1.0			I	.OW	AVG	HIGH	1	5	10 II	1
DOUG FIR	49.9	5.0		127	134	141				
DOUG FIR-S										
WHEMLOCK		31.0		104	151	198				
TOTAL	51.9	5.1		125	132	139		108	27	1
CL 68.1	COEFF			TREES/	ACRE		#	OF PLOTS R	EQ.	INF. POP.
SD: 1.0	VAR.%	S.E.%	L	.OW	AVG	HIGH		5	10	1
DOUG FIR	45.0	11.6		89	101	113				
DOUG FIR-S	293.6	75.7		1	2	4				
WHEMLOCK		71.6		0 93	2 105	3 117		89	22	1
TOTAL	45.7	11.8								
CL 68.1					AREA/AC		#	OF PLOTS F		INF. POP.
SD: 1.0			I	.OW	AVG	HIGH 269		5	10	1
DOUG FIR DOUG FIR-S	25.7 273.3	6.6 70.5		236 1	253	269				
WHEMLOCK		70.5		1	5	9				
TOTAL	25.5	6.6		245	263	280		28	7	
CL 68.1	COEFF			NET BF	ACRE		4	OF PLOTS F	REO.	INF. POP.
SD: 1.0			I	LOW	AVG	HIGH	Ţ	5	10	1
DOUG FIR	26.5			43,279	46,451	49,623				
DOUG FIR-S										
WHEMLOCK		71.0		309	1,063	1,818				
TOTAL	24.7	6.4		44,493	47,514	50,536		26	6	
	00000	,		NET OF		TDF	4	# OF PLOTS F	NEO	INF. POP.
CL 68.1	COEFF			NET CU	JFT FT/AC	. KE	*	+ OF FLOIS F	άĽŲ.	
CL 68.1 SD: 1.0			I	NET CU LOW	AVG	HIGH	7	5	1010	1

TC PST	TATS				PROJECT PROJECT		STICS NTNINE			PAGE DATE	2 5/18/2023
TWP	RGE	SC	TRACT	TYF	Έ	A	CRES	PLOTS	TREES	CuFt	BdFt
T3N	R6	19	00U3	00M	с		77.00	16	105	S	W
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS	S REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
WHE	MLOCK		274.0	70.7	69	236	403				
TOT	AL		23.2	6.0	10,317	10,974	11,631		23	6	3

.

TC PSPCSTGR

Species, Sort Grade - Board Foot Volumes (Project)

TT	3N RR6W \$19	_		77.00		Project: Acres		NTNI 77.(00							Page Date Time	2:	1 18/202 39:07	3 PM
	0	% Net				T 1				d Foot	Volume					- ·	ige Log		Logs
0	S _{So Gr} T rt ad			per Acre	NT (Total			ile Dia.				.ength		Ln			CF/	Per
Spp		BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	CU														18	11		0.00	1.7
DF	2M	74	.4	34,713	34,584	2,663			57	43		1		99	40	15	357	1.94	96.9
DF	3M	22		10,442	10,442	804		100			0	1	6	93	39	8	101	0.71	102.9
DF	4M	4		1,424	1,424	110		100			42	58			21	6	26	0.37	54.2
DF	Totals	98	.3	46,579	46,451	3,577		26	43	32	1	3	1	95	35	10	182	1.19	255.8
DF	S CU														27	7		0.00	2.3
DF	Totals														27	7		0.00	2.3
WH	2M	85		911	911	70			55	45				100		16	395	2.05	2.3
WH	3M	11		114	114	9		100						100	40	9	120	0.83	.9
WH	4M	4		39	39	3		100			48	52			21	6	24	0.45	1.6
WН	Totals	2		1,063	1,063	82		14	47	38	2	2		96	34	11	218	1.44	4.9
Tota	ls		0.3	47,642	47,514	3,659		25	43	32	1	3	1	95	35	10	181	1.19	263.0

