

Timber Sale Appraisal Green Saddle

Sale AT-341-2022-W00561-01

District: Astoria Date: March 16, 2022

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$1,608,300.99	\$44,876.96	\$1,653,177.95
		Project Work:	(\$102,424.00)
		Advertised Value:	\$1,550,753.95

Timber Sale Appraisal Green Saddle

Sale AT-341-2022-W00561-01

District: Astoria Date: March 16, 2022

Timber Description

Location:

Stand Stocking: 60%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	15	0	97
Western Hemlock / Fir	14	0	96
Sitka Spruce	20	0	95
Alder (Red)	14	0	95

Volume by Grade	2\$	3S & 4S 6"- 11"	10" - 11"	12"+	6" - 7"	Total
Douglas - Fir	194	424	0	0	0	618
Western Hemlock / Fir	1,217	2,422	0	0	0	3,639
Sitka Spruce	217	83	0	0	0	300
Alder (Red)	0	0	65	38	61	164
Total	1,628	2,929	65	38	61	4,721

4/12/22

Comments: Pond Values Used: Local Pond Values, February, 2022.

Expected Log Markets: Warrenton, Mist, Willamina, Banks, Tillamook, Wauna, Forest Grove, Longview, WA, and Chehalis, WA.

PRICING:

Western Red Cedar and other Cedars stumpage = pond value - (western hemlock) logging cost. \$902.04/MBF = \$1,200/MBF - \$297.96/MBF

Bigleaf maple and other hardwoods stumpage = pond value - (western hemlock) logging cost. \$102.04/MBF = \$400/MBF - \$297.96/MBF

Other Costs (with Profit & Risk to be added):

Fuel cost allowance based on month local pond values were collected.

Machine Washing for Invasive Weed Compliance = \$2,000

Traffic Control on Saddle Mountain County Road = 2 flaggers for 5 days @ \$720/day = \$3,600.00

Machine and labor for county road clean-up at the end of each day (5 days) and end-hauling of material:

8 hours w/C325 log loader @ \$145/hr = \$1,160

6 hours labor @ \$45/hr = \$270

3 hours dump truck (12cy) @ \$89/hr + \$184/move in = \$451

Ditch Filters:

Bales of straw 16 @ \$12/bale = \$192.00 4 hours of labor @ \$45/hr = \$180.00

Deadman anchor for guylines: \$905 for excavator move in (C315) 6 anchors @ 3 hrs/anchor = 18 hrs \$114/hr for excavator operation (C315) \$114/hr x 18 hrs + \$905 = \$2,957

Dozer (D7) mobilization for tailhold/guyline anchor: 1 move-in @ \$905/move in = \$905

Waterbar and block 1A to 1B and 1E to 1F:
Move in C315 Excavator @ \$905/move in = \$905
6 hrs w/C315 to construct 8 to 10 waterbars @ \$114/hr = \$684

Install and Remove Temporary Stream Crossing (1 site in Unit 3): 3 hrs w/C325 Log Loader @ \$145/hr = \$435 2 hours of labor @ \$45/hr = \$90 3 Straw Bales @ \$12.06/bale = \$36.18 Total = \$561.18

TOTAL Other Costs (with Profit & Risk to be added): \$13,883.18

SLASH PILING

(See attached appraisal. Includes move in, pile materials, and end-hauling) = \$12,435.00

ROAD MAINTENANCE

(See attached Road Maintenance Cost Summary Sheet)
TOTAL Road Maintenance: \$18,853/4,721 MBF = \$3.99/MBF

4/12/22

Timber Sale Appraisal Green Saddle

Sale AT-341-2022-W00561-01

District: Astoria Date: March 16, 2022

Logging Conditions

Combination#: 1 Douglas - Fir 52.00%

 Western Hemlock / Fir
 52.00%

 Sitka Spruce
 52.00%

 Alder (Red)
 52.00%

yarding distance: Long (1,500 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 9 bd. ft / load: 3800

cost / mbf: \$198.83

machines: Log Loader (A)

Tower Yarder (Large)

Combination#: 2 Douglas - Fir 23.00%

 Western Hemlock / Fir
 23.00%

 Sitka Spruce
 23.00%

 Alder (Red)
 23.00%

Logging System: Shovel Process: Manual Falling/Delimbing

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 12 bd. ft / load: 3800

cost / mbf: \$86.35

machines: Shovel Logger

Combination#: 3 Douglas - Fir 25.00%

 Western Hemlock / Fir
 25.00%

 Sitka Spruce
 25.00%

 Alder (Red)
 25.00%

Logging System: Track Skidder Process: Manual Falling/Delimbing

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Small / Thinning 10in (90 Bft/tree), 18-20 logs/MBF

loads / day: 8 bd. ft / load: 3700

cost / mbf: \$150.52

machines: Log Loader (B)

Track Skidder

Timber Sale Appraisal Green Saddle

Sale AT-341-2022-W00561-01

District: Astoria Date: March 16, 2022

Logging Costs

Operating Seasons: 2.00

Profit Risk: 12%

Project Costs: \$102,424.00

Other Costs (P/R): \$12,065.00

Slash Disposal: \$12,435.00 Other Costs: \$0.00

Miles of Road

Road Maintenance:

\$3.99

Dirt	Rock (Contractor)	Rock (State)	Paved	
0.0	0.0	0.0	0.0	

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load	
Douglas - Fir	\$0.00	3.0	4.8	
Western Hemlock / Fir	\$0.00	3.0	4.5	
Sitka Spruce	\$0.00	2.0	5.5	
Alder (Red)	\$0.00	2.0	3.8	

Timber Sale Appraisal Green Saddle

Sale AT-341-2022-W00561-01

District: Astoria Date: March 16, 2022

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$160.88	\$4.11	\$1.86	\$85.83	\$2.56	\$30.63	\$2.63	\$2.00	\$0.00	\$290.50
Western H	emlock /	/ Fir							
\$160.88	\$4.15	\$1.86	\$92.45	\$2.56	\$31.43	\$2.63	\$2.00	\$0.00	\$297.96
Sitka Spru	ce								
\$160.88	\$4.19	\$1.86	\$114.54	\$2.56	\$34.08	\$2.63	\$2.00	\$0.00	\$322.74
Alder (Red)								
\$160.88	\$4.19	\$1.86	\$165.78	\$2.56	\$40.23	\$2.63	\$2.00	\$0.00	\$380.13

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$791.28	\$500.78	\$0.00
Western Hemlock / Fir	\$0.00	\$634.01	\$336.05	\$0.00
Sitka Spruce	\$0.00	\$575.85	\$253.11	\$0.00
Alder (Red)	\$0.00	\$653.77	\$273.64	\$0.00

Timber Sale Appraisal Green Saddle

Sale AT-341-2022-W00561-01

District: Astoria Date: March 16, 2022

Summary

Amortized

Specie	MBF	Value	Total	
Douglas - Fir	0	\$0.00	\$0.00	
Western Hemlock / Fir	0	\$0.00	\$0.00	
Sitka Spruce	0	\$0.00	\$0.00	
Alder (Red)	0	\$0.00	\$0.00	

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	618	\$500.78	\$309,482.04
Western Hemlock / Fir	3,639	\$336.05	\$1,222,885.95
Sitka Spruce	300	\$253.11	\$75,933.00
Alder (Red)	164	\$273.64	\$44,876.96

Gross Timber Sale Value

Recovery: \$1,653,177.95

Prepared By: John Tillotson Phone: 503-325-5451

Road Maintenance Cost Summary (Interim and Post Harvest)

Sale:

Green Saddle

MBF: 4,721.00 \$3.99

Date:

March 8, 2022

By:

John Tillotson

Tuno	Equipment/Dationals	Move-in	Times	Have	Dete	Coot
Туре	Equipment/Rationale	Rate	Times	Hours	Rate	Cost
Interim Operations	Grader 14G Dump Truck 12CY Rubber tired backhoe Vibratory Roller	\$875 \$184 \$875 \$875	1 1 1	12 8 4 6	\$113 \$89 \$87 \$87	\$2,231 \$896 \$1,223 \$1,397
Final Road Maintenance	Grader 14G Dump Truck 12CY FE Loader C966 Vibratory Roller Water Truck 2,500 gallon Excavator C315 Labor	\$875 \$184 \$875 \$875 \$214 \$905	1 2 1 1 1	27 12 6 21 12 8 8	\$113 \$89 \$94 \$87 \$101 \$114 \$45	\$3,926 \$1,436 \$1,439 \$2,702 \$1,426 \$1,817 \$360
Total						

Interim Operations Road Maintenance

Production Rates	Miles/day	Distance (miles)	Days	Hours
Grader	2.5	3.9	1.6	12

Wawa Mainline (Greenwood) Final Maintenance/Grade

Production Rates	Miles/day	Distance (miles)	Days	Hours
Grader	2.5	2.0	0.8	6

Final Road Maintenance/Processing

Production Rates	Miles/day	Distance (miles)	Days	Hours
Grader	1.5	3.9	2.6	21
Vibratory Roller	1.5	3.9	2.6	21

Process and compact: All crushed rock roads except for Wawa Mainline (on Greenwood)
Unnamed Spurs: 0.9 Miles
Wawa Mainline (on STATE) = 0.3 Miles
Green Mountain Road = 2.7 Miles
Grade & Process Total = 3.9 Miles
Grade Only: Portions of Wawa Mainline (Greenwood)
Grade Only (as needed) = 2 Miles
Grade Only (as fleeded) = 2 Miles

			Vegetation Type/Zone	Vegetation Type/Zone Code	Production Rate (hr/ac)	Estimated Piles/Acre	Landing Production Rate (hrs/30 acres)
Sala Number	AT-341-2021-W0	0561-01	Doug-fir	A	0.5	0.5	6
	Green Saddle		Hemlock/Fir	В	1.3	4.5	8
	02/09/2022		Hemlock/Spruce	C	1.8	5.0	10
Date.	OZIOOIZOZZ		Hemlock	D	1.8	5.0	8
			Conifer/Hardwood	Е	1.0	2.0	8
		ì	Whole Tree Yarding	F	0.5	0.5	12
Unit	Harvest Type	Veg Type/Zone	Ground Based Yarding Acres	Estimated Piling Hours/Area	Cost/Hour	Total Cost/Area	
1	MC	F	25	13	\$145	\$1,813	
2	MC	F	17	9	\$145	\$1,233	
					In-unit Piling	Sub Total =	\$3,045
	Number of Landings to be	Harvested	T (10 (()))	Number of In-	Material Cost/Pile	Total Cost/Area	
Sale Area	Piled	acres per area		Unit Piles		\$113	•
1	10	57	\$3,306	22.5	\$5 \$5	\$113 \$93	
2	10	68	\$3,944	19	· · · · · · · · · · · · · · · · · · ·	ু ১৯৯১ Sub Total =	\$205
*Cost includes se	parating firewood				Materials	Sub Total -	φ200
Addito Move-In	nal Move-in allov Number of	vance Total Move-In			Landing Piling	Sub Total =	\$7,250
Allowance	Move-In's	Allowance					_
\$1,290.00	1.5	\$1,935					-
Slash Endhaul					Move-In	Sub Total =	\$1,935
Dump Truck hrs	Cost/Hour	Total	Loader hrs	Cost/Hour	Total		
0	\$89.00	\$0	0	\$145	\$0		-
Ŭ	Ψ00.00	**				Sub Total =	\$0
							M
						Grand Total =	s12,43
						Granu Total -	- का∠,43

Site Prep/Machine Piling Appraisal

SUMMARY OF ALL PROJECT COSTS

SALE NAI Green Saddle

Project No. 1: ROAD CONSTRUCTION:					
<u>Road segment</u>	<u>Length (Sta)</u>	<u>Length (Mile)</u>	<u>Cost</u>		With additional fuel allowance per project
Unsurfaced					<u> </u>
1A to 1B, 1C to 1D, and 1E to 1F	33.7	0.64	\$16,433.95		\$18,077.34
Surfaced 2A to 2B, 2C to 2D, and 3A to 3B	25.45	0.48	\$16,452.27		\$18,097.50
Road Maint.			\$1,208.63		\$1,329.49
Move-In TOTALS	59.15	1.12	\$3,331.72	\$37,426.57	\$3,664.89
TOTALS	33.13	1,12		737,420.37	
Project No. 2: ROAD IMPROVEMENT:					
Road segment 11 to 12, 13 to 14, 15 to 16,	<u>Length (Sta)</u> 361.75	<u>Length (Mile)</u> 6.85	<u>Cost</u> \$44,361		\$48,797.62
		M-14-14-14-14-14-14-14-14-14-14-14-14-14-			
Road Maint.			\$1,630		\$1,793.41
Move-In			\$4,494	4	\$4,943.71
TOTALS	361.75	6.85		\$50,486	_
SPECIAL PROJECTS (Move-In and Road Maint, are included	I separetly as needed, fo	r each Special Project):			
<u>Description</u> Proj. 3 Road Vacating		<u>Stations</u> 107.00	<u>Cost</u> \$5,200		\$5,720.00
TOTAL				\$5,200	
10% Increase Fuel Allowance				\$9,311.27	_
			-		_
GRAND TOTAL				\$102,424	
	FL.			02/44/2022	
Compiled By: Cole Hatcher	* ************************************		Date: _	03/14/2022	-

SALE NAME:	Green Saddle				
Project No. 1:	ROAD CONSTRUCTION:				
	Road segment Unsurfaced	Length/Sta	Length/Mile	Cost	
	1A to 1B, 1C to 1D, and 1E to 1F	33.70	0.64	\$16,433.95	
	Surfaced 2A to 2B, 2C to 2D, and 3A to 3B	25.45	0.48	\$16,452.27	
	TOTALS	59.15	1.12		\$32,886
Project No. 2:	ROAD IMPROVEMENT:				
	Road segment 11 to 12, 13 to 14, 15 to 16, 17 to 18, and 19 to 110	<u>Length/Sta</u> 361.75	Length/Mile 6.85	Cost \$44,361	
	TOTALS	361.75	6.85		\$44,361
MOVE IN (Con	struction & Improvement Only)				
•	<u>Eq</u>	<u>uipment</u>	Length/Mile	<u>Cost</u>	
	G14 Grader			\$875.00	
	C966 Loader			\$875.00	
	C315 Excavator C330 Excavator			\$905.00 \$1,581.00	
	D8 Dozer			\$1,581.00	
	Vibratory Roller			\$875.00	
	10-12cy Highway Dump Truck (x5)			\$920.00	
	Water Truck (2,500 gal)			\$214.00	
	TOTAL				\$7,826.00
ROAD MAINTE	ENANCE (Construction & Improveme	nt Only)			
	Final Project Road Maintenance		Length/Mile 1.16	<u>Cost</u> \$2,839.00	
	TOTAL				\$2,839.00

SUMMARY OF CONSTRUCTION COSTS

SALE NAME: **NEW CONSTRUCTION:** 59.15 **STATIONS** 1.12 MILES Green Saddle 1A to 1B (13.2), 1C to 1D (18.5), 1E to 1F (2.0), 2A to 2B (: 2C to 2D (3.2), and 3A to 3B (19.25) IMPROVEMENT: **STATIONS** 0.00 MILES ROAD: **CLEARING & GRUBBING** Method Acres/amount Rate Cost \$0.00 1A to 1B, 1C to 1D, 1E to 1F, 2A to 2B, 2C to 2D, and 3A to 3B Scatter outside of right of way 4.75 \$1,503.00 \$7,143.22 х SUB TOTAL FOR CLEARING & GRUBBING \$7,143 **EXCAVATION** Material Cy/amount Rate Cost 1A to 1B \$1,821.60 0+00 to 13+20 Balanced construction (\$/sta) 13.20 х \$138.00 = 10+80 Build turnaround (\$/C315) х \$114.00 = \$114.00 13+20 Landing construction (\$/ldg) \$438.00 = \$438.00 х 1C to 1D Common drift (≤ 50% slopes) (\$/cy) 0+00 to 11+20 530 \$2.02 \$1,070.60 х = End-haul excavation (loading and haul up 0+00 to 11+20 to 5,000') 650 \$4.50 = \$2,925.00 0+00 to 11+20 Embankment compaction (\$/cy) 1,180 \$0.79 = \$932.20 Х 11+20 to 18+50 Balanced construction (\$/sta) \$138.00 = \$1,007.40 Х 4+80, 13+20, 18+50 Landing construction (\$/ldg) \$438.00 \$1,314.00 х 1F to 1F 0+00 to 2+00 Balanced construction (\$/sta) \$138.00 \$276.00 2.00 х 2+00 Landing construction (\$/ldg) \$438.00 \$438.00 2A to 2B 0+00 to 3+00 Balanced construction (\$/sta) 3.00 \$138.00 \$414.00 Х \$114.00 1+50 Build turnaround (\$/C315) \$114.00 = 1 Х \$438.00 3+00 \$438.00 Landing construction (\$/ldg) Х = 2C to 2D 0+00 to 1+20 Balanced construction (\$/sta) 1.2 \$138.00 \$165.60 Х 1+20 to 3+20 Drift earth up to 200' 2.0 \$214.00 \$428.00 Х 3+20 Landing construction (\$/ldg) \$438.00 \$438.00 1 х 3A to 3B Balanced construction (\$/sta) \$138.00 \$2,656.50 0+00 to 19+25 19.25 Х SUB TOTAL FOR EXCAVATION \$14,991 CULVERT MATERIALS AND INSTALLATION Location Dia/type Lineal ft. Rate Cost Location Dia/type Lineal ft. Rate Cost 1C to 1D 10+85 18" CPP 30 \$21.95 \$658.50 2A to 2B 18" CPP 0+00 40 \$21.95 \$878.00 3A to 3B 18" CPP 30 \$658.50 2+20 \$21.95 8+60 18" CPP 30 \$21.95 \$658.50 Description Quantity Rate Other/miscellaneous:

6'x2 1/2" white Carsonite post

Culvert stakes & markers:

SUB TOTAL FOR CULVERT MATERIALS & INSTALLATION

\$23.00

Subtotal of Clearing, Exc., Culv.

3

\$69.00

\$2,923

\$25,057

SURFACING	***************************************							Stations/		Rate/	
	Subgrade prep:		escription					amount	Х	sta/amt	Cost
	2A to 2B, 2C to 2D,										
	and 3A to 3B	Grade, Shape	and Ditch	16'				25.45	Х	\$27.91	\$710.31
	1A to 1B, 1C to 1D,										
	and 1E to 1F	Grade, Shape	and Outsl	ope 14'				33.70	X	\$20.63	\$695.23
	All segments	Subgrade Cor	mpaction					59.15	X	\$22.69	########
ROAD SEGME	2A to 2B			POINT TO	POINT	Sta. to S	to				ī
NOAD SEGNIC	, <u>2</u> A (0 2B	1	Depth of	CONTRACTOR DESCRIPTION OF CONTRACTOR CONTRAC	200700000000000000000000000000000000000	0+00 to 3-		TOTAL	Rate/		
Application	Rock Size and Type	Location	Rock (inches)	Volume		Numbe		VOLUME (CY)	Sta./	Cost	
Base Rock	6"-0" pit-run	0+00 to 3+00		station	50	stations	3.0	150	\$2.72	\$408	1
Junction	3/4"-0" crushed	0+00	N/A	junction	22	junctions	1	22	\$10.41	\$229	1
Turnaround	6"-0" pit-run	1+50	N/A	urnaround	33	turnarounds	1	33	\$2.72	\$90	
Landings	6"-0" pit-run	3+00	N/A	landing	77	landings	1	77	\$2.72	\$209	
Total Rock for I	Road Segment:		2A to 2B					282			\$936
ROAD SEGME	2C to 2D			POINT TO	POINT	Sta. to S	ta.				
			Depth of	2C to 2	2D	0+00 to 3	+20	TOTAL	Rate/	Cost	
Application	Rock Size and Type	Location	Rock (inches)	Volume per	(CY)	Numbe of	r	VOLUME (CY)	Sta./ amt.	Jose	
Base Rock	6"-0" pit-run	0+00 to 3+20		station	50	stations	3.2	160	\$2.72	\$435	
Landings	6"-0" pit-run	3+20	N/A	landing	77	landings	1	77	\$2.72	\$209	
Total Rock for	Road Segment:		2C to 2D					237			\$645

ROAD SEGME	3A to 3B			POINT TO POINT	Sta. to	Sta.	1.0				
Application	Rock Size and Type	Location	Depth of Rock (inches)	3A to 3B Volume (CY) per	0+00 to 1 Numb of		TOTAL VOLUME (CY)	Rate/ Sta./ amt.	Cost		
Leveling Rock	6"-0" pit-run		N/A	load 11	loads	4	44	\$2.72	\$120		
Junction	6"-0" pit-run	0+00	N/A	junction 33	junctions	1	33	\$2.72	\$90		
Total Rock for F	Road Segment:		3A to 3B	***************************************			77			\$209	
		Processing:		Description ocess & Compact Ba	ase Rock (4	"-0"):		No.sta 25.45	Rate/sta \$63.48	Cost ########	
				6"-0"рг	4"-0" crushed	3/4"- 0" crush ed		Total			
	SUB TOTAL FOR	SURFACING		574	0	22		596			\$6,154
	SPECIAL PROJEC			Description	pit-run deve	elopment	Cy/Amount 574	Rate \$2.92	Cost \$1,676.08		
	SUB TOTAL FOR	SPECIAL PRO	DJECTS						2 6 1 0	0 0 1	\$1,676
							Sui		Surfacing & of Clearing,		\$7,830 \$25,057
	GRAND TOTAL										\$32,886
	Compiled By:	Cole Hatcher	-			_		Date:	#######	-	

(

SUMMARY OF CONSTRUCTION COSTS

0.00 MILES SALE NAME: Green Saddle **NEW CONSTRUCTION: STATIONS** ROAD: 11 to I2 (6.2), I3 to I4 (197.8), I5 to I6 (8.5), IMPROVEMENT: 361.75 STATIONS 6.85 MILES 17 to 18 (8.6), and 19 to 110 (140.65) **CLEARING & GRUBBING** Method Acres/amour Rate Cost SUB TOTAL FOR CLEARING & GRUBBING \$0 **EXCAVATION** Material Cy/amount Rate Cost 11 to 12 0+00 to 6+20 Clear alder along ditchline w/C315 (\$/hr) 4 \$114.00 \$456.00 Х 0+00 Widen junction w/C315 (\$/hr) 3 \$342.00 \$114.00 = Х 17 to 18 0+00 Widen junction w/C315 (\$/hr) 3 \$114.00 \$342.00 Х 19 to 110 75+60 Install rock ditch filter w/C315 (\$/hr) \$114.00 = \$114.00 Х 112+35 Expand existing roadside landing w/C330 (\$/hr 4 х \$175.00 = \$700.00 118+35 Expand existing turnout w/C330 (\$/hr) = \$175.00 1 Х \$175.00 118+90 Construct roadside landing w/ C330 (\$/hr) 4 \$175.00 = \$700.00 х 121+10 Construct roadside landing w/ C330 (\$/hr) 4 \$175.00 = \$700.00 Х 138+20 Locate and clean culvert inlet w/C315 (\$/hr) \$114.00 \$114.00 SUB TOTAL FOR EXCAVATION \$3,643 CULVERT MATERIALS AND INSTALLATION Location Dia/type Lineal ft. Rate Cost Location Dia/type |Lineal ft. Rate Cost 13 to 14 19 to 110 196+55 18" ACSP 84+45 18" ACSP 30 \$27.74 \$832.20 30 \$27.74 \$832 197+60 18" ACSP 50 \$27.74 \$1,387 17 to 18 0+00 18" ACSP 40 \$27.74 \$1,110 Description Quantity Rate Cost Other/miscellaneous: Culvert stakes & markers: 6'x2 1/2" white Carsonite post 10 \$23.00 \$230.00

SUB TOTAL FOR CULVERT MATERIALS & INSTALLATION

\$4,435 Subtotal of Clearing, Exc., Culv.

