

Sale FG-341-2023-W00944-01

District: Forest Grove Date: November 21, 2022

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$1,888,187.76	\$0.00	\$1,888,187.76
		Project Work:	(\$201,571.00)
		Advertised Value:	\$1,686,616.76

11/22/22

Sale FG-341-2023-W00944-01

District: Forest Grove Date: November 21, 2022

Timber Description

Location:

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	13	0	98

Volume by Grade	2\$	3S & 4S 6"- 11"	Total
Douglas - Fir	56	3,265	3,321
Total	56	3,265	3,321

Comments: Pond Values Used: Local Pond Values, August 2022.

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$955.95/MBF = \$1,302/MBF - \$346.05/MBF

Western hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost: \$316.95/MBF = \$663/MBF - \$346.05/MBF

Red Alder and Other Hardwoods Stumpage Price = Pond Value minus Logging Cost: \$353.95/MBF = \$700/MBF - \$346.05/MBF

BRANDING AND PAINTING COST ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$5.00/Gallon

HAULING COST ALLOWANCE
Hauling costs equivalent to \$1,200 daily truck cost.

Other Costs (with Profit & Risk to be added): None

Other Costs (No Profit & Risk added):
Machine Time to Block/Waterbar Roads,and Skid Trails:
30 hours x \$150/hour = \$4,500
Machine Time to Pile Landing Slash & Sort Firewood:
15 hours x \$150/hour = \$2,250
Equipment Cleaning: 3 pieces x \$1,000/Piece = \$3,000
TOTAL Other Costs (No Profit & Risk added) = \$9,750

SLASH TREATMENT: 40 acres X \$250/acre = \$10,000

ROAD MAINTENANCE (Includes: Move-in, Grading, Rolling and Spot Rocking)

Move-in: \$3,800.91

General Road Maint: 17.00 miles X \$2,186.56 = \$37,171.52 Total Road Maintenance: \$40,972.43 / 3,321 MBF = \$12.34 /MBF

11/22/22

Sale FG-341-2023-W00944-01

District: Forest Grove Date: November 21, 2022

Logging Conditions

Combination#: 1 Douglas - Fir 100.00%

Logging System: Shovel Process: Harvester Head Delimbing

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF

loads / day: 8 bd. ft / load: 3700

cost / mbf: \$180.54
machines: Forwarder

Harvester

Sale FG-341-2023-W00944-01

District: Forest Grove Date: November 21, 2022

Logging Costs

Operating Seasons: 3.00

Profit Risk: 10%

Project Costs: \$201,571.00

Other Costs (P/R): \$0.00

Slash Disposal: \$10,000.00

Other Costs: \$9,750.00

Miles of Road

Road Maintenance:

\$12.34

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	3.7

Sale FG-341-2023-W00944-01

District: Forest Grove Date: November 21, 2022

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Douglas - Fir								
\$180.54	\$12.59	\$3.96	\$110.27	\$0.00	\$30.74	\$3.01	\$2.00	\$2.94	\$346.05

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$914.61	\$568.56	\$0.00

Sale FG-341-2023-W00944-01

District: Forest Grove Date: November 21, 2022

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	3,321	\$568.56	\$1,888,187.76

Gross Timber Sale Value

Recovery: \$1,888,187.76

Prepared By: MARK SAVAGE Phone: 503-359-7437

Lou's Stew #FG-341-2023-W00944-01

- 1. <u>Location</u>: Portions of Sections 19, 29, 30 & 32, T3N, R5W, W.M., Washington County, OR. Portions of Sections 11, 12, 13, 14 & 24, T3N, R6W, W.M., Tillamook County, OR.
- 2. <u>Type of Sale</u>: This timber sale is 238 acres. The Timber Sale Area is comprised of five Partial Cut Units, one Modified Clearcut Unit, and one Right-of-Way Unit. Unit 1 (PC-L) is 49 acres, Unit 2 (PC-M) is 66 acres, Unit 3 (MC) is 53 acres, Unit 4 (PC-M) is 23 acres, Unit 5 (PC-M) is 17 acres, Unit 6 (PC-L) is 22 acres, and Unit 7 (R/W) is 8 acres. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. Revenue Distribution: 100% BOF; 86% Tillamook County (Tax Code 5601), and 14% Washington County.
- **4.** <u>Sale Acreage</u>: Acres are net of stream buffers and existing road prisms. Acreage was determined using ESRI ArcMap GIS software.
- **5.** <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers Adrian Torres, Kenton Burns, and Mark Savage in September of 2022. For more information see Cruise Report.
- **6.** <u>Timber Description</u>: The Timber Sale Area consists of 37 to 48-year-old Douglas-fir timber with minor amounts of red alder and western hemlock. The following table summarizes the ODF cruise estimates for trees to be harvested.

Sale Unit	Net Acres	Average DBH	Trees/Acre	Net MBF/Acre
Unit 1	Jnit 1 49 13	13	120	12.3
Unit 2	66	13	138	13.0
Unit 3	53	13	211	21.3
Unit 4	23	13	70	7.8
Unit 5	17	12	101	8.2
Unit 6	22	12	104	10.0
Unit 7	8	*	*	*

^{* =} see the Cruise Report

- 7. <u>Topography and Logging Method</u>: Slopes within the sale areas range from 5% to 50% and are variable in aspect. Elevations range from 1,050 to 2,250 feet. The Timber Sale Area is 100% ground-based yarding. The average horizontal skid trail length is approximately 300 feet and the maximum is approximately 900 feet.
- 8. Access: All access to the Timber Sale Area is on surfaced all-weather roads. From Forest Grove, travel north on Highway 8 to its junction with Highway 6. Turn left and travel west approximately 3.5 miles to Timber Road. Turn right and proceed north on Timber Road approximately 6.5 miles. To access Unit 6 and Unit 7, turn left onto Cochran Road. Continue on Cochran Road approximately 2.2 miles to Carlson Creek Road. Turn right on Carlson Creek Road and proceed for approximately 400 feet to access the southern portion of Unit 7. Continue on Carlson Creek Road for an additional 1.2 miles to access the southern portion of Unit 6. To access Unit 1 through Unit 5, continue on Timber Road for 3 miles. Turn left onto Highway 26 and proceed for 6 miles to Salmonberry Road. Turn left onto Salmonberry Road and proceed for 1.2 miles. Turn left onto Section 10 Road and proceed for 1.9 miles. To access Unit 1, turn left onto George Creek Road and proceed for 0.2 miles to access the southern portion. To access Unit 2 through Unit 5, continue on Section 10 Road for 0.2 miles to the junction with Wheeler Road. Turn left on Wheeler Road and proceed for 1.4 miles to Access the eastern portion of Unit 2 and Unit 3, turn left onto North Lousignont Road and proceed for 1.5 miles to South Lousignont Road. Turn left on South Lousignont and proceed for 0.2 miles to access the northern portion of Unit 4. To access Unit 5, proceed on South Lousignont Road for an additional 1.2 miles. Turn left onto an unnamed spur road and proceed for 150 feet to access the southern portion of Unit 5.

9. Projects:

Project No. 1: Rocked Road Construction	\$55,412.02
Project No. 1: Dirt Road Construction	\$31,708.64
Project No. 1: Road Improvement	\$104,302.64
Project No. 4: Road Vacating and Blocking	\$10,147.70
Fuel Allowance Adjustment (10%)	\$18,324.64
Total Credits:	\$201,571.00

PROJEC	CT COST SUMMARY	SHEET	
Timber Sale: Sale Number:	Lous FG-341-2023		
Sale Number.	FG-341-2023		
PROJECT NO. 1: ROCKED ROAD CONSTRU	CTION		
	Road Segment B to C	Length 21+40 21+40 stations	Cost \$48,321.18
Total Rock =	663 cy	0.41 miles 1½" - 0	
	785 cy	3" - 0 Move-in = _	\$2,053.38
		TOTAL PROJECT COST =	\$50,374.56
TOTAL PRO	OJECT COST WITH	10% FUEL ADJUSTMENT =	\$55,412.02
PROJECT NO. 2: DIRT ROAD CONSTRUCTION	ON.	-	
ROJEST NO. 2. DIKT ROAD CONSTRUCTIO			
	Road Segment E to F	Length 16+80	Cost \$10,630.81
	K to L	27+00	\$12,342.15
	R to S	12+30 56+10 stations 1.06 miles	\$4,678.06
		Move-in =	\$1,175.02
		TOTAL PROJECT COST =	\$28,826.04
TOTAL PR	OJECT COST WITH	10% FUEL ADJUSTMENT =	\$31,708.64
PROJECT NO. 3: ROAD IMPROVEMENT			
	D10	l dl-	04
	Road Segment A to B	Length	Cost \$3,240.63
	C to D	65+00	\$47,545.20
	G to H	12+00	\$3,841.65
	I to J	75+70	\$16,532.06
	M to N	53+60	\$3,661.96
	O to P	25+70	\$7,214.60
	Q to R	30+00	\$8,919.37
		264+00 stations	,
Total Rock =		5.00 miles	
	1,209 cy 449 cy	1½" - 0 3" - 0	
		Move-in =	\$3,865.11
		TOTAL PROJECT COST =	\$94,820.58
<u>IOTAL PR</u>	OJECT COST WITH	10% FUEL ADJUSTMENT =	\$104,302.64
PROJECT NO. 4: ROAD VACATING AND BLO	OCKING		
	Road Segment	Length	Cost
	V 1 to V2	18+60	\$2,428.00
	V3 to V4	2+00	\$390.75
	E to F	16+80	\$1,154.13
	K to L	27+00	\$1,781.25
	G to H	12+00	\$281.00
	R to S	12+30 88+70 stations	\$892.75
		1.68 miles	¢2 207 24
		Move-in =	\$2,297.31
TOTAL BB	O IECT COST WITH	TOTAL PROJECT COST = 10% FUEL ADJUSTMENT =	\$9,225.19 \$10,147.70
<u>IOTAL PR</u>	COECI COSI WITH	10 /0 FUEL ADJUSTMENT =	φ10,147./U

TOTAL CREDITS = \$183,246.37

10% FUEL ALLOWANCE ADJUSTMENT TOTAL = \$18,324.64

TOTAL CREDITS WITH ADJUSTMENT = \$201,571.00

	SUM	VIART OF	CONSTRUC	TION COST			
Timber Sale:		Lous Stev	N	_	Sale Number:	FG-341-202	3-W00944-01
Road Segment:		A to B		-	Improvement:	2+00	stations
•				-		0.04	miles
PROJECT NO. 3: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	0.03	ac @	\$1,078.00	per acre =		\$32.34	
Clean ditch & scatter waste material	2.00	sta @		per sta =		\$120.00	
Remove existing culverts	1	ea @		per ea =		\$150.00	
Improve turnout	1	ea @		per ea =		\$33.00	
Grade, ditch, & roll	2.00	sta @		per sta =		\$72.00	
		Ŭ		TOTAL		IT COOTO	#407.04
OLUL/EDTO				<u>TOTAL I</u>	<u>MPROVEMEN</u>	11 COSTS =	\$407.34
CULVERTS Culverte and Bands							
Culverts and Bands	40	150	# 00.00	IF-		#000 00	
18" Diameter Markers & Stakes	40	LF @	\$20.00	per LF =		\$800.00	
Culvert markers	1	ea @	\$10.00	per ea =		\$10.00	
Culvert markers	'	ea w	φ10.00	per ea –		\$10.00	
				TC	TAL CHIVEE	T COSTS -	\$810.00
ROCK				<u>1C</u>	TAL CULVER	<u> </u>	\$610.00
ROCK							
	Daak	D	Llaul Caat	Dia a a ma a mat/			
	Rock	Base	Haul Cost	Placement/ Processing Cost \$, Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	Processing Cost \$	/Cy		
Subgrade rock							
Bedding and backfill	1½" - 0	\$10.92	\$11.23	\$0.50	24	\$543.60	
J		,	, -	Subtot		\$543.60	
Surfacing rock							
Surfacing Rock	1½" - 0	\$10.92	\$11.23	\$1.22	62	\$1,448.94	
				Subtot	al = 62	\$1,448.94	
					•		
			Totals	All Roc			
				1½'	' - 0 86		
					TOTAL ROC	CK COSTS =	\$1,992.54
EROSION CONTROL							
Grass seed & fertilizer	0.03	ac @	\$425.00	per ac =		\$12.75	
Straw mulch acre	0.03	ac @	\$600.00	per ac =		\$18.00	
		_					
				TOTAL EROS	SION CONTRO	DL COSTS = _	\$30.75
				T	OTAL PROJE	ECT COST =	\$3,240.63
				_			

	SUM	MARY OF C	CONSTRUC	TION COST			
Timber Sale:		Lous Stev	N	Sal	e Number:	FG-341-20	23-W00944-01
Road Segment:		B to C		- Co	Construction:		stations
Ç				-		0.41	miles
PROJECT NO. 1: ROCKED ROAD CONS	TRUCTION	ON					
CONSTRUCTION							
Clearing & grubbing (scatter)	2.46	ac @	\$1,078.00	per ac =		\$2,651.88	
Balanced road construction	21.40	sta @	\$110.00	per sta =		\$2,354.00	
Turnout	2	ea @		per ea =		\$132.00	
Grade, ditch, & roll	21.40	sta @	\$36.00	per sta =		\$770.40	_
				TOTAL CO	NSTRUCTI	ION COSTS =	\$5,908.28
ROCK				101712 00	101110011	1011 00010	Ψ0,000.20
	-		1	I DI			1
	Rock	Base	Haul Cost	Placement/	T-4-1 OV	DI-04	
	Size	Cost \$/cy	\$/cy	Processing Cost \$/cy	Total CY	Rock Cost	
Surfacing rock				Cost \$/cy]
Base rock	3" - 0	\$10.62	\$11.70	\$1.22	727	¢ 17 110 E0	1
Surfacing rock	1½" - 0	\$10.62	\$11.70	\$1.22	663	\$ 17,113.58 \$22,581.00	+
Turnout	3" - 0	\$10.92	\$11.70	\$1.22	58	\$1,365.32	-
Turriout	3 - 0	\$10.02	φ11.7U	Subtotal =		\$41,059.90	-
				Subtotal –	1,440	\$41,059.90	1
			Totals	All Rock =	1,448]	
			rotalo	1½" - 0			
				3" - 0			
						I	
					TOTAL RC	CK COSTS =	\$41,059.90
EROSION CONTROL							
Grass seed & fertilizer	1.23	ac @	\$500.00	per ac =		\$615.00	
Straw mulch (acre)	1.23	ac @		•		\$738.00	
,		Ŭ		•		·	-
				TOTAL EROSIG	ON CONTR	ROL COSTS =	\$1,353.00

TOTAL PROJECT COST = \$48,321.18

				CTION COST			
Timber Sale:		Lous Stew		-	Sale Number:		
Road Segment:		C to D		-	Improvement:	65+00 1.23	stations miles
PROJECT NO. 3: ROAD IMPROVEMENT							
MPROVEMENT							
Clearing & grubbing (scatter)	7.41	ac @	\$1,078.00	per acre =		\$7,987.98	
/acate junction	0.06	ac @	\$1,500.00	per acre =		\$90.00	
Clean ditch & scatter waste material	20.00	sta @	\$60.00	per sta =		\$1,200.00	
Clean culvert inlet & outlet, scatter waste	8	ea @	\$25.00	per ea =		\$200.00	
Remove existing culverts	1	ea @	\$150.00	per ea =		\$150.00	
Construct settling pond	14	ea @	\$25.00	per ea =		\$350.00	
mprove turnout	5	ea @	\$33.00	per ea =		\$165.00	
Grade, ditch, & roll	65.00	sta @		per sta =		\$2,340.00	
				TOTAL I	<u>IMPROVEMEN</u>	IT COSTS =	\$12,482.98
CULVERTS	_						
Culverts and Bands							
18" Diameter	30	LF @	\$20.00	per LF =		\$600.00	
Markers & Stakes							
Culvert markers	2	ea @	\$10.00	per ea =		\$20.00	
				TO	OTAL CULVER	T COSTS =	\$620.00
ROCK	_			<u>.1.</u>	STAL GOLVET		Ψ020.00
	Daak	Dana.	Llawl Cast	Discourant			
	Rock Size	Base Cost \$/cy	Haul Cost \$/cv	Placement/ Processing Cost \$	S/cv Total CY	Rock Cost	
Subgrade rock	0.20	00014,09	4,0,		,, ,		
Bedding and backfill	1½" - 0	\$10.92	\$12.85	\$0.50	24	\$582.48	
Deduing and backing	1/2 - 0	φ10.92	φ12.05	Subtot		\$582.48	
Surfacing rock	1			Subto	lai – 24	ψ302.40	
Surfacing rock	1½" - 0	\$10.92	\$12.85	\$1.22	975	\$24,365.25	
Junction	1½" - 0	\$10.92	\$12.85	\$1.22	48	\$1,199.52	
Turnout	1½" - 0	\$10.92	\$12.85	\$1.22	28	\$699.72	
Turnout	1/2 - 0	\$10.92	\$12.00	\$1.22 Subtot	-	\$26,264.49	
				Subtoi	iai – 1,051	\$20,204.49	
			Totals	All Roc	ck = 1,075		
					" - 0 1,075		
					TOTAL DOG	NY OOSTO	000 040 0
TROCION CONTROL					TOTAL ROC	CK COSTS =	\$26,846.97
EROSION CONTROL Grass seed & fertilizer	7.41	20.@	\$425.00	per 22 =		¢2 1/0 25	
Grass seed & ieruiizer Straw mulch acre	7.41 7.41	ac @		per ac =		\$3,149.25	
oriaw muich acre	7.41	ac @	\$600.00	per ac =		\$4,446.00	
				TOTAL EROS	SION CONTRO	OL COSTS =	\$7,595.25
]	TOTAL PROJE	CT COST =	\$47,545.20

Timber Salar	COMM	Louis Star			Sale Number	EC 241 20)23-W00944-01
Timber Sale:		E to F	ıv	_	•		
Road Segment:		E to F		_	Construction:	16+80 0.32	_stations _miles
						0.32	
PROJECT NO. 2: DIRT ROAD CONSTRU	CTION						
CONSTRUCTION							
Clearing & grubbing (scatter)	1.93	ac @	\$1,078.00	per ac =		\$2,080.54	
Balanced road construction	16.80	sta @	\$110.00	per sta =		\$1,848.00	
Turnout	1	ea @	\$66.00	per ea =		\$66.00	
Turnaround	1	ea @	\$82.50	per ea =		\$82.50	
Landing	1	ea @	\$314.00	per ea =		\$314.00	
Grade, ditch, & roll	16.80	sta @	\$36.00	per sta =		\$604.80	_
				TOTAL	CONSTRUCTIO	N COSTS =	\$4,995.84
CULVERTS					<u> </u>		Ψ 1,000.01
Culverts and Bands							
18" Diameter	70	LF @	\$20.00	per LF =		\$1,400.00	
Markers & Stakes		_					
Culvert markers	2	ea @	\$10.00	per ea =		\$20.00	
				-	TOTAL CULVER	T COSTS =	\$1,420.00
ROCK				-	TOTAL GOLVER	1 00010 -	Ψ1,420.00
		1	I	Placeme	ent/		1
	Rock	Base	Haul Cost	Process		Rock Cost	
	Size	Cost \$/cy	\$/cy	Cost \$/		NOCK COST	
Subgrade rock		<u> </u>		Ουσι ψη	oy		1
Subgrade reinforcement	3" - 0	\$10.62	\$12.85	\$0.75	120	\$2,906.40	1
				Subte	otal = 120	\$2,906.40	İ
Surfacing rock							- -
Base rock	3" - 0	\$10.62	\$12.85	\$1.22		\$1,308.57]
				Subte	otal = 53	\$1,308.57	1
			T.4.1.	All D	470		
			Totals		ock = 173 3" - 0 173		
					3" - 0 173		
					TOTAL ROC	K COSTS =	\$4,214.97
					TOTAL PROJE	CT COST =	\$10,630.81
							<u> </u>
PROJECT NO. 4: ROAD VACATING AND	BLOCK	ING					
Construct tank trap	1	ea @	\$55.00	per ea =		\$55.00	
Construct waterbar	4	ea @	\$27.50	per ea =		\$110.00	
Grass seed & fertilizer	0.97	ac @	\$425.00	per ac =		\$410.13	
Mulch	0.97	ac @	\$600.00	per ac =		\$579.00	
					TOTAL PROJE	CT COST =	\$1,154.13

	SUMN	MARY OF C	ONSTRUC	TION COST				
Timber Sale:		Lous Stev	N	_	Sale	Number:	FG-341-202	3-W00944-01
Road Segment:		G to H			Impi	rovement:	12+00	stations
				-			0.23	miles
PROJECT NO. 3: ROAD IMPROVEMENT								
IMPROVEMENT								
Road improvement	12.00	sta @	\$110.00	per sta =			\$1,320.00	
Clearing & grubbing (scatter)	0.14	ac @	\$1,078.00	per acre =			\$150.92	
Clean ditch & scatter waste material	12.00	sta @	\$60.00	per sta =			\$720.00	
Clean culvert inlet & outlet, scatter waste	1	ea @	\$25.00	per ea =			\$25.00	
Improve turnout	1	ea @	\$33.00	per ea =			\$33.00	
Improve turnaround	1	ea @	\$41.25	per ea =			\$41.25	
Improve landing	1	ea @	\$157.00	per ea =			\$157.00	
Grade, ditch, & roll	12.00	sta @	\$36.00	per sta =			\$432.00	
				TOT/	AL IMPR	OVEMEN	T COSTS =	\$2,879.17
ROCK								
	Rock	Base	Haul Cost	Placeme	nt/			
	Size	Cost \$/cy	_	Processing C		Total CY	Rock Cost	
Surfacing rock						<u> </u>		
Base rock	3" - 0	\$10.62	\$6.32	\$1.22		53	\$962.48	
				Si	ubtotal =	53	\$962.48	
							1	
			Totals	All	Rock =	53		
					3" - 0	53]	
					<u>TO</u>	TAL ROCI	K COSTS =	\$962.48
					TOTA	L PROJE	CT COST =	\$3,841.65
PROJECT NO. 4: ROAD VACATING AND BI	OCKING	 3						
Construct tank trap	1	ea @	\$55.00	per ea =			\$55.00	
Construct waterbar	3	ea @	\$27.50	per ea =			\$82.50	
Grass seed & fertilizer	0.14	ac @	\$425.00	per ac =			\$59.50	
Mulch	0.14	ac @	\$600.00	per ac =			\$84.00	
					TOTA	L PROJE	CT COST =	\$281.00
								

	COIVIIV	<i>"</i> " ' ' ' ' ' ' '	011011100	11011 000	, ,		
Timber Sale:		Lous Stev	٧	_	Sale Number:	FG-341-202	23-W00944-01
Road Segment:		I to J		-	Improvement:	75+70	stations
				-		1.43	miles
PROJECT NO. 3: ROAD IMPROVEMENT							
IMPROVEMENT							
Road improvement	75.70	sta @	\$110.00	per sta =		\$8,327.00	
Clearing & grubbing (scatter)	0.87	ac @	\$1,078.00	per acre =	=	\$937.86	
Clean ditch & scatter waste material	75.70	sta @	\$60.00	per sta =		\$4,542.00	
Grade, ditch, & roll	75.70	sta @	\$36.00	per sta =		\$2,725.20	
				-	TOTAL IMPROVEMEN	T COSTS =	\$16,532.06
					TOTAL DDO IS	CT COST -	#46 F30 06
					TOTAL PROJE	<u> </u>	\$16,532.06

Timber Sale:		Lous Stev	N	_	Sale Number:	FG-341-20	023-W00944-01
Road Segment:		K to L		- -	Construction:		stations
						0.51	miles
PROJECT NO. 2: DIRT ROAD CONSTRU	JCTION						
CONSTRUCTION							
Clearing & grubbing (scatter)	3.10	ac @	\$1,078.00	per ac =		\$3,341.80	
Balanced road construction	27.00		\$110.00			\$2,970.00	
Construct settling pond	6	ea @				\$150.00	
Turnout	1	ea @		per ea =		\$66.00	
Turnaround	1	ea @				\$82.50	
Landing	1	ea @				\$314.00	
Grade, ditch, & roll	27.00	sta @	\$36.00	per sta =		\$972.00	-
				TOTAL	CONSTRUCTIO	N COSTS =	\$7,896.30
CULVERTS							
Culverts and Bands							
18" Diameter	40	LF @	\$20.00			\$800.00	
24" Diameter	80	LF @	\$29.00	per LF =		\$2,320.00	
Markers & Stakes							
Culvert markers	3	ea @	\$10.00	per ea =		\$30.00	
				-	TOTAL CULVER	T COSTS =	\$3,150.00
ROCK							
	Dools	Base	Lloui Cost	Placem	nent/]
	Rock Size		Haul Cost	Proces	sing Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	Cost \$	S/cy		
Surfacing rock		•	•	•	•	•	•
Base rock	3" - 0	\$10.62	\$12.61	\$1.2		\$1,295.85	
				Sub	ototal = 53	\$1,295.85]
			Totals	ΛII F	Rock = 53	1	
			Totals	All I	3" - 0 53	1	
					TOTAL BOC	r coete =	¢1 205 95
					TOTAL ROC	<u>K COS1S =</u>	\$1,295.85
					TOTAL PROJE	CT COST =	\$12,342.15
					TOTALTROOL	01 0001	Ψ12,012.10
PROJECT NO. 4: ROAD VACATING AND	BLOCK	(ING					
Construct tank trap	1	ea @	\$55.00	per ea =		\$55.00	
Construct waterbar	5	ea@	\$27.50	per ea =		\$137.50	
Grass seed & fertilizer	1.55	ac @	\$425.00	per ac =		\$658.75	
Mulch	1.55	ac @	\$600.00	per ac =		\$930.00	
					TOTAL PROJE	CT COST =	\$1,781.25
							Ţ.,. O20

