

Sale FG-341-2023-W00528-01

District: Forest Grove Date: August 09, 2022

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$3,520,517.04	\$0.00	\$3,520,517.04
		Project Work:	(\$447,910.00)
		Advertised Value:	\$3,072,607.04

8/09/22

Sale FG-341-2023-W00528-01

District: Forest Grove Date: August 09, 2022

Timber Description

Location:

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	16	0	98
Western Hemlock / Fir	14	0	98

Volume by Grade	2\$	3S & 4S 6"- 11"	Total
Douglas - Fir	2,896	4,793	7,689
Western Hemlock / Fir	303	809	1,112
Total	3,199	5,602	8,801

8/09/22

Comments: Pond Values Used: Local Pond Values, June 2022.

Noble fir and Other Conifers Stumpage Price = Pond Value minus Logging Cost: \$208.71/MBF = \$712.54/MBF - \$503.83/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$823.00/MBF = \$1,326.00/MBF - \$503.00/MBF

Red Alder and Other Hardwoods Stumpage Price = Pond Value minus Logging Cost: \$167.00/MBF = \$670/MBF - \$503.00/MBF

BRANDING AND PAINTING COST ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$5.00/Gallon

HAULING COST ALLOWANCE

Hauling costs equivalent to \$1,200 daily truck cost.

Other Costs (with Profit & Risk to be added):
Truck Assist: 200 hours @ \$70/hour = \$14,000
TOTAL Other Costs (with Profit & Risk to be added) = \$14,000

Other Costs (No Profit & Risk added):
Machine Time to Block/Waterbar Roads,and Skid Trails:
20 hours x \$150/hour = \$3,000
Machine Time to Pile Landing Slash:
10 hours x \$150/hour = \$1,500
Equipment Cleaning: 3 pieces x \$1,000/Piece = \$3,000
TOTAL Other Costs (No Profit & Risk added) = \$7,500

SLASH TREATMENT: 6 acres x \$250/acre = \$1,500

ROAD MAINTENANCE

(Includes: Move-in, Grading, Rolling and Spot Rocking)

Move-in = \$3296.50

General Road Maintenance: 16.12miles X \$2,086.96 = \$33,641.79 TOTAL Road Maintenance: \$36,938.29 / 8801 MBF = \$4.20/MBF

Sale FG-341-2023-W00528-01

District: Forest Grove Date: August 09, 2022

Logging Conditions

Combination#: 1 Douglas - Fir 73.65%

Western Hemlock / Fir 76.42%

yarding distance: Long (1,500 ft) downhill yarding: No

tree size: Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 6 bd. ft / load: 4000

cost / mbf: \$335.93

machines: Log Loader (A)

Forwarder Harvester

Tower Yarder (Large)

Combination#: 2 Douglas - Fir 26.35%

Western Hemlock / Fir 23.58%

Logging System: Shovel **Process:** Harvester Head Delimbing

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 12 bd. ft / load: 4000

cost / mbf: \$111.33
machines: Forwarder

Harvester

Sale FG-341-2023-W00528-01

District: Forest Grove Date: August 09, 2022

Logging Costs

Operating Seasons: 2.00

Profit Risk: 20%

Project Costs: \$447,910.00

Other Costs (P/R): \$14,000.00

Slash Disposal: \$1,500.00 **Other Costs:** \$7,500.00

Miles of Road

Road Maintenance:

\$4.20

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load	
Douglas - Fir	\$0.00	2.0	4.6	
Western Hemlock / Fir	\$0.00	3.0	3.2	

Sale FG-341-2023-W00528-01

District: Forest Grove Date: August 09, 2022

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$276.74	\$4.28	\$1.00	\$133.04	\$1.59	\$83.33	\$0.17	\$2.00	\$0.85	\$503.00
Western H	emlock	/ Fir							
\$282.97	\$4.28	\$1.00	\$127.50	\$1.59	\$83.47	\$0.17	\$2.00	\$0.85	\$503.83

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$930.68	\$427.68	\$0.00
Western Hemlock / Fir	\$0.00	\$712.54	\$208.71	\$0.00

Sale FG-341-2023-W00528-01

District: Forest Grove Date: August 09, 2022

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total	
Douglas - Fir	7,689	\$427.68	\$3,288,431.52	
Western Hemlock / Fir	1,112	\$208.71	\$232,085.52	

Gross Timber Sale Value

Recovery: \$3,520,517.04

Prepared By: MARK SAVAGE Phone: 503-359-7437

TIMBER SALE SUMMARY Point Belding FG-341-2023-W00528-01

- 1. <u>Location</u>: Portions of Sections 35 & 36, T3N, R7W. W.M., Tillamook County, Oregon and portions of Sections 1 & 2, T2N, R7W, W.M., Tillamook County, Oregon.
- 2. <u>Type of Sale</u>: This timber sale is 314 acres. It consists of two Partial Cut units, one Partial Cut Group Selection unit, and a Right-of-Way unit. Unit 1 (PC) is 184 acres, Unit 2 (PC) is 103 acres, Unit 3 (PC-GR) is a group selection clearcut area, for wildlife purposes, totaling 6 acres within Unit 1, and Unit 4 (R/W) is 21 acres. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. Revenue Distribution: 100% BOF; Tillamook County, Tax Code 5600.
- **4.** <u>Sale Acreage</u>: Acres are net of stream buffers and existing road prisms. Acreage was determined using ESRI ArcMap GIS software.
- 5. <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers Adrian Torres and Mark Savage in June of 2022. For more information see Cruise Report.
- **6.** <u>Timber Description</u>: The Timber Sale Area consists of 69 to 83-year-old Douglas-fir timber with minor amounts of red alder, western hemlock, noble fir, and western red cedar.

The following table summarizes the ODF cruise estimates for trees to be harvested.

Sale Unit	Net Acres	Average DBH	Trees/Acre	Net MBF/Acre
Unit 1	184	16	106	23.8
Unit 2	103	16	156	27.6
Unit 3	6	16	174	59
Unit 4	21	17	230	61

7. <u>Topography and Logging Method</u>: Slopes within the sale areas range from 5% to 80% and are variable in aspect. Elevations range from 1,065 to 1,820 feet. The following table summarizes, in feet, the estimated maximum and average horizontal cable corridor length, the estimated maximum and average tractor skid trail length, as well as the percent harvest method for each Timber Sale Unit.

Sale Unit	Tractor			Cable		
Calc Offic	Average	Maximum	%	Average	Maximum	%
Unit 1	200	350	84	900	1,800	16
Unit 2	NA	NA	0	800	1,700	100
Unit 3	200	500	100	NA	NA	0
Unit 4	NA	NA	100	NA	NA	0

8. Access: All access to the Timber Sale Area is on surfaced all-weather roads. From Forest Grove, travel north on Highway 8 to its junction with Highway 6. Turn left and continue west on Highway 6 for 9.5 miles to Storey Burn Road. Turn right and continue on Storey Burn Road for 5.4 miles to a gate. Continue on Storey Burn Road for 1 mile to Standard Grade Road. Continue on Standard Grade Road for 6.1 miles to Sappington Creek Road. Turn right and continue on Sappington Creek Road 0.3 miles to Point Belding Road. Turn left and continue on Point Belding Road for 0.5 miles to access the southern portion of the Timber Sale Area. There is a gate along this route that will require a key, which can be obtained from the Forest Grove District Office.

9. Projects:

Project No. 1: Rocked Road Construction

Project No. 2: Road Improvement

Total Credits:

\$390,890.91

\$57,019.09

\$447,910.00

PROJECT COST SUMMARY SHEET

Timber Sale: Point Belding
Sale Number: FG-341-2023-W00528-01

PRO.	JECT NO	1.	ROCKED	ROAD	CONSTR	LICTION

	Road Segment	Longth	Cost	10% Fuel Adjustment
	B to C	Length 4+40	\$45,988.83	\$50,587.72
	C to D	75+00	\$190,129.46	\$209,142.40
	E to F	10+55	\$21,250.90	\$23,375.99
	G to H	20+45	\$30,761.86	\$33,838.05
	I to J	3+15	\$5,853.86	\$6,439.25
	K to L	2+30	\$4,473.36	\$4,920.70
	M to N	8+00	\$12,793.06	\$14,072.37
	O to P	3+60	\$7,400.38	\$8,140.42
	Q to R	12+50	\$24,789.62	\$27,268.58
		135+55 stations	ΨΣ 1,7 00.02	Ψ27,200.00
		2.57 miles		
Total R	Rock =	2.0100		
	385 cy	1½" - 0		
	157 cy	8" - 4		
	12,647 cy	Jaw-run		
		Move-in =	\$11,914.04	\$13,105.45
		TOTAL PROJECT COST =	\$355,355.37	\$390,890.9°
OJECT NO. 2: ROAD IMPROVEMEN	IT			
OJECT NO. 2: ROAD IMPROVEMEN	IT			10% Fuel
OJECT NO. 2: ROAD IMPROVEMEN		Length	Cost	10% Fuel
OJECT NO. 2: ROAD IMPROVEMEN	Road Segment	Length	Cost	Adjustment
OJECT NO. 2: ROAD IMPROVEMEN		42+90	Cost \$50,097.64	
OJECT NO. 2: ROAD IMPROVEMEN	Road Segment	42+90 42+90 stations		Adjustment
	Road Segment A to B	42+90		Adjustment
OJECT NO. 2: ROAD IMPROVEMEN Total R	Road Segment A to B	42+90 42+90 stations		Adjustment

TOTAL CREDITS = \$407,190.91

Move-in =

TOTAL PROJECT COST = \$51,835.54

10% FUEL ALLOWANCE ADJUSTMENT TOTAL = \$40,719.09

TOTAL CREDITS WITH ADJUSTMENT = \$447,910.00

\$1,737.90

\$1,911.69

\$57,019.09

Remove stumps					CTION COST				
MPROVECTIO. 2: ROAD IMPROVEMENT				ng	_				
PROJECT No. 2: ROAD IMPROVEMENT	Road Segmen	t:	A to B		_	Impr	ovement:		
IMPROVEMENT								0.81	miles
Clearing & grubbing (scatter) Clearing & grubbing (scatter	PROJECT NO. 2: ROAD IMPROVEMENT								
Remove stumps	IMPROVEMENT								
Haul to Waste Area No. 2 Roadside brushing 0.81	Clearing & grubbing (scatter)	0.50	ac @	\$1,078.00	per acre =			\$539.00	
Road side brushing	Remove stumps	12.00	ea @	\$68.29	per ea =			\$819.48	
Road widening (drift)	Haul to Waste Area No. 2								
Clean dulker hist coullet, scatter waster material 42,90 sta @ \$60,00 per sta = \$2,574,00	•	0.81	mi @	\$1,397.10	per mi =			\$1,135.14	
Clean culvert inlet & outlet, scatter waste 2 ea @ \$25.00 per ea = \$50.00					per sta =				
Cutslope layback (1+85 to 13+10)					•				
Excavate & load		2	ea @	\$25.00	per ea =			\$50.00	
Haul to Waste Area No. 1		050		00.54				# 200 5 0	
Shape and compact waste material			-					•	
Cutslope layback (23-42 to 29-45) Excavate & load			•					•	
Excavate & load	·	403	cy @	\$0.30	per cy =			\$138.84	
Haul to Waste Area No. 1 359 cy @ \$1.47 per cy = \$527.44 Shape and compact waste material 359 cy @ \$0.30 per cy = \$107.64 Cutslope layback (40+00 to 42+90)		276	cv @	\$2.13	per cv –			\$587.88	
Shape and compact waste material 359 cy @ \$0.30 per cy = \$107.64			•	•				•	
Custope layback (40-00 to 42+90) Excavate & load Excava			•					•	
Excavate & load	·	000	o, c	ψ0.00	por by –			Ψ107.01	
Haul to Waste Area No. 1 238 cy @ \$1.47 per cy = \$349.71 Shape and compact waste material 238 cy @ \$0.30 per cy = \$77.37 mprove turnout 2 ea @ \$33.00 per ea = \$66.00 Society Soci		183	cv @	\$2.13	per cv =			\$389.79	
Shape and compact waste material played by a special prove turnout 2 a ea @ \$33.0 per ey = \$71.37 per experience turnout 2 a ea @ \$33.0 per ey = \$66.00 per experience turnout 2 a ea @ \$334.00 per experience turnout 2 a ea @ \$14.00 per experience 2 \$66.00 per experience 2 \$60.00 per experience								*	
Improve turnout	Shape and compact waste material		•					\$71.37	
Grade, ditch, & roll 42.90 sta @ \$36.00 per sta = \$1,544.40 \$1,544.40 TOTAL IMPROVEMENT COSTS = \$12,691.36 CUIVERTS TOTAL IMPROVEMENT COSTS = \$12,691.36 \$12,691.36 Culverts and Bands 18" Diameter 24" Diameter 30 LF @ \$20.00 per LF = \$4,800.00 A4,800.00 per LF = \$4,800.00 Markers & \$12,691.36 TOTAL CULVERT COSTS = \$5,760.00 Markers & Stakes Culvert markers 9 ea @ \$10.00 per ea = \$90.00 TOTAL CULVERT COSTS = \$5,760.00 Solototal CULVERT COSTS = \$5,760.00 TOTAL CULVERT COSTS = \$5,760.00 TOTAL CULVERT COSTS = \$5,760.00 ROCK TOTAL CULVERT COSTS = \$5,760.00 TOTAL CULVERT COSTS = \$5,760.00 Solototal CULVERT COSTS = \$5,760.00 TOTAL CULVERT COSTS = \$5,760.00 TOTAL CULVERT COSTS = \$5,760.00 TOTAL CULVERT COSTS = \$5,760.00 Solototal COST COST COST COST COST COST COST COST	•	2	•					\$66.00	
CULVERTS TOTAL IMPROVEMENT COSTS = \$12,691.36 CULVERTS CUlverts and Bands 18" Diameter 240	Develop Waste Area No. 1	1	ea @	\$314.00	per ea =			\$314.00	
CULVERTS Culverts and Bands 18" Diameter 240 LF @ \$20.00 per LF = \$4,800.00 24" Diameter 30 LF @ \$29.00 per LF = \$870.00 Markers & Stakes 9 ea @ \$10.00 per ea = \$90.00 ROCK TOTAL CULVERT COSTS = \$5,760.00 ROCK Rock Size Cost \$/cy Base Cost \$/cy Placement/ Processing Cost \$/cy Total CY Rock Cost Subgrade rock Bedding and backfill 1½" - 0 \$1.95 \$25.58 \$0.50 240 \$6,727.20 Surfacing rock Surfacing rock Jaw-run \$7.64 \$2.55 \$1.22 1,802 \$20,560.82 Turnout Jaw-run \$7.64 \$2.55 \$1.22 1,802 \$2,960.82 Traction rock 1½" - 0 \$1.95 \$25.58 \$1.22 1,802 \$2,960.82 Traction rock 1½" - 0 \$1.95 \$2.55 \$1.22 1,802 \$2,960.82 Traction rock 1½" - 0 \$1.95 \$25.58 \$1.22 172 \$1,962.52 Traction rock	Grade, ditch, & roll	42.90	sta @	\$36.00	per sta =			\$1,544.40	
CULVERTS Culverts and Bands 18" Diameter 240 LF @ \$20.00 per LF = \$4,800.00 24" Diameter 30 LF @ \$29.00 per LF = \$870.00 Markers & Stakes 9 ea @ \$10.00 per ea = \$90.00 ROCK TOTAL CULVERT COSTS = \$5,760.00 ROCK Rock Size Cost \$/cy Base Cost \$/cy Placement/ Processing Cost \$/cy Total CY Rock Cost Subgrade rock Bedding and backfill 1½" - 0 \$1.95 \$25.58 \$0.50 240 \$6,727.20 Surfacing rock Surfacing rock Jaw-run \$7.64 \$2.55 \$1.22 1,802 \$20,560.82 Turnout Jaw-run \$7.64 \$2.55 \$1.22 1,802 \$2,960.82 Traction rock 1½" - 0 \$1.95 \$25.58 \$1.22 1,802 \$2,960.82 Traction rock 1½" - 0 \$1.95 \$2.55 \$1.22 1,802 \$2,960.82 Traction rock 1½" - 0 \$1.95 \$25.58 \$1.22 172 \$1,962.52 Traction rock					TO	TAI IME	PROVEME	NT COSTS =	\$12 691 36
18" Diameter	CULVERTS				<u>10</u>	/ I / (L IIVII	TO VEIVE		Ψ12,001.00
24" Diameter 30	Culverts and Bands	_							
Markers & Stakes Culvert markers 9 ea @ \$10.00 per ea = \$90.00	18" Diameter	240	LF @	\$20.00	per LF =			\$4,800.00	
Culvert markers 9 ea @ \$10.00 per ea = \$90.00	24" Diameter	30	LF @	\$29.00	per LF =			\$870.00	
Rock Size Cost \$/cy Flacement/ Processing Cost \$/cy Total CY Rock Cost	Markers & Stakes								
Rock Size Rock Rock Size Rock	Culvert markers	9	ea @	\$10.00	per ea =			\$90.00	
Rock Size Rock Rock Size Rock									
Rock Base Cost \$/cy Processing Cost \$/cy Total CY Rock Cost	ROCK					<u>101</u>	AL CULVE	RT COSTS =	\$5,760.00
Size Cost \$/cy \$/cy Processing Cost \$/cy Total CY Rock Cost	Noon				1	I			
Size							Total CY	Rock Cost	
Bedding and backfill		Size	Cost \$/cy	\$/cy	Processing Co	st \$/cy	Total O1	NOOK OOST	
Subtotal = 240	Subgrade rock		l.			l			
Surfacing rock Surfacing rock Jaw-run \$7.64 \$2.55 \$1.22 1,802 \$20,560.82 Turnout Jaw-run \$7.64 \$2.55 \$1.22 114 \$1,300.74 Curve widening Jaw-run \$7.64 \$2.55 \$1.22 172 \$1,962.52 Traction rock 1½" - 0 \$1.95 \$25.58 \$1.22 30 \$862.50 Subtotal = 2,118 \$24,686.58 Totals All Rock = 2,358 1½" - 0 270 Jaw-run 2,088 Totals Tota	Bedding and backfill	1½" - 0	\$1.95	\$25.58	\$0.50			\$6,727.20	
Surfacing rock Jaw-run \$7.64 \$2.55 \$1.22 1,802 \$20,560.82		_			Su	ıbtotal =	240	\$6,727.20	
Turnout Jaw-run \$7.64 \$2.55 \$1.22 114 \$1,300.74 Curve widening Jaw-run \$7.64 \$2.55 \$1.22 172 \$1,962.52 Traction rock 1½" - 0 \$1.95 \$25.58 \$1.22 30 \$862.50 Subtotal = 2,118 \$24,686.58 Totals All Rock = 2,358		<u> </u>	A= 0.4		0 4.00	1	1 000	***	
Curve widening				-					
Traction rock 1½" - 0 \$1.95 \$25.58 \$1.22 30 \$862.50 Subtotal = 2,118 \$24,686.58 Totals All Rock = 2,358 1½" - 0 270 Jaw-run 2,088 EROSION CONTROL Grass seed & fertilizer 0.50 ac @ \$425.00 per ac = \$212.50 Straw mulch bale 2 ea @ \$10.00 per ea = \$20.00 TOTAL EROSION CONTROL COSTS = \$232.50									
Totals Subtotal = 2,118 \$24,686.58	ŭ								
Totals All Rock = 2,358 1½" - 0 270 Jaw-run 2,088 TOTAL ROCK COSTS = \$31,413.78 EROSION CONTROL Grass seed & fertilizer Straw mulch bale 0.50 ac @ \$425.00 per ac = \$212.50 Straw mulch bale 2 ea @ \$10.00 per ea = \$20.00 TOTAL EROSION CONTROL COSTS = \$232.50	Traction rock	1½"-0	\$1.95	\$25.58		btotal			
1½" - 0 270 Jaw-run 2,088					50	ibiolai =	2,118	\$24,080.58	
1½" - 0 270 Jaw-run 2,088				Totals	All	Rock =	2 358		
Jaw-run 2,088				rotais	7 (11		-		
TOTAL ROCK COSTS = \$31,413.78									
EROSION CONTROL Grass seed & fertilizer 0.50 ac @ \$425.00 per ac = \$212.50 Straw mulch bale 2 ea @ \$10.00 per ea = \$20.00 TOTAL EROSION CONTROL COSTS = \$232.50							,	ı	
Grass seed & fertilizer 0.50 ac @ \$425.00 per ac = \$212.50 Straw mulch bale 2 ea @ \$10.00 per ea = \$20.00 TOTAL EROSION CONTROL COSTS = \$232.50						I	OTAL RO	CK COSTS =	\$31,413.78
Straw mulch bale 2 ea @ \$10.00 per ea = \$20.00 TOTAL EROSION CONTROL COSTS = \$232.50	EROSION CONTROL								
TOTAL EROSION CONTROL COSTS = \$232.50	Grass seed & fertilizer	0.50	ac @	\$425.00	per ac =	=		\$212.50	
	Straw mulch bale	2	ea @	\$10.00	per ea =	=		\$20.00	
					TOTAL	EDUSIO		OI COSTS	¢222 E0
TOTAL PROJECT COST = \$50,097.64					IUIAL	LNUSIU	IN CONTR	<u> </u>	φ∠3∠.50
<u>TOTAL PROJECT COST = \$50,097.64</u>							:		
						<u>TO1</u>	AL PRO	<u> ECT COST =</u>	\$50,097.64