\$8,078

SURFACING								Stations/		Rate/		
SUKFACING	Subgrade prep:		Description					amount	×	sta/amt	Cost	
	13 to 14 Sta.(0+00 to		Description					anioun		Startint	0031	
	183+30)	Snot Grading on M	la Wa Mainli	a Mainline w/ 14G (\$/hr)			12.00	x	\$113.00	\$1,356.00		
	All "I" segments and I3	Opor Grading on vi	A A A A I I I I I I I I I I I I I I I I	11C W/ 14O (\$/	1117			12.00	^	\$110.00	41,000.00	
	to I4 Sta. (183+30 to											
	197+80)	Grade, Shape and	Ditch 16'					172.25	x	\$27.91	\$4,807.50	
		Ordao, Onapo ana	Ditoil 10							421.127	* .,===	
	All "I" segments and I3											
	to I4 Sta. (183+30 to										******	
	197+80)	Subgrade Compac	tion					172.25	X	\$22.69	\$3,908.35	
	11 to 12, 15 to 16, 17 to											
	18, and 19 to 110	Sod Removal and	scatter on sit	e				157.74	x	\$26.20	\$4,132.79	
ROAD SEGMENT	13 to 14			POINT TO		Sta, to S						
			Depth of	13 to 1		0+00 to 19		TOTAL	Rate/	Cost		
Application	Rock Size		Rock	Volume	(CY)	Numbe	ır	VOLUME	Sta./	Cost		
Application	and Type	Location	(inches)	per		of		(CY)	amt.]	
		9+50, 33+90, 50+50, 60+75, 68+90, 80+00, 97+60, 122+50, 145+80, 151+00,										
Leveling Rock	1 1/2"-0" crushed	165+30, 169+30	N/A	load	11	loads	12	132	\$10.41	\$1,374		
Leveling Rock	1 1/2"-0" crushed		N/A	load	12	loads	4	48	\$10.41	\$500		
Turnouts	1 1/2"-0" crushed	190+10	N/A	turnout	11	turnouts	1	11	\$10,41	\$115	1	
Culvert Bedding and Backfill	1 1/2"-0" crushed	196+55, 197+60	N/A	culvert	33	culverts	2	66	\$10.41	\$687	1	
Total Rock for Road Segment	t.		13 to 14					257			\$2,675	
ROAD SEGMENT	15 to 16			POINT TO	POINT	Sta, to S	ta,					
			Depth of	15 to I	6	0+00 to 8	+50	TOTAL	Rate/	Cost		
Application	Rock Size		Rock	Volume	(CY)	Numbe	er 💮	VOLUME	Sta./	COSI		
Аррисацоп	and Type	Location	(inches)	per		of		(CY)	amt.			
Leveling Rock	3/4"-0" crushed		N/A	load	11	loads	4	44	\$10.41	\$458		
Junctions	6"-0" pit-run	0+00	N/A	junction	22	junctions	1	22	\$2.72	\$60		
Turnouts	3/4"-0" crushed	3+10	N/A	turnout	11	turnouts	1	11	\$10.41	\$115		
Turnaround	6"-0" pit-run	5+80	N/A	turnaround	22	turnaround	11	22	\$2.72	\$60		
Total Rock for Road Segment			15 to 16					99			\$692	
ROAD SEGMENT	17 to 18			POINT TO		Sta, to S		1				
			Depth of	17 to 1		0+00 to 8		TOTAL	Rate/	Cost		
Application	Rock Size		Rock	Volume		Numbe	er	VOLUME	Sta./			
	and Type	Location	(inches)	per		of		(CY)	amt.			
Leveling Rock	3/4"-0" crushed		N/A	load	11	loads	4	44	\$10.41	\$458		
Junctions	6"-0" pit-run	0+00	N/A	junction	22	junctions	1	22	\$2.72	\$60		
Culvert Bedding and Backfill	3/4"-0" crushed	0+00	N/A	culvert	33	culverts	1	33	\$10.41	\$344		
Total Rock for Road Segmen	t		17 to 18					99	l	1	\$861	

ROAD SEGMENT	19 to 110			POINT TO		Sta. to						
			Depth of	19 to 1		0+00 to 14		TOTAL	Rate/	Cost		
Application	Rock Size		Rock	Volume	(CY)	Numb		VOLUME	Sta./	Cost		
Application	and Type	Location	(inches)	pe		of		(CY)	amt.			
		4+40, 6+10, 10+40, 13+10, 14+90, 25+10, 28+70, 47+10, 48+70, 61+45, 67+40, 69+25, 90+95, 93+60, 95+00, 96+30, 100+30, 104+30,										
Leveling Rock	3/4"-0" crushed	134+25, 135+70	N/A	load	11	loads	20	220	\$10.41	\$2,290		
Turnouts	3/4"-0" crushed	7+70, 16+00, 68+85, 75+60, 92+50, 101+15, 115+35, 137+35 70+00 to 86+75,	N/A	turnout	11	turnouts	8	88	\$10.41	\$916		
		122+85 to										
Surfacing	3/4"-0" crushed	124+50	2	station	13	stations	18.4	239	\$10.41	\$2,490		
				3 filter								
Rock Ditch Filters	6"-4" pit-run	75+60	N/A	series		3 filter series	1	11	\$2.72	\$30		
Culvert Bedding and Backfill	3/4"-0" crushed	84+45	N/A	culvert	33	culverts	1	33	\$10.41	\$344		
Landings Total Rock for Road Segment:	6"-0" pit-run	112+35, 118+90	N/A 19 to 110	landing	55	landings	2	110 701	\$2.72	\$299	\$6,369	
		Processing:	Water, Proc	Description ess & Comp					No.sta 172.25	Rate/sta \$63.48	Cost \$10,934	
SUB TOTAL FOR	24"-12" rr	24"-6" rr	12"-6" rr	6"-4" pr	6"-0"pr	4"-0" crushed	1 1/2"- 0" crushed	2"-1" drainrock	3/4"-0" crushed	Total		
SURFACING	0	0	0	11	176	0	257	0	712	1,156		\$35,737
	SPECIAL PROJECTS											
	SUB TOTAL FOR SPE	CIAL DRO IECTS		D	escription		pit-run	development	Cy/Amount 187	Rate \$2.92	Cost \$546.49	\$546
	SOD TOTAL FOR SEL	OIAL I NOVEOTS								Surfacing & I of Clearing		\$36,284 \$8,078
	GRAND TOTAL			~~~								\$44,361
	Compiled By:	Cole Hatcher					_		Date:	04/27	7/2021	

	6"-4" pr	6"-0"pr		1 1/2"-0" crushed		Total
Total Rock						
Volumes	11	750	0	257	734	1,752

Projects Road Maintenance Cost Summary

Sale:

Green Saddle 27-Apr-21

Date:

Ву:

Cole H FL

Type	Equipment/Rationale	Hours	Rate	Cost	
Project Work	Grader 14G	7	\$113	\$791	
Final Haul	Dump Truck 12CY	4	\$89	\$356	
Road	FE Loader C966	4	\$94	\$376	
Maintenance	Vibratory Roller	7	\$87	\$609	
	Water Truck 2,500 gallon	7	\$101	\$707	
Total					\$2,839

Production Rates Grader Vibratory Roller

Miles/day	Distance(miles)	Days
1.5	1.16	0.8
1.5	1.16	0.8

NOTE:	Simmons Ridge Road	0.52	Miles
	Simmons Quarry Road	0.64	Miles
			Miles
			Miles
	TOTAL	.= 1.16	Miles

CRUSHED ROCK COST

SALE NAME: Green Saddle
PROJECT: No. 2 MATERIAL: 3/4"-0" and 1 1/2"-0"
Stockpile: Simmons Ridge Stockpile

DATE: 05/26/2021
BY: Cole H.

Road	Chatiana	Cubic			ONE W	AY HAUL IN I	MILES			Total
Segment	Stations	Yards	50 MPH	30 MPH		20 MPH		10 MPH	5 MPH	
13 to 14	197.80	257	4.00	2.70	2.60	1.51	0.50	0.30	0.10	11.71
15 to 16	8.50	55	4.00	3.00	3.00	2.00	0.50	0.30	0.10	12.90
17 to 18	8.60	77	4.00	3.00	3.00	2.00	0.50	0.30	0.10	12.90
19 to 110	140.65	580	4.00	2.50	2.55	1.50	0.50	0.30	0.10	11.45
2A to 2B	3.00	22	4.00	2.58	2.60	2.00	1.00	0.50	0.10	12.78
										1
]
]
]
]
]
]
]
										1
										1
										1
										1
										Ī
										1
										1
										1
							,			1
										1
										1
	i									1
										1
TOTAL	358.55	991	1							AVERAGE
	STA./NO.]							HAUL
CUBIC YARD			4.00	2.62	2.62	1.58	0.51	0.30	0.10	11.74
						Average Rou	ind Trip Dista	ince (miles)	23.48	

ROCK HAUL:

Truck type:	D20	No. trucks:			
Delay min.:	8	Efficiency:	85%	Ave haul: \$7.41	/cy
				Load: \$1.08	/cy
Truck type:	D12	No. trucks:	5	Spread: \$1.92	/cy
Delay min.:	6	Efficiency:	85%		
Truck type:	D10	_ No. trucks: _		Production: cy/day =	426
Delay min.:	5	Efficiency:	85%		

991 cy @ **\$10.41 /cy**

CRUSHED ROCK HAUL COSTS

PIT RUN ROCK COST

SALE NAME:	Green Saddle			DATE:	05/26/2021
PROJECT:	No. 2	MATERIAL:	Pit Run	BY:	Cole H.
QUARRY:	West Green Mountain No. 1				

~~		roon mount		-						
Road	1	Cubic			ONE W	AY HAUL IN	IMILES			Total
Segment	Stations	Yards	50 MPH	1 30 MPH				10 MPH	5 MPH	
15 to 16	8.50	44		0.50	2.00	1.83	1.00	0.30	0.10	5.73
17 to 18	8.60	22		0.50	2.00	1.99	1.00	0.30	0.10	5.89
I9 to I10	140.65	121				0.80	0.31	0.20	0.10	1.41
2A to 2B	3.00	260				0.34	0.10	0.10	0.10	0.64
2C to 2D	3.20	237				0.53	0.20	0.10	0.10	0.93
3A to 3B	19.25	77								
				<u> </u>						
				-						
		 	<u></u>							
				-						
										
										ł
				<u> </u>						
		<u> </u>		-						
				 						
						·				
	<u> </u>									
	<u> </u>									
	<u> </u>			-	1					
	<u> </u>									1
							· ·			1
									·	
TOTAL	183.20	761								AVERAGE
		CU. YD.	1							HAUL
CUBIC YARD	WEIGHTE	HAUL		0.0	0.2	0.6	0.2	0.1	0.1	1.23
					<i>F</i>	verage Rou	nd Trip Dista	ance (miles)	2.47	

ROCK HAUL:

Truck type:	D20	No. trucks:			
Delay min.:	8	Efficiency:	85%	Ave haul: \$1.94	/cy
				Load: \$0.30	/cy
Truck type:	D12	No. trucks:	5	Spread: \$0.48	/cy
Delay min.:	6	Efficiency:	85%		
Truck type:	D10	No. trucks:		Production: cy/day = 1	,628
Delay min.:	5	Efficiency:	85%		

761 cy @

\$2.72 /cy

PIT RUN ROCK HAUL COSTS

Vac		Timber Sale ating Costs (Total)								
Work Description	Stations	Waterbar	C315	D10/12 trk	Labor	Straw- bales	Seed-lbs			
1C to 1D	18.5	7.0	8.0	2.0	1.0	3.0	3.0			
V1 to V2	13.0	5.0	6.0	4.0	4.0	6.0	6.0			
V3 to V4	25.0	9.0	1.0							
V5 to V6	10.0	4.0								
V7 to V8	18.1	7.0								
V9 to V10	15.2	6.0	6.0	2.0	2.0	3.0	3.0			
V11 to V12	7.2	3.0								
Total Quantity (Hours)		41.0	21.0	8.0	7.00	12.00	12.00			
Rates		\$39.34	\$114.00	\$89.00	\$45.00	\$12.06	\$1.80			
Total Dollars		\$1,613	\$2,394	\$712	\$315	\$145	\$22			

Total Cost \$5,201 \$5,200

Total Cost\$5,201Total Stations107.0Total Miles2.0

	Timber Sale Vacating Costs V1 to V2											
Work Description	Station	Waterbar	C315	D10/12 trk	Labor	Straw- bales	Seed-lbs					
Construct waterbars every 300 to 400 feet.	0+00	7										
Remove and haul off culvert.	10+85		2.0	1.25								
Remove and haul off culvert.	12+65		2.0	1.25								
Remove and haul off culvert. Develop 3 foot wide channel.	14+70		4.0	1.25	1.0	3.0	3.0					
End of vacate.	18+50											
Total Quantity (Hours/Amoun	t)	7,00	8.00	3.75	1	3	3					
Rates		\$39.34	\$114.00	\$89.00	\$45.00	\$12.06	\$1.80					
Total Dollars		\$275	\$912	\$334	\$45	\$36	\$5					

\$1,608

Timber Sale Vacating Costs V1 to V2										
Work Description	Station	Waterbar	C315	D10/12 trk	Labor	Straw- bales	Seed-lbs			
Construct waterbars every 300 to 400 feet.	0+00	5								
Remove and haul off culvert. Develop 3 foot wide channel.	9+10		3.0	2.0	2.0	3.0	3.0			
Remove and haul off culvert. Develop 3 foot wide channel.	12+70		3.0	2.0	2.0	3.0	3.0			
End of vacate.	13+00									
Total Quantity (Hours/Amount)		5.00	6.00	4	4	6	6			
Rates		\$39.34	\$114.00	\$89.00	\$45.00	\$12.06	\$1.80			
Total Dollars		\$197	\$684	\$356	\$180	\$72	\$11			

\$1,500

Timber Sale Vacating Costs V3 to V4										
Work Description	Station	Waterbar	C315	D10/12 trk	Labor	Straw- bales	Seed-lbs			
Construct waterbars every 300 to 400 feet. Construct roadblock.	0+00	9	1.0							
End of vacate.	25+00									
Total Quantity (Hours)		9.00	1.00	0	0	0	0			
Rates		\$39.34	\$114.00	\$89.00	\$45.00	\$12.06	\$1.80			
Total Dollars		\$354	\$114	\$0	\$0	\$0	\$0			

\$468

Timber Sale Vacating Costs V5 to V6											
Work Description	Station	Waterbar	C315	D24 trk	D10/12 trk	Labor	Straw- bales	Seed-lbs			
Construct waterbars every 300 to 400 feet.	0+00	4									
End of vacate.	10+00										
Total Quantity (Hours/Amoun	t)	4.00	0.00	0	0	0	0	0			
Rates		\$39.34	\$114.00	\$127.00	\$89.00	\$45.00	\$12.06	\$1.80			
Total Dollars		\$157	\$0	\$0	\$0	\$0	\$0	\$0			

Timber Sale Vacating Costs V7 to V8										
Work Description	Station	Naterba	C315	D10/12 trk	Labor	Straw- bales	Seed-lbs			
Construct waterbars every 300 to 400 feet.	0+00	7								
End of vacate.	18+10									
Total Quantity (Hours/Amoun	t)	7.00	0.00	0	0	0	0			
Rates		\$39.34	\$114.00	\$89.00	\$45.00	\$12.06	\$1.80			
Total Dollars		\$275	\$0	\$0	\$0	\$0	\$0			

\$275

Timber Sale Vacating Costs V9 to V10							
Work Description	Station	Waterbar	C315	D10/12 trk	Labor	Straw- bales	Seed-lbs
Construct waterbars every 300 to 400 feet. Construct roadblock.	0+00	6	1.00				
Remove and haul off culvert. Develop 4 foot wide channel.	6+00		5.0	2.0	2.0	3.0	3.0
End of vacate.	15+20						
Total Quantity (Hours/Amoun	t)	6.00	6.00	2	2	3	3
Rates		\$39.34	\$114.00	\$89.00	\$45.00	\$12.06	\$1.80
Total Dollars		\$236	\$684	\$178	\$90	\$36	\$5

\$1,230

Timber Sale Vacating Costs V11 to V12							
Work Description	Station	Waterbar	C315	D10/12 trk	Labor	Straw- bales	Seed-lbs
Construct waterbars every 300 to 400 feet.	0+00	3					
End of vacate.	7+20						
Total Quantity (Hours/Amount)		3.00	0.00	0	0	0	0
Rates		\$39.34	\$114.00	\$89.00	\$45.00	\$12.06	\$1.80
Total Dollars		\$118	\$0	\$0	\$0	\$0	\$0

\$118

Green Saddle TIMBER CRUISE REPORT FY 2022

1. Sale Area Location: Portions of Section 36, T7N, R9W, and Portions of Sections 7 and 8, T6N, R8W, W.M., Clatsop County, OR.

2. Fund Distribution:

BOF 100%

Tax Code: 1-02 (100%)

3. Sale Acreage by Unit:

Unit	Harvest Type	Gross Acres	Stream Buffer Acres	Existing R/W Acres	New R/W Acres	New R/W Non- Stocked	Reserve Tree Area	Net Acres	Survey Method
1	Modified Clearcut	65	4	3	1			57	GIS
2	Modified Clearcut	134		2	<1		64	68	GIS
3	Partial Cut	50	5	3				42	GIS
4	In-Unit R/W	3		2				1	GIS
4	Out-of_Unit R/W	<1				<1			GIS
TOTALS		252	9	10	1	<1	64	168	

4. Cruisers and Cruise Dates:

Units were cruised by Ryan Simpson, John Czarnecki, Kevin Berry, John Choate, John Tillotson, Avery Petersen, and Justin Bush (December, 2021 through January, 2022).

5. Cruise Method and Computation:

<u>Unit 1</u>: Unit 1 was variable plot cruised with a 40 BAF. A total of 41 plots were sampled on a 5 by 3 chain spacing with a grade to count ratio of 1:1, resulting in 20 grade plots and 21 count plots*.

<u>Unit 2</u>: Unit 2 was variable plot cruised with a 54.45 BAF. A total of 37 plots were sampled on a 7 by 3 chain spacing with a grade to count ratio of 1:1, resulting in 17 grade plots and 20 count plots*. Fixed radius plots were nested at each plot location to gather volume data for sub-merchantable pulp harvest (1/50th acre plots; trees and sound snags 5" to 8" DBH).

<u>Unit 3</u>: Unit 3 was variable plot cruised with a 33.61 BAF. A total of 31 plots were sampled on a 4.5 by 3.5 chain spacing with a count to grade ratio of 1:2, resulting in 11 grade plots and 20 count plots*.

<u>Unit 4</u>: New Right-of-Way consists of spur roads and landings in Unit 2, and one tie-through road in Unit 1. Cruise data for Unit 4 was obtained from the combined U1 and U2A cruises and acreages have been adjusted accordingly.

*The reported numbers of cruise and grade plots vary from those indicated in the SuperACE reports for the U1, U2A, and U3 statistics due to measuring minor species on one of the count plots in each of the cruises. Further variance in the U3_TAKE Statistics can be attributed to recording blank plots where the basal area did not meet the thinning specifications and no take trees were designated.

Data was collected on Allegro 2 data collectors and downloaded to the Atterbury SuperACE 2008 program for computing. See the attached Cruise Designs for more details on the cruise method. The cruise calculations were processed in the Astoria District office.

UNIT	CRUISE	TRACT	TYPE	ACRES
1	GSADD	U1	00MC	58
2	GSADD	U2A	00MC	68
3	GSADD	U3	00PC	42

6. Timber Description:

<u>Unit 1</u> is a modified clearcut approximately 42 to 67 years old. The stand consists of western hemlock, Douglas-fir, red alder, and a minor component of Sitka spruce. Average take western hemlock is 16 inches DBH and 58 feet to a merchantable top. Average take Douglas-fir is 15 inches DBH and 49 feet to a merchantable top. Average take red alder is 13 inches DBH and 37 feet to a merchantable top. One Sitka spruce was sampled at 16 inches DBH and 54 feet to a merchantable top. Average net volume to be harvested per acre is 23 MBF. All trees were cruised to a merchantable top of six inches DIB, 40% of form point, or an otherwise anticipated break point.

<u>Unit 2</u> is a modified clearcut approximately 77 to 87 years old. The stand consists of western hemlock, Douglas-fir, Sitka spruce, and a minor component of red alder. Average take western hemlock is 14 inches DBH and 55 feet to a merchantable top. Average take Douglas-fir is 19 inches DBH and 77 feet to a merchantable top. Average take Sitka spruce is 21 inches DBH and 73 feet to a merchantable top. Average take red alder is 15 inches DBH and 49 feet to a merchantable top. Average net volume to be harvested per acre is 45 MBF. All trees were cruised to a merchantable top of six inches DIB, 40% of form point, or an otherwise anticipated break point. There is an average of 97 pieces of pulp per acre averaging seven inches DBH and 40 feet in length.

<u>Unit 3</u> is a partial cut with an average age of 42 years. The stand consists of western hemlock and Douglas-fir. Average take western hemlock is 12 inches DBH and 38 feet to a merchantable top. Average take Douglas-fir is 12 inches DBH and 33 feet to a merchantable top. Average net volume to be harvested per acre is 7 MBF. The target conifer basal area is 140 ft² to 160 ft² and the target SDI is 34%. Red alder does not count toward the conifer basal area target.

<u>Unit 4</u> Right-of-Way is similar to the timber description for Units 1 and 2. Average net volume to be harvested per acre is 34 MBF.

7. Statistical Analysis and Stand Summary

Statistics for Stand B.F. volumes*

Unit	Estimated CV	Target SE%	Actual CV	Actual SE%
1	45.0%	9.0%	43.5%	6.8%
2	45.0%	9.0%	27.3%	4.5%
3	34.0%	15.0%	34.1%	6.1%

^{*}Statistics are based upon combined Take and Leave trees.

8. Take Volumes by Species and Log Grade for All Sale Units by MBF:

Volumes by Species and Grade for All Sale Areas: (MBF) Volumes do not include "in-growth."

Conifer

Species	DBH	Net Vol.	2 Saw	3 Saw	4 Saw	% D & B	% Sale
western hemlock	14"	3,639	1,217	1,946	476	11.9%	77%
Douglas-fir	15"	618	194	334	90	7.4%	13%
Sitka spruce	20"	300	217	68	15	11.6%	6%
TOTALS		4,557	1,628	2,348	581		

Hardwood

Species	DBH	Net Vol.	12"+	10"-11"	8"-9"	6"-7"	% D & B	% Sale
red alder	14"	164	38	65		61	1.6%	4%
TOTALS		164	38	65		61		

TOTAL VOLUME 4,	721 MBF
-----------------	---------

9.	Approval	s:
----	----------	----

Date: 02/18/2022

Prepared by:
Unit Forester Approval:

Date:_

10.