Timber Sale:	COMM	Lous Stev	v	11011 0001	Sale Number:	FG-341-202	3-W/00944-01
Road Segment:		M to N	v	-	Improvement:	53+60	stations
Road Gegment.		IVI to IN		•	improvement.	1.02	miles
PROJECT NO. 3: ROAD IMPROVEMENT							
IMPROVEMENT							
Clearing & grubbing (scatter)	0.62	ac @	\$1,078.00	per acre =		\$668.36	
Clean culvert inlet & outlet, scatter waste	8	ea @	\$25.00	per ea =		\$200.00	
Remove existing culverts	1	ea @	\$150.00	per ea =		\$150.00	
Improve turnout	6	ea @	\$33.00	per ea =		\$198.00	
Improve turnaround	1	ea @	\$41.25	per ea =		\$41.25	
Improve landing	1	ea @	\$157.00	per ea =		\$157.00	
Grade, ditch, & roll	53.60	sta @	\$36.00	per sta =		\$1,929.60	
				TOTAL	IMPROVEMEN ¹	r costs =	\$3,344.21
				TOTAL	IIVII TOVLIVILIV		ψυ,υ44.21
EROSION CONTROL							
Grass seed & fertilizer	0.31	ac @	\$425.00	per ac =		\$131.75	
Straw mulch acre	0.31	ac @	\$600.00	per ac =		\$186.00	
				TOTAL ERO	SION CONTRO	_COSTS =	\$317.75
					TOTAL PROJE	CT COST =	\$3,661.96

	SUMM			TION COST			
Timber Sale:		Lous Stew	1	_	Sale Number:	FG-341-202	3-W00944-01
Road Segment:		O to P			Improvement:	25+70	stations
				-		0.49	miles
PROJECT NO. 3: ROAD IMPROVEMENT						<u> </u>	
-							
IMPROVEMENT							
Road improvement	25.70	sta @	\$110.00	per sta =		\$2,827.00	
Clearing & grubbing (scatter)	0.30	_		per acre =		\$323.40	
Clean ditch & scatter waste material	25.70	sta @	\$60.00	per sta =		\$1,542.00	
Clean culvert inlet & outlet, scatter waste	3	ea @	\$25.00	per ea =		\$75.00	
Construct settling pond	4	ea @	\$25.00	per ea =		\$100.00	
Improve turnout	2	ea @	\$33.00	per ea =		\$66.00	
Improve turnaround	1	ea @	\$41.25	per ea =		\$41.25	
Improve landing	1	ea @	\$157.00	per ea =		\$157.00	
Grade, ditch, & roll	25.70	sta @	\$36.00	per sta =		\$925.20	
				TOTA	L IMPROVEMEN	T COSTS =	\$6,056.85
				10170	<u> </u>		ψο,σσσ.σσ
GATE INSTALL							
Construction of posts	1	ea @	\$500.00	per ea =		\$500.00	
Gate	1	ea @	\$220.00	per ea =		\$220.00	
Post and gate install	1	ea @	\$274.00	•		\$274.00	
. oor and gate motali	•	3	4 -1	po. 00			
					TOTAL GATI	E COSTS =	\$994.00
CULVERTS							
Markers & Stakes							
Culvert markers	1	ea @	\$10.00	per ea =		\$10.00	
	•	6	*	F			
					TOTAL CULVER	T COSTS =	\$10.00
EROSION CONTROL						_	
Grass seed & fertilizer	0.15	ac @	\$425.00	per ac =		\$63.75	
Straw mulch acre	0.15	ac @	\$600.00	per ac =		\$90.00	
		0	,	•		,	
				TOTAL ERG	OSION CONTRO	L COSTS =	\$153.75
					TOTAL PROJE	CT COST =	\$7,214.60
						 =	ψ., <u></u> ,

Timber Sale:		MARY OF (Lous Ste		CTION COST	Sale Number:	EG-3/1-202	3_\\\\∩∩044_∩1
Road Segment:		Q to R		- -	Improvement:		stations miles
PROJECT NO. 3: ROAD IMPROVEMENT						0.01	mics
IMPROVEMENT							
Clearing & grubbing (scatter)	0.35	ac @	\$1,078.00	per acre =		\$377.30	
Clean ditch & scatter waste material	5.00	sta @		per sta =		\$300.00	
Clean culvert inlet & outlet, scatter waste	1	ea @		per ea =		\$25.00	
Remove existing culverts	1	ea @		per ea =		\$150.00	
Improve turnout	2	ea @		per ea =		\$66.00	
Grade, ditch, & roll	30.00	sta @		per sta =		\$1,080.00	
				TOTAL	. IMPROVEMEN	IT COSTS =	\$1,998.30
CULVERTS						_	
Culverts and Bands	-						
18" Diameter	60	LF @	\$20.00	per LF =		\$1,200.00	
Markers & Stakes							
Culvert markers	3	ea @	\$10.00	per ea =		\$30.00	
				7	TOTAL CULVER	RT COSTS =	\$1,230.00
ROCK				-		_	Ψ.,=σσ.σσ
		1		1			
	Rock	Base	Haul Cost	Placement/	T		
	Size	Cost \$/cy	\$/cy	Processing Cost	\$/cy Total CY	Rock Cost	
Subgrade rock							
Bedding and backfill	1½" - 0	\$10.92	\$4.51	\$0.50	48	\$764.64	
Subgrade reinforcement	3" - 0	\$10.62	\$4.51	\$0.75	36	571.68	
				Subt	otal = 84	\$1,336.32	
Surfacing rock							
Spot Rock	3" - 0	\$10.92	\$4.51	\$1.22	200	\$3,330.00	
Junction	3" - 0	\$10.92	\$4.51	\$1.22	12	\$199.80	
Turnout	3" - 0	\$10.92	\$4.51	\$1.22	28	\$466.20	
				Subt	otal = 240	\$3,996.00	
			Totals	All Ro	ock = 324		
				1:	½" - 0 48		
					3" - 0 276		
					TOTAL BOO	Y COSTS -	ሰ ር 222 22
EROSION CONTROL					TOTAL ROC	N 00010 =	\$5,332.32
Grass seed & fertilizer	0.35	ac @	\$425.00	per ac =		\$148.75	
Straw mulch acre	0.35	ac @	\$600.00	per ac =		\$210.00	
Cada Maior dolo	0.00	40 (4)	ψ000.00	•			4055
				TOTAL ERO	OSION CONTRO	DL COSTS =	\$358.75
					TOTAL PROJE	CT COST =	\$8,919.37
					TOTAL FROJE	<u>-010001-</u>	ψυ,στσ.στ

Timber Sale:		Lous Stev	V	_	Sale Number: FG-341-20	023-W00944-01
Road Segment:		R to S		_	Construction: 12+30	stations
					0.23	miles
PROJECT NO. 2: DIRT ROAD CONSTRU	JCTION					
CONSTRUCTION						
Clearing & grubbing (scatter)	1.42	ac @	\$1,078.00	per ac =	\$1,530.76	
Balanced road construction	12.30	sta @	\$110.00	per sta =	\$1,353.00	
Turnaround	1	ea @	\$82.50	per ea =	\$82.50	
Landing	1	ea @			\$314.00	
Grade, ditch, & roll	12.30	sta @		per sta =	\$442.80	_
				TOTAL	CONSTRUCTION COSTS =	\$3,723.06
CULVERTS						
Culverts and Bands						
18" Diameter	30	LF@	\$20.00	per LF =	\$600.00	_
					TOTAL CULVERT COSTS =	\$600.00
EROSION CONTROL				•		
Grass seed & fertilizer	0.71	ac @	\$500.00	per ac =	_\$355.00	_
			т	OTAL FRO	OSION CONTROL COSTS =	\$355.00
			<u>-</u>	O IT LE LIKE	201011 001111102 00010	Ψ000.00
					TOTAL PROJECT COST =	\$4,678.06
PROJECT NO. 4: ROAD VACATING AND	BLOCK	ING				
Construct tank trap	1	ea @	\$55.00	per ea =	\$55.00	
Construct waterbar	4	ea @	\$27.50	per ea =	\$110.00	
Grass seed & fertilizer	0.71	ac @	\$425.00	•	\$301.75	
Mulch	0.71	ac @	\$600.00	per ac =	\$426.00	
					TOTAL PROJECT COST =	\$892.75
					TOTAL I NOVLOT SOUT -	Ψ002.10

Timber Sale:	Lous Stew			Sal	e Number:	FG-341-20	023-W00944-01
Road Segment:	V 1 to V2				Vacating:	18+60	stations
						0.35	miles
PROJECT NO. 4: ROAD VAC	ATING AND BLOC	KING	;				_
Construct tank trap	2 ea	a @	\$55.00	per ea =		\$110.00	
Rip rocked road surface	18.60 st	a @	\$50.00	per sta =		\$930.00	
Stream channel development	9.50 st	a @	\$75.00	per sta =		\$712.50	
Remove existing culverts	3 ea	a @	\$150.00	per ea =		\$450.00	
Grass seed & fertilizer	0.22 a	c @	\$425.00	per ac =		\$93.50	
Mulch	0.22 a	с @	\$600.00	per ac =		\$132.00	_
				TOTA	L PROJE	CT COST =	\$2,428.00

Timber Sale:	Lous Stew			Sale	Number:	FG-341-20	023-W00944-01
Road Segment:	V3 to V4			\	/acating:	2+00	stations
						0.04	miles
PROJECT NO. 4: ROAD VAC	ATING AND BLO	CKING	;				
Construct tank trap	2	ea @	\$55.00	per ea =		\$110.00	_
Rip rocked road surface	2.00	sta @	\$50.00	per sta =		\$100.00	
Remove existing culverts	1	ea @	\$150.00	per ea =		\$150.00	
Grass seed & fertilizer	0.03	ac @	\$425.00	per ac =		\$12.75	
Mulch	0.03	ac @	\$600.00	per ac =		\$18.00	_
				<u>TOTAL</u>	PROJE	CT COST =	\$390.75

Timber Sale: Lous Stew	Sale Number:	FG-341-2023-	W00944-01
PROJECT No. 1, 2 & 3 MOVE-IN, WITHIN AREA MOV	VE & CLEANING COSTS		
Equipment Grader Loader (Med. & Large) Roller (smooth/grid) & Compactor Excavator (Large) - Equipment Cleaning Dozer (Large) - Equipment Cleaning		Total \$995.74 \$843.75 \$581.14 \$2,297.31 \$2,207.96	
Dump Truck (10cy +)	TOTAL MOV	\$167.61 E-IN COSTS =	\$7,093.51
PROJECT No. 4 MOVE-IN, WITHIN AREA MOVE, & C	CLEANING COSTS		
Equipment Excavator (Large) - Equipment Cleaning		Total \$2,297.31	
	TOTAL MOV	E-IN COSTS =	\$2,297.31

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

Timber Sale: Lous Stew Sale Number: FG-341-2023-W00944-01 Quarry Name: Rock Creek Ridge 1 1/2" - 0: 1,872 cy (truck measure) 3" - 0: 1,234 cy (truck measure) Total truck yardage: 3,106 cy Total in place yardage: 2,389 cy 130% Swell: Compaction: 116% Move-in & Other Base Cost Move in loader \$1,702.64 Move in Dump Trucks \$207.52 Subtotal = \$2,053.16 Per CY = \$0.66/cy 1 1/2"-0 Base Cost \$1,497.60 Load dump truck \$0.80 / cy x 1,872 cy = Subtotal = \$19,195.20 Per CY = \$10.25/cy 3"-0 Base Cost Load dump truck \$0.80 1,234 cy = \$987.20 / cy x Subtotal = \$12,283.05 Per CY = \$ 9.95

> 1 1/2"-0 Base Cost = \$10.92/cy 3"-0 Base Cost = \$10.62/cy

CRUISE REPORT Lou's Stew #FG-341-2023-W00944-01

1. LOCATION: Portions of Sections 19, 29, 30 & 32, T3N, R5W, W.M., Washington County, OR. Portions of Sections 11, 12, 13, 14 & 24, T3N, R6W, W.M., Tillamook County, OR.

2. CRUISE DESIGN:

Pre-cruise evaluation indicated that the stand's average DBH is approximately 18 inches with a Coefficient of Variation of 60%. For sales of this size and approximate value, ODF cruise standards require a Sampling Error of 9% at a 68% Confidence Level, and a minimum sample size of 100 graded trees. Statistical analysis indicated that 44 variable radius grade plots utilizing a 20 BAF prism would produce an adequate sample size.

3. SAMPLING METHOD:

The Timber Sale Area was cruised in September of 2022. Unit 1, Unit 2, Unit 3, Unit 4, Unit 5, and Unit 6 were sampled with 46 variable radius grade plots. Plots falling on or near existing roads or no-harvest areas were offset 1 chain. In Unit 1 and Unit 6, cruisers chose 'take' trees as though thinning from below to a basal area target of 140 ft². In Unit 2, Unit 4, and Unit 5, cruisers chose 'take' trees as though thinning from below to a basal area target of 130 ft². The Unit 7 Right-of-Way Volume was determined through a combination of SuperAce Report statistics and Stand Level Inventory information obtained through the ESRI ArcGIS PRO software.

4. CRUISE RESULTS:

178 Douglas-fir trees were measured and graded producing a cumulative Sampling Error of 11.5% on the Basal Area and 11.8% on the Board Foot Volume for Douglas-fir.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following Columbia River Log Scale grade rules and favored 40 foot segments.

- a) **Height Standards:** Total tree heights were measured to the nearest foot. For conifers, bole heights were calculated to a six inch top.
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors: Measured for each grade tree using a form point of 16 feet.

6. DATA PROCESSING

- a) **Volumes and Statistics:** Cruise estimates and sampling statistics were derived from Super Ace 2008 cruise software
- b) **Deductions:** Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.
- **7. CRUISERS:** The sale was cruised by ODF cruisers Adrian Torres, Kenton Burns, and Mark Savage.

Prepared by:	Mark Savage	09/27/2022
•	Name	Date

RESIDUAL STAND SPECIFICATIONS

SALE NAME: Lou's Stew SALE NUMBER: FG-341-2023-W00944-01

Unit 1

Residual QMD assumption (from leave tree cruise information) =	16
Target Relative Density =	35

	Minimum	Target	Maximum
Relative Density	33	35	38
Basal Area	130	140	150
Trees per Acre	93	100	107

Unit 2

Residual QMD assumption (from leave tree cruise information) =	14
Target Relative Density =	35

	Minimum	Target	Maximum
Relative Density	32	35	37
Basal Area	120	130	140
Trees per Acre	112	122	131

Unit 4

Residual QMD assumption (from leave tree cruise information) =	16
Target Relative Density =	33

	Minimum	Target	Maximum
Relative Density	30	33	35
Basal Area	120	130	140
Trees per Acre	86	93	100

Unit 5

Residual QMD assumption (from leave tree cruise information) =	15
Target Relative Density =	34

	Minimum	Target	Maximum
Relative Density	31	34	36
Basal Area	120	130	140
Trees per Acre	98	106	114

Unit 6

Residual QMD assumption (from leave tree cruise information) = 16
Target Relative Density = 33

	Minimum	Target	Maximum
Relative Density	33	35	38
Basal Area	130	140	150
Trees per Acre	93	100	107

RD = BA / $\sqrt{}$ DBH BA = $\sqrt{}$ DBH (RD) TPA = (BA/acre) / (BA/tree) BA / tree = (πr^2) / (144)

TC PSTATS	S				OJECT S OJECT		TICS SSTEW			PAGE DATE	1 9/27/2022
TWP R	RGE S	SC TRACT		YPE	OJEC I	ACF	 	PLOTS	TREES	CuFt	9/2 // 2022 BdFt
03N 05	5	19 00U5 24 00U4	C		НR		230.00	46	469	S	W
0514 06	o w		1-Unite			E	ESTIMATED	PE	ERCENT		
					TREES		TOTAL		AMPLE		
		PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL		46	469		10.2		40.204		1.0		
CRUISE DBH COU REFORE: COUNT BLANKS	ST	46	469		10.2		49,204		1.0		
		· · · · · · · · · · · · · · · · · · ·		STA	ND SUMM	ARY					
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG FI	IR	49	48.6	13.1	79	12.5	45.2	4,915	4,906	1,231	1,231
DOUG FI		222	66.7	16.1	97	23.6	94.6	13,257	13,257	3,062	3,062
DOUG FI		3 178	1.5 89.4	12.1 12.6	71 86	0.4 21.7	1.2 77.1	9.710	8,676	2,138	2,13
DOUG FI WHEML		178	89.4 6.6	12.6 13.5	86 77	1.8	6.6	8,719 896	8,676 896	2,138	2,13
R ALDEF		3	1.1	14.0	76	0.3	1.1	148	148	34	3
TOTAL		469	213.9	13.9	87	60.5	225.8	27,936	27,884	6,667	6,66
	58.1 1.0	VAR.% 53.7	S.E.%	L	OW 112	AVG 122	HIGH 131		5	10	
DOUG F	IR-L	45.9	3.1		210	217	223				
DOUG F	IR-T	45.2	3.4		106	110	114				
WHEML		40.3	11.2		150	169	187				
R ALDEI TOTAL	R-L	47.2 58.2	32.6 2.7		103 159	153 163	203 167		135	34	
	68.1	COEFF	2.,			E TREES -	-	#	OF TREES R		INF. POP
	1.0	VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	
DOUG F		54.0	7.7		28	31	33				
DOUG F	IR-S	44.1	3.0		49	50	52				
DOUG F		45.4 43.9	3.4 12.2		26 34	27 39	28 43				
R ALDEI		43.9 44.8	31.0		34 24	35	43 46				
TOTAL		55.0	2.5		38	39	40		121	30	
	68.1	COEFF			TREES/A			#	OF PLOTS R	-	INF. POP
SD:	1.0	VAR.%	S.E.%	L	OW 24	AVG	HIGH		5	10	
DOUG F		210.7 59.0	31.0 8.7		34 61	49 67	64 73				
DOLIG E.		435.4	64.1		1	2	3				
DOUG F		82.0	12.1		79	89	100				
	IR-T				4	7	9				
DOUG F DOUG F WHEML	OCK-L	247.7	36.5								
DOUG F DOUG F WHEML R ALDEI	OCK-L R-L	476.3	70.2		0	1	2		40	12	
DOUG F DOUG F WHEML R ALDEI TOTAL	OCK-L R-L	476.3 35.0			203	214	225	ш	49	<i>12</i>	INE DOD
DOUG F DOUG F WHEML R ALDEI TOTAL	OCK-L R-L	476.3	70.2		203		225	#	49 OF PLOTS R 5		
DOUG F. DOUG F. WHEML R ALDEI TOTAL	OCK-L R-L 68.1 1.0	476.3 35.0 COEFF	70.2 5.2	L	203 BASAL	214 AREA/ACI	225 RE	#	OF PLOTS R	EQ.	
DOUG F. DOUG F WHEML R ALDEI TOTAL CL (SD:	68.1 1.0	476.3 35.0 COEFF VAR.%	70.2 5.2 S.E.%	L	203 BASAL A	214 AREA/ACI AVG	225 RE HIGH	#	OF PLOTS R	EQ.	INF. POP.

					PROJECT	STATIS	STICS			PAGE	2
TC PST	ATS				PROJECT		JSSTEW			DATE	9/27/2022
TWP	RGE	SC	TRACT	TYPE		AC	CRES	PLOTS	TREES	CuFt	BdFt
03N 03N	05 06W	19 24	00U5 00U4	00PC 00PC	THR		230.00	46	469	S	W
CL	68.1		COEFF		BASAI	AREA/AC	CRE		# OF PLOTS	REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
WHE	MLOCK-L		248.5	36.6	4	7	9				
	DER-L		501.0	73.8	0	1	2			_	
TOT	AL		25.7	3.8	217	226	234		26	7	3
CL	68.1		COEFF		NET B	F/ACRE			# OF PLOTS RI	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
	G FIR		201.3	29.7	3,451	4,906	6,361				
	G FIR-L		59.9	8.8	12,088	13,257	14,427				
DOU	G FIR-S					0.454	9,698				
DOU	IG FIR-T		79.9	11.8	7,655	8,676	,				
WHI	EMLOCK-I	,	253.4	37.3	562	896	1,230				
R AI	LDER-L		541.6	79.8	30	148	266		26	9	4
TOT	AL		29.9	4.4	26,654	27,884	29,113		36		
CL	68.1		COEFF		NET C	CUFT FT/A	CRE		# OF PLOTS R	•	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOI	JG FIR		200.2	29.5	868	1,231	1,594				
DOU	JG FIR-L		59.3	8.7	2,794	3,062	3,329				
DOI	JG FIR-S										
	JG FIR-T		79.1	11.6	1,889	2,138	2,387				
	EMLOCK-	L	255.0	37.6	126	202	277				
	LDER-L		534.7	78.8	7	34	61				
	ΓAL		29.3	4.3	6,379	6,667	6,955		34	9	4

TC	PSPC	CSTGR		Sp	ecies, So	ort Gra	de - Board Fo	oot Volu	nes (F	Project	:)								
	TH	05W S19 T IRU 06W S24 T					Project: Acres	LOUSS 23	STEW 0.00		-					Page Date Time		1 27/202 38:40	2
			%					Percent o	f Net Bo	ard Foot	Volume					Avera	age Log	3	Logs
	S	So Gr	Net	Bd. Ft.	per Acre		Total	Log	Scale Di	a.	<u> </u>	Log l	Length		Ln	Dia	Bd	CF/	Per
Spp	T	rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5 6-1	12-1	6 17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	L	3M	99		13,173	13,173	3,030	7	4 25	1	l	30	30	39	33	9	99	0.69	132.9
DF	L	4M	1		85	85	19	10	0		<u> </u>	65	35		26	6	37	0.37	2.3
DF	Tota	als	48		13,257	13,257	3,049	7	4 25	1		31	30	39	33	9	98	0.69	135.2
DF	T	CU													11	8		0.00	3.0
DF	T	3M	87	.6	7,635	7,592	1,746	1	8 2		1	0	4	95	39	7	83	0.52	91.9
DF	T	4M	13		1,084	1,084	249	10	0		39	56	5		20	6	24	0.30	44.7
DF	Tota	als	31	.5	8,719	8,676	1,996	9	9 1		6	7	4	83	32	7	62	0.47	139.7
DF		3M	88	.2	4,347	4,338	998	9	5 5	i			7	93	39	8	89	0.58	48.8
DF		4M	12		568	568	131	10	0		38	58		4	21	6	26	0.33	21.7
DF	Tota	als	18	.2	4,915	4,906	1,128		06 4	ļ	4	7	6	83	33	7	70	0.53	70.5
DF	s	CU													37	7		0.00	1.7
DF	Tots	als													37	7		0.00	1.7
-	100										1								
RA	L	3M	76	1	114	114	26		54 36	5	1	36	64		31	9	97	0.71	1.2
RA	L	CR	24		34	34	8	10	00					100	37	7	70	0.46	.5
RA	Tot	als	1		148	148	34		72 28	3	1	28	49	23	33	9	89	0.63	1.7
WH	L	3M	95		855	855	197		76 2	1		20	74	6	32	8	88	0.63	9.7
WH	L	4M	5		41	41	9	1	00		↓	100			23	6	30	0.23	1.4
WH	To	tals	3		896	896	206		77 2:	3		24	70	6	31	8	81	0.59	11.1
Tota	ıls			0.2	27,936	27,884	6,413	8	6 1	4 () 2	19	19	59	33	8	78	0.57	359.8

TC PSTNDSUM	Stand Table Summary	Page Date:	1 9/27/2022
T03N R05W S19 Ty00PC	Project LOUSSTEW	Time:	2:38:41PM
THRU T03N R06W S24 Ty00PC	Acres 230.00	Grown Year:	