 Timber Sale:
 Point Belding
 Sale Number:
 FG-341-2023-W00528-01

 Road Segment:
 B to C
 Construction:
 4+40 stations

 0.08 miles

_				-		0.08	miles
PROJECT NO. 1: ROCKED ROAD CONS	TRUCTIO	ON					
SUB-GRADE CONSTRUCTION							
Clearing & grubbing (end-haul)	0.54	20 @	\$1,678.00	por 20 –		\$906.12	
Haul to Waste Area No. 2	0.54	ac e	ψ1,070.00	per ac =		ψ900.12	
Balanced road construction	0.75	sta @	\$110.00	per sta =		\$82.50	
End-haul road construction(0+00 to 3+65)	0.75	31a @	ψ110.00	per sta =		ψ02.30	
Excavate & load	1,735	cy @	\$2.51	per cy =		\$4,354.85	
Haul to Waste Area No. 1	1,995	cy @	\$0.59	per cy =		\$1,177.20	
Shape and compact waste material	1,995	cy @	\$0.30	per cy =		\$598.58	
Stage fill material locally	1,000	cy ©	ψ0.00	per cy =		ψ000.00	
Excavate	387	cy @	\$2.51	per cy =		\$971.37	
Haul material	503	cy @	\$0.34	per cy =		\$171.02	
Place and shape	503	cy @	\$0.30	per cy =		\$150.93	
Specific subgrade elevation construction	0.85	•	\$3,481.20			\$2,959.02	
Fill construction	0.00	Sia &	ψ0,401.20	per sta =		Ψ2,303.02	
Place suitable fill material	503	cy @	\$2.40	per cy =		\$1,207.20	
Haul material	503	cy @	\$0.34	per cy =		\$171.02	
Compact fill w/ plate compactor	503	cy @	\$2.18	per cy =		\$1,095.46	
Grade, ditch, & roll	4.40	sta @	\$36.00	per sta =		\$158.40	
Grade, ditori, a roii	4.40	Sia &	ψ50.00	per sta =		Ψ100.40	
				TOTAL CON:	STRUCTIO	ON COSTS =	\$13,971.32
GABION FACED ENGINEERED WALL	_						
Gabion Face 3' x 3' x 12'	28	ea @	\$397.71	per ea =		\$11,135.88	
Includes; 8" x 12" reinforcement mats, hog							
rings, spiral stiffers and tie wire	00		***				
Construct & place gabion face	28	ea @	\$82.50	per ea =		\$2,310.00	
Gabion Curb 3' x 3' x 6' Includes; spiral binders, pre-formed stiffners, tie	50	ea @	\$87.16	per ea =		\$4,358.00	
wire and hog rings w/ pliers							
Construct & place gabion curb	50	ea @	\$68.75	per ea =		\$3,437.50	
On-site delivery & technical guidance	1	ea @	\$2,500	per ea =		\$2,500.00	
Non-woven Geotextile	187	yd2 @	\$1.60	per yd2 =		\$298.67	
Non-woven Geolexine	107	yuz w	ψ1.00	per yuz =		Ψ230.07	
				TOTAL CONS	TRUCTION	I COSTS -	\$24,040.05
CULVERTS				TOTAL CONC	TI CO TIOI	100010=	Ψ24,040.00
Culverts and Bands	•						
18" Diameter	30	LF @	\$20.00	per LF =		\$600.00	
Markers & Stakes	50	LI (6)	Ψ20.00	per Li =		φοσο.σσ	
Culvert markers	1	ea @	\$10.00	per ea =		\$10.00	
Guivert markers	'	ca w	Ψ10.00	per ea =		Ψ10.00	
				<u>TOTA</u>	L CULVER	RT COSTS =	\$610.00
ROCK	_						
		_		Placement/			
	Rock	Base	Haul Cost	Processing Cost	Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	\$/cy			
Surfacing rock		l .			1	1	
Base rock	Jaw-run	\$7.64	\$0.87	\$1.22	233	\$2,267.09	
Surfacing rock	1½" - 0	\$1.95	\$25.58	\$1.22	66	\$1,897.50	
Gabion face rock 3' x 3' x 12'	8" - 4"	\$11.69	\$0.87	\$3.69	112	\$1,820.02	
Gabion curb rock 2' x 2' x 6'	8" - 4"	\$11.69	\$0.87	\$3.69	45	\$731.26	
Wall armor	Jaw-run	\$7.64	\$0.87	\$3.69	18	\$219.60	
vvali aimoi	Jaw-Iuii	Ψ1.04	ψ0.07	Subtotal =	474	\$6,935.46	
				Subtotal =	7/7	ψ0,933.40	
			Totals	All Rock =	474	1	
			Totals	1½" - 0			
				Jaw-run	251		
				8" - 4"	157		
				0 - 4	101	j	
				<u>T</u> :	OTAL ROC	CK COSTS =	\$6,935.46
EDOCION CONTROL				_		·	_
EROSION CONTROL		_	Φ Γ ΩΩ 27			0070 00	
Grass seed & fertilizer	0.54	ac @				\$270.00	
Straw mulch (acre)	0.27	ac @	\$600.00	per ac =		\$162.00	
				TOTAL EROSIOI	N CONTRO	OL COSTS =	\$432.00
							Ţ :

TOTAL PROJECT COST = \$45,988.83

Timber Sale:		Point Beldi	NSTRUCT		Sale Number:	FG-341-202	3-W00528-01
Road Segment		C to D	iig	-	Construction:	75+00	stations
				_		1.42	miles
PROJECT NO. 1: ROCKED ROAD CONSTRUCT	TION						
CONSTRUCTION Clearing & grubbing (scatter)	5.22	ac @	\$1,078.00	ner ac =		\$5,627.16	
Clearing & grubbing (scatter) Clearing & grubbing (end-haul)	3.40					\$22,123.80	
Haul to Waste Area No. 2			**,******	p =		 ,	
Balanced road construction	65.80	sta @	\$110.00	per sta =		\$7,238.00	
Drift	9.20	sta @	\$180.00	per sta =		\$1,656.00	
Side Cast Pullback End-haul (1+90 to 3+70)							
Excavate & load	1,000	cy @	\$2.13	per cy =		\$2,130.00	
Haul to Waste Area No. 1	1,300	cy @	\$1.64	per cy =		\$2,132.00	
Shape and compact waste material Side Cast Pullback End-haul (9+35 to 12+15)	1,300	cy @	\$0.30	per cy =		\$390.00	
Excavate & load	778	cy @	\$2.13	per cy =		\$1,657.14	
Haul to Waste Area No. 1	1,012	cy @	\$1.90	per cy =		\$1,922.80	
Shape and compact waste material	1,012	cy @	\$0.30	per cy =		\$303.60	
Full Bench Road Realignment (1+90 to 5+20)	•	,		, ,			
Excavate & load	758	cy @	\$2.13	per cy =		\$1,614.54	
Haul to Waste Area No. 1	986	cy @	\$1.64	per cy =		\$1,617.04	
Shape and compact waste material	986	cy @	\$0.30	per cy =		\$295.80	
Full Bench Road Realignment (8+70 to 17+25)	0 4= :	_	60.5 :			₽0 744 5 :	
Excavate & load	3,484	cy @	\$2.51	per cy =		\$8,744.84	
Haul to Waste Area No. 1	4,530	cy @	\$2.30	per cy =		\$10,419.00	
Shape and compact waste material	4,530	cy @	\$0.30	per cy =		\$1,359.00	
Full Bench Road Realignment (19+80 to 22+90) Excavate & load	1,171	cy @	\$2.13	por cv –		\$2,494.23	
Haul to Waste Area No. 3	1,523	cy @	\$0.81	per cy = per cy =		\$1,233.63	
Shape and compact waste material	1,523	cy @	\$0.30	per cy =		\$456.90	
Full Bench Road Realignment (30+30 to 38+85)	.,	٠, ٥	*****	p =		*******	
Excavate & load	2,435	cy @	\$2.13	per cy =		\$5,186.55	
Haul to Waste Area No. 3	3,166	cy @	\$1.35	per cy =		\$4,273.43	
Shape and compact waste material	3,166	cy @	\$0.30	per cy =		\$949.65	
Full Bench Road Realignment (44+30 to 47+40)							
Excavate & load	3,134	cy @	\$2.13	per cy =		\$6,675.42	
Haul to Waste Area No. 4	4,075	cy @	\$1.11	per cy =		\$4,523.25	
Shape and compact waste material	4,075	cy @	\$0.30	per cy =		\$1,222.50	
Turnout Turnaround	4 5	ea @ ea @	\$66.00 \$82.50	per ea =		\$264.00 \$412.50	
Roadside landing	6	ea @	\$165.00	per ea = per ea =		\$412.50 \$990.00	
Landing	1	ea @		per ea =		\$314.00	
Grade & roll (outslope)	9.20	sta @	\$32.20	per sta =		\$296.24	
Grade, ditch, & roll	65.80	sta @	\$36.00	per sta =		\$2,368.80	
				TOTAL	CONCEDU	CTION COCTO	- \$100.891.82
CULVERTS				IOTA	LCONSTRUC	CTION COSTS =	\$100,091.02
Culverts and Bands	-						
18" Diameter	260	LF @	\$20.00	per LF =		\$5,200.00	
Markers & Stakes						*-,	
Culvert markers	8	ea @	\$10.00	per ea =		\$80.00	
					TOTAL CLI	VERT COSTS =	\$5,280.00
ROCK					TOTAL COL	VERT COSTS =	\$5,260.00
ROOK	_	1	1	I =			7
	Rock	Base	Haul Cost	Placement/ Processing		Rock Cost	
	Size	Cost \$/cy	\$/cy	Cost \$/cy	Total CT	ROCK COST	
Surfacing rock			l .				1
Base rock	Jaw-run	\$7.64	\$3.26	\$1.22	4,875	\$59,085.00	1
Junction	Jaw-run	\$7.64	\$3.26	\$1.22	120	\$1,454.40	1
Turnout	Jaw-run	\$7.64	\$3.26	\$1.22	116	\$1,405.92	1
Turnaround	Jaw-run	\$7.64	\$3.26	\$1.22	100	\$1,212.00	
Curve widening	Jaw-run	\$7.64	\$3.26	\$1.22	91	\$1,102.92	
Traction rock	1½" - 0		\$27.28	\$1.22	272	\$8,282.40	
Roadside landing	Jaw-run		\$3.26	\$1.22	570	\$6,908.40	1
Landing	Jaw-run	\$7.64	\$3.26	\$1.22	180	\$2,181.60	
				Subtota	l = 6,324	\$81,632.64	1
			Totals	All Rock	ζ = 6,324		
			Totals	1½" -			
				Jaw-r			
						DOOK 000=5	004 655 54
EDOCIONI CONTROL					TOTAL	ROCK COSTS =	\$81,632.64
EROSION CONTROL	- 0.01		PEOO 00			¢4 005 00	
Grass seed & fertilizer	2.61	ac @	\$500.00			\$1,305.00 \$1,020.00	
Straw mulch (acre)	1.70	ac @	\$600.00	per ac =	-	\$1,020.00	-
				TOTAL EF	ROSION CON	TROL COSTS =	\$2,325.00
					TOTAL PP	OJECT COST =	\$190,129.46
					IVIALIN		ψ100,120. 1 0

Timber Sale		Point Beldi	ng RUCT	ION COST	Sale Number:	FG-341-20)23-W00528-01
Road Segment		E to F		-	Construction:	10+55	stations
_				-		0.20	miles
PROJECT NO. 1: ROCKED ROAD CONST	RUCTION						
CONSTRUCTION							
Clearing & grubbing (scatter)	0.68		\$1,078.00			\$733.04	
Clearing & grubbing (end-haul) Haul to Waste Area No. 2	0.54	ac @	\$3,131.00	per ac =		\$1,690.74	
Balanced road construction	8.75	sta @	\$110.00	per sta =		\$962.50	
Drift	1.80	sta @	\$180.00	per sta =		\$324.00	
Full Bench End-haul (5+85 to 7+50)							
Excavate & load	1,374	су @	\$2.13	per cy =		\$2,926.62	
Haul to Waste Area No. 3	1,786	су @	\$1.08	per cy =		\$1,929.10	
Shape and compact waste material	1,786	су @	\$0.30	per cy =		\$535.86	
Landing	2	ea @	\$314.00	per ea =		\$628.00	
Grade, ditch, & roll	10.55	sta @	\$36.00	per sta =		\$379.80	-
				TOTAL C	CONSTRUCTIO	N COSTS =	\$10,109.66
ROCK	_						<u> </u>
		_		Placemer	nt/]
	Rock	Base	Haul Cost	Processin	ng Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	Cost \$/c	y		
Surfacing rock					•		_
Base rock	Jaw-run	\$7.64	\$1.28	\$1.22	686	\$6,956.04	
Landing	Jaw-run	\$7.64	\$1.28	\$1.22	380	\$3,853.20	
				Subto	tal = 1,066	\$10,809.24	
			Tatala	All Da	al: 1.000		
			Totals	All Ro			
				Jaw	/-run 1,066		
					TOTAL ROC	K COSTS =	\$10,809.24
EROSION CONTROL							
Grass seed & fertilizer	0.34	ac @	\$500.00	per ac =		\$170.00	
Straw mulch (acre)	0.27	ac @	\$600.00	per ac =		\$162.00	_
				TOTAL EDO	SION CONTRO	OL COSTS	- \$332.00
				TOTAL ERU	SION CONTRO	<u> </u>	φ33∠.00
							•
				-	TOTAL PROJE	CT COST =	\$21,250.90

Timber Sale:	ale: Point Belding	Sale Number:		FG-341-2023-W00528-01			
Road Segment:		G to H		Co	onstruction:	20+45	stations
				_		0.39	miles
PROJECT NO. 1: ROCKED ROAD CONS	STRUCTION	ON					
CONSTRUCTION							
Clearing & grubbing (scatter)	2.35	ac @	\$1,078.00	per ac =		\$2,533.30	
Balanced road construction	15.85	sta @	\$110.00	per sta =		\$1,743.50	
Drift	4.60	sta @	\$360.00	per sta =		\$1,656.00	
Fill construction							
Drift & compact fill	250	cy @	\$1.40	per cy =		\$350.00	
Turnout	1	ea @	\$66.00	per ea =		\$66.00	
Turnaround	3	ea @	\$82.50	per ea =		\$247.50	
Roadside landing	1	ea @	\$165.00	per ea =		\$165.00	
Landing	1	ea @	\$314.00	per ea =		\$314.00	
Grade & roll (outslope)	7.90	sta @	\$32.20	per sta =		\$254.38	
Grade, ditch, & roll	12.55	sta @	\$36.00	per sta =	_	\$451.80	_
				TOTAL CON	ISTRUCTIO	N COSTS =	- \$7,781.48
CULVERTS							
Culverts and Bands	-						
18" Diameter	60	LF @	\$20.00	per LF =		\$1,200.00	
Markers & Stakes			,			, ,	
Culvert markers	2	ea @	\$10.00	per ea =		\$20.00	
			*				
				<u>TOT.</u>	AL CULVER	T COSTS =	\$1,220.00
ROCK	_						
		_		Placement/			1
	Rock	Base	Haul Cost	Processing	Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	Cost \$/cy			
Surfacing rock					l		_
Base rock	Jaw-run	\$7.64	\$1.88	\$1.22	1,329	\$14,273.46	
Junction	Jaw-run	\$7.64	\$1.88	\$1.22	48	\$515.52	
Turnout	Jaw-run	\$7.64	\$1.88	\$1.22	29	\$311.46	
Turnaround	Jaw-run	\$7.64	\$1.88	\$1.22	60	\$644.40	
Curve widening	Jaw-run	\$7.64	\$1.88	\$1.22	65	\$698.10	
Traction rock	1½" - 0	\$1.95	\$25.85	\$1.22	47	\$1,363.94	
Roadside landing	Jaw-run	\$7.64	\$1.88	\$1.22	95	\$1,020.30	
Landing	Jaw-run	\$7.64	\$1.88	\$1.22	180	\$1,933.20	
		=	-	Subtotal :	= 1,853	\$20,760.38	
			Totals	All Rock :			
				1½" -	0 47		
				Jaw-ru	n 1,806		
						יג כחפדפ	¢20 760 29
				<u>_</u>	OTAL RUC	<u> </u>	\$20,760.38
EROSION CONTROL							
Grass seed & fertilizer	2.00	ac @	\$500.00	per ac =		\$1,000.00	
					•		-
				TOTAL EROSIC	N CONTRO	<u> L COSTS =</u>	\$1,000.00

TOTAL PROJECT COST = \$30,761.86

	SUMMA	ARY OF CO	DNSTRUCT	TION COST			
Timber Sale:		Point Beldi	ng		Sale Number:	FG-341-2	023-W00528-01
Road Segment:		I to J			Construction:	3+15	stations
Ç				_		0.06	miles
PROJECT NO. 1: ROCKED ROAD CONS	STRUCTION	ON					
CONSTRUCTION							
Clearing & grubbing (scatter)	0.37	ac @	\$1,078.00	per ac =		\$398.86	
Balanced road construction	3.15	sta @	\$110.00	per sta =		\$346.50	
Turnaround	1	ea @	\$82.50	per ea =		\$82.50	
Landing	1	ea @	\$314.00	per ea =		\$314.00	
Grade, ditch, & roll	3.15	sta @	\$36.00	per sta =		\$113.40	_
				TOTAL COL	NSTRUCTION	J COSTS –	\$1,255.26
ROCK				101/L 001	<u> </u>	100010 =	Ψ1,200.20
	Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placement Processing Cost \$/cy		Rock Cost	
Surfacing rock		<u>I</u>					1
Base rock	Jaw-run	\$7.64	\$1.26	\$1.22	205	\$2,074.60]
Turnaround	Jaw-run	\$7.64	\$1.26	\$1.22	20	\$202.40	
Landing	Jaw-run	\$7.64	\$1.26	\$1.22	180	\$1,821.60	
				Subtota	ıl = 405	\$4,098.60	
			Totals	All Rocl Jaw-r			
					TOTAL ROC	COSTS =	\$4,098.60
EROSION CONTROL							
Grass seed & fertilizer	1.00	ac @	\$500.00	per ac =		\$500.00	_
			<u>T</u>	OTAL EROSIO	ON CONTRO	L COSTS =	\$500.00
				<u>TC</u>	TAL PROJE	CT COST =	\$5,853.86

	SUIVIIVIA	ART OF CO	JNS I RUC I	ION COST			
Timber Sale:		Point Beldi	ng	_ Sa	ale Number:	FG-341-20	023-W00528-01
Road Segment:		K to L		C	onstruction:	2+30	stations
				_		0.04	miles
PROJECT NO. 1: ROCKED ROAD CONS	STRUCTION	ON					
CONSTRUCTION							
Clearing & grubbing (scatter)	0.27	ac @	\$1,078.00	per ac =		\$291.06	
Balanced road construction	2.30	sta @	\$110.00	per sta =		\$253.00	
Landing	1	ea @	\$314.00	per ea =		\$314.00	
Grade, ditch, & roll	2.30	sta @	\$36.00	per sta =		\$82.80	<u>-</u>
				TOTAL CON	STRUCTIO	N COSTS =	\$940.86
ROCK	_						•
	Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placement/ Processing Cost \$/cy	Total CY	Rock Cost	
Surfacing rock					•		_
Base rock	Jaw-run	\$7.64	\$1.64	\$1.22	150	\$1,575.00	
Landing	Jaw-run	\$7.64	\$1.64	\$1.22	180	\$1,890.00	
				Subtotal	= 330	\$3,465.00]
			Totals	All Rock Jaw-ru			
				<u>I</u>	OTAL ROC	K COSTS =	\$3,465.00
EROSION CONTROL							
Grass seed & fertilizer	0.14	ac @	\$500.00	per ac =		\$67.50	
			I	OTAL EROSIO	N CONTRO	L COSTS =	\$67.50
				<u>TO1</u>	AL PROJE	CT COST =	\$4,473.36

	SUMMA	ARY OF CO	JNSTRUCT	ION COST			
Timber Sale:		Point Beldi	ng	_	Sale Number:	FG-341-20	023-W00528-01
Road Segment:		M to N		_	Construction:	8+00	stations
						0.15	miles
PROJECT NO. 1: ROCKED ROAD CONS	STRUCTION	ON					
CONSTRUCTION							
Clearing & grubbing (scatter)	0.92	ac @	\$1,078.00	per ac =		\$991.76	
Balanced road construction	6.75	sta @	\$110.00	per sta =		\$742.50	
Drift	1.25	sta @	\$180.00	per sta =		\$225.00	
Roadside landing	2	ea @	\$165.00	per ea =		\$330.00	
Landing	1	ea @	\$314.00	per ea =		\$314.00	
Grade & roll (outslope)	3.00	sta @	\$32.20	per sta =		\$96.60	
Grade, ditch, & roll	5.00	sta @	\$36.00	per sta =		\$180.00	
				TOTAL CO	NICTRICTION	L COSTS -	\$2,879.86
ROCK				TOTAL CC	<u>ONSTRUCTION</u>	100313 =	\$2,079.00
ROCK							
	Rock	Base	Haul Cost	Placemer	-		
	Size	Cost \$/cy	\$/cy	Processin	_	Rock Cost	
			4 7	Cost \$/cy	У]
Surfacing rock		T.		•		1	1
Base rock	Jaw-run	\$7.64	\$2.02	\$1.22	520	\$5,657.60	
Roadside landing	Jaw-run	\$7.64	\$2.02	\$1.22	190	\$2,067.20	
Landing	Jaw-run	\$7.64	\$2.02	\$1.22	180	\$1,958.40	
				Subtot	tal = 890	\$9,683.20	
					•	Ī	
			Totals	All Ro			
				Jaw	-run 890		
					TOTAL ROCI	COSTS -	\$9,683.20
					. 5 17 LE 1 (OOI		ψ0,000.20
EROSION CONTROL	<u>-</u>						
Grass seed & fertilizer	0.46	ac @	\$500.00	per ac =		\$230.00	-
			Т	OTAL FROS	ION CONTRO	COSTS =	\$230.00
			<u>-</u>				+