Attachments: Cruise Design and Maps (10 pages)
Volume Reports (5 pages)
Statistics Reports (17 pages)
Stand Table Summaries (3 pages)

Log Stock Table (2 pages)

CRUISE DESIGN ASTORIA DISTRICT

Sale Name: <u>Gree</u>	en Saddle	_Unit	1
Harvest Type: Modif	fied Clearcut_		
Approx. Cruise Acre	es: <u>58</u> Estimated CV% <u>45%</u> N	et BF/Acre SE	:% Objective <u>9%</u> Net BF/Acre
Planned Sale Volum	e: 2,150 MBF Estimated S	ale Area Va	alue/Acre: \$13,000
(b) Sample <u>41</u> cru "automark" thinnin) Grade minimum <u>80</u> coniuise plots (<u>20</u> grade/ <u>21</u> count); (g standards; <u>X</u> Determine lond leave tree species and sizes.	c) Other go	\ <u></u>
B. <u>Cruise Design</u> : 1. Plot Cruises:	BAF:40 (Full Point) Cruise Line Direction(s)92°/27 Cruise Line Spacing5 Cruise Plot Spacing3 Grade/Count Ratio1:1		s (330 feet) s (198 feet)
Take plots as marl	ked on cruise map.		

Grade minor species (true fir, spruce, maple, and cedar) on count plots if encountered.

DO NOT: record any 22' log lengths, or any 12', 24', or 32' log lengths for hardwoods.

DO NOT: record snags < 12" DBH or record snag measurements on count plots.

C. Tree Measurements:

- 1. Diameter: Minimum DBH to cruise is 8" for conifers and 8" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- **2. Bole Length:** Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- **3.** Top Cruise Diameter (TCD): Minimum top outside bark is 7 for conifers and 7 for hardwoods or 40 of dob at 16' form point. Generally, use 7" outside bark for trees < 20" dbh and 40% of dob @ FP for conifer trees > 20" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.

- 5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.
- 6. Species, Sort, and Grade Codes: A. Species: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. Grade: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; 9 = Utility
 Hardwoods: #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11";
 #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"

Grade oversized 3-SAW (DIB ≥ 12", knots > 2½" inside scaling cylinder affecting > 50% of log)

- 7. Deductions: Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at intervisible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way if the cruiser chooses.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back), Compass, Allegro II Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint, Permanent Marker.
- **10. Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.)

لہ Cruise Design by:	ustin Bus <u>h</u>	
Approved by:	The L	
Date: 12-29-2021		

CRUISE DESIGN ASTORIA DISTRICT

Sale Name:	Green Saddle	U	nit <u>2A</u>	
Harvest Type: _	Modified Clearcut			
Approx. Cruise	Acres: 68 Estimate	d CV% <u>45%</u> Net B	F/Acre SE% Objec	ctive <u>9%</u> Net BF/Acre
Planned Sale V	olume: 3,500 MBF	Estimated Sale	Area Value/Acr	e: \$17,500
(b) Sample <u>3</u> "automark" th	s: (a) Grade minimum 37 cruise plots (<u>17</u> grad ninning standards; <u>X</u> nag and leave tree spec	de/ <u>20</u> count); (c) Determine log	Other goals:	
B. <u>Cruise Desig</u> 1. Plot Cruis	gn: ses: BAF: <u>54.45</u> Cruise Line Direct Cruise Line Space Cruise Plot Space Grade/Count Rat	tion(s) <u>192°/12°</u> ing <u>7</u> ing <u>3</u>	 chains (462 fee	et)

Take variable plots as marked on cruise map; take fixed plots (utility grade only) at each plot location. Refer to slope correction table for plot radii adjustments.

Grade minor species (true fir, spruce, maple, and cedar) on count plots if encountered.

<u>DO NOT</u>: record any 22' log lengths, or any 12', 24', or 32' log lengths for hardwoods.

<u>DO NOT</u>: record snags < 12" DBH or record snag measurements on count plots.

C. Tree Measurements:

1. Diameter: Minimum DBH to cruise is <u>8"</u> for conifers and <u>8"</u> for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.

Record 5" to 8" DBH trees as utility grade in the fixed plot at every plot location.

- **2. Bole Length:** Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- **3.** Top Cruise Diameter (TCD): Minimum top outside bark is 7 for conifers and 7 for hardwoods or 40 of dob at 16' form point. Generally, use 7 outside bark for trees < 20 dbh and 40% of dob @ FP for conifer trees > 20 dbh.

For utility grade trees on the fixed plots, record tree height to a 3" top.

- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.
- 5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.
- 6. Species, Sort, and Grade Codes: A. Species: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; 9 = Utility Hardwoods: #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"

Grade oversized 3-SAW (DIB ≥ 12", knots > 2½" inside scaling cylinder affecting > 50% of log)

- 7. Deductions: Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at intervisible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way if the cruiser chooses.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back), Compass, Allegro II Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint, Permanent Marker.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.)

Cruise Design by:	Justin Bush
Approved by:	al h 7.66
Date: 1-19-2022	

CRUISE DESIGN ASTORIA DISTRICT

Harvest Type: Partial Cut Approx. Cruise Acres: 42 Estimated CV% 34% Net BF/Acre SE% Objective 15% Net BF/	
Approx. Cruise Acres: 42 Estimated CV% 34% Net BF/Acre SE% Objective 15% Net BF/	
	/Acre
Planned Sale Volume: 294 MBF Estimated Sale Area Value/Acre: \$2,500	
 A. <u>Cruise Goals</u>: (a) Grade minimum 60 conifer trees: (b) Sample 31 cruise plots (11 grade/20 count); (c) Other goals (X Determine "automark" thinning standards; X Determine log grades for sale value; X Determine snag and leave tree species and sizes. 	
B. Cruise Design: 1. Plot Cruises: BAF: 33.61 Cruise Line Direction(s) 360° and 180° Cruise Line Spacing 4.5 chains (297 feet) Cruise Plot Spacing 3.5 chains (231 feet) Grade/Count Ratio 1:2	

Take plots as marked on cruise map.

Grade minor species (true fir and cedar) on count plots if encountered.

<u>Thinning Residual Basal Area Target = 150 sq. ft.</u> (leave 4 to 5 conifer trees per plot)

DO NOT: record any 22' log lengths, or any 12', 24', or 32' log lengths for hardwoods.

<u>DO NOT</u>: record snags < 12" DBH or record snag measurements on count plots.

C. Tree Measurements:

- **1. Diameter:** Minimum DBH to cruise is 8" for conifers and 8" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- **2. Bole Length:** Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- **3. Top Cruise Diameter (TCD):** Minimum top outside bark is $\underline{7}$ for conifers and $\underline{7}$ for hardwoods or $\underline{40\%}$ of dob at 16' form point. Generally, use $\overline{7}$ outside bark for trees < 20" dbh and 40% of dob @ FP for conifer trees > 20" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major

- conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.
- 5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.
- 6. Species, Sort, and Grade Codes: A. Species: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.) B. Sort: Use code "1" (Domestic).
 - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; 9 = Utility Hardwoods: #1 Sawmill = 12"+ scaling diameter; #2 Sawmill = 10" and 11"; #3 Sawmill = 8" and 9"; #4 Sawmill = 6" and 7"
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at intervisible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way if the cruiser chooses.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back), Compass, Allegro II Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint, Permanent Marker.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.)

Cruise Design by: <u>Justin Bush</u>	
Approved by:	
Date: 12-30-2021	

ТС	PSPCSTGR		Sı	pecies,	Sort G	rade - Boar	d Fo	ot Vo	olum	es (P	roject	:)							
	06N R08W S08 THRU 07N R09W S36	-				Project: Acres		ADD 168.0								Page Date Time		1 18/20 :39:1	22
Spp	S So Gr	% Net BdFt	Bd. Ft	t. per Acre	e Net	Total Net MBF		og Sca	Net Boale Dia	•	oot Volu	Log L		36-99	Ln Ft	Avera Dia In	ge Lo Bd Ft	g CF/ Lf	Logs Per /Acre
Н Н Н Н	DOCU DO2S DO3S DO4S	33 53 14	13.0 11.4 11.0	8,323 13,077 3,182	7,244 11,583 2,832	1,217 1,946 476	2	100 98	91	9	5 0 49	7 50	28 33 1	67 60	11 36 35 21	13 13 8 6	203 76 24	0.00 1.44 0.62 0.38	14.2 35.6 153.3 120.5
Н	Totals	77	11.9	24,582	21,658	3,639	0	66	30	3	8	10	27	54	29	8	67	0.66	323.5
S S S	DOCU DO2S DO3S DO4S	72 23 5	12.0 10.6 10.0	1,465 455 96	1,289 407 87	217 68 15		92 100	34	66	77	6 5 23	43	94 52	28 39 36 17	7 17 9 8	428 107 27	0.00 2.44 0.90 0.53	1.1 3.0 3.8 3.2
S	Totals	6	11.6	2,017	1,783	300-299		26	26	48	4	6	10	80	31	11	161	1.29	11.1
D D D	DOCU DO2S DO3S DO4S	31 54 15	8.1 7.1 6.7	1,258 2,142 577	1,156 1,989 538	194 334 90		100 100	91	9	9 3 39	5 48	6 37 13	84 55	6 36 35 23	11 13 8 6	77	0.00 1.59 0.68 0.45	1.8 5.4 25.9 20.5
D	Totals	13	7.4	3,976	3,683	618 -619		69	29	3	10	10	24	56	29	8	69	0.72	53.7
A A A	DOCU DO1S DO2S DO4S	23 39 38	3.8	227 403 365	227 387 365	38 65 61		100 100	100		23	62 100 40		38 38 23	25	7 12 11 6	184 118 37	0.00 1.47 1.08 0.53	.5 1.2 3.3 10.0
A To	Totals tals	3	1.6	994 31,569	978 28,103	4,721	0	77 64	30	6	8	12	25	55	27	8		0.73	403.3

S So Gr Spp T rt ad Net Bd. Ft. per Acre Total Del% Gross Log Scale Dia. Acre Spp T rt ad Log Length Bd. Et. Del% Gross Ln Dia Bd. CF/ Acre Acre Spp Ft. In Ft. Lf. Acre Acre Acre Acre Acre Acre Acre Acre	T	FSPCSTG	R			Species,	Sort G Projec	rade - Boar t: GSA		Volu	umes (T	Гуре)					Page Date Fime	2.	1 /17/20 2:11:3	
Log Scale Dia. Log Length	Tw	p R	ge	Sec		КE					-		es			Bd		R09W	S36 T	00MC
H DO 2S 36 10.9 6,599 5,878 335 92 8 2 33 65 36 13 195 1.45 30 H DO 3S 54 10.8 9,774 8,721 497 100 5 5 31 64 36 8 85 0.72 102 H DO 4S 10 10.0 1,714 1,543 88 100 55 45 21 6 23 0.40 68	Spp			Net	1	•			Log S	Scale	Dia.	Lo	g Lei	-	36-99	Ln	Dia	Bd	CF/	Logs Per /Acre
D DO CU DO OCU D	H H	DO DO	2S 3S	54	10.8	9,774	8,721	497		0	2 8					36 36	13	85	1.45 0.72	2.6 30.1 102.8 68.4
D DO 2S 17 7.5 891 825 47 100 26 74 37 12 192 1.53 4 D DO 3S 69 8.8 3,598 3,280 187 100 58 42 21 6 22 0.44 29 D Totals 21 8.5 5,203 4,763 271 83 17 8 12 34 46 28 8 61 0.69 77 A DO 1S 22 409 409 23 100 100 30 12 150 1.30 2 A DO 2S 43 784 784 45 100 100 30 10 119 1.06 60 A DO 4S 35 636 636 36 100 34 66 22 6 29 0.48 21 A Totals 8 1,829 1,829 104 78 22 12 88 24 8 59 0.72 31 S DO 3S 87 10.0 293 264 15 100 100 30 10 32 11 126 1.04 2 S DO 4S 13 10.0 42 38 2 100 100 20 6 18 0.45 22 S Totals 1 10.0 335 302 17 100 12 88 26 9 72 0.81 4	Н	Totals		70	10.8	18,087	16,143	920	6-	4 3	4 3	6	7	29	58	 		79		203.9
A DO 1S 22 409 409 23 100 100 30 12 150 1.30 2 A DO 2S 43 784 784 45 100 100 30 10 119 1.06 6 A DO 4S 35 636 636 36 100 34 66 22 6 29 0.48 21 A Totals 8 1,829 1,829 104 78 22 12 88 24 8 59 0.72 31 S DO 3S 87 10.0 293 264 15 100 100 32 11 126 1.04 2 S DO 4S 13 10.0 42 38 2 100 100 20 6 18 0.45 2 S Totals 1 10.0 335 302 17 100 12 88 26 9 72 0.81 4	D D	DO DO	2S 3S	69	8.8	3,598	3,280	187		0	0	58	-			37 35	12 8	81	1.53 0.71	3.4 4.3 40.4 29.6
A DO 2S 43 784 784 45 100 100 30 10 119 1.06 6 A DO 4S 35 636 636 36 100 34 66 22 6 29 0.48 21 A Totals 8 1,829 1,829 104 78 22 12 88 24 8 59 0.72 31 S DO 3S 87 10.0 293 264 15 100 100 32 11 126 1.04 2 S DO 4S 13 10.0 42 38 2 100 100 20 6 18 0.45 2 S Totals 1 10.0 335 302 17 100 12 88 26 9 72 0.81 4	D	Totals		21	8.5	5,203	4,763	271	8.	3 1	7	8	12	34	46	28	8	61	0.69	77.7
S DO 3S 87 10.0 293 264 15 100 100 32 11 126 1.04 2 S DO 4S 13 10.0 42 38 2 100 100 20 6 18 0.45 2 S Totals 1 10.0 335 302 17 100 12 88 26 9 72 0.81 4	A	DO	2S	43		784	784	45	l .	0	0	34	100			30	10	119	1.06	2.7 6.6 21.8
S DO 4S 13 10.0 42 38 2 100 100 20 6 18 0.45 2 S Totals 1 10.0 335 302 17 100 12 88 26 9 72 0.81 4	A	Totals		8		1,829	1,829	104	7	8 2	.2	12	88			24	8	59	0.72	31.1
				13	- 1	42	38	2	10	0						20	6	18	0.45	2.1 2.1
Type Totals 9.5 25,454 23,036 1,313 69 29 2 7 14 28 50 29 8 73 0.75 317				1		***						-			50					4.2 317.0

Т	TSPCSTG	R			Species,	Sort G Projec	rade - Boar t: GSA		Vol	umes	(T)	ype)	<u>, , , , , , , , , , , , , , , , , , , </u>			Pag Date Tim	e 2	1 /18/20 7:38:3	
T061 Tw		ge	Sec	Tract U 2A_ TA	KE	Type 00M			ots 37	Sam	ple 11	e Trees 16		C 1	uFt	T06N I BdFt W	R08W	S08 T	00MC
			%					Percent	Net	Board	Foo	ot Volu	ıme			Avera	ge Log	,	Logs
	S So	Gr	Net	Bd.	Ft. per Ac	re	Total	Log S	Scale	Dia.	-	Log	Len	gth		Ln Dia	Bd	CF/	Per
Spp	T rt	ad	BdFt	Def%	Gross	Net	Net MBF	1		2-16 174	-	12-20 2		_	36-99	Ft In	Ft	Lf	/Acre
Н	DO	CU														11 13		0.00	32.6
Н	DO	2S	32	14.4	13,959	11,946	812		8	9 11		5		22	73	36 13	213	1.44	56.2
Н	DO	3S	54	12.3	22,647	19,866	1,351	100	0			0	9	30	61	35 8	74	0.60	269.8
Н	DO	4S	14	12.5	5,657	4,952	337	100	0			49	50	2		21 6	23	0.37	211.1
Н	Totals		81	13.0	42,264	36,764	2,500	6	8 2	9 4	\dashv	8	11	24	57	29 8	65	0.63	569.7
D	DO	CU														4 17		0.00	1.5
D	DO	2S	60	8.3	2,337	2,144	146		8	88 12		12			88	36 14	220	1.61	9.7
D	DO	3S	37	6.5	1,409	1,317	90	10	0					8	92	37 7	77	0.68	17.1
D	DO	4S	3	5.0	87	82	6	10	0			100				20 6	19	0.33	4.3
D	Totals		8	7.6	3,832	3,543	241	3:	9 5	3 7		10		3	87	33 10	108	0.95	32.7
S	DO	CU														28 7		0.00	2.7
S	DO	2S	76	12.0	3,594	3,162	215		3	34 66			6		94	39 17	428	2.44	7.4
S	DO	3S	19	10.8	869	775	53	9	0 1	0			6	27	67	37 9	103	0.87	7.6
S	DO	4S	5	10.0	201	181	12	10	0			73	27			17 8	30	0.56	6.0
s	Totals		9	11.7	4,665	4,118	280	2	1 2	28 51		3	7	5	85	32 11	174	1.35	23.7
Α	DO	CU							************							17 7		0.00	1.3
A	DO	1S	24		213	213	14		10	00					100	40 14	290	1.88	.7
A	DO	2S	34	11.5	329	291	20	10	0				100			30 11	115	1.13	2.5
Α	DO	4S	42		361	361	25	10	0			7			93	35 7	59	0.61	6.2
A	Totals		2	4.2	903	865	59	7	5 2	25		3	34		63	32 8	81	0.80	10.7
Туре	Totals			12.3	51,663	45,290	3,080	6	1 3	31 8		8	10	20	62	29 8	71	0.68	636.8

T 7	TSPCSTG	R		S	Species,	Sort G Projec	rade - Boar t: GSA		oot V	olumes (T	Type)					Page Date Time	2	1 /17/20 2:11:4	
T06N Tw _l 06N		ge	Sec	Tract J3_TAK	E	Type 00Pe			Plot	_	le Tree: 26	S	C 1	uFt	T0 Bd W		808W	S08 T	00PC
			%					Per	cent N	let Board Fo	ot Vol	ıme			A	verag	ge Log		Logs
Spp	S So T rt	Gr ad	Net BdFt	Bd. 1 Def%	Ft. per Acı Gross	re Net	Total Net MBF	L 4-5		ale Dia. 12-16 17+	Log	g Ler 21-30	_	36-99	Ln Ft	Dia In	Bd Ft	CF/ Lf	Per /Acre
Н	DO	2S	31	3.3	1,493	1,443	61			100	13		87		29	12	152	1.34	9.5
Н	DO	3S	44		1,991	1,991	84		100				85	15	33	7	62	0.51	32.2
Н	DO	4S	25	1.3	1,154	1,138	48	20	80		41	59			21	6	26	0.40	44.0
H	Totals		65	1.4	4,637	4,573	192	5	63	32	14	15	64	7	26	7	53	0.57	85.8
D	DO	3S	54	1.9	1,344	1,319	55		100		18		62	20	32	7	64	0.60	20.5
D	DO	4S	46	6.0	1,187	1,116	47		100		16	58	26		25	6	32	0.49	34.5
D	Totals		35	3.8	2,532	2,435	102		100		17	27	45	11	28	7	44	0.53	55.0
Type 1	Γotals			2.3	7,169	7,007	294	3	76	21	15	19	58	8	27	7	50	0.55	140.8

TC	PSPCSTGR	· * * * * * * * * * * * * * * * * * * *	Sı	pecies,	Sort G	rade - B	oar	d Foo	t Vo	olume	es (P	roject	t)				,			
	06N R08W S08 07N R09W S36	-		.50 .50		Project Acres	:	GSA	ADD 1.0								Page Date Time		18/20 :38:5	
Spp	S So Gr Trt ad	% Net BdFt	Bd. Fi	t. per Acre	: Net	Total Net MBF		Lo	og Sca	Net Bo ile Dia. 12-16		oot Volu	ime Log L 21-30		36-99		Avera Dia In		g CF/ Lf	Logs Per /Acre
H H H	DOCU DO2S DO3S DO4S	33 54 13	13.3 11.8 11.9	10,279 16,211 3,686 30,176	8,912 14,293 3,248 26,453		9 14 3		100 100 66	90	10	4 0 50	7 48	26 31 1 25	70 62 57	11			0.00 1.44 0.63 0.37	17.6 43.2 186.3 139.8 386.8
S S S	DOCU DO2S DO3S DO4S	71 24 5	12.0 10.6 10.0	1,797 581 122	1,581 520 109		2 1 0		93 100	34	66	78	6 5 22	46	94 50	28	7 17 9 8	428 108	0.00 2.44 0.90 0.53	1.4 3.7 4.8 4.1
S D	Totals DOCU	6	11.6	2,500	2,210		2		27	26	47	4	6	11	79	31	11 11	158	0.00	13.9
D D D	DO2S DO3S DO4S	35 56 9	8.1 8.2 7.5	1,614 2,503 400	1,484 2,298 370		1 2 0		100 100	91	9	9 62	6 38	7 33	84 60	i	13 8 6	211 80 22	1.59 0.70 0.43	7.0 28.7 17.0
	Totals DOCU	12	8.1	4,518	4,153		4		64	33	3	9	7	21	63	30	7	75	0.77	55.2
A A A	DOCU DO1S DO2S DO4S	23 40 37	3.4	311 557 498	311 538 498		0 1 0		100 100	100		24	66 100 42		34 34	32 30 25	12	180 118 36		.6 1.7 4.6 14.0
A Tot	Totals	4	1.4	1,366 38,559	1,347 34,163		1 34		77 64	23	6	9	71 12	23	20	26	8		0.75	20.9 476.9