Tosic		4 1y00PC													
s				Tot				Average	-		Net	Net		T - 4 - 1 -	
Spc T	DBH	Sample Trees	FF 16'	Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF L	12	4	88	90	1.915	1.50	3.83	10.6	41.3	1.16	41	158	266	93	36
DF L	13	10	88	89	4.518	4.16	8.08	13.5	55.6	3.11	109	449	716	251	
DF L	14	31	88	91	12.115	12.95	23.85	17.2	78.6	11.68	410	1,876	2,686	942	431
DF L	15	26	88	96	8.994	11.04	17.99	19.9	88.3	10.19	357	1,588	2,343	822	365
DF L	16	52	88	96	15.954	22.28	30.30	23.6	102.8	20.39	715	3,113	4,689	1,645	716
DF L	17	30	88	99	8.161	12.86	16.50	24.8	106.5	11.68	410	1,758	2,687	943	404
DF L	18	40	88	102	9.771	17.27	22.17	27.0	111.3	17.05	598	2,467	3,921	1,376	568
DF L	19	7	89	107	1.475	2.90	3.96	28.0	125.3	3.16	111	496	728	255	114
DF L	20	5	88	102	1.037	2.26	2.47	32.7	135.8	2.30	81	336	530	186	77
DF L	21	8	88	107	1.410	3.39	2.04	38.6	162.8	2.25	79	333	518	182	77
DF L	22	6	88	109	1.030	2.72	2.91	35.4	158.7	2.94	103	462	· 675	237	106
DF L	24	1	86	110	.122	.38	.37	39.6	183.3	.41	14	67	95	33	15
DF L	25	1	84	114	.112	.38	.34	43.8	196.7	.42	15	66	97	34	15
DF L	26	1	89	107	.128	.47	.39	47.5	226.7	.52	18	87	120	42	20
DF L	Totals	222	88	97	66.740	94.58	135.20	22.6	98.1	87.26	3,062	13,257	20,069	7,042	3,049
DF T	9	2	88	77	1.836	.81	1.84	8.9	45.4	.47	16	83	107	38	19
DF T	10	19	87	78	14.883	8.12	14.88	12.3	59.4	5.22	183	884	1,202	422	203
DF T	11	21	87	82	13.596	8.97	14.16	14.6	59.8	5.88	206	847	1,352	474	195
DF T	12	38	87	83	20.926	16.43	31.78	13.2	51.2	11.92	418	1,628	2,741	962	374
DF T	13	28	88	90	13.152	12.12	25.37	14.0	55.8	10.15	356	1,417	2,334	819	326
DF T	14	25	87	89	10.160	10.86	19.05	16.9	66.8	9.18	322	1,272	2,110	741	293
DF T	15	26	87	93	9.399	11.53	18.44	19.5	77.5	10.25	360	1,429	2,357	827	329
DF T	16	9	87	98	2.832	3.95	5.98	22.5	94.2	3.84	135	563	883	310	130
DF T	17	6	88	99	1.709	2.69	3.42	26.7	106.8	2.61	91	365	599	210	84
DF T	18	2	88	93	.484	.86	.97	30.2	113.8	.83	29	110	192	67	25
DF T	19	2	88	93	.375	.74	.75	28.4	102.5	.61	21	77	140	49	18
DF T	Totals	178	87	86	89.353	77.10	136.63	15.7	63.5	60.95	2,138	8,676	14,017	4,918	1,996
DF	9	1	85	60	2.086	.92	2.09	7.1	30.0	.42	15	63	97	34	14
DF	10	6	86	68	10.140	5.53	10.14	11.2	56.7	3.23	113	575	742	260	132
DF	11	3	87	77	4.190	2.77	4.19	14.8	60.0	1.77	62	251	407	143	58
DF	12	3	87	73	3.521	2.77	3.52	17.6	63.3	1.77	62	223	406	143	51
DF	13	11	87	79	11.000	10.14	17.00	15.6	59.4	7.56	265	1,010	1,738	610	232
DF	14	9	87	82	7.760	8.30	13.80	16.6	60.6	6.51	228	836	1,497	525	192
DF	15	2	88	89	1.502	1.84	3.00	18.7	75.0	1.60	56	225	368	129	52
DF	16	7	88	94	4.621	6.45	9.24	22.9	94.3	6.04	212	871	1,388	487	200
DF	17	5	88	91	2.924	4.61	5.85	25.8	103.0	4.30	151	602	990	347	
DF	20	2	88	98	.845	1.84	1.69	39.4	147.5	1.90	67	249	436	153	57
DF	Totals	49	87	79	48.589	45.17	70.52	17.5	69.6	35.09	1,231	4,906	8,071	2,832	1,128
WH L	8	1	88	59	1.356	.47	1.36	5.3	30.0	.23	7		53	17	
WH L	10	1	89	68	.868	.47	.87	12.4	60.0	.35		52	79	25	
WHL	13	1	90	72	.514	.47	1.03	12.8	60.0	.42		62	97	30	
WHL	14	2	91	86	.886	.95	1.77	ı	80.0	.97	30	142	223	70	
WH L	15	4	91	83	1.543	1.89	3.09	19.5	87.5	1.93	60	270	443	138	
WH L	16	1	91	90	.339	.47	.68	23.3	100.0	.51		68	116	36	
WHL	17 19	3 1	91 92	86 85	.901 .240	1.42	1.80	26.3	106.7	1.51	47	192	348	109	
WHL						.47	.48	34.9	145.0	.54	17	70	123	39	
WHL	Totals	14	90	76	6.647	6.63	11.07	18.2	80.9	6.45	202	896	1,484	464	206
RA L	12	1	88	62	.487	.38	.49	17.2	70.0	.23	8		53	19	8
RA L	15	1	93	91	.312	.38	.62	20.8	95.0	.36		59	82	30	14
RA L	16	1	92	85	.274	.38	.55	23.3	100.0	.35	13	55	81	29	13

TC	PSTNDSU	М	-			S	Stand T	Table Su	ummary				Page Date:	2 9/27/20	22
] 1	ΓHRU	9 Ty00PC 4 Ty00PC					Project Acres	t L	OUSSTE				Time: Grown Year:	2:38:4	1PM
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
RA L	Totals	3	90	76	1.073	1.15	1.66	20.5	89.3	.94	34	148	216	78	34
DF S DF S DF S	10 11 23	1 1 1	88 84 88	80 58 93	.678 .717 .133	.37 .47 .38							,		
DF S	Totals	3	86	71	1.528	1.23									
Totals		469	87	87	213.930	225.84	355.07	18.8	78.5	190.68	6,667	27,884	43,857	15,334	6,413

T031	1 R0	6W S24 Ty00P	C T																	
	s	So Gr Lo	g	Gross	Def	f Net	%							1	in Inche		<u> </u>		T	16
Spp	T	rt de Le	n	MBF	%	MBF	Spc	2-3	3 4-5	6-7	8-9	\dashv	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	L	3M	24	8		8	.3					- 1		8					1	
DF	L	3M	25	9		9	.3					1	9						ŀ	
DF	L	3M	26	129	,	129	4.2			8		13	18	47	11	31	1			
DF	L	3M	27	142		142	4.7			7		8	32	84		11				
DF	L	3M	28	269)	269	8.8			46		39	102	45	37					
DF	L	3M	29	91		91	3.0			17		11	32	9		22				
DF	L	3M	30	270)	270	8.8			53		13	148	23	25	9				
DF	L	3M	31	137	7	137	4.5			23			110	5					1	
DF	L	3M	32	251	l	251	8.2			88			136	15		12				
DF	L	3M	33	139	9	139	4.5			35		10	75	9	11					
DF	L	3M	34	227	7	227	7.4			63			128	24		11				
DF	L	3M	35	16:	5	165	5.4			15			130	20						
DF	L	3M	36	470	6	476	15.6			138			225	112						
DF	L	3M	37	14:	2	142	4.7			46			54	43						
DF	L	3M	38	24	9	249	8.2			75			75	78	21					
DF	L	3M	39	5	6	50	1.8	-		15			9	21	12					
DF	L	3M	40	24	7	24	8.1	1		59)	31	134	10	13		İ		1	
DF	L	3M	41	2	1	2	.7	1		21										
DF	L	4M	22		3		.1				3									
DF	L	. 4M	23	,	3		.1			:	3									
DF	L	4M	24	· I	4		4 .1	ı		1		4								
DF	L	4M	26	5	3		.1	ı			3									
DF	L	4M	33	3	4		4 .1	1		1	4		l				1			
DF	I	4M	34	1	3		3 .1	1			3								_	
DF		Totals		3,04	19	3,04	9 47.5	5		72	4	129	1410	5 55	3 130	97	1_		-	
DF	ר	г зм	20	0	12	1	2 .0	6						5	7					
DF	7	г 3M	2	8	7		7 .3	3				7								
DF	7	т 3М	33	2	12	1	2 .0	6			2									
DF	-	т 3М	3	3	19	1	.9	9		1	9									
DF	-	Т 3М	3	4	25	2	25 1.1	2			.5		1							
DF		т 3М	3	5	12	7.9		6			4	7	1							
DF	•	Т 3М	3	7	11	:		6			1									
DF		T 3M	3	8	74		74 3.	.7		1	4									
DF		Т 3М	3	9	22	:	22 1.	.1			22									
DF		T 3M	4	1,5	63	1,5	54 77.	.9		61	2	700	22	1 2	1		4		_	
DF		T 4M	1	2	12		12	.6			12									
DF		T 4M		13	7			.3			7									
1 2,		- 1	_	1			1	- [I										

 TC
 PLOGSTVB
 Log Stock Table - MBF

 T03N R05W S19 Ty00PC
 Project: LOUSSTEW
 Date 9/27/2022

 THRU
 Acres 230.00
 Time 2:38:39PM

	THI 1 RO	6W S24 Ty0	0PC				Acres				250.00							1 im		08:39		
	T		_	C	oss Def	Net	%			Net	Volume	by Sc	aling	Diame	ter i	n Inch	es					
Spp	S T	So Gr I	Log Len	Gro Mi		MBF	Spc	2-3	4-5	6-				12-13		14-15	16-19	20-23	3 24-29	30-3	9 40+	_
DF	Т	4M	14	\vdash	24	24	1.2				24											
DF	T	4M	15		12	12	.6				12									l		
DF	Т	4M	16		14	14	.7				14				١							
DF	Т	4M	17	1	12	12	.6			l	12				١							
DF	Т	4M	18		8	8	.4				8				-							
DF	Т	4M	19		6	6	.3				6				1							
DF	, Т	4M	20		3	3	.2				3				1							
DF	Т	4M	21	ı	11	11	.6			-	11				-							
DF	T	4M	22	2	16	16	.8	1			16				ļ							
DF	T	4M	23	3	15	15	.7	١.			15											
DF	T	4M	24	4	8	8	.4				8											
DF	Т	4M	2:	5	23	23	l	1			23											
DF	Т	4M	2	6	18	18		7			18											
DF	Т	4M	1 2	.7	23	23	1	1			23							1				
DF	Т	4M	1 2	.8	12	12	٠. ا	5			12									1		
DF	Т	4M	1 2	.9	11	1	۰. ا	6			11											
DF	7	4M	1 3	30	3	:		2			3				-					1		
DF	7	Γ 4M	1 3	31	8		1	4			8				l			İ		1		
DF	7	Γ 4M	4 3	34	4		4 .	2			4							+		+		_
DF		Total	ls		2,005	1,99	6 31.	1			1028	713	_	226	28			+		+-		_
DF		3N	Л З	32	35	3	5 3.	.1			35		1									
DF		3N	и :	33	19	1	9 1.	.7			19		1									
DF		31	M :	34	7		7	.6			7											
DF		31	M	35	5		5	.4			5											
DF		31	M	36	70	7	1	.2			70											
DF		31	M	37	23		1	1			23			0.770								
DF		31	M	40	841	8:	39 74	.3			190	330	'-	272	47			+		+		_
DF		41	M	12	2		2	.2			2											
DF		l		13	9		9	.8			9											
DF		1	M	14	13		13	1.2			13											
DF			м	15	9		9	.8			9											
DF			M	17	8		8	.7			8											
DF		1	M	18	5		5	.4			5											
DF		1	IM	19	4		4	.4			4											
DF		- 1	₽M	21	4		4	.4			4											
DF		1	4M	22	5		5	.5			5											
DI		l l	4M	23	10		10	.9			10											

T03N RO)5W !	S19 Ty0				1			Projec Acres		LO	USS	TEW 230.0	0						Page Date Time	9/2	3 7/2022 88:39P	
	F			C		Def	Net	T	%			Net	Volume	by Sc	aling	Diamo	ter i	n Inch	es				
S Snn T	1		Log Len	Gross MBF	•	%	MBF	- 1	Spc	2-3	4-5	- 1			10-11			14-15	16-19	20-23	24-29	30-39	40+
PP	 '''		24		5			5	.4				5							1			
)F		4M	25	1	5			5	.4				5	١								1	
OF		4M		l	18			18	1.6			1	18				١					Į.	
OF		4M	26	<u>l</u>	6			6	.5			-	6				Ì						
OF		4M	27	1	5			5	.5			1	5										
DF		4M	29 30	1	18			18	1.6				18										
DF		4M 4M	40	I	6			6	.5				6										
DF ————	_	4101		 				+				+	479	330	27	72	47						
DF	L	Totals		<u> </u>	1,130		1,	128	17.6	<u> </u>		+	479	330			9			+-		T	
RA I	니	3M	3	0	9			9	27.7				3			9						1	
RA I	L	3M	3	1	12			12	36.6	1		- 1	4		ŀ	,	1			-			
RA 1	L	3M	3	2	4			4	12.6			4					-			+		+-	
RA	L	CR	. 3	7	8			8	23.0				8										
RA	+	Total	s	+	34			34	.5	,			15			9	9					-	
	L	3N	1 2	22	8			8	3.9)						8						1	
	L	3N		24	13			13	6.:	5		- 1	3			11						1	
	L	3N	1	26	4			4	1.	7		- 1	4		1								
WH	L	3N		30	15			15	7.	4		- 1	4			11				ł			
WH	L	31		31	10)		10	5.	0							10						
WH	L	31	Л	32	50)		50	24.	3			13			37							
WH	L	31	M	33	13	3		13	6.	5						13							
WH	L	31	M	34	6'	7		67	32	.7			19			12	23		13				
WH	L	3]	M	35	;	3		3	1	.7			3										
WH	L	3	M	39	1	2		12	5	.8			12		_					_		+	
WH	L	4	М	23		9		9	4	.5			9									+	
WH	\dagger	Tot	als	\top	20	6		206	3	5.2			67			92	34	1	13	-		-	
Total	\dashv	All Spe	cies	1	6,42	25		6,413	100	0.0			2314	117	2 2	2015	671	1	143	97		\bot	

TC PST	ATS					DJECT S DJECT		TICS SSTEW			PAGE DATE	1 9/27/2022
WP	RGE	SC	TRACT	Т	YPE		ACF	RES	PLOTS	TREES	CuFt	BdFt
)3N	06	11	00U1	0	0PC			49.00	9	113	S	W
			Unit	1		TREES	F	ESTIMATED TOTAL		ERCENT AMPLE		
			PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA	A I		9	113		12.6						
CRUI			9	113		12.6		11,091		1.0		
DBH	COUNT DREST NT											
100 %	6		·		CT A	AID CUMM	A D.V.					
					STA	ND SUMM						
		S	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET DE/AC	GROSS CF/AC	NET CF/AC
			TREES	/ACRE	DBH	LEN	DEN 26.7	AREA	BF/AC	BF/AC		3,562
	G FIR-L		49	72.3	16.6 11.0	91 58	26.7 0.7	108.9 2.2	14,886	14,886	3,562	3,302
	G FIR-S IG FIR-T		1 49	3.4 119.5	11.0	58 85	30.3	108.9	12,299	12,267	3,058	3,058
	EMLOCK-L		14	31.2	13.5	77	8.5	31.1	4,205	4,205	946	
TOT		,	113	226.3	14.3	85	66.5	251.1	31,390	31,358	7,567	7,567
CL	68.1	8.1	COEFF	T OF 100 THE	VOLUME		TREES -			OF TREES R	REO	INF. POP.
SD:	1.0		VAR.%	S.E.%	Ī.	OW C	AVG	HIGH	"	5	10	1:
DOU	JG FIR-L JG FIR-S		44.8	6.4		216	231	246				
	JG FIR-S JG FIR-T		46.2									
			40.3	6.6		109	117	124				
	EMLOCK-I		46.3 40.3	6.6 11.2		109 150	117 169	124 187				
	EMLOCK-I									129	32	14
WHE TOT	EMLOCK-I		40.3	11.2		150 162	169	187 181		129 FOF TREES F		INF. POP.
WHE	EMLOCK-I		40.3 56.8	11.2	L	150 162	169 172	187 181	#			INF. POP.
WHE TOT CL SD: DOU	EMLOCK-I FAL 68.1		40.3 56.8 COEFF	11.2 5.3	L	150 162 SAMPLI	169 172 E TREES -	187 181	.	OF TREES F	REQ.	INF. POP.
CL SD: DOU DOU	68.1 1.0 UG FIR-L UG FIR-S UG FIR-T		40.3 56.8 COEFF VAR.% 41.3	11.2 5.3 S.E.% 5.9 6.4	L	150 162 SAMPLI OW 52 27	169 172 E TREES - AVG 55	187 181 CF HIGH 58	#	OF TREES F	REQ.	INF. POP.
CL SD: DOU DOU WHE	68.1 1.0 UG FIR-L UG FIR-S UG FIR-T EMLOCK-I		40.3 56.8 COEFF VAR.% 41.3 44.8 43.9	5.3 S.E.% 5.9 6.4 12.2	L	150 162 SAMPLI OW 52 27 34	169 172 E TREES - AVG 55 29 39	187 181 CF HIGH 58 31 43	*	FOF TREES F	REQ. 10	INF. POP.
CL SD: DOU DOU	68.1 1.0 UG FIR-L UG FIR-S UG FIR-T EMLOCK-I		40.3 56.8 COEFF VAR.% 41.3	11.2 5.3 S.E.% 5.9 6.4	I	150 162 SAMPLI OW 52 27	169 172 E TREES - AVG 55	187 181 CF HIGH 58	#	OF TREES F	REQ.	INF. POP.
CL SD: DOU DOU WHE	68.1 1.0 JG FIR-L JG FIR-S JG FIR-T EMLOCK-I		40.3 56.8 COEFF VAR.% 41.3 44.8 43.9	5.3 S.E.% 5.9 6.4 12.2 5.1		150 162 SAMPLI OW 52 27 34 39 TREES/	169 172 E TREES - AVG 55 29 39 41	187 181 CF HIGH 58 31 43 43		FOF TREES FOR STATE OF PLOTS FOR	29 REQ.	INF. POP.
CL SD:	68.1 1.0 JG FIR-L JG FIR-S JG FIR-T EMLOCK-I		40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.%	5.3 S.E.% 5.9 6.4 12.2 5.1		150 162 SAMPLI OW 52 27 34 39 TREES/	169 172 E TREES - AVG 55 29 39 41 ACRE AVG	187 181 CF HIGH 58 31 43 43		F OF TREES F 5	REQ. 10	INF. POP.
CL SD: DOU	68.1 1.0 UG FIR-L UG FIR-S UG FIR-T EMLOCK-I FAL 68.1 1.0 UG FIR-T UG FIR-T		40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.% 27.3	5.3 S.E.% 5.9 6.4 12.2 5.1 S.E.% 9.6		150 162 SAMPLI OW 52 27 34 39 TREES/	169 172 E TREES - AVG 55 29 39 41 ACRE AVG	187 181 CF HIGH 58 31 43 43 HIGH		FOF TREES FOR STATE OF PLOTS FOR	29 REQ.	INF. POP.
CL SD: DOU WHE TOT CL SD: DOU DOU DOU DOU DOU DOU DOU DOU DOU DOU	68.1 1.0 JG FIR-L JG FIR-S JG FIR-T EMLOCK-I FAL 68.1 1.0 JG FIR-L JG FIR-S JG FIR-T JG FIR-S JG FIR-T JG FIR-S		40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.% 27.3 300.0	5.3 S.E.% 5.9 6.4 12.2 5.1 S.E.% 9.6 105.9		150 162 SAMPLIOW 52 27 34 39 TREES/	169 172 E TREES - AVG 55 29 39 41 ACRE AVG 72 3	187 181 CF HIGH 58 31 43 43 HIGH 79 7		FOF TREES FOR STATE OF PLOTS FOR	29 REQ.	INF. POP.
CL SD: CL SD: DOU	68.1 1.0 JG FIR-L JG FIR-S JG FIR-T EMLOCK-I FAL 68.1 1.0 JG FIR-L JG FIR-S JG FIR-T JG FIR-S JG FIR-L JG FIR-S JG FIR-L JG FIR-S JG FIR-T	L	40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.% 27.3 300.0 37.2	5.3 S.E.% 5.9 6.4 12.2 5.1 S.E.% 9.6 105.9 13.1		150 162 SAMPLIOW 52 27 34 39 TREES/	169 172 E TREES - AVG 55 29 39 41 ACRE AVG 72 3 119	187 181 CF HIGH 58 31 43 43 HIGH		FOF TREES FOR STATE OF PLOTS FOR	29 REQ.	INF. POP.
CL SD: DOU WHIT TOTAL SD: DOU DOU DOU DOU DOU DOU DOU DOU DOU DOU	68.1 1.0 JG FIR-L JG FIR-S JG FIR-T EMLOCK-I FAL 68.1 1.0 JG FIR-L JG FIR-S JG FIR-L JG FIR-S JG FIR-L JG FIR-S JG FIR-T EMLOCK-I FAL 68.1 1.0 JG FIR-L JG FIR-S JG FIR-T EMLOCK-I EMLO	L	40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.% 27.3 300.0	5.3 S.E.% 5.9 6.4 12.2 5.1 S.E.% 9.6 105.9		150 162 SAMPLIOW 52 27 34 39 TREES/	169 172 E TREES - AVG 55 29 39 41 ACRE AVG 72 3	187 181 CF HIGH 58 31 43 43 HIGH 79 7 135		FOF TREES FOR STATE OF PLOTS FOR	29 REQ.	INF. POP. 1. INF. POP. 1
WHE TOT CL SD: DOU WHE TOT DOU WHE TOT DOU WHE TOT DOU WHE TO THE HE TOT DOU WHE TO TO THE TOT DOU WHE TO TO THE TOT DOU WHE TO TO THE TOT DOU WHE TO TO THE TOT DOU WHE TO TO THE TOT DOU WHE TO TO THE TOT DOU WHE TO TO THE TOT DOU WHE TO TO THE TOT DOU WHE TO THE TO THE TOT DOU WHE TO THE TOT DOU	EMLOCK-I 68.1 1.0 JG FIR-L JG FIR-S JG FIR-T EMLOCK-I 68.1 1.0 JG FIR-L JG FIR-S JG FIR-L JG FIR-S JG FIR-L JG FIR-S JG FIR-T EMLOCK-I AL	L	40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.% 27.3 300.0 37.2 64.5	5.3 S.E.% 5.9 6.4 12.2 5.1 S.E.% 9.6 105.9 13.1 22.8	I	150 162 SAMPLI OW 52 27 34 39 TREES/ OW 65 104 24 210 BASAL	169 172 E TREES - AVG 55 29 39 41 ACRE AVG 72 3 119 31 226 AREA/AC	187 181 CF HIGH 58 31 43 43 43 HIGH 79 7 135 38 242	‡	FOF TREES FOR STATE OF PLOTS FOR	29 REQ. 10 4 REQ.	INF. POP. INF. POP. INF. POP.
WHIETOT	68.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	L	40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.% 27.3 300.0 37.2 64.5 20.0 COEFF VAR.%	5.3 S.E.% 5.9 6.4 12.2 5.1 S.E.% 9.6 105.9 13.1 22.8 7.1	I	150 162 SAMPLI OW 52 27 34 39 TREES/ OW 65 104 24 210 BASAL	169 172 E TREES - AVG 55 29 39 41 ACRE AVG 72 3 119 31 226 AREA/AC AVG	187 181 CF HIGH 58 31 43 43 43 HIGH 79 7 135 38 242 RE HIGH	‡	FOF TREES F 5 115 FOF PLOTS F 5	29 REQ. 10	INF. POP. INF. POP. INF. POP.
WHETOT	68.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	L	40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.% 27.3 300.0 37.2 64.5 20.0 COEFF VAR.% 18.6	11.2 5.3 S.E.% 5.9 6.4 12.2 5.1 S.E.% 9.6 105.9 13.1 22.8 7.1 S.E.% 6.6	I	150 162 SAMPLI OW 52 27 34 39 TREES/ OW 65 104 24 210 BASAL	169 172 E TREES - AVG 55 29 39 41 ACRE AVG 72 3 119 31 226 AREA/AC AVG 109	187 181 CF HIGH 58 31 43 43 43 HIGH 79 7 135 38 242 RE HIGH 116	‡	FOF TREES FOR STATE OF PLOTS FOR	29 REQ. 10 4 REQ.	INF. POP. INF. POP. INF. POP.
WHETOT	68.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	L	40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.% 27.3 300.0 37.2 64.5 20.0 COEFF VAR.% 18.6 300.0	5.3 S.E.% 5.9 6.4 12.2 5.1 S.E.% 9.6 105.9 13.1 22.8 7.1 S.E.% 6.6 105.9	I	150 162 SAMPLI OW 52 27 34 39 TREES/. OW 65 104 24 210 BASAL OW 102	169 172 E TREES - AVG 55 29 39 41 ACRE AVG 72 3 119 31 226 AREA/AC AVG 109 2	187 181 CF HIGH 58 31 43 43 43 HIGH 79 7 135 38 242 RE HIGH 116 5	‡	FOF TREES FOR STATE OF PLOTS FOR	29 REQ. 10 4 REQ.	INF. POP. INF. POP. INF. POP.
WHETOT	EMLOCK-I FAL 68.1 1.0 JG FIR-L JG FIR-S JG FIR-T EMLOCK-I FAL 68.1 1.0 JG FIR-L JG FIR-S JG FIR-L JG FIR-S JG FIR-L JG FIR-S JG FIR-L JG FIR-S JG FIR-T EMLOCK-I FAL 68.1 1.0 JG FIR-S JG FIR-T UJG FIR-S JG FIR-L JJG FIR-S JJG FIR-L JJG FIR-S JJG FI	L	40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.% 27.3 300.0 37.2 64.5 20.0 COEFF VAR.% 18.6 300.0 40.1	11.2 5.3 S.E.% 5.9 6.4 12.2 5.1 S.E.% 9.6 105.9 13.1 22.8 7.1 S.E.% 6.6 105.9 14.2	I	150 162 SAMPLIOW 52 27 34 39 TREES/.OW 65 104 24 210 BASAL .OW 102 93	169 172 E TREES - AVG 55 29 39 41 ACRE AVG 72 3 119 31 226 AREA/AC AVG 109 2 109	187 181 CF HIGH 58 31 43 43 43 HIGH 79 7 135 38 242 RE HIGH 116 5 124	‡	FOF TREES FOR STATE OF PLOTS FOR	29 REQ. 10 4 REQ.	INF. POP. INF. POP. INF. POP.
CL SD: DOU DOU WHIT TOT CL SD: DOU DOU WHIT TOT CL SD: DOU DOU WHIT TOT CL SD: DOU WHIT WHIT TOT CL SD: DOU WHIT WHIT WHIT WHIT WHIT WHIT WHIT WHIT	68.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	L	40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.% 27.3 300.0 37.2 64.5 20.0 COEFF VAR.% 18.6 300.0	5.3 S.E.% 5.9 6.4 12.2 5.1 S.E.% 9.6 105.9 13.1 22.8 7.1 S.E.% 6.6 105.9	I	150 162 SAMPLI OW 52 27 34 39 TREES/. OW 65 104 24 210 BASAL OW 102	169 172 E TREES - AVG 55 29 39 41 ACRE AVG 72 3 119 31 226 AREA/AC AVG 109 2	187 181 CF HIGH 58 31 43 43 43 HIGH 79 7 135 38 242 RE HIGH 116 5	‡	FOF TREES FOR STATE OF PLOTS FOR	29 REQ. 10 4 REQ.	INF. POP. 1: INF. POP. 1. INF. POP. 1.
WHETOT	EMLOCK-I FAL 68.1 1.0 JG FIR-L JG FIR-S JG FIR-T EMLOCK-I FAL 68.1 1.0 JG FIR-L JG FIR-S JG FIR-L JG FIR-S JG FIR-L UJG FIR-S JG FIR-T EMLOCK-I TAL 68.1 1.0 JG FIR-T EMLOCK-I TAL JG FIR-S JG FIR-L JG FIR-S JG FIR-T EMLOCK-I TAL	L	40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.% 27.3 300.0 37.2 64.5 20.0 COEFF VAR.% 18.6 300.0 40.1 65.2	11.2 5.3 S.E.% 5.9 6.4 12.2 5.1 S.E.% 9.6 105.9 13.1 22.8 7.1 S.E.% 6.6 105.9 14.2 23.0	I	150 162 SAMPLIOW 52 27 34 39 TREES/OW 65 104 24 210 BASAL OW 102 93 24	169 172 E TREES - AVG 55 29 39 41 ACRE AVG 72 3 119 31 226 AREA/AC AVG 109 2 109 31 251	187 181 CF HIGH 58 31 43 43 HIGH 79 7 135 38 242 RE HIGH 116 5 124 38	*	# OF TREES F 5 115 # OF PLOTS F 5	29 REQ. 10 4 REQ. 10	INF. POP. 1: INF. POP. 1. INF. POP. 1.
WHIETOT	EMLOCK-I 68.1 1.0 JG FIR-L JG FIR-S JG FIR-T EMLOCK-I FAL 68.1 1.0 JG FIR-L JG FIR-S JG FIR-L JG FIR-S JG FIR-T EMLOCK-I TAL 68.1 1.0 JG FIR-T EMLOCK-I 68.1 1.0 JG FIR-S JG FIR-T EMLOCK-I 68.1 1.0 JG FIR-S J	L	40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.% 27.3 300.0 37.2 64.5 20.0 COEFF VAR.% 18.6 300.0 40.1 65.2 18.3 COEFF VAR.%	11.2 5.3 S.E.% 5.9 6.4 12.2 5.1 S.E.% 9.6 105.9 13.1 22.8 7.1 S.E.% 6.6 105.9 14.2 23.0 6.5	I	150 162 SAMPLI OW 52 27 34 39 TREES/. OW 65 104 24 210 BASAL .OW 102 93 24 235 NET BE	169 172 E TREES - AVG 55 29 39 41 ACRE AVG 72 3 119 31 226 AREA/AC AVG 109 2 109 31 251 VACRE AVG	187 181 CF HIGH 58 31 43 43 43 HIGH 79 7 135 38 242 RE HIGH 116 5 124 38 267	*	# OF TREES F 5 115 # OF PLOTS F 5 18 # OF PLOTS I 5	29 REQ. 10 4 REQ. 10	INF. POP. INF. POP. INF. POP.
WHIETOT	EMLOCK-I 68.1 1.0 JG FIR-L JG FIR-S JG FIR-T EMLOCK-I FAL 68.1 1.0 JG FIR-L JG FIR-S JG FIR-L JG FIR-S JG FIR-L G8.1 1.0 JG FIR-L 68.1 1.0 JG FIR-T EMLOCK-I FAL 68.1 68.1 1.0 G8.1 68.1 68.1 68.1	L	40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.% 27.3 300.0 37.2 64.5 20.0 COEFF VAR.% 18.6 300.0 40.1 65.2 18.3 COEFF	11.2 5.3 S.E.% 5.9 6.4 12.2 5.1 S.E.% 9.6 105.9 13.1 22.8 7.1 S.E.% 6.6 105.9 14.2 23.0 6.5	I	150 162 SAMPLI OW 52 27 34 39 TREES/. OW 65 104 24 210 BASAL .OW 102 93 24 235 NET BF	169 172 E TREES - AVG 55 29 39 41 ACRE AVG 72 3 119 31 226 AREA/AC AVG 109 2 109 31 251	187 181 CF HIGH 58 31 43 43 43 HIGH 79 7 135 38 242 RE HIGH 116 5 124 38 267	*	# OF TREES F 5 115 # OF PLOTS F 5 18 # OF PLOTS F 5	29 REQ. 10 4 REQ. 10	INF. POP. INF. POP. 1
WHETOT	EMLOCK-I AL 68.1 1.0 JG FIR-L JG FIR-S JG FIR-T EMLOCK-I FAL 68.1 1.0 JG FIR-L JG FIR-S JG FIR-L JG FIR-S JG FIR-S JG FIR-T EMLOCK-I TAL 68.1 1.0 JG FIR-L JUG FIR-S	L	40.3 56.8 COEFF VAR.% 41.3 44.8 43.9 53.7 COEFF VAR.% 27.3 300.0 37.2 64.5 20.0 COEFF VAR.% 18.6 300.0 40.1 65.2 18.3 COEFF VAR.%	11.2 5.3 S.E.% 5.9 6.4 12.2 5.1 S.E.% 9.6 105.9 13.1 22.8 7.1 S.E.% 6.6 105.9 14.2 23.0 6.5	I	150 162 SAMPLI OW 52 27 34 39 TREES/. OW 65 104 24 210 BASAL .OW 102 93 24 235 NET BE	169 172 E TREES - AVG 55 29 39 41 ACRE AVG 72 3 119 31 226 AREA/AC AVG 109 2 109 31 251 VACRE AVG	187 181 CF HIGH 58 31 43 43 43 HIGH 79 7 135 38 242 RE HIGH 116 5 124 38 267	*	# OF TREES F 5 115 # OF PLOTS F 5 18 # OF PLOTS F 5	29 REQ. 10 4 REQ. 10	INF. POP. INF. POP. INF. POP.