TOTAL PROJECT COST = \$12,793.06

-			JNSTRUCT			=0 044 ==	
Timber Sale:		Point Beldi	ng	=			23-W00528-01
Road Segment:		O to P		_ Co	nstruction:		stations
						0.07	miles
PROJECT NO. 1: ROCKED ROAD CONS	STRUCTION	ON					
CONSTRUCTION							
Clearing & grubbing (scatter)	0.42	ac @	\$1,078.00	per ac =		\$452.76	
Balanced road construction	3.60	sta @	\$110.00	per sta =		\$396.00	
Turnaround	1	ea @	\$82.50	per ea =		\$82.50	
Roadside landing	1	ea @	\$165.00	per ea =		\$165.00	
Landing	1	ea @	\$314.00	per ea =		\$314.00	
Grade, ditch, & roll	3.60	sta @	\$36.00	per sta =		\$129.60	
				TOTAL CONS	TDUICTIO	N COSTS -	\$1,539.86
ROCK				TOTAL CONS	TRUCTIO	100313 =	φ1,559.66
ROOK				Т	1		
	Rock	Base	Haul Cost	Placement/	T-1-1-0\/	D I - O (
	Size	Cost \$/cy	\$/cy	Processing	Total CY	Rock Cost	
0 ()				Cost \$/cy			
Surfacing rock	1	Φ 7 .04	#0.00	#4.00	004	¢0 5 45 00	
Base rock	Jaw-run	\$7.64	\$2.02	\$1.22	234	\$2,545.92	
Turnaround	Jaw-run	\$7.64	\$2.02	\$1.22	20	\$217.60	
Roadside landing	Jaw-run	\$7.64	\$2.02	\$1.22	95	\$1,033.60	
Landing	Jaw-run	\$7.64	\$2.02	\$1.22	180	\$1,958.40	
				Subtotal =	529	\$5,755.52	
			Totals	All Rock =	529	1	
			TOtals	Jaw-rur	1	1	
				Jaw-Iui	1 329]	
				<u>TC</u>	TAL ROC	K COSTS =	\$5,755.52
EDOSION CONTROL						•	
EROSION CONTROL Grass seed & fertilizer	0.21	ac @	¢500.00	por 20 –		\$105.00	
Giass seed a leitilizei	0.21	ac w	\$500.00	per ac =		φ105.00	
			Т	OTAL EROSION	CONTRO	L COSTS =	\$105.00
			_				•
				_			•
				<u>TOT/</u>	AL PROJE	CT COST =	\$7,400.38

		ARY OF C	ONSTRUC	TION COST			
Timber Sale:		Point Beldi	ng	_ Sa	le Number:	FG-341-20)23-W00528-0
Road Segment:		Q to R		Co	nstruction:	12+50	stations
						0.24	miles
PROJECT NO. 1: ROCKED ROAD CONS	STRUCTION	ON					
CONSTRUCTION							
Clearing & grubbing (scatter)	1.44	ac @	\$1,078.00	per ac =		\$1,552.32	
Balanced road construction	11.60	sta @	\$110.00	per sta =		\$1,276.00	
Drift Control of the	0.90	sta @	\$180.00	per sta =		\$162.00	
urnaround	1	ea @	\$82.50	per ea =		\$82.50	
approach to landing	1.10	sta @	\$110.00	per sta =		\$121.00	
anding	2	ea @	\$314.00	per ea =		\$628.00	
Grade, ditch, & roll	12.50	sta @		-		\$450.00	
				TOTAL CON	STRUCTIO	N COSTS =	• \$4,271.82
ULVERTS							· · · · · ·
Culverts and Bands	_						
18" Diameter	120	LF @	\$20.00	per LF =		\$2,400.00	
24" Diameter	40	LF @	\$29.00	per LF =		\$1,160.00	
//arkers & Stakes			+	P		+ 1,100100	
Culvert markers	5	ea @	\$10.00	per ea =		\$50.00	
	•		*				
				TOTA	AL CULVER	RT COSTS =	\$3,610.00
ROCK	_						
		_		Placement/			1
	Rock	Base	Haul Cost	Processing	Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	Cost \$/cy			
Surfacing rock			' -		_	'	1
Base rock	Jaw-run		\$3.70	\$1.22	813	\$10,211.28	
Junction	Jaw-run		\$3.70	\$1.22	24	\$301.44	
Turnout	Jaw-run		\$3.70	\$1.22	29	\$364.24	
Turnaround	Jaw-run		\$3.70	\$1.22	20	\$251.20	
Approach to landing	Jaw-run		\$3.70	\$1.22	72	\$898.04	
Landing	Jaw-run	\$7.64	\$3.70	\$1.22	360	\$4,521.60	
				Subtotal =	1,318	\$16,547.80	
						1	
			Totals	All Rock =			
				Jaw-rur	1,318	J	
				т	OTAL ROC	CK COSTS =	\$16,547.80
				<u>-</u>	O I AL INOC	<u>,,, 00010 -</u>	Ψ10,071.00
ROSION CONTROL	_						
Grass seed & fertilizer	0.72	ac @	\$500.00	per ac =		\$360.00	_,
				TOTAL EROSIO	N CONTRO	<u>)L COSTS =</u>	\$360.00
				TOT	LVI DDU I	CT COST =	\$24 780 <i>6</i> 4
				101	AL FRUJE	_01 0031 =	\$24,789.6

Timber Sale: Point Belding Sale	Number: FG-341-2023-W00528-01
---------------------------------	-------------------------------

PROJECT No. 1 & 2 MOVE-IN, WITHIN AREA MOVE	, & CLEANING COSTS	
Equipment	Total	
Brush Cutter	\$819.25	
Grader	\$1,395.24	
Loader (Med. & Large)	\$1,199.09	
Roller (smooth/grid) & Compactor	\$819.25	
Excavator (Large) - Equipment Cleaning	\$2,395.24	
Dozer (Large) - Equipment Cleaning	\$2,395.24	
Dump Truck (Off Highway)	\$4,427.19	
Water Truck (2,500 Gal)	\$201.44	
	TOTAL MOVE-IN COSTS =	\$13,651.94

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

Timber Sale:
Sale Number:
Stockpile Name:

1 1/2" - 0:

Total truck yardage:

Point Belding
FG-341-2023-W00528-01
Beaverdam

(truck measure)

Move-in					
Move in loader	_				\$650.86
Move in Dump Trucks					\$100.73
				Subtotal =	\$751.59
				Per CY =	\$1.15/cy
(1 1/2"-0) Base Cost	_			_	_
Load dump truck	\$0.80	/ cy x	655	cy =	\$524.00
				Subtotal =	\$524.00
				Per CY =	\$0.80

1 1/2"-0 Cost = **\$1.95/cy**

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

	Timber Sale:	Point	Belding		
S	ale Number:	FG-341-202	23-W00528-01	-	
G	uarry Name: _	Point	Belding	- -	
4	" -0 Jaw-run:	14,735 cy	(truck measure	·)	
8	 " -4" Jaw-run	157 cy	` (truck measure	•	
Total tr	uck yardage:	14,892 cy	<u> </u>	,	
Total in pl	ace yardage: _	14,319 cy	<u>-</u>		
Ov	ersize - Pile:	20%			
	Swell:	130%	_		
	Compaction:	116%			
Move-in & Other Base Cost					
Quarry development & overbur		_			\$6,366.79
End-haul overburden to W		3			.
Equipment cleaning & move in					\$2,395.24
Equipment cleaning & move in	dozer				\$2,323.19
Move in & setup screen					\$2,223.19
Move in & setup drill					\$897.09
Move in loader					\$1,199.09
Move in & setup crusher					\$1,823.19
Move in Dump Trucks					\$639.00
Clean up quarry					\$500.00
				Subtotal =	\$18,438.28
411 0 1				Per CY =	\$1.24/cy
4" -0 Jaw-Run Base Cost	Φο οο	,	4.4.400		# 00 000 04
Drill & shoot	\$2.80	/ cy x	14,168	_cy =	\$39,669.81
Load crusher	\$0.80	/ cy x	14,735	_cy =	\$11,787.60
Crush (Jaw-run)	\$2.10	/ cy x	14,735	_cy =	\$30,942.45
Load dump truck	\$0.80	/ cy x	14,735	_cy =	\$11,787.60
				Subtotal =	\$94,187.46
				Per CY =	\$6.39/cy
8" - 4" Jaw-Run Base cost					
Drill & shoot	\$2.80	/ cy x	157	_cy =	\$439.60
Push rock	\$0.80	/ cy x	204	_cy =	\$163.28
Screen Rock	\$3.80	/ cy x	204	_cy =	\$775.20
Load crusher	\$0.80	/ cy x	204	cy =	\$163.28
Crush (Jaw-run)	\$2.10	/ cy x	204	_cy =	\$428.61
Load dump truck	\$0.80	/ cy x	204	cy =	\$163.28
				Subtotal =	\$2,133.25
				Per CY =	\$10.45/cy
					,

8" - 4" Base Cost = \$11.69/cy

Jaw-run Base Cost = \$7.64/cy

RESIDUAL STAND SPECIFICATIONS

SALE NAME: POINT BELDING SALE NUMBER: FG-341-2023-W00528-01

UNIT 1

Residual QMD assumption (from leave tree cruise information) = 22
Target Relative Density = 34

	Minimum	Target	Maximum
Relative Density	32	34	36
Basal Area	150	160	170
Trees per Acre	57	61	64

UNIT 2

Residual QMD assumption (from leave tree cruise information) = 21
Target Relative Density = 35

	Minimum	Target	Maximum
Relative Density	33	35	37
Basal Area	150	160	170
Trees per Acre	62	67	71

RD = BA / $\sqrt{}$ DBH BA = $\sqrt{}$ DBH (RD) TPA = (BA/acre) / (BA/tree) BA / tree = (πr^2) / (144)

CRUISE REPORT Point Belding #FG-341-2023-W00528-01

1. LOCATION: Portions of Sections 35 & 36, T3N, R7W, W.M., Tillamook County, Oregon and Portions of Sections 1 & 2, T2N, R7W, W.M., Tillamook County, Oregon

2. CRUISE DESIGN:

Pre-cruise evaluation indicated that the stand's average DBH is approximately 18 inches with a Coefficient of Variation of about 9%. For sales of this size and approximate value, ODF cruise standards require a Sampling Error of 9% at a 68% confidence level, and a minimum sample size of 100 graded trees. Statistical analysis indicated that 44 variable radius grade plots utilizing a 20 BAF prism would produce an adequate sample size.

3. SAMPLING METHOD:

The Timber Sale Area was cruised in June of 2022. Sale Areas 1 & 2 were sampled with 44 variable radius grade plots laid out on an 8 chain x 8 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain, in Units 1 and 2. Cruisers chose 'take' trees as though thinning from below to a basal area target of 160 ft² for Unit 1 and Unit 2.

4. CRUISE RESULTS:

316 trees were measured and graded producing a cumulative Sampling Error of 4.3% on the Basal Area and 5.2% on the Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following Columbia River Log Scale grade rules and favored 40 foot segments.

- a) **Height Standards:** Total tree heights were measured to the nearest foot. For conifers, bole heights were calculated to a six inch top.
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors: Measured for each grade tree using a form point of 16 feet.

6. DATA PROCESSING

- a) **Volumes and Statistics:** Cruise estimates and sampling statistics were derived from Super Ace 2008 cruise software
- b) **Deductions:** Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.
- 7. CRUISERS: The sale was cruised by ODF cruisers Adrian Torres and Mark Savage.

Prepared by:	Adrian Torres	06/30/2022
•	Name	Date
Reviewed by:	Mark Savage	06/30/2022
•	Name	Date

FC PSTA	ATS					OJECT S OJECT	TATIS' PNTI				PAGE DATE	1 6/29/2022
WP	RGE	SC	TRACT		TYPE	-	ACF	IES	PLOTS	TREES	CuFt	BdFt
03N	07	36	00UI	Unit 1	0РСМ			184.00	31	483	S	W
						TREES	E	STIMATED TOTAL		ERCENT AMPLE		
			PLOTS	TREES		PER PLOT		TREES		TREES		
тота	L.		31	483		15.6			•			
CRUIS			31	482		15.5		36,756		1.3		
DBH C REFO COUN BLAN	NT											
100 %												
					STA	ND SUMMA	ARY					
		S	AMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG	G FIR-L		207	51.5	21,8	130	28.6	133.5	31,448	31,444	6,262	6,262
	G FIR-S		18	23,3	9,8	54	3.9	12.3			_	
	G FIR-T		190	91.6	15.7	112	31.0	122.6	21,943	21,781	4,960	4,960
	MLOCK-L		32	16.5	15,1	107	5.3	20.6	4,328	4,328	871	871
	MLOCK-I	Ī	24	14.5	14.0	89	4.1	15.5	2,464	2,464	569 322	569 322
NOBI			10	1.8	25.4	133	1,3	6,5	1,730	1,730	322 20	
R ALI	DER-L		1 482	.5 199.8	15.0 <i>16.9</i>	85 108	0.2 <i>75.8</i>	.6 311.6	89 62,003	89 61,836	13,005	20 13,005
CL	68.1		COEFF		<u>.</u>		TREES -		#	OF TREES F	=	INF. POP.
SD:	1.0		VAR.%	S.E.%		.ow	AVG	HIGH	#	OF TREES F	REQ. 10	
SD: DOUG	1.0 G FIR-L				1				#		=	
SD: DOUG	1.0 G FIR-L G FIR-S		VAR.% 60.1	S.E.% 4.2	1	.ow	AVG	HIGH	#		=	
DOUG DOUG DOUG	1.0 G FIR-L G FIR-S G FIR-T		VAR.%	S.E.%	1	724	AVG 755	HIGH 787	#		=	
DOUG DOUG DOUG WHE	1.0 G FIR-L G FIR-S		VAR.% 60.1 69.6	S.E.% 4.2 5.0		724 309	755 325	787 342	#		=	
DOUG DOUG DOUG WHEA	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I		VAR.% 60.1 69.6 59.2	S.E.% 4.2 5.0 10.5	1	724 309 317	755 325 354	HIGH 787 342 391	#		=	
DOUG DOUG DOUG WHEE WHEE NOB	1.0 G FIR-L G FIR-S G FIR-T MLOCK-1		VAR.% 60.1 69.6 59.2 76.5	S.E.% 4.2 5.0 10.5 15.9	1	724 309 317 211	755 325 354 251	787 342 391 291	#		=	
SD: DOUG DOUG WHEE WHEE NOB	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L		VAR.% 60.1 69.6 59.2 76.5	S.E.% 4.2 5.0 10.5 15.9	1	724 309 317 211	755 325 354 251	787 342 391 291	#		=	1
SD: DOUG DOUG WHEE WHEE NOB R ALL TOTA	1.0 G FIR-L G FIR-S G FIR-T MLOCK-1 MLOCK-1 FIR-L DER-L AL		VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9		724 309 317 211 997 496 SAMPLI	AVG 755 325 354 251 1,307 516 8 TREES -	HIGH 787 342 391 291 1,617 536		5 295 OF TREES I	74 REQ.	J INF. POP.
SD: DOUG DOUG WHEE NOB R ALL TOTA CL SD:	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1		VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.%	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.%		724 309 317 211 997 496 SAMPLE	AVG 755 325 354 251 1,307 516 E TREES - AVG	HIGH 787 342 391 291 1,617 536 CF HIGH		295	74	J INF. POP.
SD: DOUG DOUG WHE NOB R ALL TOTA CL SD: DOUG	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L		VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9		724 309 317 211 997 496 SAMPLI	AVG 755 325 354 251 1,307 516 8 TREES -	HIGH 787 342 391 291 1,617 536		5 295 OF TREES I	74 REQ.	J INF. POP.
SD: DOUG DOUG WHEE NOB R ALL TOTA CL SD: DOUG DOUG	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S		VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6		724 309 317 211 997 496 SAMPLI .OW	325 325 354 251 1,307 516 E TREES - AVG	152		5 295 OF TREES I	74 REQ.	J INF. POP.
DOUG DOUG WHEE WHEE NOB R ALL TOTA CL SD: DOUG DOUG	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L		VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.%	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.%		724 309 317 211 997 496 SAMPLE	AVG 755 325 354 251 1,307 516 ETREES - AVG	HIGH 787 342 391 291 1,617 536 CF HIGH		5 295 OF TREES I	74 REQ.	INF. POP.
SD: DOUG DOUG WHER NOB R ALL TOTA CL SD: DOUG DOUG WHER	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T	r	VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6	1	724 309 317 211 997 496 SAMPLI .OW 142	325 325 354 251 1,307 516 E TREES - AVG 147	HIGH 787 342 391 291 1,617 536 CF HIGH 152		5 295 OF TREES I	74 REQ.	INF. POP.
SD: DOUG DOUG WHEE NOB R ALL TOTA CL SD: DOUG DOUG WHEE WHEE	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I	r	VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8 61.8 55.7	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6 4.5 9.8	1	724 309 317 211 997 496 SAMPLI .OW 142 70 64	325 325 354 251 1,307 516 E TREES - AVG 147	152		5 295 OF TREES I	74 REQ.	J INF. POP.
SD: DOUG DOUG WHEE NOB R ALI TOTA CL SD: DOUG DOUG WHEE NOB R ALE	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I EMLOCK-I FIR-L DER-L DER-L	r	VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8 61.8 55.7 66.6 63.3	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6 4.5 9.8 13.9 21.1	1	724 309 317 211 997 496 SAMPLI .OW 142 70 64 49 186	AVG 755 325 354 251 1,307 516 ETREES - AVG 147 73 71 57 235	HIGH 787 342 391 291 1,617 536 CF HIGH 152 77 78 65 285		295 OF TREES F 5	74 REO. 10	JINF. POP.
SD: DOUG DOUG WHEE NOB R ALL TOTA CL SD: DOUG DOUG WHEE NOB	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I EMLOCK-I FIR-L DER-L DER-L	r	VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8 61.8 55.7 66.6	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6 4.5 9.8 13.9	1	724 309 317 211 997 496 SAMPLI .OW 142 70 64 49	AVG 755 325 354 251 1,307 516 ETREES - AVG 147 73 71 57	HIGH 787 342 391 291 1,617 536 CF HIGH 152 77 78 65		5 295 OF TREES I	74 REQ.	JINF. POP.
SD: DOUG DOUG WHER NOB R ALL TOTA CL DOUG WHE NOB R ALL TOTA CL CL CL CL CL CL CL CL CL	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I MLOCK-I MLOCK-I MLOCK-I MLOCK-I FIR-L DER-L AL	r	VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8 61.8 55.7 66.6 63.3 74.1 COEFF	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6 4.5 9.8 13.9 21.1 3.4	1	724 309 317 211 997 496 SAMPLI .OW 142 70 64 49 186 101 TREES/2	AVG 755 325 354 251 1,307 516 ETREES - AVG 147 73 71 57 235 105	HIGH 787 342 391 291 1,617 536 CF HIGH 152 77 78 65 285	#	295 OF TREES I 5	74 REO. 10	JINF. POP.
SD: DOUG DOUG WHER NOB R ALL TOTA CL DOUG WHE NOB R ALL TOTA CL SD: CL SD: CL SD: CL SD: CL SD: CL SD:	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-S G FIR-S G FIR-T MLOCK-I M	r	VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8 61.8 55.7 66.6 63.3 74.1 COEFF VAR.%	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6 4.5 9.8 13.9 21.1 3.4 S.E.%	1	724 309 317 211 997 496 SAMPLI .OW 142 70 64 49 186 101 TREES/2.OW	AVG 755 325 354 251 1,307 516 ETREES - AVG 147 73 71 57 235 105 ACRE AVG	HIGH 787 342 391 291 1,617 536 CF HIGH 152 77 78 65 285 108	#	295 OF TREES I 5	74 REO. 10	JINF. POP.
SD: DOUG DOUG WHEE NOB R ALL TOTA CL SD: DOUG WHEE NOB R ALL TOTA CL SD: DOUG CL SD: DOUG DOUG DOUG WHEE NOB R ALL TOTA	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-S G FIR-T MLOCK-I MLOCK-I MLOCK-I MLOCK-I MLOCK-I MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L	r	VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8 61.8 55.7 66.6 63.3 74.J COEFF VAR.% 38.8	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6 4.5 9.8 13.9 21.1 3.4 S.E.% 7.0	1	724 309 317 211 997 496 SAMPLI .OW 142 70 64 49 186 101 TREES/2	AVG 755 325 354 251 1,307 516 ETREES - AVG 147 73 71 57 235 105 ACRE AVG 51	HIGH 787 342 391 291 1,617 536 CF HIGH 152 77 78 65 285 108	#	295 OF TREES I 5	74 REO. 10	JINF. POP.
SD: DOUG DOUG WHEE NOB R ALI TOTA CL SD: DOUG WHE NOB R ALI TOTA CL SD: DOUG DOUG DOUG WHE NOB R ALI TOTA	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-S G FIR-T MLOCK-I EMLOCK-I EMLOCK-I EMLOCK-I EMLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S	r	VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8 61.8 55.7 66.6 63.3 74.J COEFF VAR.% 38.8 301.6	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6 4.5 9.8 13.9 21.1 3.4 S.E.% 7.0 54.1		724 309 317 211 997 496 SAMPLI .OW 142 70 64 49 186 101 TREES/2	AVG 755 325 325 354 251 1,307 516 ETREES - AVG 147 73 71 57 235 105 ACRE AVG 51 23	HIGH 787 342 391 291 1,617 536 CF HIGH 152 77 78 65 285 108 HIGH 55 36	#	295 OF TREES I 5	74 REO. 10	JINF. POP.
SD: DOUG DOUG WHEE NOB R ALI TOTA CL SD: DOUG WHE NOB R ALI TOTA CL SD: DOUG DOUG DOUG DOUG DOUG DOUG DOUG DOUG	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-S G FIR-T MLOCK-I EMLOCK-I EMLOCK-I EMLOCK-I G FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-L G FIR-S	L T	VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8 61.8 55.7 66.6 63.3 74.J COEFF VAR.% 38.8 301.6 71.1	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6 4.5 9.8 13.9 21.1 3.4 S.E.% 7.0 54.1 12.8		724 309 317 211 997 496 SAMPLI .OW 142 70 64 49 186 101 TREES/2	AVG 755 325 354 251 1,307 516 ETREES - AVG 147 73 71 57 235 105 ACRE AVG 51	HIGH 787 342 391 291 1,617 536 CF HIGH 152 77 78 65 285 108	#	295 OF TREES I 5	74 REO. 10	INF. POP.
SD: DOUG DOUG WHEE NOB R ALI TOTA CL SD: DOUG WHE NOB R ALI TOTA CL SD: DOUG DOUG WHE NOB R ALI TOTA	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-S G FIR-T MLOCK-I EMLOCK-I EMLOCK-I EMLOCK-I EMLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S	L T	VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8 61.8 55.7 66.6 63.3 74.J COEFF VAR.% 38.8 301.6	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6 4.5 9.8 13.9 21.1 3.4 S.E.% 7.0 54.1		724 309 317 211 997 496 SAMPLI .OW 142 70 64 49 186 101 TREES/2 .OW 48 11 80	AVG 755 325 325 354 251 1,307 516 ETREES - AVG 147 73 71 57 235 105 ACRE AVG 51 23 92	HIGH 787 342 391 291 1,617 536 CF HIGH 152 77 78 65 285 108 HIGH 55 36 103	#	295 OF TREES I 5	74 REO. 10	JINF. POP.
SD: DOUG DOUG WHEE NOB R ALI TOTA CL SD: DOUG WHEE NOB R ALI TOTA CL SD: DOUG DOUG WHE NOB R ALI TOTA	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-S G FIR-T MLOCK-I EMLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T EMLOCK-I EMLOC	L T	VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8 61.8 55.7 66.6 63.3 74.J COEFF VAR.% 38.8 301.6 71.1 130.9	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6 4.5 9.8 13.9 21.1 3.4 S.E.% 7.0 54.1 12.8 23.5		724 309 317 211 997 496 SAMPLI .OW 142 70 64 49 186 101 TREES/2 .OW 48 11 80 13	AVG 755 325 325 354 251 1,307 516 ETREES - AVG 147 73 71 57 235 105 ACRE AVG 51 23 92 16	HIGH 787 342 391 291 1,617 536 CF HIGH 152 77 78 65 285 108 HIGH 55 36 103 20	#	295 OF TREES I 5	74 REO. 10	JINF. POP.
SD: DOUG DOUG WHEE NOB R ALI TOTA CL SD: DOUG WHEE NOB R ALI TOTA CL SD: DOUG WHEE NOB R ALI TOTA CL SD: DOUG WHEE NOB R ALI TOTA	1.0 G FIR-L G FIR-S G FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I EMLOCK-I CMLOCK-I G FIR-L DER-L AL 68.1 1.0 G FIR-L CMLOCK-I EMLOCK-I EMLOCK-I G FIR-S G FIR-L COMLOCK-I C	L T	VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8 61.8 55.7 66.6 63.3 74.J COEFF VAR.% 38.8 301.6 71.1 130.9 200.9	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6 4.5 9.8 13.9 21.1 3.4 S.E.% 7.0 54.1 12.8 23.5 36.0		724 309 317 211 997 496 SAMPLI .OW 142 70 64 49 186 101 TREES/2 .OW 48 11 80 13 9	AVG 755 325 325 354 251 1,307 516 ETREES - AVG 147 73 71 57 235 105 ACRE AVG 51 23 92 16 14	HIGH 787 342 391 291 1,617 536 CF HIGH 152 77 78 65 285 108 HIGH 55 36 103 20 20	#	295 OF TREES I 5	74 REO. 10	JINF. POP.
SD: DOUG DOUG WHEE NOB R ALI TOTA CL SD: DOUG WHEE NOB R ALI TOTA CL SD: DOUG WHEE NOB R ALI TOTA CL SD: DOUG WHEE NOB R ALI TOTA	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I EMLOCK-I AL 68.1 1.0 G FIR-L DER-L DER-L AL 68.1 1.0 G FIR-L DER-L AL 68.1 1.0 G FIR-L DER-L AL 68.1 1.0 G FIR-L DER-L	L T	VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8 61.8 55.7 66.6 63.3 74.J COEFF VAR.% 38.8 301.6 71.1 130.9 200.9 172.9	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6 4.5 9.8 13.9 21.1 3.4 S.E.% 7.0 54.1 12.8 23.5 36.0 31.0		724 309 317 211 997 496 SAMPLI .OW 142 70 64 49 186 101 TREES/.	AVG 755 325 325 354 251 1,307 516 ETREES - AVG 147 73 71 57 235 105 ACRE AVG 51 23 92 16 14 2	#IGH 787 342 391 291 1,617 536 CF HIGH 152 77 78 65 285 108 HIGH 55 36 103 20 20 2	#	295 OF TREES I 5	74 REO. 10	JINF. POP.
SD: DOUG DOUG WHEE NOB R ALI TOTA CL SD: DOUG WHEE NOB R ALI TOTA CL SD: DOUG WHEE NOB R ALI TOTA CL SD: DOUG R ALI TOTA CL SD: DOUG R ALI TOTA CL SD: DOUG R ALI TOTA	1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I EMLOCK-I AL 68.1 1.0 G FIR-L DER-L DER-L AL 68.1 1.0 G FIR-L DER-L AL 68.1 1.0 G FIR-L DER-L AL 68.1 1.0 G FIR-L DER-L	L T	VAR.% 60.1 69.6 59.2 76.5 71.3 85.9 COEFF VAR.% 51.8 61.8 55.7 66.6 63.3 74.J COEFF VAR.% 38.8 301.6 71.1 130.9 200.9 172.9 556.8	S.E.% 4.2 5.0 10.5 15.9 23.7 3.9 S.E.% 3.6 4.5 9.8 13.9 21.1 3.4 S.E.% 7.0 54.1 12.8 23.5 36.0 31.0 99.9 8.0		724 309 317 211 997 496 SAMPLI OW 142 70 64 49 186 101 TREES/A	AVG 755 325 325 354 251 1,307 516 ETREES - AVG 147 73 71 57 235 105 ACRE AVG 51 23 92 16 14 2 1	HIGH 787 342 391 291 1,617 536 CF HIGH 152 77 78 65 285 108 HIGH 55 36 103 20 20 2 1 216	#	295 OF TREES I 5 219 OF PLOTS I 5	74 REO. 10 55 REO. 10	INF. POP.