TC I	PSTNDSU	М				5	Stand 7	Table Su	ummary				Page Date:	1 5/18/202	3
TT3N	RR6W SI	19 Ty00MC		77.0	00		Project Acres	t F	RNTNINI 77.0				Time: Grown Year:	2:39:08	PM
S Spc Т	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA∥ Acre	Logs Acre	Average Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF	12	1	87	89	3.183	2.50	6.37	10.9	45.0	1.98	69	286	152	53	22
DF	13	2	85	99	5.424	5.00	10.85	14.3	57.5	4.44	156	624	342	120	48
DF	14	2	87	108	4.677	5.00	9.35	18.7	82.5	5.00	175	772	385	135	59
DF	15	1	87	95	2.037	2.50	4.07	19.3	75.0	2.24	78	306	172	60	24
DF	16	3	86	98	5.371	7.50	10.74	23.3	96.7	7.13	250	1,038	549	193	80
DF	17	1	87	103	1.586	2.50	3.17	28.3	120.0	2.56	90	381	197	69	29
DF	18	8	86	114	11.318	20.00	24.05	31.4	125.3	21.55	756	3,013	1,660	582	232
DF	19	5	87	121	6.349	12.50	15.24	33.0	134.2	14.31	502	2,044	1,102	387	157
DF	20	6	86	127	6.875	15.00	20.63	31.5	130.6	18.53	650	2,693	1,427	501	207
DF	21	8	86	113	8.315	20.00	17.67	44.0	171.2	22.18	778	3,025	1,708	599	233
DF	22	12	86	123	11.364	30.00	29.36	43.7	186.8	36.56	1,283	5,483	2,815	988	422
DF	23	5	86	124	4.332	12.50	13.00	41.9	179.3	15.52	545	2,331	1,195	419	179
DF	24	14	86	130	11.141	35.00	32.63	47.9	212.4	44.58	1,564	6,931	3,433	1,204 183	534
DF	25	2 8	86	138	1.467	5.00	4.40	54.1	245.0	6.78	238	1,078	522 2,049	183 719	83 318
DF	26 27	8 5	86 86	134 139	5.424 3.144	20.00 12.50	16.27 9.43	57.4 62.9	253.8 286.0	26.61 16.90	934 593	4,129 2,697	1,302	457	208
DF	27	6	86	139	3.144	12.50	10.52	67.0	307.2	20.10	705	3,233	1,502	543	208 249
DF	28 29	8 2	86	134	5.508 1.090	5.00	3.27	65.3	307.2	6.08	213	5,235 981	468	164	249 76
DF DF	30	3	85	122	1.528	7.50	4.58	77.0	355.6	10.06	353	1,630	775	272	125
DF	32	3	86	135	1.323	7.50	4.03	87.6	411.1	10.06	353	1,656	775	272	123
DF	34	2	84	133	.793	5.00	2.38	97.5	458.3	6.61	232	1,090	509	179	84
DF	36	1	84	125	.354	2.50	1.06	102.8	463.3	3.11	109	492	239	84	38
DF	38	1	84	128	.317	2.50	.95	116.2	563.3	3.15	111	536	243	85	41
DF	Totals	101	86	119	100.942	252.50	254.03	42.3	182.9	306.02	10,738	46,451	23,564	8,268	3,577
WH	22	1	88	119	.947	2.50	2.84	38.6	166.7	3.51	110	474	270	84	36
WH	26	1	87	130	.678	2.50	2.03	62.2	290.0	4.05	127	590	312	97	45
WH	Totals	2	88	124	1.625	5.00	4.88	48.4	218.1	7.56	236	1,063	582	182	82
DF S	17	1	70	33	1.586	2.50									
DF S	25	1	74	36	.733	2.50									
DF S	Totals	2	71	34	2.319	5.00									
Totals		105	86	117	104.886	262.50	258.90	42.4	183.5	313.58	10,974	47,514	. 24,146	8,450	3,659

TC PLC)GSTVB				Log	Stock	Table -	MBF									
TT3N R	R6W S19 T	y00MC	2 7	7.00	Proj Acre		FRI	NTNINE 77	.00					Page Date Time		1 8/2023 39:06P	
s	So Gr	Log	Gross	Def Net	%			Net Volu	ne by S	caling D	Diamete	r in Inche	es				
Spp т	rt de	Len	MBF	% MBF	Spc	2-3	4-5	6-7	8-9	10-11		14-15	16-19	20-23	24-29	30-39	40+
DF	2M	28	20	20	.5								20				
DF	2M	40	2,653	2,643	73.9				×		585	642	1073	289	55		
DF	3М	20	1	1	.0				1								
DF	3М	22	2	2	.1					2							
DF	3М	30	9	ç	.3					9							
DF	3М	32	10	10	.3			8	2								
DF	3M	34	36	36	1.0			36									
DF	3М	36	28	28	.8			26	2								
DF	3М	38	8	8	.2			8									
DF	3М	40	709	709	19.8			111	295	303							
DF	4M	12	3	3	.1			3									
DF	4M	14	8	8	.2			8									
DF	4M	16	18	18	.5			16	2								
DF	4M	18	9	9	.3			9									
DF	4M	20	7	7	.2			6	1								
DF	4M	22	9	9	.3			9									
DF	4M	24	10	10	.3			10									
DF	4M	26	21	21	.6			21									
DF	4M	30	25	25	.7			25									
DF	Totals		3,587	3,577	97.8			295	304	314	585	642	1092	289	55		
WH	2M	40	70	70	85.6						13	26	31				
WH	3М	40	9	9	10.7				9								
WH	4M	16	1	1	1.8			1									
WH	4M	28	2	2	1.9			2									
WH	Totals		82	82	2.2			3	9		13	26	31				
Fotal	All Specie	s	3,668	3,659	100.0			298	313	314	598	668	1124	289	55		

