

Sale FG-341-2022-W00867-01

District: Forest Grove Date: November 29, 2021

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$2,914,707.20	\$4,297.41	\$2,919,004.61
		Project Work:	(\$91,275.00)
		Advertised Value:	\$2,827,729.61

Sale FG-341-2022-W00867-01

District: Forest Grove Date: November 29, 2021

Timber Description

Location:

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	19	0	98
Western Hemlock / Fir	20	0	98
Alder (Red)	12	0	95

Volume by Grade	2\$	3S & 4S 6"- 11"	Camprun	Total
Douglas - Fir	3,675	1,461	0	5,136
Western Hemlock / Fir	358	58	0	416
Alder (Red)	0	0	13	13
Total	4,033	1,519	13	5,565

Comments: Pond Values Used: Local Pond Values, September 2021.

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost:

\$1,164.91/MBF = \$1,425/MBF - \$260.09/MBF

Red alder and Other Hardwoods Stumpage Price = Pond Value minus Logging Cost:

\$330.57 = \$662 - \$331.43

Western hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost:

\$322.30 = \$605 - \$282.70

BRANDING AND PAINTING COST ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE

Hauling costs equivalent to \$950 daily truck cost.

Other Costs (with Profit & Risk to be added):

None

Other Costs (No Profit & Risk added):

Machine Time to Block/Waterbar Roads, and Skid Trails:

20 hours x \$150/hour = \$3.000

Machine Time to Pile Landing Slash:

20 hours x \$150/hour = \$3,000

Equipment Cleaning: 3 pieces x \$1,000/Piece = \$3,000

TOTAL Other Costs (No Profit & Risk added) = \$9,000

Slash Treatment: 14 acres x \$250/acre = \$3,500

ROAD MAINTENANCE

(Includes: Move-in, Grading, Rolling and Spot Rocking)

Move-in = \$2,747.29

General Road Maintenance: 10.57 miles X \$3,835.58 = \$40,542.08 TOTAL Road Maintenance: \$43,289.37 / 5,565 MBF = \$7.77/MBF

Sale FG-341-2022-W00867-01

Date: November 29, 2021 **District: Forest Grove**

Logging Conditions

Douglas - Fir 33.59% Combination#: 1

> Western Hemlock / Fir 36.55% Alder (Red) 37.00%

Logging System: Cable: Medium Tower >40 - <70 Process: Manual Falling/Delimbing

Medium (800 ft) yarding distance: downhill yarding: No

Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF tree size:

loads / day: bd. ft / load: 4600

cost / mbf: \$124.76

machines: Log Loader (A)

Tower Yarder (Medium)

66.41% Combination#: 2 Douglas - Fir

Western Hemlock / Fir 63.45% Alder (Red) 63.00%

Logging System: Shovel Process: Harvester Head Delimbing

Medium (800 ft) yarding distance: downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: bd. ft / load: 4500

cost / mbf: \$98.96 machines: Forwarder

Harvester

11/29/21 4

Sale FG-341-2022-W00867-01

District: Forest Grove Date: November 29, 2021

Logging Costs

Operating Seasons: 2.00

Profit Risk: 15%

Project Costs: \$91,275.00

Other Costs (P/R): \$0.00

Slash Disposal: \$3,500.00

Other Costs: \$9,000.00

Miles of Road

Road Maintenance:

\$7.77

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	2.0	4.6
Western Hemlock / Fir	\$0.00	2.0	3.9
Noble Fir	\$0.00	2.0	4.0
Alder (Red)	\$0.00	2.0	3.0

Sale FG-341-2022-W00867-01

District: Forest Grove Date: November 29, 2021

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$107.63	\$7.93	\$1.58	\$105.33	\$0.00	\$33.37	\$0.63	\$2.00	\$1.62	\$260.09
Western H	emlock	/ Fir							
\$108.39	\$7.93	\$1.58	\$124.23	\$0.00	\$36.32	\$0.63	\$2.00	\$1.62	\$282.70
Alder (Red	l)								
\$108.51	\$8.16	\$1.58	\$166.25	\$0.00	\$42.68	\$0.63	\$2.00	\$1.62	\$331.43

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$801.49	\$541.40	\$0.00
Western Hemlock / Fir	\$0.00	\$605.00	\$322.30	\$0.00
Alder (Red)	\$0.00	\$662.00	\$330.57	\$0.00

Sale FG-341-2022-W00867-01

District: Forest Grove Date: November 29, 2021

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	5,136	\$541.40	\$2,780,630.40
Western Hemlock / Fir	416	\$322.30	\$134,076.80
Alder (Red)	13	\$330.57	\$4,297.41

Gross Timber Sale Value

Recovery: \$2,919,004.61

Prepared By: Adrian Torres Phone: 503-359-7460

PROJECT COST SUMMARY SHEET

 Timber Sale:
 Unparalleled

 Sale Number:
 FG-341-2022-W00867-01

PROJECT NO. 1:	ROCKED ROAD	CONSTRUCTION	AND RECONSTRUCTION
FINDSECTING. I.	NOCKED NOAD		AND RECONSTRUCTION

Length	Cost
15+00	\$9,748.52
4+40	\$2,585.66
3+50	\$3,127.17
2+40	\$1,904.03
21+00	\$20,924.90
13+60	\$15,088.30
8+20	\$7,674.90
6+95	\$7,345.46
-	\$160.01
	\$159.95
	15+00 4+40 3+50 2+40 21+00 13+60 8+20

68+10 stations 1.29 miles

Total Rock =

24 cy 1½" - 0 5,588 cy 3" - 0

Move-in = \$4,447.52

TOTAL PROJECT COST = \$73,166.40

PROJECT NO. 2: ROAD IMPROVEMENT

Road Segment	Length	Cost
A to B	12+70	\$7,444.01
P to H	18+00	\$2,691.68
Point S		\$160.01
Point T		\$159.95

30+70 stations 0.58 miles

Total Rock =

294 cy 1½" - 0 903 cy 3" - 0 44 cy Blocking Boulders

Move-in = \$750.00

TOTAL PROJECT COST = \$11,205.64

PROJECT NO. 3: ROAD VACATING

Road Segment	Length	Cost
B to C	15+00	\$2,538.00
D to E	4+40	\$826.00
F to G	3+50	\$721.00
Point S	-	\$150.00
Point T	-	\$150.00
V1 to V2	4+85	\$571.95
	27+75 stations	

0.53 miles

Move-in = \$1,946.01

TOTAL PROJECT COST = \$6,902.96

<u>TOTAL CREDITS = \$91,275.00</u>

SUMMARY OF IMPROVEMENT COST

	SUMI	MARY OF II	MPROVEM	ENT COST				
Timber Sale:		Unparallele	ed	_	Sale Number: FG-341-202			2-W00867-0
Road Segment:		A to B			Improvement: 12+70			stations
				_			0.24	miles
DDO IFOT NO. 0								
PROJECT NO. 2 MPROVEMENT								
Clearing & grubbing (scatter)	0.15	20 @	¢1 079 00	per acre =			\$161.70	
Remove large stumps	4.00	ea @	\$82.50	per acre =			\$330.00	
Road widening (drift)	12.70	sta @		per ea =			\$1,397.00	
Contruct Turnouts	12.70	ea @	\$66.00	per ea =			\$66.00	
Grade, ditch, & roll	12.70	sta @	\$36.00	per sta =			\$457.20	
Stade, diteri, d foil	12.70	314 😅	ψ30.00	•			•	
				<u>TOT/</u>	AL IMPR	<u>OVEMEN</u>	<u>T COSTS =</u>	\$2,411.90
CULVERTS								
Culverts and Bands		. = 0						
18" Diameter	30	LF @	\$20.00	per LF =			\$600.00	
Markers & Stakes			•					
Culvert Markers	1	ea @	\$10.00	per ea =			\$10.00	
					TOTAL	CULVER'	T COSTS =	\$610.00
ROCK								
	Daale	Dana	Llaul Caat	Diagona	1/			
	Rock Size	Base	Haul Cost			Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	Processing C	USI Φ/Cy			
Subgrade rock								
Bedding and backfill	1½" - 0	\$0.91	\$1.67	\$0.50		24	\$73.92	
				Subtotal	l =	24	\$73.92	
Surfacing rock		1	1	•		1		
Base rock	3" - 0	\$0.91	\$1.67	\$1.22		826	\$3,138.80	
Junction	3" - 0	\$0.91	\$1.67	\$1.22		48	\$182.40	
Turnout	3" - 0	\$0.91	\$1.67	\$1.22		29	\$110.20	
Blocking Boulders	36"	\$14.09	\$11.35	\$1.22		32	\$853.04	
				Subtotal	=	935	\$4,284.44	
			T	A.II	Б.	050	1	
			Totals		Rock =	959		
					1½" - 0 =	24		
				DI 1: D	3" - 0 =	903		
				Blocking Bo	ulders =	32]	
					то:	TAL DOC:	K COCTC	Ф4 250 2C
					10	TAL KUCI	K COSTS =	\$4,358.36
EROSION CONTROL		_					•	
Grass seed & fertilizer	0.15	ac @	\$425.00	per ac	=		\$63.75	
				TOTAL E	NOISOS	CONTRO	L COSTS =	\$63.75
				TOTAL ER	COOLOIN	CONTINU	<u> </u>	ψυυ.1υ
					<u>TOTA</u>	L PROJE	CT COST =	\$7,444.01

T: 1 0 :				10000001	La Nice I	EO 644 66	00 1100007 01
Timber Sale:				_			22-W00867-01
Road Segment:		B to C		_ Co	onstruction:		stations
						0.28	miles
PROJECT NO. 1							
PROJECT NO. 1 CONSTRUCTION							
	1 72	aa @	¢4 070 00	nor oo –		¢1 964 04	
Clearing & grubbing (scatter) Balanced road construction	1.73		\$1,078.00	•		\$1,864.94	
Turnouts	15.00		\$110.00	•		\$1,650.00	
	1	ea@		per ea =		\$66.00	
Turnaround	1	ea @		per ea =		\$82.50	
Landing	1		\$220.00	-		\$220.00	
Grade, ditch, & roll	15.00	sta @	\$36.00	per sta =		\$540.00	
				TOTAL CONS	STRUCTIO	N COSTS =	\$4,423.44
CULVERTS						_	
Culverts and Bands							
18" Diameter	90	LF @	\$20.00	per LF =		\$1,800.00	
			* =****				
				<u>TOTA</u>	L CULVER	T COSTS =	\$1,800.00
ROCK							
		_		Placement/			
	Rock	Base	Haul Cost	Processing	Total CY	Rock Cost	
	Size	Cost \$/cy	\$/cy	Cost \$/cy			
Surfacing rock		<u>l</u>					
Base rock	3" - 0	\$0.91	\$2.01	\$1.22	630	\$2,608.20	
Junction	3" - 0	\$0.91	\$2.01	\$1.22	24	\$99.36	
Turnout	3" - 0	\$0.91	\$2.01	\$1.22	19	\$78.66	
Turnaround	3" - 0	\$0.91	\$2.01	\$1.22	14	\$57.96	
Landing	3" - 0	\$0.91	\$2.01	\$1.22	60	\$248.40	
		4 0.0	4 =	Subtotal =	747	\$3,092.58	
				2 0.00 10 10.0		70,000	
			Totals	All Rock :	= 747	1	
				3" - 0 :		1	
					•	1	
				<u>T(</u>	OTAL ROC	K COSTS =	\$3,092.58
EROSION CONTROL							
Grass seed & fertilizer	0.87	ac @	\$500.00	ner ac =		\$432.50	
Grado doca a formizor	0.07	uo @	ψοσσ.σσ	por 40 =		Ψ102.00	
			<u>T</u>	OTAL EROSION	N CONTRO	L COSTS =	\$432.50
				<u>101</u>	AL PROJE	CT COST =	\$9,748.52
DDG IFOT NO. 0							
PROJECT NO. 3							
VACATE	45.00	-4- @	ው ፫ር ዕር			Ф7 ГО ОО	
Rip rock road surface	15.00	sta @	\$50.00	per sta =		\$750.00	
Rip landing and turnaround	1	ea @	\$150.00	per ea =		\$150.00	
Remove existing culverts	3	ea @	\$150.00	per ea =		\$450.00	
Reestablish OHV trail	1	ea @	\$150.00	per ea =		\$150.00	
Mulch	1.73	ac @	\$600.00	per ac =		\$1,038.00	
				<u>T</u> OT	AL PROJE	CT COST =	\$2,538.00

							= 0 044 5		
Timber Sale:				-	·			022-W00867-01	
Road Segment:		D to E		-	Construction: 4+40			stations	
							0.08	miles	
PROJECT NO. 1									
CONSTRUCTION									
Clearing & grubbing (scatter)	0.51	ac @	\$1,078.00	per ac =			\$549.78		
Balanced road construction	4.40		\$110.00				\$484.00		
Turnaround	1	ea @		per ea =			\$82.50		
Landing	1		\$220.00	•			\$220.00		
Grade, ditch, & roll	4.40	sta @		per sta =			\$158.40		
			,		001107	DUCTION		- 	
ROCK				TOTAL	CONST	RUCTIO	N COSTS =	\$1,494.68	
KOOK		I	1				1	1	
	Rock	Base	Haul Cost	Placem					
	Size	Cost \$/cy	\$/cy	Proces		Total CY	Rock Cost		
			4 7	Cost \$	/cy]	
Surfacing rock								1	
Base rock	3" - 0	\$0.91	\$1.59	\$1.2		185	\$688.20		
Turnaround	3" - 0	\$0.91	\$1.59	\$1.2		14	\$52.08		
Landing	3" - 0	\$0.91	\$1.59	\$1.2		60	\$223.20		
				Subtot	al =	259	\$963.48		
			-	A.II. F		050	1		
			Totals		Rock =	259			
				3	3" - 0 =	259			
					TOT	AL ROCI	K COSTS =	\$963.48	
EROSION CONTROL		_							
Grass seed & fertilizer	0.26	ac @	\$500.00	per ac =			\$127.50	-	
			Т	OTAL FRO	OSION C	CONTRO	L COSTS =	\$127.50	
			<u>-</u>	01712 2110	20.0.1	, , , , , , , , , , , , , , , , , , , 		Ψ127.00	
					TOTAL	PROJE	CT COST =	\$2,585.66	
PROJECT NO. 3									
VACATE									
Rip rocked road surface	4.40	sta @	\$50.00	per sta =			\$220.00		
Rip landing and turnaround	4.40 1	ea @	\$150.00	•			\$150.00		
Reestablish OHV trail	1	ea @ ea @	\$150.00	•			\$150.00		
Mulch	0.51	ea @ ac @	\$600.00	-					
IVILIO	0.51	ac w	φυυυ.υυ	per ac =			\$306.00	-	
					TOTAL	. PROJE	CT COST =	\$826.00	