TC PS7	rats				J	PROJECT	STATIS	STICS			PAGE	2
10 10.						PROJECT	PNT	BLD			DATE	6/29/2022
ΓWP	RGE	SC	TRACT		TYPE		AC	CRES	PLOTS	TREES	CuFt	BdFt
03N	07	36	0 0U1	Unit 1	0РСМ			184.00	31	483	S	W
DOU	G FIR-L		20.6	3.7		129	134	138				
DOU	G FIR-S		268.7	48.2		6	12	18				
DOU	G FIR-T		59,8	10.7		109	123	136				
WHE	MLOCK-L		133.5	24.0		16	21	26				
WHE	MLOCK-T	Γ	181.8	32.6		10	15	21				
NOB	FIR-L		147.3	26.4		5	6	8				
R AL	DER-L		556.8	99.9		0	1	1				
тот	AL		24.8	4.4		298	312	325		25	6	3
CL	68.1		COEFF			NET B	F/ACRE			# OF PLOTS I	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%		LOW	AVG_	HIGH		5_	10	15
DOU	IG FIR-L		27.7	5.0		29,883	31,444	33,005		_		
DOU	G FIR-S											
DOU	JG FIR-T		74.2	13,3		18,880	21,781	24,681				
WHE	EMLOCK-I	L	142.3	25.5		3,223	4,328	5,434				
WHI	EMLOCK-1	r	173,0	31.0		1,699	2,464	3,229				
NOE	FIR-L		156.1	28.0		1,245	1,730	2,215				
	LDER-L		556.8	99.9		0	89	179				
тот			33.6	6.0		58,108	61,836	65,565		45	11	_5
CL	1.86		COEFF			NET C	UFT FT/A	CRE		# OF PLOTS I	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	_	LOW	AVG _	HIGH		5	10	15
DOU	JG FIR-L		23.5	4.2		5,998	6,262	6,527				
	JG FIR-S											
DOU	JG FIR-T		69.1	12.4		4,345	4,960	5,575				
	EMLOCK-I	L	142,3	25.5		649	871	1,093				
	EMLOCK-		173.2	31.1		392	569	746				
	3 FIR-L		151.7	27.2		234	322	410				
	LDER-L		556.8	99.9		0	20	41				
	TAL		30.7	5.5		12,288	13,005	13,722		38	9	4

Species, Sort Grade - Board Foot Volumes (Project) TC PSPCSTGR Page 1 Project: **PNTBLD** T03N R07W \$36 Ty0PCM 184.00 Date 6/29/2022 184.00 Acres Time 11:26:06AM Unit1 % Average Log Logs Percent of Net Board Foot Volume $\mathbf{B}\mathbf{d}$ CF/ Net Bd. Ft. per Acre Рег Dia S So Gr Total Log Scale Dia. Log Length Ln T riad BdFt Net Net MBF 4-5 la Fι Lf /Acre Spp 6-11 12-16 17+ 12-20 21-30 31-35 36-99 350 1.74 34 100 40 15 DF L 2M 144 144 26 66 155.4 201 1.19 31,304 31,300 5,759 20 38 42 0 23 45 32 34 11 DF L 100 0, 3M 51 5,786 20 38 42 0 23 44 32 34 11 202 1.19 155.9 0, 31,448 31,444 **DF** Totals .8 5 19 0.00 DF Т CU 40 14 31.8 100 277 1.48 DF T 2M 40 1.2 8,895 8,792 1,618 87 13 114.8 39 8 101 0.61 DF T 3M 53 .4 11,639 11,589 2,132 99 5 95 51.1 7 .7 1,409 1,399 257 100 29 54 10 7 22 27 0.30 DF T 4M 35 .7 21,943 21,781 4,008 59 36 5 2 3 3 91 35 8 110 0.72 198.4 DF Totals 240 .4 100 40 13 1.16 WH L 2M 98 98 18 100 4,218 33 9 116 0.71 36,3 4,218 776 52 41 46 23 31 WH L 3M 97 100 100 25 6 30 0.32 .4 12 12 WH L 4M 1 7 45 32 33 9 117 0.71 37.1 4,328 4,328 796 51 42 7 23 WH Totals 3.3 12 100 40 13 270 1.35 WH T 2M 36 900 900 166 88 1,335 1,335 246 92 100 40 8 101 0.64 13.2 WH T 3M 54 229 42 100 38 37 26 21 26 0.30 8,7 10 229 WH T 4M 4 2,464 2,464 453 59 36 5 3 2 91 33 8 98 0.68 25.2 WH Totals 5.9 33 13 292 1.63 NF L 3M 100 1,730 1,730 318 22 67 19 32 49 3 318 11 22 67 19 32 49 33 13 292 1,63 5.9 1,730 1,730 NF Totals 100 30 9 85 0.66 1.1 100 100 89 89 16 RA L 100 30 9 85 0.66 1.1 0 89 89 16 100 RA Totals 17 34 10 146 0.90 423.6 0.3 62,003 61,836 11,378 37 37 26 I 26 Totals

Page TC PSTNDSUM **Stand Table Summary** Date: 6/29/2022 Time: 11:26:08AM T03N R07W S36 Ty0PCM 184.00 Project PNTBLD Unit 1 Grown Year: Acres 184.00

					Unit	1_	Acres		104.0	U					
				Tot				Average	Log		Net	Net			
S		Sample	FF	Av	Trees/	BA/	Logs	Net	Net	Tons/	Cu.Ft.	Bd.Ft.	_	Totals	
Spc T	DBH	Trees	16	Ht	Acre	Acre	Acre	Cu.Ft.	Dd.Ft.	Acre	Acre	Acre	Tons	Cunits	MDF
DFL	13		88	116	.700	.65	1.40	17.1	80.0	.68	24	112	126	44	21
DF L	15	6	89	104	3,154	3.87	6.31	21.6	99.2	3,88	136	626	713	250	115
DFL	16	8	88	109	3.697	5.16	8.78	21.8	96,3	5.46	192	846	1,005	353	156
DF L	17	4	88	108	1.637	2,58	3.68	25.7	110.0	2,70	95	405	496	174	75
DFL	18	13	89	113	4,746	8.39	12.41	25.9	115.0	9.18	322	1,427	1,689	593	263
DF L	19	14	89		4.587	9.03	13.11	30.3	142.5	11.33	397	1,868	2,084	73 I 722	344 350
DFL	20	14	89		4.140	9.03	12.12	32.4	156,8	11.19	393	1,901	2,059 2,900	1,018	
DFL	21	19	89		5.096	12.26	15.83	34.9	169.0 193.1	15.76 10.15	553 356	2,674 1,699	1,868	656	
DFL	22	12	89		2,933	7.74	8,80 15.65	40.5 43.0	210.1	19.17	673	3,289	3,527	1,237	
DFL	23	23 25	89 89		5.143 5.134	14.84 16.13	17.87	45.4	230,9	23.13	812	4,126	4,256	1,493	
DF L	24 25	10	89		1.893	6.45	7.00	46,6	243.5	9.29		1,705	1,710	600	
DFL	26	13	87		2,275	8.39	8,75	51.6	275.0	12.87	452	2,406	2,369	831	
DFL	27	10	89		1.623	6,45	5.84	55,9	295.3	9.31		1,725	1,712	601	
DFL	28	16	90		2.414	10.32	9.35	58.9	324.4	15.71		3,034	2,892	1,015	558
DFL	29	7	89		.985	4,52	3.94	60,8	335.7	6.83		1,322	1,256	441	243
DFL	30	ı	89		.131	.65	.53	69.4	392.5	1.04	36	206	191	67	38
DFL	31	4	89	156	.492	2.58	1.97	71.4	403.1	4.01	141	794	737	259	146
DFL	32	2	90	165	.231	1.29	.92	80.0	450.0	2.11	74	416	387	136	77
DFL	33	2	80	153	,217	1.29	.76	86.5	424,3	1.87	66	323	345	121	. 59
DFL	34	1	89	84	.102	.65	.20	104.7	455.0	.61	21	93	112	39	
DF L	35	1	89	170	.097	.65	.39	98.6	567.5	1.09	38	219	200	70	
DF L	44	1	90	170	.061	.65	.24	159.8	932.5	1.11	39	228	205	72	2 42
DF L	Totals	207	89	130	51.488	133,55	155.86	40.2	201.7	178,48	6,262	31,444	32,840	11,523	5,786
DF T	8	3	84	60	5.545	1.94	5,54	4.2	23.3	,67	24	129	124	43	
DF T	10	4	87	77	4.732	2.58	4.73	12.0	55.0	1.61		260	297	104	
DF T	11	6	88	93	5,866	3.87	9.78	10.9	47.0	3.04		459	559	196	
DF T	12	10	88	3 107	8.214	6.45			57.5			945	1,132	397	
DF T	13	12	89		8.399	7,74		14.8	61.7	1		1,036	1,305	458	
DF T	14	16	87		9.656	10.32		19.1	85.3	1		1,648	1,936 1,891	679 663	
DF T	15	15	87		7,886	9.68		1	89.1	1		1,546	2,634	924	
DF T	16	20	88		9.241	12,90		1	109.1	1			2,034	798	
DF T	17	17	88		6.958	10.97 10.97		1	113.8 126.5	1		•	2,564	900	
DFT	18	17 19	88 88		6.206 6.226	12.26		1	139.8	1			2,946	1,034	
DF T	20	14	8		4.140	9.03		1	163.0	1		-	2,252	790	
DF T	21	11	8		2.950	7.10		1	176,3	1			1,690	593	3 261
DFT	22	9	8:		2.200	5.81		ì		1			1,453	510	
DFT	23	9	8		2.012	5.81			206.9				1,533	538	8 247
DFT	24	2	8		.411	1,29		1		1	3 68		355	12:	5 58
DFT	25	1	8		.189	.65		1	212.5	9.	35	161	183	64	4 30
DFT	26	2	8	7 152	.350	1.29	1.05	59.1	291.7	1.7	7 62	306	325	114	4 56
DFT	27	1	8	9 176	.162	.65	.65	60.3	327.5	1.0	2 39	213	205	72	
DFT	28	1	9	0 141	.151	.65	.45	70.9	326,7	.9	2 32	148	168	59	
DF T	29	l	8	6 166	.141	.65	.56	62.9	317.5	1.0	1 35	179	185	6:	5 33
DF T	Totals	190	87	7 112	91.635	122,58	197.68	25.1	110.2	141.3	6 4,960	21,781	26,010	9,120	6 4,008
WHL	9	1	9			.65				1			91	25	
WHL	10	2	9			1.29		1		1			188	59	
WHL	11	1	9		1	.65		1		ı			138	4:	
WHL	13	1	9		1	.65							153	4:	
WHL	14	4		2 100	1	2.58							560	17:	
WHL	15	4	9	2 110	2.103	2.58	3 4,73	22.8	110.0	3.4	5 108	520	635	198	8 96

TC P	STNDSU	M				S	stand T	`able Su	mmary		_		Page Date:	2 6/29/2022	
T03N R	07W S36	ту0РСМ	_	184.0	0		Project	P	NTBLD				Time:	11:26:08A	M
					Unit	1	Acres		184.0	0			Grown Year:		
S		Sample	FF	Tot Av	Trees/	RA/	Logs	Average Net	Net	Tons/	Net Cu.Ft.	Net Bd,Ft. Acre	Tons	Totals Cunits M	iBF
Spc T	DBH	Trees	16'	Ht	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre				_
WHL	16	3	93	113	1,386	1.94	4.16	20.3	101.1	2.71	85	420	498	156	77 81
WHL	17	3	93	126	1.228	1.94	3.68	24.3	118.9 140.0	2.87 2.98	90 93	438 460	528 548	165 171	85
WHL	18 19	3 3	93 92	127 109	1.095 .983	1.94 1.94	3,29 2,95	28.3 27.7	138,9	2.98	93 82	410	480	150	75
WHL	20	2	93	125	.591	1,29	1.77	36,3	183.3	2.06	64	325	379	118	60
WHL	21	2	91	116	.536	1.29	1.61	35.1	173.3	1.81	56	279	333	104	51
WHL	23	2	94	145	.447	1.29	1.57	46.6	250.0	2.33	73	391	430	134	72
WHL	24	1	93	ш	.205	.65	.62	46.7	240.0	.92	29	148	169	53	27
WHL	Totals	32	92	107	16.493	20.65	37.08	23.5	116.7	27.87	871	4,328	5,129	1,603	796
•	8	1	80	40	1.848	.65	1.85	4.1	20.0	.24	8	37	45	14	7
WHT	10	2	88	84	2.366	1.29	3.55	10.2	46,7	1.16		166	213	67	30
WHT	12	4	89	88	3,286	2.58	5.75	14.0	54.3	1		312	473	148	57
WHT	13	1	91	78	.700	.65	.70	22.7	90.0	.51	16	63	94	29	12
WHT	14	2	88	90	1.207	1.29	2,41	17.6	72,5	1,36	42	175	250	78	32
WHT	15	I	92	111	.526	.65	1.05	25.9	120,0	.87		126	160	50	23
WHT	16	2	89	109	.924	1.29	1.85	28.3	120.0	1		222	308	96	41
WHT	17	3	92	106	1.228	1.94	2.46	31.5	131.7	1		323	456	143 96	59 38
WHT	18	2	91		.730	1.29	1.46	35.6	140.0	1		204 532	306 676	211	38 98
WHT	20	4 2	90 93	114 124	1.183 ,489	2,58 1,29	2.66 1.47	43.2 42.8	200.0 206.7	1		303	369	115	56
WHT	22		_							<u> </u>				_	
WHT	Totals	24	88	89	14.486	15,48	25.20	22.6	97.8	18.20		2,464	3,350	1,047	453
NF L	18	1	91		.365	.65	1.10	1	113.3	1		124	116	48	23
NF L	19	1	91	125	.328	.65		I	140.0	1		138	126 124	52 52	25 25
NFL	23]	90		,224	.65 .65		42.0 53.6	203.3 266.7	1		136 164	146	61	30
NFL	24 28	1 2	91 91		.205 .302	1.29		I	330,0			398	313	130	73
NF L NF L	29	1	90		.141	.65			285.0	1		80	81	34	15
NF L	35	1	91		.097	.65		101.2	595.0	1	39	230	173	72	42
NFL	36	ì	91	169	.091	.65	.37	109.4	650.0	.96	40	237	176	74	44
NF L	38	1	91	167	.082	.65	.33	115.8	677.5	.91	38	222	168	70	41
NF L	Totals	10	91	133	1.834	6.45	5.93	54.3	291.6	7,73	322	1,730	1,422	592	318
RA L	15	1	92	85	,526	.65	1.05	19.5	85.0	.50	5 20	89	104	38	16
RAL	Totals	1	92	85	,526	.65	1.05	19,5	85.0	.56	5 20	89	104	38	16
DF S	7	1	72	35	2.548	.68									
DF S	8	4	84		7.804	2.72				1			ļ		
DF S	9	4	88	53	6.166	2,72				1					
DF S	10	3	83		3,746	2.04							ļ		
DF S	12	1	87		.867	.68				1					
DF S	15	3	88		1.665	2.04							l		
DF S	21	I I	86		.283	.68 68.				1					
DF S	24	1	82					1		 		_			
DF S	Totals	18	84	54	23,295	12,26		-		 					
Totals		482	88	108	199.758	311.61	422.81	30.8	146.:	374.2	0 13,005	61,836	68,853	23,928	11,378