_	ΓATS					OJECT S ROJECT		STICS ADD			PAGE DATE	1 3/8/2022
ГWР	RGE	SC	TRACT		TYPE		AC	CRES	PLOTS	TREES	CuFt	BdFt
06N 07N	08 09W	08 36	U2A_R/W U1 TAKE		00MC 00MC	THR		168.00	187	1,098	1	W
-,11		20	OI_IMKE		OUM			ESTIMATED		PERCENT		
		_				TREES		TOTAL	, 1	SAMPLE		
		F	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA			187	1098		5.9						
CRU			89	499		5.6		38,904		1.3		
	COUNT											
COU	DREST		94	571		6.1						
BLA			4	3/1		0.1						
100 %			4									
100 /					TZ	AND SUMM	IADV					
		SA	MPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
			TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
WHF	MLOCK		354	181.8	14.0		52.2	195.4	24,582	21,658	6,797	6,149
	G FIR		93	34.1	14.7		10.5	40.2	3,976	3,683	1,191	1,142
R AL			20	10.5	13.8		2.9	10.9	994	978	299	299
S SPI	RUCE		22	5.1	20.2	2 70	2.5	11.2	2,017	1,783	491	442
SNA	G		10	.1	14.1	50	0.0	.1				
тот	AL		499	231.6	14.3	53	68.2	257.9	31,569	28,103	8,778	8,032
CL	68.1 1.0		COEFF VAR,%	S.E.%		SAMPLI LOW			#	OF TREES	REQ.	INF. POP
SD								H1(+H				
SD: WHE			67.4	3.6		165	AVG 171	HIGH 177		5	10	
WHE	EMLOCK G FIR									5	10	
WHE	MLOCK G FIR		67.4	3.6		165	171	177		3	10	
WHE DOU R AL S SPI	EMLOCK G FIR DER RUCE		67.4 69.9	3.6 7.2		165 130	171 140	177 150		3	10	
WHE DOU R AL S SPI SNAG	EMLOCK G FIR DER RUCE G		67.4 69.9 71.3 88.8	3.6 7.2 16.3 19.4		165 130 106 544	171 140 127 674	177 150 148 805			/	
WHE DOU R AL S SPI SNAG TOT	EMLOCK G FIR DER RUCE G		67.4 69.9 71.3 88.8	3.6 7.2 16.3		165 130 106 544 173	171 140 127 674	177 150 148 805		463	116	5
WHE DOU R AL S SPI SNAG TOT	EMLOCK G FIR DER RUCE G AL		67.4 69.9 71.3 88.8 107.7	3.6 7.2 16.3 19.4 4.8		165 130 106 544 173 SAMPLI	171 140 127 674 182	177 150 148 805 191 S - CF	#	463 FOF TREES	116 REQ.	INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD:	EMLOCK G FIR DER RUCE G AL 68.1 1.0		67.4 69.9 71.3 88.8 107.7 COEFF VAR.%	3.6 7.2 16.3 19.4 4.8 S.E.%		165 130 106 544 <i>173</i> SAMPLI	171 140 127 674 <i>182</i> E TREE AVG	177 150 148 805 191 S - CF HIGH	#	463	116	5 INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE	EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2		165 130 106 544 <i>173</i> SAMPLI LOW	171 140 127 674 182 E TREE AVG 49	177 150 148 805 191 S - CF HIGH	#	463 FOF TREES	116 REQ.	5 INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU	EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6		165 130 106 544 <i>173</i> SAMPLI LOW 47 40	171 140 127 674 182 E TREE AVG 49 43	177 150 148 805 191 S - CF HIGH 50 46	#	463 FOF TREES	116 REQ.	5 INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL	EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2		165 130 106 544 <i>173</i> SAMPLI LOW	171 140 127 674 182 E TREE AVG 49 43 38	177 150 148 805 191 S - CF HIGH	#	463 FOF TREES	116 REQ.	INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL	EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LDER RUCE		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7		165 130 106 544 173 SAMPLI LOW 47 40 33	171 140 127 674 182 E TREE AVG 49 43	177 150 148 805 191 S - CF HIGH 50 46 44	#	463 FOF TREES	116 REQ.	INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI	EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LDER RUCE G		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7		165 130 106 544 173 SAMPLI LOW 47 40 33	171 140 127 674 182 E TREE AVG 49 43 38	177 150 148 805 191 S - CF HIGH 50 46 44	#	463 FOF TREES	116 REQ.	INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT	EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LDER RUCE G AL		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49	171 140 127 674 182 E TREE AVG 49 43 38 157 51	177 150 148 805 191 S - CF HIGH 50 46 44 183		463 4 OF TREES 5	116 REQ. 10	INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL SD:	EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LDER RUCE G AL 68.1 1.0		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5 86.7 COEFF VAR.%	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7 3.9		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49 TREES/A	171 140 127 674 182 E TREE AVG 49 43 38 157 51 ACRE AVG	177 150 148 805 191 S - CF HIGH 50 46 44 183		463 FOF TREES 5	116 REQ. 10	INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE	EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G MAL		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5 86.7 COEFF VAR.%	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7 3.9 S.E.%		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49 TREES/A	171 140 127 674 182 E TREE AVG 49 43 38 157 51 ACRE AVG 182	177 150 148 805 191 S - CF HIGH 50 46 44 183 53 HIGH 203		463 4 OF TREES 5	116 REQ. 10 75 REQ.	INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE SNAG TOT CL SD: WHE DOU CL SD: WHE DOU	EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5 86.7 COEFF VAR.% 160.2 194.5	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7 3.9 S.E.% 11.7 14.2		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49 TREES/A	171 140 127 674 182 E TREE AVG 49 43 38 157 51 ACRE AVG 182 34	177 150 148 805 191 S - CF HIGH 50 46 44 183 53 HIGH 203 39		463 4 OF TREES 5	116 REQ. 10 75 REQ.	INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL	EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LOER RUCE G AL 68.1 1.0 EMLOCK G FIR LOER		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5 86.7 COEFF VAR.% 160.2 194.5 430.7	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7 3.9 S.E.% 11.7 14.2 31.5		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49 TREES/A LOW 161 29 7	171 140 127 674 182 E TREE AVG 49 43 38 157 51 ACRE AVG 182 34 10	177 150 148 805 191 S - CF HIGH 50 46 44 183 53 HIGH 203 39 14		463 4 OF TREES 5	116 REQ. 10 75 REQ.	INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE SD: WHE DOU R AL S SPI SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI	EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LOER RUCE G AL RUCE G EMLOCK G FIR LOER RUCE		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5 86.7 COEFF VAR.% 160.2 194.5 430.7 355.0	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7 3.9 S.E.% 11.7 14.2 31.5 25.9		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49 TREES/LOW 161 29 7 4	171 140 127 674 182 E TREE AVG 49 43 38 157 51 ACRE AVG 182 34 10 5	177 150 148 805 191 S - CF HIGH 50 46 44 183 53 HIGH 203 39 14 6		463 4 OF TREES 5	116 REQ. 10 75 REQ.	INF. POP.
WHE DOU R AL S SPI SNAG TOT CL SD: WHE SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL	EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LDER RUCE G EMLOCK G FIR LOER RUCE G EMLOCK G FIR LOER RUCE G EMLOCK G FIR LOER RUCE G EMLOCK G FIR LDER RUCE G RUCE G G EMLOCK G FIR LDER RUCE G		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5 86.7 COEFF VAR.% 160.2 194.5 430.7	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7 3.9 S.E.% 11.7 14.2 31.5		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49 TREES/A LOW 161 29 7	171 140 127 674 182 E TREE AVG 49 43 38 157 51 ACRE AVG 182 34 10	177 150 148 805 191 S - CF HIGH 50 46 44 183 53 HIGH 203 39 14		463 4 OF TREES 5	116 REQ. 10 75 REQ.	INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE TOT	EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LOER RUCE G EMLOCK G FIR LOER RUCE G AL		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5 86.7 COEFF VAR.% 160.2 194.5 430.7 355.0 436.9 129.9	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7 3.9 S.E.% 11.7 14.2 31.5 25.9 31.9		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49 TREES/A LOW 161 29 7 4 0 210	171 140 127 674 182 E TREE AVG 49 43 38 157 51 ACRE AVG 182 34 10 5 0 232	177 150 148 805 191 S - CF HIGH 50 46 44 183 53 HIGH 203 39 14 6 0 254	#	463 4 OF TREES 5 300 4 OF PLOTS 5	116 REQ. 10 75 REQ. 10	SINF. POP 1 3 INF. POP 1
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE TOT	EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER EMLOCK G FIR DER EMLOCK G FIR DER EMLOCK G FIR DER RUCE G AL		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5 86.7 COEFF VAR.% 160.2 194.5 430.7 355.0 436.9	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7 3.9 S.E.% 11.7 14.2 31.5 25.9 31.9		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49 TREES/A LOW 161 29 7 4 0	171 140 127 674 182 E TREE AVG 49 43 38 157 51 ACRE AVG 182 34 10 5 0 232	177 150 148 805 191 S - CF HIGH 50 46 44 183 53 HIGH 203 39 14 6 0 254	#	463 4 OF TREES 5 300 4 OF PLOTS 5	116 REQ. 10 75 REQ. 10	INF. POP 1 7 INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL S SNAG TOT CL S SNAG TOT CL SD:	EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LDER RUCE G AL 68.1 1.0 EMLOCK G FIR LOER RUCE G EMLOCK G FIR LOER RUCE G AL		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5 86.7 COEFF VAR.% 160.2 194.5 430.7 355.0 436.9 129.9 COEFF	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7 3.9 S.E.% 11.7 14.2 31.5 25.9 31.9 9.5		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49 TREES/A LOW 161 29 7 4 0 210 BASAL	171 140 127 674 182 E TREE AVG 49 43 38 157 51 ACRE AVG 182 34 10 5 0 232 AREA/A	177 150 148 805 191 S - CF HIGH 50 46 44 183 53 HIGH 203 39 14 6 0 254	#	463 4 OF TREES 5 300 4 OF PLOTS 5	116 REQ. 10 75 REQ. 10	INF. POP 1 7 INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE SNAG TOT CL SD: WHE SD:	EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER EMLOCK G FIR DER EMLOCK G FIR DER RUCE G AL 68.1 1.0		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5 86.7 COEFF VAR.% 160.2 194.5 430.7 355.0 436.9 129.9 COEFF VAR.%	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7 3.9 S.E.% 11.7 14.2 31.5 25.9 31.9 9.5		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49 TREES/A LOW 161 29 7 4 0 210 BASAL A	171 140 127 674 182 E TREE AVG 49 43 38 157 ACRE AVG 182 34 10 5 0 232 AREA/A AVG	177 150 148 805 191 S - CF HIGH 50 46 44 183 53 HIGH 203 39 14 6 0 254 ACRE HIGH	#	463 4 OF TREES 5 300 4 OF PLOTS 5	116 REQ. 10 75 REQ. 10	INF. POP 1 7 INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE SNAG TOT CL SD: WHE SD:	EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G FIR		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5 86.7 COEFF VAR.% 160.2 194.5 430.7 355.0 436.9 129.9 COEFF VAR.%	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7 3.9 S.E.% 11.7 14.2 31.5 25.9 31.9 9.5 S.E.% 10.8 14.4 31.7		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49 TREES/A LOW 161 29 7 4 0 210 BASAL A LOW 174	171 140 127 674 182 E TREE AVG 49 43 38 157 ACRE AVG 182 34 10 5 0 232 AREA/A AVG 195 40 11	177 150 148 805 191 S - CF HIGH 50 46 44 183 53 HIGH 203 39 14 6 0 254 ACRE HIGH 217 46 14	#	463 4 OF TREES 5 300 4 OF PLOTS 5	116 REQ. 10 75 REQ. 10	INF. POP 1 7 INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE SSPI SNAG TOT CL SD: WHE SD: WHE SD: WHE SSPI SNAG SSPI SNAG TOT CL SD: WHE SD: WHE SSPI SNAG TOT SD: WHE SD: WHE SSPI SNAG TOT SD: WHE SD: WHE SSPI SNAG TOT SNAG	EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR RUCE G EMLOCK G FIR RUCE G EMLOCK G FIR RUCE G EMLOCK G FIR RUCE GRUCE		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5 86.7 COEFF VAR.% 160.2 194.5 430.7 355.0 436.9 129.9 COEFF VAR.%	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7 3.9 S.E.% 11.7 14.2 31.5 25.9 31.9 9.5 S.E.% 10.8 14.4 31.7 25.0		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49 TREES/ LOW 161 29 7 4 0 210 BASAL LOW 174 34 7 8	171 140 127 674 182 E TREE AVG 49 43 38 157 51 ACRE AVG 182 34 10 5 0 232 AREA/A AVG 195 40 11 11	177 150 148 805 191 S - CF HIGH 50 46 44 183 53 HIGH 203 39 14 6 0 254 ACRE HIGH 217 46 14 14	#	463 4 OF TREES 5 300 4 OF PLOTS 5	116 REQ. 10 75 REQ. 10	INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE SNAG TOT CL SD: WHE SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT S	EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G MILOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR RUCE G AL 68.1		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5 86.7 COEFF VAR.% 160.2 194.5 430.7 355.0 436.9 129.9 COEFF VAR.% 148.5 197.1 433.9 342.2 440.9	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7 3.9 S.E.% 11.7 14.2 31.5 25.9 31.9 9.5 S.E.% 10.8 14.4 31.7 25.0 32.2		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49 TREES/A LOW 161 29 7 4 0 210 BASAL A LOW 174 34 7 8 0	171 140 127 674 182 E TREE AVG 49 43 38 157 ACRE AVG 182 34 10 5 0 232 AREA/A AVG 195 40 11 11 0	177 150 148 805 191 S - CF HIGH 50 46 44 183 53 HIGH 203 39 14 6 0 254 ACRE HIGH 217 46 14 14 0	#	463 467 467 467 467 467 467 467 467 467 467	116 REQ. 10 75 REQ. 10 169 REQ. 10	INF. POP
WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE DOU R AL S SPI SNAG TOT CL SD: WHE SSPI SNAG TOT CL SD: WHE SD: WHE SD: WHE SSPI SNAG SSPI SNAG TOT CL SD: WHE SD: WHE SSPI SNAG TOT SD: WHE SD: WHE SSPI SNAG TOT SD: WHE SD: WHE SSPI SNAG TOT SNAG	EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G MILOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR DER RUCE G AL 68.1 1.0 EMLOCK G FIR RUCE G AL 68.1		67.4 69.9 71.3 88.8 107.7 COEFF VAR.% 60.8 63.9 64.2 76.5 86.7 COEFF VAR.% 160.2 194.5 430.7 355.0 436.9 129.9 COEFF VAR.%	3.6 7.2 16.3 19.4 4.8 S.E.% 3.2 6.6 14.7 16.7 3.9 S.E.% 11.7 14.2 31.5 25.9 31.9 9.5 S.E.% 10.8 14.4 31.7 25.0		165 130 106 544 173 SAMPLI LOW 47 40 33 131 49 TREES/ LOW 161 29 7 4 0 210 BASAL LOW 174 34 7 8	171 140 127 674 182 E TREE AVG 49 43 38 157 51 ACRE AVG 182 34 10 5 0 232 AREA/A AVG 195 40 11 11	177 150 148 805 191 S - CF HIGH 50 46 44 183 53 HIGH 203 39 14 6 0 254 ACRE HIGH 217 46 14 14	#	463 4 OF TREES 5 300 4 OF PLOTS 5	116 REQ. 10 75 REQ. 10	INF. POP 1 7 INF. POP

TC PSTATS

PROJECT STATISTICS PROJECT GSADD

PAGE

2 DATE 3/8/2022

					PROJECT	r GS	ADD			DAIE	3/8/2022
TWP	RGE	SC	TRACT	ТҮРЕ	2	A	CRES	PLOTS	TREES	CuFt	BdFt
06N 07N	08 09W	08 36	U2A_R/W U1_TAKE	00MC 00MC			168.00	187	1,098	1	W
CL	68.1		COEFF		NET	BF/ACRE			# OF PLOTS R	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
WHE	MLOCK		149.8	10.9	19,287	21,658	24,030				
DOU	G FIR		223.5	16.3	3,082	3,683	4,285				
R AL	DER		453.0	33.1	655	978	1,302				
S SPI	RUCE		375.9	27.5	1,293	1,783	2,272				
SNA	G										
ТОТ	AL		133.1	9.7	25,370	28,103	30,835		707	177	79