Tim	nber Sale:	Unparalleled		_	Sale Number:	FG-341-2	022-W00867-01
Road	Segment:	F to G			Construction: 3+50		
				_		0.07	miles
PROJECT NO. 1							
CONSTRUCTION							
Clearing & grubbing (scatter)	0.41	ac @	\$1,078.00	per ac =		\$441.98	
Balanced road construction	3.50	sta @	\$110.00	per sta =		\$385.00	
Roadside landing	1	ea @	\$165.00	per ea =		\$165.00	
Landing	1	ea @	\$220.00	per ea =		\$220.00	
Grade, ditch, & roll	3.50	sta @	\$36.00	per sta =		\$126.00	_
CHI VEDTO				TOTAL C	CONSTRUCTION	N COSTS =	\$1,337.98
CULVERTS		15.0	# 00.00			# 000 00	
18" Diameter Markers & Stakes	30	LF @	\$20.00	per LF =		\$600.00	
Markers & Stakes							
DOOK				<u>T</u>	OTAL CULVER	T COSTS =	\$600.00
ROCK			_				-
	Rock	Base	Haul Cost	Placeme			
	Size	Cost \$/cy		Process		Rock Cost	
	0.20	σου ψ, σ,	Ψ,σ,	Cost \$/	су]
Surfacing rock				1	1	1	7
Base rock	3" - 0	¥	\$1.94	\$1.22		\$598.29	1
Roadside landing	3" - 0		\$1.94	\$1.22		\$244.20	1
Landing	3" - 0	\$0.91	\$1.94	\$1.22		\$244.20	
				Subtota	l = 267	\$1,086.69	J
			Totals	All D	ock = 267]	
			lotais		' - 0 = 267		
					-0- 207		
					TOTAL ROCI	K COSTS =	\$1,086.69
EROSION CONTROL							
Grass seed & fertilizer	0.21	ac @	\$500.00	per ac =		\$102.50	
			_	· 			_
			<u>I</u>	OTAL ERO	SION CONTRO	L COSTS =	\$102.50
					TOTAL PROJE	CT COST =	\$3,127.17
DDO IFOT NO. 2				•			· · · ·
PROJECT NO. 3 VACATE							
Rip rocked road surface	3.50	sta @	\$50.00	per sta =		\$175.00	
Rip landing and turnaround	1	ea @	\$150.00	per ea =		\$150.00	
Remove existing culverts	1	ea @	\$150.00	per ea =		\$150.00	
Mulch	0.41	ac @	\$600.00	per ea =		\$246.00	
THOUSE THE STATE OF THE STATE O	0.41	u0 @	ψοσο.σο	•	TOTAL PROJE		_
							\$721.00

Timber Sale:			led				22-W00867-01
Road Segment:		_		Reconstructio			stations
				_			miles
PROJECT NO. 1							
RECONSTRUCTION							
Clearing & grubbing (scatter)	0.03	ac @	\$1,078.00	per ac =		\$32.34	
Construct landing	1	ea @	\$220.00	per ea =		\$220.00	
Grade, ditch, & roll	2.40	sta @	\$36.00	per sta =		\$86.40	
				TOTAL RECONS	TRUCTIO	N COSTS =	\$338.74
ROCK			•				Ψσσσ
		_		I 51 ./		1	
	Rock	Base	Haul Cost	Placement/	Total CV	Dook Coot	
	Size	Cost	\$/cy	Processing Cost \$/cy	I otal CY	Rock Cost	
		\$/cy		Cost \$/cy			
Surfacing rock	011 0	\$0.04	00.00	D 4.00	450	0040 70	
Base rock	3" - 0	\$0.91	\$3.08	\$1.22	156	\$812.76	
Junction	3" - 0	\$0.91	\$3.08	\$1.22	48	\$250.08	
Landing	3" - 0	\$0.91	\$3.08	\$1.22	95	\$494.95	
				Subtotal =	299	\$1,557.79	
			Totala	All Dools	200	1	
			Totals	All Rock = 3" - 0 =		ł	
				3 - 0 =	299	J	
				TC	TAL ROC	K COSTS =	\$1,557.79
EROSION CONTROL						•	
Grass seed & fertilizer	0.02	ac @	\$500.00	per ac =		\$7.50	
Oraco coca a fortilizor	0.02	uo 😅	ψυσυ.υσ	po. 40 –		Ψ1.00	
			<u>I</u>	OTAL EROSION	CONTRO	L COSTS =	\$7.50
				<u>TOT</u>	AL PROJE	CT COST =	\$1,904.03

	SUMM	IAK I OF C	ONSTRUC	HON COST			
Timber Sale:		Unparallel	ed	_	Sale Number:	FG-341-20)22-W00867-01
Road Segment:		J to K			Construction:	21+00	stations
				-	•	0.40	miles
PROJECT NO. 1							
CONSTRUCTION							
Clearing & grubbing (scatter)	2.42	ac @	\$1,078.00	per ac =		\$2,608.76	
Balanced road construction	17.40	sta @	\$110.00	per sta =		\$1,914.00	
Drift	3.60	sta @	\$180.00	per sta =		\$648.00	
Turnouts	2	ea@	\$66.00	per ea =		\$132.00	
Turnaround	1	ea@	\$82.50	per ea =		\$82.50	
Roadside landing	2	ea@	\$165.00	per ea =		\$330.00	
Landing	1	ea@	\$220.00	per ea =		\$220.00	
Grade, ditch, & roll	21.00	sta @	\$36.00	per sta =		\$756.00	
				TOTAL C	ONSTRUCTIO	N COSTS =	\$6,691.26
CULVERTS							
Culverts and Bands							
18" Diameter	120	LF@	\$20.00	per LF =		\$2,400.00	
24" Diameter	50	LF @	\$29.00	per LF =		\$1,450.00	
Markers & Stakes			•	•		. ,	
Culvert markers	5	ea @	\$10.00	per ea =		\$50.00	
				-	OTAL OULVED		
ROCK				<u>10</u>	OTAL CULVER	1 00818 =	\$3,900.00
		ı	1	Discourse	.,		1
	Rock	Base	Haul Cost	Placemen Processin		Rock Cost	
	Size	Cost \$/cy	\$/cy	Cost \$/cy	~	ROCK COST	
Surfacing rock		<u> </u>		Cost \$/cy	<u>/ </u>		J
Base rock	3" - 0	\$0.91	\$3.50	\$1.22	1,365	\$7,684.95	1
Turnout	3" - 0	\$0.91	\$3.50	\$1.22	58	\$326.54	•
Turnaround	3" - 0	\$0.91	\$3.50	\$1.22	20	\$112.60	1
Roadside landing	3" - 0	\$0.91	\$3.50	\$1.22	190	\$1,069.70	•
Landing	3" - 0	\$0.91	\$3.50	\$1.22	95	\$534.85	
Landing	3 - 0	ψ0.31	ψ5.50	Subtotal :		\$9,728.64	
				- Odbiolai -	1,720	ψ5,720.0+	1
			Totals	All Roo	ck = 1,728		
			rotalo		0 = 1,728		
					0 - 1,720		
					TOTAL ROC	K COSTS =	\$9,728.64
EPOSION CONTROL							
Grass seed & fertilizer	1.21	ac @	\$500.00	ner ac -		\$605.00	
CIGOS SOCG & TOTAINZOI	1.41	ac w	ψοσο.σο	pci ac =	-	ψυυυ.υυ	-
				TOTAL EROS	SION CONTRO	L COSTS =	\$605.00
			•				
				_		OT 000T	# 00 604 65
				<u> </u>	TOTAL PROJE	CI COSI =	\$20,924.90

Timb	er Sale:	l	Unparalle	led	Sale Number:		FG-341-20)22-W00867-01
Road S	egment:		L to M		Reconstr	uction:	13+60	stations
					_		0.26	miles
PROJECT NO. 1								
RECONSTRUCTION								
Clearing & grubbing (scatter)		0.16	ac @	\$1,078.00	per ac =		\$172.48	
Balanced road construction		13.60	sta @		per sta =		\$1,496.00	
Fill reconstruction				*************	F 5 . 5 . 5 .		4 1, 100100	
Excavate		500	cy @	\$1.64	per cy =		\$820.00	
Endhaul unsuitable fill material		200	cy @		per cy =		\$236.00	
Shape and compact waste materi	al	200	cy @		per cy =		\$60.00	
Place and Compact fill	u.	650	cy @		per cy =		\$1,885.00	
Contruct Turnouts		1	ea @		per ea =		\$66.00	
Construct Turnaround		1	ea @		per ea =		\$82.50	
Construct landing		1	ea @		per ea =		\$220.00	
Grade, ditch, & roll		13.60	sta @		•		\$489.60	
Grade, ditch, & foll		13.00	sia w	φ30.00	per sta =		φ 4 69.00	-
				<u>TO</u>	TAL RECONSTRI	JCTION	N COSTS =	\$5,527.58
CULVERTS								
Culverts and Bands								
18" Diameter		90	LF@	\$20.00	per LF =		\$1,800.00	
24" Diameter		50	LF @	\$29.00	per LF =		\$1,450.00	
Markers & Stakes					·			
Culvert Markers		4	ea @	\$10.00	per ea =		\$40.00	
				*	·			_
					<u>TOTAL CL</u>	JLVER	T COSTS =	\$3,290.00
ROCK								
			Base		Placement/			1
		Rock	Cost	Haul Cost	Processing	Total	Rock Cost	
		Size	\$/cy	\$/cy	Cost \$/cy	CY		
Subgrade rock			+7					J
Bedding and backfill		1½" - 0	\$0.91	\$3.55	\$0.50	24	\$119.04	1
			¥ 0.10 1	¥ 0.00	Subtotal =	24	\$119.04	
Surfacing rock					C abiota.		Ψ	
Base rock		3" - 0	\$0.91	\$3.55	\$1.22	884	\$5,021.12	1
Junction		3" - 0	\$0.91	\$3.55	\$1.22	48	\$272.64	1
Turnout		3" - 0	\$0.91	\$3.55	\$1.22	29	\$164.72	
Turnaround		3" - 0	\$0.91	\$3.55	\$1.22	20	\$113.60	
Landing		3" - 0	\$0.91	\$3.55	\$1.22	95	\$539.60	
Larianig		0 0	φο.σ ι	ψ0.00	Subtotal =		\$6,111.68	
					• • • • • • • • • • • • • • • • • • •	1,010	Ψο,ου	1
				Totals	All Rock =	1,100		
				rotalo	1½" - 0 =	24		
					3" - 0 =			
					3 -0=	1,070		
					<u>TOTA</u>	L ROCI	K COSTS =	\$6,230.72
EDOCION CONTROL								
EROSION CONTROL		0.00	_	050000			0.40.00	
Grass seed & fertilizer		0.08	ac @	\$500.00	per ac =		\$40.00	-
				TOT	AL EROSION CO	NTRO	COSTS =	\$40.00
				<u></u>			CT COST =	
					IOTAL	NOJE	<u> </u>	φ10,000.30

Timber Sale:	00111111	Unparallel	ed		Sale Number:	FG-341-20	022-W00867-01
Road Segment:		N to O		-	Construction:		stations
				-		0.16	miles
PROJECT NO. 1							
CONSTRUCTION							
Clearing & grubbing (scatter)	0.95	ac @	\$1,078.00	per ac =		\$1,024.10	
Balanced road construction	8.20	sta @	\$110.00	per sta =		\$902.00	
Turnaround	1	ea@	\$82.50	per ea =		\$82.50	
Landing	1	ea@	\$220.00	per ea =		\$220.00	
Grade, ditch, & roll	8.20	sta @	\$36.00	per sta =		\$295.20	<u>-</u>
				TOTAL CO	ONSTRUCTION	N COSTS =	\$2,523.80
CULVERTS				<u> </u>			ΨΞ,σΞσ.σσ
Culverts and Bands							
18" Diameter	60	LF @	\$20.00	per LF =		\$1,200.00	
Markers & Stakes				•		. ,	
Culvert markers	2	ea @	\$10.00	per ea =		\$20.00	
				TO	TAL CULVER	T COSTS -	\$1,220.00
ROCK				<u>10</u>	TAL CULVER	1 00313 =	Φ1,220.00
KOOK		Т	Т			T	1
	Rock	Base	Haul Cost	Placemen	-		
	Size	Cost \$/cy	\$/cy	Processin		Rock Cost	
		_		Cost \$/cy	у		
Surfacing rock	011 0	00.04	Φ0.57	# 4.00	500	# 0 000 40	1
Base rock	3" - 0	\$0.91	\$3.57	\$1.22	533	\$3,038.10	
Turnaround	3" - 0	\$0.91	\$3.57	\$1.22	20	\$114.00	
Landing	3" - 0	\$0.91	\$3.57	\$1.22	95	\$541.50	
				Subtotal	= 648	\$3,693.60	l
			Totals	All Ro	ck = 648]	
			Totals		0 = 648		
				Ū	<u> </u>	1	
					TOTAL ROCI	K COSTS =	\$3,693.60
EROSION CONTROL							
Grass seed & fertilizer	0.48	ac @	\$500.00	per ac =		\$237.50	
					ION CONTRO		- \$237.50
			<u></u>	OTAL ERUS	ION CONTRO	L 00313 =	φ231.30
				<u>T</u>	OTAL PROJE	CT COST =	\$7,674.90

SUMMARY OF IMPROVEMENT COST

Timber Sale:	Unparalleled			12141 0001	Sale Number:	FG-341-202	2-W00867-01
Road Segment:		P to H		-	Improvement:	18+00	stations
				-	,	0.34	miles
PROJECT NO. 2							
IMPROVEMENT							
Clearing & grubbing (scatter)	0.21	ac @	\$1,078.00	per acre =		\$226.38	
Clean culvert inlet & outlet, scatter waste	2	ea @		per ea =		\$50.00	
Construct Settling Ponds	6	ea @	\$25.00	per ea =		\$150.00	
Improve Turnouts	3	ea @	\$33.00	per ea =		\$99.00	
Improve Turnaround	1	ea @	\$41.25	per ea =		\$41.25	
Grade, ditch, & roll	18.00	sta @	\$36.00	per sta =		\$648.00	
				TOTAL II	MPROVEMEN	T COSTS =	\$1,214.63
ROCK				<u> </u>			
	Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placement/ Processing Cost S	Total CY	Rock Cost	
Surfacing rock							
Surfacing rock Traction rock	1½" - 0	\$0.91	\$3.01	\$1.22	270	\$1,387.80	
Traction rook	1,12	Ψο.σι	φο.στ	Subtotal =	270	\$1,387.80	
				0 0.00 10 10.10		+ 1,001100	
			Totals	All Roo	ck = 270		
				1½" -	- 0 = 270		
					TOTAL ROC	K COSTS =	\$1,387.80
EROSION CONTROL							•
Grass seed & fertilizer	0.21	ac @	\$425.00	per ac =		\$89.25	
				TOTAL EROS	ION CONTRO	L COSTS =	\$89.25
						_	
				I	OTAL PROJE	CT COST =	\$2,691.68

Timber Sale:	Unparalleled				Sale Number:	FG-341-20)22-W00867-01
Road Segment:		Q to R					stations
						0.13	miles
PROJECT NO. 1							
CONSTRUCTION							
Clearing & grubbing (scatter)	0.80	ac @	\$1,078.00	per ac =		\$862.40	
Balanced road construction	6.95	sta @	\$110.00	per sta =		\$764.50	
Turnaround	1	ea@	\$82.50	per ea =		\$82.50	
Landing	1	ea@	\$220.00	per ea =		\$220.00	
Grade, ditch, & roll	6.95	sta @	\$36.00	per sta =		\$250.20	_
				TOTAL COM	NSTRUCTIO	N COSTS =	\$2,179.60
CULVERTS				101712 001	1011100110	100010-	Ψ2,110.00
Culverts and Bands							
18" Diameter	30	LF @	\$20.00	per LF =		\$600.00	
Markers & Stakes			V =0.00	F		***************************************	
Culvert markers	1	ea @	\$10.00	per ea =		\$10.00	
					·AL OULVED	T 000T0	
ROCK				<u>101</u>	AL CULVER	1 00515 =	\$610.00
ROCK		•				•	•
	Rock	Base	Haul Cost	Placement			
	Size	Cost \$/cy	\$/cy	Processing	Total CY	Rock Cost	
			Ψ)	Cost \$/cy			
Surfacing rock			1			T .	1
Base rock	3" - 0	\$0.91	\$5.60	\$1.22	449	\$3,466.91	
Turnaround	3" - 0	\$0.91	\$5.60	\$1.22	20	\$154.60	
Landing	3" - 0	\$0.91	\$5.60	\$1.22	95	\$734.35	
				Subtotal =	564	\$4,355.86	
			Totala	All Rock		1	
			Totals	3" - (
				3 - (0 = 304	1	
					TOTAL ROC	K COSTS =	\$4,355.86
EDOSION CONTROL							
EROSION CONTROL Grass seed & fertilizer	0.40	ac @	\$500.00	ner ac –		\$200.00	
Orass seed & retuileer	0.40	ac w	φυσυ.συ	per ac –		φ200.00	=
			<u>T</u>	OTAL EROSIO	ON CONTRO	L COSTS =	\$200.00
				TO	TAL PROJE	CT COST =	\$7,345.46
				<u>10</u>	TAL FROJE	<u> </u>	ψ <i>ι</i> ,υ + υ.4υ