TC PLOGSTVB Log Stock Table - MBF Page T03N R07W S36 Ty0PCM 184.00 Project: **PNTBLD** Date 6/29/2022 Acres 184.00 Time 11:26:05AM Unit 1 Log So Gr Def Net % Net Volume by Scaling Diameter in Inches Gross MBF 14-15 16-19 20-23 24-29 30-39 40+ Len MBF 6-7 8-9 10-11 12-13 T % Spc 2-3 4-5 Spp rt de 17 26 26 DF L 2M 40 .2 п 11 11 DF 3M 20 12 .2 12 26 12 DF 3M .9 21 27 53 53 11 13 DF 3M 2.9 11 12 34 59 37 13 166 DF 3M 28 166 29 24 24 ,4 13 DF 3M 1,073 1,073 18.5 20 49 57 183 427 303 34 30 DF 3M 21 5 32 16 DF 3M 31 80 1.4 6 158 194 228 266 154 1,099 19.0 100 DF 3M 32 1,099 33 253 253 4.4 7 19 71 48 107 DF 3M 87 166 105 376 107 18 969 16.8 110 34 969 DF 3M 33 32 50 18 35 166 166 2.9 19 13 DF 3M 705 705 12.2 86 13 98 109 66 142 132 60 36 DF 3M 53 3M 37 125 125 2.2 8 13 26 25 DF L 667 53 135 87 230 58 15 21 11,5 69 3M 38 667 DF 41 26 DF 3M 39 92 92 1.6 25 59 75 70 53 257 258 4.4 DF 3M 40 DF 3M 5 5 L 50.9 502 31 611 979 888 1731 896 127 21 Totals 5,786 DF 5,786 741 340 57 480 1,637 1.2 1,618 40.4 2M DF П 13 32 24 24 .6 3M DF 9 Т 33 26 26 17 DF 3M 30 30 .7 30 DF T ЗМ 34 27 .7 27 DF 3M 35 27 Т 36 35 35 .9 35 3M DF T 3M 37 23 23 .6 23 DF 22 22 DF T 38 22 ,6 3М 16 DF T 3M 39 16 ,4 16 1,929 48.1 338 794 783 8 40 1,938 DF 3M 12 .2 7 7 4M DF 13 O. 4M 1 DF 14 15 DF 4M15 15 7 .2 DF 4M .2 DF 4M 16 7 17 DF 4M.2 9 18 DF 4M

TC PLOGSTVB Log Stock Table - MBF Page 2 184.00 T03N R07W S36 Ty0PCM Project: **PNTBLD** 6/29/2022 Date 184.00 Acres Time 11:26:05AM So Gr Log % Net Volume by Scaling Diameter in Inches Gross Def Net MBF 6-7 10-11 12-13 14-15 16-19 20-23 24-29 30-39 40+ rt de Len MBF % Spc 2-3 4-5 Spp 9 9 .2 DF Т 4M 19 15 DF T 4M 20 15 15 19 19 19 21 DF 4M .2 DF 4M 22 9 Т .1 5 23 5 DF 4M ,4 DF Т 4M 24 16 16 15 15 4M 25 15 DF 20 20 Т 4M 26 20 DF 18 18 19 5.0 DF T 4M 27 4 DF T 4M 28 4 16 16 29 16 DF 4M 16 16 DF Ţ 4M30 16 3.6 20 20 Т 4M 31 21 DF 5 DF Т 4M 5 3 3 36 DF Т 4M 3 37 3 DF 4M 6 6 T 4M 39 DF .2 7 40 7 DF 4M 488 340 57 Totals 4,037 4,008 35.2 778 794 791 760 DF 18 18 2.3 40 18 WH 2M 12 27 14 53 6,6 WH 3M 26 53 14 1.8 WH 3M 27 14 28 56 56 7.1 11 17 14 15 WH 3М 14 7 29 1.8 7 WH 3M 14 51 44 77 30 217 217 27.2 l0 34 WH 3M 17 32 4.0 31 32 WH 3M 17 17 32 101 101 12.6 40 27 WH 3M 13 33 13 13 1.6 WH 3M 19 9 3M 34 27 27 3.5 WH 1.2 35 9 WH 3M 5.9 26 17 WH 3M 36 47 47 3 4 WH 3M 37 4 .5 21 36 3M 38 36 4.6 6 WH 49 6.2 16 33 39 49 WH 3M 35 11.0 44 9 ЗМ 40 88 WH 15 1.9 15 41 15 3M WH .3 2 25 4M 2 WH

Т03	N RO	7W S36 Ty	0PCM	184.0	Onit 1	Proje Acre		PNT	BLD 184.	00					Page Date Time		3 0/2022 26:05AM
	s	So Gr	Log	Gross I	Def Net	%			let Volum	e by S	caling Dia	metc	r in Inche	<u> </u>		1	
Spp	T	rt de	Len	MBF	% MBF	Spc	2-3	4-5	6-7	8-9	10-11 12	2-13	14-15	16-19	20-23	24-29	30-39 40+
WH	7	Totals		796	796	7.0			160	35	208	159	99	134			
WH	Т	2M	40	166	166	36.5						86	20	60			
WH	Т	3M	38	9	9	2.0			9								
WH	Т	3M			4	.9			4						ļ		
WH	Т	3М		233	233	51.3			63	70	79		20				
WH	Т	4M	12	4	4	.8			4								
WH	Т	4M	15	11	11	2.5			11						ļ		
WH	Т	4M	16	1	1	.2			1								
WH	Т	4M	23	2	2	.4			2				l				ļ
WH	Т	4M	25	5	5	1.0			5								
WH	T	4M	26	5	5	1.0			5								
WH	Т	4M	27	5	5	1.0			5						1		
WH	T	4M	34	11	11	2.4			11			_			.		
WH		Totals	3	453	453	4.0			i 19	70	79	86	39	60			
NF	L	3M	30	59	59	18.6						17		11	31		
NF	L	3M	1 31	7	7	2.3					7		ı				
NF	L	3M	1 32	73	73	22,9	1		9		8	8	14	15	19		
NF	L	3M	1 33	3 2	2	.6	·		2								
NF	L	31⁄	1 34	20	20	6.2	:		1			6		12			
NF	L	3M	1 30	5 106	106	33.2	1								28	78	
NF	L	3N	1 3	7 6	6	1.8	3.							6			
NF	L	3N	1 34	8 46	46	14.3	1		5		<u> </u>	9	6	26			
NF		Total		318	318		+		18		16	39	20	70	77	78	
RA	L	CF			12		1				12						1
RA	L	CF	3 (0 5		29.4	<u> </u>		5	_		_					
RA		Total	s	16	16	.1	١ .		5		12						
Total		All Speci	es	11,408	11,378	100.0	,		1581	930	1717	2024	1535	2336	1030	205	21

TC PSTA	ATS					OJECT S	TATIST PNTB				PAGE DATE	1 7/6/2022
WP	RGE	SC	TRACT	<u> </u>	TYPE		ACR		PLOTS	TREES	CuFt	BdFt
03N	07	36		Unit 2	00PC			103.00	13	211	s	W
				UNIT 4			E	STIMATED	P	ERCENT		
						TREES		TOTAL	S	SAMPLE		
			PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL	L		13	211		16.2						
CRUIS	SE .		13	211		16.2		23,684		.9		
DBH C	COUNT											
REFO	REST											
COUN												
BLAN												
100 %	1											
						ND SUMM					on our	NET
		S	AMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
			TREES	/ACRE	DBH	LEN	DEN	AREA			_	6,121
	FIR-L		86	57.1	20.6	129	29.1 2.1	132.3 6.2	29,278	29,278	6,121	0,121
	FIR-S		4 87	14.5 111.4	8.8 14.8	45 114	2.1 34.7	133.8	23,452	23,419	5,268	5,268
	3 FIR-T MLQCK-L		87 16		14.8	107	6.2	24.6	5,395	5,395	1,111	1,111
	MLOCK-L		15		13.2	119	6,3	23.1	4,720	4,720	971	
NOB I			2			137	0.7	3.1	700	700	143	143
R ALI			1	2.8		80	0,5	1.5	197	197	37	37
TOTA			211	229.9	16.1	113	80.9	324.6	63, <u>742</u>	63,710	13,651	13,651
		B.1 	HME5 C	O 1 OF 100 11	HE VOLUME	WILL BE V	WITHIN TH	IE SAMPLE E	ERROR			
CL SD:	68.1 1.0	B.1 	COEF.	F	<u> </u>		E TREES -			FOF TREES I	REQ.	INF. POP.
SD:	68.1	D.1 	COEF	F % S.E.%		SAMPL	E TREES -	BF			-	
SD: DOUG	68.1 1.0 G FIR-L G FIR-S		COEF. VAR.5	F	<u> </u>	SAMPLI LOW 559	E TREES - AVG 702	BF HIGH 844			-	
SD: DOUG DOUG	68.1 1.0 G FIR-L G FIR-S G FIR-T		COEF VAR.9 189.0	F S.E.% 20.4		SAMPL LOW 559 253	E TREES - AVG 702 270	BF HIGH 844 286			-	
DOUG DOUG DOUG WHEI	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I		COEF VAR.9 189.0 56.8 44.7	F S.E.% 20.4		SAMPL LOW 559 253 346	E TREES - AVG 702 270 391	BF HIGH 844 286 436			-	
DOUG DOUG DOUG WHEI	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I		COEF VAR.9 189.0	F S.E.% 20.4 3 6.1 7 11.5		SAMPL LOW 559 253	E TREES - AVG 702 270	BF HIGH 844 286			-	
DOUG DOUG DOUG WHEI WHEI	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I		COEF VAR.5 189.0 56.8 44.7 58.4	F S.E.% 20.4 3 6.1 7 11.5		SAMPLI LOW 559 253 346 208	E TREES - AVG 702 270 391 246	BF HIGH 844 286 436 284			-	[
DOUG DOUG DOUG WHEI WHEI	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-T FIR-L DER-L		COEF VAR.5 189.0 56.8 44.7 58.4	F SE% 20.4 3 6.1 4 15.6 5 62.3		SAMPLI LOW 559 253 346 208	E TREES - AVG 702 270 391 246	BF HIGH 844 286 436 284			-	
SD: DOUG DOUG WHEI WHEI NOB	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-T FIR-L DER-L		COEF VAR.5 189.0 56.8 44.7 58.4 66.5	F S.E.% 20.4 3 6.1 4 11.5 5 62.3		SAMPL/ 559 253 346 208 221 390	E TREES - AVG 702 270 391 246 585 450 E TREES -	BF HIGH 844 286 436 284 949	*	1,523 # OF TREES	381 REQ.	16 INF. POP.
SD: DOUG DOUG WHEI NOB R ALI TOTA	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-T MLOCK-T FIR-L DER-L AL 68.1		COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.5	F S.E.% 20.4 3 6.1 4 15.6 5 62.3 4 13.4 6 F S.E.% S.E.%	5 5 5 3	SAMPL LOW 559 253 346 208 221 390 SAMPL SAMPL	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG	BF HIGH 844 286 436 284 949 511 CF HIGH	*	1,523	381	16 INF. POP.
SD: DOUG DOUG WHEI NOB R ALL TOTA CL SD: DOUG	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-1 FIR-L DER-L AL 68.1 1.0 G FIR-L		COEF VAR.5 189.0 56.8 44.7 58.4 66.5	F S.E.% 20.4 3 6.1 11.5 6 62.3 13.4 FF % S.E.%	5 5 5 3	SAMPL/ 559 253 346 208 221 390 SAMPL	E TREES - AVG 702 270 391 246 585 450 E TREES -	BF HIGH 844 286 436 284 949 511	*	1,523 # OF TREES	381 REQ.	INF. POP.
SD: DOUG DOUG WHEI NOB R ALL TOTA CL SD: DOUG DOUG	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S		COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.5	F % SE% 20.4 3 6.1 15.6 5 62.3 13.4 FF % S.E.%) 15.7	3 3 4	SAMPL 253 346 208 221 390 SAMPL LOW 116	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138	BF HIGH 844 286 436 284 949 511 CF HIGH	*	1,523 # OF TREES	381 REQ.	INF. POP.
SD: DOUG DOUG WHEI NOB R ALI TOTA CL SD: DOUG DOUG DOUG	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-1 FIR-L DER-L AL 68.1 1.0 G FIR-L	, r	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.5	F % SE% 20.4 3 6.1 11.5.6 5 62.3 13.4 FF % S.E.% 9 15.7	5 5 5 6 7	SAMPL LOW 559 253 346 208 221 390 SAMPL SAMPL	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG	BF HIGH 844 286 436 284 949 511 CF HIGH	*	1,523 # OF TREES	381 REQ.	INF. POP.
SD: DOUG DOUG WHEI NOB R ALI TOTA CL SD: DOUG DOUG WHE	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T	ŗ	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.5	F % SE% 20.4 3 6.1 1.5.6 6 62.3 4 13.4 FF % S.E.% 9 15.7	5 5 5 6 7 7	SAMPL 253 346 208 221 390 SAMPL LOW 116 57	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138 61	BF HIGH 844 286 436 284 949 511 CF HIGH 160	*	1,523 # OF TREES	381 REQ.	INF. POP.
SD: DOUG DOUG WHEI NOB R ALI TOTA CL SD: DOUG DOUG WHE	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I	ŗ	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.1 146.0	F % SE% 20.4 8 6.1 11.5 6 62.3 8 13.4 FF % S.E.% 9 15.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SAMPL 253 346 208 221 390 SAMPL LOW 116 57 71	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138 61 80	BF HIGH 844 286 436 284 949 511 CF HIGH 160 64 89	*	1,523 # OF TREES	381 REQ.	INF. POP.
SD: DOUG DOUG WHEI NOB R ALI TOTA CL SD: DOUG DOUG WHE NOB R ALI R	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK	ŗ	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.5 146.0 54.3 59.3 65.3	F % SE% 20.4 8 6.1 11.2 15.6 6 62.3 8 13.4 FF % S.E.% 9 15. 15. 15. 15. 16. 16. 17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SAMPL LOW 559 253 346 208 221 390 SAMPL LOW 116 57 71 43 46	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138 61 80 51 119	BF HIGH 844 286 436 284 949 511 CF HIGH 160 64 89 59 192	*	1,523 # OF TREES 5	381 REQ. 10	INF. POP.
SD: DOUG DOUG WHEI NOB R ALI TOTA CL SD: DOUG DOUG WHE WHE NOB	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK	ŗ	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.1 146.0 54.3 59.3	F % SE% 20.4 8 6.1 11.2 15.6 6 62.3 8 13.4 FF % S.E.% 9 15. 15. 15. 15. 16. 16. 17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SAMPL 253 346 208 221 390 SAMPL LOW 116 57 71 43	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138 61 80 51	BF HIGH 844 286 436 284 949 511 CF HIGH 160 64 89 59	*	1,523 # OF TREES 5	381 REQ. 10	INF, POP.
SD: DOUG DOUG WHEI NOB R ALI TOTA CL SD: DOUG DOUG WHE NOB R ALI R	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK	ŗ	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.5 146.0 54.3 59.3 65.3 148.4	F % SE% 20.4 3 6.1 11.5.6 5 62.3 4 13.4 FF % S.E.% 9 15.7 5 61. 1 10.	5 5 6 7 8 1 9 4	SAMPL LOW 559 253 346 208 221 390 SAMPL LOW 116 57 71 43 46 83 TREES	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138 61 80 51 119 92	BF HIGH 844 286 436 284 949 511 CF HIGH 160 64 89 59 192	*	1,523 # OF TREES 5 875 # OF PLOTS	381 REQ. 10	INF. POP.
SD: DOUG DOUG WHEI NOB R ALI TOTA CL SD: DOUG WHE NOB R AL TOTA CL SCL SCL SCL SCL SCL SCL SCL SCL SCL	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLOCK	ŗ	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.1 146.0 54.3 59.3 65.3 148.4 COEF	F % SE% 20.4 8 6.1 11.5.6 6 62.3 8 13.4 FF % S.E.% 9 15.7 1 10.0 FF % S.E.% 5 61.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SAMPL LOW 559 253 346 208 221 390 SAMPL LOW 116 57 71 43 46 83 TREES	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138 61 80 51 119 92 VACRE AVG	BF HIGH 844 286 436 284 949 511 CF HIGH 160 64 89 59 192 102 HIGH	*	1,523 # OF TREES 5	381 REQ. 10	INF. POP.
SD: DOUG DOUG WHEI NOB R ALI TOTA CL SD: DOUG WHE NOB R AL TOTA CL SD: CL SD: DOUG DOUG WHE NOB R AL TOTA	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-S G FIR-T MLOCK-I MLOCK	ŗ	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.1 146.0 54.3 59.3 65.3 COEF VAR.4	F % SE% 20.4 8 6.1 11.5 6 62.3 8 13.4 FF % S.E.% 9 11. 5 15. 5 61. 7 11. 7 17 10.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SAMPL LOW 559 253 346 208 221 390 SAMPL LOW 116 57 71 43 46 83 TREES/ LOW 50	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138 61 80 51 119 92 VACRE AVG 57	BF HIGH 844 286 436 284 949 511 CF HIGH 160 64 89 59 192 102 HIGH 64	*	1,523 # OF TREES 5 875 # OF PLOTS	381 REQ. 10	INF. POP.
SD: DOUG DOUG WHEI NOB R ALI TOTA CL SD: DOUG WHE NOB R AL TOTA CL SD: DOUG DOUG WHE NOB R AL TOTA	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-S G FIR-T MLOCK-I MLOCK	ŗ	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.1 146.0 54.3 59.3 65.3 COEF VAR.2 29.2	F % SE% 20.4 8 6.1 11.5 6 62.3 8 13.4 F % S.E.% 9 15. 5 61. 7 7 11. 9 84.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SAMPL LOW 559 253 346 208 221 390 SAMPL LOW 116 57 71 43 46 83 TREES/ LOW 50 2	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138 61 80 51 119 92 VACRE AVG 57 14	BF HIGH 844 286 436 284 949 511 CF HIGH 160 64 89 59 192 102 HIGH 64 27	*	1,523 # OF TREES 5 875 # OF PLOTS	381 REQ. 10	INF. POP.
SD: DOUG DOUG WHEI NOB R ALI TOTA CL SD: DOUG WHE NOB R AL TOTA CL SD: DOUG DOUG WHE NOB R AL TOTA	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-S G FIR-T MLOCK-I MLOCK-I MLOCK-I MLOCK-I MLOCK-I G FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-L G FIR-S G FIR-L	L	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.5 146.0 54.3 59.3 65.3 COEF VAR.4 2.9 59.3 54.3 54.3 59.3 54.3 59.3 59.3 59.3	F % SE% 20.4 8 6.1 11.2 8 6.2 8 13.4 9 15. 9 15. 7 11. 9 84. 1 15.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SAMPL LOW 559 253 346 208 221 390 SAMPL LOW 116 57 71 43 46 83 TREES/ LOW 50 2 95	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138 61 80 51 119 92 VACRE AVG 57 14 111	BF HIGH 844 286 436 284 949 511 CF HIGH 160 64 89 59 192 102 HIGH 64 27 128	*	1,523 # OF TREES 5 875 # OF PLOTS	381 REQ. 10	INF. POP.
SD: DOUG DOUG WHEI NOB R ALI TOTA CL SD: DOUG WHE NOB R AL TOTA CL DOUG WHE NOB R AL TOTA CL SD: DOUG WHE NOB R AL TOTA	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-S G FIR-T MLOCK-I MLOCK-I MLOCK-I MLOCK-I MLOCK-I G FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLO	L	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.3 146.0 54.3 59.3 65.3 COEF VAR.4 2.9 2.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	F % SE% 20.4 8 6.1 11.5 6 62.3 8 13.4 FF % S.E.% 9 15. 15. 5 61. 7 11. 9 84. 1 15. 0 35.	6 7 8 1 9 4 2 6 7 4 0 4	SAMPL LOW 559 253 346 208 221 390 SAMPL LOW 116 57 71 43 46 83 TREES/ LOW 50 2	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138 61 80 51 119 92 VACRE AVG 57 14	BF HIGH 844 286 436 284 949 511 CF HIGH 160 64 89 59 192 102 HIGH 64 27	*	1,523 # OF TREES 5 875 # OF PLOTS	381 REQ. 10	INF. POP.
SD: DOUG DOUG WHEI NOB R ALI TOTA CL SD: DOUG WHE NOB R AL TOTA CL SD: DOUG WHE WHE NOB R AL TOTA	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-S G FIR-T MLOCK-I MLOCK	L	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.5 146.0 54.3 59.3 65.3 COEF VAR.4 2.9 59.3 54.3 54.3 59.3 54.3 59.3 59.3 59.3	F % SE% 20.4 8 6.1 1.5.6 6 62.3 8 13.4 FF % S.E.% 9 15. 1 10. FF % S.E.% 7 11. 9 84. 1 15. 0 35. 0 55.	6 7 7 8 8 1 9 9 4 4 9 9 4 4 9 9 9 4 4 9 9 9 9 9 9	SAMPL LOW 559 253 346 208 221 390 SAMPL LOW 116 57 71 43 46 83 TREES/ LOW 50 2 95 12	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138 61 80 51 119 92 VACRE AVG 57 14 111 19	BF HIGH 844 286 436 284 949 511 CF HIGH 160 64 89 59 192 102 HIGH 64 27 128 25	*	1,523 # OF TREES 5 875 # OF PLOTS	381 REQ. 10	INF. POP.
SD: DOUG WHEI NOB R ALI TOTA CL SD: DOUG WHE NOB R AL TOTA CL SD: DOUG WHE WHE NOB R AL TOTA CL SD: DOUG WHE NOB R AL TOTA	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-S G FIR-T MLOCK-I MLOCK-I MLOCK-I MLOCK-I MLOCK-I G FIR-L DER-L AL 68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I MLO	L	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.5 146.0 54.3 59.3 65.3 COEF VAR.4 2.9 59.3 54.3 148.4 148.4 148.4 148.4 149.0 14	F % SE% 20.4 8 6.1 11.2 8 6.2 8 13.4 9 15. 8 15. 9 11. 9 84. 1 15. 0 35. 0 55. 8 78.	8 1 9 4 2 2 4 4 0 0 4 4 3 3 3 3	SAMPL LOW 559 253 346 208 221 390 SAMPL LOW 116 57 71 43 46 83 TREES/ LOW 50 2 95 12 11	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138 61 80 51 119 92 ACRE AVG 57 14 111 19 24	BF HIGH 844 286 436 284 949 511 CF HIGH 160 64 89 59 192 102 HIGH 64 27 128 25 37	*	1,523 # OF TREES 5 875 # OF PLOTS	381 REQ. 10	INF. POP.
SD: DOUG WHEI NOB R ALI TOTA CL SD: DOUG WHE NOB R AL TOTA CL SD: DOUG WHE WHE NOB R AL TOTA CL SD: DOUG WHE NOB R AL TOTA	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-S G FIR-T MLOCK-I MLOCK	L	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.5 146.0 54.3 59.3 65.3 COEF VAR.1 148.4 2.9 59.3 148.4 148.4 149.0 129.2 123.1 192.2 192.2	F % S.E.% 20.4 8 6.1 1.5.6 6 62.3 8 13.4 FF % S.E.% 9 15. 15. 16 15. 17 10. 18 15. 18 16 16.	8 1 9 4 4 2 2 6 7 4 4 0 0 4 4 3 3 3 9 9	SAMPL LOW 559 253 346 208 221 390 SAMPL LOW 116 57 71 43 46 83 TREES/ LOW 50 2 95 12 11	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138 61 80 51 119 92 VACRE AVG 57 14 111 19 24 2	BF HIGH 844 286 436 284 949 511 CF HIGH 160 64 89 59 192 102 HIGH 64 27 128 25 37 3	*	1,523 # OF TREES 5 875 # OF PLOTS	381 REQ. 10	INF. POP.
SD: DOUG DOUG WHEI NOB R ALI TOTA CL SD: DOUG WHE NOB R AL TOTA CL SD: DOUG WHE NOB R AL TOTA CL SD: DOUG R AL R AL R R AL R R R R R R R R R R R R R R R R R R R	68.1 1.0 G FIR-L G FIR-S G FIR-T MLOCK-I FIR-L DER-L AL 68.1 1.0 G FIR-S G FIR-T MLOCK-I MLOCK	L	COEF VAR.5 189.0 56.8 44.7 58.4 66.5 195.3 COEF VAR.5 146.0 54.3 42.5 59.3 65.3 COEF VAR.1 148.4 292.1 52.1 123.0 192.2 123.0 192.2	F % SE% 20.4 8 6.1 1.5.6 6 62.3 8 13.4 9 11.5 5 61. 7 11.9 84.1 1 15.0 0 35.0 0 55.8 7 8.8 6 103.2	8 1 9 4 4 2 2 6 7 4 4 0 0 4 4 3 3 3 9 9	SAMPL LOW 559 253 346 208 221 390 SAMPL LOW 116 57 71 43 46 83 TREES/ LOW 50 2 95 12 11 0 201	E TREES - AVG 702 270 391 246 585 450 E TREES - AVG 138 61 80 51 119 92 VACRE AVG 57 14 111 19 24 2 3	BF HIGH 844 286 436 284 949 511 CF HIGH 160 64 89 59 192 102 HIGH 64 27 128 25 37 3 6 259	;	1,523 # OF TREES 5 875 # OF PLOTS 5	381 REO. 10 219 REO. 10	16 INF, POP.