TC PST.	ATS				PROJECT PROJECT		STICS USSTEW			PAGE DATE	2 9/27/2022
TWP	RGE	SC	TRACT	TYP	E	AC	CRES	PLOTS	TREES	CuFt	BdFt
03N	06	11	00U1	00PC			49.00	9	113	S	W
CL	68.1		COEFF		NET B	F/ACRE			# OF PLOTS	REQ.	INF. POP
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
TOTA	AL		21.5	7.6	28,975	31,358	33,741		21	5	2
CL	68.1		COEFF		NET C	CUFT FT/A	CRE		# OF PLOTS RE	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
	G FIR-L		18.4	6.5	3,331	3,562	3,794				
	G FIR-S G FIR-T		44.6	15.7	2,577	3,058	3,539				
	MLOCK-	L	70.4	24.8	711	946	1,181			-	,
TOT	AL		21.3	7.5	6,997	7,567	8,136		20	5	2

TC	PSPC	STGR		Sp	ecies, So	ort Gra	de - Boar	d Fo	ot Vol	ume	es (Pr	oject)								
T03	3N R00	5W S11 T	y00PC		49.00		Project: Acres		LOU	SST 49.0								Page Date Time		1 27/202 :17:1	22
_			%						Percen	t of N	let Boar	rd Foot	Volume					Avera	age Lo	g	Logs
	S	So Gr	Net	Bd. Ft.	per Acre		Total		Lo	g Sca	ıle Dia.			Log	Length		Ln	Dia	Bd	CF/	Per
Spp	T	rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5 6	-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	L	3M	99		14,823	14,823		726		66	32	2		36	26	38	32	9	101	0.74	147.5
DF	L	4M	1		63	63		3		100					100		34	6	50	0.43	1.3
DF	Total	s	47		14,886	14,886		729		66	32	2		36	26	38	32	9	100	0.74	148.7
DF	T	3M	88	.3	10,907	10,875		533		98	2				5	95	39	7	86	0.54	127.2
DF	T	4M	12		1,391	1,391		68		100			40	60			19	6	24	0.30	58.4
DF	Total	s	39	.3	12,299	12,267		601		98	2		5	7	5	84	33	7	66	0.50	185.6
DF	S	CU															34	6		0.00	3.4
DF	Total	s															34	6		0.00	3.4
						,											l				
WH		3M	95		4,014	4,014		197		76	24			20	74	6	32	8	88		
WH	L	4M	5		191	191		9		100			├ ─	100			23	6	30	0.23	6.4
WH	Tota	ıls	13		4,205	4,205		206		77	23			24	70	6	31	8	81	0.59	52.0
Tota	ls			0.1	31,390	31,358		.537		80	19	1	2	23	24	52	32	8	80	0.60	389.7

TC PSTNDSUM		Stand Table Summary	 Page Date:	1 9/27/2022
T03N R06W S11 Ty00PC	49.00	Project LOUSSTEW	Time:	11:17:11AM
		Acres 49.00	 Grown Year	

S	DDW	Sample	FF	Tot Av	1 .	·ees/	BA/	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
Spc T	DBH	Trees	16'	Ht	I A	ere	Acre	Acre								
DF L	13	3	88	85	1	7.233	6.67	14.47	12.8	50.0	5.26	184	723	258 546	90 192	35 85
DF L	14	6	87	84		2.473	13.33	24.95	15.7	69.2	11.15	391	1,725 272	89	31	13
DF L	15	1	88	85		1.811	2.22	3.62	17.7	75.0	1.82	64		1,213	425	183
DF L	16	12	88	92	1	9.099	26.67	38.20	22.7	97.9	24.75	868 564	3,740 2,340	788	276	115
DF L	17	8	88	91		1.279	17.78	22.56	25.0	103.7	16.08	691	2,340	966	339	132
DF L	18	9	88	97]	1.318	20.00	22.64	30.5	119.4	19.71		327	115	40	16
DF L	19	1	89	99	1	1.129	2.22	2.26	36.4	145.0	2.34	82 232	957	324	114	47
DF L	20	3	88		1	3.056	6.67	7.13	32.6	134.3	6.62		323	117	41	16
DF L	21	1	89		1	.924	2.22	1.85	45.2	175.0	2.38 8.97		1,364	440	154	
DF L	22	4	88		ł	3.367	8.89	9.26	34.0	147.3	2.45			120	42	
DF L	26	1	89	107	<u> </u>	.603	2.22	1.81	47.5	226.7	2.43	80	410			
DF L	Totals	49	88	91		72.289	108.89	148.72	24.0	100.1	101.52	3,562	14,886	4,975	1,745	729
DF T	10	3	87	77		12.223	6.67	12.22	12.0	56.7	4.19	147	693	205	72	
DFT	11	5	87	82		16.836	11.11	16.84	14.8	60.0	7.12	250	1,010	349	122	
DFT	12	13	87	81	1 :	36.783	28.89	53.76	13.4	51.6	20.59	723	2,773	1,009	354	
DF T	13	7	88	89		16.876	15.56	31.34	14.4	57.7	12.88	452	1,808	631	221	
DF T	14	5	88	86		10.394	11.11	18.71	17.5	70.0	9.35	328	1,310	458	161	
DF T	15	9	88	93	:	16.297	20.00	32.59	19.8	81.1	18.40	646	2,644	901	316	
DF T	16	2	87	9	.]	3.183	4.44	6.37	22.5	90.0	4.09	144	573	200	70	
DF T	17	4	88	92	2	5.639	8.89	11.28	25.7	101.3	8.27	290		405	142	
DF T	18	1	88	3 90	5	1.258	2.22	2.52	31.7	125.0	2.27	80	314	111	39	15
DF T	Totals	49	87	8:	5 1	19.489	108.89	185.62	16.5	66.1	87.16	3,058	12,267	4,271	1,499	601
WH L	8	1	88	3 5	,	6.366	2.22	6.37	5.3	30.0	1.09	34	191	53	1	7 9
WHL	10	1	89		1	4.074	2.22	4.07	12.4	60.0	1.62	2 51	244	79	2:	5 12
WHL	13	1	90		2	2.411	2.22	4.82	12.8	60.0	1.98	3 62	289	97	30) 14
WHL	14	2	9	1 8	5	4.158	4.44	8.32	17.1	80.0	4.50	5 142	665	223	7	33
WHL	15	4	9	1 8	3	7.243	8.89	14.49	19.5	87.5	9.04	1 282	1,268	443	13	3 62
WHL	16	1	9		o	1.592	2.22	3.18	23.3	100.0	2.3	3 74	318	116	3	
WHL	17	3	9		6	4.229	6.67	8.46	26.3	106.7	7.1	1 222	902	348	10	9 44
WHL	19	1	9:	2 8	5	1.129	2.22	2.26	34.9	145.0	2.5	2 79	327	123	3	9 16
WHL	Totals	14	90) 7	6	31.202	31.11	51.96	18.2	80.9	30.2	8 946	4,205	1,484	46	4 206
DF S	11	1	8		8	3.367	2.22									
DF S	Totals	1	84	1 5	8	3.367	2.22									
Totals		113	8	8 8	5 2	226.347	251.11	386.31	19.6	81.2	218.9	6 7,56	7 31,358	10,729	3,70	8 1,537

TC 1	PLOC	GSTVB					Log S	tock 7	Γable -	MBF									
T031	N R0	6W S11 Ty	00PC		49.00		Proje Acres		LOU	SSTEV 49	v 9.00					Page Date Time	9/2	2 7/2022 17:09A	м
	s		Log	Gross	Def	Net	%							r in Inch		T		Г	
Spp	T	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF		Totals		60	3	601	39.1			308	174	107	12						
WH	L	3M	22		8	8	3.9					8							
WH	L	3M	24	1	.3	13	6.5			3		11							
WH	L	3M	26		4	4	1.7			4									
WH	L	3M	30	1	15	15	7.4			4		11							
WH	L	3M	31	1	10	10	5.0						10						
WH	L	3M	32	5	50	50	24.3			13		37							
WH	L	3M	33	1	13	13	6.5					13						ļ	
WH	L	3M	34		57	67	32.7			19		12	23	13					
WH	L	3M	35		3	3	1.7			3									
WH	L	3M	39	1	12	12	5.8			12								<u> </u>	
WH	L	4M	23		9	9	4.5			9									
WH		Totals	3	20)6	206	13.4			67		92	34	13					
Total		All Specie	es	1,53	38	1,537	100.0			544	197	489	206	56	45				

 Log Stock Table - MBF

 T03N R06W S11 Ty00PC
 49.00
 Project: LOUSSTEW Acres
 Date 9/27/2022

 Acres
 49.00
 Time 11:17:09AM

╙	_	T		\neg				<u>. </u>			1.4 %7 *		c ·	alina Di	mot	in Incha		·			
			So Gr Lo		Gross	De %		% Spc	2-3		let Volu 6-7	me by 8-9		aling Dia 10-11 12-			16-19	20-23	24-29	30-39	40+
Spp		+	rt de Le	寸	MBF				2-3	, 4-3	0-7	0-7	ť	10 11 12	8						
DF		L		24	8		8	1.1						9	Ĭ						
DF		L		25	9		67				8	7	,	18	ŀ	11	21			l	
DF		L	3M	26	67			l			7	8	-1	10	11	•	11				
DF		L	3M	27	37		37	l			9	8	-1	6	6			l			
DF		L	3M	28	29		29 28	l			5			10			13	1		l	
DF			3M	29	28		87				19			62		6		İ		l	
DF		L	3M	30	87		30	l			8		1	22						l	
DF			3M	32	30		43	l			8		١	35							
DF		L	3M	33				1	ł		16		١	44	12						
DF		L	3M	34			72	1	l		8			24	10						
DF		L	3M	35			42 120		ı		41			24	55						
DF		L	3M	36			49	1	1		4			12	33						
DF		L	3M	37	l		49	1	1		18			13	13					1	
DF		L	3M	38	l		2'	1	l		3		١		12	12		1		1	
DF		L	3M	39	l			l .	1		14			11		13				Ì	
DF		L	3M	40	3	8	3.	3.2	1		-		4					╁		+-	
DF		L	4M	34		3		3 .4	1		-							-		<u> </u>	
DF			Totals		72	9	72	9 47.5	<u>- </u>		169		24	290	160	42	45	+-		┼	
DF		T	3M	32		8		8 1.3	3		}									1	
DF		Т	3M	33	1	7	1	7 2.1	7		1	7									
DF		Т	3M	35	; <mark> </mark>	4		4 .	7		1	4						1			
DF	,	Т	3M	40	50	6	50	4 83.9	9		21	1 17 	74	107	12			-		_	
DF	,	Т	4M	12		3		3 .	5			3									
DF	7	Т	4M	13	3	3		3 .	5			3				ļ					
DF	7	T	4M	14	4	6		6 .	9		1	6				l		1			
DF	-	Т	4M	13	5	7		7 1.	- 1		1	7									
DF	7	Т	4M	10	6	5		5 .	8			5						i			
DI	7	Т	4M	1'	7	2		2	4			2									
DI	7	Т	4M	1	9	2		2	3			2									
DI	F	Т	4M	2	1	8		8 1.	4			8									
DI	F	Т	4M	2	2	4		4	.6			4									
Di	F	Т	4M	2	3	6		6 1	.0			6									
D	F	T	4M	2	4	2		2	.3			2									
D	F	T	4M	2	.5	11		11 1	.8			1									
D	F	T	4M	2	.6	3		3	.4			3						1			
D	F	T	4M	2	:7	5		5	.9			5									
D	F	T	4M	2	28	3		3	.4			3									