	}				ST. PROJEC	ATIST	TCS GSADD			PAGE DATE 2	1 /17/2022
TWP RO	GE	SECT T	RACT		ТҮРЕ	AC	RES	PLOTS	TREES	CuFt	BdFt
07N 09	9W_	36 U	1		00MC		57.00	41	238	11	W
		DI OTTO	mp pyg		TREES		ESTIMATED FOTAL	S	ERCENT AMPLE		
		PLOTS	TREES]	PER PLOT		TREES	T	REES		
TOTAL		41	238		5.8		10.101				
CRUISE DBH COU REFORES		21	117		5.6		10,434		1.1		
COUNT BLANKS 100 %		20	115		5.8						
				STA	ND SUMM	IARY					
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
WHEMLO	OCK	76	112.1	15.7	58	38.1	151.2	18,087	16,143	5,350	4,815
DOUG FII	R	34	46.2	14.9	49	14.4	55.6	5,203	4,763	1,590	1,510
R ALDER		5	21.8	13.4	37	5.9	21.5	1,829	1,829	546	546
S SPRUCI	Е	1	2.1	16.0	54	0.7	2.9	335	302	99	89
SNAG TOTAL		1 117	.8 183.0	15.0 15.3	35 53	0.3	1.0				
				· · · · · · · · · · · · · · · · · · ·		59.5	232.2	25,454	23,036	7,584	6,960
			THE SAMPL OF 100 THE		WILL BE	WITHIN	THE SAMPI	LE ERROR			
CI · co	1 %	COEFF								222	
CL: 68.	1 /0	COLIT			SAMPLE	TREES	5 - BF	#	OF TREES	REQ.	INF. POP
SD: 1.6	0	VAR.%	S.E.%	LO	OW	AVG	HIGH	#	OF TREES 5	REQ. 10	
SD: 1.0	0 DCK	VAR.% 53.4	S.E.% 6.1	LC	OW 166	AVG 176	HIGH 187	#			
SD: 1.0 WHEMLO	0 DCK R	VAR.% 53.4 61.5	S.E.% 6.1 10.5	LC	DW 166 112	AVG 176 125	HIGH 187 139	#			
SD: 1.0 WHEMLO DOUG FIR R ALDER S SPRUCE SNAG	0 DCK R	VAR.% 53.4 61.5 63.5	S.E.% 6.1 10.5 31.6	LC	DW 166 112 73	AVG 176 125 106	HIGH 187 139 139	#			
SD: 1.0 WHEMLO DOUG FII R ALDER S SPRUCE	0 DCK R	VAR.% 53.4 61.5	S.E.% 6.1 10.5	LC	DW 166 112	AVG 176 125	HIGH 187 139	#			
SD: 1.0 WHEMLO DOUG FIR R ALDER S SPRUCE SNAG	OCK R E	VAR.% 53.4 61.5 63.5	S.E.% 6.1 10.5 31.6	LC	DW 166 112 73	AVG 176 125 106	187 139 139		5	10 34	1
SD: 1.0 WHEMLC DOUG FII R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0	OCK R E E	VAR.% 53.4 61.5 63.5 58.7 COEFF	S.E.% 6.1 10.5 31.6 5.4 S.E.%		166 112 73 148 SAMPLE	AVG 176 125 106 157 2 TREES	HIGH 187 139 139 165 - CF HIGH		5 137	10 34	INF. POP
SD: 1.0 WHEMLC DOUG FII R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC	OCK R E 1 % OCK	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9	S.E.% 6.1 10.5 31.6 5.4 S.E.% 5.7		166 112 73 148 SAMPLE DW 49	AVG 176 125 106 157 2 TREES AVG 52	HIGH 187 139 139 165 - CF HIGH 55		5 137 OF TREES	34 REQ.	INF. POP INF. POP 1
SD: 1.0 WHEMLC DOUG FII R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FII	OCK R E 1 % OCK R	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8	S.E.% 6.1 10.5 31.6 5.4 5.7 9.7		166 112 73 148 SAMPLE DW 49 36	176 125 106 157 2 TREES AVG 52 40	HIGH 187 139 139 165 3 - CF HIGH 55 43		5 137 OF TREES	34 REQ.	INF. POP
SD: 1.0 WHEMLC DOUG FII R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC	O DCK R E E DCK R O DCK R C C C C C C C C C C C C C C C C C C	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9	S.E.% 6.1 10.5 31.6 5.4 S.E.% 5.7		166 112 73 148 SAMPLE DW 49	AVG 176 125 106 157 2 TREES AVG 52	HIGH 187 139 139 165 - CF HIGH 55		5 137 OF TREES	34 REQ.	INF. POP
SD: 1.0 WHEMLC DOUG FII R ALDER S SPRUCH SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FII R ALDER S SPRUCH	O DCK R E E DCK R O DCK R C C C C C C C C C C C C C C C C C C	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8	S.E.% 6.1 10.5 31.6 5.4 5.7 9.7		166 112 73 148 SAMPLE DW 49 36	176 125 106 157 2 TREES AVG 52 40	HIGH 187 139 139 165 3 - CF HIGH 55 43		5 137 OF TREES	34 REQ.	INF. POP
SD: 1.0 WHEMLC DOUG FIF R ALDER S SPRUCT SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIF R ALDER S SPRUCT SNAG	OCK R E 1 % OCK R C E 1 % E E E E E E E E	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8 57.5	S.E.% 6.1 10.5 31.6 5.4 S.E.% 5.7 9.7 28.6		166 112 73 148 SAMPLE DW 49 36 22	AVG 176 125 106 157 2 TREES AVG 52 40 31	187 139 139 165 8 - CF HIGH 55 43 40	#	5 137 OF TREES 5	34 REQ. 10	INF. POP
SD: 1.0 WHEMLC DOUG FII R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FII R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0	0 DCK R E E 0 DCK R E	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8 57.5 54.5 COEFF VAR.%	S.E.% 6.1 10.5 31.6 5.4 S.E.% 5.7 9.7 28.6 5.0 S.E.%	LC	166 112 73 148 SAMPLE DW 49 36 22 45 TREES/A	AVG 176 125 106 157 E TREES AVG 52 40 31 47 ACRE AVG	HIGH 187 139 139 165 3 - CF HIGH 55 43 40 50 HIGH	#	5 137 OF TREES 5	34 REQ. 10	INF. POP
SD: 1.0 WHEMLC DOUG FII R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FII R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC SNAG TOTAL	O DCK R E 1 % O DCK R E 1 % O DCK R E 1 % O DCK	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8 57.5 COEFF VAR.% 74.5	S.E.% 6.1 10.5 31.6 5.4 S.E.% 5.7 9.7 28.6 5.0 S.E.% 11.6	LC	166 112 73 148 SAMPLE DW 49 36 22 45 TREES/A	AVG 176 125 106 157 E TREES AVG 52 40 31 47 ACRE AVG 112	HIGH 187 139 139 165 3 - CF HIGH 55 43 40 50 HIGH 125	#	137 OF TREES 5 118 OF PLOTS	34 REQ. 10 30 REQ.	INF. POP
SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCT SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCT SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR S SPRUCT SNAG TOTAL	ODCK R 1 % ODCK R E 1 % ODCK R 1 % ODCK R 1 % ODCK R	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8 57.5 COEFF VAR.% 74.5 109.5	S.E.% 6.1 10.5 31.6 5.4 S.E.% 5.7 9.7 28.6 5.0 S.E.% 11.6 17.1	LC	166 112 73 148 SAMPLE DW 49 36 22 45 TREES/A	AVG 176 125 106 157 2 TREES AVG 52 40 31 47 ACRE AVG 112 46	HIGH 187 139 139 165 3 - CF HIGH 55 43 40 50 HIGH 125 54	#	137 OF TREES 5 118 OF PLOTS	34 REQ. 10 30 REQ.	INF. POP
SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68.	ODCK R L ODCK R ODCK R L ODCK R ODCK R ODCK R ODCK R	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8 57.5 COEFF VAR.% 74.5 109.5 226.1	S.E.% 6.1 10.5 31.6 5.4 S.E.% 5.7 9.7 28.6 5.0 S.E.% 11.6 17.1 35.3	LC	166 112 73 148 SAMPLE DW 49 36 22 45 TREES/A	AVG 176 125 106 157 CTREES AVG 52 40 31 47 ACRE AVG 112 46 22	HIGH 187 139 139 165 3 - CF HIGH 55 43 40 50 HIGH 125 54 30	#	137 OF TREES 5 118 OF PLOTS	34 REQ. 10 30 REQ.	INF. POP
SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0	ODCK R L ODCK R ODCK R L ODCK R ODCK R ODCK R ODCK R	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8 57.5 COEFF VAR.% 74.5 109.5 226.1 360.3	5.E.% 6.1 10.5 31.6 5.4 5.7 9.7 28.6 5.0 5.E.% 11.6 17.1 35.3 56.2	LC	166 112 73 148 SAMPLE DW 49 36 22 45 TREES/A	AVG 176 125 106 157 2 TREES AVG 52 40 31 47 ACRE AVG 112 46	HIGH 187 139 139 165 3 - CF HIGH 55 43 40 50 HIGH 125 54	#	137 OF TREES 5 118 OF PLOTS	34 REQ. 10 30 REQ.	INF. POP
SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68.	ODCK R L ODCK R ODCK R L ODCK R ODCK R ODCK R ODCK R	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8 57.5 COEFF VAR.% 74.5 109.5 226.1	S.E.% 6.1 10.5 31.6 5.4 S.E.% 5.7 9.7 28.6 5.0 S.E.% 11.6 17.1 35.3	LC	166 112 73 148 SAMPLE DW 49 36 22 45 TREES/A	AVG 176 125 106 157 CTREES AVG 52 40 31 47 ACRE AVG 112 46 22 2	HIGH 187 139 139 165 3 - CF HIGH 55 43 40 50 HIGH 125 54 30 3	#	137 OF TREES 5 118 OF PLOTS	34 REQ. 10 30 REQ.	INF. POP
SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG SD: 1.0	ODCK R S ODCK R S ODCK R S ODCK R S E	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8 57.5 COEFF VAR.% 74.5 109.5 226.1 360.3 640.3	S.E.% 6.1 10.5 31.6 5.4 5.7 9.7 28.6 5.0 S.E.% 11.6 17.1 35.3 56.2 99.9 5.2	LC	166 112 73 148 SAMPLE DW 49 36 22 45 TREES/A DW 99 38 14 1 0 174	AVG 176 125 106 157 CTREES AVG 52 40 31 47 ACRE AVG 112 46 22 2 1 183	HIGH 187 139 139 165 3 - CF HIGH 55 43 40 50 HIGH 125 54 30 3 2 193	#	137 OF TREES 5 118 OF PLOTS 5	34 REQ. 10 30 REQ. 10	INF. POP
SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68.	0 DCK R E 1 % 0 DCK R E 1 % 0 DCK R	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8 57.5 COEFF VAR.% 74.5 109.5 226.1 360.3 640.3 33.2 COEFF	S.E.% 6.1 10.5 31.6 5.4 S.E.% 5.7 9.7 28.6 5.0 S.E.% 11.6 17.1 35.3 56.2 99.9 5.2	LC	166 112 73 148 SAMPLE DW 49 36 22 45 TREES/A DW 99 38 14 1 0 174 BASAL A	AVG 176 125 106 157 CTREES AVG 52 40 31 47 ACRE AVG 112 46 22 2 1 183 AREA/AG	HIGH 187 139 139 165 3 - CF HIGH 55 43 40 50 HIGH 125 54 30 3 2 193 CRE	#	137 OF TREES 5 118 OF PLOTS 5	34 REQ. 10 30 REQ. 10	INF. POP
SD: 1.0 WHEMLC DOUG FII R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FII R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.1 WHEMLC DOUG FII R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.4 WHEMLC DOUG FII R ALDER S SPRUCI SNAG TOTAL	0 DCK R E 1 % 0 DCK R E 1 % 0 DCK R	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8 57.5 COEFF VAR.% 74.5 109.5 226.1 360.3 640.3 33.2	S.E.% 6.1 10.5 31.6 5.4 S.E.% 5.7 9.7 28.6 5.0 S.E.% 11.6 17.1 35.3 56.2 99.9 5.2	LC	166 112 73 148 SAMPLE DW 49 36 22 45 TREES/A DW 99 38 14 1 0 174 BASAL A	AVG 176 125 106 157 CTREES AVG 52 40 31 47 ACRE AVG 112 46 22 2 1 183	HIGH 187 139 139 165 3 - CF HIGH 55 43 40 50 HIGH 125 54 30 3 2 193	#	137 OF TREES 5 118 OF PLOTS 5	34 REQ. 10 30 REQ. 10	INF. POP
SD: 1.0 WHEMLO DOUG FIR R ALDER S SPRUCE SNAG TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER S SPRUCE SNAG TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER S SPRUCE SNAG TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER S SPRUCE SNAG TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR S SPRUCE SNAG TOTAL CL: 68.	0 DCK R E 1 % 0 DCK R E 1 % 0 DCK R	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8 57.5 COEFF VAR.% 74.5 109.5 226.1 360.3 640.3 33.2 COEFF VAR.% 72.3 104.1	5.E.% 6.1 10.5 31.6 5.4 5.7 9.7 28.6 5.0 5.E.% 11.6 17.1 35.3 56.2 99.9 5.2 5.E.% 11.3 16.2	LC	166 112 73 148 SAMPLE DW 49 36 22 45 TREES/A DW 99 38 14 1 0 174 BASAL A DW	AVG 176 125 106 157 CTREES AVG 52 40 31 47 ACRE AVG 112 46 22 2 1 183 AREA/AG AVG	HIGH 187 139 139 165 - CF HIGH 55 43 40 50 HIGH 125 54 30 3 2 193 CRE HIGH	#	137 OF TREES 5 118 OF PLOTS 5	34 REQ. 10 30 REQ. 10	INF. POP
SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68.	0 DCK R E 1 % 0 DCK R E 1 % 0 DCK R	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8 57.5 COEFF VAR.% 74.5 109.5 226.1 360.3 640.3 33.2 COEFF VAR.% 72.3 104.1 224.8	5.E.% 6.1 10.5 31.6 5.4 5.7 9.7 28.6 5.0 5.E.% 11.6 17.1 35.3 56.2 99.9 5.2 5.E.% 11.3 16.2 35.1	LC	166 112 73 148 SAMPLE DW 49 36 22 45 TREES/A DW 99 38 14 1 0 174 BASAL A DW 134 47 14	AVG 176 125 106 157 CTREES AVG 52 40 31 47 ACRE AVG 112 46 22 2 1 183 AREA/AC AVG 151 56 21	HIGH 187 139 139 165 3 - CF HIGH 55 43 40 50 HIGH 125 54 30 3 2 193 CRE HIGH 168 65 29	#	137 OF TREES 5 118 OF PLOTS 5	34 REQ. 10 30 REQ. 10	INF. POP
SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0	0 DCK R E 1 % 0 DCK R E 1 % 0 DCK R	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8 57.5 COEFF VAR.% 74.5 109.5 226.1 360.3 640.3 33.2 COEFF VAR.% 72.3 104.1 224.8 360.3	S.E.% 6.1 10.5 31.6 5.4 S.E.% 5.7 9.7 28.6 5.0 S.E.% 11.6 17.1 35.3 56.2 99.9 5.2 S.E.% 11.3 16.2 35.1 56.2	LC	166 112 73 148 SAMPLE DW 49 36 22 45 TREES/A DW 99 38 14 1 0 174 BASAL A DW 134 47 14 1	AVG 176 125 106 157 C TREES AVG 52 40 31 47 ACRE AVG 112 46 22 1 183 AREA/AC AVG 151 56 21 3	HIGH 187 139 139 165 3 - CF HIGH 55 43 40 50 HIGH 125 54 30 3 2 193 CRE HIGH 168 65 29 5	#	137 OF TREES 5 118 OF PLOTS 5	34 REQ. 10 30 REQ. 10	INF. POP
SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER S SPRUCI SNAG TOTAL CL: 68.	0 DCK R E 1 % 0 DCK R E 1 % 0 DCK R	VAR.% 53.4 61.5 63.5 58.7 COEFF VAR.% 49.9 56.8 57.5 COEFF VAR.% 74.5 109.5 226.1 360.3 640.3 33.2 COEFF VAR.% 72.3 104.1 224.8	5.E.% 6.1 10.5 31.6 5.4 5.7 9.7 28.6 5.0 5.E.% 11.6 17.1 35.3 56.2 99.9 5.2 5.E.% 11.3 16.2 35.1	LC	166 112 73 148 SAMPLE DW 49 36 22 45 TREES/A DW 99 38 14 1 0 174 BASAL A DW 134 47 14	AVG 176 125 106 157 CTREES AVG 52 40 31 47 ACRE AVG 112 46 22 2 1 183 AREA/AC AVG 151 56 21	HIGH 187 139 139 165 3 - CF HIGH 55 43 40 50 HIGH 125 54 30 3 2 193 CRE HIGH 168 65 29	#	137 OF TREES 5 118 OF PLOTS 5	34 REQ. 10 30 REQ. 10	INF. POP

TC TST	ATS					STATIS JECT	TICS GSADD			PAGE DATE	2 2/17/2022
TWP	RGE	SECT	TRAC	СТ	TYPI	E A	CRES	PLOTS	TREES	CuFt	BdFt
07N	09W	36	U1		00M	<u>C</u>	57.00	41	238	1	W
CL:	68.1%	COE	EFF		NET	BF/ACRE			# OF PLC	TS REQ.	INF. POP.
SD:	1.0	VAF	₹.	S.E.%	LOW	AVG	HIGH		5	10	15
CL:	68.1 %	COE	EFF		NET	BF/ACRE		· · · · · · · · · · · · · · · · · · ·	# OF PLOTS	REQ.	INF. POP.
SD:	1.0	VAF	₹.%	S.E.%	LOW	AVG	HIGH		5	10	15
WHE	MLOCK	75.	.8	11.8	14,234	16,143	18,052				
DOU	G FIR	105	.1	16.4	3,982	4,763	5,544				
R AL	DER	227	.9	35.6	1,178	1,829	2,479				
S SPR	RUCE	360	.3	56.2	132	302	472				
SNAC	3										
TOTA	AL	43.	.5	6.8	21,471	23,036	24,602		76	19	8

TC TST	ATS			***	S	TATIS'	TICS		Total Control Control	PAGE	1
					PROJE		GSADD				/17/2022
TWP	RGE	SECT TR	RACT		TYPE	A	CRES	PLOTS	TREES	CuFt	BdFt
07N	09W	36 U1	TAKE		00MC		57.00	41	237	1	W
					TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PLOTS	TREES		PER PLO	Г	TREES		ΓREES		
TOTA	AL.	41	237		5.8						
	SE COUNT DREST	21	116		5.5		10,388		1.1		
COUN BLAN 100 %	NKS	20	115		5.8						
	***************************************			STA	ND SUM	MARY	***************************************				
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
WHE	MLOCK	76	112.1	15.7	58	38.1	151.2	18,087	16,143	5,350	4,815
DOUG		34	46.2	14.9	49	14.4	55.6	5,203	4,763	1,590	1,510
R ALI		5	21.8	13.4	37	5.9	21.5	1,829	1,829	546	546
S SPR		1 116	2.1 <i>182.2</i>	16.0 15.3	54 53	0.7	2.9	335	302	99 7.50.4	89
					33	59.2	231.2	25,454	23,036	7,584	6,960
CON		E LIMITS OF TIMES OUT (WILL B	E WITHII	N THE SAMPI	LE ERROR			
CL:	68.1 %	COEFF			SAMPI	LE TREE	S - BF	#	OF TREES	S REQ.	INF. POP.
SD:	1.0	VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	15
	MLOCK	53.4	6.1		166	176	187				
DOUG R ALI		61.5 63.5	10.5 31.6		112 73	125 106	139 139				
S SPR		05.5	31.0		75	100	139				
TOTA	AL	57.7	5.3		150	158	167		133	33	15
CL:	68.1 %	COEFF			SAMPI	LE TREE	S - CF	#	OF TREES	REQ.	INF. POP.
SD:	1.0	VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	15
	MLOCK	49.9	5.7		49	52	55				
DOUG R ALI		56.8 57.5	9.7 28.6		36 22	40 31	43 40				
S SPR		57.5	20.0		LL	31	40				
TOTA	A L	53.4	5.0		45	48	50		114	29	13
CL:	68.1 %	COEFF			TREES	/ACRE	***************************************	#	OF PLOTS	REQ.	INF. POP.
	1.0	VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	15
	MLOCK	74.5	11.6		99	112	125				
DOUC R ALI		109.5 226.1	17.1 35.3		38 14	46 22	54 30				
S SPR		360.3	56.2		1	2	3				
TOTA		33.7	5.3		173	182	192		45	11	5
CL:	68.1 %	COEFF			BASAI	AREA/A		#	OF PLOTS	REO	INF. POP.
SD:	1.0	VAR.%	S.E.%	L	OW WC	AVG	HIGH	11	5	10	15
WHE	MLOCK	72.3	11.3		134	151	168				
DOUG		104.1	16.2		47	56	65				
R ALI S SPR		224.8 360.3	35.1 56.2		14 1	21 3	29 5				
TOTA		34.1	5.3		219	23 <i>1</i>	244		46	12	5
CL:	68.1 %	COEFF				F/ACRE			OF PLOTS		INF. POP.
SD:	1.0	VAR.%	S.E.%	L	JW WC	AVG	HIGH	#	5	10	11NF. POP.
WHEN	MLOCK	75.8	11.8	1-	4,234	16,143	18,052			• • • • • • • • • • • • • • • • • • • •	13
DOUC		105.1	16.4		3,982	4,763	5,544				
R ALI		227.9	35.6		1,178	1,829	2,479				
S SPR TOTA		360.3 <i>43.5</i>	56.2 <i>6</i> .8	า	132	302	472 24.602		76	10	0
IOIA	1.L.	43.3	0.8	21	, <i>471</i>	23,036	24,602		76	19	8

TC TST	TATS				ST. PROJEC	ATIS'	TICS GSADD			PAGE DATE	2 2/17/2022
TWP 07N	RGE 09W	SECT 36	TRAC	CT FAKE	TYPE 00MC	A	CRES 57.00	PLOTS 41	TREES 237	CuFt	BdFt W
CL: SD:	68.1 % 1.0	CO VA	EFF R.	S.E.%	NET BF	ACRE AVG	HIGH		# OF PLO 5	TS REQ. 10	INF. POP.