TC PSTATS							PROJECT	STATIS		PAGE	2			
10 101	A10						PROJECT	PNT	BLD			DATE	7/6/2022	
TWP	RGE	SC	TRAC	r		ТҮРЕ		AC	CRES	PLOTS	TREES	CuFt	BdFt	
03N	07	36	00U2	Unit	2	00PC			103.00	13	2	11 S	W	
DOU	G FIR-L		28,0		8.1		122	132	143	_	_			
DOU	G FIR-S		277.8		80.1		l	6	11					
DOU	G FIR-T		40.2		11.6		118	134	149					
WHE	MLOCK-L		152.6		44.0		14	25	35					
WHE	MLOCK-1	•	190.0		54.8		10	23	36					
NOB	FIR-L		244,1		70.4		1	3	5					
R ALDER-L			360.6		103.9			2	3					
тот	AL		22.9		6.6		303	325	346		23	6		3
CL	68,1		COEF	F			NET B	F/ACRE			# OF PLOT	S REQ.	INF. POP.	
SD:	1.0		VAR.9	6	S.E.%		LOW	AVG	HIGH		5	10		15
DOU	G FIR-L		30.3		8.7		26,724	29,278	31,831					
DOU	G FIR-S													
DOU	G FIR-T		45.0		13.0		20,379	23,419	26,459					
WHE	MLOCK-I	_	167.9		48.4		2,784	5,395	8,006					
WHE	MLOCK-1	Γ	191,6		55.2		2,113	4,720	7,327					
NOB	FIR-L		244.2		70.4		207	700	1,193					
R ALDER-L			360.6		103.9			197	403					
тот	AL		27.1		7.8		58,734	63,710	68,686		32	8		4
CL	68.1		COEF	F			NET C	UFT FT/A	CRE		# OF PLOT	S REQ.	INF. POP.	
SD:	1.0		VAR.S	%	S.E.%		LOW	AVG	HIGH		5	10		15
DOU	IG FIR-L		28.4		8.2		5,620	6,121	6,621					
DOU	IG FIR-S													
DOU	IG FIR-T		44.3	3	12.8		4,596	5,268	5,941					
WHEMLOCK-L		169.2	2	48.8		569	1,111	1,653						
WHEMLOCK-T		192.8	3	55.6		431	971	1,510						
NOB FIR-L			244.1		70.4		42	143	244					
R Al	LDER-L		360.0	j	103.9	ı		37	75					
тот	ſAL		25.0)	7.2		12,667	13,651	14,634		27	7		Ĵ

тс	PSPC	STGR		Sį	ecies, S	ort Gra	de - Board	Foot	Volum	es (Pr	oject)								
Т03	T03N R07W S36 Ty00PC 103.00					Project: Acres Uni 2			PNTBLD 103.00								Page Date Time		1 6/2022 38:16	:
			%	·				1	Percent of Net Board Foot Volume								Avera	age Log		Logs
	S	So Gr	Net	Bd. Ft.	рег Асге		Total		Log Sca	ıle Dia <u>.</u>			Log I	.ength		Ln	Dia	Bd	CF/	Per
Spp	T	rt ad	BdFt	Def%	Gross	Nei	Net MBF	4-	5 6-11	12-16	17 <u>+</u>	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	L	2M	13		3,952	3,952	40	7		94	6				100	40	14	305	1.61	12.9
DF	L	3M	85		24,948	24,948	2,57	0	30	45	26		12	30	58	36	11	181	1.05	137.5
DF	L	4M	2		378	378	3	9	100			20	57		23	25	6	33	0,35	11.5
DF	Total	ls	46		29,278	29,278	3,01	6	27	51	23	0	11	26	63	35	11	181	1.07	162.0
DF	Т	2M	31	.2	7,461	7,449	76	7		100					100	40	13	247	1,35	30.2
DF	T	3M	62	.1	14,487	14,466	1,49	0	99	ı		1		1	99	40	8	97	0.56	149.5
DF	T	4M	7		1,504	1,504	15	5	100			33	34	20	12	21	6	28	0.30	54.2
DF	Total	ls	37	,1	23,452	23,419	2,41	2	68	32		2	2	2	94	35	8	100	0.64	233.9
WH WH WH	L	2M 3M 4M	16 79 5		896 4,282 217	896 4,282 217	44	2	47 100	100 53		:	7 100	25	100 68	40 36 27	13 10 6	251 138 36	1.24 0.79 0.30	3,6 31.1 6.1
WH	Tota	als	8		5,395	5,395	55	6	41	59			10	20	71	35	9	132	0.78	40.8
WH	Т	2М	14		700	700	,	2		65	35				100	40	13	268	1.29	2.6
WH		3M	81		3,812	3,812	39	3	100					8	92	39	8	97	0.52	39.3
WH	Т	4M	5		208	208	2	21	100			29	71			20	6	26	0.28	7.9
WH	Tota	Als	7		4,720	4,720	41	86	85	10	5	ı	3	6	89	36	8	95	0.54	49.9
NF	L	3М	100		700	700		72	27	41	32			49	51	34	10	154	0.92	4.6
NF	Tota	ls	1		700	700		72	27	41	32			49	51	34	10	154	0.92	4.6
RA	L	4M	100		197	197		20	100						100	37	7	70	0.35	2,8
RA	Tota	ıls	0		197	197		20	100						100	37	7	70	0.35	2.8
Tota	ıls			0.1	63,742	63,710	6,5	52	48	41	11	ı	7	15	77	35	9	129	0.78	493.9

TC P	STNDSU	М				s	Stand T	able Su	Page Date:	1 7/6/2022					
T03N F	R07W S3	6 Ty00PC		103.0	00		Project	P	Time: 8:38:18A		АМ				
					Unit	2	Acres		103.0	0			Grown Year:		
S Sample FF Av				Trees/	Trees/ BA/ Logs			Average Log Net Net Tons/			Net Bd.Ft.	Totals			
Spc T	DBH	Trees	16'	Ht	Acre	Acre	Acre	Cu.Fi.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF L	15	5	88	100	6.268	7.69	12.54	20.4	86.0	7.30	256	1,078	751	264	111
DF L	17 8	4 6	88 89	98 130	3.904 5.224	6,15 9,23	8.78 [5.67	23.3 25,9	100.0 120.0	5,84 11.57	205 406	878 1,880	602 1,192	211 418	90 194
DF L DF L	19	9	89	126	7.032	13.85	19.53	31.2	142.4	17,38	610	2,782	1,790	628	287
DFL	20	10	89	138	7.052	15.38	20,45	35.8	174.5	20.84	731	3,568	2,146	753	368
DF L	21	8	89	135	5.117	12.31	14.71	38.8	183,5	16.28	571	2,699	1,677	588	278
DF L	22	14	89	135	8.159	21,54	24.48	41.6	195.5	29.03	1,019	4,785	2,990	1,049	493
DFL	23	16	89	139	8.531	24.62	26.13	45.7	218.8	34.01	1,193	5,716	3,503	1,229	589
DFL	24 25	4 5	89 89	142 145	1.959 2.257	6.15 7.69	5.88 7.67	52.5 50.7	250.8 254.7	8.79 11.08	308 389	1,474 1,954	905 1,141	318 400	152 201
DF L	25 26	3	90	147	1,252	4.62	4,59	52.2	279.1	6.83	240	1,281	703	247	132
DFL	30	1	89	160	.313	1.54	1.25	69.4	392,5	2.48		492	255	90	51
DF L	72	1	90	195	.054	1.54	.27	389.1	2534.0	3.02	106	689	311	109	71
DFL	Totals	86	89	129	57.123	132,31	161.96	37.8	180.8	174.44	6,121	29,278	17,967	6,304	3,016
DF T	10	7	88	95	19.745	10.77	31,03	8.8	44.5	7.82		1,382	805	283	142
DFT	11	1	88	113	2.331	1.54	4.66	10.7	50.0	1.42		233	146	51	24
DFT	12	6	87	89	11,753	9.23	15.67	15.7	63.8	7.03	247	999	724	254	103
DF T	13	8	89	107	13.353	12.31	25.04	16,9	75.3	12.05	423	1,886	1,241	436	194
DF T	14	12	89	121	17.270	18.46	37.42	19.5	90.8	20,82		3,396	2,144	752	350
DFT	15	6 5	88 87	125 121	7.522 5.509	9,23 7,69	16.30 11.02	22.0 27.3	98.5 116.0	10.20 8,57		1,605 1,278	1,051 882	369 310	165 132
DF T DF T	16 17	10	87	121	9,760	15.38	24.40	26.5	113.2	18.42		2,762	1,897	666	285
DFT	18	12	88	132	10.447	18.46	29.60	28.1	121.2			3,587	2,441	857	369
DFT	19	7	88	130	5.470	10,77	14.85	31.4	134.7	13.27	465	2,000	1,366	479	206
DF T	20	5	88	132	3.526	7.69	9.87	34.9	151.4	9.82	344	1,495	1,011	355	154
DF T	21	2	90	148	1.279	3.08	3.84	41.4	201.7	4,53		774	467	164	80
DF T	22 23	4 2	88 88	135 144	2,331 1.066	6,15 3.08	6.99 3.20	41.1	189.2 218.3	8.18 4,32		1,323 699	843 445	296 156	136 72
DF T													—		
DF T	Totals	87	88	114	111.362	133.85	233.88	22.5	100.1	150.14	5,268	23,419	15,465	5,426	2,412
WHL	9	1	89	60	3.482	1.54	3.48		40.0	l		139	94	29	14
WHL	10 15	1 2	90 92	70 114	2.821 2,507	1.54 3.08	2.82 6.27	12.8 21.0	60.0 98.0			169 614	119 434	37 136	17 63
WHL	16	ĺ	93	136	1.102	1.54		23.9	116.7	i .		386	261	82	40
WHL	17	ì	89	120	.976	1.54	1.95	1	135.0	1		264	208	65	27
WH L	18	3	92	137	2.612	4.62	7.84	l .	147.8	7.49	234	1,158	772	241	119
WH L	19	3	93	133	2.344	4.62		1	165.6	ı		1,164	764	239	120
WHL	20 21	2 2	94 88	132 130	1.410 1.279	3.08 3.08		37.7 38.3	190.0 181.7	ı		804 697	526 485	164 151	83 72
WHL	Z1 Totals							 		-			3,662		
WHL		16	91	107	18.534	24.62		27.3	132.3	1		5,395		1,144	556
WHT	9	1	93		3,482	1.54		1	60,0	1		209 282	125 177	39 55	22 29
WHT	10 12	1 3	93 91		2.821 5.876	1.54 4.62		9.5 15.2	50.0 75.0	1		282 881	588	55 184	29 91
WH T WH T	14	3	91		4.317	4.62		1	106,7	l .		921	635	199	95
WHT	15	4	93		5.015	6.15		22.3	107.0	i		1,341	920	287	138
WHT	16	1	91	136	1,102	1.54	3,31	22.9	106.7	2.42	? 76	353	249	78	36
WHT	17	1	93		.976	1.54		1	130,0			381	263	82	39
WHT	23	1	93	120	.533	1.54	1.60	45,9	220.0	2.35	73	352	242		36
WHT	Totals	15	92	119	24.123	23.08	49.88	19.5	94.6	31.06	971	4,720	3,199	1,000	486
NF L	16	1	91		1.102	1.54	3.31	1	103.3	1,69			174	7 3	35
NF L	26	l	90	130	.417	1.54	1.25	58.1	286.7	1.75	73	359	180	75	37

TC	PSTNDSU	M			-	S	Stand T	able Su	mmary				Page Date:	2 7/6/202	22
T03N	R07W S3	6 Ty00PC		103.0	Onit	2	Project Acres	P	NTBLD 103.0	0			Time: Grown Year:	8:38:1	8AM
S Spc T	DDH	Sample Trees	FF 16'	Tot Av Hi	Trees/ Acre	BA/ Acre	Logs Acre	Averago Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu,Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
NF L	Totals	2	91	137	1.519	3.08	4.56	31.4	153.7	3.44	143	700	354	143	72
RA L	10	1	91	80	2,821	1.54	2.82	13,1	70.0	1.02	37	197	105	31	3 20
RAL	Totals	1	91	80	2.821	1,54	2.82	13.1	70,0	1.02	37	197	105	3:	3 20
DF S DF S	8 10	2 2	57 86	30 69	8.815 5.641	3.08 3.08									
DF S	Totals	4	68	45	14.456	6,15									
Totals		211	88	113	229.937	324.62	493.86	27.6	129.0	395.65	13,651	63,710	40,752	14,06	0 6,562

•

TC PLOGSTVB Log Stock Table - MBF Page T03N R07W S36 Ty00PC 103.00 Project: **PNTBLD** Date 7/6/2022 Acres 103.00 Time 8:38:16AM Unit 2 Net Volume by Scaling Diameter in Inches So Gr Log Def % Gross Net 16-19 20-23 24-29 30-39 40+ 10-11 12-13 14-15 Т rt de Len MBF % MBF Spc 2-3 4-5 6-7 8-9 Spp 172 91 144 407 13.5 DF 2M 40 407 \mathbf{L}^{\dagger} 29 1.0 DF 3M 27 29 29 L DF 28 23 23 5 18 3M 13 DF 29 13 13 ,4 3M 119 45 18 51 238 7.9 DF L 3M 30 238 5 2 16 31 16 DF 3M 19 150 5.0 27 64 39 DF 3M 32 150 2.3 42 22 69 69 DF 3M 33 L 419 13.9 24 22 123 40 185 26 DF 3M 34 419 120 120 4.0 11 12 58 40 35 DF L 3M 37 12 112 86 6 13 51 12,3 DF L 3M 36 370 370 52 22 71 145 26 22 DF 3M 37 145 4.8 98 46 190 47 436 436 14.5 54 DF L 3M 38 23 72 2.4 10 35 39 72 L DF 3M 154 68 21 70 454 15.0 48 93 DF 3M 40 454 15 15 .5 15 41 DF 3M 2 .1 15 2 DF 4M 19 5 .2 5 4M DF DF 4M 20 .0 1 21 2 2 DF 4M 4 22 4M 24 3 4M DF 27 2 2 .1 DF 4M DF 4M 28 2 .2 29 6 DF 4M DF 4M30 .1 2 9 ,3 DF 4M 40 6 51 71 13 Totals 3,016 3,016 46.0 296 93 411 617 581 876 DF 767 31.8 525 174 68 40 768 DF 2M 14 .6 34 14 DF 3M 14 DF 3M 36 17 17 .7 17 37 18 18 .7 18 DF 3M 21 .9 21 38 21 DF 3M 39 3 DF 3M 58.7 450 389 567 П 1,419 1,417 3M 40 DF .3 8 4M 12 8 DF

TC PLOGSTVB Log Stock Table - MBF Page 2 T03N R07W S36 Ty00PC 103.00 Project: **PNTBLD** 7/6/2022 Date Acres 103.00 Time 8:38:16AM Unit 2 Net Volume by Scaling Diameter in Inches % So Gr Log Gross Def Net 10-11 12-13 14-15 16-19 20-23 24-29 30-39 40+ MBF 8-9 Len MBF Spc 2-3 4-5 rt de % Spp 6 DF Т 4M 13 6 20 .8 20 T 20 DF 4M 14 3 DF T 4M .1 2 DF T 4M 16 2 DF Т 4M 17 2 2 T 18 DF 4M DF Т 4M 19 9 21 Ţ 4MDF 10 DF T 4M 22 10 3 23 DF 4M7 DF 4M 25 DF Ŧ 4M 2 26 DF 4M 27 5 T 4M DF 13 DF 4M29 13 7 .3 32 DF T 4M 3 33 .1 3 4M 7 34 ,3 T 4M DF 15 .6 35 15 DF 4M 38 10 10 10 DF 4M 9 40 9 4M DF 36.8 678 389 567 536 174 68 Totals 2,416 2,412 DF 43 49 92 16.6 92 WH 2M 18 3.3 18 18 WH 3M 28 9 29 1.6 WH 3M 9 5 WH 3M 30 .9 13.3 13 62 74 wн 3M 32 74 11 4.9 12 33 27 27 WH 3M 1.3 7 7 34 WH 3M 50 45 49 169 30.4 25 36 169 WH 3M 24 4.2 8 15 37 24 WH 3M 38 16 2.8 16 WH 3M 46 92 16.6 32 14 92 3M 40 WH 3 WH 4M 22 3 2 2 WH 4M 24 2 WH 4M 27 2 L 2,6 14 30 14 WH L 4M

T03	N RO	7W S36 Ty0	0PC	103	.00	Proje	et: PNT	TBLD						Page	3	_
					Unit 2	Acres			3.00						5/2022 38:16AM	
Ѕрр	S T		Log	Gross MBF	Def Net % MBF	% Spc	2-3 4-5	Net Volu	me by S 8-9	caling Di		r in Inche	16-19	20-23 24-29	30-39 40	0
	\exists	Totals		556		8.5	-	95	23	112	116	160	50			-
WH	Т	2M	40	556 72	556	14,8		93		112	47	100	25			-
WH	'	ZMI	40		,,,	14,0		 				_		-	-	-
WH	T	3M	32	10	10	2.1		10								
WH	Т	3M	34	20	20	4.1		20								
WH	Т	3M	40	362	362	74.5		87	106	170		١				
WH	T	4M	15	5	5	1.1		5								
WH	Т	4M	20	1	ı	.2		1								
WH	T	4M	21	12	12	2.5		12								
WH	Т	4M	25	3	3	.6		3								
WH		Totals		486	486	7.4		138	106	170	47		25			
NF	L	3M	32	18	18	25.2					18					
NF	L	3М	34	17	17	23.6	!	6	н							
NF	L	3М	36	37	37	51.2		3				Ш	.23			
NF		Totals		72	72	1.1		8	11		18	11	23			
RA	L	4M	37	20	20	100.0		20								_
RA		Totals		20	20	.3		20								
Total		All Species		6,565	6,562	100.0		1230	622	1259	1334	927	1042	71	3 13	