VOLUME SUMMARY (Shown in MBF) Front Nine FG-341-2023-W00943-01 May 2023

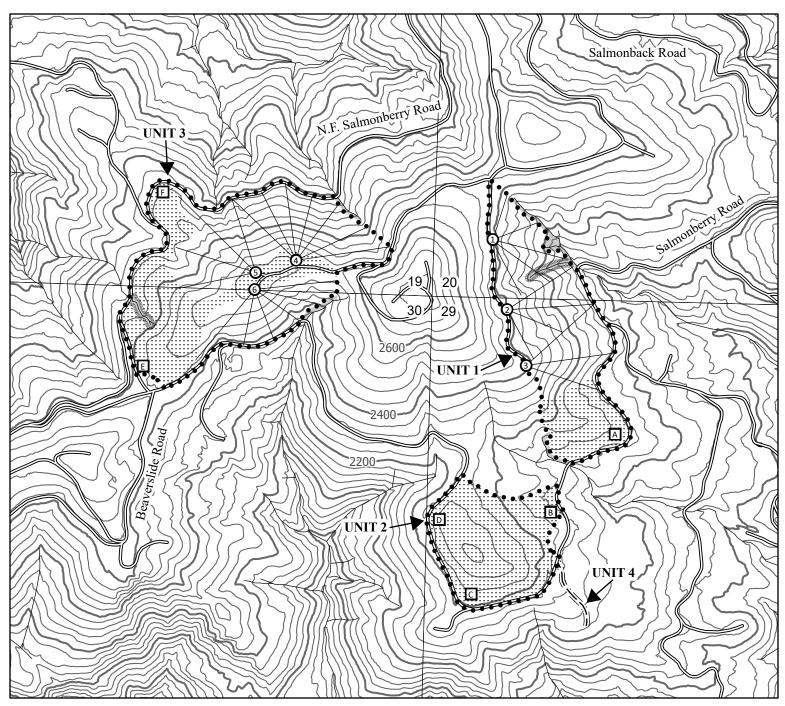
UNIT 1: Modified Clearcut (46 Acres)

-	amea eleareat (le				
SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	2,131	207	13	2,351
Douglas-fir	Hidden D&B (2%)	(43)	(4)	(0)	(47)
Douglas-III	NET TOTAL	2,088	203	13	2,304
	% of Total	90	9	1	

UNIT 2: Modified Clearcut (31 Acres)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	1,195	267	28	1,490
Douglas-fir	Hidden D&B (2%)	(24)	(5)	(1)	(30)
	NET TOTAL	1,171	262	27	1,460
	% of Total	80	18	2	
Noble-Fir	Cruise Volume	104	0	1	105
	Hidden D&B (2%)	(2)	(0)	(0)	(2)
	NET TOTAL	102	0	1	103
	% of Total	99	0	1	
	Cruise Volume	0	30	0	30
Western	Hidden D&B (2%)	(0)	(1)	(0)	(1)
Hemlock	NET TOTAL	0	29	0	29
	% of Total	0	100	0	

UNIT 3: Modified Clearcut (77 Acres)


SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
Douglas-fir	Cruise Volume	2,663	804	110	3,577
	Hidden D&B (2%)	(53)	(16)	(2)	(71)
	NET TOTAL	2,610	788	108	3,506
	% of Total	75	22	3	
	Cruise Volume	70	9	3	82
Western	Hidden D&B (2%)	(1)	(0)	(0)	(1)
Hemlock	NET TOTAL	69	9	3	81
	% of Total	85	11	4	

UNIT 4: Right-of-Way (1 Acre)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
Dougloo fir	Cruise Volume	18	4	0	22
	Hidden D&B (2%)	(0)	(0)	(0)	(0)
Douglas-fir	NET TOTAL	18	4	0	22
	% of Total	82	18	0	

SALE TOTAL

SPECIES	2 SAW	3 SAW	4 SAW	TOTAL
Douglas-fir	5,887	1,257	148	7,292
Western Hemlock	69	38	3	110
Noble Fir	102	0	1	103
Total	6,058	1,295	152	7,505

LOGGING PLAN

Legend

О

- ••• Timber Sale Boundary
- Stream Buffer Boundary
- E Right-of-Way Boundary
- Surfaced Road
- ---- New Road Construction

Cable Yarding Area

Tractor Yarding Area

Cable Landing

Tractor Landing

Type-F Stream
 Type-N Stream

Type It birean

Stream Buffer

Section Line

FOR TIMBER SALE CONTRACT #FG-341-2024-W00943-01 FRONT NINE PORTIONS OF SECTIONS 19, 20, 29, & 30 T3N, R6W, W.M., TILLAMOOK COUNTY, OREGON

> Forest Grove District GIS 5/25/2023 This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1 inch = 1,000 feet

500 1,000

0

2,000

APROXIMATE NET ACRES TRACTOR CABLE

UNIT 1 UNIT 2	12 31	34
UNIT 3 UNIT 4	28 1	49
TOTAL	72	83