TC PST	ATS					OJECT S OJECT		FICS SSTEW			PAGE DATE	1 9/27/2022
ON X / FD	DCE	- CC	TDACT		YPE	OJECT	ACF		PLOTS	TREES	CuFt	BdFt
CWP	RGE	SC 11	TRACT		OPC		ACF	66.00	13	161	S	W
03N	06	11			UFC							
			Unit	2		TREEC	E	ESTIMATED TOTAL		ERCENT AMPLE		
			nv 0.00	mp mm		TREES		TREES		TREES		
			PLOTS	TREES		PER PLOT		IKEES		TREES		
TOTA			13	161		12.4 12.4		15,086		1.1		
CRUI			13	161		12.4		13,000		1.1		
	COUNT											
COU												
BLA												
100 %												
					STA	ND SUMM	ARY					
		S	AMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
			TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOU	IG FIR-L		85	91.1	16.2	97	32.5	130.8	16,978	16,978	3,916	3,916
DOU	IG FIR-T		76	137.5	12.5	86	33.1	116.9	13,033	12,964	3,192	
TOT	AL		161	228.6	14.1	90	66.0	247.7	30,011	29,942	7,108	7,108
CL	68.1		COEFF		·	SAMPLI	E TREES -	BF	#	OF TREES I	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	1	. 0111	1770	TTTOTT		-	10	15
						LOW	AVG	HIGH		5	10	
	JG FIR-L		47.9	5.2	1	183	193	203				
DOU	JG FIR-T		47.9 39.0	5.2 4.5	1	183 100	193 105	203 110		126	32	
DOU TO1	JG FIR-T		47.9 39.0 56.2	5.2	· · · · · · · · · · · · · · · · · · ·	183 100 <i>145</i>	193 105 <i>152</i>	203 110 <i>158</i>		126	32	14
DOU TOT	JG FIR-T FAL 68.1	_	47.9 39.0 56.2 COEFF	5.2 4.5 4.4		183 100 <i>145</i> SAMPL	193 105 <i>152</i> E TREES -	203 110 <i>158</i>	ħ	126 OF TREES I	<i>32</i> REQ.	IA INF. POP.
DOU TOT CL SD:	JG FIR-T FAL 68.1 1.0		47.9 39.0 56.2 COEFF VAR.%	5.2 4.5 <i>4.4</i> S.E.%		183 100 <i>145</i>	193 105 <i>152</i>	203 110 <i>158</i>	#	126	32	IA INF. POP.
CL SD:	JG FIR-T FAL 68.1		47.9 39.0 56.2 COEFF	5.2 4.5 4.4		183 100 <i>145</i> SAMPL I	193 105 <i>152</i> E TREES - AVG	203 110 <i>158</i> CF HIGH	Á	126 OF TREES I	<i>32</i> REQ.	IA INF. POP.
CL SD:	JG FIR-T FAL 68.1 1.0 JG FIR-L JG FIR-T		47.9 39.0 56.2 COEFF VAR.% 47.4	5.2 4.5 4.4 S.E.% 5.1		183 100 145 SAMPL	193 105 <i>152</i> E TREES - AVG 45	203 110 158 CF HIGH	ħ	126 OF TREES I	<i>32</i> REQ.	14 INF. POP. 15
DOU TOT CL SD: DOU DOU TOT	GRIR-T FAL 68.1 1.0 JG FIR-L JG FIR-T FAL		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8	5.2 4.5 4.4 S.E.% 5.1 4.6		183 100 145 SAMPLI LOW 42 25 34	193 105 152 E TREES - AVG 45 26 36	203 110 158 CF HIGH 47 27		126 FOF TREES I 5	32 REQ. 10	14 INF. POP. 15
CL SD: DOU	68.1 1.0 1.0 JG FIR-L 1.0 JG FIR-T 1.0 FIR-T		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0	5.2 4.5 4.4 S.E.% 5.1 4.6	1	183 100 145 SAMPL LOW 42 25	193 105 152 E TREES - AVG 45 26 36	203 110 158 CF HIGH 47 27		126 FOF TREES I 5	32 REQ. 10	14 INF. POP. 15 INF. POP.
DOU TOT CL SD: DOU DOU TOT CL SD:	GRIR-T FAL 68.1 1.0 JG FIR-L JG FIR-T FAL		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2	1	183 100 145 SAMPLI LOW 42 25 34 TREES/	193 105 152 E TREES - AVG 45 26 36	203 110 158 CF HIGH 47 27 38		126 FOF TREES 1 5 116 FOF PLOTS 1	32 REQ. 10 29 REQ.	14 INF. POP. 15 INF. POP.
DOU TOT CL SD: DOU TOT CL SD:	68.1 1.0 1.0 JG FIR-L 1.0 FIR-L 1.0 68.1		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.%	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2	1	183 100 145 SAMPLI LOW 42 25 34 TREES/ LOW 87 116	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91 137	203 110 158 CF HIGH 47 27 38 HIGH		126 # OF TREES I 5 116 # OF PLOTS I	32 REQ. 10 29 REO.	14 INF. POP. 12 INF. POP.
CL SD: DOU CL SD: DOU DOU DOU DOU DOU DOU DOU DOU DOU DOU	68.1 1.0 JG FIR-T FAL 68.1 1.0 UG FIR-L UG FIR-T UG FIR-T UG FIR-T UG FIR-L		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.%	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2 S.E.%	1	183 100 145 SAMPLI LOW 42 25 34 TREES/ LOW 87	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91	203 110 158 CF HIGH 47 27 38 HIGH		126 FOF TREES 1 5 116 FOF PLOTS 1	32 REQ. 10 29 REQ.	14 INF. POP. 15 INF. POP.
CL SD: DOU CL SD: DOU DOU DOU DOU DOU DOU DOU DOU DOU DOU	68.1 1.0 UG FIR-T FAL 68.1 1.0 UG FIR-T FAL 68.1 1.0 UG FIR-T UG FIR-T TAL		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.% 15.4 53.7	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2 S.E.% 4.4	1	183 100 145 SAMPL LOW 42 25 34 TREES/ LOW 87 116 208	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91 137	203 110 158 CF HIGH 47 27 38 HIGH 95 159 249	#	126 # OF TREES I 5 116 # OF PLOTS I	32 REQ. 10 29 REQ. 10 10 10	14 INF. POP. 15 INF. POP. 1: INF. POP.
CL SD: DOU SD: DOU TOT	68.1 1.0 JG FIR-L JG FIR-L G8.1 1.0 UG FIR-L UG FIR-L 1.0 UG FIR-L G8.1 TAL		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.% 15.4 53.7 30.7	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2 S.E.% 4.4 15.5 8.9		183 100 145 SAMPL LOW 42 25 34 TREES/ LOW 87 116 208 BASAL LOW	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91 137 229 AREA/AC AVG	203 110 158 CF HIGH 47 27 38 HIGH 95 159 249 RE HIGH	#	126 FOF TREES I 5 116 FOF PLOTS I 5	32 REQ. 10 29 REQ. 10 10	14 INF. POP. 15 INF. POP. 1: INF. POP.
DOU TOTO CL SD: DOU TOTO CL SD: CL SD: CL SD: DOU TOTO CL SD: DOU DOU TOTO	68.1 1.0 JG FIR-L JG FIR-T FAL 68.1 1.0 UG FIR-L UG FIR-T TAL 0 UG FIR-L UG FIR-T UG FIR-T UG FIR-T UG FIR-T		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.% 15.4 53.7 30.7 COEFF VAR.%	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2 S.E.% 4.4 15.5 8.9 S.E.%		183 100 145 SAMPLI LOW 42 25 34 TREES/ LOW 87 116 208 BASAL LOW 128	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91 137 229 AREA/AC AVG 131	203 110 158 CF HIGH 47 27 38 HIGH 95 159 249 RE HIGH	#	126 FOF TREES I 5 116 FOF PLOTS I 41 FOF PLOTS I	32 REQ. 10 29 REQ. 10 10 10	14 INF. POP. 15 INF. POP. 1: INF. POP.
DOU TOT CL SD: DOU SD: DOU TOT CL SD: DOU DOU TOT	68.1 1.0 JG FIR-L JG FIR-T FAL 68.1 1.0 UG FIR-L UG FIR-T TAL 00 UG FIR-L UG FIR-L UG FIR-L UG FIR-L UG FIR-L UG FIR-L UG FIR-L		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.% 15.4 53.7 30.7 COEFF VAR.%	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2 S.E.% 4.4 15.5 8.9 S.E.% 2.3 12.5		183 100 145 SAMPLI LOW 42 25 34 TREES/ LOW 87 116 208 BASAL LOW 128 102	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91 137 229 AREA/AC AVG 131 117	203 110 158 CF HIGH 47 27 38 HIGH 95 159 249 RE HIGH 134 132	#	126 # OF TREES I 5 116 # OF PLOTS I 5 41 # OF PLOTS S	32 REQ. 10 29 REQ. 10 10 REQ. 10	14 INF. POP. 15 INF. POP. 15 INF. POP. 15
DOL TOT CL SD: DOL DOL TOT CL SD: DOL TOT CL SD: TOT CL SD: TOT TOT TOT TOT TOT TOT TOT TO	G FIR-T 68.1 1.0 UG FIR-T FAL 68.1 1.0 UG FIR-T TAL 68.1 1.0 UG FIR-T UG FIR-T TAL UG FIR-T TAL UG FIR-T TAL UG FIR-T TAL UG FIR-T TAL		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.% 15.4 53.7 30.7 COEFF VAR.% 7.9 43.5	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2 S.E.% 4.4 15.5 8.9 S.E.%		183 100 145 SAMPLI LOW 42 25 34 TREES/ LOW 87 116 208 BASAL LOW 128 102 235	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91 137 229 AREA/AC AVG 131 117 248	203 110 158 CF HIGH 47 27 38 HIGH 95 159 249 RE HIGH	#	126 FOF TREES I 5 116 FOF PLOTS I 5 41 FOF PLOTS I 5	32 REQ. 10 29 REQ. 10 10 10 4	14 INF. POP. 15 INF. POP. 15 INF. POP. 15
DOL TOT CL SD: DOL DOL TOT CL SD: DOL TOT CL SD: CL SD: CCL CCL CCL CCL CCL CCL CCL CCL CCL CC	68.1 1.0 UG FIR-T FAL 68.1 1.0 UG FIR-T FAL 68.1 1.0 UG FIR-T FAL 68.1 1.0 UG FIR-T TAL 68.1 1.0 UG FIR-T FAL 68.1 1.0 UG FIR-T FAL 68.1		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.% 15.4 53.7 30.7 COEFF VAR.% 7.9 43.5 18.2 COEFF	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2 S.E.% 4.4 15.5 8.9 S.E.% 2.3 12.5 5.3		183 100 145 SAMPL LOW 42 25 34 TREES/ LOW 87 116 208 BASAL LOW 128 102 235 NET BE	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91 137 229 AREA/AC AVG 131 117 248	203 110 158 CF HIGH 47 27 38 HIGH 95 159 249 RE HIGH 134 132 261	#	126 # OF TREES I 5 116 # OF PLOTS I 5 41 # OF PLOTS I 14	32 REQ. 10 29 REQ. 10 10 REQ. 10 4 REQ.	INF. POP. 13 INF. POP. 15 INF. POP. 1. INF. POP.
DOL TOT CL SD: DOL DOL TOT CL SD: DOL TOT CL SD: CL SD: CCL	G FIR-T 68.1 1.0 JG FIR-L JG FIR-T FAL 68.1 1.0 UG FIR-L UG FIR-T TAL 68.1 1.0 UG FIR-L 68.1 1.0 UG FIR-L 68.1 1.0 UG FIR-L 1.0 UG FIR-L 1.0 UG FIR-L 1.0 UG FIR-L 1.0 UG FIR-L 1.0 1.0		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.% 15.4 53.7 30.7 COEFF VAR.% 7.9 43.5 18.2 COEFF VAR.%	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2 S.E.% 4.4 15.5 8.9 S.E.% 2.3 12.5 5.3		183 100 145 SAMPL LOW 42 25 34 TREES/ LOW 87 116 208 BASAL LOW 128 102 235 NET BE	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91 137 229 AREA/AC AVG 131 117 248 VACRE AVG	203 110 158 CF HIGH 47 27 38 HIGH 95 159 249 RE HIGH 134 132 261 HIGH	#	126 FOF TREES I 5 116 FOF PLOTS I 5 41 FOF PLOTS I 5	32 REQ. 10 29 REQ. 10 10 10 4	14 INF. POP. 15 INF. POP. 15 INF. POP. 11 INF. POP.
DOL TOT	G FIR-T FAL 68.1 1.0 JG FIR-L JG FIR-T FAL 68.1 1.0 UG FIR-T TAL 68.1 1.0 UG FIR-T TAL UG FIR-T UG FIR-T UG FIR-T UG FIR-T UG FIR-T UG FIR-T UG FIR-T UG FIR-T UG FIR-T UG FIR-T UG FIR-T UG FIR-T UG FIR-T UG FIR-T UG FIR-T UG FIR-T UG FIR-T		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.% 15.4 53.7 30.7 COEFF VAR.% 7.9 43.5 18.2 COEFF VAR.% 32.1	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2 S.E.% 4.4 15.5 8.9 S.E.% 2.3 12.5 5.3		183 100 145 SAMPL LOW 42 25 34 TREES/ LOW 87 116 208 BASAL LOW 128 102 235 NET BE	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91 137 229 AREA/AC AVG 131 117 248	203 110 158 CF HIGH 47 27 38 HIGH 95 159 249 RE HIGH 134 132 261	#	126 # OF TREES I 5 116 # OF PLOTS I 5 41 # OF PLOTS I 14	32 REQ. 10 29 REQ. 10 10 REQ. 10 4 REQ.	14 INF. POP. 15 INF. POP. 15 INF. POP. 11 INF. POP.
DOL TOT CL SD: DOU TOT CL SD: DOU TOT CL SD: CL SD: DOU TOT CL SD: DOU DOU TOT CL SD: DOU DOU TOT CL SD: DOU DOU TOT CL SD: DOU DOU TOT CL SD: DOU DOU DOU DOU DOU DOU DOU DOU DOU DOU	G FIR-T 68.1 1.0 JG FIR-L JG FIR-T FAL 68.1 1.0 UG FIR-L UG FIR-T TAL 68.1 1.0 UG FIR-L 68.1 1.0 UG FIR-L 68.1 1.0 UG FIR-L 1.0 UG FIR-L 1.0 UG FIR-L 1.0 UG FIR-L 1.0 UG FIR-L 1.0 1.0		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.% 15.4 53.7 30.7 COEFF VAR.% 7.9 43.5 18.2 COEFF VAR.%	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2 S.E.% 4.4 15.5 8.9 S.E.% 2.3 12.5 5.3		183 100 145 SAMPLI LOW 42 25 34 TREES/ LOW 87 116 208 BASAL LOW 128 102 235 NET BE LOW 15,405	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91 137 229 AREA/AC AVG 131 117 248 VACRE AVG 16,978	203 110 158 CF HIGH 47 27 38 HIGH 95 159 249 RE HIGH 134 132 261 HIGH 18,551	#	126 # OF TREES I 5 116 # OF PLOTS I 5 41 # OF PLOTS I 14	32 REQ. 10 29 REQ. 10 10 REQ. 10 4 REQ.	INF. POP. 15 INF. POP. 1. INF. POP. 1. INF. POP. 1.
DOU TOTO CL SD: DOU TOTO CL SD: DOU TOTO CL SD: DOU TOTO CL SD: DOU TOTO TOTO CL SD: DOU TOTO TOTO TOTO TOTO	G FIR-T 68.1 1.0 JG FIR-L G FIR-T FAL 68.1 1.0 UG FIR-T FAL 68.1 1.0 UG FIR-T TAL 68.1 1.0 UG FIR-T UG FIR-T TAL 68.1 1.0 UG FIR-T TAL		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.% 15.4 53.7 30.7 COEFF VAR.% 7.9 43.5 18.2 COEFF VAR.% 32.1 41.8	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2 S.E.% 4.4 15.5 8.9 S.E.% 2.3 12.5 5.3 S.E.%		183 100 145 SAMPLI LOW 42 25 34 TREES/ LOW 87 116 208 BASAL LOW 128 102 235 NET BE LOW 15,405 11,402 27,482	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91 137 229 AREA/AC AVG 131 117 248 VACRE AVG 16,978 12,964	203 110 158 CF HIGH 47 27 38 HIGH 95 159 249 RE HIGH 134 132 261 HIGH 18,551 14,526 32,401	‡	126 # OF TREES I 5 116 # OF PLOTS I 5 41 # OF PLOTS 5 14 # OF PLOTS 5	32 REQ. 10 29 REO. 10 10 REQ. 10 4 REQ. 10	14 INF. POP. 15 13 INF. POP. 15 INF. POP. 15
DOL TOT	G FIR-T [AL] 68.1 1.0 JG FIR-L JG FIR-T FAL 68.1 1.0 JG FIR-L UG FIR-T TAL 68.1 1.0 UG FIR-L UG FIR-T TAL 68.1 1.0 UG FIR-L G8.1 1.0 UG FIR-L G8.1 68.1 68.1 68.1		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.% 15.4 53.7 30.7 COEFF VAR.% 7.9 43.5 18.2 COEFF VAR.% 32.1 41.8 28.5	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2 S.E.% 4.4 15.5 8.9 S.E.% 2.3 12.5 5.3 S.E.% 9.3 12.1 8.2		183 100 145 SAMPLI LOW 42 25 34 TREES/ LOW 87 116 208 BASAL LOW 128 102 235 NET BE LOW 15,405 11,402 27,482	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91 137 229 AREA/AC AVG 131 117 248 E/ACRE AVG 16,978 12,964 29,942	203 110 158 CF HIGH 47 27 38 HIGH 95 159 249 RE HIGH 134 132 261 HIGH 18,551 14,526 32,401	‡	126 # OF TREES I 5 116 # OF PLOTS 5 41 # OF PLOTS 5 14 # OF PLOTS 5	32 REQ. 10 29 REO. 10 10 REQ. 10 4 REQ. 10	14 INF. POP. 15 INF. POP. 15 INF. POP. 11 INF. POP. 11
DOU TOTO CL SD: DOU TOTO CL SD: DOU TOTO CL SD: DOU TOTO CL SD:	G FIR-T [AL] 68.1 1.0 JG FIR-L JG FIR-T FAL 68.1 1.0 JG FIR-L UG FIR-T TAL 68.1 1.0 UG FIR-L UG FIR-T TAL 68.1 1.0 UG FIR-L G8.1 1.0 UG FIR-L G8.1 68.1 68.1 68.1		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.% 15.4 53.7 30.7 COEFF VAR.% 7.9 43.5 18.2 COEFF VAR.% 32.1 41.8 28.5 COEFF	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2 S.E.% 4.4 15.5 8.9 S.E.% 2.3 12.5 5.3 S.E.% 9.3 12.1 8.2		183 100 145 SAMPLI LOW 42 25 34 TREES/ LOW 87 116 208 BASAL LOW 128 102 235 NET BF LOW 15,405 11,402 27,482 NET CU	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91 137 229 AREA/AC AVG 131 117 248 F/ACRE AVG 16,978 12,964 29,942 UFT FT/AC	203 110 158 CF HIGH 47 27 38 HIGH 95 159 249 RE HIGH 134 132 261 HIGH 18,551 14,526 32,401 CRE HIGH 4,260	‡	126 # OF TREES I 5 116 # OF PLOTS 5 41 # OF PLOTS 5 14 # OF PLOTS 5 48 # OF PLOTS 5 # OF PLOTS 5 # OF PLOTS 5	32 REQ. 10 29 REQ. 10 10 REQ. 10 4 REQ. 10 9 REQ.	INF. POP. 15 INF. POP. 15 INF. POP. 11 INF. POP. 11 INF. POP.
DOL TOT CL SD: DOL TOT CL SD: DOL TOT CL SD: CL SD: CL SD: CL SD: CL SD: DOL TOT CL SD: DOL TOT CL SD: DOL DOL TOT CL SD: DOL DOL TOT CL DOL DOL DOL DOL DOL DOL DOL DOL DOL DO	G FIR-T FAL 68.1 1.0 JG FIR-L G8.1 JUG FIR-T TAL 68.1 1.0 JUG FIR-T TAL 68.1 1.0 JUG FIR-T TAL 68.1 1.0 JUG FIR-T TAL 68.1 1.0 JUG FIR-T TAL 68.1 1.0 JUG FIR-T TAL 68.1		47.9 39.0 56.2 COEFF VAR.% 47.4 40.0 53.8 COEFF VAR.% 15.4 53.7 30.7 COEFF VAR.% 7.9 43.5 18.2 COEFF VAR.% 32.1 41.8 28.5 COEFF VAR.%	5.2 4.5 4.4 S.E.% 5.1 4.6 4.2 S.E.% 4.4 15.5 8.9 S.E.% 2.3 12.5 5.3 S.E.% 9.3 12.1 8.2		183 100 145 SAMPLI LOW 42 25 34 TREES/ LOW 87 116 208 BASAL LOW 128 102 235 NET BF LOW 15,405 11,402 27,482 NET CU LOW	193 105 152 E TREES - AVG 45 26 36 ACRE AVG 91 137 229 AREA/AC AVG 131 117 248 F/ACRE AVG 16,978 12,964 29,942 UFT FT/AC AVG	203 110 158 CF HIGH 47 27 38 HIGH 95 159 249 RE HIGH 134 132 261 HIGH 18,551 14,526 32,401 CRE HIGH	‡	126 # OF TREES I 5 116 # OF PLOTS 5 41 # OF PLOTS 5 14 # OF PLOTS 5 48 # OF PLOTS 5 # OF PLOTS 5 # OF PLOTS 5	32 REQ. 10 29 REQ. 10 10 REQ. 10 4 REQ. 10 9 REQ.	INF. POP. INF. POP. INF. POP. INF. POP. INF. POP.

TC PSTNDSUM		Stand Table Summary	Page Date:	1 9/27/2022
T03N R06W S11 Ty00PC	66.00	Project LOUSSTE	W Time:	11:19:27AM
		Acres 66.0	0 Grown Yea	r:

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF L	13	2	88	85	3.338	3.08	3.34	13.4	55.0	1.27	45	184	84	29	12
DF L	14	8	88	90	11.513	12.31	23.03	16.8	76.3	11.05	388	1,756	730	256	116
DF L	15	16	88	94	20.058	24.62	40.12	19.4	85.6	22.23	780	3,435	1,467	515	227
DF L	16	22	88	96	24.241	33.85	41.87	23.9	103.7	28.56	1,002	4,341	1,885	661	287
DF L	17	12	87	102	11.712	18.46	21.47	25.2	110.5	15.40	540	2,372	1,016	357	157
DF L	18	17	88	103	14.800	26.15	34.82	25.1	105.5	24.93	875	3,674	1,645	577	242
DF L	19	2	89	102	1.563	3.08	3.91	28.9	126.0	3.22	113	492	212	74	32
DF L	20	1	88	97	.705	1.54	1.41	38.1	145.0	1.53	54	205	101	35	13
DF L	21	4	88	106	2.558	6.15	1.28	42.9	165.0	1.56	55	211	103	36	14
DF L	22	1	88	120	.583	1.54	1.75	37.1	176.7	1.85	65	309	122	43	20
DF L	Totals	85	88	97	91.072	130.77	172.99	22.6	98.1	111.61	3,916	16,978	7,366	2,585	1,121
DF T	9	1	88	80	3.482	1.54	3.48	9.3	50.0	.92	32	174	61	21	11
DF T	10	10	86	78	28.207	15.38	28.21	12.3	60.0	9.93	348	1,692	655	230	112
DF T	11	8	87	84	18.649	12.31	18.65	15.2	63.8	8.10	284	1,189	535	188	78
DF T	12	12	87	83	23.506	18.46	33.30	13.6	52.4	12.90	453	1,743	851	299	115
DF T	13	13	87	89	21.698	20.00	43.40	13.5	53.5	16.71	586	2,320	1,103	387	153
DF T	14	14	86	89	20.148	21.54	37.42	16.7	64.6	17.79	624	2,418	1,174	412	160
DF T	15	13	86	94	16.297	20.00	31.34	19.5	75.6	17.41	611	2,369	1,149	403	156
DF T	16	5	87	96	5.509	7.69	12.12	20.9	87.3	7.23	254	1,058	477	167	70
DF T	Totals	76	87	86	137.497	116.92	207.91	15.4	62.4	90.98	3,192	12,964	6,005	2,107	856
Totals		161	87	90	228.569	247.69	380.91	18.7	78.6	202.59	7,108	29,942	13,371	4,692	1,976

TC	PSPCS	STGR		Sp	ecies, S	ort Gra	de - Board Fo	ot V	olum	es (Pr	oject)								
T03	3N R06	5W S11 T	y00PC		66.00		Project: Acres	LO	USST 66.0								Page Date Time		1 27/202 :19:20	
			%					Perc	ent of N	let Boar	d Foot	Volume					Avera	ige Lo	g	Logs
	SS	So Gr	Net	Bd. Ft.	per Acre		Total		Log Sca	le Dia.			Log	Length		. Ln	Dia	Bd	CF/	Per
Spp	T	rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	L	3M	99		16,923	16,923	1,117		79	21			26	34	40	33	9	98	0.69	171.9
DF	L	4M	1		55	55	4		100					100		33	6	50	0.37	1.1
DF	Totals	3	57		16,978	16,978	1,121		79	21			26	34	40	33	9	98	0.68	173.0
DF	T	CU											•			12	7		0.00	7.4
DF	T	3M	87	.6	11,368	11,299	746		99	1		2	1	3	94	39	7	81	0.51	139.7
DF	T	4M	13		1,665	1,665	110		100			42	55	3		20	6	24	0.30	68.2
DF	Totals	s	43	.5	13,033	12,964	856		99	1		7	8	3	82	32	7	60	0.46	215.3
Total	ls			0.2	30,011	29,942	1,976		88	12		3	18	21	58	33	8	77	0.56	388.3

Log Stock Table - MBF PLOGSTVB Page 1 LOUSSTEW 66.00 Project: T03N R06W S11 Ty00PC Date 9/27/2022 66.00 Acres 11:19:26AM Time Net Volume by Scaling Diameter in Inches % Def Net So Gr Log Gross 20-23 24-29 30-39 40+ 16-19 14-15 6-7 10-11 12-13 MBF 4-5 Spc 2-3 Len rt de Spp 30 2.7 26 30 30 3M DF 64 32 96 8.6 27 96 DF 3M 10 25 8 52 95 8.5 28 3M DF L 17 17 1.5 29 17 DF L 3M 11 42 53 4.7 30 53 3M DF L 91 106 9.5 15 106 31 DF L 3M 15 12 44 41 10.1 113 3M 32 113 L DF 10 15 33 3.0 33 33 3M DF 16 25 40 3.6 3M 34 40 DF L 76 10 4 90 8.0 35 90 DF 3M 11 145 13.0 41 93 36 145 3M DF 33 35 6.0 37 68 68 DF 3M 11 22 65 122 10.9 24 38 122 DF 3M 5 39 5 DF 3M 70 7.9 19 89 3M 40 89 DF 15 1.4 15 41 15 3M DF 4 .3 33 4 DF 4M 22 12 272 8 602 205 1,121 1,121 56.7 Totals DF 5 12 1.4 3M 20 12 DF 7 28 7 3M DF 4 DF Т 3M 32 21 21 21 2.4 DF Т 3M 34 11 1.3 11 11 T 3M 37 DF 45 5.2 38 45 45 Т 3M DF 22 2.6 22 22 Т 3M 39 DF 222 360 43 73.0 624 40 629 DF T 3M 3 3 4M 12 DF 4 .5 Т 13 4 4M DF 12 1.4 DF T 4M 14 12 2 .2 15 DF Т 4M 9 1.0 16 DF Т 4M .9 17 4M DF T 18 DF 4M .2 19 T 4M DF .3 2 20 2 DF 4M .7 6 22 6 T 4M DF 6 6 23 DF 4M

TC I	PLOC	GSTVB					Log S	tock '	Гable - Ì	MBF									
T031	N R0	6W S11 Ty00	OPC	66	.00		Proje Acres		LOU	SSTEV 66	v 5.00					Page Date Time	9/2	2 7/2022 19:26A	
	s	So Gr L	лоg	Gross	Def	Net	%			et Volu	me by S	caling	Diamete	r in Inch	es	,			
Spp	T		en		%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	Т	4M	24	3		3	.4			3									
DF	Т	4M	25	8		8	.9			8								ŀ	
DF	T	4M	26	12		12	1.5			12									
DF	Т	4M	27	10		10	1.1			10									
DF	Т	4M	28	8		8	1.0			8									
DF	Т	4M	29	7		. 7	.8			7									
DF	Т	4M	34	4		4	.4			4									
DF		Totals		860		856	43.3			434	366	4	3 7						
Total		All Species		1,981		1,976	100.0			706	374	65	212	22	12	ĺ			