TC PSTATS				DJECT S DJECT	TATIST PNTB				PAGE DATE	1 7/6/2022
WP RGE	SC TRACT	7	ГҮРЕ		ACR	ES	PLOTS	TREES	CuFt	BdFt
03N 07	36 00U1 Vn	1142	PCM		2	287.00	44	694	S	W
03N 07W	36 00U2 VN	11 142 (00PC		E	STIMATED		ERCENT	.	
				TREES		TOTAL		AMPLE		
	PLOTS	TREES		PER PLOT		TREES	· ·	TREES		_
TOTAL	44	694		15.8		(0.420		1.1		
CRUISE	44	693		15.8		60,439		1.1		
DBH COUNT REFOREST										
COUNT										
BLANKS										
100 %										
. <u>-</u>	_		STAN	D SUMM	ARY					
	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC_	CF/AC
DOUG FIR-L	293	53.5	21.4	130	28.8	133.1	30,669	30,667	6,212	6,212
DOUG FIR-S	22	20.1	9.6	52	3.3	10.1		**		
DOUG FIR-T	277	98.7	15.3	113	32.3	126.6	22,484	22,369	5,071 957	5,071 957
WHEMLOCK-L		17.2 17.9	15.3 13.6	107 103	5.6 4.9	22.1 18.2	4,711 3,274	4,711 3,274	713	713
WHEMLOCK-T NOB FIR-L	3 9 12	17.9	23.6	134	4.2 1.1	5.2	1,361	1,361	258	258
R ALDER-L	2	1.3	11.5	81	0.3	1,0	128	128	26	
TOTAL	693	210.6	16.6	110	77.6	316.3	62,627	62,509	13,237	13,237
CI 68 I	COEFF				_	E SAMPLE F ————————————————————————————————————	<u> </u>	OF TREES I	REO.	INF. POP.
CL 68.1 SD: 1.0	COEFF VAR.%	S.E.%			E TREES - AVG	BF HIGH	<u> </u>	OF TREES I	REQ. 10	INF. POP.
SD: 1.0 DOUG FIR-L				SAMPLI	E TREES -	BF	<u> </u>		-	
SD: 1.0 DOUG FIR-L DOUG FIR-S	VAR.% 109.7	S.E.% 6.4		SAMPLI OW 692	E TREES - AVG 739	BF HIGH 787	<u> </u>		-	
SD: 1.0 DOUG FIR-L	VAR.% 109.7 67.4	S.E.%		SAMPLI DW	E TREES - AVG	BF HIGH	<u> </u>		-	
SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-T	VAR.% 109.7 67.4 53.9	S.E.% 6.4 4.0		SAMPLI OW 692 295	E TREES - AVG 739 308	BF HIGH 787	<u> </u>		-	
SD: 1,0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L	VAR.% 109.7 67.4 53.9 69.5 75.5	S.E.% 6.4 4.0 7.8 11.1 22.7		SAMPLI 0W 692 295 338 222 917	E TREES - AVG 739 308 366 249 1,187	BF HIGH 787 320 395 277 1,456	<u> </u>		-	
DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L R ALDER-L	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9	S.E.% 6.4 4.0 7.8 11.1 22.7 55 2		SAMPLI DW 692 295 338 222 917 54	ETREES - AVG 739 308 366 249 1,187 120	BF HIGH 787 320 395 277 1,456 186	<u> </u>	5	10	1
DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L R ALDER-L TOTAL	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0	S.E.% 6.4 4.0 7.8 11.1 22.7		SAMPLI DW 692 295 338 222 917 54 473	308 308 366 249 1,187 120 496	BF HIGH 787 320 395 277 1,456 186 579	#	604	151	6
DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L R ALDER-L TOTAL CL 68.1	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF	S.E.% 6.4 4.0 7.8 11.1 22.7 55 2 4.7	υ	SAMPLI 0W 692 295 338 222 917 54 473 SAMPLI	TREES - AVG 739 308 366 249 1,187 120 496 E TREES -	BF HIGH 787 320 395 277 1,456 186 519	#	604 OF TREES	151 REQ.	of INF. POP.
DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L R ALDER-L TOTAL CL 68.1 SD: 1.0	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.%	S.E.% 6.4 4.0 7.8 11.1 22.7 55 2	υ	SAMPLI DW 692 295 338 222 917 54 473	308 308 366 249 1,187 120 496	BF HIGH 787 320 395 277 1,456 186 579	#	604	151	of INF. POP.
DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L R ALDER-L TOTAL CL 68.1	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.%	υ	SAMPLI 0W 692 295 338 222 917 54 473 SAMPLI 0W	TREES - AVG 739 308 366 249 1,187 120 496 E TREES - AVG	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH	#	604 OF TREES	151 REQ.	of INF. POP.
DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I NOB FIR-L R ALDER-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.%	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.%	υ	SAMPLI DW 692 295 338 222 917 54 473 SAMPLI OW 137 67	TREES - AVG 739 308 366 249 1,187 120 496 E TREES - AVG 144 69	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152	#	604 OF TREES	151 REQ.	of INF. POP.
DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L R ALDER-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.% 87.4 60.8 51.0	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.% 5.1 3.7 7.4	υ	SAMPLI OW 692 295 338 222 917 54 473 SAMPLI OW 137 67 68	TREES - AVG 739 308 366 249 1,187 120 496 ETREES - AVG 144 69 74	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152 72	#	5 604 OF TREES	151 REQ.	of INF. POP.
DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L R ALDER-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.% 87.4 60.8 51.0 63.9	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.% 5.1 3.7 7.4 10.2	υ	SAMPLI OW 692 295 338 222 917 54 473 SAMPLI OW 137 67 68 49	TREES - AVG 739 308 366 249 1,187 120 496 ETREES - AVG 144 69 74 55	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152 72 79 60	#	5 604 OF TREES	151 REQ.	of INF. POP.
DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I R ALDER-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L DOUG FIR-L WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I NOB FIR-L	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.% 87.4 60.8 51.0 63.9 66.7	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.% 5.1 3.7 7.4 10.2 20.1	υ	SAMPLI OW 692 295 338 222 917 54 473 SAMPLI OW 137 67 68 49 172	2 TREES - AVG 739 308 366 249 1,187 120 496 E TREES - AVG 144 69 74 55 216	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152 72 79 60 259	#	5 604 OF TREES	151 REQ.	of INF. POP.
DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L R ALDER-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.% 87.4 60.8 51.0 63.9	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.% 5.1 3.7 7.4 10.2	υ	SAMPLI OW 692 295 338 222 917 54 473 SAMPLI OW 137 67 68 49	TREES - AVG 739 308 366 249 1,187 120 496 ETREES - AVG 144 69 74 55	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152 72 79 60	#	5 604 OF TREES	151 REQ.	6 INF. POP.
DE: 1,0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-T WHEMLOCK-T NOB FIR-L TOTAL CL 68.1 SD: 1,0 DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-T WHEMLOCK-T WHEMLOCK-T NOB FIR-L R ALDER-L TOTAL	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.% 87.4 60.8 51.0 63.9 66.7 70.2	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.% 5.1 3.7 7.4 10.2 20.1 65.7	υ	SAMPLI OW 692 295 338 222 917 54 473 SAMPLI OW 137 67 68 49 172 9	2 TREES - AVG 739 308 366 249 1,187 120 496 E TREES - AVG 144 69 74 55 216 26 101	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152 72 79 60 259 43	#	604 OF TREES) 5	151 REQ. 10	6 INF. POP.
DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I R ALDER-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L DOUG FIR-L WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I R ALDER-L R ALDER-L	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.% 87.4 60.8 51.0 63.9 66.7 70.2 98.5	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.% 5.1 3.7 7.4 10.2 20.1 65.7		SAMPLI OW 692 295 338 222 917 54 473 SAMPLI OW 137 67 68 49 172 9 97	2 TREES - AVG 739 308 366 249 1,187 120 496 E TREES - AVG 144 69 74 55 216 26 101	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152 72 79 60 259 43	#	5 604 OF TREES 5 5	151 REQ. 10	INF. POP.
DE 1,0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I NOB FIR-L TOTAL CL 68.1 SD 1,0 DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I NOB FIR-L R ALDER-L TOTAL CL 68.1	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.% 87.4 60.8 51.0 63.9 66.7 70.2 98.5 COEFF	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.% 5.1 3.7 7.4 10.2 20.1 65.7 3.7 S.E.% 6.7		SAMPLI OW 692 295 338 222 917 54 473 SAMPLI OW 137 67 68 49 172 9 97 TREES/OW 50	ETREES - AVG 308 366 249 1,187 120 496 ETREES - AVG 144 69 74 55 216 26 101 ACRE AVG 54	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152 72 79 60 259 43 105	#	5 604 OF TREES 5 5	151 REQ. 10	6 INF. POP.
DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I R ALDER-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-S DOUG FIR-S DOUG FIR-S DOUG FIR-L WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I CL 68.1 SD: 1.0 DOUG FIR-L TOTAL	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.% 87.4 60.8 51.0 63.9 66.7 70.2 98.5 COEFF VAR.% 44.3 297.9	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.% 5.1 3.7 7.4 10.2 20.1 65.7 3.7 S.E.% 6.7 44.9		SAMPLI OW 692 295 338 222 917 54 473 SAMPLI OW 137 67 68 49 172 9 97 TREES/OW 50 11	ETREES - AVG 308 366 249 1,187 120 496 ETREES - AVG 144 69 74 55 216 26 101 ACRE AVG 54 20	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152 72 79 60 259 43 105 HIGH 57 29	#	5 604 OF TREES 5 5	151 REQ. 10	6 INF. POP.
DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I R ALDER-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-L WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I CL 68.1 CL 68.1 CL 68.1 CL 68.1 CL DOUG FIR-L DOUG FIR-L DOUG FIR-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L DOUG FIR-L DOUG FIR-L DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-T	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.% 87.4 60.8 51.0 63.9 66.7 70.2 98.5 COEFF VAR.% 44.3 297.9 67.3	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.% 5.1 3.7 7.4 10.2 20.1 65.7 3.7 S.E.% 6.7 44.9 10.1		SAMPLI OW 692 295 338 222 917 54 473 SAMPLI OW 137 67 68 49 172 9 97 TREES/ OW 50 11 89	ETREES - AVG 308 366 249 1,187 120 496 ETREES - AVG 144 69 74 55 216 26 101 ACRE AVG 54 20 99	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152 72 79 60 259 43 105 HIGH 57 29 109	#	5 604 OF TREES 5 5	151 REQ. 10	INF. POP.
DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I R ALDER-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L OUG FIR-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L TOTAL CL 68.1	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.% 87.4 60.8 51.0 63.9 66.7 70.2 98.5 COEFF VAR.% 44.3 297.9 67.3 129.2	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.% 5.1 3.7 7.4 10.2 20.1 65.7 3.7 S.E.% 6.7 44.9 10.1 19.5		SAMPLI OW 692 295 338 222 917 54 473 SAMPLI OW 137 67 68 49 172 9 97 TREES/ OW 50 11 89 14	ETREES - AVG 308 366 249 1,187 120 496 ETREES - AVG 144 69 74 55 216 26 101 ACRE AVG 54 20 99 17	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152 72 79 60 259 43 105 HIGH 57 29 109 21	#	5 604 OF TREES 5 5	151 REQ. 10	INF. POP.
DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I R ALDER-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-L WHEMLOCK-I WHEMLOCK-I TOTAL CL 68.1 SD: 1.0 DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I TOTAL CL 68.1 SD: 1.0 DOUG FIR-S DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.% 87.4 60.8 51.0 63.9 66.7 70.2 98.5 COEFF VAR.% 44.3 297.9 67.3 129.2	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.% 5.1 3.7 7.4 10.2 20.1 65.7 3.7 S.E.% 6.7 44.9 10.1		SAMPLI OW 692 295 338 222 917 54 473 SAMPLI OW 137 67 68 49 172 9 97 TREES/ OW 50 11 89	ETREES - AVG 308 366 249 1,187 120 496 ETREES - AVG 144 69 74 55 216 26 101 ACRE AVG 54 20 99	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152 72 79 60 259 43 105 HIGH 57 29 109	#	5 604 OF TREES 5 5	151 REQ. 10	INF. POP.
DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I R ALDER-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L WHEMLOCK-I WHEMLOCK-I WHEMLOCK-I CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L OUG FIR-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK-I WHEMLOCK-I	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.% 87.4 60.8 51.0 63.9 66.7 70.2 98.5 COEFF VAR.% 44.3 297.9 67.3 129.2 1 210.6	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.% 5.1 3.7 7.4 10.2 20.1 65.7 3.7 S.E.% 6.7 44.9 10.1 19.5 31.7		SAMPLI OW 692 295 338 222 917 54 473 SAMPLI OW 137 67 68 49 172 9 97 TREES/ OW 50 11 89 14 12	ETREES - AVG 308 366 249 1,187 120 496 ETREES - AVG 144 69 74 55 216 26 101 ACRE AVG 54 20 99 17 18	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152 72 79 60 259 43 105 HIGH 57 29 109 21 24	#	5 604 OF TREES 5 5	151 REQ. 10	INF. POP.
DE 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-T WHEMLOCK-L WHEMLOCK-T NOB FIR-L R ALDER-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-S DOUG FIR-S DOUG FIR-L WHEMLOCK-I WHEMLOCK-I CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L WHEMLOCK-I	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.% 87.4 60.8 51.0 63.9 66.7 70.2 98.5 COEFF VAR.% 44.3 297.9 67.3 129.2 1210.6 208.2	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.% 5.1 3.7 7.4 10.2 20.1 65.7 3.7 S.E.% 6.7 44.9 10.1 19.5 31.7 31.4		SAMPLI OW 692 295 338 222 917 54 473 SAMPLI OW 137 67 68 49 172 9 97 TREES/ OW 50 11 89 14 12 1	ETREES - AVG 308 366 249 1,187 120 496 ETREES - AVG 144 69 74 55 216 26 101 ACRE AVG 54 20 99 17 18 2	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152 72 79 60 259 43 105 HIGH 57 29 109 21 24 2	#	5 604 OF TREES 5 5	151 REQ. 10	6 INF. POP.
DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I R ALDER-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-S DOUG FIR-S DOUG FIR-T WHEMLOCK-I WHEMLOCK-I R ALDER-L TOTAL CL 68.1 SD: 1.0 DOUG FIR-S	VAR.% 109.7 67.4 53.9 69.5 75.5 58.9 123.0 COEFF VAR.% 87.4 60.8 51.0 63.9 66.7 70.2 98.5 COEFF VAR.% 44.3 297.9 67.3 129.2 1210.6 208.2 520.8	S.E.% 6.4 4.0 7.8 11.1 22.7 55.2 4.7 S.E.% 5.1 3.7 7.4 10.2 20.1 65.7 3.7 S.E.% 6.7 44.9 10.1 19.5 31.7 31.4 78.4		SAMPLI DW 692 295 338 222 917 54 473 SAMPLI DW 137 67 68 49 172 9 97 TREESA OW 50 11 89 14 12 1 0 195	ETREES - AVG 739 308 366 249 1,187 120 496 ETREES - AVG 144 69 74 55 216 26 101 ACRE AVG 54 20 99 17 18 2 1	BF HIGH 787 320 395 277 1,456 186 519 CF HIGH 152 72 79 60 259 43 105 HIGH 57 29 109 21 24 2 2 2226	#	5 604 OF TREES 1 5 5 9 OF PLOTS 5	151 REQ. 10 97 REQ. 10	6 INF. POP.

TC PST	TATS				PROJECT PROJECT		STICS TBLD			PAGE DATE	2 7/6/2022	_
TWP	RGE	SC	TRACT	TY	PE	AC	CRES	PLOTS	TREES	CuFt	BdFt	
03N 03N	07 07W	36 36	00UI Unit	142 OPE			287.00	44	694	S	W	
DOU	G FIR-L		27.4	4.1	128	133	139					
DOU	G FIR-S		272.0	41.0	6	10	14					
DOU	G FIR-T		55.0	8.3	116	127	137					
WHE	MLOCK-L		146.5	22.1	17	22	27					
WHE	EMLOCK-1	Γ	197.3	29.7	13	18	24					
NOB	FIR-L		166.8	25.1	4	5	7					
R AL	.DER-L		468.5	70.6	0	1	2					
тот	AL		28.9	4.3	303	316	330		33	8		4
CL	68,1		COEFF		NET B	F/ACRE			# OF PLOTS R	ŒQ.	INF. POP.	
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		. 5	_10	1	5
DOU	JG FIR-L		30.3	4.6	29,267	30,667	32,066					
	JG FIR-S											
	JG FIR-T		65.2	9.8	20,173	22,369	24,565					
	EMLOCK-I	L	160.5	24.2	3,572	4,711	5,850					
	EMLOCK-		208.9	31.5	2,243	3,274	4,304					
	FIR-L		172.8	26.0	1,006	1,361	1,715					
	LDER-L		466.3	70.2	38	128	218					
тот			34.6	5.2	59,254	62,509	65,764		48	12		5
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS I	REQ.	INF. POP.	
SD:	1.0		VAR.%	S.E.%	LOW	ĄVG	нібн		5	10		15
DOU	JG FIR-L		28.5	4.3	5,945	6,212	6,478					
	JG FIR-S											
	JG FIR-T		61.7	9.3	4,600	5,071	5,542					
	EMLOCK-	L	162,1	24.4	723	957	1,191					
	EMLOCK-		203.0	30.6	495	713	931					
	B FIR-L		169.6	25.5	192	258	324					
	LDER-L		463.6	69.8	8	26	45					
	TAL		32.8	4.9	12,583	13,237	13,890		43	H		5

TC	PSPC	CSTGR		Sį	ecies, S	ort Gra	de - Board F	oot Vo	lume	s (Pr	oject))		_						
11		07W \$36 T	•		84.00 103.00	Unit	Project: Acres		TBLD 287.0								Page Date Time		1 5/2022 51:28	
			%	_				Perce	ant of N	et Boar	d Foot	Volume					Avera	ige Log		Logs
	S	So Gr	Net	Bd. Ft.	. per Acre		Total	Ļ	og Sca	le Dia.		_	Log L	ength		. Ln	Dia	Bd	CF/	Per
Spp	Т	rt ad	BdFı	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	Ĺ	2M	4		1,511	1,511	434			91	9				100	40	14	308	1.62	4.9
DF	L	3M	95	.0	29,023	29,020	8,329		23	40	37	0	20	40	40	34	11	195	1.14	149.0
DF	L	4M	1		136	136	39		100			20	57		23	25	6	33	0.35	4.1
DF	Tota	ils	49	.0	30,669	30,667	8,801		22	42	35	0	19	38	43	34	11	194	1.14	158.0
DF	Т	CU		ı]									5	19		0.00	.5
DF	T	2M	37	.8	8,380	8,310	2,385			91	9				100	40	13	266	1.43	31.2
DF	T	3M	56	.3	12,661	12,622	3,622	1	99	1				3	97	39	8	99	0.59	127.3
DF	Т	4M	7	.4	1,443	1,437	412	├	100			30	47	14	9	22	6	28	0.30	52.2
DF	Tota	ıls	36	.5	22,484	22,369	6,420		62	34	3	2	3	3	92	35	8	106	0.68	211.2
WH WH WH	L	2M 3M 4M	8 90 2		385 4,241 86	385 4,241 86	110 1,217 25		50 100	100 45	5		32 100	24	100 44	40 34 27	13 9 6	249 123 35	1.22 0.74 0.30	1.5 34.4 2.4
WH	То	tals	8		4,711	4,711	1,352		47	49	4		30	21	48	34	9	123	0.74	38.4
WH	Т	2M	25		828	828	238			81	19				100	40	13	269	1.33	3.1
WH		3M	68		2,224	2,224	638	1	97	3				5	95	39	8	99	0.56	22.6
WH	T	4M	7		221	221	63		100			35	48	17		20	6	26	0,29	8.4
WH	To	tals	5		3,274	3,274	940		73	22_	5	2	3	4	90	35	8	96	0.60	34,1
NF	L	3М	100		1,361	1,361	390		14	26	61		15	35	50	34	12	250	1.41	5,4
NF	Tot	als	2		1,361	1,361	390		14	26	61		15	35	50_	34	12	250	1,41	5.4
RA RA		4M CR	55 45		71 57	71 57	20 16		100				100		100	37 30		70 85	0.66	.7
RA	To	ials	0		128	128	37	 	100			_	45		55	34	8	76	0.46	1.7
Tota	ıls _			0.2	62,627	62,509	17,940		41_	39	20	<u> </u>	13	22	64	35	9	139	0.85	448.8