	ATS					ST. PROJEC	ATIST	ICS GSADD			PAGE Date 3	1 /8/2022
ГWР	RGE	SECT	TR	ACT		TYPE	AC	RES	PLOTS	TREES	CuFt	BdFt
06N	08W	08	U2	A		00MC		68.00	37	282	11	W
						TREES		ESTIMATED FOTAL	S	PERCENT SAMPLE		
		PLOTS		TREES		PER PLOT		TREES	T	REES		
	SE COUNT	37 18		282 125		7.6 6.9		25,406		.5		
REFO COUN BLAN 100 %	NT IKS	19)	148		7.8						
					STA	ND SUMN	1ARY					
		SAMPLE TREES		TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
	MLOCK	ç	94	313.6	13.8	55	87.3	323.8	42,264	36,764	11,392	10,253
SNAG			9	27.1	14.1	50	7.8	29.4				
DOUC			7	14.8	18.6	77	6.5	28.0	3,832	3,543	1,085	1,031
S SPR]	10	10.6 7.4	20.8	73 49	5.5 2.3	25.0	4,665	4,118 865	1,121 275	1,009 275
R ALI		12	5	7.4 373.6	14.8 <i>14.3</i>	49 56	2.3 109.9	8.8 <i>415.0</i>	903 51,663	45,290	13,873	12,567
CL:			EFF	OF 100 THE	VOLUME	SAMPL		THE SAMP: 		FOF TREES	REQ.	INF. POP
SD:	1.0	3.7.4										
			R.%	S.E.%	L	OW	AVG	HIGH		5	10	1
WHEN SNAG	MLOCK 3	76	5.8	7.9	L	158	171	HIGH 185		5	10	1
WHEN SNAG DOUG	MLOCK 3 3 FIR	76 36	5.8 5.2	7.9 14.7	L	158 236	171 277	HIGH 185 318		5	10	1
WHEN SNAG	MLOCK 3 G FIR RUCE	76 36 85	5.8	7.9	L	158	171	HIGH 185		5	10	1
WHEN SNAG DOUG S SPR R ALI	MLOCK 3 3 FIR RUCE DER	76 36 85	5.8 5.2 5.2 9.4	7.9 14.7 28.4	L	158 236 521	171 277 727	HIGH 185 318 933		5 626	10 156	
WHEN SNAG DOUC S SPR R ALI TOTA	MLOCK 3 3 FIR RUCE DER	76 36 85 79 125	5.8 5.2 5.2 9.4	7.9 14.7 28.4 39.5	L	158 236 521 90	171 277 727 148 208	HIGH 185 318 933 206 232	#		156	7
WHEN SNAG DOUC S SPR R ALI TOTA CL: SD:	MLOCK G FIR RUCE DER AL 68.1 % 1.0	76 36 85 79 125 CO VA	5.8 5.2 5.2 9.4 .2 EFF	7.9 14.7 28.4 39.5		236 521 90 <i>185</i> SAMPL I	171 277 727 148 208 E TREES	HIGH 185 318 933 206 232 S - CF HIGH	#	626	156	INF. POP
WHEN SNAG DOUC S SPR R ALL TOTA CL: SD: WHEN SNAG	MLOCK G FIR RUCE DER AL 68.1 % 1.0 MLOCK G	76 36 85 79 125 CO VA	5.8 5.2 5.2 9.4 .2 EFF R.%	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1		236 521 90 185 SAMPL	171 277 727 148 208 E TREES AVG 47	HIGH 185 318 933 206 232 S - CF HIGH 50	#	<i>626</i> [‡] OF TREES	156 S REQ.	7 INF. POP
WHEN SNAG DOUC S SPR R ALI TOTA CL: SD:	MLOCK G FIR RUCE DER AL 68.1 % 1.0 MLOCK G FIR	76 36 85 79 125 CO VA 68	5.8 5.2 5.2 9.4 .2 EFF	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1		236 521 90 <i>185</i> SAMPL I	171 277 727 148 208 E TREES	HIGH 185 318 933 206 232 S - CF HIGH	#	<i>626</i> [‡] OF TREES	156 S REQ.	7 INF. POP
WHEN SNAG DOUC S SPR R ALI TOTA CL: SD: WHEN SNAG DOUC S SPR	MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE	76 36 85 79 125 CO VA 68	5.8 5.2 5.2 9.4 .2 EFF R.% 3.7	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1		236 521 90 185 SAMPLI OW 44	171 277 727 148 208 E TREES AVG 47	HIGH 185 318 933 206 232 S - CF HIGH 50 92	#	<i>626</i> [‡] OF TREES	156 S REQ.	7 INF. POP
WHEN SNAG DOUC S SPR R ALL TOTA CL: SD: WHEN SNAG DOUC	MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE	76 36 85 79 125 CO VA 68	5.8 5.2 5.2 9.4 .2 EFF R.% 3.7 4.2 3.3 9.2	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1 13.9 24.4		236 521 90 185 SAMPL OW 44 69 127	171 277 727 148 208 E TREES AVG 47 80 168	HIGH 185 318 933 206 232 S - CF HIGH 50 92 209	#	<i>626</i> [‡] OF TREES	156 S REQ.	7 INF. POP 1
WHEN SNAG DOUC S SPR R ALI TOTA CL: SD: WHEN SNAG DOUC S SPR R ALI TOTA	MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE	76 36 85 79 125 CO VA 68 34 73 69 104	5.8 5.2 5.2 9.4 .2 EFF R.% 3.7 4.2 3.3 9.2	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1 13.9 24.4 34.4		236 521 90 185 SAMPLI OW 44 69 127 30	171 277 727 148 208 E TREES AVG 47 80 168 45 55	HIGH 185 318 933 206 232 S - CF HIGH 50 92 209 61		626 F OF TREES 5	156 3 REQ. 10	INF. POP
WHEN SNAG DOUC S SPR R ALI TOTA CL: SD: WHEN SNAG DOUC S SPR R ALI TOTA CL: SD:	MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0	76 36 85 79 125 CO VA 68 34 73 69 104	5.8 5.2 5.2 9.4 .2 EFF R.% 3.7 4.2 3.3 9.2 .1	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1 13.9 24.4 34.4 9.3 S.E.%	L	236 521 90 185 SAMPLI OW 44 69 127 30 50 TREES/	171 277 727 148 208 E TREES AVG 47 80 168 45 55 ACRE AVG	HIGH 185 318 933 206 232 S - CF HIGH 50 92 209 61 60 HIGH		626 F OF TREES 5	156 3 REQ. 10	INF. POP
WHEN SNAG DOUG S SPR ALL SD: WHEN CL: SD: WH	MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK MLOCK	76 36 85 79 125 CO VA 68 34 73 69 104 CO VA	5.8 5.2 5.2 9.4 .2 EFF R.% 3.7 4.2 3.3 9.2 .1 EFF R.%	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1 13.9 24.4 34.4 9.3 S.E.% 8.7	L	236 521 90 185 SAMPLI OW 44 69 127 30 50 TREES/	171 277 727 148 208 E TREES AVG 47 80 168 45 55 ACRE AVG 314	HIGH 185 318 933 206 232 S - CF HIGH 50 92 209 61 60 HIGH 341		626 FOF TREES 5 433 FOF PLOTS	156 3 REQ. 10 108 3 REQ.	INF. POP
WHEN SNAG DOUG S SPR ALL SD: WHEN CL: SD: WHEN CL: SD: WHEN SNAG CL: SD: WHEN SNAG SNAG SNAG SNAG SNAG SNAG SNAG SNA	MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G MLOCK G	76 36 85 79 125 CO VA 68 34 73 69 104 CO VA	55.8 55.2 55.2 64.2 EFF R.% 3.3 9.2 .1 EFF R.% 3.1 9.2	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1 13.9 24.4 34.4 9.3 S.E.% 8.7 29.6	L	236 521 90 185 SAMPLI OW 44 69 127 30 50 TREES/A	171 277 727 148 208 E TREES AVG 47 80 168 45 55 ACRE AVG 314 27	HIGH 185 318 933 206 232 S - CF HIGH 50 92 209 61 60 HIGH 341 35		626 FOF TREES 5 433 FOF PLOTS	156 3 REQ. 10 108 3 REQ.	INF. POP
WHEN SNAG DOUG S SPR ALL SD: WHEN CL: SD: WH	MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR G FIR	76 36 85 79 125 CO VA 68 34 73 69 104 CO VA	55.8 55.2 55.2 6.4 6.2 6.2 6.2 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1 13.9 24.4 34.4 9.3 S.E.% 8.7	L	236 521 90 185 SAMPLI OW 44 69 127 30 50 TREES/	171 277 727 148 208 E TREES AVG 47 80 168 45 55 ACRE AVG 314	HIGH 185 318 933 206 232 S - CF HIGH 50 92 209 61 60 HIGH 341		626 FOF TREES 5 433 FOF PLOTS	156 3 REQ. 10 108 3 REQ.	INF. POP
WHEN SNAG DOUG S SPR ALL TOTA SNAG DOUG S SPR ALL TOTA SNAG DOUG S SPR SNAG DOUG S SPR R ALL SD:	MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE GFIR RUCE DER	76 36 85 79 125 CO VA 68 34 73 69 104 CO VA 53 180 197 155 367	5.8 5.2 5.2 9.4 .2 EFF R.% 1.2 3.3 9.2 .1 EFF R.% 3.1 2.5 .6 7.0 5.6 6.7 7.5	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1 13.9 24.4 34.4 9.3 S.E.% 8.7 29.6 32.4 25.6 60.4	L	236 521 90 185 SAMPLI OW 44 69 127 30 50 TREES/A OW 286 19 10 8 3	171 277 727 148 208 E TREES AVG 47 80 168 45 555 ACRE AVG 314 27 15 11 7	HIGH 185 318 933 206 232 S - CF HIGH 50 92 209 61 60 HIGH 341 35 20 13 12		626 FOF TREES 5 433 FOF PLOTS 5	156 S REQ. 10 108 S REQ. 10	INF. POP
WHEN SNAG DOUG S SPR ALL TOTA CL: SD: WHEN SNAG DOUG S SPR ALL TOTA CL: SD: WHEN SNAG DOUG S SPR ALL TOTA	MLOCK G FIR RUCE DER AL 68.1 % 1.0 MLOCK G FIR RUCE DER AL 68.1 % 1.0 MLOCK G FIR RUCE DER AL 68.1 % 1.0 MLOCK G FIR RUCE DER AL	76 36 85 79 125 CO VA 68 34 73 69 104 CO VA 53 180 197 155 367 42	5.8 5.2 5.2 9.4 .2 EFF R.% 3.3 9.2 .1 EEFF R.% 3.1 9.2 7.0 5.6 6.7.5 8.8	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1 13.9 24.4 34.4 9.3 S.E.% 8.7 29.6 32.4 25.6	L	236 521 90 185 SAMPLI OW 44 69 127 30 50 TREES/A	171 277 727 148 208 E TREES AVG 47 80 168 45 55 ACRE AVG 314 27 15 11	HIGH 185 318 933 206 232 S - CF HIGH 50 92 209 61 60 HIGH 341 35 20 13		626 FOF TREES 5 433 FOF PLOTS	156 3 REQ. 10 108 3 REQ.	INF. POP
WHEN SNAG DOUG S SPR ALL TOTA CL: SD: WHEN SNAG DOUG S SPR ALL TOTA CL: SD: WHEN SNAG DOUG S SPR ALL TOTA CL:	MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 68.1 % 68.1 %	76 36 85 79 125 CO VA 68 34 73 69 104 CO VA 53 180 197 155 367 42	5.8 5.2 5.2 6.4 6.2 6.2 6.2 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1 13.9 24.4 34.4 9.3 S.E.% 8.7 29.6 32.4 25.6 60.4 7.0	L	236 521 90 185 SAMPLI OW 44 69 127 30 50 TREES/ OW 286 19 10 8 3 347 BASAL	171 277 727 148 208 E TREES AVG 47 80 168 45 55 ACRE AVG 314 27 15 11 7 374 AREA/A	HIGH 185 318 933 206 232 S - CF HIGH 50 92 209 61 60 HIGH 341 35 20 13 12 400 CRE	#	626 FOF TREES 5 433 FOF PLOTS 5	156 3 REQ. 10 108 3 REQ. 10	INF. POP
WHEN SNAG DOUC S SPR R ALI TOTA CL: SD: WHEN SNAG DOUC S SPR R ALI TOTA CL: SD: WHEN SNAG CL: SD:	MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0	76 36 85 79 125 CO VA 68 34 73 69 104 CO VA 53 180 197 155 367 42 CO	5.8 5.2 5.2 6.4 6.2 6.2 6.2 6.3 6.3 6.3 6.3 6.3 7.0 6.3 7.0 6.3 6.3 7.0 6.3 6.3 7.0 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1 13.9 24.4 34.4 9.3 S.E.% 8.7 29.6 32.4 25.6 60.4 7.0 S.E.%	L	236 521 90 185 SAMPLI OW 44 69 127 30 50 TREES/A OW 286 19 10 8 3 347 BASAL	171 277 727 148 208 E TREES AVG 47 80 168 45 55 ACRE AVG 314 27 15 11 7 374 AREA/A	HIGH 185 318 933 206 232 S - CF HIGH 50 92 209 61 60 HIGH 341 35 20 13 12 400 CRE HIGH	#	626 FOF TREES 5 433 FOF PLOTS 5	156 S REQ. 10 108 S REQ. 10	INF. POP
WHEN SNAG DOUG S SPR ALL TOTA SNAG DOUG S SPR ALL TOTA SNAG DOUG S SPR ALL TOTA SNAG DOUG S SPR ALL SD:	MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G MLOCK G MLOCK G MLOCK G MLOCK G MLOCK G MLOCK	76 36 85 79 125 CO VA 68 34 73 69 104 CO VA 53 180 197 155 367 42 CO VA	5.8 5.2 5.2 6.2 6.2 6.2 6.2 6.2 6.2 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1 13.9 24.4 34.4 9.3 S.E.% 8.7 29.6 32.4 25.6 60.4 7.0 S.E.% 7.0	L	236 521 90 185 SAMPLI OW 44 69 127 30 50 TREES/A OW 286 19 10 8 3 347 BASAL	171 277 727 148 208 E TREES AVG 47 80 168 45 55 ACRE AVG 314 27 15 11 7 374 AREA/A AVG 324	HIGH 185 318 933 206 232 S - CF HIGH 50 92 209 61 60 HIGH 341 35 20 13 12 400 CRE HIGH 346	#	626 FOF TREES 5 433 FOF PLOTS 5	156 3 REQ. 10 108 3 REQ. 10	INF. POP
WHEN SNAG DOUC S SPR R ALL TOTA CL: SD: WHEN SNAG DOUC S SPR R ALL TOTA CL: SD: WHEN SNAG DOUC S SPR R ALL TOTA CL: SD: WHEN SNAG DOUC S SPR R ALL TOTA CL: SD: WHEN SNAG S SPR R ALL TOTA	MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G MLOCK G G FIR RUCE DER AL	76 36 85 79 125 CO VA 68 34 73 69 104 CO VA 53 180 197 155 367 42 CO VA	5.8 5.2 5.2 6.4 6.2 6.2 6.2 6.2 6.2 6.3 6.3 6.3 6.3 6.3 6.3 7.5 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1 13.9 24.4 34.4 9.3 S.E.% 8.7 29.6 32.4 25.6 60.4 7.0 S.E.% 7.0 30.0	L	236 521 90 185 SAMPLI OW 44 69 127 30 50 TREES/A OW 286 19 10 8 3 347 BASAL	171 277 727 148 208 E TREES AVG 47 80 168 45 55 ACRE AVG 314 27 15 11 7 374 AREA/A AVG 324 29	HIGH 185 318 933 206 232 S - CF HIGH 50 92 209 61 60 HIGH 341 35 20 13 12 400 CRE HIGH 346 38	#	626 FOF TREES 5 433 FOF PLOTS 5	156 3 REQ. 10 108 3 REQ. 10	INF. POP
WHEN SNAG DOUG S SPR ALL TOTA CL: SD: WHEN SNAG DOUG S SPR ALL TOTA CL: SD: WHEN SNAG DOUG S SPR ALL TOTA CL: SD: WHEN SNAG DOUG S SPR ALL TOTA CL: SD: WHEN SNAG DOUG S SPR ALL TOTA CL: SD:	MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL	76 36 85 79 125 CO VA 68 34 73 69 104 CO VA 53 180 197 155 367 42 CO VA	5.8 5.2 5.2 9.4 .2 EFF R.% 3.3 9.2 .1 EFF R.% 5.6 7.5 .8 EFF R.% 2.5 2.9 3.1	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1 13.9 24.4 34.4 9.3 S.E.% 8.7 29.6 32.4 25.6 60.4 7.0 S.E.% 7.0	L	236 521 90 185 SAMPLI OW 44 69 127 30 50 TREES/ OW 286 19 10 8 3 347 BASAL	171 277 727 148 208 E TREES AVG 47 80 168 45 55 ACRE AVG 314 27 15 11 7 374 AREA/A AVG 324	HIGH 185 318 933 206 232 S - CF HIGH 50 92 209 61 60 HIGH 341 35 20 13 12 400 CRE HIGH 346	#	626 FOF TREES 5 433 FOF PLOTS 5	156 3 REQ. 10 108 3 REQ. 10	INF. POP
WHEN SNAG DOUG S SPR ALL TOTA SNAG DOUG S SPR ALL TOTA SNAG DOUG S SPR R ALL TOTA SNAG DOUG S SPR R ALL TOTA CL: SD: WHEN SNAG DOUG S SPR R ALL TOTA SNAG DOUG S SPR R ALL TOTA SNAG DOUG S SPR R ALL TOTA SNAG DOUG S SNAG DOUG SNAG SNAG DOUG SNAG SNAG SNAG SNAG SNAG SNAG SNAG SNA	MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0 MLOCK G G FIR RUCE DER AL 68.1 % 1.0	76 36 85 79 125 CO VA 68 34 73 69 104 CO VA 53 180 197 155 367 42 CO VA	5.8 5.2 5.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6	7.9 14.7 28.4 39.5 11.2 S.E.% 7.1 13.9 24.4 34.4 9.3 S.E.% 8.7 29.6 32.4 25.6 60.4 7.0 S.E.% 7.0 30.0 32.5	L	236 521 90 185 SAMPLI OW 44 69 127 30 50 TREES/ OW 286 19 10 8 3 347 BASAL OW 301 21 19	171 277 727 148 208 E TREES AVG 47 80 168 45 55 ACRE AVG 314 27 15 11 7 374 AREA/A AVG 324 29 28	HIGH 185 318 933 206 232 S - CF HIGH 50 92 209 61 60 HIGH 341 35 20 13 12 400 CRE HIGH 346 38 37	#	626 FOF TREES 5 433 FOF PLOTS 5	156 3 REQ. 10 108 3 REQ. 10	INF. POP

TC TST	ATS					S PROJ	TATIS ECT	STICS GSADD			PAGE DATE	2 3/8/2022
TWP	RGE	SECT	TRAC	СТ		TYPE	. A	CRES	PLOTS	TREES	CuFt	BdFt
06N	08W	08	U2A			00M(<u> </u>	68.00	37	282	11	W
CL:	68.1 %	COE	EFF			NET I	BF/ACRE			# OF PL	OTS REQ.	INF. PO
SD:	1.0	VAF	₹.	S.E.%	LO	W	AVG	HIGH		5	10	15
CL:	68.1 %	COE	EFF			NET I	BF/ACRE	······································		# OF PLOT	S REQ.	INF. POP.
SD:	1.0	VAF	₹.%	S.E.%	LO	W	AVG	HIGH		5	10	15
WHE	MLOCK	39.	.1	6.4	34,	401	36,764	39,127				
SNAC	3											
DOU	G FIR	199.	.7	32.8	2,	381	3,543	4,704				
S SPF	RUCE	155.	.7	25.6	3,	065	4,118	5,172				
R AL	DER	391.	.4	64.3		309	865	1,421				
ТОТ	AL	27	3	4.5	43,2	256	45,290	47,324		30	7	3

TC TST	ATS					ATIST	TICS			PAGE	1
					PROJE		GSADD	· · · · · · · · · · · · · · · · · · ·		DATE 2	2/17/2022
TWP	RGE	SECT T	TRACT		TYPE	AC	CRES	PLOTS	TREES	CuFt	BdFt
06N	08W	<u> 80</u>	J2A TAKE		00MC		68.00	37	262	1	W
					TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PLOTS	TREES		PER PLOT	,	TREES	r	TREES		
TOTA		37	262		7.1						
CRUI		18	116		6.4		23,561		.5		
	COUNT						•				
COUN		19	140		7.4						
BLAN	NKS										
100 %	Ó										
				STA	ND SUM	MARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
	MLOCK	94	313.6	13.8	55	87.3	323.8	42,264	36,764	11,392	10,253
DOUG		7	14.8	18.6	77	6.5	28.0	3,832	3,543	1,085	1,031
S SPR R ALI		10 5	10.6 7.4	20.8 14.8	73 49	5.5 2.3	25.0 8.8	4,665 903	4,118 865	1,121 275	1,009
TOTA		3 116	7.4 346.5	14.8 14.3	56	102.0	8.8 385.6	51,663	45,290	13,873	275 12,567
		······································				102.0	303,0	31,003	73,270	15,075	14,50/
CON.			F THE SAMPL TOF 100 THE		WILL BE	WITHIN	THE SAMPI	LE ERROR			
CL:	68.1 %	COEFI								LDEO	DIE DOD
SD:	1.0	VAR.9		1.0	SAMPL OW	E TREE: AVG	S - BF HIGH	7	FOF TREES 5	10	INF. POP.
	MLOCK	76.8	7.9		158	171	185	w	<i>J</i>	10	1.7
DOUG		36.2	14.7		236	277	318				
S SPR		85.2	28.4		521	727	933				
R ALI		79.4 117.6	39.5 <i>10.9</i>		90 200	148 225	206 249		552	138	61
	68.1 %	COEFI						,			
SD:	1.0	VAR.9		LO	SAMPL OW	E TREES AVG	S - CF HIGH	#	FOF TREES 5	5 REQ. 10	INF. POP.
	MLOCK	68.7	7.1		44	47	50		3	10	13
DOUG		34.2	13.9		69	80	92				
S SPR		73.3	24.4		127	168	209				
R ALI		69.2 <i>96.6</i>	34.4 9.0		30 54	45 59	61 <i>65</i>		373	93	41
	68.1 %	COEFF	***************************************				0.5				
SD:	1.0	VAR.9		1 /	TREES/ OW	ACRE AVG	HIGH	#	FOF PLOTS	-	INF. POP.
	MLOCK	53.1	8.7	L	286	314	341		5	10	15
DOUG		197.0	32.4		10	15	20				
S SPR		155.6	25.6		8	11	13				
R ALI		367.5 <i>42.8</i>	60.4 7. <i>0</i>		3 <i>322</i>	7 346	12 <i>371</i>		73	18	0
	68.1 %	COEFF									8
SD:	1.0	VAR.9		1.4	BASAL DW	AREA/A		#	FOF PLOTS		INF. POP.
	MLOCK	42.5	5.E.% 7.0	L	301	AVG 324	HIGH 346		5	10	15
DOUG		198.1	32.5		19	28	37				
S SPR		141.4	23.2		19	25	31				
R ALI		371.0 27.1	60.9 <i>4.5</i>		3 368	9 386	14 403		20	7	2
	68.1 %	COEFF				386	403	<u></u>	29	7	3
				1 /	NET BF		шен	#	OF PLOTS		INF. POP.
	1.0 MLOCK	VAR.% 39.1	6.4 S.E.%		OW 1,401	AVG 36,764	HIGH 39,127		5	10	15
DOUG		199.7	32.8		2,381	3,543	4,704				
S SPR	.UCE	155.7	25.6		3,065	4,118	5,172				
R ALI		391.4 <i>27.3</i>	64.3 <i>4.5</i>	, -	309 ,256 4	865 15,290	1,421 <i>47,324</i>		0 -	_	
TOTA			1 -	/1					<i>30</i>	7	3

TC TST	ATS			STA PROJECT	TIST	TICS GSADD			PAGE DATE 2	2 2/17/2022
TWP	RGE	SECT TR	ACT	ТҮРЕ	AC	CRES	PLOTS	TREES	CuFt	BdFt
06N	08W	08 U2	A TAKE	00MC		68.00	37	262	1	W
CL:	68.1%	COEFF		NET BF/A	CRE			# OF PLO	TS REQ.	INF. POP
SD:	1.0	VAR.	S.E.%	LOW	4VG	HIGH		5	10	15

TC TSTATS				ST PROJEC	ATIST	FICS GSADD			PAGE DATE	1 2/17/2022
TWP RGE	SECT TH	RACT		TYPE	Α(CRES	PLOTS	TREES	CuFt	BdFt
06N 08W				00PC		42.00	31	236	1	W
				TREES		ESTIMATED TOTAL	I	PERCENT SAMPLE		
	PLOTS	TREES		PER PLOT		TREES		ΓREES		
TOTAL	31	236		7.6						11
CRUISE DBH COUNT REFOREST COUNT BLANKS	12	77 152		8.0		9,712		.8		
100 %										
			STA	ND SUMN	MARY					
	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	
TYPN AT FEATA	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
HEMLEAV	27	66.5	16.4	52 51	24.1	97.6	11,330	11,130	3,310	*
DOUGLEAV	17	36.5	16.2	51	12.9	52.0	4,613	4,526	1,430	•
WHEMLOCK		62.2	11.7	38	13.6	46.6	4,637	4,573	1,284	
DOUG FIR	11	49.1	12.1	33	11.2	39.0	2,532	2,435	818	
ALDRLEAV	4	13.0	14.6	41	4.0	15.2	1,189	1,189	390	
SPRUCELV	3	2.3	18.7	32	1.0	4.3	511	478	129	129
SNAG	1	1.6	11.0	52	0.3	1.1				
TOTAL	77	231.2	14.2	43	67.8	255.9	24,812	24,331	7,361	7,361
CL: 68.1 %		Q.F.O/	т.	SAMPLI			#	F OF TREES		INF. POP
SD: 1.0 HEMLEAV	VAR.% 56.8	S.E.% 11.1	L	OW 201	AVG 227	HIGH 252		5	10	
DOUGLEAV	50.1	12.5		121	138	156				
WHEMLOCK		18.5		87	106	126				
DOUG FIR	62.1	19.6		45	55	66				
ALDRLEAV	74.8	42.8		69	120	171				
SPRUCELV	90.3	62.5		160	427	693				
SNAG										
TOTAL	86.0	9.8	·	144	160	176		295	74	3
CL: 68.1 %	COEFF			SAMPLI	E TREE	S - CF	#	OF TREES	S REQ.	INF. POP
SD: 1.0	VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	
HEMLEAV	53.0	10.4		60	67	73				
DOUGLEAV	48.6	12.1		39	44	49				
WHEMLOCK		18.8		25	31	36 22				
DOUG FIR ALDRLEAV	51.7 59.8	16.3 34.2		16 26	19 40	22 54				
SPRUCELV	39.8 89.1	61.6		26 44	40 114	34 184				
SNAG	07.1	01,0		-1-1	117	104				
TOTAL	78.7	9.0		43	48	52		248	62	2
CL: 68.1 %	COEFF			TREES/A	ACRE		#	OF PLOTS	REQ.	INF. POP
SD: 1.0	VAR.%	S.E.%	L		AVG	HIGH		5	10	1
HEMLEAV	70.8	12.7		58	67	75				
DOUGLEAV	100.9	18.1		30	36	43				
WHEMLOCK		21.4		49	62	76				
DOUG FIR	123.4	22.1		38	49	60				
ALDRLEAV	169.1	30.3		9	13	17 4				
SPRUCELV SNAG	336.1 556.8	60.3 99.9		0	2 2	4 3				
TOTAL	39.3	99.9 7.1		215	231	3 248		62	15	
		/.1								
CL: 68.1 %	COEFF	S E 0/		BASAL A		.CRE	#	OF PLOTS	S REQ.	INF. POP.
UIN 1 0	3 7 A TO 0 /	0.13.07	т.							

VAR.%

1.0

S.E.%

LOW

HIGH

10

15

AVG

TC TSTATS				PRO	STATIS JECT	TICS GSADD			PAGE DATE	2 2/17/2022
TWP RG	GE SECT	Γ TRA	CT	TYPI	E A	CRES	PLOTS	TREES	CuFt	BdFt
06N 08	W 08	U3		00PC	2	42.00	31	236	11	W
CL: 68.	1%	COEFF		BASA	L AREA/	ACRE		# OF PLC	OTS REQ.	INF. POP.
SD: 1.0	7 0	VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
HEMLEAV	V	62.5	11.2	87	98	109				
DOUGLEA	ΑV	98.4	17.7	43	52	61				
WHEMLO	CK	108.0	19.4	38	47	56				
DOUG FIR	₹	122.0	21.9	30	39	48				
ALDRLEA	ΔV	160.1	28.7	11	15	20				
SPRUCEL	v :	331.3	59.5	2	4	7				
SNAG	:	556.8	99.9	0	1	2				
TOTAL		28.7	5.2	243	256	269		33	8	4
CL: 68.1	1 %	COEFF		NET	BF/ACRE		,	# OF PLOTS	REQ.	INF. POP.
SD: 1.0) '	VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
HEMLEA	V	65.3	11.7	9,825	11,130	12,435				
DOUGLEA	ΔV	98.7	17.7	3,725	4,526	5,328				
WHEMLO	CK	110.0	19.7	3,670	4,573	5,476				
DOUG FIR	₹	123.8	22.2	1,894	2,435	2,975				
ALDRLEA	١V	163.9	29.4	839	1,189	1,539				
SPRUCEL	V	374.8	67.3	157	478	800				
SNAG										
TOTAL		34.1	6.1	22,844	24,331	25,817	T	46	12	5