TC PST	TATS					JECT S	STATIS' LOUS	<u>FICS</u> SSTEW			PAGE DATE	1 9/27/2022
WP	RGE	SC	TRACT	Т	YPE		ACR	ES	PLOTS	TREES	CuFt	BdFt
)3N	06	11	00U3	0	0МС			53.00	10	49	S	W
			Unit :	3		TREES	E	STIMATED TOTAL		ERCENT AMPLE		
			PLOTS	TREES	F	PER PLOT		TREES		TREES		
TOT	AL		10	49		4.9	-					
	COUNT OREST INT		10	49		4.9		11,175		.4		
100 9	%	<u></u>			CT A N	ID CHAM	ADV					
						ID SUMM		DACAI	CROSS	NET	GPOSS	NET
		S	AMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
יסת	JG FIR		49	210.9	13.1	79	54.2	196.0	21,329	21,291	5,343	5,343
TOT			49	210.9	13.1	79	54.2	196.0	21,329	21,291	5,343	5,343
								E SAMPLE E				
										OF TREES I		DIE DOD
CL SD:	68.1		COEFF VAR.%	S.E.%	LO	SAMPL:	E TREES -		#	OF TREES F	REQ.	INF. POP.
SD:	68.1 1.0 JG FIR			S.E.% 7.7	L			BF	#		•	1
SD:	1.0 JG FIR		VAR.%		Lo	OW	AVG	BF HIGH	#		•	1
SD: DOU	1.0 JG FIR		VAR.% 53.7	7.7	L	112 112	AVG 122	BF HIGH 131 131		5	10 29	1:
SD: DOU TOT	1.0 JG FIR FAL		VAR.% 53.7 53.7	7.7 7.7 S.E.%		112 112 SAMPL	AVG 122 122 E TREES - AVG	BF HIGH 131 131 CF HIGH		5 115	10 29	1 INF. POP.
SD: DOU TOT CL SD: DOU	1.0 JG FIR FAL 68.1 1.0 JG FIR		VAR.% 53.7 53.7 COEFF VAR.% 54.0	7.7 7.7 S.E.% 7.7		112 112 112 SAMPL OW 28	AVG 122 122 E TREES - AVG 31	BF HIGH 131 131 CF HIGH 33		5 115 FOF TREES F 5	10 29 REQ. 10	1. INF. POP. 1
SD: DOU TOT CL SD:	1.0 JG FIR FAL 68.1 1.0 JG FIR		VAR.% 53.7 53.7 COEFF VAR.% 54.0 54.0	7.7 7.7 S.E.%		112 112 SAMPL OW 28 28	AVG 122 122 E TREES - AVG 31 31	BF HIGH 131 131 CF HIGH	#	5 115 OF TREES F 5	10 29 REQ. 10	1
SD: DOU TOT CL SD: DOU TOT CL	1.0 JG FIR FAL 68.1 1.0 JG FIR FAL 68.1		VAR.% 53.7 53.7 COEFF VAR.% 54.0 54.0 COEFF	7.7 7.7 S.E.% 7.7 7.7	L	112 112 SAMPL OW 28 28 TREES/	AVG 122 122 E TREES - AVG 31 31 ACRE	BF HIGH 131 131 CF HIGH 33 33	#	5 115 OF TREES F 5 117 OF PLOTS F	10 29 REQ. 10 29	1. INF. POP. 1 INF. POP.
SD: DOU TOT CL SD: DOU TOT CL SD:	1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 68.1 1.0		VAR.% 53.7 53.7 COEFF VAR.% 54.0 54.0 COEFF VAR.%	7.7 7.7 S.E.% 7.7 7.7 S.E.%	L	112 112 SAMPL OW 28 28 TREES/	AVG 122 122 E TREES - AVG 31 31 ACRE AVG	BF HIGH 131 131 CF HIGH 33 33	#	5 115 OF TREES F 5	10 29 REQ. 10	1: 1. INF. POP. 1.
SD: DOU TOT CL SD: DOU TOT CL SD: DOU DOU SD:	1.0 JG FIR FAL 68.1 1.0 JG FIR FAL 68.1		VAR.% 53.7 53.7 COEFF VAR.% 54.0 54.0 COEFF	7.7 7.7 S.E.% 7.7 7.7	L	112 112 SAMPL OW 28 28 TREES/	AVG 122 122 E TREES - AVG 31 31 ACRE	BF HIGH 131 131 CF HIGH 33 33	#	5 115 OF TREES F 5 117 OF PLOTS F	10 29 REQ. 10 29	1. INF. POP. 1 INF. POP. 1
SD: DOU TOT CL SD: DOU TOT CL SD: TOT	1.0 JG FIR 68.1 1.0 JG FIR FAL 68.1 1.0 JG FIR FAL 68.1 1.0 JG FIR FAL		VAR.% 53.7 53.7 COEFF VAR.% 54.0 54.0 COEFF VAR.% 42.3 42.3	7.7 7.7 S.E.% 7.7 7.7 S.E.% 14.1	L	112 112 SAMPL OW 28 28 TREES/OW 181 181	AVG 122 122 E TREES - AVG 31 31 ACRE AVG 211 211	BF HIGH 131 131 CF HIGH 33 33 HIGH 241 241	#	5 115 FOF TREES F 5 117 FOF PLOTS F 5 79	10 29 REQ. 10 29 REQ. 10 29 REQ. 20	1. INF. POP. 1 INF. POP. 1
SD: DOU TOT CL SD: DOU TOT CL SD: TOT	1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 68.1 68.1		VAR.% 53.7 53.7 COEFF VAR.% 54.0 54.0 COEFF VAR.% 42.3	7.7 7.7 S.E.% 7.7 7.7 S.E.% 14.1	L	112 112 SAMPL OW 28 28 TREES/OW 181 181	AVG 122 122 E TREES - AVG 31 31 ACRE AVG 211	BF HIGH 131 131 CF HIGH 33 33 HIGH 241 241	#	5 115 2 OF TREES F 5 117 2 OF PLOTS F 5	10 29 REQ. 10 29 REQ. 10 29 REQ. 20	1. INF. POP. 1 INF. POP. 1
SD: DOU TOT CL SD: DOU TOT CL SD: CL SD: CCL SD: TOT CL SD:	1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 68.1 68.1		VAR.% 53.7 53.7 COEFF VAR.% 54.0 54.0 COEFF VAR.% 42.3 42.3 COEFF	7.7 7.7 S.E.% 7.7 7.7 S.E.% 14.1 14.1	L	112 112 SAMPL OW 28 28 TREES/ OW 181 181 BASAL OW	AVG 122 122 E TREES - AVG 31 31 ACRE AVG 211 211 AREA/ACI AVG 196	BF HIGH 131 131 CF HIGH 33 33 HIGH 241 241 RE HIGH 212	#	5 115 FOF TREES F 5 117 FOF PLOTS F 5 79 FOF PLOTS F 5	10 29 REQ. 10 29 REQ. 10 20 REQ. 10	1 INF. POP. 1 INF. POP. 1 INF. POP. 1
SD: DOU TOT CL SD: DOU TOT CL SD: DOU TOT CL SD: DOU TOT CL SD: DOU DOU DOU DOU DOU DOU DOU DOU DOU DOU	1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 68.1 1.0 1.0		VAR.% 53.7 53.7 COEFF VAR.% 54.0 54.0 COEFF VAR.% 42.3 42.3 COEFF VAR.%	7.7 7.7 S.E.% 7.7 7.7 S.E.% 14.1 14.1 S.E.%	L	112 112 SAMPL OW 28 28 TREES/ OW 181 181 BASAL	AVG 122 122 E TREES - AVG 31 31 ACRE AVG 211 211 AREA/ACI AVG	BF HIGH 131 131 CF HIGH 33 33 HIGH 241 241 RE HIGH	#	5 115 FOF TREES F 5 117 FOF PLOTS F 5 79 FOF PLOTS S	10 29 REQ. 10 29 REQ. 10 20 REQ.	1. INF. POP. 1 INF. POP. 1 INF. POP. 1
SD: DOU TOT CL SD: DOU TOT CL SD: DOU TOT CL SD: DOU TOT CL SD: DOU DOU DOU DOU DOU DOU DOU DOU DOU DOU	1.0 JG FIR 68.1 1.0 JG FIR FAL 68.1 1.0 JG FIR FAL 08.1 1.0 JG FIR FAL 09.0 JG FIR FAL 1.0 JG FIR FAL		VAR.% 53.7 53.7 COEFF VAR.% 54.0 54.0 COEFF VAR.% 42.3 42.3 COEFF VAR.% 24.4	7.7 7.7 S.E.% 7.7 7.7 S.E.% 14.1 14.1 S.E.% 8.1	L	112 112 SAMPL OW 28 28 TREES/ OW 181 181 BASAL OW 180 180	AVG 122 122 E TREES - AVG 31 31 ACRE AVG 211 211 AREA/AC 196 196	BF HIGH 131 131 CF HIGH 33 33 HIGH 241 241 REE HIGH 212 212	#	5 115 FOF TREES F 5 117 FOF PLOTS F 5 26 FOF PLOTS F	10 29 REO. 10 29 REO. 10 20 REO. 7 REO.	INF. POP. INF. POP. 1 INF. POP. 1
SD: DOU TOT CL SD: DOU TOT CL SD: CL	1.0 JG FIR FAL 68.1 1.0 JG FIR FAL 68.1 1.0 JG FIR FAL 68.1 1.0 JG FIR FAL 68.1 1.0 JG FIR FAL 68.1 1.0		VAR.% 53.7 53.7 COEFF VAR.% 54.0 54.0 COEFF VAR.% 42.3 42.3 COEFF VAR.% 24.4 24.4 COEFF VAR.%	7.7 7.7 S.E.% 7.7 S.E.% 14.1 14.1 S.E.% 8.1 8.1	L.	112 112 112 SAMPL DW 28 28 TREES/ OW 181 181 BASAL OW 180 180 NET BE	AVG 122 122 E TREES - AVG 31 31 ACRE AVG 211 211 AREA/ACI AVG 196 196 196 VACRE AVG	BF HIGH 131 131 CF HIGH 33 33 HIGH 241 241 REE HIGH 212 212 HIGH	#	5 115 FOF TREES F 5 117 FOF PLOTS F 5 79 FOF PLOTS F 5 26	10 29 REQ. 10 29 REQ. 10 20 REQ. 10 7	INF. POP. INF. POP. 1 INF. POP. 1
SD: DOU TOT CL SD: DOU TOT CL SD: DOU TOT CL SD: DOU TOT CL SD: DOU TOT TOT CL SD: DOU TOT TOT TOT TOT TOT TOT TOT TOT TOT T	1.0 JG FIR FAL 68.1 1.0 JG FIR FAL 68.1 1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 08.1 UG FIR FAL 09.1 UG FIR FAL 1.0 UG FIR		VAR.% 53.7 53.7 COEFF VAR.% 54.0 54.0 COEFF VAR.% 42.3 42.3 COEFF VAR.% 24.4 24.4 COEFF VAR.% 29.7	7.7 7.7 S.E.% 7.7 S.E.% 14.1 14.1 S.E.% 8.1 8.1	L.	112 112 SAMPL DW 28 28 28 TREES/ OW 181 181 BASAL OW 180 180 NET BEOW 19,186	AVG 122 122 E TREES - AVG 31 31 ACRE AVG 211 211 AREA/ACI AVG 196 196 196 VACRE AVG 21,291	BF HIGH 131 131 CF HIGH 33 33 HIGH 241 241 RE HIGH 212 212 HIGH 23,397	#	5 115 FOF TREES F 5 117 FOF PLOTS F 5 26 FOF PLOTS F	10 29 REO. 10 29 REO. 10 20 REO. 7 REO.	1. INF. POP. 1. INF. POP. 1. INF. POP. 1.
SD: DOU TOT CL SD: DOU TOT CL SD: DOU TOT CL SD: DOU TOT TOT CL SD: DOU TOT TOT CL SD: DOU TOT TOT CL SD: DOU TOT TOT CL SD: DOU TOT TOT TOT TOT TOT TOT TOT TOT TOT T	1.0 JG FIR FAL 68.1 1.0 JG FIR FAL 68.1 1.0 JG FIR FAL 68.1 1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 68.1 1.0 UG FIR FAL		VAR.% 53.7 53.7 COEFF VAR.% 54.0 54.0 COEFF VAR.% 42.3 42.3 COEFF VAR.% 24.4 24.4 COEFF VAR.% 29.7 29.7	7.7 7.7 S.E.% 7.7 S.E.% 14.1 14.1 S.E.% 8.1 8.1	L.	112 112 SAMPL OW 28 28 28 TREES/ OW 181 181 BASAL OW 180 180 NET BEOW 19,186	AVG 122 122 E TREES - AVG 31 31 ACRE AVG 211 211 AREA/ACI AVG 196 196 //ACRE AVG 21,291 21,291	BF HIGH 131 131 131 CF HIGH 33 33 HIGH 241 241 RE HIGH 212 212 HIGH 23,397 23,397	#	5 115 4 OF TREES F 5 117 5 OF PLOTS F 5 26 4 OF PLOTS F 5 39	10 29 REQ. 10 29 REQ. 10 7 REQ. 10 10 7 REQ. 10	1
SD: DOU TOT CL SD: DOU TOT CL SD: DOU TOT CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL	1.0 JG FIR FAL 68.1 1.0 JG FIR FAL 68.1 1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 68.1		VAR.% 53.7 53.7 COEFF VAR.% 54.0 54.0 COEFF VAR.% 42.3 42.3 COEFF VAR.% 24.4 24.4 COEFF VAR.% 29.7 29.7 COEFF	7.7 7.7 S.E.% 7.7 7.7 S.E.% 14.1 14.1 S.E.% 8.1 8.1 S.E.% 9.9	L. L	112 112 112 SAMPL DW 28 28 TREES/OW 181 181 BASAL OW 180 180 NET BEOW 19,186 19,186	AVG 122 122 E TREES - AVG 31 31 ACRE AVG 211 211 AREA/ACI AVG 196 196 196 21,291 21,291 21,291	BF HIGH 131 131 CF HIGH 33 33 HIGH 241 241 RE HIGH 212 212 HIGH 23,397 23,397 RE	#	5 115 FOF TREES F 5 117 FOF PLOTS F 5 26 FOF PLOTS F 5 39	10 29 REO. 10 29 REO. 10 20 REO. 10 7 REO. 10 10	INF. POP. INF. POP. 1 INF. POP. 1 INF. POP. 1
SD: DOU TOT CL SD: DOU TOT CL SD: DOU TOT CL SD: CL	1.0 JG FIR FAL 68.1 1.0 JG FIR FAL 68.1 1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 68.1 1.0 UG FIR FAL 68.1		VAR.% 53.7 53.7 COEFF VAR.% 54.0 54.0 COEFF VAR.% 42.3 42.3 COEFF VAR.% 24.4 24.4 COEFF VAR.% 29.7 29.7	7.7 7.7 S.E.% 7.7 S.E.% 14.1 14.1 S.E.% 8.1 8.1	L. L	112 112 SAMPL OW 28 28 28 TREES/ OW 181 181 BASAL OW 180 180 NET BEOW 19,186	AVG 122 122 E TREES - AVG 31 31 ACRE AVG 211 211 AREA/ACI AVG 196 196 //ACRE AVG 21,291 21,291	BF HIGH 131 131 131 CF HIGH 33 33 HIGH 241 241 RE HIGH 212 212 HIGH 23,397 23,397	#	5 115 4 OF TREES F 5 117 5 OF PLOTS F 5 26 4 OF PLOTS F 5 39	10 29 REQ. 10 29 REQ. 10 7 REQ. 10 10 7 REQ. 10	INF. POP. INF. POP. 1 INF. POP. 1 INF. POP. 1

TC	PSPCSTGR		Sp	ecies, So	ort Gra	de - Boar	d Fo	ot V	olumo	es (Pr	oject)								
Т0	3N R06W S11 T	гу00МС		53.00		Project:		LO	USST 53.0								Page Date Time		1 27/202 :55:29	
		%						Perc	ent of N	Vet Boar	rd Foot	Volume					Avera	age Log	3	Logs
	S So Gr	Net	Bd. Ft.	per Acre		Total	1		Log Sca	ale Dia.			Log !	Length		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	3M	88	.2	18,865	18,827		998		95	5				7	93	39	8	89	0.58	211.9
DF	4M	12		2,464	2,464		131	l	100			38	58		4	21	6	26	0.33	94.1
DF	Totals	100	.2	21,329	21,291	1	,128		96	4		4	7	6	83	33	7	70	0.53	306.0
Tota	als		0.2	21,329	21,291	1	,128		96	4		4	7	6	83	33	7	70	0.53	306.0

TC I	PSTNDSU	М				S	stand T	able Su	ımmary				Page Date:	1 9/27/20	22
T03N I	R06W S1	1 Ty00MC		53.0	00		Project Acres	L	OUSSTE 53.0				Time: Grown Year:	12:55:3	ворм
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF	9	1	85	60	9.054	4.00	9.05	7.1	30.0	1.83	64	272	97	34	
DF	10	6	86	68	44.003	24.00	44.00	11.2	56.7	14.00	491	2,494	742	260	1
DF	11	3	87	77	18.183	12.00	18.18	14.8	60.0	7.69	270	1,091	407	143	
DF	12	3	87	73	15.279	12.00	15.28	17.6	63.3	7.66	269	968	406	143	
DF	13	11	87	79	47.735	44.00	73.77	15.6	59.4	32.79	1,151	4,383	1,738	610	2
DF	14	9	87	82	33.676	36.00	59.87	16.6	60.6	28.24	991	3,630	1,497	525	1
DF	15	2	88	89	6.519	8.00	13.04	18.7	75.0	6.95	244	978	368	129	
DF	16	7	88	94	20.054	28.00	40.11	22.9	94.3	26.20	919	3,782	1,388	487	2
DF	17	5	88	91	12.688	20.00	25.38	25.8	103.0	18.68	655	2,614	990	347	' 1
DF	20	2	88	98	3.667	8.00	7.33	39.4	147.5	8.23	289	1,082	436	153	
DF	Totals	49	87	79	210.858	196.00	306.02	17.5	69.6	152.28	5,343	21,291	8,071	2,832	1,1
Totals		49	87	79	210.858	196.00	306.02	17.5	69.6	152.28	5,343	21,291	8,071	2,832	1,1

TC PLOGSTVB Log Stock Table - MBF Page 1 53.00 LOUSSTEW T03N R06W S11 Ty00MC Project: Date 9/27/2022 Acres 53.00 Time 12:55:28PM % Net Volume by Scaling Diameter in Inches So Gr Log Gross Def Net 10-11 12-13 14-15 16-19 20-23 24-29 30-39 40+ Len **MBF** Spc 2-3 4-5 rt de **MBF** Spp 35 DF 3M 32 35 35 3.1 19 1.7 19 33 19 DF 3M 7 3M 34 DF .4 5 35 5 DF 3M 70 6.2 70 3M 36 70 DF 37 23 23 2.1 23 3M DF 190 330 272 47 841 839 74.3 DF 3M 40 2 .2 2 DF 4M 12 2 9 4M 13 9 DF 13 1.2 13 14 13 DF 4M 9 15 9 .8 DF 4M 17 8 8 DF 4M 5 18 DF 4M 5 19 4 4M DF 21 4 DF 4M 5 DF 4M 22 .9 10 DF 4M 23 10 5 24 5 DF 4M 5 25 5 DF 4M 1.6 18 26 18 DF 4M 27 .5 6 6 DF 4M 29 .5 5 DF 4M 18 18 18 1.6 DF 4M 30 6 DF 4M 40 6 .5 47 Totals 1,128 100.0 479 330 272 1,130 DF 47 1,128 100.0 479 330 272 Total All Species 1,130