SUMMARY OF IMPROVEMENT COST

	Timber Sale:	Unparalleled			Sa	FG-341-2022-W00867-01		
	Road Segment:		Point S		-			
PROJECT NO. 2								
IMPROVEMENT								
ROCK								
		Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placement/ Processing Cost \$/cy	Total CY	Rock Cost	
Subgrade rock								
Blocking Boulders		36"	\$14.09	\$11.36	\$1.22	6	\$160.01	
					Subtotal =	6	\$160.01	
				Totals	All Rock = Blocking Boulders =	_		
					TO	OTAL ROC	K COSTS =	\$160.01
							CT COST =	\$160.01
							=	
PROJECT NO. 3								
CONSTRUCTION							·	
Move boulders		1	ea @	\$150.00	per ea =		\$150.00	
					<u>тот.</u>	AL PROJE	CT COST =	\$150.00

SUMMARY OF IMPROVEMENT COST

Tim	ber Sale:	Unparallele	ed	Sale	Number:	FG-341-202	2-W00867-01
Road	Segment:	Point T		- -			
PROJECT NO. 2							
IMPROVEMENT							
ROCK							
	Rock Size	Base Cost \$/cy	Haul Cost \$/cy	Placement/ Processing Cost \$/cy	Total CY	Rock Cost	
Subgrade rock							
Blocking Boulders	36"	\$14.09	\$11.35	\$1.22	6	\$159.95	
				Subtotal =	6	\$159.95	
			Totals	All Rock = Blocking Boulders =	6		
				ТО	TAL ROCI	K COSTS =	\$159.95
						CT COST =	
						=	
PROJECT NO. 3							
CONSTRUCTION							
Move boulders	1	ea @	\$150.00	per ea =		\$150.00	
				<u>TOTA</u>	L PROJE	CT COST =	\$150.00

SUMMARY OF VACATING COST

Timber Sale:	Unparalleled		Sa	le Number:	FG-341-20	022-W00867-01
Road Segment:	V1 to V2			Vacating:	4+85	stations
			-		0.09	miles
PROJECT NO. 3						
VACATE						
Construct tank traps	2	ea@	\$55.00 per ea =	=	\$110.00	
Construct waterbars	3	ea@	\$27.50 per ea =	=	\$82.50	
Rip rocked road surface	4.85	sta @	\$50.00 per sta	=	\$242.50	
Grass seed & fertilizer	0.13	ac @	\$425.00 per ac =	=	\$56.78	
Mulch	0.13	ac @	\$600.00 per ac =	=	\$80.17	_
			<u> TOT</u>	AL PROJE	CT COST =	\$571.95

Timber Sale: Unparalleled	Sale Number: FG-341-20	22-W00867-01
PROJECT NO. 1 and 2 MOVE-IN, WITHIN AREA MOV	E, & CLEANING COSTS	
Equipment	Total	
Grader	\$767.15	
Roller (smooth/grid) & Compactor	\$515.31	
Excavator (Large) - Equipment Cleaning	\$1,792.78	
Dozer (Large) - Equipment Cleaning	\$1,837.36	
Dump Truck (10cy +)	\$153.23	
Water Truck (1,500 Gal)	\$131.69	
	TOTAL MOVE-IN COSTS =	\$5,197.52
PROJECT NO. 3 MOVE-IN, WITHIN AREA MOVE, & C	LEANING COSTS	
Equipment	Total	
Excavator (Large) - Equipment Cleaning	\$1,792.78	
Dump Truck (10cy +)	\$153.23	
	TOTAL MOVE-IN COSTS =	\$1,946.01

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

Timber Sale: Unparalleled
Sale Number: FG-341-2022-W00867-01
Stockpile Name: Beaverdam

1 1/2" - 0: 318 cy (truck measure) 3" -0: 6,491 cy (truck measure)

Total truck yardage: 6,809 cy

Move-in

Move in loader

Move in Dump Trucks

Subtotal = \$748.28

Per CY = \$0.11/cy

3"-0 & 1 1/2" -0 Base Cost

Load dump truck

\$0.80 / cy x 6,809 cy = \$5,446.80

Subtotal = \$5,446.80

Per CY = \$0.80

1 1/2"-0 Cost = **\$0.91/cy** 3"-0 Cost = **\$0.91/cy**

QUARRY DEVELOPMENT & CRUSHING COST SUMMARY

Timber Sale: Unparalleled Sale Number: FG-341-2022-W00867-01 Stockpile Name: Beaverdam 8.5mile Boulders: 44 Each Move-in Move in excavator \$524.70 Move in Dump Trucks \$24.75 Subtotal = \$549.45 Per CY = \$12.49/cy **Bolder Base Cost** Load dump truck \$1.60 / cy x 44 \$70.40 Subtotal = \$70.40

Per CY =

\$1.60

Boulder Cost = \$14.09/cy

CRUISE REPORT Unparalleled FG-341-2022-W00867-01

1. LOCATION: Portions of Sections 35 and 36, T2N, R6W, W.M., Tillamook County, Oregon. Portions of Section 2, T1N, R6W, W.M., Tillamook County, Oregon.

2. CRUISE DESIGN:

Pre-cruise evaluation indicated that the stand's average DBH is approximately 16 inches and the coefficient of variation is about 56%. For sales of this size and approximate value, ODF cruise standards require a sampling error of 9% at a 68% confidence level, and a minimum sample size of 100 graded trees. The cruise design chosen for this sale is a variable radius sample plot using a 40 BAF prism.

3. SAMPLING METHOD:

The Timber Sale Area was sampled in November 2021 with 40 variable radius grade plots using a 40 BAF prism. Plots were laid out on a 5 chain x 6 chain grid for Unit 1 and Unit 2. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

4. CRUISE RESULTS:

223 trees were measured and graded producing a cumulative Sampling Error of 7.6% on the Douglas-fir basal area and 8.1% for the Douglas-fir net board foot volume.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following Columbia River Log Scale grade rules and favored 40 foot segments.

- a) Height Standards: Total tree heights were measured to the nearest foot. Bole heights were calculated to a top DIB of six inches (or 25% of DBH, whichever is larger) for conifers.
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors: Measured for each grade tree using a form point of 16 feet.

6. DATA PROCESSING:

- a) **Volumes and Statistics**: Cruise estimates and sampling statistics were derived from Super Ace 2008 cruise software.
- b) **Deductions:** The following percent volume deductions are by species to account for the hidden defect and breakage. For conifers two percent was deducted. For hardwoods five percent was deducted.
- **7. CRUISERS:** The sale was cruised by ODF cruisers Adrian Torres, Kenton Burns, Mark Savage, Nate Hunter, and Shamus Smith.

Prepared by:	Adrian Torres	11/24/2021
		Date
Reviewed by:	Mark Savage	11/24/2021
·	-	Date

гс Рѕт	'ATS					OJECT S	TATIS UNP.				PAGE DATE	1 11/1 <mark>7/</mark> 2021
WP	RGE	SC	TRACT	1	YPE		ACI	RES	PLOTS	TREES	CuFt	BdFt
02N	06	35	00U1	C	омс			123.00	40	231	S	W
02N	06W	35	00U2	<u> </u>	0MC							
						TDEEA	:	ESTIMATED		ERCENT		
			DI OTO	mp.c.c.0		TREES PER PLOT		TOTAL		AMPLE TREES		
TOTAL			PLOTS	TREES				TREES		(REE)		
CRUI			40 40	231 231		5,8 5.8		14,897		1.6		
	COUNT		10	201		0.0		11,027		1,0		
REFO	REST											
COU												
BLA												
100 %	6											
			41 IDI E	mp regé		ND SUMMA		D1011	onone	NET	GD ORG	NET
			AMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOU	G FIR		206	101.4	19,3	118	46,9	206.1	42,716	42,522	9,137	9,137
	G FIR-S		8	12,7	10,8	52	2,5	8,1	,,,,	,~	.,	-,1-1
WHE	MLOCK		11	5,2	19.5	85	2.4	10.7	2,174	2,174	464	464
NOB			5	.7	35.8	140	0.8	4.8	1,294	1,272	244	244
R AL			1	1.2	12.0	92	0.3	1.0	110	110	25	25
TOT	A L	·····	231	121.1	18.7	110	53.4	230.7	46,295	46,079	9,869	9,869
		8,1		OF 100 THE	VOLUME		VITHIN T	HE SAMPLE E	ERROR			
7.1	60 1		COFFE			CAMDI D	PERCT	DT7	#	OF TREES E	EO	IMP DOD
CL SD:	68.1 1.0		COEFF VAR.%	S,E,%	L		E TREES - AVG		#	OF TREES F		INF. POP.
SD:	68.1 1.0 G FIR		COEFF VAR.% 74.8	S.E.% 5.2	L	SAMPLE OW 670	TREES - AVG 707	BF HIGH 744	#		10	
SD: DOU DOU	1.0 G FIR G FIR-S		VAR.% 74.8	5.2	L	OW 670	AVG 707	HIGH 744	#			
SD: DOU DOU WHE	1.0 G FIR G FIR-S		VAR.% 74.8 66.0	5.2 20.9	Ŀ	OW 670 559	707 706	HIGH 744 854	#			
SD: DOU DOU WHE NOB	1.0 G FIR G FIR-S MLOCK FIR		VAR.% 74.8	5.2	L	OW 670	AVG 707	HIGH 744	#			
SD; DOU DOU WHE	1.0 G FIR G FIR-S MLOCK FIR DER		VAR.% 74.8 66.0	5.2 20.9	Ŀ	OW 670 559	707 706	HIGH 744 854	#			1
SD: DOU DOU WHE NOB R AL	1.0 G FIR G FIR-S MLOCK FIR DER		VAR.% 74.8 66.0 58.8	5.2 20.9 29.2	Ŀ	OW 670 559 1,653 675	707 706 2,336	HIGH 744 854 3,019 755		5	72	1
SD: DOU WHE NOB R AL TOT CL SD:	1.0 G FIR G FIR-S MLOCK FIR DER AL		VAR.% 74.8 66.0 58.8 84.8 COEFF	5.2 20.9 29.2 5.6 S.E.%		OW 670 559 1,653 675 SAMPLE	707 706 2,336 715 E TREES - AVG	HIGH 744 854 3,019 755 • CF HIGH		5 287	72	3. INF. POP.
SD: DOU WHE NOB R AL TOT CL SD: DOU	1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR		VAR.% 74.8 66.0 58.8 84.8 COEFF	5.2 20.9 29.2 5.6		OW 670 559 1,653 675 SAMPLE	707 706 2,336 715 E TREES -	HIGH 744 854 3,019 755		5 287 OF TREES F	72 REQ.	3 INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU DOU	G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5	5.2 20.9 29.2 5.6 S.E.% 4.6		OW 670 559 1,653 675 SAMPLE OW 140	707 706 2,336 715 E TREES - AVG 147	HIGH 744 854 3,019 755 • CF HIGH 154		5 287 OF TREES F	72 REQ.	3 INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU DOU	1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S EMLOCK		VAR.% 74.8 66.0 58.8 84.8 COEFF	5.2 20.9 29.2 5.6 S.E.%		OW 670 559 1,653 675 SAMPLE	707 706 2,336 715 E TREES - AVG	HIGH 744 854 3,019 755 • CF HIGH		5 287 OF TREES F	72 REQ.	3 INF. POP.
SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL	1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S EMLOCK FIR		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8 54.9	5.2 20.9 29.2 5.6 S.E.% 4.6 17.9 27.3		OW 670 559 1,653 675 SAMPLE OW 140 119 319	707 706 2,336 7/5 E TREES - AVG 147 144 439	HIGH 744 854 3,019 755 CF HIGH 154 170 559		5 287 OF TREES F 5	72 REQ. 10	3 INF. POP.
SD: DOU WHE NOB R AL TOT CL SD: DOU WHE	1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S EMLOCK FIR		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8	5.2 20.9 29.2 5.6 S.E.% 4.6		OW 670 559 1,653 675 SAMPLE OW 140	707 706 2,336 715 E TREES - AVG 147	HIGH 744 854 3,019 755 CF HIGH 154		5 287 OF TREES F	72 REQ.	3 INF. POP.
SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL	1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S EMLOCK FIR		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8 54.9	5.2 20.9 29.2 5.6 S.E.% 4.6 17.9 27.3		OW 670 559 1,653 675 SAMPLE OW 140 119 319	707 706 2,336 715 E TREES - AVG 147 144 439 147	HIGH 744 854 3,019 755 CF HIGH 154 170 559	#	5 287 OF TREES F 5	72 REQ. 10	3 INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD:	G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR G FIR-S MLOCK FIR DER AL 68.1 1.0		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8 54.9 75.8 COEFF VAR.%	5.2 20.9 29.2 5.6 S.E.% 4.6 17.9 27.3 5.0 S.E.%	L	OW 670 559 1,653 675 SAMPLE OW 140 119 319 140 TREES/A	707 706 2,336 715 ETREES - AVG 147 144 439 147 ACRE AVG	HIGH 744 854 3,019 755 CF HIGH 154 170 559 155	#	5 287 OF TREES F 5	72 REQ. 10	3 INF. POP. 1 INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD:	G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR DER AL 68.1		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8 54.9 75.8 COEFF VAR.% 53.0	5.2 20.9 29.2 5.6 S.E.% 4.6 17.9 27.3 5.0 S.E.% 8.4	L	OW 670 559 1,653 675 SAMPLE OW 140 119 319 140 TREES/A OW 93	AVG 707 706 2,336 715 E TREES - AVG 147 144 439 147 ACRE AVG 101	HIGH 744 854 3,019 755 CF HIGH 154 170 559 155 HIGH 110	#	287 OF TREES F 5 229 OF PLOTS F	72 REQ. 10 57	JINF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU DOU WHE DOU	G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR DER AL 68.1 1.0 G FIR		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8 54.9 75.8 COEFF VAR.% 53.0 390.0	5.2 20.9 29.2 5.6 S.E.% 4.6 17.9 27.3 5.0 S.E.% 8.4 61.6	L	OW 670 559 1,653 675 SAMPLE OW 140 119 319 140 TREES/A OW 93 5	AVG 707 706 2,336 715 ETREES - AVG 147 144 439 147 ACRE AVG 101 13	HIGH 744 854 3,019 755 CF HIGH 154 170 559 155 HIGH 110 20	#	287 OF TREES F 5 229 OF PLOTS F	72 REQ. 10 57	JINF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU DOU WHE DOU	1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S EMLOCK		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8 54.9 75.8 COEFF VAR.% 53.0	5.2 20.9 29.2 5.6 S.E.% 4.6 17.9 27.3 5.0 S.E.% 8.4	L	OW 670 559 1,653 675 SAMPLE OW 140 119 319 140 TREES/A OW 93	AVG 707 706 2,336 715 E TREES - AVG 147 144 439 147 ACRE AVG 101	HIGH 744 854 3,019 755 CF HIGH 154 170 559 155 HIGH 110	#	287 OF TREES F 5 229 OF PLOTS F	72 REQ. 10 57	3 INF. POP. 1 INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD:	1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S EMLOCK		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8 54.9 75.8 COEFF VAR.% 53.0 390.0 249.1	5.2 20.9 29.2 5.6 S.E.% 4.6 17.9 27.3 5.0 S.E.% 8.4 61.6 39.3	L	OW 670 559 1,653 675 SAMPLE OW 140 119 319 140 TREES/A OW 93 5 3	AVG 707 706 2,336 715 ETREES - AVG 147 144 439 147 ACRE AVG 101 13 5	HIGH 744 854 3,019 755 CF HIGH 154 170 559 155 HIGH 110 20 7	#	287 FOF TREES F 5 229 FOF PLOTS F 5	72 REQ. 10 57 REQ. 10	3 INF. POP. 1 INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB NOB R AL TOT CL SD:	1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR C FIR DER AL 68.1 1.0 G FIR DER AL 68.1 1.0 G FIR DER AL 68.1		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8 54.9 75.8 COEFF VAR.% 53.0 390.0 249.1 293.6	5.2 20.9 29.2 5.6 S.E.% 4.6 17.9 27.3 5.0 S.E.% 8.4 61.6 39.3 46.4	L	OW 670 559 1,653 675 SAMPLE OW 140 119 319 140 TREES/A OW 93 5 3 0	AVG 707 706 2,336 715 ETREES - AVG 147 144 439 147 ACRE AVG 101 13 5 1	HIGH 744 854 3,019 755 CF HIGH 154 170 559 155 HIGH 110 20 7	#	287 OF TREES F 5 229 OF PLOTS F	72 REQ. 10 57	3 INF. POP. 1 INF. POP. 1
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU WHE R AL TOT R AL TOT	1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR C FIR DER AL 68.1 1.0 G FIR DER AL 68.1 1.0 G FIR DER AL 68.1		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8 54.9 75.8 COEFF VAR.% 53.0 390.0 249.1 293.6 632.5	5.2 20.9 29.2 5.6 S.E.% 4.6 17.9 27.3 5.0 S.E.% 8.4 61.6 39.3 46.4 99.9	L	OW 670 559 1,653 675 SAMPLE OW 140 119 319 140 TREES/A OW 93 5 3 0 0 110	AVG 707 706 2,336 715 E TREES - AVG 147 144 439 147 ACRE AVG 101 13 5 1	HIGH 744 854 3,019 755 CF HIGH 154 170 559 155 HIGH 110 20 7 1 2 132	#	287 FOF TREES F 5 229 FOF PLOTS F 5	72 REQ. 10 57 REQ. 10	3 INF. POP. 1 INF. POP. 1
SD: DOU DOU WHE NOBB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD:	G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR C FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR G FIR-S MLOCK FIR G FIR-S MLOCK FIR DER AL 68.1 1.0		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8 54.9 75.8 COEFF VAR.% 632.5 58.2 COEFF VAR.%	5.2 20.9 29.2 5.6 S.E.% 4.6 17.9 27.3 5.0 S.E.% 8.4 61.6 39.3 46.4 99.9 9.2 S.E.%	L	OW 670 559 1,653 675 SAMPLE OW 140 119 319 140 TREES/A OW 93 5 3 0 110 BASAL A	AVG 707 706 2,336 715 ETREES - AVG 147 144 439 147 ACRE AVG 101 13 5 1 121 AREA/AC AVG	HIGH 744 854 3,019 755 CF HIGH 154 170 559 155 HIGH 110 20 7 1 2 132 RE HIGH	#	5 287 OF TREES F 5 229 OF PLOTS F 5	72 REQ. 10 57 REQ. 10	3 INF, POP. 1 INF, POP. 1 INF, POP.
SD: DOU DOU WHE NOBB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU WHE SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL DOU WHE NOB R AL TOT DOU WHE NOB R AL TOT DOU WHE NOB R AL TOT CL DOU WHE NOB R AL TOT	G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8 54.9 75.8 COEFF VAR.% 632.5 58.2 COEFF VAR.% 48.3	5.2 20.9 29.2 5.6 S.E.% 4.6 17.9 27.3 5.0 S.E.% 8.4 61.6 39.3 46.4 99.9 9.2 S.E.% 7.6	L	OW 670 559 1,653 675 SAMPLE OW 140 119 319 140 TREES/A OW 93 5 3 0 110 BASAL A OW 190	AVG 707 706 2,336 715 ETREES - AVG 147 144 439 147 ACRE AVG 101 13 5 1 121 AREA/AC AVG 206	HIGH 744 854 3,019 755 CF HIGH 154 170 559 155 HIGH 110 20 7 1 2 132 RE HIGH 222	#	287 FOF TREES F 5 229 FOF PLOTS F 5	72 REQ. 10 57 REQ. 10	JINF, POP.
SD: DOU WHE NOBB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU WHE SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT DOU WHE NOB R AL TOT CL DOU WHE NOB R AL TOT CL DOU WHE NOB R AL TOT CL DOU WHE NOB R AL TOT	G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8 54.9 75.8 COEFF VAR.% 53.0 390.0 249.1 293.6 632.5 58.2 COEFF VAR.% 48.3 280.0	5.2 20.9 29.2 5.6 S.E.% 4.6 17.9 27.3 5.0 S.E.% 8.4 61.6 39.3 46.4 99.9 9.2 S.E.% 7.6 44.2	L	OW 670 559 1,653 675 SAMPLE OW 140 119 319 140 TREES/A OW 93 5 3 0 110 BASAL A OW 190 5	AVG 707 706 2,336 715 ETREES - AVG 147 144 439 147 ACRE AVG 101 13 5 1 121 AREA/AC AVG 206 8	HIGH 744 854 3,019 755 CF HIGH 154 170 559 155 HIGH 110 20 7 1 2 132 RE HIGH 222 12	#	287 FOF TREES F 5 229 FOF PLOTS F 5	72 REQ. 10 57 REQ. 10	JINF, POP.
SD: DOU WHE NOBB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU WHE SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD:	1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR S MLOCK FIR DER AL		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8 54.9 75.8 COEFF VAR.% 632.5 58.2 COEFF VAR.% 48.3	5.2 20.9 29.2 5.6 S.E.% 4.6 17.9 27.3 5.0 S.E.% 8.4 61.6 39.3 46.4 99.9 9.2 S.E.% 7.6	L	OW 670 559 1,653 675 SAMPLE OW 140 119 319 140 TREES/A OW 93 5 3 0 110 BASAL A OW 190	AVG 707 706 2,336 715 ETREES - AVG 147 144 439 147 ACRE AVG 101 13 5 1 121 AREA/AC AVG 206	HIGH 744 854 3,019 755 CF HIGH 154 170 559 155 HIGH 110 20 7 1 2 132 RE HIGH 222	#	287 FOF TREES F 5 229 FOF PLOTS F 5	72 REQ. 10 57 REQ. 10	3. INF. POP. 1 INF. POP. 1 INF. POP.
SD: DOU WHE NOBB R AL TOT CL SD: DOU WHE NOB R AL TOT	1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S MLOCK FIR DER AL 68.1 1.0 G FIR S MLOCK FIR DER AL		VAR.% 74.8 66.0 58.8 84.8 COEFF VAR.% 66.5 56.8 54.9 75.8 COEFF VAR.% 53.0 390.0 249.1 293.6 632.5 58.2 COEFF VAR.% 48.3 280.0 200.9	5.2 20.9 29.2 5.6 S.E.% 4.6 17.9 27.3 5.0 S.E.% 8.4 61.6 39.3 46.4 99.9 9.2 S.E.% 7.6 44.2 31.7	L	OW 670 559 1,653 675 SAMPLE OW 140 119 319 140 TREES/AOW 93 5 3 0 110 BASAL AOW 190 5 7	AVG 707 706 2,336 715 ETREES - AVG 147 144 439 147 ACRE AVG 101 13 5 1 121 AREA/AC AVG 206 8 11	HIGH 744 854 3,019 755 CF HIGH 154 170 559 155 HIGH 110 20 7 1 2 132 RE HIGH 222 12 14	#	287 FOF TREES F 5 229 FOF PLOTS F 5	72 REQ. 10 57 REQ. 10	3. INF. POP. 1 INF. POP. 1