	ATS				ST. PROJEC	ATIST	ICS GSADD			PAGE DATE 2	1 /17/2022
TWP	RGE	SECT	TRACT		TYPE	AC	RES	PLOTS	TREES	CuFt	BdFt
06N	08W	08	U3 LEAVE		00PC		42.00	31	157	1	W
					TREES		ESTIMATED TOTAL		ERCENT AMPLE		
		PLOTS	TREES		PER PLOT		TREES	Т	REES		
TOTA		31	157		5.1				300		
CRUIS		12	52		4.3		5,035		1.0		
DBH C	COUNT										
COUN		19	101		5.3						
BLAN		**	101		0.0						
100 %											
				STA	ND SUMN	1ARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
HEML		27		16.4	52	24.1	97.6	11,330	11,130	3,310	3,310
DOUG		17		16.2	51	12.9	52.0	4,613	4,526	1,430	1,430
ALDR		4		14.6	41	4.0	15.2	1,189	1,189	390	390
SPRU(SNAG		3 1		18.7 11.0	32 52	1.0 0.3	4.3	511	478	129	129
TOTA		52		16.1	50	0.3 42.4	1.1 <i>170.2</i>	17,643	17,323	5,259	5,259
CONE	FIDENC	E LIMITS (OF THE SAME	PLE.		P. 100.011.000.			-		
	68.1	TIMES OU	T OF 100 TH		E WILL BE	WITHIN	THE SAMPI	LE ERROR			
CL:		COE			SAMPL			#	OF TREES		INF. POP.
SD:	1.0	VAR	.% S.E.%	I_	.OW	AVG	HIGH	#	OF TREES 5	REQ. 10	
SD: HEML	1.0 EAV	VAR 56.8	.% S.E.% B 11.1	L	201	AVG 227	HIGH 252	#			
SD:	1.0 EAV LEAV	VAR	.% S.E.% 8 11.1 1 12.5	L	.OW	AVG	HIGH	#			
SD: HEML DOUG ALDR SPRUG	1.0 EAV LEAV LEAV CELV	VAR 56.3 50.	.% S.E.% 8 11.1 1 12.5 8 42.8	L	201 121	AVG 227 138	HIGH 252 156	#			
SD: HEML DOUG ALDRI SPRUG SNAG	1.0 EAV ELEAV LEAV CELV	VAR 56.8 50. 74.8 90.2	.% S.E.% 8 11.1 1 12.5 8 42.8 3 62.5	L	201 121 69 160	AVG 227 138 120 427	252 156 171 693	#	5	10	15
SD: HEML DOUG ALDR: SPRUG SNAG TOTA	1.0 EAV ELEAV LEAV CELV	VAR 56.3 50. 74.3 90.3	.% S.E.% 8 11.1 1 12.5 8 42.8 62.5 7 10.5	L	201 121 69 160	AVG 227 138 120 427	HIGH 252 156 171 693 217		5 229	10 57	15
SD: HEML DOUG ALDR: SPRUG SNAG TOTA	1.0 EAV ELEAV LEAV CELV L	VAR 56.3 50. 74.3 90.3 75.7 COE	.% S.E.% 8 11.1 1 12.5 8 42.8 3 62.5 7 10.5		201 121 69 160 176 SAMPLI	AVG 227 138 120 427 197 E TREES	HIGH 252 156 171 693 217 S - CF		5 229 OF TREES	57 REQ.	15 25 INF. POP.
SD: HEML DOUG ALDR' SPRUG SNAG TOTA CL: SD:	1.0 EAV ELEAV LEAV CELV L 68.1 %	VAR 56.3 50. 74.3 90.3 75.7 COE VAR	.% S.E.% 8 11.1 1 12.5 8 42.8 3 62.5 7 10.5 FF .% S.E.%		201 121 69 160 176 SAMPLI	AVG 227 138 120 427 197 E TREES	HIGH 252 156 171 693 217 S - CF HIGH		5 229	10 57	15 25 INF. POP.
SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML	1.0 EAV ELEAV LEAV CELV L 68.1 % 1.0	VAR 56.3 50. 74.3 90.3 75.7 COE	.% S.E.% 8 11.1 1 12.5 8 42.8 3 62.5 7 10.5 FF .% S.E.% 0 10.4		201 121 69 160 176 SAMPLI	AVG 227 138 120 427 197 E TREES	HIGH 252 156 171 693 217 S - CF		5 229 OF TREES	57 REQ.	15 25 INF. POP.
SD: HEML DOUG ALDR' SPRUG SNAG TOTA CL: SD:	1.0 EAV ELEAV LEAV CELV L 68.1 % 1.0 EAV	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.6	.% S.E.% 8 11.1 1 12.5 8 42.8 3 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1		201 121 69 160 176 SAMPLI OW	AVG 227 138 120 427 197 E TREES AVG 67	HIGH 252 156 171 693 217 S - CF HIGH 73		5 229 OF TREES	57 REQ.	15 25 INF. POP.
SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML DOUG ALDR: SPRUG	1.0 EAV ELEAV LEAV CELV 1.0 EAV ELEAV LEAV LEAV LEAV LEAV LEAV	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.6 48.6	.% S.E.% 8 11.1 1 12.5 8 42.8 8 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2		201 121 69 160 176 SAMPLI OW 60 39	AVG 227 138 120 427 197 E TREES AVG 67 44	HIGH 252 156 171 693 217 3 - CF HIGH 73 49		5 229 OF TREES	57 REQ.	15 25 INF. POP.
SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML DOUG ALDR: SPRUG SNAG	1.0 EAV ELEAV CELV L 68.1 % 1.0 EAV ELEAV LEAV	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.0 48.0 59.3	.% S.E.% 8 11.1 1 12.5 8 42.8 8 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2 1 61.6		201 121 69 160 176 SAMPLI OW 60 39 26 44	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114	HIGH 252 156 171 693 217 S - CF HIGH 73 49 54 184		5 229 OF TREES 5	57 REQ. 10	25 INF. POP. 15
SD: HEML DOUG ALDR. SPRUG SNAG TOTA CL: HEML DOUG ALDR. SPRUG SNAG TOTA	1.0 EAV ELEAV LEAV CELV L 68.1 % 1.0 EAV ELEAV LEAV LEAV LEAV LEAV	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.0 48.0 59.3 89.1	.% S.E.% 8 11.1 1 12.5 8 42.8 8 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2 1 61.6		201 121 69 160 176 SAMPLI OW 60 39 26 44	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114 59	HIGH 252 156 171 693 217 5 - CF HIGH 73 49 54	#	5 229 OF TREES 5	57 REQ. 10	25 INF. POP. 15
SD: HEML DOUG ALDR SPRUG SNAG TOTA CL: HEML DOUG ALDRI SPRUG SNAG TOTA CL:	1.0 EAV LEAV CELV L 68.1 % 1.0 EAV LEAV LEAV LEAV LEAV LEAV LEAV LEAV	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.0 48.0 59.3 89.	.% S.E.% 8 11.1 1 12.5 8 42.8 8 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2 1 61.6 9.4 FF	L	201 121 69 160 176 SAMPLI OW 60 39 26 44 53 TREES/A	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114 59 ACRE	HIGH 252 156 171 693 217 6-CF HIGH 73 49 54 184 64	#	5 229 OF TREES 5	57 REQ. 10 46 REQ.	25 INF. POP. 15 INF. POP.
SD: HEML DOUG ALDR SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: SNAG TOTA	1.0 EAV ELEAV LEAV CELV 1.0 EAV ELEAV LEAV LEAV LEAV LEAV LEAV L. 1.0	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.0 48.0 59.3 89. 68.2 COE VAR	.% S.E.% 8 11.1 1 12.5 8 42.8 8 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2 1 61.6 9.4 FF .% S.E.%	L	201 121 69 160 176 SAMPLI OW 60 39 26 44 53 TREES/A	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114 59 ACRE AVG	HIGH 252 156 171 693 217 S - CF HIGH 73 49 54 184 64 HIGH	#	5 229 OF TREES 5	57 REQ. 10	25 INF. POP. 15 INF. POP.
SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML SNAG TOTA CL: SPRUG SNAG TOTA CL: HEML SNAG TOTA	1.0 EAV ELEAV LEAV CELV 1.0 EAV LEAV LEAV LEAV LEAV LEAV LEAV LEAV	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.0 48.0 59.3 89. 68.2 COE VAR 70.3	.% S.E.% 8 11.1 1 12.5 8 42.8 8 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2 1 61.6 9.4 FF .% S.E.% 8 S.E.% 8 12.7	L	201 121 69 160 176 SAMPLI OW 60 39 26 44 53 TREES/A OW 58	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114 59 ACRE	HIGH 252 156 171 693 217 6-CF HIGH 73 49 54 184 64	#	5 229 OF TREES 5	57 REQ. 10 46 REQ.	25 INF. POP. 15 INF. POP.
SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: HEML DOUG ALDRI SPRUG SNAG TOTA	1.0 EAV LEAV CELV 1.0 EAV LEAV LEAV LEAV LEAV LEAV LEAV LEAV	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.0 48.0 59.3 68.2 COE VAR 70.8 100.9 169.	S.E.% 8 11.1 1 12.5 8 42.8 8 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2 1 61.6 9.4 FF .% S.E.% 8 12.7 9 18.1 1 30.3	L	201 121 69 160 176 SAMPLI OW 60 39 26 44 53 TREES/A	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114 59 ACRE AVG 67	HIGH 252 156 171 693 217 S - CF HIGH 73 49 54 184 64 HIGH 75	#	5 229 OF TREES 5	57 REQ. 10 46 REQ.	25 INF. POP. 15 INF. POP.
SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML SPRUG SNAG TOTA	1.0 EAV ELEAV LEAV CELV 1.0 EAV ELEAV LEAV LEAV LEAV LEAV LEAV LEAV	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.0 48.0 59.3 89. 68.2 COE VAR 70.8 100.9 336.3	.% S.E.% 8 11.1 1 12.5 8 42.8 8 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2 1 61.6 FF .% S.E.% 1 1.1 1 30.3 1 60.3	L	201 121 69 160 176 SAMPLI OW 60 39 26 44 53 TREES/A OW 58 30 9 1	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114 59 ACRE AVG 67 36 13 2	HIGH 252 156 171 693 217 S - CF HIGH 73 49 54 184 64 HIGH 75 43 17 4	#	5 229 OF TREES 5	57 REQ. 10 46 REQ.	25 INF. POP. 15 INF. POP.
SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML SD: HEML DOUG ALDR: SPRUG SNAG TOTA	1.0 EAV ELEAV LEAV CELV 1.0 EAV ELEAV LEAV LEAV LEAV LEAV LEAV LEAV	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.0 48.0 59.3 48.1 100.9 169.3 336.3 556.8	.% S.E.% 8 11.1 1 12.5 8 42.8 8 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2 1 61.6 9.4 FF .% S.E.% 8 12.7 9 18.1 1 30.3 1 60.3 8 99.9	L	201 121 69 160 176 SAMPLI OW 60 39 26 44 53 TREES/A OW 58 30 9 1 0	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114 59 ACRE AVG 67 36 13 2 2	HIGH 252 156 171 693 217 S - CF HIGH 73 49 54 184 64 HIGH 75 43 17 4 3	#	5 229 OF TREES 5 186 OF PLOTS 5	57 REQ. 10 46 REQ. 10	25 INF. POP. 15 INF. POP. 15
SD: HEML DOUG ALDR SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: SD: HEML SPRUG SNAG TOTA CL: SD: HEML TOTA	1.0 EAV HEAV LEAV CELV 1.0 EAV HEAV LEAV LEAV LEAV LEAV LEAV LEAV LEAV L	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.0 48.0 59.3 89. 68.2 COE VAR 70.3 100.9 169.3 336.3 556.8 23.5	S.E.% 8 11.1 1 12.5 8 42.8 8 3 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2 1 61.6 9.4 FF .% S.E.% 8 12.7 9 18.1 1 30.3 1 60.3 8 99.9 6 4.2	L	201 121 69 160 176 SAMPLI OW 60 39 26 44 53 TREES/A OW 58 30 9 1 0 115	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114 59 ACRE AVG 67 36 13 2 120	HIGH 252 156 171 693 217 S - CF HIGH 73 49 54 184 64 HIGH 75 43 17 4 3 125	#	5 229 OF TREES 5 186 OF PLOTS 5	57 REQ. 10 46 REQ. 10	25 INF. POP. 15 INF. POP. 15
SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: CL: CL: CL: CL: CL: CL: CL: CL: CL	1.0 EAV LEAV CELV 1.0 EAV LEAV LEAV LEAV LEAV LEAV LEAV LEAV	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.0 48.0 59.1 89.1 68.2 COE VAR 70.3 100.9 169.1 336.1 556.8 23.5	S.E.% 8 11.1 1 12.5 8 42.8 9 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2 1 61.6 9 9.4 FF .% S.E.% 8 12.7 9 18.1 1 30.3 1 60.3 8 99.9 6 4.2	L	201 121 69 160 176 SAMPLI OW 60 39 26 44 53 TREES/A OW 58 30 9 1 0 115 BASAL	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114 59 ACRE AVG 67 36 13 2 120 AREA/AG	HIGH 252 156 171 693 217 S - CF HIGH 73 49 54 184 64 HIGH 75 43 17 4 3 125 CRE	#	229 OF TREES 5 186 OF PLOTS 5	57 REQ. 10 46 REQ. 10	25 INF. POP. 15 INF. POP. 21 INF. POP.
SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: SD: HEML CL: SD: HEML CL: SD: SPRUG SNAG TOTA CL: SD: SPRUG SNAG TOTA	1.0 EAV LEAV CELV 1.0 EAV LEAV LEAV LEAV LEAV LEAV LEAV LEAV	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.0 48.0 59.1 89.1 68.2 COE VAR 70.3 100.9 169.1 336.1 556.8 23.5 COE VAR	S.E.% 8 11.1 1 12.5 8 42.8 8 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2 1 61.6 9 9.4 FF .% S.E.% 3 12.7 9 18.1 1 30.3 1 60.3 8 99.9 5 4.2 FF .% S.E.%	L	201 121 69 160 176 SAMPLI OW 60 39 26 44 53 TREES/A OW 58 30 9 1 0 115 BASAL A OW	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114 59 ACRE AVG 67 36 13 2 120 AREA/AG AVG	HIGH 252 156 171 693 217 S - CF HIGH 73 49 54 184 64 HIGH 75 43 17 4 3 125 CRE HIGH	#	5 229 OF TREES 5 186 OF PLOTS 5	57 REQ. 10 46 REQ. 10	25 INF. POP. 15 INF. POP. 21 INF. POP.
SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: CL: CL: CL: CL: CL: CL: CL: CL: CL	1.0 EAV LEAV CELV 1.0 EAV LEAV LEAV LEAV LEAV LEAV LEAV LEAV	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.0 48.0 59.1 89.1 68.2 COE VAR 70.3 100.9 169.1 336.1 556.8 23.5	.% S.E.% 8 11.1 1 12.5 8 42.8 8 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2 1 61.6 9 9.4 FF .% S.E.% 3 12.7 9 18.1 1 30.3 1 60.3 8 99.9 6 4.2 FF .% S.E.% 5 11.2	L	201 121 69 160 176 SAMPLI OW 60 39 26 44 53 TREES/A OW 58 30 9 1 0 115 BASAL	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114 59 ACRE AVG 67 36 13 2 120 AREA/AG	HIGH 252 156 171 693 217 S - CF HIGH 73 49 54 184 64 HIGH 75 43 17 4 3 125 CRE HIGH 109	#	229 OF TREES 5 186 OF PLOTS 5	57 REQ. 10 46 REQ. 10	25 INF. POP. 15 INF. POP. 21 INF. POP.
SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: SPRUG SNAG TOTA	1.0 EAV LEAV CELV 1.0 EAV LEAV LEAV LEAV LEAV LEAV LEAV LEAV	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.0 48.0 59.3 89. 68.2 COE VAR 70.3 100.9 169. 336. 556.8 23.5 COE VAR 62.6	.% S.E.% 8 11.1 1 12.5 8 42.8 9 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2 1 61.6 9 9.4 FF .% S.E.% 3 12.7 9 18.1 1 30.3 1 60.3 8 99.9 6 4.2 FF .% S.E.% 5 11.2 4 17.7	L	201 121 69 160 176 SAMPLI OW 60 39 26 44 53 TREES/A OW 58 30 9 1 0 115 BASAL A OW 87	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114 59 ACRE AVG 67 36 13 2 120 AREA/AG AVG 98	HIGH 252 156 171 693 217 S - CF HIGH 73 49 54 184 64 HIGH 75 43 17 4 3 125 CRE HIGH	#	229 OF TREES 5 186 OF PLOTS 5	57 REQ. 10 46 REQ. 10	25 INF. POP. 15 INF. POP. 21 INF. POP.
SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: SPRUG SNAG TOTA	1.0 EAV LEAV LEAV CELV 1.0 EAV LEAV LEAV LEAV LEAV LEAV LEAV LEAV	VAR 56.3 50. 74.4 90.3 75.7 COE VAR 53.0 48.0 59.3 89. 68.2 COE VAR 70.3 100.9 169. 336.3 556.8 23.5 COE VAR 62.3 98.4 160.3 331.3	.% S.E.% 8 11.1 1 12.5 8 42.8 8 62.5 7 10.5 FF .% S.E.% 0 10.4 6 12.1 8 34.2 1 61.6 9 9.4 FF .% S.E.% 8 12.7 9 18.1 1 30.3 1 60.3 8 99.9 6 4.2 FF .% S.E.% 5 11.2 4 17.7 1 28.7 8 59.5	L	201 121 69 160 176 SAMPLI OW 60 39 26 44 53 TREES/A OW 58 30 9 1 0 115 BASAL A OW 87 43 11 2	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114 59 ACRE AVG 67 36 13 2 120 AREA/AG AVG 98 52	HIGH 252 156 171 693 217 S - CF HIGH 73 49 54 184 64 HIGH 75 43 17 4 3 125 CRE HIGH 109 61 20 7	#	229 OF TREES 5 186 OF PLOTS 5	57 REQ. 10 46 REQ. 10	25 INF. POP. 15 INF. POP. 15
SD: HEML DOUG ALDR: SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: SD: HEML DOUG ALDRI SPRUG SNAG TOTA CL: SPRUG SNAG TOTA	1.0 EAV ELEAV LEAV CELV 1.0 EAV LEAV LEAV LEAV LEAV LEAV LEAV LEAV	VAR 56.3 50. 74.3 90.3 75.7 COE VAR 53.0 48.0 59.3 89. 68.2 COE VAR 70.3 100.9 169.3 336.3 556.8 23.5 COE VAR 62.6 98.4 160.3	S.E.% S.E.% S.E.% 11.1 12.5 42.8 42.8 62.5 7 10.5 FF .% S.E.% 10.4 63.1 61.6 9.4 FF .% S.E.% 11.1 13.0 14.3 15.0 16.3 17.7 17.7 17.7 18.7 19.9 11.2 17.7 18.7 19.9 19.9 10.4 10.4 10.5 10.4 10.4 10.5 10.4 10.5 10.4 10.5 10.4 10.5 10.4 10.4 10.5 10.4 10.5 10.4 10.5 10.4 10.5 10.4 10.5 10.4 10.5 10.4 10.5 10.4 10.4 10.5 10.4 10.4 10.5 10.4 10.5 10.4 10.5 10.4 10.4 10.4 10.5 10.4 10.5 10.4	L	201 121 69 160 176 SAMPLI OW 60 39 26 44 53 TREES/A OW 58 30 9 1 0 115 BASAL A OW 87 43 11	AVG 227 138 120 427 197 E TREES AVG 67 44 40 114 59 ACRE AVG 67 36 13 2 2 120 AREA/AO AVG 98 52 15	HIGH 252 156 171 693 217 S - CF HIGH 73 49 54 184 64 HIGH 75 43 17 4 3 125 CRE HIGH 109 61 20	#	229 OF TREES 5 186 OF PLOTS 5	57 REQ. 10 46 REQ. 10	25 INF. POP. 15 INF. POP. 15

TC TSTATS			S PROJ	STATIS IECT	TICS GSADD			PAGE DATE	2 2/17/2022
TWP RGE	SECT TF	RACT	TYPE	E A	CRES	PLOTS	TREES	CuFt	BdFt
06N 08W	08 U3	B LEAVE	00PC	·	42.00	31	157	1	W
CL: 68.1%	COEFF		NET 1	BF/ACRE			# OF PLC	OTS REQ.	INF. POP.
SD: 1.0	VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
CL: 68.1 %	COEFF		NET 1	BF/ACRE			# OF PLOTS	REQ.	INF. POP.
SD: 1.0	VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
HEMLEAV	65.3	11.7	9,825	11,130	12,435				
DOUGLEAV	98.7	17.7	3,725	4,526	5,328				
ALDRLEAV	163.9	29.4	839	1,189	1,539				
SPRUCELV	374.8	67.3	157	478	800				
SNAG									
TOTAL	26.5	4.8	16,500	17,323	18,147		28	7	3