TC PS	TATS					OJECT S OJECT		<u>FICS</u> SSTEW			PAGE DATE 9	1 9/27/2022
TWP	RGE	SC	TRACT	Т	YPE		ACF	RES	PLOTS	TREES	CuFt	BdFt
03N	06	24	00U4	00)PC			23.00	5	46	S	W
			Unit 1	4		TREES	E	STIMATED TOTAL		ERCENT AMPLE		
			PLOTS	TREES		PER PLOT		TREES		TREES		
TOT	'ΔΙ		5	46		9.2						
CRU DBH REF COU	JISE H COUNT FOREST JNT ANKS		5	46		9.2		3,585		1.3		
100					STA	ND SUMMA	ARY					
		_		mp.ccq		BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		S	AMPLE TREES	TREES /ACRE	AVG DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DO	UG FIR-L		30	85.7	16.0	100	30.0	120.0	18,841	18,841	4,193	4,193
	UG FIR-L		16	70.1	12.9	87	17.8	64.0	7,806	7,806	1,896	1,896
	TAL		46	155.9	14.7	94	48.0	184.0	26,647	26,647	6,090	6,090
CL		58.1	COEFF	Γ OF 100 THE	VOLUME		E TREES -			OF TREES I	REQ.	INF. POP.
SD:			VAR.%	S.E.%		LOW	AVG	HIGH		5	10	15
	UG FIR-L		33.9	6.3		221	236	251				
DO	UG FIR-T		57.0	14.7		111	131	150		86	22	10
TO	TAL		46.4	6.8		186	200	213				
CL	68.1		COEFF			SAMPLI	E TREES	- CF	#	OF TREES I	REQ.	INF. POP.
SD	: 1.0									-	10	1.5
	·V		VAR.%	S.E.%		LOW	AVG	HIGH		5	10	15
	UG FIR-L		32.5	6.0		LOW 49	53	56		5	10	15
DO	OUG FIR-L OUG FIR-T		32.5 53.8	6.0 13.9		LOW				5 76	10	
TO	OUG FIR-L OUG FIR-T OTAL		32.5 53.8 43.5	6.0		49 27 42	53 31 45	56 36		76	19	8
TO CL	OUG FIR-L OUG FIR-T OTAL 68.1		32.5 53.8 43.5 COEFF	6.0 13.9 6.4		49 27 42 TREES/	53 31 45 ACRE	56 36 48	i		19	8 INF. POP.
TO CL SD	OUG FIR-L OUG FIR-T OTAL 68.1 0: 1.0		32.5 53.8 43.5 COEFF VAR.%	6.0 13.9		49 27 42	53 31 45	56 36	;	76 # OF PLOTS 1	<i>19</i> REQ.	8 INF. POP.
TO CL SD	OUG FIR-L OUG FIR-T OTAL 68.1		32.5 53.8 43.5 COEFF	6.0 13.9 <i>6.4</i> S.E.%		49 27 42 TREES/	53 31 45 ACRE AVG	56 36 48 HIGH	;	76 # OF PLOTS 3	19 REO. 10	8 INF. POP.
CL SD DC	DUG FIR-L DUG FIR-T DTAL 68.1 0: 1.0		32.5 53.8 43.5 COEFF VAR.% 35.7	6.0 13.9 6.4 S.E.%		49 27 42 TREES/ LOW	53 31 45 ACRE AVG 86	56 36 48 HIGH	;	76 # OF PLOTS 1	<i>19</i> REQ.	8 INF. POP.
CL SD DC	OUG FIR-L DUG FIR-T OTAL 68.1 1.0 DUG FIR-L DUG FIR-T OTAL		32.5 53.8 43.5 COEFF VAR.% 35.7 74.4	6.0 13.9 6.4 S.E.% 17.7 37.0		49 27 42 TREES/ LOW 71 44 119	53 31 45 ACRE AVG 86 70	56 36 48 HIGH 101 96 193		76 # OF PLOTS : 5 114 # OF PLOTS	19 REQ. 10 29 REQ.	8 INF. POP. 15
CL SD DC TC	OUG FIR-L DUG FIR-T OTAL 68.1 D: 1.0 DUG FIR-L DUG FIR-L DUG FIR-T OTAL 68.1		32.5 53.8 43.5 COEFF VAR.% 35.7 74.4 48.1	6.0 13.9 6.4 S.E.% 17.7 37.0		49 27 42 TREES/ LOW 71 44 119	53 31 45 ACRE AVG 86 70 156 AREA/AC AVG	56 36 48 HIGH 101 96 193 CRE HIGH		76 # OF PLOTS : 5	19 REQ. 10	8 INF. POP. 15
DO TO CL SD DO CL SD	oug Fir-L oug Fir-T otal 68.1 1.0 oug Fir-L oug Fir-L oug Fir-T otal 68.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0		32.5 53.8 43.5 COEFF VAR.% 35.7 74.4 48.1 COEFF VAR.% 28.9	6.0 13.9 6.4 S.E.% 17.7 37.0 23.9 S.E.%		49 27 42 TREES/LOW 71 44 119 BASAL LOW 103	53 31 45 ACRE AVG 86 70 156 AREA/AC AVG 120	56 36 48 HIGH 101 96 193 CRE HIGH		76 # OF PLOTS : 5 114 # OF PLOTS	19 REQ. 10 29 REQ.	8 INF. POP. 15
CI SD CI SD DC CI SD DC DC	oug Fir-L oug Fir-T otal 68.1 1.0 Oug Fir-L oug Fir-T otal 68.1 1.0 Oug Fir-L oug Fir-T otal		32.5 53.8 43.5 COEFF VAR.% 35.7 74.4 48.1 COEFF VAR.% 28.9 80.9	6.0 13.9 6.4 S.E.% 17.7 37.0 23.9 S.E.% 14.3 40.2		49 27 42 TREES/ LOW 71 44 119 BASAL LOW 103 38	53 31 45 ACRE AVG 86 70 156 AREA/AC AVG 120 64	56 36 48 HIGH 101 96 193 CRE HIGH 137 90		76 # OF PLOTS : 5 114 # OF PLOTS : 5	19 REQ. 10 29 REQ. 10	8 INF. POP. 15
CI SD CI SD DC CI SD DC DC	DUG FIR-L DUG FIR-T DTAL 68.1 1.0 DUG FIR-T DTAL 68.1 1.0 DUG FIR-T DTAL 1.0 DUG FIR-T DTAL DUG FIR-T DUG FIR-T DUG FIR-T DUG FIR-T DUG FIR-T		32.5 53.8 43.5 COEFF VAR.% 35.7 74.4 48.1 COEFF VAR.% 28.9 80.9 41.7	6.0 13.9 6.4 S.E.% 17.7 37.0 23.9 S.E.%		49 27 42 TREES/ LOW 71 44 119 BASAL LOW 103 38 146	53 31 45 ACRE AVG 86 70 156 AREA/AC AVG 120 64 184	56 36 48 HIGH 101 96 193 CRE HIGH		76 # OF PLOTS: 5 114 # OF PLOTS 5	19 REO. 10 29 REO. 10	8 INF. POP. 15 INF. POP. 15
CI CI CI CI CI CI CI CI CI CI CI CI CI C	OUG FIR-L OUG FIR-T OTAL 68.1 OUG FIR-T OTAL 68.1 1.0 OUG FIR-T OTAL Coug FIR-T OTAL LUG FIR-T OUG FIR-T OUG FIR-T OUG FIR-T OUG FIR-T OUG FIR-T OUG FIR-T OUG FIR-T OUG FIR-T OUG FIR-T OUG FIR-T OUG FIR-T OUG FIR-T		32.5 53.8 43.5 COEFF VAR.% 35.7 74.4 48.1 COEFF VAR.% 28.9 80.9 41.7	6.0 13.9 6.4 S.E.% 17.7 37.0 23.9 S.E.% 14.3 40.2 20.7		100 49 27 42 TREES/ LOW 71 44 119 BASAL LOW 103 38 146 NET BE	53 31 45 ACRE AVG 86 70 156 AREA/AC AVG 120 64 184	56 36 48 HIGH 101 96 193 CRE HIGH 137 90 222		76 # OF PLOTS 5 114 # OF PLOTS 5 86 # OF PLOTS	19 REQ. 10 29 REQ. 10 21 REQ.	8 INF. POP. 15 13 INF. POP. 15 10 INF. POP.
CL SD DC TC CI SE DC CCI SE SE SE SE SE SE SE SE SE SE SE SE SE	OUG FIR-L OUG FIR-T OTAL		32.5 53.8 43.5 COEFF VAR.% 35.7 74.4 48.1 COEFF VAR.% 28.9 80.9 41.7 COEFF VAR.%	6.0 13.9 6.4 S.E.% 17.7 37.0 23.9 S.E.% 14.3 40.2 20.7		49 27 42 TREES/ LOW 71 44 119 BASAL LOW 103 38 146 NET BE	53 31 45 ACRE AVG 86 70 156 AREA/AC 120 64 184 F/ACRE AVG	56 36 48 HIGH 101 96 193 CRE HIGH 137 90 222		76 # OF PLOTS: 5 114 # OF PLOTS 5	19 REO. 10 29 REO. 10	8 INF. POP. 15 INF. POP. 15 INF. POP.
CL SD DC TC CI SE DC TC CI SE DC DC TC CI SE DC DC TC CI SE DC DC TC CI SE DC DC TC CI SE DC DC TC CI SE DC DC TC CI SE DC DC TC CI SE DC DC DC TC CI SE DC DC DC TC CI SE DC DC DC TC CI SE DC DC DC TC CI SE DC DC DC DC TC CI SE DC DC DC DC DC DC DC DC DC DC DC DC DC	OUG FIR-L OUG FIR-T OTAL		32.5 53.8 43.5 COEFF VAR.% 35.7 74.4 48.1 COEFF VAR.% 28.9 80.9 41.7 COEFF VAR.%	6.0 13.9 6.4 S.E.% 17.7 37.0 23.9 S.E.% 14.3 40.2 20.7		100 49 27 42 TREES/ LOW 71 44 119 BASAL LOW 103 38 146 NET BE	53 31 45 ACRE AVG 86 70 156 AREA/AC AVG 120 64 184	56 36 48 HIGH 101 96 193 CRE HIGH 137 90 222		76 # OF PLOTS 5 114 # OF PLOTS 5 86 # OF PLOTS	19 REQ. 10 29 REQ. 10 21 REQ.	8 INF. POP. 15 INF. POP. 15 INF. POP.
CI SE DO DO DO DO DO DO DO DO DO DO DO DO DO	OUG FIR-L OUG FIR-T OTAL		32.5 53.8 43.5 COEFF VAR.% 35.7 74.4 48.1 COEFF VAR.% 28.9 80.9 41.7 COEFF VAR.%	6.0 13.9 6.4 S.E.% 17.7 37.0 23.9 S.E.% 14.3 40.2 20.7 S.E.%		49 27 42 TREES/ LOW 71 44 119 BASAL LOW 103 38 146 NET BE LOW 16,448	53 31 45 ACRE AVG 86 70 156 AREA/AC 120 64 184 F/ACRE AVG 18,841	56 36 48 HIGH 101 96 193 CRE HIGH 137 90 222 HIGH 21,234		76 # OF PLOTS 5 114 # OF PLOTS 5 86 # OF PLOTS	19 REQ. 10 29 REQ. 10 21 REQ.	8 INF. POP. 15 INF. POP. 15 INF. POP.
CI SE DO DO TO	OUG FIR-L OUG FIR-T OTAL 68.1 1.0 OUG FIR-T OTAL 68.1 1.0 OUG FIR-T OTAL L 68.1 OUG FIR-T OTAL L 68.1 OUG FIR-T OTAL L 68.1 OUG FIR-T OTAL		32.5 53.8 43.5 COEFF VAR.% 35.7 74.4 48.1 COEFF VAR.% 28.9 80.9 41.7 COEFF VAR.% 25.6 95.6 43.1	6.0 13.9 6.4 S.E.% 17.7 37.0 23.9 S.E.% 14.3 40.2 20.7 S.E.% 12.7 47.5		10W 49 27 42 TREES/ LOW 71 44 119 BASAL LOW 103 38 146 NET BF LOW 16,448 4,098 20,946	53 31 45 ACRE AVG 86 70 156 AREA/AC AVG 120 64 184 E/ACRE AVG 18,841 7,806 26,647	HIGH 101 96 193 CRE HIGH 21,234 11,514 32,347		76 # OF PLOTS : 5 114 # OF PLOTS : 5 86 # OF PLOTS : 5	19 REO. 10 29 REQ. 10 21 REQ. 10 23	8 INF. POP. 15 INF. POP. 15 INF. POP.
DOC TO CLI SED DOC	DUG FIR-L DUG FIR-T DTAL 68.1 1.0 DUG FIR-T DTAL 68.1 1.0 DUG FIR-T DTAL 1.0 DUG FIR-T DTAL 1.0 DUG FIR-T DTAL L 68.1 DUG FIR-T DTAL L 68.1 L 68.1 L 68.1 L 68.1 L 68.1 L 68.1 L 68.1 L 68.1 L 68.1		32.5 53.8 43.5 COEFF VAR.% 35.7 74.4 48.1 COEFF VAR.% 28.9 80.9 41.7 COEFF VAR.%	6.0 13.9 6.4 S.E.% 17.7 37.0 23.9 S.E.% 14.3 40.2 20.7 S.E.% 12.7 47.5 21.4		10W 49 27 42 TREES/ LOW 71 44 119 BASAL LOW 103 38 146 NET BF LOW 16,448 4,098 20,946	53 31 45 ACRE AVG 86 70 156 AREA/AC AVG 120 64 184 E/ACRE AVG 18,841 7,806	HIGH 101 96 193 CRE HIGH 21,234 11,514 32,347		76 # OF PLOTS: 5 114 # OF PLOTS 5 86 # OF PLOTS 5	19 REO. 10 29 REQ. 10 21 REQ. 10 23	8 INF. POP. 15 10 INF. POP. 15 10 INF. POP. 15 10 INF. POP. 15
CI SE DO DO TO CI SI SI SI SI SI SI SI SI SI SI SI SI SI	DUG FIR-L DUG FIR-T DTAL 68.1 1.0 DUG FIR-T DTAL 68.1 1.0 DUG FIR-T DTAL 1.0 DUG FIR-T DTAL 1.0 DUG FIR-T DTAL L 68.1 DUG FIR-T DTAL L 68.1 L 68.1 L 68.1 L 68.1 L 68.1 L 68.1 L 68.1 L 68.1 L 68.1		32.5 53.8 43.5 COEFF VAR.% 35.7 74.4 48.1 COEFF VAR.% 28.9 80.9 41.7 COEFF VAR.% 25.6 95.6 43.1	6.0 13.9 6.4 S.E.% 17.7 37.0 23.9 S.E.% 14.3 40.2 20.7 S.E.% 12.7 47.5 21.4		10W 49 27 42 TREES/ LOW 71 44 119 BASAL LOW 103 38 146 NET BF LOW 16,448 4,098 20,946 NET CO	53 31 45 ACRE AVG 86 70 156 AREA/AC AVG 120 64 184 F/ACRE AVG 18,841 7,806 26,647 UFT FT/A	HIGH 101 96 193 CRE HIGH 21,234 11,514 32,347 CRE HIGH 4,725		76 # OF PLOTS 5 114 # OF PLOTS 5 86 # OF PLOTS 5 92 # OF PLOTS	19 REQ. 10 29 REQ. 10 21 REQ. 10 23 REQ.	15 13 INF. POP. 15 10 INF. POP. 15
CI SE DO CI	DUG FIR-L DUG FIR-T DTAL 68.1 1.0 DUG FIR-T DTAL 68.1 1.0 DUG FIR-T DTAL 1.0 DUG FIR-T DTAL 1.0 DUG FIR-T DTAL L 68.1 DUG FIR-T DTAL L 68.1 L 68.1 DUG FIR-T DTAL L 68.1 DUG FIR-T DTAL L 68.1 DUG FIR-T DTAL L 68.1 DUG FIR-T DTAL L 68.1 DUG FIR-T DTAL L 68.1		32.5 53.8 43.5 COEFF VAR.% 35.7 74.4 48.1 COEFF VAR.% 28.9 80.9 41.7 COEFF VAR.% 25.6 95.6 43.1 COEFF VAR.%	6.0 13.9 6.4 S.E.% 17.7 37.0 23.9 S.E.% 14.3 40.2 20.7 S.E.% 12.7 47.5 21.4		10W 49 27 42 TREES/ LOW 71 44 119 BASAL LOW 103 38 146 NET BF LOW 16,448 4,098 20,946 NET CU LOW	53 31 45 ACRE AVG 86 70 156 AREA/AC 120 64 184 F/ACRE AVG 18,841 7,806 26,647 UFT FT/A AVG	HIGH 101 96 193 CRE HIGH 137 90 222 HIGH 21,234 11,514 32,347 CRE HIGH		76 # OF PLOTS 5 114 # OF PLOTS 5 86 # OF PLOTS 5 92 # OF PLOTS	19 REQ. 10 29 REQ. 10 21 REQ. 10 23 REQ.	8 INF. POP. 15 10 INF. POP. 1: 10 INF. POP. 1: 10 INF. POP.

TC	PSP	CST	GR		Sp	ecies, So	ort Grad	de - Boa	rd Fo	ot Vol	ume	s (Pro	oject))								
T03	BN R	106V	W S24 T	y00PC		23.00		Project: Acres		LOU	SST1 23.0								Page Date Time		1 27/202 30:10	
	_	=		%						Percen	t of N	et Boar	d Foot	Volume					Avera	ige Lo	g	Logs
	S		Gr	Net	Bd. Ft.	per Acre		Total		Lo	g Sca	le Dia.			Log 1	ength		. Ln	Dia	Bd	CF/	Per
Spp			rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5 6	-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
	_	_				10.616	10 616		428		69	31			38	34	28	33	9	102	0.70	182.5
DF	L		3M	98		18,616 225	18,616 225		5		100	51			100			23	6	30	0.32	7.5
DF	L		4M	2			223											22	9	99	0.69	190.0
DF	Tot	tals		71		18,841	18,841		433		69	31			39	33	28	32				
DF	Т		3M	87		6,829	6,829		157		100			l			100	40	8	90		1
DF	T		4M	13		976	976	l	22		100			54	46			19	6	24	0.31	41.1
DF	To	tals		29		7,806	7,806		180		100			7	6		87	32	7	67	0.50	117.0
Tota	als					26,647	26,647		613		78	22		2	29	24	45	32	8	87	0.61	307.0

TC I	PSTNDSU	М				S	Stand T	Table Su	ımmary				Page Date:	1 9/27/202	22
T03N	R06W S24	4 Ty00PC		23.0	00		Project Acres	: L	OUSSTE				Time: Grown Year:	2:30:11	PM
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF L	14 15	8	88 89	93 99	29.934 13.038	32.00 16.00	56.13 26.08	18.1 20.5	83.3 92.5	28.94 15.24	1,016 535	4,677 2,412	666 351	234 123	108 55
DF L DF L	16	5	88	100	14.324	20.00	31.51	22.2	98.2	19.98	701	3,094	459	161	71
DF L DF L	17 18	1 9	89 89	116 107	2.538 20.372	4.00 36.00	7.61 52.06	20.0 25.2	93.3 110.0	4.33 37.43	152 1,313	711 5,727	100 861	35 302	16 132
DF L DF L	19 20	1 1	90 87	118 121	2.032 1.833	4.00 4.00	6.09 5.50	27.2 29.0	126.7 133.3	4.73 4.54	166 159	772 733	109 104	38 37	18 17
DF L	21	1	88	104	1.663	4.00	4.99	30.3	143.3	4.30		715	99	35	16
DF L	Totals	30	88	100	85.734	120.00	189.97	22.1	99.2	119.51	4,193	18,841	2,749	964	433
DF T	11	3	88	79 70	18.183	12.00 20.00	18.18 45.84	14.8 11.0	60.0 43.3	7.69 14.39		1,091 1,986	177 331	62 116	25 46
DF T DF T	12 13	5 2	86 88	79 89	25.465 8.679	8.00	17.36	13.8	43.3 55.0	1		955	157	55	22
DFT	14	1	88	94	3.742	4.00	7.48	17.5	75.0	3.72		561	86	30	13
DF T	15	1	89	99	3.259	4.00	6.52	21.7	95.0	4.03	142	619	93	33	14
DF T	16	2	89	110	5.730	8.00	11.46	27.4	120.0	8.96	314	1,375	206	72	32
DF T	17	2	89	115	5.075	8.00	10.15	29.1	120.0	8.43	296	1,218	194	68	28
DF T	Totals	16	87	87	70.133	64.00	116.99	16.2	66.7	54.04	1,896	7,806	1,243	436	180
Totals		46	88	94	155.867	184.00	306.96	19.8	86.8	173.55	6,090	26,647	3,992	1,401	613

	s	So Gr	Log	G	ross	Def Net	%				et Volu	ne by S	caling l	Diamete	r in Inch	es			. —	
Spp	Т	rt de	Len		ИВF	% MBF	Spc	2-3	3 4	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	L	3N	1 26	5	27	27	6.2							17		10	l			
DF	L	3N	1 28	В	57	57	13.1				5	5	16	31			l			
DF	L	3N	1 29	9	17	17	3.9				2		5	9						
DF	L	3N	1 30	0	63	63	14.6				8		27	9	19				1	
DF	L	3N	1 3	1	11	11	2.6				2		ģ							
DF	L	3N	4 3	2	70	70	16.1				15		55	5						
DF	L	3N	1 3	3	12	12	2.9	1			12								Ì	
DF	L	3N	<i>A</i> 3	4	40	40	9.3	İ			11		30				ļ			
DF	L	31	1 3	5	11	11	2.4						1							
DF	L	31	<i>A</i> 3	6	56	56	1	1			17		1							
DF	L	31	A 3	7	13	13	1	1			4			9						
DF	L	31	И 3	8	3	3	1	l l			3									
DF	L	31		10	42	42	l .	1			۔ ا	31	1	1					1	
DF	L	31	M 4	1	5		1.2		_		5		↓						┼	
DF	L	41	м 2	2	3	3	.6				3		1				1			
DF	L	41	M 2	23	3	;	.6	;			3									
DF		Tota	ıls	1	433	433	3 70.7	,			90	36	17	5 104	. 19	10				
DF	Т	3	M 4	10	157	15	7 87.5	5			73	28	5	6						
DF	Т	4	M 1	12	1		1 .7	7			1									
DF	Т	4	M	14	7		7 3.9				1 7		ŀ				l		İ	
DF	T	. 4	M	18	4		4 2.2	2			4						1		-	
DF	Т	4	M :	24	3		3 1.4	4			1	3	1							
DF	Т	4	M	29	5		5 2.0	6			:	i								
DF	Т	4	M	30	3	i	3 1.	7			:	3					<u> </u>			
DF		Tot	als	1	180	18	0 29.	3			9:	5 28	3	56	<u> </u>					
Total		All Spe	cies		613	61	3 100.	0			18	5 64	2	31 10	4 1	9 10				

C PSTA	ATS					JECT ST JECT	<u>FATIST</u> LOUS	<u>ICS</u> STEW			PAGE DATE 9	1 0/27/2022
	D.GE		TRACT	TV	PE		ACR	ES	PLOTS	TREES	CuFt	BdFt
WP	RGE	SC						17.00	4	43	S	W
03N	05	19	00U5		PC			STIMATED	PF	RCENT		
			Unit 5	ı		TREES	E	TOTAL		AMPLE		
			PLOTS	TREES	I	PER PLOT		TREES		TREES		
TOTA	. T		4	43		10.8						
CRUI DBH	SE COUNT DREST NT		4	43		10.8		3,711		1.2		
100 %	6						. D. I					
					STA	ND SUMMA	ARY) IET	GROSS	NET
			SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS BE/AC	NET BF/AC	GROSS CF/AC	CF/AC
			TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	18,854	4,348	4,348
DOU	IG FIR-L		26	107.7	14.9	96	33.7	130.0 5.0	18,854	10,034	7,570	.,= .=
DOU	JG FIR-S		1	9.2	10.0	80 83	1.6 23.1	80.0	8,295	8,206	2,076	2,076
	JG FIR-T	•	16	101.4	12.0 13.4	83 90	58.7	215.0	27,150	27,061	6,424	6,424
TOT			43	218.3	13.4	90	50.7	210.0				
COI	NFIDEN	68.1	IMITS OF THE TIMES OUT	E SAMPLE OF 100 THE	VOLUME	WILL BE V	VITHIN TH	IE SAMPLE				
CL	68.1	1	COEFF			SAMPLI	E TREES -		i	FOF TREES I	REQ. 10	INF. POP.
SD:			VAR.%	S.E.%	I	LOW	AVG	HIGH		5	10	13
DOI	UG FIR-I	L	30.9	6.2		178	190	201				
DO	UG FIR-S	S		10.5		82	94	107				
	UG FIR-	Т	52.5	13.5 7.6		138	150	161		100	25	11
TO	TAL		50.0	7.0				CE		# OF TREES	REO	INF. POP.
CL	68.	1	COEFF				E TREES	- CF HIGH		# OF TREES	10	15
SD:			VAR.%	S.E.%		LOW 41	AVG 44	47				
1	UG FIR-		33.5	6.7		71						
1	UG FIR- UG FIR-		58.6	15.1		21	24	28				
	TAL	•	50.4	7.7		33	36	38		101	25	11
├──			COEFF			TREES	/ACRE			# OF PLOTS		INF. POP.
CL		.1 .0	VAR.%	S.E.%		LOW	AVG	HIGH		5	10	15
	OUG FIR-		7.5	4.3		103	108	112				
1	OUG FIR		200.0	114.3			9	20				
1	OUG FIR		45.3	25.9		75	101	128		33	8	4
TO	OTAL		25.2	14.4		187	218	250				
CI	L 68	3.1	COEFF			BASAL	AREA/A			# OF PLOTS		INF. POP.
1	D: 1		VAR.%			LOW	AVG	HIGH		5	10	
	OUG FIR		8.9	5.1		123	130 5	137 11				
1	OUG FIR		200.0	114.3		71	80	89				
i i	OUG FIR	R-T	20.4 8.9	11.7 5. <i>I</i>		204	215	226		4	1	
1 111	OTAL						F/ACRE			# OF PLOTS	S REQ.	INF. POP.
		3.1	COEFF			LOW	AVG	HIGH		5	10	1
C	D: 1		VAR.% 6.7			18,134	18,854	19,575				
C		K-L	0.7	5.6			•					
C SI D	OUG FIF					- 015	8,206	9,196				
C SI D	OUG FIF	R-S	21.1	12.1		7,217	-,					
C SI D D	OUG FIF	R-S	21.1 8.2			25,790	27,061	28,332		4	1	
C SI D D D T	OUG FIF OUG FIF OUG FIF OTAL	R-S R-T	8.2	4.7		25,790	27,061			# OF PLOT		INF. POP.
C SI D D D T T	OUG FIF OUG FIF OUG FIF	R-S R-T 8.1		4.7	,	25,790						

TC PST	ATS				PROJECT PROJECT		STICS USSTEW			PAGE DATE	2 9/27/2022
TWP	RGE	SC	TRACT	TYP	E	AC	CRES	PLOTS	TREES	CuFt	BdFt
03N	05	19	00U5	00PC	:		17.00	4	43	S	W
CL	68.1		COEFF		NET C	UFT FT/AC	CRE		# OF PLOTS		INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
DOUG	G FIR-T		19.8 3.5	11.3 2.0	1,842 6,297	2,076 6,424	2,311 6,551		1	0	0

TC	PSP	CS	TGR		Sp	ecies, So	rt Gra	de - Boa	rd Fo	ot V	olumo	es (Pr	oject))								
Т0:	3N R	(05)	W S19 T	y00PC		17.00		Project Acres	:	LO	USST 17.0]	Page Date Time		1 27/202 02:57	
_				%						Perc	ent of N	Vet Boa	rd Foot	Volume					Avera	ge Log	3	Logs
	S	S	o Gr	Net	Bd. Ft.	per Acre		Total	1		Log Sca	ale Dia.			Log l	ength		Ln	Dia	Bd	CF/	Per
Spp	Т		rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	L		3M	97		18,409	18,409		313		94	6			14	38	48	34	8	91	0.61	202.7
DF	L		4M	3		446	446		8		100				100			25	7	35	0.38	12.7
DF	Tot	als		70		18,854	18,854		321		94	6			16	37	47	33	8	88	0.60	215.5
DF	Т		CU															7	14		0.00	6.6
DF	T		3M	86	1.2	7,150	7,060	į	120		93	7				2	98	40	7	76		92.6
DF	T		4M	14		1,146	1,146	l	19		100			46	14	40		18	6	21	0.27	55.5
DF	Tot	tals		30	1.1	8,295	8,206		140		94	6		6	2	7	84	31	7	53	0.44	154.7
DF	s		CU															41	6		0.00	9.2
DF		tals																41	6		0.00	9.2
Tota	als				0.3	27,150	27,061		460		94	6		2	12	28	59	33	8	71	0.52	379.3

TC PSTNDSUM		Stand Table Summ	ıary	Page Date:	1 9/27/2022
T03N R05W S19 Ty00PC	17.00	Project LOUS	SSTEW 17.00	Time: Grown Year:	1:02:58PM

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF L	12	2	88	88	12.732	10.00	25.46	10.5	40.0	7.62	267	1,019	130	45	17
DF L	13	4	88	92	21.698	20.00	43.40	13.8	56.2	17.02	597	2,441	289	102	41
DF L	14	5	89	99	23.386	25.00	46.77	18.5	90.0	24.69	866	4,209	420	147	72
DF L	15	1	88	95	4.074	5.00	8.15	19.6	90.0	4.56	160	733	77	27	12
DFL	16	7	88	98	25.067	35.00	50.13	24.3	107.9	34.70	1,218	5,407	590	207	92
DF L	17	5	89	103	15.860	25.00	31.72	27.9	116.0	25.26	886	3,680	429	151	63
DF L	18	1	89	97	2.829	5.00	5.66	30.6	120.0	4.93	173	679	84	29	12
DF L	21	1	88	96	2.079	5.00	4.16	43.2	165.0	5.12	180	686	87	31	12
DF L	Totals	26	88	96	107.726	130.00	215.45	20.2	87.5	123.90	4,348	18,854	2,106	739	321
DF T	9	1	87	74	11.318	5.00	11.32	8.5	40.0	2.73	96	453	46	16	8
DF T	10	1	88	78	9.167	5.00	9.17	12.8	60.0	3.33	117	550	57	20	9
DF T	11	3	88	81	22.729	15.00	30.31	12.2	50.0	10.52	369	1,515	179	63	26
DF T	12	6	88	85	38.197	30.00	57.30	13.7	52.2	22.43	787	2,992	381	134	51
DF T	13	2	88	91	10.849	10.00	21.70	13.9	57.5	8.62	302	1,248	146	51	21
DFT	15	1	87	82	4.074	5.00	8.15	14.3	50.0	3.33	117	407	57	20	7
DF T	19	2	88	93	5.079	10.00	10.16	28.4	102.5	8.21	288	1,041	140	49	18
DF T	Totals	16	88	83	101.413	80.00	148.09	14.0	55.4	59.18	2,076	8,206	1,006	353	140
DF S	10	1	88	80	9.167	5.00									
DF S	Totals	1	88	80	9.167	5.00									
Totals		43	88	90	218.307	215.00	363.54	17.7	74.4	183.08	6,424	27,061	3,112	1,092	460