TC PST	'ATS				PROJECT		STICS PAR			PAGE DATE	2 11/17/2021
ГWР	RGE	SC	TRACT	TYP	E	AC	CRES	PLOTS	TREES	CuFt	BdFt
02N 02N	06 06W	35 35	00U1 00U2	00Mi 00Mi			123.00	40	231	S	W
CL	68.1		COEFF		NET E	F/ACRE			# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR		51.4	8.1	39,072	42,522	45,972	·			
DOU	G FIR-S										
WHE	MLOCK		230.8	36.5	1,382	2,174	2,967				
NOB	FIR		270,3	42.7	729	1,272	1,815				
R AL	DER		632.5	99.9	0	110	221				
тот	AL		46.9	7.4	42,665	46,079	49,492		88	22	10
CL	68.1	*****	COEFF		NET (CUFT FT/A	CRE		# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR		50.9	8.0	8,402	9,137	9,871				
DOU	G FIR-S										
WHE	MLOCK		217.2	34.3	305	464	623				
NOB	FIR		268,7	42.4	140	244	347				
R AL	DER		632.5	99.9	0	25	49				
TOT	AL		46.0	7.3	9,152	9.869	10,586		84	21	9

T02	N R06W S35 T	V00MC		77.00		Project:	UNP	AR								Page		1	
	N R06W S35 T	•		46.00		Acres	1	123.0	0							Date Time		/17/20 20:18	
		%					Percen	t of N	et Boar	d Foot	Volume					Avera	nge Log	3	Logs
	S So Gr	Net	Bd. Ft	per Acre		Total	Lo	g Sca	le Dia.			Log	ength.		. Ln	Dia	Bd	CF/	Per
Spp	T rtad	BdFt	Def%	Gross	Net	Net MBF	4-5 6	-11	12-16	17+	12-20	21-30	31-35	36-99	Fŧ	In	Ft	Լք	/Acre
)F	CU														15	9		0,00	21
)F	2M	71	.5	30,586	30,430	3,743			47	53	1	1		98	39	15	389	1.97	7
)F	3M	24	.3	10,088	10,060	1,237		99	1			0	2	98	40	8	102	0,65	9
)F	4M	5	,5	2,042	2,032	250		100			21	31	27	22	25	6	35	0.37	5
ЭF °	Potals	92	.5	42,716	42,522	5,230		28	34	38	2	2	2	94	34	10	166	1.04	25
.re	23.1	96	1,8	1,250	1,227	151			14	86				100	40	21	836	3.79	
VF VF	2M 3M	3	6.1	1,230	34	4		63	37	80				100	38	7	81	1.08	
ve VF	4M	,		11	11	1		100	57		35	65		100	19	9	40	0.79	
	Totals	3	1.7	1,294	1,272	156		3	14	83	0	1		99	37	17	590	3,06	
RA	CR	100		110	110	14		100						100	27	8	45	0,37	
₹A	Totals	0		110	110	14		100						100	27	8	45	0.37	
VН	2M	79		1,736	1,736	214			28	72				100	40	17	478	2.24	
WH	3M	15		328	328	40		81	19			3		97	39	9	125	0.97	
VН	4M	6		110	110	14		100			58	42			20	6	24	0.41	
VII	Totals	5		2,174	2,174	267		17	2.5	58	3	3		94	31	10	199	1.36	

TC PSTNDSUM		Stand Tab	le Summary	Page Date:	1 11/17/2021
T02N R06W S35 Ty00MC	77.00	Project	UNPAR	Time:	6:20:19AM
T02N R06W S35 Ty00MC	46.00	Acres	123.00	Grown Year:	