TC P	STNDSU	M				S	tand T	able Su	mmary				Page Date:	1 7/6/2022	
TO3N F	R07W S3	6 Ту0РСМ		184.0	10		Project	Pì	NTBLD				Time:	8:51:30	AM
T03N F	R07W S3	6 Ty00PC		103.0	Unif	142	Acres		287.0	0			Grown Year:		
s				Tot		•		Average	Log		Net	Net	•		
Spc T	DBH	Sample Trees		Av Hi	Trees/ Acre	RA/ Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd,Ft. Acre	Tons	Totals Cunits	MBF
DF L	13	ı	88	116	.449	.41	.90	17.1	80.0	.44	15	72	126	44	21
DF L	15	11	88	102	4.272	5.24	8.54	21.0	92.2	5.10	179	788	1,465	514 353	226 156
DFL	16 17	8 8	88 88	109 102	2.370 2,451	3,31 3.86	5.63 5.51	21.8 24.3	96.3 104.3	3,50 3.83	123 134	542 575	1,005 1,098	385	165
DF L DF L	18	19	89	119	4.917	8,69	13.58	25.9	117.1	10.04	352	1,590	2,881	1,011	456
DF L	19	23	89	125	5.465	10.76	15.41	30.7	142.5	13.50	474	2,196	3,875	1,359	630
DF L	20	24	89	131	5.185	11,31	15.11	34.0	165.4	14,65	514	2,500	4,205	1,475	717
DF L	21	27	89	134	5.104	12.28	15.43	36.3	173.9	15.95	560	2,683	4,577	1,606	770
DF L	22	26	89	134	4.808	12,69	14.43	41.2	194.5	16.93	594 859	2,806	4,859 7,030	1, 70 5 2,467	805 1,194
DF L	23 24	39 29	89 89	135 147	6,359 3,995	18.35 12.55	19.41 13.56	44.3 46.5	214.3 234,0	24.49 17.98	631	4,160 3,174	7,030 5,161	2,467 1,811	911
DF L DF L	25	15	89	145	2.023	6.90	7.24	48.1	247.8	9.93	349	1,795	2,851	1,000	515
DFL	26	16	88	155	1.908	7.03	7.26	51.8	275.9	10,70	376	2,002	3,072	1,078	575
DF L	27	10	89	146	1.040	4.14	3.75	55.9	295.3	5.97	209	1,106	1,712	601	317
DFL	28	16	90	153	1,548	6.62	6.00	58.9	324.4	10.08	354	1,945	2,892	1,015	558
DF L	29	7	89	154	.631	2,90	2,52	60.8	335.7	4.38		848	1,256	441	243
DF L	30 31	2 4	89 89	160 156	.197 .316	.97 1.65	.79 1.26	69.4 71.4	392.5 403.1	1.56 2,57		309 509	447 737	157 259	89 146
DF L DF L	32	2	90	165	.148	.83	.59	80,0	450.0	1.35		267	387	136	77
DFL	33	2	80	153	,139	.83	.49	86.5	424.3	1.20		207	345	121	59
DF L	34	1	89	84	.066	.41	.13	104.7	455.0	.39	14	60	112	39	17
DFL	35	1	89	170	.062	.41	.25	98.6	567.5	.70		141	200	70	40
DF L	44	I .	90	170	.039	.41	.16	159.8	932.5	.71		146	205	72	42
DF L	72	1	90	195	.020	.55	.10	389.1	2534,0	1,08		247	311	109	71
DF L	Totals	293	89	130	53.510	133,10	158,05	39.3	194.0	177.03		30,667	50,807	17,827	8,801
DFT	8	3	84	60	3,555	1.24	3.55	4.2	23,3	,43		83	124	43	24
DF T	10 11	11 7	88 88	89 97	10.120 4.597	5.52 3.03	14.17 7.94	9.5 10.9	46.8 47.6	3.84 2,46		663 378	1,102 705	387 247	190 10 9
DF T DF T	12	16	88	99	9.484	7.45	16.16	14.0	59.7	6.46		964	1,855	651	277
DFT	13	20	89	102	10,177	9.38	19.75	15.8	67.9	1		1,341	2,546	893	385
DFT	14	28	88	116	12.389	13.24	25.81	19.3	88.2	14.22	499	2,275	4,081	1,432	653
DF T	15	21	87	117	7.755	9.52	16.97	21.2	92.3	1		1,567	2,942	1,032	450
DF T	16	25	88	117	7.902	11.03	16.69	25.8	110.7			1,848	3,517	1,234	530
DF T	17	27	88	120	7.964	12.55	18,99	26.8	113.5 123.9	1		2,156 2,650	4,170 5,006	1,463 1,756	619 760
DF T DF T	18 19	29 26	88 88	131 134	7.728 5,954	13.66 11.72	21.39 16.67	28.6 31.6	123.9	1		2,304	4,312	1,730	661
DFT	20	19	88	139	3.920	8.55	11.13	1	159.3	1		1,773	3,263	1,145	509
DFT	21	13	88	138	2,351	5,65	6.54	l .	181.7			1,187	2,157	757	341
DF T	22	13	85	137	2.247	5.93	6.58	42,6	185,6	8.00	281	1,222	2,296	806	351
DF T	23	11	89	145	1.673	4.83	5.31	1	209.4	1		1,111	1,977	694	319
DF T	24	2	87	154	,263	,83		1	255.0	1		201	355	125 64	58 30
DF T	25 26	1 2	86 87	163 152	.121	.41 .83	.49 .67	46.1 59.1	212.5 291.7	1			183 325	04 114	30 56
DF T DF T	27	1	89	176	.104	.63	.42	1	327.5	1			205	72	
DF T	28	1	90		.097	.41	.29	I •	326.7	1			168	59	
DF T	29	1	86		.090	.41	.36	62.9	317.5	.65	5 23	115	185	65	33
DF T	Totals	277	88	113	98.715	126,62	210,67	24.1	106.2	144.51	5,071	22,369	41,474	14,552	6,420
WH L	9	2	90	69	2.186	.97	2.19	9.2	48.6	.65	5 20	106	185	58	30
WHL	10	3	91	79	2.529	1.38	2.53	13.2	63.0	1.03	7 33	159	306	96	46
WH L	11	1	93		.627	.41		1	60.0				138	43	22
WHL	13	1	93		.449	.41		1	56.7				153	48	
WHL	14	4_	92	100	1.548	1,65	3.10	19.7	95.0	1.95	5 61	294	560	175	

TC P	STNDSU	м		_	-	S	stand T	able Su	mmary		_		Page Date:	2 7 <u>/6/2022</u>	:
T03N F	07W \$30	5 Ту0РСМ		184.0	0		Project	Pi	NTBLD				Time:	8:51:30	AM
		6 Ty00PC		103.0	Unit	182	Acres		287.0	0			Grown Year	: 	
	-			Tot				Average	Log		Net	Net			
S	DDII	Sample		Av Ht	Trees/	RA/ Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Totals Cunits	MBF
Ѕрс Т	DBH	Trees			Acre									334	159
WHL	15 16	6 4	92 93	112 120	2.248 1.284	2.76 1.79	5.28 3.85	22,0 21.5	104.9 105.9	3.72 2,64	116 83	554 408	1,069 759	237	117
WH L WH L	17	4	92	124	1.138	1.79	3,06	26.2	122.6	2.56	80	375	736	230	108
WHL	18	6	92	132	1.640	2.90	4.92	29.2	144.4	4.60	144	710	1,320	412	204
WH L	19	6	93	123	1.471	2,90	4.41	30.7	154.1	4.34	136 99	680 497	1,244 905	389 283	195 143
WHL	20	4	94 89	129 124	.885 .803	1.93 1.93	2.66 2.41	37.1 36.9	187.1 178.1	3.15 2.85	89	497 429	817	255	123
WH L WH L	21 23	2	94	145	.287	.83	1.00	46,6	250.0	1.50		251	430	134	72
WHL	24	1	93	111	.132	.41	.39	46.7	240.0	.59	18	95	169	53	27
WHL	Totals	48	92	107	17.226	22,07	38.40	24.9	122.7	30.63	957	4,711	8,791	2,747	1,352
WHT	8	1	80	40	1.185	.41	1.18	4.1	20.0	.16	5	24	45	14	7
WHT	9	1	93	106	1.250	.55	1.25	10.9	60.0	.44	14	75	125	39	22
WHT	10	3	90	95	2,529	1.38	4.30	9,9	48.2	l		207	390	122 332	60
WHT	12	7	90	102	4.216	3.31	7.90	14,6 22.7	65,3 90.0	1		516 40	1,061 94	29	148 12
WHT	13 14	1 5	91 90	78 113	.449 2.323	.41 2.48	.45 4.65	20.7	95.3	1		443	885	277	127
WHT	15	5	93	122	2.137	2.62	5,17	22.7	108.7	1		562	1,080	337	161
WHT	16	3	90	120	.988	1.38	2.37	25.6	113.3	1		269	557	174	77
WHT	17	4	92		1,138	1.79		29.8	131.0	1		344	719 306	225 96	99 38
WH T	18	2	91		.468 .758	.83 1.65		35.6 43.2	140.0 200.0	1			676	211	98
WHT	20 22	4 2	90 93		.313	.83			206.7	1			369	115	
WHT	23	1	93		.191	.55		45.9	220.0	.84	26	126	242	76	36
WHT	Totals	39	90	103	17.945	18.21	34.06	20.9	96.1	22.82	713	3,274	6,549	2,047	940
NF L	16	1	91	140	.395	.55	1.19	21.3	103.3	.61	25	123	174	73	35
NF L	18	1	91	124	.234	.41	.70	24.0	113.3	1			116	48	
NF L	19	1	91		.210	.41		28,9	140.0	1			126 124	52 52	
NF L	23 24	1 1	90 91		.143	.41 .41		1	203.3 266.7				146	61	
NF L NF L	26	ı	90		.150	.55		1	286.7	1			180	75	37
NFL	28	2	91	153	.193	.83	.77	58.6	330.0	1.09	9 45		313	130	
NF L	29	1	90		.090	.41		1		1			81	34 72	
NFL	35	1	91 91		.062	.41 .41			595,0 650.0				173 176	74	
NF L NF L	36 38	1	91		.053	A1		4					168	70	
NF L	Totals	12	91	134	1.721	5.24	5.44	47.4	250.	6.1	9 258	1,361	1,776	740	390
RAL	10	1	91		1.012	.55	5 1.01	13.1	70.0	0 .3	7 13	71	105	38	3 20
RAL	15	1	92		.337	.41	.67	19.5	85.0	0 .3	6 13	57	104	38	3 16
RAL	Totals	2	91	81	1.349	.97	7 1.69	15.7	76,0	07	3 26	128	208	76	37
DF S	7	1	72	2 35	1.634	.44	í								
DF S	8	6	74		8,167	2.85	5								
DF S	9	4	88		3.953	1,75									
DF S	10	5 L	84 87		4.426	2,41 .44									
DF S DF S	12	3	88		1.067	1.3								•	
DFS	21	ī	86		.182	.44		1							
DF S	24	1	82	2 52	.139	.44	4	<u> </u>							
DF S	Totals	22	80	52	20.123	10.0	7								
Totals		693	8	8 110	210,589	316.28	3 448.3	29.5	139.	4 381.9	0 13,23	62,509	109,605	37,989	17,940

TC PLOGSTVB Log Stock Table - MBF Page 184.00 T03N R07W S36 Ty0PCM Project: PNTBLD Date 7/6/2022 103.00 T03N R07W S36 Ty00PC Acres 287.00 Time 8:51:28AM Unit 182 Net Volume by Scaling Diameter in Inches % So Gr Def Net Log Gross 20-23 24-29 30-39 40+ 10-11 12-13 14-15 16-19 Len MBF % MBF Spc 2-3 4-5 Spp rt de 153 172 109 DF L 2M 40 434 434 4.9 11 20 11 П .1 DF 3M L 12 DF L 3M 26 12 12 J. .9 50 11 13 82 82 DF 3M 27 12 13 59 37 28 189 189 2.2 17 52 DF 3M 13 13 4 37 37 .4 29 DF 3M 57 234 348 34 14.9 25 67 546 30 1,310 1,310 DF 3M 31 96 1.1 2 6 35 5 32 16 96 DF 3M 228 285 154 222 233 32 1,249 1,249 14.2 127 DF 3M 12 19 113 71 107 322 3.7 33 322 DF 3M 289 145 560 133 18 1,389 111 132 DF 3M 34 1,389 15,8 30 25 91 72 50 18 286 3.2 DF 3M 35 286 121 177 228 132 66 13 51 12.2 138 13 136 36 1,075 1,075 DF L 3M 12 39 48 46 124 269 269 3.1 DF L 3M 37 15 21 233 133 420 58 1,104 12.5 123 100 3М 38 1,104 DF L 39 164 164 1.9 29 52 61 23 L 3M DF 123 93 230 138 21 711 107 3M 40 711 8.1 DF L 21 .2 21 21 DF L 3M 41 .0 2 2 15 4M DF L 19 5 .1 5 DF L 4M 20 .0 DF 4M 1 L .0 2 21 2 4MDF 4 DF 4M 22 24 3 3 DF 4M Ĺ 27 .0 2 DF 4M 2 28 2 0, 2 DF 4M 6 29 .1 DF 4M 6 2 .0 2 30 **4M** DF 9 9 40 ı, DF 4M 1470 133 34 51 123 1022 1596 2607 966 Totals 8,802 108,8 49.1 797 DF 1266 654 408 57 2,385 37.2 40 2,405 DF 2M H 13 DF 3M 32 24 24 17 9 26 DF 3M33 26 34 44 .7 44 DF 3M 35 27 27 .4 27 DF 3M .8 52 DF 3M 36

TC PLOGSTVB Log Stock Table - MBF Page 2 T03N R07W S36 Ty0PCM 184.00 Project: **PNTBLD** 7/6/2022 Date 103.00 T03N R07W S36 Ty00PC Acres 287.00 Unit 142 Time 8;51:28AM Net Volume by Scaling Diameter in Inches Def % So Gr Log Gross Net 30-39 40+ 14-15 16-19 20-23 24-29 rt de Len MBF % MBF Spc 2-3 4-5 6-7 10-11 12-13 Spp 41 DF 37 41 3M .7 43 Т 43 43 DF 38 3M DF 3M 39 20 20 .3 20 3,357 52.1 788 1183 1349 17 8 3,346 DF 40 3M .2 15 15 12 15 DF 4M 7 7 13 .1 DF 4M DF Т 4M 35 35 .5 35 .2 10 10 10 T 15 DF 4M .1 9 16 DF 4M 17 .1 6 DF 4M DF 4M .2 11 17 .3 17 DF 4M 19 17 15 .2 15 DF Т 4M 20 15 21 28 28 T 28 .4 DF 4M DF 4M 22 19 19 .3 19 23 8 .1 Т DF 4M 23 23 .4 23 DF 4M 24 25 19 19 .3 19 DF T 4M 22 22 DF T 4M 26 22 .3 27 25 3.9 24 24 DF T 4M 4M 28 4 29 29 29 29 Ţ 4M DF 16 .2 16 4M 30 16 21 3.6 20 20 4M 31 DF Т 7 32 7 .I DF 4M DF T 4M33 3 3 .2 12 DF T 4M 34 12 35 15 .2 15 DF T 4M .0 3 36 3 T DF 4M T 37 3 .0 3 DF 4M 38 10 10 .2 10 4M DF DF 4M 39 6 .1 6 T 16 40 16 16 .3 DF 4M Totals 1456 1183 1358 1296 663 408 57 DF 6,453 6,420 35.8 110 61 49 40 110 8,2 2M WH 27 12 3.9 14 WH 3M 26 53 53 6 14 14 8 3M 27 1.1 WH

TC PLOGSTVB Log Stock Table - MBF Page 3 184.00 T03N R07W S36 Ty0PCM Project: **PNTBLD** Date 7/6/2022 103.00 T03N R07W S36 Ty00PC Acres 287.00 Time 8:51:28AM Unit 142 So Gr Def % Net Volume by Scaling Diameter in Inches Log Gross Net 20-23 24-29 rt de Len MBF % MBF 6-7 8-9 10-11 12-13 14-15 16-19 30-39 40+ Spc 2-3 4-5 Spp 74 П 17 32 15 28 74 5.5 WH 3M 16 7 WH 3M 29 23 23 1.7 222 15 34 51 44 77 WH 30 222 16.4 3M 17 WH 3M 31 32 32 2.4 8 175 175 12.9 40 39 17 62 17 32 WH 3M 13 11 40 2.9 4 12 WH 3M 33 40 WH 34 35 35 2.6 16 19 3M WH 3M 35 9 .7 216 16.0 3 52 45 67 50 36 216 WH 3M 12 37 28 28 2.0 15 WH3M 38 52 52 3.8 21 21 WH 3M 49 33 39 49 3.7 16 WH3М 180 180 13.3 76 23 81 WH 3M 40 15 1.1 15 WH 41 15 L 3M3 .3 22 3 WH L 4M 2 WH 4M 24 2 .2 WH 25 2 .2 2 L 4M 2 2 2 WH 2 4M 27 WH 30 14 14 1.1 14 4M Totals 57 276 259 184 1,352 7.5 256 320 WH 1,352 25.3 132 86 40 238 238 20 WH 2M 10 1.1 10 WH 32 10 3M 20 20 2.1 20 WH T 3M 34 WH T 38 9 1.0 9 3M WH 39 4 3M .4 WH T 40 595 595 63.3 150 176 249 20 3M 4 WH 4M 12 4 16 1.7 WH 15 16 16 4M WH 16 4Ml WH 4M 20 l .1 1 WH 4M 21 12 1.3 12 23 2 2 WHŢ 4M WH Ţ 4M 25 8 26 5 WH 4M27 .5 WH 4M 5 5 П 1.2 11 34 WH 4M

TC	PLOC	GSTVB					Log S	tock '	Гable -	MBF									
		7W S36 Ty			184.00 103,00	Unif 142	Proje Acres		PNT	BLD 287	.00					Page Date Time	7/6	4 /2022 51:28A	M
	s	So Gr	Log	Gross	Def	Net	%			Xet Volu	ne by S	caling D	iamete	r in Inche	es				
Spp	Т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
WH		Totals	s	9	40	940	5.2			257	176	249	132	39	86		•••		
NF	L	3N	i 30		59	59	15.1						17		П	31			
NF	L	3M	1 31		7	7	1.9					7							
NF	L	3N	1 32	:	91	91	23.3			9		8	26	14	15	19			
NF	Ĺ	3Խ	1 33	}	2	2	.5			2						ļ			
NF	Ĺ	3M	1 34		37	37	9,4			7	11		6		12				
NF	L	3N	1 36	1	43	143	36.6			3				11	23	28	78		
NF	L	31	4 37	1	6	6	1.4								6			1	
NF	L	3N	4 38		46	46	11.7			5			9	6	26				
NF		Total	s	3	190	390	2,2			26	11	16	58	31	93	77	78		
RA	L	4N	1 37	,	20	20	55.3			20									
RA	L	CI	₹ 29		12	12	31,6					12							
RA	L	CI	R 36		5	5	13.1			5								<u> </u>	
RA		Total	ls		37	37	.2			25		12							
Total		All Speci	ies	17,9	074	17,940	100.0			2817	1552	2976	3358	2462	3379	1100	211	3	4

VOLUME SUMMARY (Shown in MBF) Point Belding #FG-341-2023-W00528-01 June 2022

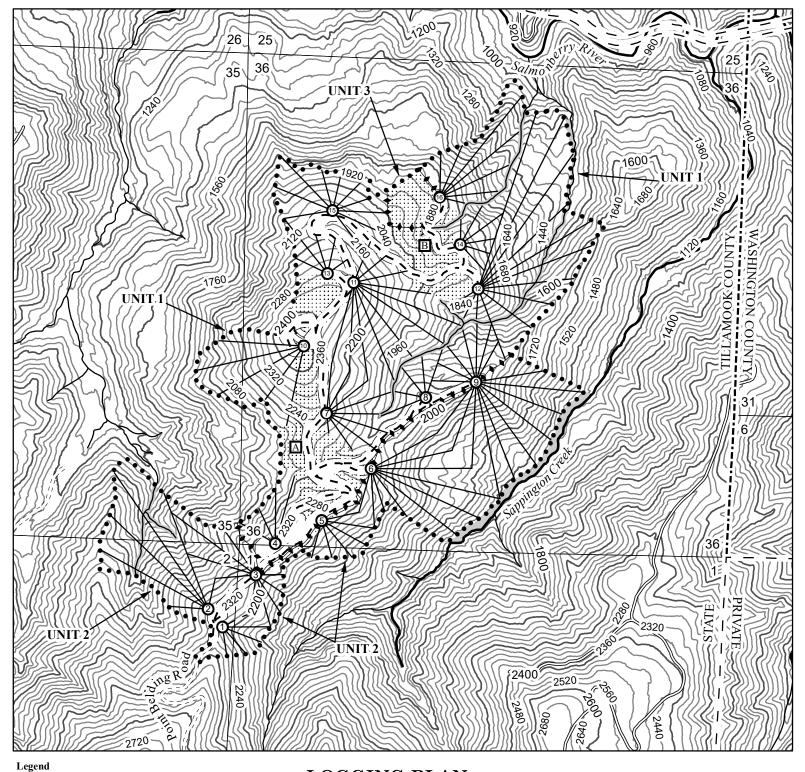
UNIT 1: PC (184 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	1,618	2,132	257	4,007
Douglas-fir	Hidden D&B (2%)	(32)	(43)	(5)	(80)
Douglas-III	NET TOTAL	1,586	2,089	252	3,927
	% of Total	40	53	7	
	Cruise Volume	166	246	42	454
Western	Hidden D&B (2%)	(3)	(5)	(1)	(9)
hemlock	NET TOTAL	163	241	41	445
	% of Total	37	54	9	

UNIT 2: PC (103 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	767	1,490	155	2,412
Douglas fir	Hidden D&B (2%)	(15)	(30)	(3)	(48)
Douglas-fir	NET TOTAL	752	1,460	152	2,364
	% of Total	32	62	6	
	Cruise Volume	72	393	21	486
Western	Hidden D&B (2%)	(1)	(8)	(1)	(10)
hemlock	NET TOTAL	71	385	20	476
	% of Total	15	81	4	

UNIT 3: PC-GR (6 ACRES)


	Cit (C) (C)				
SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	127	168	22	317
Douglas fir	Hidden D&B (2%)	(3)	(3)	(0)	(6)
Douglas-fir	NET TOTAL	124	165	22	311
	% of Total	40	53	7	
	Cruise Volume	16	23	4	43
Western	Hidden D&B (2%)	(0)	(0)	(0)	(0)
hemlock	NET TOTAL	16	23	4	43
	% of Total	37	54	9	

UNIT 4: R/W (21 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	443	588	78	1,109
Douglas-fir	Hidden D&B (2%)	(9)	(12)	(1)	(22)
Douglas-III	NET TOTAL	434	576	77	1,087
	% of Total	40	53	7	
	Cruise Volume	54	82	15	151
Western	Hidden D&B (2%)	(1)	(2)	(0)	(3)
hemlock	NET TOTAL	53	80	15	148
	% of Total	36	54	10	

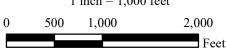
SALE TOTAL

SPECIES	2 SAW	3 SAW	4 SAW	TOTAL
Douglas-fir	2,896	4,290	503	7,689
Western hemlock	303	729	80	1,112
TOTAL	3,199	5,019	583	8,801

- Timber Sale Boundary
- ♦ ♦ Area Boundary
- **」**ODF Ownership Boundary
- Surfaced Roads
- = = : Unsurfaced Roads
- New Road Construction Right-of-Way Boundary
- Type-F Stream
- Type-N Stream Stream Buffer
- Cable Yarding Area
- :::: Tractor Yarding Area
- O Cable Landing
- ☐ Tractor Landing
- County Line
- Section Lines
- 40 Foot Contour Band
 - 200 Foot Contour Band

LOGGING PLAN

FOR TIMBER SALE CONTRACT #FG-341-2023-W00528-01 POINT BELDING


PORTIONS OF SECTIONS 35 & 36, T3N, R7W, W.M., & PORTIONS OF SECTIONS 1 & 2 T2N, R7W, W.M., TILLAMOOK COUNTY, OREGON

> Forest Grove District GIS July, 2022

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1:12,000

1 inch = 1,000 feet

APPROXIMATE NET ACRES

	TRACTOR	CABLE
UNIT 1	29	155
UNIT 2	0	103
UNIT 3	6	0
UNIT 4	21	0
TOTAL	56	258