TC PLOGSTVB Log Stock Table - MBF Page 17.00 T03N R05W S19 Ty00PC Project: LOUSSTEW Date 9/27/2022 Acres 17.00 Time 1:02:56PM So Gr Def % Net Volume by Scaling Diameter in Inches Log Gross Net rt de 20-23 24-29 30-39 40+ T Len MBF % MBF Spc 6-7 8-9 10-11 12-13 14-15 2-3 Spp 4-5 13 DF 3M 28 13 13 4.0 L DF L 3M 29 9 2.8 4 5 21 13 L 30 21 6.5 DF 3M 1.2 DF 3M 31 4 27 27 8.3 18 32 DF L 3M 30 33 30 9.3 30 DF L 3M DF L 3M 34 35 35 11.0 14 21 23 7.3 19 DF 3M 35 23 4 83 83 25.7 26 48 3M 36 DF L 37 9 2.9 9 DF 3M 38 28 28 8.9 10 9 10 DF L 3M 2 DF 39 2 .7 3M DF 40 29 29 9.1 10 19 L 3M 4 1.4 DF L 4M 24 1.0 3 DF L 4M 26 3 Totals 321 69.7 94 36 173 10 DF 321 33 2 1.5 2 DF 3M 72 40 119 1.3 118 84.5 31 6 DF T 3M 4 3.0 12 4 DF 4M 2 DF 4M 17 2 1.3 DF 19 2 1.6 2 T 4M 20 1 DF T 4M .6 1 DF 21 3 2.0 3 T 4M 5.5 8 31 8 DF 4M Totals 141 1.1 140 30.3 93 31 6 DF 17 460 100.0 67 10 Total All Species 462 187 180

TC PST	TATS					OJECT : OJECT		TICS SSTEW			PAGE DATE	1 9/27/2022
TWP	RGE	SC	TRACT	7	ГҮРЕ		ACI	RES	PLOTS	TREES	CuFt	BdFt
03N	05	30	00U6	(00PC			22.00	5	57	S	W
			Unit	6	-	TREES]	ESTIMATED TOTAL		ERCENT AMPLE		
			PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA	A.T.		5	57		11.4		TICEES		Traces		· · · · · · · · · · · · · · · · · · ·
CRUI DBH	ISE COUNT DREST NT NKS		5	57		11.4		4,556		1.3		
					STA	ND SUMM	IARY					
		,	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
			TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOI	G FIR-L		32	90.6	16.1	102	31.9	128.0	20,244	20,244	4,583	4,583
	G FIR-E		1	1.4	23.0	93	0.8	4.0	20,211	,	.,. 55	.,500
	G FIR-T		21	103.8	12.2	87	24.1	84.0	10,094	9,991	2,381	2,381
	DER-L		3	11.2	14.0	76	3.2	12.0	1,549	1,549	356	
TOT	AL		57	207.1	14.2	93	60.5	228.0	31,887	31,783	7,321	7,321
CL	68.1		COEFF	G.F.N			E TREES -		#	OF TREES F	-	INF. POP.
SD:	1.0		VAR.%	S.E.%	<u>_</u>	OW	AVG	HIGH		5	10	
	IG FIR-L IG FIR-S		50.5	8.9		237	260	283				
	IG FIR-T		39.5	8.8		99	108	118				
	DER-L		47.2	32.6		103	153	203		17.4	44	
ТОТ	-		66.1	8.7		177	194	211		174	44	DIE DOD
CL SD:	68.1 1.0		COEFF VAR.%	S.E.%	ī	JOW JOW	E TREES - AVG	HIGH	#	OF TREES F	.EQ. 10	INF. POP.
DOU	JG FIR-L JG FIR-S		47.1	8.3		54	59	63			10	
	JG FIR-T		45.2	10.1		24	26	29				
R AL	LDER-L		44.8	31.0		24	35	46				
TOT	AL		61.9	8.2		41	44	48		153	38	
CL	68.1		COEFF			TREES/	ACRE		#	OF PLOTS F	ŒQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	I	LOW	AVG	HIGH		5	10	
DOU	JG FIR-L		27.3	13.6		78	91	103				
	JG FIR-S		223.6	111.1			1	3				
	JG FIR-T		56.3	28.0		75	104	133				
R AI TOT	LDER-L		137.9 <i>36</i> .8	68.5 18.3		4 169	11 207	19 245		67	17	
				18.3								
CL	68.1		COEFF				AREA/AC		#	OF PLOTS I		INF. POP.
	1.0		VAR.%	S.E.%]	LOW	AVG	HIGH		5 -	10	
	JG FIR-L		14.0	6.9		119	128	137				
	JG FIR-S JG FIR-T		223.6 42.6	111.1 21.2		66	4 84	8 102				
	LDER-L		149.1	74.1		3	12	21				
TOT			14.7	7.3		211	228	245		11	3	
CI	68.1		COEFF			NET BF			#	OF PLOTS I		INF. POP.
CL			37 A D 0/	0.07	1	LOW	AVG	HIGH		5	10	
SD:	1.0		VAR.%	S.E.%							10	
SD: DOU	JG FIR-L		21.6	5.E.% 10.8		18,067	20,244	22,421			10	
SD: DOU DOU	JG FIR-L JG FIR-S		21.6	10.8		18,067	20,244	22,421			10	
SD: DOU DOU DOU	JG FIR-L									3	10	

TC PST	ATS				PROJECT PROJECT		STICS USSTEW			PAGE DATE	2 9/27/2022
TWP	RGE	SC	TRACT	TYP	E		CRES	PLOTS	TREES	CuFt	
03N	05	30	00U6	00PC			22.00	5	57	S	W
CL	68.1		COEFF		NET B			# OF PLOTS	INF. POP.		
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
TOT	AL		15.1	7.5	29,403	31,783	34,164		11	3	1
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS RE	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
	G FIR-L G FIR-S		19.4	9.7	4,140	4,583	5,026				
DOU	G FIR-T		44.9	22.3	1,850	2,381	2,913				
R AL	DER-L		163.9	81.5	66	356	646				
TOT	AL		13.3	6.6	6,839	7,321	7,803		9	2	1

TC	PS	SPCS	TGR		Sı	pecies, S	ort Gra	de - Boa	rd Fo	ot V	'olum	es (Pr	oject)								
ТО	T03N R05W S30 Ty00PC 22.00			Project: LOUSSTEW Acres 22.00								Page Date Time		1 27/202 36:44	22							
				%						Per	cent of l	Net Boa	rd Foot	Volume						ige Log		Logs
Spp		S So		Net BdFt	Bd. Ft. Def%	. per Acre Gross	Net	Total Net MBF		4-5	Log Sca 6-11	ale Dia. 12-16	17+	12-20		Length 31-35	36-99	Ln Ft	Dia In	Bd Ft	CF/ Lf	Per /Acre
DF	L		3M	100		20,244	20,244		445		68	28	4	12 20	35	20	45	33	9	102	0.70	198.1
DF	To	tals		64		20,244	20,244		445		68	28	4		35	20	45	33	9	102	0.70	198.1
DF DF	T T		CU 3M	86	1.2	8,760	8,657		190		100					6	94	13 39	6 7	80	0.00 0.49	4.3 107.6
DF	T		4M	14		1,334	1,334		29	_	100			11	89			23	6	28	0.30	47.0
DF		otals	OV	31	1.0	10,094	9,991		220	_	100			1	12	5	82	34	7	63	0.44	158.9 2.8
DF DF		otals	CU															38			0.00	2.8
RA RA			3M CR	76 24		1,192 357	1,192 357		26 8		64 100	36			36	64	100	31 37	9	97 70	0.71 0.46	12.2 5.1
		otals		5		1,549	1,549		34		72	28			28	49	23	33	9	89	0.63	17.3
Tota	als				0.3	31,887	31,783		699		78	19	3	0	28	17	55	34	8	84	0.58	377.1

 TC
 PSTNDSUM
 Stand Table Summary
 Page Date:
 1 Date:
 9/27/2022

 T03N R05W S30 Ty00PC
 22.00
 Project LOUSSTEW
 Time:
 2:36:45PM

 Acres
 22.00
 Grown Year:

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF L	12	2	88	91	10.186	8.00	20.37	10.7	42.5	6.21	218	866	137	48	19
DF L	13	1	89	104	4.340	4.00	8.68	15.5	75.0	3.85	135	651	85	30	14
DF L	14	4	88	95	14.967	16.00	29.93	17.3	78.8	14.75	518	2,357	325	114	52
DF L	15	4	89	106	13.038	16.00	26.08	21.9	100.0	16.30	572	2,608	359	126	57
DF L	16	6	88	101	17.189	24.00	34.38	25.1	110.0	24.62	864	3,782	542	190	83
DF L	17	4	89	101	10.151	16.00	25.38	22.2	97.0	16.07	564	2,462	353	124	54
DF L	18	4	88	102	9.054	16.00	18.11	32.2	123.8	16.62	583	2,241	366	128	49
DF L	19	3	89	111	6.095	12.00	18.28	25.4	118.9	13.26	465	2,174	292	102	48
DF L	21	1	89	128	1.663	4.00	4.99	35.7	170.0	5.08	178	848	112	39	19
DF L	22	1	89	130	1.515	4.00	4.55	39.8	190.0	5.16	181	864	113	40	19
DF L	24	1	86	110	1.273	4.00	3.82	39.6	183.3	4.32	151	700	95	33	15
DF L	25	1	84	114	1.173	4.00	3.52	43.8	196.7	4.39	154	692	97	34	15
DF L	Totals	32	88	102	90.644	128.00	198.08	23.1	102.2	130.63	4,583	20,244	2,874	1,008	445
DF T	10	5	88	79	36.669	20.00	36.67	12.4	60.0	12.94	454	2,200	285	100	48
DF T	11	2	87	78	12.122	8.00	12.12	14.8	60.0	5.13	180	727	113	40	16
DF T	12	2	88	103	10.186	8.00	20.37	13.2	60.0	7.64	268	1,222	168	59	27
DF T	13	4	88	96	17.358	16.00	30.38	15.6	61.4	13.50	474	1,866	297	104	41
DF T	14	5	88	92	18.709	20.00	37.42	16.7	68.0	17.84	626	2,544	393	138	56
DF T	15	2	89	94	6.519	8.00	13.04	19.3	75.0	7.16	251	978	157	55	22
DF T	18	1	87	89	2.264	4.00	4.53	28.4	100.0	3.66	128	453	80	28	10
DF T	Totals	21	88	87	103.827	84.00	154.52	15.4	64.7	67.86	2,381	9,991	1,493	524	220
RA L	12	1	88	62	5.093	4.00	5.09	17.2	70.0	2.40	87	357	53	19	8
RA L	15	1	93	91	3.259	4.00	6.52	20.8	95.0	3.73	136	619	82	30	14
RA L	16	1	92	85	2.865	4.00	5.73	23.3	100.0	3.66	133	573	81	29	13
RA L	Totals	3	90	76	11.217	12.00	17.34	20.5	89.3	9.80	356	1,549	216	78	34
DF S	23	1	88	93	1.386	4.00									
DF S	Totals	1	88	93	1.386	4.00									
Totals		57	88	93	207.074	228.00	369.95	19.8	85.9	208.29	7,321	31,783	4,582	1,611	699

TC PLOGSTVB

Log Stock Table - MBF

T03N R05W S30 Ty00PC 22.00

Project: LOUSSTEW
Acres 22.00

S So Gr Log Gross Def Net % Net Volume by Scaling Diameter in Inches

	s	So Gr	Log	Gross	Def Net	% Net Volume by Scaling Diameter in Inches											
Spp	T		Len	MBF	% MBF	Spc	2-3	4-5	6-7	8-9	10-11		14-15	16-19	20-23 24-2	9 30-3	9 40+
DF	L	3M	26	6	6	1.3				6							
DF	L	3M	27	9	ç	2.0						9					
DF	L	3M	28	76	76	17.0			8	6	27	8	27				
DF	L	3M	29	21	21	4.8			6	6	Ì			9			
DF	L	3M	30	46	46	10.3			6		17	13		9			
DF	L	3M	31	16	16	3.6			2		9	5					
DF	L	3M	32	13	13	2.8	ĺ		13								
DF	L	3M	33	20	20	4.5				10			11				
DF	L	3M	34	39	39	8.8			7		9	12		11			
DF	L	3M	36	73	73	16.4	i		13		51	9					
DF	L	3M	37	3	3	.7			3								
DF	L	3M			52	11.7			21		31				1		
DF	L	3M			23	5.1			4		9	9					
DF —-—	L	3M	40	49	49	11.0			17		23	10					
DF		Totals		445	445	63.7			100	27	176	75	37	30		+-	
DF	Т	3M	34	4	4	1.9			4								
DF	T	3M	35	8	12.5 7	3.0				7							
DF	Т	3M	38	29	29	13.2			29								
DF	Т	3M	40	152	151	68.5			35	107	8					ŀ	
DF	Т	4M	15	3	3	1.5			3							-	
DF	Т	4M	22	6	6				6			l					
	Т	4M	23	3	3				3								
	Т	4M	25	5	5				5								
OF	Т	4M	26	3	3	1.3			3								
OF	Т	4M	27	7	7	3.4			7								
OF	Т	4M	28	1	1	.7			1								
)F	†	Totals		222	1.0 220	31.4			98	113	8					+-	
	L	3M	30	9	9				70	113	•	9				+	
	L	3M	31	12	12				3		9	1					
RA	L	3M	32	4	4				4		,						
RA	L	CR	37	8	8	23.0			8			\dashv				+	
RA	\dagger	Totals	_	34	34	4.9			15		9	9				+-	
otal	+	All Species		702	699	100.0			214	140	194	85	37	30		+-	

Volume Summary

(Shown in MBF)

Lou's Stew FG-341-2023-W00944-01 September 2022

UNIT 1: PC-L (49 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	0	533	68	601
Douglas fir	Hidden D&B (2%)	(0)	(11)	(1)	(12)
Douglas-fir	NET TOTAL	0	522	67	589
	% of Total	0	89	11	

UNIT 2: PC-M (66 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	0	746	110	856
Douglas fir	Hidden D&B (2%)	(0)	(15)	(2)	(17)
Douglas-fir	NET TOTAL	0	731	108	839
	% of Total	0	87	13	

UNIT 3: MC (53 ACRES)

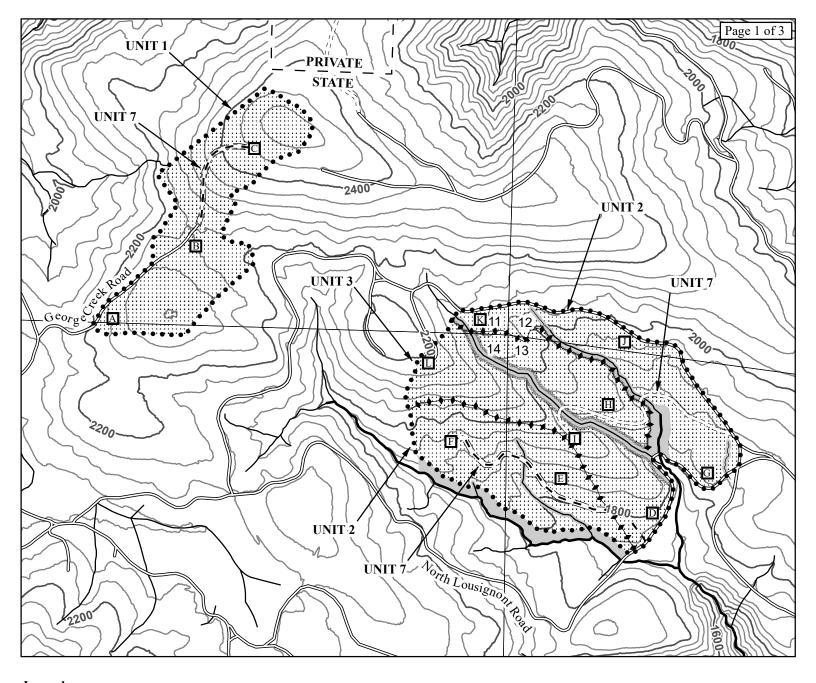
SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	0	998	131	1,129
Douglas-fir	Hidden D&B (2%)	(0)	(20)	(3)	(23)
Douglas-III	NET TOTAL	0	978	128	1,106
	% of Total	0	88	12	

UNIT 4: PC-M (23 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	0	157	22	179
Douglas fir	Hidden D&B (2%)	(0)	(3)	(0)	(3)
Douglas-fir	NET TOTAL	0	154	22	176
	% of Total	0	88	12	

UNIT 5: PC-M (17 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	0	120	19	139
Douglas-fir	Hidden D&B (2%)	(0)	(2)	(0)	(2)
Douglas-III	NET TOTAL	0	118	19	137
	% of Total	0	86	14	


UNIT 6: PC-L (22 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	0	190	29	219
Douglas-fir	Hidden D&B (2%)	(0)	(4)	(1)	(5)
Douglas-III	NET TOTAL	0	186	28	214
	% of Total	0	87	13	

UNIT 7: R/W (8 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	57	183	26	266
Douglas-fir	Hidden D&B (2%)	(1)	(4)	(1)	(6)
Douglas-III	NET TOTAL	56	179	25	260
	% of Total	21	69	10	

SALE TOTAL												
SPECIES	2 SAW	3 SAW	4 SAW	TOTAL								
Douglas-fir	56	2,868	397	3,321								
Total	56	2,868	397	3,321								

Legend

• • • • Timber Sale Boundary

♦ ♦ ♦ Area Boundary

Stream Buffer Boundary

= : = Right-of-Way Boundary

____ ODF Ownership Boundary

Surfaced Road

=== Unsurfaced Road

New Road Construction

Type-F Stream

— Type-N Stream

Stream Buffer

☐ Tractor Landing

:::::::: Tractor Yarding Area

Section Lines

— 40 Foot Contour Band

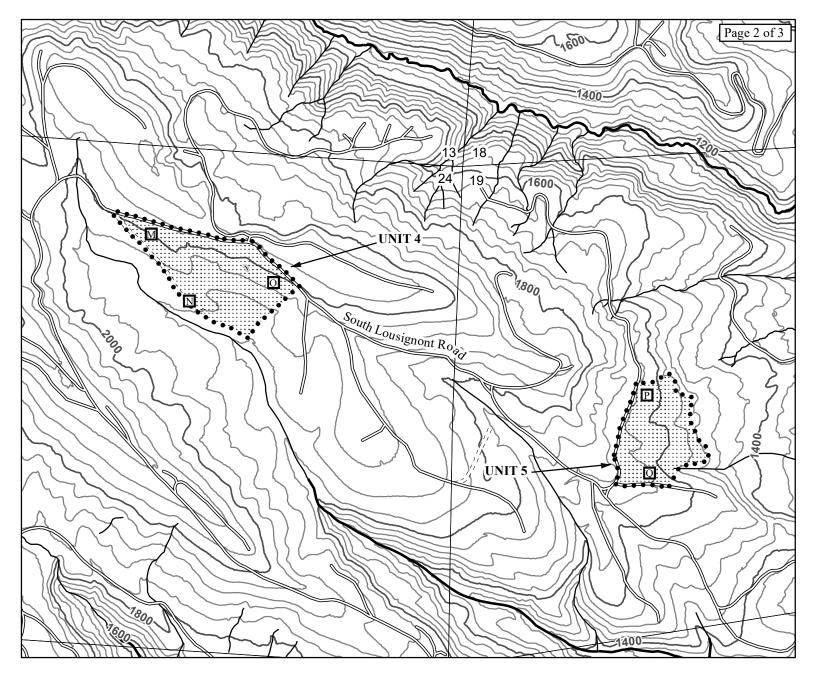
— 200 Foot Contour Band

LOGGING PLAN

FOR TIMBER SALE CONTRACT #FG-341-2023-W00944-01 LOU'S STEW

PORTIONS OF SECTIONS 19, 29, 30, & 32, T3N, R5W, W.M., WASHINGTON COUNTY, OREGON

PORTIONS OF SECTION 11, 12, 13, 14, & 24, T3N, R6W, W.M., $\frac{1}{2}$


TILLAMOOK COUNTY, OREGON

APPROXIMATE NET ACRES

0	500	1,000	2,000
			Feet

RACTOR	CABLE
49	0
66	0
53	0
23	0
17	0
22	0
) 8	0
238	0
	66 53 23 17 22) 8

Legend

• • • • Timber Sale Boundary

Surfaced Road

==== Unsurfaced Road

Type-F Stream

Type-N Stream

Stream Buffer

☐ Tractor Landing

Section Lines

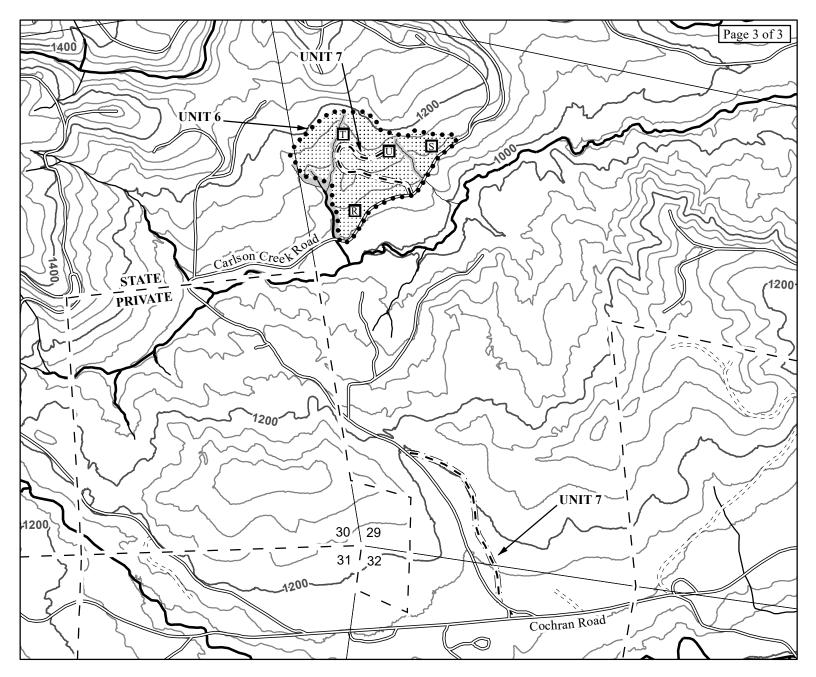
—— 40 Contour Band

- 200 Contour Band

LOGGING PLAN

FOR TIMBER SALE CONTRACT #FG-341-2023-W00944-01 LOU'S STEW

PORTIONS OF SECTIONS 19, 29, 30, & 32, T3N, R5W, W.M., WASHINGTON COUNTY, OREGON


PORTIONS OF SECTION 11, 12, 13, 14, & 24, T3N, R6W, W.M.,

TILLAMOOK COUNTY, OREGON

APPROXIMATE NET ACRES

Forest Grove District GIS September, 2022 This product is for informational use and may not be		$TRACTOR \square CABLE$				
		UNIT 1	49	0		
suitable for legal, engineering, or surveying purposes.			UNIT 2	66	0	
				UNIT 3	53	0
	1:12,000		UNIT 4	23	0	
				UNIT 5	17	0
1 inch = $1,000$ feet		UNIT 6	22	0		
0	500	1,000	2,000	UNIT 7 (R/W)	8	0
	200	1,000	Feet	TOTAL	238	0

Legend

• • • • Timber Sale Boundary

= : = Right-of-Way Boundary

| - | ODF Ownership Boundary

Surfaced Road

= = = : Unsurfaced Road

- - · New Road Construction

Type-F Stream

Type-N Stream

Stream Buffer

☐ Tractor Landing

Tractor Yarding Area

County Lines

Section Lines

—— 40 Contour Band

— 200 Contour Band

LOGGING PLAN

FOR TIMBER SALE CONTRACT #FG-341-2023-W00944-01 LOU'S STEW

PORTIONS OF SECTIONS 19, 29, 30, & 32, T3N, R5W, W.M., WASHINGTON COUNTY, OREGON

PORTIONS OF SECTION 11, 12, 13, 14, & 24, T3N, R6W, W.M., TILLAMOOK COUNTY, OREGON

APPROXIMATE NET ACRES

Forest Grove District GIS September, 2022	TRACTOR CABLE			
This product is for informational use and may not be	UNIT 1	49	0	
suitable for legal, engineering, or surveying purposes.	UNIT 2	66	0	
	UNIT 3	53	0	
1:12,000	UNIT 4	23	0	
1: 1 1000 6	UNIT 5	17	0	
1 inch = $1,000$ feet	UNIT 6	22	0	
0 500 1,000 2,000	UNIT 7 (R/W)) 8	0	
Feet	TOTAL	238	0	