18										123.0	•			0.0	•		
Second Column C	c				Tot				Average	Log		Net	Net				
	Spc T	DBH												Tons		MB!	F
	DF	7	2	75	38	7.207	1.93						 i				
	DF	9	3	85	70	7,256	3,21	4.84	9.0	45.0	1.24	44	218	153	5	4	27
12	DF	10	4	87	74	7.063	3.85	7.06	11,9	55.0	2.39	84	388	294	10	13	48
Sept	DF	11	3	87	94	4,538	2.99	6.16	12.8	54.5	2,25	79	335				4
Second S	DF																5
15	DF					i											7
Fig. 16 9 88 122 0.685 9.20 14.63 24.8 100.8 100.5 36.3 1.666 1.274 447 17 186 17 11 18 80 121 7.256 11.44 15.12 25.8 111.7 11.13 390 1.689 1.369 480 2.56 18 18 13 88 127 7.593 13.26 19.72 28.8 12.1 16.19 568 2.409 1.369 1.991 699 2 2 1 8 88 127 7.593 13.26 19.72 28.8 12.1 16.19 568 2.409 1.991 699 2 2 1 8 88 129 5.3335 8.02 9.20 38.4 174.5 16.07 353 1.666 1.239 455 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DF																18
Fig. 17	DF	1				l .											5
NE 18 13 88 127 17503 1326 1972 28.8 122.1 16.19 568 2.409 1.091 699 27 10 10 18 13 89 128 6.734 13.26 19.17 30.4 131.3 16.60 582 2.517 2.041 716 3 10.18 10	DF																
19	DF																29
Fig. 20		l				B											31
Fig.						1			i								27
Part 22		l				ł											19
1978		i .															35
Fig. 24						1					1			1			27
Part 25 5 86 133 1.444 4.92 4.33 52.9 234.8 6.52 229 1,017 802 282 1 1,018 26 8 88 136 2.204 8.13 6.61 57.6 263.2 10.85 381 1,740 1.334 468 468 209 27.75 64.9 316.0 14.33 503 2.448 1,763 619 3 3 3 3 2 28 10 87 146 2.326 9.95 6.98 60.0 325.9 13.73 482 2.274 1,688 592 2 3 3 3 3 3 3 3 3	DF								l .								27
NE 26 8 8 8 136 2.204 8.13 6.61 57.6 263.2 10.85 381 1,740 1.334 468 2.209	DF							4.33		234.8				Í	28	32	12
Separate 1975 10	DF	26	8	88	136	2,204	8.13	6.61	57,6	263,2	10.85	381	1,740	1,334	46	58	21
Property 29	DF	27	10	88	148	2.502	9.95	7.75	64.9	316.0	14.33	503	2,448	1,763	6	19	30
Second S	DF	28	10	87	140	2,326	9,95	6.98	69.0	325.9	13.73	482	2,274	1,688	59)2	28
Second Process Seco	DF	29	10	87	146	2.169	9.95	6.51	75.8	374.1	14.06	493	2,434	1,730	60)7	29
Second Process Seco	DF	30	19	87	144	1.983	9.74	5.95	81.8	398.9	13,88	487	2,373	1,707	59)9	25
Section Sect	DF	31	2	88	137	.388	2,03	1,16	84.6	420.8	2.80	98	489	345	12	21	(
Section Sect	DF	32	6	88	143	1.035	5.78	3.10	94.1	463.3	8,33	292	1,438	1			17
Spr	DF	33		86		1,008			1		8.37						17
Spr	DF	1				1			1		i .			1			10
OFF 37 1 85 141 .129 .96 .39 119.5 593.3 1.32 .46 230 .162 .57 DE 39 1 90 141 .116 .96 .35 .137.2 .763.3 1.36 .48 .266 .168 .59 DE 40 1 86 147 .110 .96 .33 .147.3 .780.0 1.39 .49 .258 .171 .60 DF 41 1 .89 150 .105 .96 .32 .160.4 .886.7 1.44 .51 .279 .177 .62 DF Totals .214 .87 .111 .114.048 .214.22 .234.64 .38.9 .181.2 .260.0 .9137 .42,522 .32,029 .11,238 .5.2 WH 10 1 .77 .35 1.766 .96 1.77 .74 .20.0 .42 .13 .35 <th< td=""><td>DF</td><td>1</td><td></td><td></td><td></td><td>l .</td><td></td><td></td><td>i .</td><td></td><td>ļ</td><td></td><td></td><td>1</td><td></td><td></td><td>14</td></th<>	DF	1				l .			i .		ļ			1			14
Spr. 39	DF	1				1					1						(
OFF OF HILD 40 1 86 147 110 96 33 147.3 780.0 1.39 49 258 171 60 OF 41 1 89 150 105 96 32 160.4 886.7 1.44 51 279 177 62 OF Totals 214 87 111 114.048 214.22 234.64 38.9 181.2 260.40 9,137 42,522 32,029 11,238 5.2 NH 10 1 77 35 1.766 96 1.77 7.4 20.0 .42 13 35 52 16 WH 16 1 85 76 .690 96 1.32 32.3 133.3 1.37 43 177 168 53 WH 20 1 86 119 .441 96 1.22 32.3 133.3 1.37 43 177 168 53	DF					1								1			2
OF 41 1 89 150 .105 .96 .32 160.4 886.7 1.44 51 279 177 62 OF Totals 214 87 111 114.048 214.22 234.64 38.9 181.2 260.40 9,137 42,522 32,029 11,238 5.2 WH 10 1 77 35 1.766 .96 1.77 7.4 20.0 .42 13 35 52 16 WH 16 1 85 76 .690 .96 1.38 20.9 70.0 .92 29 97 114 36 WH 20 1 86 119 .441 .96 1.22 32.3 133.3 1.37 43 177 168 53 WH 21 1 92 126 .400 .96 1.20 39.5 193.3 1.52 47 232 187 58 <	DF	1															3
Totals 2 4 87 1 1 114,048 2 4,22 2 34,64 38,9 18 1,2 260,40 9,137 42,522 32,029 11,238 5,2 NH	DF DF								1					1			:
NH 16	DF	Totals	214	87	111	114.048	214,22	234,64	38,9	181,2	260,40	9,137	42,522	32,029	11,2	38	5,23
NH	WH	10	1	77	35	1.766	.96	1.77	7.4	20.0	.42	13	35	52		16	
NH 20	WH	16	I	85	76	.690	.96	1,38	20.9	70.0	.92	29	97	114		36	
WH 24 3 93 121 .920 2.89 2.76 50.7 246.7 4.48 140 681 551 172 WH 25 1 87 104 .313 i.07 .63 69.1 275.0 1.39 43 172 171 53 WH 27 1 93 127 .242 .96 .73 66.7 340.0 1.55 48 247 191 60 WH 29 1 93 122 .210 .96 .63 75.7 390.0 1.53 48 246 188 59 WH 32 1 93 131 .172 .96 .52 100.5 556.7 1.66 52 288 205 64 WH Totals 11 85 85 5.155 10.70 10.93 42.4 198.9 14.84 464 2,174 1,825 570 2 NF 28 1 91 142 .225 .96 .68 72.7	WH	20	1	86	119	.441	.96	1.32	32.3	133.3	1.37	43	177	168		53	:
NH 25 1 87 104 313 1.07 63 69.1 275.0 1.39 43 172 171 53 NH 27 1 93 127 2.42 96 .73 66.7 340.0 1.55 48 247 191 60 NH 29 1 93 122 2.10 96 63 75.7 390.0 1.53 48 246 188 59 NH 32 1 93 131 .172 96 .52 100.5 556.7 1.66 52 288 205 64 NH Totals 11 85 85 5.155 10.70 10.93 42.4 198.9 14.84 464 2,174 1,825 570 2 NF 28 1 91 142 .225 96 .68 72.7 340.0 1.18 49 230 145 60 NF 32 1 91 125 .172 96 .52 85.2 446.7 1.06 44 231 130 54 NF 36 1 88 140 .136 .96 .41 114.9 580.0 1.13 47 237 139 58 NF 44 1 91 159 .091 .96 .36 149.4 860.0 1.31 54 314 161 67 NF 53 1 85 146 .063 .96 .19 259.9 1380.0 1.18 49 260 145 60 NF Totals 5 90 140 .688 4.82 2.16 113.1 590.2 5.85 244 1,272 719 300	WH	21	1	92	126	.400	.96	1.20	39.5	193,3	1.52	47	232	187		58	:
WH 27 1 93 127 242 96 .73 66.7 340.0 1.55 48 247 191 60 WH 29 1 93 122 210 96 .63 75.7 390.0 1.53 48 246 188 59 WH 32 1 93 131 .172 96 .52 100.5 556.7 1.66 52 288 205 64 WH Totals 11 85 85 5.155 10.70 10.93 42.4 198.9 14.84 464 2,174 1,825 570 2 NF 28 1 91 142 .225 96 .68 72.7 340.0 1.18 49 230 145 60 NF 32 1 91 125 .172 96 .52 85.2 446.7 1.06 44 231 130 54 NF 36 1 88 140 .136 .96 .41 114.9 580.0 1.13 47 237 139 58 NF 44 1 91 159 .091 .96 .36 149.4 860.0 1.31 54 314 161 67 NF 53 1 85 146 .063 .96 .19 259.9 1380.0 1.18 49 260 145 60 NF Totals 5 90 140 .688 4.82 2.16 113.1 590.2 5.85 244 1,272 719 300	WH	24	3	93	121	.920	2.89	2.76	50.7	246.7	4.48	140	681	551	1	72	1
WH 29 1 93 122 2.210 96 63 75.7 390.0 1.53 48 246 188 59 WH 32 1 93 131 .172 96 .52 100.5 556.7 1.66 52 288 205 64 WH Totals 11 85 85 5.155 10.70 10.93 42.4 198.9 14.84 464 2,174 1,825 570 2 NF 28 1 91 142 .225 96 68 72.7 340.0 1.18 49 230 145 60 NF 32 1 91 125 .172 96 .52 85.2 446.7 1.06 44 231 130 54 NF 36 1 88 140 .136 .96 .41 114.9 580.0 1.13 47 237 139 58 NF 44 1 91 159 .091 .96 .36 149.4 860.0 1.31 54 314 161 67 NF 53 1 85 146 .063 .96 .19 259.9 1380.0 1.18 49 260 145 60 NF Totals 5 90 140 .688 4.82 2.16 113.1 590.2 5.85 244 1,272 719 300	WH	25	1	87	104	.313	1,07	.63	69,1	275,0	1.39	43	172	171	,	53	:
WH 32 1 93 131 .172 .96 .52 100.5 556.7 1.66 52 288 205 64 WH Totals 11 85 85 5.155 10.70 10.93 42.4 198.9 14.84 464 2,174 1,825 570 2 NF 28 1 91 142 .225 .96 .68 72.7 340.0 1.18 49 230 145 60 NF 32 1 91 125 .172 .96 .52 85.2 446.7 1.06 44 231 130 54 NF 36 1 88 140 .136 .96 .41 114.9 580.0 1.13 47 237 139 58 NF 44 1 91 159 .091 .96 .36 149.4 860.0 1.31 54 314 161 67	WH	27	1	93					1		1			l			;
WH Totals 11 85 85 5.155 10.70 10.93 42.4 198.9 14.84 464 2,174 1,825 570 2 NF 28 1 91 142 .225 .96 .68 72.7 340.0 1.18 49 230 145 60 NF 32 1 91 125 .172 .96 .52 85.2 446.7 1.06 44 231 130 54 NF 36 1 88 140 .136 .96 .41 114.9 580.0 1.13 47 237 139 58 NF 44 1 91 159 .091 .96 .36 149.4 860.0 1.31 54 314 161 67 NF 53 1 85 146 .063 .96 .19 259.9 1380.0 1.18 49 260 145 60 NF Totals 5 90 140 .688 4.82 2.16 113.1 590.2 5.85 244 1,272 719 300	WH		1						1		i			l			
NF 28 1 91 142 .225 .96 .68 72.7 340.0 1.18 49 230 145 60 NF 32 1 91 125 .172 .96 .52 85.2 446.7 1.06 44 231 130 54 NF 36 1 88 140 .136 .96 .41 114.9 580.0 1.13 47 237 139 58 NF 44 1 91 159 .091 .96 .36 149.4 860.0 1.31 54 314 161 67 NF 53 1 85 146 .063 .96 .19 259.9 1380.0 1.18 49 260 145 60 NF Totals 5 90 140 .688 4.82 2.16 113.1 590.2 5.85 244 1,272 719 300	WH	32	1	93	3 131	.172	.96	.52	100.5	556,7	1,66	52	288	205		54	
NF 32 1 91 125 1.172 96 .52 85.2 446.7 1.06 44 231 130 54 NF 36 1 88 140 1.136 .96 .41 114.9 580.0 1.13 47 237 139 58 NF 44 1 91 159 .091 .96 .36 149.4 860.0 1.31 54 314 161 67 NF 53 1 85 146 .063 .96 .19 259.9 1380.0 1.18 49 260 145 60 NF Totals 5 90 140 .688 4.82 2.16 113.1 590.2 5.85 244 1,272 719 300	WH	Totals	11	85	85	5.155	10.70	10.93	42.4	198.9	14.84	464	2,174	1,825	5	70	2
NF 36 I 88 140 .136 .96 .41 114.9 580.0 1.13 47 237 139 58 NF 44 1 91 159 .091 .96 .36 149.4 860.0 1.31 54 314 161 67 NF 53 1 85 146 .063 .96 .19 259.9 1380.0 1.18 49 260 145 60 NF Totals 5 90 140 .688 4.82 2.16 113.1 590.2 5.85 244 1,272 719 300	NF	1				l .					ŀ						:
NF 44 1 91 159 .091 .96 .36 149.4 860.0 1.31 54 314 161 67 NF 53 1 85 146 .063 .96 .19 259.9 1380.0 1.18 49 260 145 60 NF Totals 5 90 140 .688 4.82 2.16 113.1 590.2 5.85 244 1,272 719 300	NF					i					1			1			:
NF Totals 5 90 140 .688 4.82 2.16 113.1 590.2 5.85 244 1,272 719 300	NF	1				1			1		1			4			
NF Totals 5 90 140 .688 4.82 2.16 113.1 590.2 5.85 244 1,272 719 300	NF	1				1					I .			1			
	NF	<u> </u>									ļ						
RA 12 1 93 92 1.226 .96 2.45 10.1 45.0 .68 25 110 84 30	NF	 							 		 						1
	RA	12	1	93	3 92	1.226	.96	2.45	10.1	45.0	.68	25	110	L 84		30	

TC	PSTNDSU	M				S	Stand T	able Su	ımmary				Page Date:	2 11/17/	2021
		5 Ty00MC		77.0			Project	U	NPAR				Time:	6:20:1	9AM
102N	K00W 53	5 Ty00MC		46.			Acres		123.0	0			Grown Year:	1	
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Averago Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Aere	Net Bd.Ft. Aere	Tons	Totals Cunits	MBF
RA	Totals	1	93	92	1,226	.96	2,45	10, 1	45,0	.68	25	[10	84	31) 14
Totals		231	87	110	121.117	230.70	250.18	39.4	184.2	281.77	9,869	46,079	34,657	12,139	5,668

PLOGSTVB Log Stock Table - MBF Page T02N R06W S35 Ty00MC 77.00 Project: UNPAR Date 11/17/2021 T02N R06W S35 Ty00MC 46.00 123.00 Acres Time 6:20:17AM So Gr Def % Net Volume by Scaling Diameter in Inches Log Gross Net MBF 16-19 20-23 24-29 30-39 40+ Len MBF Spc 10-11 12-13 14-15 rt de % 2-3 4-5 6-7 8-9 Spp 7 DF 2M14 DF 15 10 .2 10 2M 19 .4 16 19 DF 2M18 9 .2 9 DF 2M 2 0, 2 DF 2M20 14 DF 25 14 .3 2M.3 16 DF 2M30 16 16 .2 DF 2M36 13 13 21 69.8 776 1210 737 273 2M636 40 3,672 3,652 DF .0 28 1 DF 3M 29 .0 DF 3M DF 3M30 .0 DF 32 .1 3M 2 DF 3М 34 2 DF 3M35 DF 3M 36 2 6 2 DF 3M 37 DF 3M 38 13 13 14 .3 14 14 DF 3M 39 DF 3M 40 1,178 1,175 22.5 251 446 467 11 0 DF 4M12 0 0. DF 4M13 3 3 11 11 14 11 ,2 DF 4M10 DF 4M 10 .2 10 .0 16 2 l DF 4M 17 8 . **i** DF 4M18 DF 4M.2 DF 4MDF 4M20 5 DF 4M21 5 .1 22 2 0. DF 4M23 6 DF 4M6 24 DF 4M9 .2 9 25 DF 4M26 15 .3 15 DF 4M27 5 .1 5 DF 4MDF 4M 28 5 .1 5

PLOGSTYB Log Stock Table - MBF Page T02N R06W S35 Ty00MC 77.00 Project: UNPAR Date 11/17/2021 T02N R06W S35 Ty00MC 46.00 Acres 123.00 Time 6:20:17AM So Gr Log Def % Net Volume by Scaling Diameter in Inches. Gross Net MBF 16-19 20-23 24-29 30-39 40+ Len MBF 10-11 12-13 14-15 rt de % Spc 2-3 4-5 6-7 8-9 Spp 19 6.5 18 4M29 2 8 DF 4M30 8 ,3 17 DF 4M31 17 7 DF 4M32 7 ,1 11 .2 11 DF 4M33 1 14 .3 14 DF 4M34 14 DF 4M 35 18 .3 18 36 DF 13 13 ,2 13 4MDF 4M37 7 7 2 .0 DF 4M38 2 33 DF 4M40 33 .6 26 7 5,230 92.3 543 464 469 793 651 1255 737 297 21 Totals 5,254 DF 154 1.8 151 9 37 43 42 96,5 21 2М 1,1 2 NF 3M 36 2 NF 3M 3 1.6 1 0 NF 4M12 0 .3 NF 4M22 l ì 0 9 37 43 42 Totals 156 3 I 21 159 1.7 2,8 NF 14 14 100.0 RA CR 14 14 RATotals 14 .2 214 107 43 24 WH 2M214 79.8 32 WH3M 30 1 WH3M40 39 39 14.6 19 13 WH i 4M13 1 WH 4M2 2 16 WH20 1.6 4 4MWH 4M22 .9 3 23 WH4M,4 1 WH4M24 .4 WH 4M28 1 .3 í WH Totals 267 267 4.7 14 20 13 15 32 107 43 24 100.0 559 499 483 810 704 1371 816 364 63 Total All Species 5,694 5,668

TC PST	ATS					DJECT S DJECT	TATIS' UNPA				PAGE DATE	1 11/17/2021
ΓWP	RGE	SC	TRACT	T	YPE		ACR	ES	PLOTS	TREES	CuFt	BdFt
02N	06	35	1000	0	0MC			77.00	26	153	S	W
								STIMATED	PI	ERCENT		
						TREES		TOTAL	S	AMPLE		
			PLOTS	TREES		PER PLOT		TREES		TREES		
TOT/	AL.		26	153		5,9						
CRUI	ISE		26	153		5.9		8,980		1.7		
DBH	COUNT											
	DREST											
COU												
BLA												
100 %	6											
						ND SUMMA						
			AMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
			TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
	G FIR		133	93.0	20.1	115	45.7	204.6	42,978	42,762	9,125	9,125
	G FIR-S		4	12.8	9.4	47	2.0	6.2 15.4	2 100	2 100	471	671
	MLOCK		10 5	7.7 1.1	19.1 35.8	84 140	3,5 1,3	15.4 7.7	3,198 2,068	3,198 2,032	671 389	389
NOB R AL			1	2.0	12.0	92	0.4	1.5	2,008	176	40	40
TOT			153	116.6	19.2	106	53.7	235.4	48,420	48,168	10.225	10,225
CL	68.1		COEFF			SAMPLE	TREES -	BF	#	OF TREES R	EQ.	INF, POP.
CL SD:	68.1 1.0		COEFF VAR.%	S.E.%	L	SAMPLE OW	TREES -	BF HIGH	#	OF TREES R	EQ. 10	INF, POP.
SD: DOU	1.0 IG FIR			S.E.% 6.4	L				#		-	
SD; DOU DOU	1.0 IG FIR IG FIR-S		VAR.% 73.4	6.4	L	OW 748	AVG 799	HIGH 850	#		-	
SD; DOU DOU WHE	1.0 IG FIR IG FIR-S EMLOCK		VAR.%		L	OW 748 559	AVG	HIGH	#		-	
SD: DOU DOU WHE NOB	1.0 IG FIR IG FIR-S EMLOCK		73.4 67.6	6.4 22,5	L	OW 748	AVG 799 722	850 885	#		-	
SD: DOU DOU WHE NOB	I.O IG FIR IG FIR-S EMLOCK IF FIR LDER		73.4 67.6	6.4 22,5	<u>L</u>	OW 748 559	AVG 799 722	850 885	#		-	1
SD; DOU DOU WHE NOB R AL	I.O IG FIR IG FIR-S EMLOCK IF FIR LDER		VAR.% 73.4 67.6 58.8	6.4 22.5 29.2	L	OW 748 559 1,653 764	799 722 2,336	HIGH 850 885 3,019 874		5	10	1
SD: DOU DOU WHE NOB R AL TOT CL SD:	I.0 IG FIR IG FIR-S EMLOCK I FIR LDER CAL 68.1		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.%	6.4 22.5 29.2 6.7 S.E.%		OW 748 559 1,653 764 SAMPLE OW	AVG 799 722 2,336 819 CTREES -	######################################		5 274	10	J INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD:	1.0 IG FIR IG FIR-S EMLOCK IF FIR LDER CAL 68.1 1.0 IG FIR		VAR.% 73.4 67.6 58.8 82.9 COEFF	6.4 22.5 29.2 6.7		OW 748 559 1,653 764 SAMPLE	799 722 2,336 819 CTREES -	850 885 3,019 874		5 274 OF TREES F	10 69 REQ.	J INF. POP.
SD: DOU WHE NOB R AL TOT CL SD: DOU DOU	1.0 G FIR G FIR-S EMLOCK FIR DER AL 68.1 1.0 G FIR-S		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0	6.4 22.5 29.2 6.7 S.E.% 5.6		OW 748 559 1,653 764 SAMPLE OW 155	799 722 2,336 819 CTREES - AVG 164	######################################		5 274 OF TREES F	10 69 REQ.	J INF. POP.
SD: DOU WHE NOB R AL TOT CL SD: DOU DOU	1.0 G FIR G FIR-S EMLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S EMLOCK		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.%	6.4 22.5 29.2 6.7 S.E.%		OW 748 559 1,653 764 SAMPLE OW	AVG 799 722 2,336 819 CTREES -	850 885 3,019 874 CF HIGH		5 274 OF TREES F	10 69 REQ.	J INF. POP.
SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AI	1.0 G FIR G FIR-S EMLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S EMLOCK S FIR LOER LOER LOER LOER LOER LOER LOER LOE		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5 54.9	6.4 22.5 29.2 6.7 S.E.% 5.6 19.8 27.3		OW 748 559 1,653 764 SAMPLE OW 155 116 319	799 722 2,336 819 CTREES - AVG 164 145 439	### ##################################		5 274 OF TREES F 5	69 REQ. 10	3 INF. POP.
SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB	1.0 G FIR G FIR-S EMLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S EMLOCK S FIR LOER LOER LOER LOER LOER LOER LOER LOE		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5	6.4 22.5 29.2 6.7 S.E.% 5.6		OW 748 559 1,653 764 SAMPLE OW 155	799 722 2,336 819 CTREES - AVG 164 145	#IGH #850 #885 3,019 #874 CIF #IGH 173		5 274 OF TREES F	10 69 REQ.	3
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL CL CL CL CL	1.0 G FIR G FIR-S EMLOCK FIR DER AL 68.1 1.0 G FIR-S EMLOCK FIR DER CAL 68.1 68.1		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5 54.9 74.0 COEFF	6.4 22.5 29.2 6.7 S.E.% 5.6 19.8 27.3 6.0	L	OW 748 559 1,653 764 SAMPLE OW 155 116 319 157 TREES/	799 722 2,336 819 CTREES - AVG 164 145 439 167 ACRE	##GH 850 885 3,019 874 CF HIGH 173 174 559 177	#	274 274 OF TREES F 5 218 OF PLOTS F	69 REQ. 10 55	3 INF. POP. 1 INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT	1.0 G FIR G FIR-S EMLOCK FIR DER AL 68.1 1.0 G FIR-S EMLOCK FIR C FIR C FIR DER C FIR DE		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5 54.9 74.0 COEFF VAR.%	6.4 22.5 29.2 6.7 S.E.% 5.6 19.8 27.3 6.0 S.E.%	L	OW 748 559 1,653 764 SAMPLE OW 155 116 319 157 TREES/FOW	AVG 799 722 2,336 819 CTREES - AVG 164 145 439 167 ACRE AVG	#IGH #850 885 3,019 874 CF HIGH 173 174 559 177 HIGH HIGH	#	5 274 OF TREES F 5	69 REQ. 10	INF. POP.
SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU DOU WHE NOB R AL TOT CL SD:	1.0 G FIR G FIR-S EMLOCK FIR DER AL 68.1 1.0 G FIR-S EMLOCK FIR G FIR-S EMLOCK FIR DER CAL 68.1 1.0 UG FIR-S GMLOCK		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5 54.9 74.0 COEFF VAR.% 60.2	6.4 22.5 29.2 6.7 S.E.% 5.6 19.8 27.3 6.0	L	OW 748 559 1,653 764 SAMPLE OW 155 116 319 157 TREES/	799 722 2,336 819 CTREES - AVG 164 145 439 167 ACRE	##GH 850 885 3,019 874 CF HIGH 173 174 559 177	#	274 274 OF TREES F 5 218 OF PLOTS F	69 REQ. 10 55	INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT DOU	1.0 G FIR G FIR-S EMLOCK FIR DER AL 68.1 1.0 G FIR-S EMLOCK FIR C FIR C FIR DER C FIR DE		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5 54.9 74.0 COEFF VAR.%	6.4 22.5 29.2 6.7 S.E.% 5.6 19.8 27.3 6.0 S.E.% 12.0	L	OW 748 559 1,653 764 SAMPLE OW 155 116 319 157 TREES/A	AVG 799 722 2,336 819 CTREES - AVG 164 145 439 167 ACRE AVG 93	HIGH 850 885 3,019 874 CF HIGH 173 174 559 177 HIGH 104	#	274 274 OF TREES F 5 218 OF PLOTS F	69 REQ. 10 55	INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AI TOT CL SD: DOU WHE NOB R AI TOT CL SD: DOU WHE	G FIR G FIR-S EMLOCK FIR DER AL 68.1 1.0 G FIR-S G FIR-S G FIR-S G FIR-S J DER AL 68.1 1.0 JG FIR JG FIR-S JG FIR JG FIR-S JG FIR-S		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5 54.9 74.0 COEFF VAR.% 60.2 459.4	6.4 22.5 29.2 6.7 S.E.% 5.6 19.8 27.3 6.0 S.E.% 12.0 91.9	L	OW 748 559 1,653 764 SAMPLE OW 155 116 319 157 TREES/A	AVG 799 722 2,336 819 CTREES - AVG 164 145 439 167 ACRE AVG 93 13	HIGH 850 885 3,019 874 CIF HIGH 173 174 559 177 HIGH 104 25	#	274 274 OF TREES F 5 218 OF PLOTS F	69 REQ. 10 55	INF. POP.
SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: R AL	G FIR-S GMLOCK FIR LDER CAL 68.1 1.0 G FIR-S GMLOCK FIR 68.1 1.0 G FIR-S GMLOCK FIR JG FIR-S GMLOCK FIR LDER 68.1 1.0 G FIR LDER CAL 68.1 LOUGH 68.1 LOUGH LOUGH GFIR-S EMLOCK FIR LOUGH LOUGH		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5 54.9 74.0 COEFF VAR.% 60.2 459.4 206.1 230.6 509.9	5.6 19.8 27.3 6.0 S.E.% 12.0 91.9 41.2 46.1 102.0	L	OW 748 559 1,653 764 SAMPLE OW 155 116 319 157 TREES/AOW 82 1 5	AVG 799 722 2,336 819 CTREES - AVG 164 145 439 167 ACRE AVG 93 13 8 1	HIGH 850 885 3,019 874 CIF HIGH 173 174 559 177 HIGH 104 25 11 2 4	#	274 274 2 OF TREES F 5 218 2 OF PLOTS F 5	69 REQ. 10 55 REQ. 10	INF. POP.
SD: DOU WHE NOB R AL TOT CL SD:	G FIR-S GMLOCK FIR LDER CAL 68.1 1.0 G FIR-S GMLOCK FIR 68.1 1.0 G FIR-S GMLOCK FIR JG FIR-S GMLOCK FIR LDER 68.1 1.0 G FIR LDER CAL 68.1 LOUGH 68.1 LOUGH LOUGH GFIR-S EMLOCK FIR LOUGH LOUGH		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5 54.9 74.0 COEFF VAR.% 60.2 459.4 206.1 230.6	6.4 22.5 29.2 6.7 S.E.% 5.6 19.8 27.3 6.0 S.E.% 12.0 91.9 41.2 46.1	L	OW 748 559 1,653 764 SAMPLE OW 155 116 319 157 TREES/AOW 82 1 5	AVG 799 722 2,336 819 CTREES - AVG 164 145 439 167 ACRE AVG 93 13 8 1	HIGH 850 885 3,019 874 CIF HIGH 173 174 559 177 HIGH 104 25 11 2	#	5 274 OF TREES F 5 218 OF PLOTS F 5	69 REQ. 10 55 REQ. 10	INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AI TOT CL SD: CL SD: CL SD: CL CL CL CL CL CCL	G FIR G FIR-S EMLOCK FIR JOER AL 68.1 1.0 G FIR G FIR-S EMLOCK FIR G FIR-S EMLOCK FIR JOER AL 68.1 1.0 G FIR LDER AL 68.1 1.0 G FIR LOER AL 68.1 68.1 68.1		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5 54.9 74.0 COEFF VAR.% 60.2 459.4 206.1 230.6 509.9 66.6 COEFF	5.E.% 5.6 19.8 27.3 6.0 S.E.% 12.0 91.9 41.2 46.1 102.0 13.3	L	OW 748 559 1,653 764 SAMPLE OW 155 116 319 157 TREES/AOW 82 1 5 1 101 BASAL A	AVG 799 722 2,336 819 CTREES - AVG 164 145 439 167 ACRE AVG 93 13 8 1 2 117 AREA/ACI	HIGH 850 885 3,019 874 CF HIGH 173 174 559 177 HIGH 104 25 11 2 4 132	#	274 OF TREES F 5 218 OF PLOTS F 5	69 REQ. 10 55 REQ. 10	INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD:	1.0 G FIR G FIR-S EMLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S EMLOCK B FIR DER AL 68.1 1.0 G FIR-S EMLOCK B FIR LOER CAL 68.1 1.0 G FIR-S EMLOCK B FIR LOER CAL 68.1 1.0 G FIR-S EMLOCK B FIR LOER CAL 68.1		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5 54.9 74.0 COEFF VAR.% 60.2 459.4 206.1 230.6 509.9 66.6 COEFF VAR.%	5.E.% S.E.% 5.6 19.8 27.3 6.0 S.E.% 12.0 91.9 41.2 46.1 102.0 13.3 S.E.%	L	OW 748 559 1,653 764 SAMPLE OW 155 116 319 157 TREES/AOW 82 1 5 1 101 BASAL AOW	AVG 799 722 2,336 819 CTREES - AVG 164 145 439 167 ACRE AVG 93 13 8 1 2 117 AREA/ACI AVG	HIGH 850 885 3,019 874 CF HIGH 173 174 559 177 HIGH 25 11 2 4 132 RE HIGH	#	5 274 OF TREES F 5 218 OF PLOTS F 5	69 REQ. 10 55 REQ. 10	INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: CL SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU DOU WHE NOB R AL TOT CL SD: DOU DOU WHE NOB R AL TOT CL SD: DOU DOU WHE NOB R AL TOT	1.0 G FIR G FIR-S EMLOCK FIR DER AL 68.1 1.0 G FIR-S EMLOCK FIR JG FIR-S EMLOCK FIR LDER AL 68.1 1.0 JG FIR JG FIR-S EMLOCK FIR JG FIR-S EMLOCK JG FIR JG FIR-S EMLOCK JG FIR JG FIR-S EMLOCK JG FIR LDER CAL 68.1 1.0 JG FIR JG FIR-S EMLOCK JG FIR LDER CAL 68.1 1.0 JG FIR		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5 54.9 74.0 COEFF VAR.% 60.2 459.4 206.1 230.6 509.9 66.6 COEFF VAR.% 39.2	5.E.% 5.6 19.8 27.3 6.0 S.E.% 12.0 91.9 41.2 46.1 102.0 13.3 S.E.% 7.8	L	OW 748 559 1,653 764 SAMPLE OW 155 116 319 157 TREES/AOW 82 1 5 1 101 BASAL A	AVG 799 722 2,336 819 CTREES - AVG 164 145 439 167 ACRE AVG 93 13 8 1 2 117 AREA/ACI	HIGH 850 885 3,019 874 CF HIGH 173 174 559 177 HIGH 25 11 2 4 132 RE HIGH 221	#	274 OF TREES F 5 218 OF PLOTS F 5	69 REQ. 10 55 REQ. 10	INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU DOU WHE NOB R AL TOT CL SD: DOU DOU WHE NOB R AL TOT CL SD: DOU DOU WHE NOB R AL TOT CL DOU DOU WHE NOB R AL TOT	1.0 G FIR G FIR-S EMLOCK FIR DER AL 68.1 1.0 G FIR G FIR-S EMLOCK B FIR DER AL 68.1 1.0 G FIR-S EMLOCK B FIR LOER CAL 68.1 1.0 G FIR-S EMLOCK B FIR LOER CAL 68.1 1.0 G FIR-S EMLOCK B FIR LOER CAL 68.1		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5 54.9 74.0 COEFF VAR.% 60.2 459.4 206.1 230.6 509.9 66.6 COEFF VAR.%	5.E.% S.E.% 5.6 19.8 27.3 6.0 S.E.% 12.0 91.9 41.2 46.1 102.0 13.3 S.E.%	L	OW 748 559 1,653 764 SAMPLE OW 155 116 319 157 TREES/AOW 82 1 5 1 101 BASAL AOW 189	AVG 799 722 2,336 819 CTREES - AVG 164 145 439 167 ACRE AVG 93 13 8 1 2 117 AREA/ACI AVG 205	HIGH 850 885 3,019 874 CF HIGH 173 174 559 177 HIGH 25 11 2 4 132 RE HIGH	#	274 OF TREES F 5 218 OF PLOTS F 5	69 REQ. 10 55 REQ. 10	INF. POP.
SD: DOU DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU WHE SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: WHE NOB R AL TOT CL SD: WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT	1.0 G FIR G FIR-S EMLOCK FIR DER AL 68.1 1.0 G FIR-S EMLOCK FIR JG FIR-S EMLOCK FIR JG FIR-S EMLOCK FIR JG FIR JG FIR JG FIR-S EMLOCK JG FIR JG FIR-S		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5 54.9 74.0 COEFF VAR.% 60.2 459.4 206.1 230.6 509.9 66.6 COEFF VAR.% 39.2 353.3	5.E.% 5.6 19.8 27.3 6.0 S.E.% 12.0 91.9 41.2 46.1 102.0 13.3 S.E.% 7.8 70.6	L	OW 748 559 1,653 764 SAMPLE OW 155 116 319 157 TREES/AOW 82 1 5 1 101 BASAL AOW 189 2	AVG 799 722 2,336 819 CTREES - AVG 164 145 439 167 ACRE AVG 93 13 8 1 2 117 AREA/ACI AVG 205 6	HIGH 850 885 3,019 874 CF HIGH 173 174 559 177 HIGH 25 11 2 4 132 RE HIGH 221 11	#	274 OF TREES F 5 218 OF PLOTS F 5	69 REQ. 10 55 REQ. 10	INF. POP.
SD: DOU WHE NOB R AL TOT CL SD: DOU WHE NOB R AL TOT	1.0 G FIR G FIR-S EMLOCK FIR DER AL 68.1 1.0 G FIR-S EMLOCK FIR JG FIR-S EMLOCK FIR JG FIR-S EMLOCK B FIR JG FIR-S EMLOCK B FIR JG FIR-S EMLOCK B FIR LDER CAL 68.1 1.0 JG FIR JG FIR-S EMLOCK B FIR LDER CAL 68.1 1.0 JG FIR LDER CAL 68.1 LOBER CAL 68.1		VAR.% 73.4 67.6 58.8 82.9 COEFF VAR.% 65.0 59.5 54.9 74.0 COEFF VAR.% 60.2 459.4 206.1 230.6 509.9 66.6 COEFF VAR.% 39.2 353.3 165.7	5.E.% 5.6 19.8 27.3 6.0 S.E.% 12.0 91.9 41.2 46.1 102.0 13.3 S.E.% 7.8 70.6 33.1	L	OW 748 559 1,653 764 SAMPLE OW 155 116 319 157 TREES/AOW 82 1 5 1 101 BASAL AOW 189 2 10	AVG 799 722 2,336 819 CTREES - AVG 164 145 439 167 ACRE AVG 93 13 8 1 2 117 AREA/ACI AVG 205 6 15	HIGH 850 885 3,019 874 CF HIGH 173 174 559 177 HIGH 25 11 2 4 132 RE HIGH 221 11 20	#	274 OF TREES F 5 218 OF PLOTS F 5	69 REQ. 10 55 REQ. 10	INF. POP.

TC PST	ATS				PROJEC' PROJECT		STICS PAR			PAGE DATE	2 11/17/2021
TWP	RGE	SC	TRACT	TYP	E	AC	CRES	PLOTS	TREES	CuFt	BdFt
02N	06	35	00 U1	00М	C		77.00	26	153	S	W
CL	68.1	***************************************	COEFF		NET I	BF/ACRE			# OF PLOTS F	REQ.	INF, POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	1.
DOU	3 FIR		38.9	7.8	39,432	42,762	46,092				
DOU	G FIR-S										
WHE	MLOCK		192.3	38.4	1,968	3,198	4,428				
NOB	FIR		211.0	42.2	1,175	2,032	2,889				
R AL	DER		509.9	102.0		176	356				
TOT	AL		34.5	6.9	44,847	48,168	51,488		49	12	
CL	68.1		COEFF		NET (CUFT FT/A	CRE		# OF PLOTS I	REQ.	INF, POP,
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	1
DOU	G FIR		38.2	7,6	8,428	9,125	9,822				
DOU	G FIR-S										
WHE	MLOCK		181,1	36.2	428	671	915				
NOB	FIR		209.6	41.9	226	389	552				
R AL	DER		509.9	102.0		40	80				
тот	AL		32.9	6.6	9,553	10,225	10,898		45	11	

тс	PSPCSTGR		SI	ecies, S	ort Gra	de - Board Fo	ot Vo	lumo	es (Pr	oject))								
Т02	N R06W S35 T	уоомс		77.00		Project: Acres	UNI	PAR 77.0)0				•			Page Date Time		1/17/20)21
	S So Gr	% Net		per Acre		Total	L	og Sca	ıle Dia.		Volume	Log l	ength		. Ln	Avera Dia	age Log Bd	CF/	Logs Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF DF DF DF	CU 2M 3M 4M	75 19 6	.6 .4	32,582 8,229 2,168	32,396 8,198 2,168	2,495 631 167		100 100	40	60	1 14	1 0 22	2 34	98 97 30	8 39 40 28	9 16 8 6	430 102 40	0.00 2.15 0.68 0.38	18.6 75.4 80.8 54.7
DF	Totals	89	.5	42,978	42,762	3,293		24	30	45	2	2	2	95	34	10	186	1,17	229,5
NF NF NF	2M 3M 4M	96 3	1,8	1,996 55 17	1,960 55 17	151 4		63 100	14 37	86	35	65		160 100	40 38 19	21 7 9	836 81 40	3.79 1.08 0.79	2.3 .7 .4
NF	Totals	4	1.7	2,068	2,032	156		3	14	83	0	1		99	37	l7	590	3.06	3.4
RA	CR	100		176	176	14		100						100	27	8	45	0.37	3,9
RA	Totals	0		176	176	14	ļ	100		•	<u> </u>			100	27	8	45	0.37	3.9
WH WH WH	2M 3M 4M	79 15 6		2,542 480 176	2,542 480 176 3,198	196 37 14		80 100	30 20 27	70 55	58	3 42 3		100 97 94	40 39 20	9	480 130 24	2.22 0.97 0.41	3.7 7.5
WH Total		,	0.5	48,420	48,168	3,709		23	29	48	2	2	2	95		10		1.20	253.3

TC PSTNDSUM	Stand Table Summary	Page Date:	1 11/17/2021
T02N R06W S35 Ty00MC 77.00	Project UNPAR	Time:	6:13:57AM
	Acres 77.00	Grown Year:	

S									- 1						
S				Tot				Average	Log		Net	Net			
		Sample	FF	Áv	Trees/	BA/	Logs	Net	Net	Tons/	Cu.Ft.	Bd.Ft.		Totals	
Spc T	DBH	Trees	16'	Ht	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	7	2	75	38	11,513	3.08									
DF	10	4	87	74	11,283	6.15	11,28	11.9	55.0	3.82	134	621	294	103	
DF	i 1	2	86	87	4.662	3.08	4.66	15.5	65.0	2.07	72	303	159	56	
DF	12	2	88	85	3.918	3.08	5.88	13.5	53.3	2.26	79	313	174	61	
DF	13	5	87	98	8.345	7.69	15,02	15.7	62,2	6.71	235	935	516	181	
DF	14 15	4 2	87 88	103 95	5.757 2.507	6,15 3.08	11.51 3.76	18.4 25.2	80.0 100.0	6.05 2.70	212 95	921 376	466 208	163 73	
DF DF	16	4	88	119	4,407	6.15	9.92	23,2	102.2	6.58	231	1,014	507	178	
DF DF	17	3	88	114	2,928	4,62	6.83	26.6	112.9	5.18	182	771	399	140	
DF	18	6	87	122	5.224	9.23	12.19	31,1	127.9	10,81	379	1,558	832	292	
DF	19	6	89	127	4,688	9.23	13.28	30.6	132.4	11.58	406	1,758	892	313	135
DF	20	9	89	129	6.347	13,85	16,22	33,7	151.7	15.58	547	2,461	1,200	421	190
DF	21	5	87	127	3.198	7,69	8,32	40.0	175.4	9.47	332	1,458	729	256	112
DF	22	9	89	137	5.245	13.85	13.99	41.8	196,3	16,65	584	2,745	1,282	45€	
DF	23	6	88	136	3,199	9,23	9,06	48.6	220.6	12.56	441	2,000	967	339	
DF	24	6	88	135	2.938	9.23	8.81	49.2	222,2	12.35	433	1,959	951	334	
DF	25	4	86	136	1,805	6.15	5.42	54.3	241.7	8.38	294	1,309	645	226	
DF	26	4	87	134	1.669	6.15	5.01	57.5	257,5	8,21	288	1,289	632 1,191	222 418	
DF	27 28	7 7	88 87	146 137	2,709 2,518	10,77 10,77	8.51 7.56	63.7 68.2	308.6 318,1	15.47 14,69	543 515	2,627 2,403	1,131	397	
DF	29	7	87	143	2.348	10.77	7.04	75.0	367.6	15.05	528	2,589	1,159	407	
DF DF	30	9	87	143	2,821	13,85	8,46	81.6	396.7	19.68	691	3,357	1,516	532	
DF	31	1	90	156	.294	1.54	.88	95.2	506.7	2,39	84	446	184	6:	
DF	32	6	88	143	1,653	9.23	4.96	94.1	463.3	13.30	467	2,297	1,024	359	
DF	33	4	86	142	1.036	6.15	3.11	96.5	466.7	8,54	300	1,451	658	231	112
DF	34	3	89	155	,732	4.62	2.68	92.6	524.5	7.08	249	1,408	546	191	108
DF	35	4	89	155	.921	6.15	2.99	112.6	620.8	9.60	337	1,858	739	259	143
DF	36	2	90	146	,435	3,08	1.31	121.3	676.7	4.52	158	884	348	122	
DF	37	1	85	[4]	.206	1,54	,62	119,5	593,3	l	74	367	162	51	
DF	39	1	90	141	.185	1.54	.56	137.2	763.3	2,18	76	425	168	59	
DF	40	1	86		.176	1.54	.53	147.3	780.0	2.22	78	413	171	60	
DF	41	l	89	150	.168	1.54	.50	160.4	886.7	2,30	81	446	177	6.	2 34
DF	Totals	137	86	107	105,836	210.77	210.87	43.3	202.8	260.07	9,125	42,762	20,025	7,020	3,293
WH	10	1	77	35	2.821	1.54	2.82	7.4	20.0	.67	21	56	52	10	5 4
WH	16	1	85	76	1.102	1,54	2,20	20.9	70,0	1.48	46	154	114	30	
WH	20	1	86		.705	1.54	2.12	1	133.3	3		282	168	5:	
WH	21	1	92		.640	1,54	1,92	1	193,3	E .		371	187	58	
WH	24	3	93		1.469	4.62	4.41	50.7	246.7	i		1,087	551	173	
WH	27	1	93		,387	1.54		ı	340.0	i		395	191	60	
WH	29 32	i 1	93 93		.335 .275	1.54 1.54	1.01	1	390,0 556,7	1		392 460	188 205	5! 64	
WH	<u> </u>		7.5		.215										
WH	Totals	10	85	84	7.734	15.38	16.46	40.8	194,3	21.49	671	3,198	1,655	51	7 246
NF	28	1	91	142	.360	1.54	1.08	72.7	340.0	1.88	79	367	145	6	
NF	32	1	91		.275	1.54		85.2	446.7	i		369	130	5-	
NF	36	1	88		.218	1.54	.65	114.9	580.0	1		379	139	5	
NF	44	1	91		.146	1.54		149.4	860.0	1		501	161	6'	
NF	53		85	146	,100	1.54	.30	259,9	1380,0	1.88	78	416	145	61	0 32
NF	Totals	5	90	140	1.099	7.69	3.44	113.1	590.2	9,34	389	2,032	719	30	0 156
RA	12	Ĺ	93	92	1.959	1,54	3.92	10.1	45.0	1.09	40	176	84	3	0 14
RA	Totals	i	93	92	1,959	1.54	3,92	10,1	45.0	1,09	40	176	84	30	0 14
							-12	<u> </u>	,,,,,		···		<u> </u>		

TC 1	PSTNDSU	М					Stand T	Table St	ımmary				Page Date:	2 11/17/	2021
T02N	R06W S3	5 Ty00MC		77.0	00		Project Acres	U U	NPAR 77.0	0			Time: Grown Year:		57AM
S Spe T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
Totals		153	86	105	116.628	235.38	234.69	43.6	205.2	291.98	10,225	48,168	22,483	7,87	4 3,70

PLOGSTVB Log Stock Table - MBF Page T02N R06W S35 Ty00MC 77.00 UNPAR Project: Date 11/17/2021 77.00 Acres Time 6:13:55AM So Gr Log Gross Def Net % Net Volume by Scaling Diameter in Inches MBF rt de Len % MBF Spc 2-3 4-5 6-7 10-11 12-13 14-15 16-19 20-23 24-29 30-39 40+ Spp DF 14 7 2M 15 10 .3 10 DF 2M9 18 9 .3 DF 2M2 DF 2M20 2 . 1 .4 14 14 DF 2M 25 36 13 13 DF 2M 342 417 813 596 251 21 74.1 2,454 2,440 40 DF 2M.0 28 DF 3M ,0 30 DF 3M 32 .2 DF 3M 2 .1 DF 34 3M 2 DF 3M 35 .1 .2 5 2 DF 3M36 .2 2 DF 3M 37 6 38 10 10 ,3 10 3MDF .0 2 DF 3M 39 2 594 592 18.0 123 236 232 40 DF 3M .0 0 4M12 DF .0 1 DF 4M13 DF 4M6 .2 6 .2 5 DF 4M15 .0 DF 4M 3 17 3 DF 4M 2 DF 4M19 4M DF 20 DF 4M3 3 4 4M 21 5 DF 2 DF 4M 22 2 3 3 4M 24 DF .3 8 DF 4M25 2 DF 4M26 27 0. 1 DF 4MDF 4M28 5 5 29 7 7 DF 4M30 DF 4M31 15 ,5 15 DF 4M15 .2 DF 4M32 7 7

TC PLO		001.40					ck Table -							Page		2
102N R	06W S35 Ty	00MC	77	.00		ojeet: res	UNP	'AR <i>77</i> .	00					Date Time		17/2021 13:55AN
s Spp T		Log Len	Gross MBF	Def Net % MB		- 1			ie by S 8-9	caling Di		r in Inche 14-15	s 16-19	20-23	24.29	30-39
DF	4M				5	.2	, , , , , , , , , , , , , , , , , , , ,	5	<u> </u>				10.17	20 20		
DF	4M				12	,4		12								
DF	4M	35	18		18	.5		18								
DF	4M	36	13		13	.4		13								
DF	4M	37	4		4	.1	•	4								
DF	4M	38	2		2	.1		2								
DF	4M	40	31		31	.9		24	7							
DF	Totals		3,309	3	,293 8	3.8		310	254	234	349	432	822	596	275	21
NF	2M	40	154	1.8	151 90	5,5						21	9	37	43	42
NF	3М	36	2		2	1.1		2								
NF	3М	40	3		3	1,6		1			2	:				
NF	4M	12	0		0	,3				0						
NF	4M	22	1		1	.5			1							
NF	Totals		159	1,7	156	1.2		3	1	0	2	21	9	37	43	42
RA	CR	40	14		14 10	0.0			14							
RA	Totals	1	14		14	.4			14							
WH	2М	40	196		196 79	0.5					8	32	89	43	24	
WH	3М	30	1		1	.5			1							
WH	3М	40	36		36 1	1,5			15	13	8					
WH	4M	13	1		1	.4		1								
WH	4M	16	2		2	1.0		2								
WH	4M	20	4		4	1.8		4								
WH	4M	22	3		3	1.0		3								
WH	4M	23	1		1	.5		1								
WH	4M	24	i		1	.5		I								
WH	4M	28	1	· · · · · · · · · · · · · · · · · · ·	1	,4										<u></u>
WH	Totals		246		246	5.6		. 14	16	13	15	32	89	43	24	
Total	All Specie	•	3,728		3,709 10	١.		327	285	247	365	485	920	675	342	63

TC PST	ATS					OJECT : OJECT	STATIS UNP.				PAGE DATE	1 11/10/2021
WP	RGE	SC	TRACT	7	TYPE		AC	RES	PLOTS	TREES	CuFt	BdFt
02N	06	35	00U2	(00МС			46.00	14	78	S	W
						TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		F	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA	AL.		14	78		5.6						
CRUI DBH	SE COUNT DREST NT NKS		14	78		5.6		5,917		1.3		
100 7					STA	ND SUMM	ARY					
		P 4	MDU IZ	TDEEE			REL	BASAL	GROSS	NET	GROSS	NET
			MPLE FREES	TREES /ACRE	AVG DBH	BOLE LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
ייים	G FIR		73	115.4	18.2	122	48.9	208.6	42,27		9,156	9,156
	G FIR-S		73 4	113.4	13.0	62	3.2	11.4	-12,21	- 72,121	2,100	2,120
	MLOCK		1	.8	25.0	104	0.6	2.9	46	1 461	116	116
тот			78	128.6	17.8	116	52.8	222,9	42,73		9,272	9,272
CON	6				VOLUME	WILL BE \	WITHIN TH	HE SAMPLE E	ERROR			
CL	68.1		COEFF				E TREES -			# OF TREES F	-	INF. POP.
SD:	1.0		VAR.%	S.E.%	<u> </u>	.OW	AVG	HIGH		5	10	1
DOU	G FIR G FIR-S IMLOCK		64.5	7.5		499	539	580				
TOT	AL		69.8	7.9		472	512	552		195	49	2
CL	68.1		COEFF			SAMPL	E TREES .	CF		# OF TREES I	REO.	INF. POP.
SD:	1.0		VAR.%	S.E.%	L	.ow	AVG	HIGH		5	10	1
DOU	G FIR G FIR-S GMLOCK		59,8	7.0		107	115	124				
TOT			65.1	7.4		102	110	118		169	42	1
	<u> </u>		COEFF			TREES/	A CDF			# OF PLOTS I	PEO	INF, POP,
	68.1 1.0		VAR.%	S.E,%	ı	.OW	AVG	HIGH		5	10	init, ror,
	IG FIR		38.6	10.7		103	115	128				
	G FIR-S		254,4	70.5		4	12	21				
	EMLOCK		374.2	103,6			1	2				
TOT	AL		44.3	12.3		113	129	144		84	21	
CL	68.1		COEFF			BASAL	AREA/AC	RE		# OF PLOTS I	REO.	INF. POP.
	1.0		VAR.%	S.E.%	I	LOW	AVG	HIGH		5	10	1
	JG FIR		59.8	16.6	-	174	209	243		T		
	G FIR-S		213,9	59.3		5	11	18				
WHE	EMLOCK		374.2	103,6			3	6				
тот	AL		58.4	16.2		187	223	259		146	37	i
CL	68.1		COEFF			NET BE	/ACRE			# OF PLOTS I	REQ.	INF. POP.
	1.0		VAR.%	S.E.%	1	_ow_	AVG	HIGH		5	10	1
DOL	JG FIR		67.6	18,7		34,233	42,121	50,008				
	JG FIR-S											
	EMLOCK		374.2	103.6			461	939				
тот	AL		66,2	18.4		34,768	42,582	50,395		189	47	
CL	68.1		COEFF			NET CU	JFT FT/AC	CRE		# OF PLOTS	REQ.	INF. POP.
	1.0		VAR.%	S.E.%]	LOW	AVG	HIGH		5	10	
	JG FIR JG FIR-S		66.6	18.5		7,466	9,156	10,846				

TC PST	ATS				PROJECT PROJECT		STICS PAR			PAGE DATE	2 11/10/2021
TWP	RGE	SC	TRACT	ТҮРЕ		AC	CRES	PLOTS	TREES	CuFt	BdFt
02N	06	35	00U2	00MC			46.00	14	78	S	W
CL	68.1		COEFF		NET C	UFT FT/AC	CRE		# OF PLOTS	REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	ΑVG	HIGH		5	10	15
WHE	MLOCK		374.2	103,6		116	236				
TOTA	AL.		65.I	18.0	7,600	9,272	10,945		182	46	20

TC	PSPCSTGR		S	pecies, S	ort Gra	de - Board Fo	oot V	olum	es (Pr	oject)								
T02	2N R06W S35 T	гу00МС		46.00		Project: Acres	UN	PAR 46.0)0							Page Date Time		1 /10/20 9:19:5	
		%	***************************************				Perc	ent of I	let Boar	d Foot	Volume					Avera	ige Lo	g	Logs
	S So Gr	Net		, per Acre		Total		Log Sca	ıle Dia.			Log	Length		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	CU														22	9		0,00	26,6
DF	2M	64	.4	27,246	27,138	1,248			61	39	2	i		97	39	15	326	1.69	83,2
DF	3M	31	.2	13,199	13,178	606		98	2			0	I	99	40	8	103	0.62	127.4
DF	4M	5	1.5	1,831	1,805	83		100			34	48	11	7	22	6	28	0.34	63.9
DF	Totals	99	.4	42,276	42,121	1,938		35	40	25	2	3	1	94	34	10	140	0.88	301,0
										- 4 4									_
WH	2M	83		386	386	18				100				100	40		460		.8
WH	3M	17		75	75	3		100						100	40	8	90	0.96	.8
WH	Totals	1		461	461	21		16		84				100	40	13	275	1.73	1.7
Total	ls		0.4	42,737	42,582	1,959		35	39	26	2	3	ı	94	34	10	141	0.89	302.7

TC F	STNDSU	M				S	tand T	`able Su	ımary				Page Date:	1 11/10/2	021
T02N I	R06W S3:	5 Ty00MC		46.6	00		Project Acres	U	NPAR 46.0	0			Time: Grown Year:	10:19:5	2AM
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	RA / Acre	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Aere	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF	9	3	85	70	19.402	8.57	12.93	9,0	45.0	3.32	116	582	153	54	27
DF	11	1	89	107	4.329	2.86	8.66	10.3	45.0	2.55	89	390	117	41	18
DF	12	2	89	117	7.276	5.71	10.91	13.6	63.3	4.24	149	691	195	68	32
DF	14	5	89	118	13,363	14.29	26,73	20.9	96.0	15.90	558	2,566	732	257	118
DF	15	2	89	67	4.656	5.71	4.66	23.6	105,0	3,13	110	489	144	50	22
DF	16	5	88	124	10.231	14.29	22.51	26.0	115.5	16.66	585	2,599	767	269	120
DF	17	8	90	123	14,501	22,86	29,00	25,5	111.2	21.09	740	3,226	970	340	148
DF	18	7	89	131	11.318	20.00	32.34	27.3	118,5	25,19	884	3,832	1,159	407	176
DF	19	7	89	129	10.158	20,00	29.02	30.2	130.5	24.99	877	3,787	1,150	403	174
DF	20	3	90	130	3,929	8.57	11.79	31.9	147.8	10,73	376	1,742	494	173	80
DF	21	3	90	132	3,564	8,57	10,69	36.4	173.3	11.08	389	1,853	510	179	85
DF	22	5	89	130	5.412	14.29	16.23	40.7	190,0	18.82	660	3,085	866	304	142
DF	23	4	89	135	3.961	11.43	11.88	46.5	218,3	15.76	553	2,594	725	254	119
DF	24	4	89	142	3,638	11.43	10.91	51.9	237.5	16.13	566	2,592	742	260	119
DF	25	ì	87	119	.838	2.86	2.51	47,7	210.0	3.42	120	528	157	55	24
DF	26	4	88	138	3,100	11.43	9.30	57.6	268,3	15,26	535	2,495	702	246	115
DF	27	3	87	152	2.156	8.57	6.47	67.5	332.2	12.43	436	2,149	572	201	99
DF	28	3	86	147	2,005	8.57	6.01	70.7	342.2	12.11	425	2,058	557	196	95
DF	29	3	87	151	1.869	8.57	5.61	77.7	387.8	12,42	436	2,174	571	200	100
DF	30	l	86	152	.582	2,86	1,75	83.6	416.7	4.16	146	728	191	67	33
DF	31	ı	86	120	.545	2,86	1.64	75.0	343,3	3.50		561	161	56	26
DF	33	2	87	143	.962	5.71	2.89	98.1	485.0	8.07	283	1,400	371	130	64
DF	Totals	77	88	116	127,793	220,00	274,44	33,4	153,5	260.95	9,156	42,121	12,004	4,212	1,938
wн	25	1	87	104	.838	2.86	1.68	69.1	275.0	3,71	116	461	171	53	21
WH	Totals	1	87	104	.838	2.86	1.68	69.1	275.0	3.71	116	461	171	53	21
Totals		78	88	116	128,632	222,86	276,11	33.6	154.2	264.66	9,272	42,582	12,174	4,265	1,959

							<u>-</u>							Time	10:	19:50A	MM
	s	So Gr		Gross	Def Net	%		Yet Volun	ie by S	caling Dia	mete	r in Inch	es			1	
Spp	T	rt de	Len	MBF	% MBF	Spc	2-3 4-5	6-7	8-9	10-11 12	2-13	14-15	16-19	20-23	24-29	30-39	40+
DF		2M	16	19		19 1,0							19				
DF		2M	30	16		16 ,8							16				
DF		2М	40	1,218	1,2	13 62,6					434	219	397	141	22		
DF		3M	29	1		.1			1								
DF		3М	34	2		2 ,i		2									
DF		3M	35	4		4 .2		4									
DF		3М	36	2		2 .1		2									
DF		3М	38	3		3 .1		3									
DF		3М	39	12		12 ,6	1	12									
DF		3М	40	584	5	83 30,1		127	209	235	11						
DF		4M	13	2		2 .1		2									
DF		4M	[14	5		5 .3		5									
DF		4M				5 .3		5									
DF		4M	16	1		.1		1]					
DF		4M	17	5		5 .2		5									
DF		4M	18	2		2 .1		2									
DF		4M	[19	7		7 .3		7									
DF		4M	i 20	1		1 .1		1									
DF		4M	1 22	1		1 .6		1									
DF		4M	1 23	6		6 .3		6									
DF		4M	1 24	I		.1		ı									
DF		4M	1 25	1		1 ,1		1									
DF		4M	1 26	12		12 .6	5	12									
DF		4M	[27	4		4 .2	2	4									
DF		4M	1 29	12	10.6	10 .5	·	10									
DF		4M	30	5		5 .2		5									
DF		4M	31	2		2 .1		2						1			
DF		4M	1 33	5		5 ,3	3	5									
DF		4M	1 34	2		2 ,1		2									
DF		4M	1 37	3		3 ,2	2	3									
DF		4M	1 40	2		2 ,1	1	2							<u> </u>		
DF		Totals	s	1,945	1,9	38 98.9		233	210	235	445	219	433	141	22		
WH		2N	1 40	18	····	18 83.0	5						18				
WH		3N	ı 40	3		3 16.4	i		3								
WH		Total	s	21		21 1.1			3				18				
				4				4						↓		1	

T02	N RO	06W S35	гу00МС		46.00		Proje Acre		UN	PAR 40	5.00					Page Date Time		2 10/202 19:50A	
	s	So Gr	Log	Gross	Def	Net	%			Net Volu	me by S	Scaling 1	Diamete	r in Inch	cs				
Spp	Т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	4

.

VOLUME SUMMARY

Unparalleled FG-341-2022-W00867-01

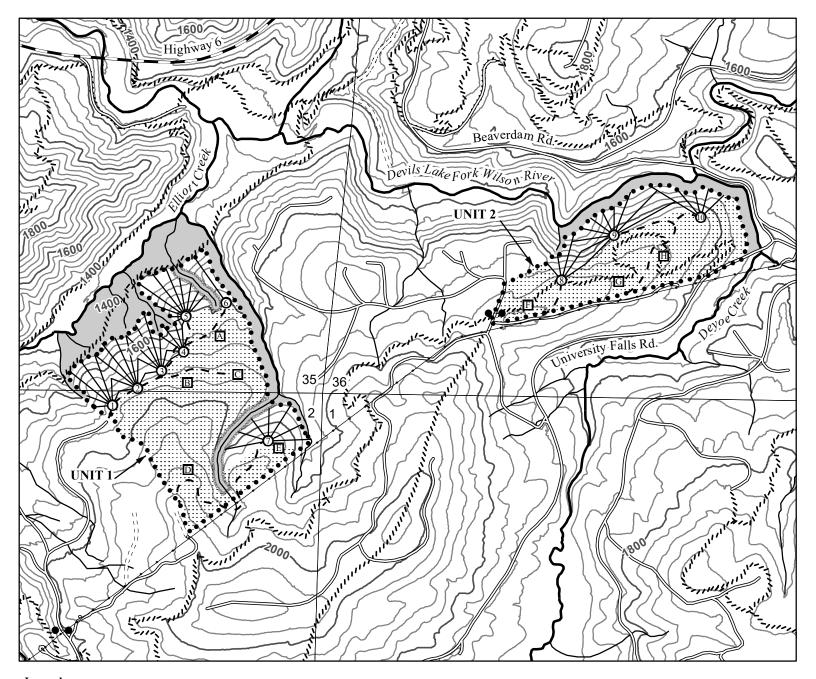
November 2021

VOLUMES IN MBF

UNIT 1: MC (77 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
	Cruise Volume	2,495	631	167	0	3,293
Douglas-fir	Hidden D&B (2%)	(50)	(13)	(3)	(0)	(66)
Douglas-III	NET TOTAL	2,445	618	164	0	3,227
	% of Total	76	19	5		
	Cruise Volume	196	37	14	0	247
Western hemlock	Hidden D&B (2%)	(4)	(1)	(0)	(0)	(5)
western nemiock	NET TOTAL	192	36	14	0	242
	% of Total	79	15	6	0	
	Cruise Volume	151	4	1	0	156
Noble fir	Hidden D&B (2%)	(3)	(0)	(0)	(0)	(3)
Noble III	NET TOTAL	148	4	1	0	153
	% of Total	97	2	1	0	
	Cruise Volume	0	0	0	14	14
Red alder	Hidden D&B (5%)	(0)	(0)	(0)	(1)	(1)
rieu aldei	NET TOTAL	0	0	0	13	13
	% of Total	0	0	0	100	

UNIT 2: MC (46 ACRES)


SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
Douglas-fir	Cruise Volume	1,248	606	83	0	1,937
	Hidden D&B (2%)	(25)	(12)	(2)	(0)	(39)
	NET TOTAL	1,223	594	81	0	1,898
	% of Total	65	31	4	0	
Western hemlock	Cruise Volume	18	3	0	0	21
	Hidden D&B (2%)	(0)	(0)	(0)	(0)	(0)
	NET TOTAL	18	3	0	0	21
	% of Total	86	14	0	0	

UNIT 3: R/W (1 ACRE)

SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
	Cruise Volume	7	3	1	0	11
Douglas-fir	Hidden D&B (2%)	(0)	(0)	(0)	(0)	(0)
	NET TOTAL	7	3	1	0	11
	% of Total	64	31	4	0	·

SALE TOTAL

SPECIES	2 SAW	3 SAW	4 SAW	CR	TOTAL
Douglas-fir	3,675	1,215	246	0	5,136
Western hemlock	210	39	14	0	263
Noble fir	148	4	1	0	153
Red alder	0	0	0	13	13
Total	4,033	1,258	261	13	5,565

Legend

- • Timber Sale Boundary
- Stream Buffer Boundary
- Paved Road
- Surfaced Road
- = = = : Unsurfaced Road
- Type-F Stream
- Type-N Stream
- Stream Buffer
- O Cable Landing
- ☐ Tractor Landing
- Cable Yarding Area
- Tractor Yarding Area
- "" Recreational Trail
- ---- BPA Transmission Lines
- ● Gate
- Section Line
- —— 40 Foot Contour Band
- 200 Foot Contour Band

LOGGING PLAN

FOR TIMBER SALE CONTRACT #FG-341-2022-W00867-01 UNPARALLELED
PORTIONS OF SECTIONS 35 & 36, T2N, R6W, W.M.,
TILLAMOOK COUNTY, OREGON
PORTIONS OF SECTION 2, T1N, R6W, W.M.,
TILLAMOOK COUNTY, OREGON
PORTIONS OF SECTION 31, T2N, R5W, W.M.,
TILLAMOOK COUNTY, OREGON

Forest Grove District GIS November, 2021

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1:12,000

1 inch = 1,000 feet

0	500	1,000	2,000
			Feet

APPROXIMATE NET ACRES

	TRACTOR	CABLE
UNIT 1	28	49
UNIT 2	13	33
UNIT 3	1	0
TOTAL	42	82