	TATS				ST. PROJEC	ATIST	'ICS GSADD			PAGE DATE 2	1 2/17/2022
TWP	RGE	SECT TI	RACT		TYPE	AC	RES	PLOTS	TREES	CuFt	BdFt
06N	08W	08 U	3 TAKE		00PC		42.00	31	79	11	W
		PLOTS	TREES		TREES PER PLOT		ESTIMATED FOTAL TREES	S.	ERCENT AMPLE REES		
							IKEES	1	KEES	····	
TOTA		31	79		2.5				_		
CRUI		11	25		2.3		4,677		.5		
	COUNT										
	DREST	16	. 53		3.3						
COUR		4	. 33		3.3						
100 %		4									
100 /	0			C/TD A	NID CEINAN	# A DX7					
		0.11.67.5	ED EEG		ND SUMN		D.10.17	OD CCC	A record	ar acc	,
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS BF/AC	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA		BF/AC	CF/AC	CF/AC
	MLOCK	14	62.2	11.7	38	13.6	46.6	4,637	4,573	1,284	1,284
	G FIR	11	49.1	12.1	33	11.2	39.0	2,532	2,435	818	818
TOT	AL	25	111.4	11.9	36	24.9	85.7	7,169	7,007	2,102	2,102
CL:	68.1 %	TIMES OUT COEFF			SAMPL				OF TREES	REQ.	INF. POP.
SD:	1.0	VAR.%		L	OW	AVG	HIGH		5	10	15
	MLOCK	66.8	10.7							10	13
DOU	G FIR		18.5		87	106	126	· · · · · · · · · · · · · · · · · · ·		10	13
TOT		62.1	19.6		45	55	126 66				
		62.1 74.3					126		230	57	26
CL:			19.6 15.2		45	55 84	126 66 97	#		57	
	AL	74.3	19.6 15.2	L	45 71	55 84	126 66 97	#	230	57	26
SD:	AL 68.1 %	74.3 COEFF	19.6 15.2	L	45 71 SAMPL	55 84 E TREES	126 66 97 S - CF	#	230 OF TREES	<i>57</i> REQ.	<i>26</i> INF. POP.
SD: WHE DOU	68.1 % 1.0 EMLOCK G FIR	74.3 COEFF VAR.%	19.6 15.2 S.E.%	L	45 71 SAMPL OW 25 16	55 84 E TREES AVG	126 66 <i>97</i> S - CF HIGH	#	230 OF TREES 5	<i>57</i> REQ.	<i>26</i> INF. POP.
SD:	68.1 % 1.0 EMLOCK G FIR	74.3 COEFF VAR.% 67.8	19.6 15.2 S.E.%	Ŀ	45 71 SAMPL OW 25	55 84 E TREES AVG 31	126 66 97 S - CF HIGH 36	#	230 OF TREES	<i>57</i> REQ.	<i>26</i> INF. POP.
SD: WHE DOUG TOTA	68.1 % 1.0 EMLOCK G FIR	74.3 COEFF VAR.% 67.8 51.7	19.6 15.2 S.E.% 18.8 16.3 14.1	L	45 71 SAMPL OW 25 16	55 84 E TREES AVG 31 19 25	126 66 97 S - CF HIGH 36 22		230 OF TREES 5	57 REQ. 10	26 INF. POP. 15
SD: WHE DOUG TOTA	68.1 % 1.0 EMLOCK G FIR AL	74.3 COEFF VAR.% 67.8 51.7 69.3	19.6 15.2 S.E.% 18.8 16.3 14.1		45 71 SAMPL OW 25 16 22 TREES/	55 84 E TREES AVG 31 19 25 ACRE	126 66 97 S - CF HIGH 36 22		230 OF TREES 5 200 OF PLOTS	57 REO. 10 50 REO.	26 INF. POP. 15 22 INF. POP.
SD: WHE DOUG TOTA CL: SD:	68.1 % 1.0 EMLOCK G FIR AL 68.1 %	74.3 COEFF VAR.% 67.8 51.7 69.3 COEFF	19.6 15.2 S.E.% 18.8 16.3 14.1		45 71 SAMPL OW 25 16 22 TREES/	55 84 E TREES AVG 31 19 25	126 66 97 S - CF HIGH 36 22 29		230 OF TREES 5	57 REQ. 10	26 INF. POP. 15 22 INF. POP.
SD: WHE DOUG TOT. CL: SD: WHE	68.1 % 1.0 6MLOCK G FIR AL 68.1 % 1.0	74.3 COEFF VAR.% 67.8 51.7 69.3 COEFF VAR.%	19.6 15.2 S.E.% 18.8 16.3 14.1 S.E.% 21.4 22.1		45 71 SAMPL OW 25 16 22 TREES/	55 84 E TREES AVG 31 19 25 ACRE AVG	126 66 97 S - CF HIGH 36 22 29		230 OF TREES 5 200 OF PLOTS	57 REO. 10 50 REO.	26 INF. POP. 15 22 INF. POP.
SD: WHE DOUG TOT. CL: SD: WHE	68.1 % 1.0 EMLOCK G FIR AL 68.1 % 1.0 EMLOCK G FIR	74.3 COEFF VAR.% 67.8 51.7 69.3 COEFF VAR.% 119.0	19.6 15.2 S.E.% 18.8 16.3 14.1 S.E.% 21.4		45 71 SAMPL OW 25 16 22 TREES/	55 84 E TREES AVG 31 19 25 ACRE AVG 62	126 66 97 S - CF HIGH 36 22 29 HIGH 76		230 OF TREES 5 200 OF PLOTS	57 REO. 10 50 REO.	26 INF. POP. 15 22 INF. POP. 15
SD: WHE DOUG TOTA CL: SD: WHE DOUG TOTA	68.1 % 1.0 EMLOCK G FIR AL 68.1 % 1.0 EMLOCK G FIR	74.3 COEFF VAR.% 67.8 51.7 69.3 COEFF VAR.% 119.0 123.4	19.6 15.2 S.E.% 18.8 16.3 14.1 S.E.% 21.4 22.1 13.4		45 71 SAMPL OW 25 16 22 TREES/ OW 49 38	55 84 E TREES AVG 31 19 25 ACRE AVG 62 49 111	126 66 97 S - CF HIGH 36 22 29 HIGH 76 60 126	#	230 OF TREES 5 200 OF PLOTS 5	57 REQ. 10 50 REO. 10	26 INF. POP. 15 22 INF. POP.
SD: WHE DOUG TOT. SD: WHE DOUG TOT. CL: SD:	68.1 % 1.0 EMLOCK G FIR AL 68.1 % 1.0 EMLOCK G FIR AL 68.1 % 1.0 EMLOCK G FIR AL 68.1 % 1.0	74.3 COEFF VAR.% 67.8 51.7 69.3 COEFF VAR.% 119.0 123.4 74.8 COEFF VAR.%	19.6 15.2 S.E.% 18.8 16.3 14.1 S.E.% 21.4 22.1 13.4 S.E.%	L	45 71 SAMPL: OW 25 16 22 TREES/: OW 49 38 96 BASAL OW	55 84 E TREES AVG 31 19 25 ACRE AVG 62 49 111 AREA/A AVG	126 66 97 S - CF HIGH 36 22 29 HIGH 76 60 126 CRE HIGH	#	230 OF TREES 5 200 OF PLOTS 5	57 REQ. 10 50 REO. 10	26 INF. POP. 15 22 INF. POP. 15
SD: WHE DOUG TOTA SD: WHE DOUG TOTA CL: SD: WHE	68.1 % 1.0 EMLOCK G FIR AL 68.1 % 1.0 EMLOCK G FIR AL 68.1 % 1.0 EMLOCK G FIR AL 68.1 % 1.0 EMLOCK	74.3 COEFF VAR.% 67.8 51.7 69.3 COEFF VAR.% 119.0 123.4 74.8 COEFF VAR.% 108.0	19.6 15.2 S.E.% 18.8 16.3 14.1 S.E.% 21.4 22.1 13.4 S.E.% 19.4	L	45 71 SAMPL OW 25 16 22 TREES/ OW 49 38 96 BASAL OW 38	55 84 E TREES AVG 31 19 25 ACRE AVG 62 49 111 AREA/A AVG 47	126 66 97 S - CF HIGH 36 22 29 HIGH 76 60 126 CRE HIGH 56	#	230 OF TREES 5 200 OF PLOTS 5 223 OF PLOTS	57 REQ. 10 50 REO. 10 56 REQ.	26 INF. POP. 15 22 INF. POP. 15
SD: WHE DOUG TOTA CL: SD: WHE DOUG TOTA CL: SD:	68.1 % 1.0 EMLOCK G FIR AL 68.1 % 1.0 EMLOCK G FIR AL 68.1 % 1.0 EMLOCK G FIR AL 68.1 % 1.0 EMLOCK G FIR	74.3 COEFF VAR.% 67.8 51.7 69.3 COEFF VAR.% 119.0 123.4 74.8 COEFF VAR.% 108.0 122.0	19.6 15.2 S.E.% 18.8 16.3 14.1 S.E.% 21.4 22.1 13.4 S.E.% 19.4 21.9	L	45 71 SAMPL: OW 25 16 22 TREES/: OW 49 38 96 BASAL OW 38 30	55 84 E TREES AVG 31 19 25 ACRE AVG 62 49 111 AREA/A AVG 47 39	126 66 97 S - CF HIGH 36 22 29 HIGH 76 60 126 CRE HIGH 56 48	#	230 OF TREES 5 200 OF PLOTS 5 223 OF PLOTS 5	57 REO. 10 50 REO. 10 56 REO. 10	26 INF. POP. 15 22 INF. POP. 15 INF. POP. 15
SD: WHE DOUG TOTA SD: WHE DOUG TOTA CL: SD: WHE DOUG TOTA	68.1 % 1.0 EMLOCK G FIR AL	74.3 COEFF VAR.% 67.8 51.7 69.3 COEFF VAR.% 119.0 123.4 74.8 COEFF VAR.% 108.0 122.0 70.8	19.6 15.2 S.E.% 18.8 16.3 14.1 S.E.% 21.4 22.1 13.4 S.E.% 19.4 21.9 12.7	L	45 71 SAMPL OW 25 16 22 TREES/ OW 49 38 96 BASAL OW 38	55 84 E TREES AVG 31 19 25 ACRE AVG 62 49 111 AREA/A AVG 47	126 66 97 S - CF HIGH 36 22 29 HIGH 76 60 126 CRE HIGH 56	#	230 OF TREES 5 200 OF PLOTS 5 223 OF PLOTS	57 REQ. 10 50 REO. 10 56 REQ.	26 INF. POP. 15 22 INF. POP. 15 INF. POP. 15
SD: WHE DOUG TOT. SD: WHE DOUG TOT. CL: SD: WHE TOT. CL: CL: CL:	68.1 % 1.0 EMLOCK G FIR AL 68.1 % 68.1 %	74.3 COEFF VAR.% 67.8 51.7 69.3 COEFF VAR.% 119.0 123.4 74.8 COEFF VAR.% 108.0 122.0 70.8 COEFF	19.6 15.2 S.E.% 18.8 16.3 14.1 S.E.% 21.4 22.1 13.4 S.E.% 19.4 21.9 12.7	L	45 71 SAMPL OW 25 16 22 TREES OW 49 38 96 BASAL OW 38 30 75 NET BF	55 84 E TREES AVG 31 19 25 ACRE AVG 62 49 111 AREA/A AVG 47 39 86	126 66 97 S - CF HIGH 36 22 29 HIGH 76 60 126 CRE HIGH 56 48 97	#	230 OF TREES 5 200 OF PLOTS 5 223 OF PLOTS 5 200 OF PLOTS	57 REQ. 10 50 REQ. 10 56 REQ. 10 56 REQ. 10	26 INF. POP. 15 22 INF. POP. 15
SD: WHE DOUG TOT. CL: SD: WHE DOUG TOT. CL: SD: WHE CL: SD: WHE DOUG TOT. CL: SD:	68.1 % 1.0 EMLOCK G FIR AL 68.1 % 1.0	74.3 COEFF VAR.% 67.8 51.7 69.3 COEFF VAR.% 119.0 123.4 74.8 COEFF VAR.% 108.0 122.0 70.8 COEFF VAR.%	19.6 15.2 S.E.% 18.8 16.3 14.1 S.E.% 21.4 22.1 13.4 S.E.% 19.4 21.9 12.7	L L	45 71 SAMPL OW 25 16 22 TREES OW 49 38 96 BASAL OW 38 30 75 NET BF	55 84 E TREES AVG 31 19 25 ACRE AVG 62 49 111 AREA/A AVG 47 39 86 /ACRE AVG	126 66 97 S - CF HIGH 36 22 29 HIGH 76 60 126 CRE HIGH 56 48 97	#	230 OF TREES 5 200 OF PLOTS 5 223 OF PLOTS 5	57 REQ. 10 50 REQ. 10 56 REQ. 10 56 REQ. 10	26 INF. POP. 15 22 INF. POP. 15 25 INF. POP. 15 22 INF. POP.
SD: WHE DOUG TOT. SD: WHE DOUG TOT. CL: SD: WHE DOUG TOT. CL: SD: WHE WHE WHE WHE	68.1 % 1.0 EMLOCK G FIR AL	74.3 COEFF VAR.% 67.8 51.7 69.3 COEFF VAR.% 119.0 123.4 74.8 COEFF VAR.% 108.0 122.0 70.8 COEFF VAR.% 110.0	19.6 15.2 S.E.% 18.8 16.3 14.1 S.E.% 21.4 22.1 13.4 S.E.% 19.4 21.9 12.7 S.E.% 19.7	r L	45 71 SAMPL OW 25 16 22 TREES OW 49 38 96 BASAL OW 38 30 75 NET BF OW 3,670	55 84 E TREES AVG 31 19 25 ACRE AVG 62 49 111 AREA/A AVG 47 39 86 /ACRE AVG 47	126 66 97 S - CF HIGH 36 22 29 HIGH 76 60 126 CRE HIGH 56 48 97 HIGH 5,476	#	230 OF TREES 5 200 OF PLOTS 5 223 OF PLOTS 5 200 OF PLOTS	57 REQ. 10 50 REQ. 10 56 REQ. 10 56 REQ. 10	26 INF. POP. 15 22 INF. POP. 15 25 INF. POP. 15
SD: WHE DOUG TOT. SD: WHE DOUG TOT. CL: SD: WHE DOUG TOT. CL: SD: WHE WHE WHE WHE	68.1 % 1.0 EMLOCK G FIR AL	74.3 COEFF VAR.% 67.8 51.7 69.3 COEFF VAR.% 119.0 123.4 74.8 COEFF VAR.% 108.0 122.0 70.8 COEFF VAR.%	19.6 15.2 S.E.% 18.8 16.3 14.1 S.E.% 21.4 22.1 13.4 S.E.% 19.4 21.9 12.7	L/ L/	45 71 SAMPL OW 25 16 22 TREES OW 49 38 96 BASAL OW 38 30 75 NET BF OW 3,670 1,894	55 84 E TREES AVG 31 19 25 ACRE AVG 62 49 111 AREA/A AVG 47 39 86 /ACRE AVG	126 66 97 S - CF HIGH 36 22 29 HIGH 76 60 126 CRE HIGH 56 48 97	#	230 OF TREES 5 200 OF PLOTS 5 223 OF PLOTS 5 200 OF PLOTS	57 REQ. 10 50 REQ. 10 56 REQ. 10 56 REQ. 10	26 INF. POP. 15 22 INF. POP. 15 25 INF. POP. 15 22 INF. POP.

				DJECT S ROJECT		ISTICS ADD			PAGE DATE	1 3/8/2022
WP RGE	SC TRACT		TYPE		AC	CRES	PLOTS	TREES	CuFt	BdFt
06N 08 07N 09W	08 U2A_R/W 36 U1 R/W	7	00MC 00MC			1.00	78	520	1	W
0711	30 01_I0 W		OULVIC			ESTIMATED	P	ERCENT		· · · · · · · · · · · · · · · · · · ·
				TREES		TOTAL	S	SAMPLE		
	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL	78	520		6.7						
CRUISE	39	242		6.2		278		86.9		
DBH COUNT										
REFOREST COUNT	39	263		6.7						
BLANKS	37	203		0.7						
100 %										
			STA	ND SUMN	IARY					
	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
WHEMLOCK	170	212.9	14.3	55	62.8	237.5	30,176	26,453	8,371	7,534
DOUG FIR	41	30.5	15.8	56	10.5	41.8	4,518	4,153	1,337	1,270
SNAG	10	14.0	14.1	50	4.0	15.2				
R ALDER	10	14.6	13.8	40	4.1	15.1	1,366	1,347	410	
S SPRUCE TOTAL	11 242	6.4 278.3	20.1 14.6	70 55	3.1 <i>84.7</i>	14.0 <i>323.6</i>	2,500 <i>38,559</i>	2,210 <i>34,163</i>	610 <i>10,728</i>	549 <i>9,763</i>
TOTAL	242	270.3	14.0		04.7	323.0	30,339	34,103	10,720	9,703
	CE LIMITS OF T .1 TIMES OU			ME WILL I	BE WIT	HIN THE SAI	MPLE ERRC)R		
CL 68.1	COEFF			SAMPLI	TREE	S - BF	#	OF TREES	REO	INF. POP.
SD: 1.0	VAR.%	S.E.%	I		AVG	HIGH	"	5	10	15
WHEMLOCK	66.9	5.1		165	174	183				
DOUG FIR	65.3	10.2		136	151	167				
SNAG									A Part of the San of t	
R ALDER	73.2	24.4		96	127	158				
S SPRUCE TOTAL	91.0 <i>108.7</i>	28.8 7.0		480 <i>171</i>	674 184	868 196		472	118	52
		7.0	*							
CL 68.1	COEFF			SAMPLI			#	OF TREES		INF. POP.
	VAD 0/	0.12.07	T			HIGH	27	5	10	15
SD: 1.0	VAR.%	S.E.%	I		AVG					
SD: 1.0 WHEMLOCK	60.2	4.6	I	47	49	52				
SD: 1.0			I							
SD: 1.0 WHEMLOCK DOUG FIR	60.2	4.6 9.3 22.0	I	47	49	52				
SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE	60.2 59.7 66.0 78.4	4.6 9.3 22.0 24.8	L	47 42 30 118	49 47 38 157	52 51 47 196				
SD: 1,0 WHEMLOCK DOUG FIR SNAG R ALDER	60.2 59.7 66.0	4.6 9.3 22.0	I	47 42 30	49 47 38	52 51 47		308	77	34
SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE	60.2 59.7 66.0 78.4	4.6 9.3 22.0 24.8		47 42 30 118 48 TREES/A	49 47 38 157 51	52 51 47 196	#	308 OF PLOTS		34 INF. POP.
SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0	60.2 59.7 66.0 78.4 87.8 COEFF VAR.%	4.6 9.3 22.0 24.8 5.6 S.E.%		47 42 30 118 48 TREES/A	49 47 38 157 51 ACRE AVG	52 51 47 196 54 HIGH	#			
SD: 1,0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1,0 WHEMLOCK	60.2 59.7 66.0 78.4 87.8 COEFF VAR.% 81.9	4.6 9.3 22.0 24.8 5.6 S.E.% 9.3		47 42 30 118 48 TREES/A	49 47 38 157 51 ACRE AVG 213	52 51 47 196 54 HIGH 233	#	OF PLOTS	REQ.	INF. POP.
SD: 1,0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1,0 WHEMLOCK DOUG FIR	60.2 59.7 66.0 78.4 87.8 COEFF VAR.% 81.9 140.9	4.6 9.3 22.0 24.8 5.6 S.E.% 9.3 15.9		47 42 30 118 48 TREES/A COW 193 26	49 47 38 157 51 ACRE AVG 213 30	52 51 47 196 54 HIGH 233 35	#	OF PLOTS	REQ.	INF. POP.
SD: 1,0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1,0 WHEMLOCK DOUG FIR SNAG	60.2 59.7 66.0 78.4 87.8 COEFF VAR.% 81.9 140.9 272.6	4.6 9.3 22.0 24.8 5.6 S.E.% 9.3 15.9 30.8		47 42 30 118 48 TREES/A OW 193 26 10	49 47 38 157 51 ACRE AVG 213 30 14	52 51 47 196 54 HIGH 233 35 18	#	OF PLOTS	REQ.	INF. POP.
SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0 WHEMLOCK DOUG FIR	60.2 59.7 66.0 78.4 87.8 COEFF VAR.% 81.9 140.9 272.6 271.2	4.6 9.3 22.0 24.8 5.6 S.E.% 9.3 15.9 30.8 30.7		47 42 30 118 48 TREES/A COW 193 26	49 47 38 157 51 ACRE AVG 213 30	52 51 47 196 54 HIGH 233 35	#	OF PLOTS	REQ.	INF. POP.
NHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER	60.2 59.7 66.0 78.4 87.8 COEFF VAR.% 81.9 140.9 272.6	4.6 9.3 22.0 24.8 5.6 S.E.% 9.3 15.9 30.8		47 42 30 118 48 TREES/A .OW 193 26 10 10	49 47 38 157 51 ACRE AVG 213 30 14 15	52 51 47 196 54 HIGH 233 35 18 19	#	OF PLOTS	REQ.	INF. POP.
SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL	60.2 59.7 66.0 78.4 87.8 COEFF VAR.% 81.9 140.9 272.6 271.2 216.8 59.3	4.6 9.3 22.0 24.8 5.6 S.E.% 9.3 15.9 30.8 30.7 24.5		47 42 30 118 48 TREES/A OW 193 26 10 10 5 260	49 47 38 157 51 ACRE AVG 213 30 14 15 6 278	52 51 47 196 54 HIGH 233 35 18 19 8 297		OF PLOTS 5	REQ. 10	INF. POP. 15
SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1	60.2 59.7 66.0 78.4 87.8 COEFF VAR.% 81.9 140.9 272.6 271.2 216.8 59.3	4.6 9.3 22.0 24.8 5.6 S.E.% 9.3 15.9 30.8 30.7 24.5 6,7	1	47 42 30 118 48 TREES/A .OW 193 26 10 10 5 260 BASAL A	49 47 38 157 51 ACRE AVG 213 30 14 15 6 278 AREA/A	52 51 47 196 54 HIGH 233 35 18 19 8 297		OF PLOTS 5 140 OF PLOTS	REQ. 10 35 REQ.	INF. POP. 15 16 INF. POP.
SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL	60.2 59.7 66.0 78.4 87.8 COEFF VAR.% 81.9 140.9 272.6 271.2 216.8 59.3	4.6 9.3 22.0 24.8 5.6 S.E.% 9.3 15.9 30.8 30.7 24.5	1	47 42 30 118 48 TREES/A .OW 193 26 10 10 5 260 BASAL A	49 47 38 157 51 ACRE AVG 213 30 14 15 6 278	52 51 47 196 54 HIGH 233 35 18 19 8 297		OF PLOTS 5	REQ. 10	INF. POP. 15
SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0	60.2 59.7 66.0 78.4 87.8 COEFF VAR.% 81.9 140.9 272.6 271.2 216.8 59.3 COEFF VAR.%	4.6 9.3 22.0 24.8 5.6 S.E.% 9.3 15.9 30.8 30.7 24.5 6,7	1	47 42 30 118 48 TREES/A .OW 193 26 10 10 5 260 BASAL A	49 47 38 157 51 ACRE AVG 213 30 14 15 6 278 AREA/A	52 51 47 196 54 HIGH 233 35 18 19 8 297		OF PLOTS 5 140 OF PLOTS	REQ. 10 35 REQ.	INF. POP. 15 16 INF. POP.
SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0 WHEMLOCK DOUG FIR SNAG S SPRUCE TOTAL	60.2 59.7 66.0 78.4 87.8 COEFF VAR.% 81.9 140.9 272.6 271.2 216.8 59.3 COEFF VAR.% 67.0 137.6 275.3	4.6 9.3 22.0 24.8 5.6 S.E.% 9.3 15.9 30.8 30.7 24.5 6,7 S.E.% 7.6 15.6 31.1	1	47 42 30 118 48 TREES/A .OW 193 26 10 10 5 260 BASAL A .OW 219 35 10	49 47 38 157 51 ACRE AVG 213 30 14 15 6 278 AREA/A AVG 237 42 15	52 51 47 196 54 HIGH 233 35 18 19 8 297 ACRE HIGH 255 48 20		OF PLOTS 5 140 OF PLOTS	REQ. 10 35 REQ.	INF. POP. 15 16 INF. POP.
SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0	60.2 59.7 66.0 78.4 87.8 COEFF VAR.% 81.9 140.9 272.6 271.2 216.8 59.3 COEFF VAR.% 67.0 137.6 275.3 270.8	4.6 9.3 22.0 24.8 5.6 S.E.% 9.3 15.9 30.8 30.7 24.5 6,7 S.E.% 7.6 15.6 31.1 30.6	1	47 42 30 118 48 TREES/A .OW 193 26 10 10 5 260 BASAL A .OW 219 35 10 11	49 47 38 157 51 ACRE AVG 213 30 14 15 6 278 AREA/A AVG 237 42 15 15	52 51 47 196 54 HIGH 233 35 18 19 8 297 ACRE HIGH 255 48 20 20		OF PLOTS 5 140 OF PLOTS	REQ. 10 35 REQ.	INF. POP. 15 16 INF. POP.
SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0 WHEMLOCK DOUG FIR SNAG R ALDER S SPRUCE TOTAL CL 68.1 SD: 1.0 WHEMLOCK DOUG FIR SNAG S SPRUCE TOTAL	60.2 59.7 66.0 78.4 87.8 COEFF VAR.% 81.9 140.9 272.6 271.2 216.8 59.3 COEFF VAR.% 67.0 137.6 275.3	4.6 9.3 22.0 24.8 5.6 S.E.% 9.3 15.9 30.8 30.7 24.5 6,7 S.E.% 7.6 15.6 31.1	1	47 42 30 118 48 TREES/A .OW 193 26 10 10 5 260 BASAL A .OW 219 35 10	49 47 38 157 51 ACRE AVG 213 30 14 15 6 278 AREA/A AVG 237 42 15	52 51 47 196 54 HIGH 233 35 18 19 8 297 ACRE HIGH 255 48 20		OF PLOTS 5 140 OF PLOTS	REQ. 10 35 REQ.	INF. POP. 15 16 INF. POP.

PROJECT STATISTICS

TC PS	ГАТS			P	ROJEC PROJEC	T STAT	ISTICS ADD			PAGE DATE	2 3/8/2022
TWP	RGE	SC	TRACT	TYPE		A	CRES	PLOTS	TREES	CuFt	BdFt
06N 07N	08 09W	08 36	U2A_R/W U1_R/W	00MC 00MC			1.00	78	520	1	W
CL	68.1		COEFF		NET	BF/ACRE		;	# OF PLOTS I	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH			10	15
WHE	MLOCK		67.2	7.6	24,442	26,453	28,465				
DOU	G FIR		148.3	16.8	3,456	4,153	4,849				
SNA	G										
R AL	DER		280.6	31.7	919	1,347	1,774				
S SPI	RUCE		231.1	26.1	1,632	2,210	2,788				
тот	AL		50.3	5.7	32,218	34,163	36,107		101	25	11

TC PSTNDSUM	Stand Table Summary	Page 1 Date: 3/8/2022
T06N R08W S08 Ty00MC	Project GSADD	Time: 8:36:54AM
THRU T07N R09W S36 Ty00MC	Acres 168.00	Grown Year:

10/1	KU9 W	330 T YUUI	VIC						10010	•					
S				Tot				Averag	e Log		Net	Net			
Spc T	DBH	Sample Trees	FF 16'	Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Totals Cunits	MBF
Н	8	2	89		4.023	1.40	4.02	5.4	18.0		22	72		36	
Н	9	15	85		23.089	10.20	26.27	8.6	30.2		227	793		381	
Н	10	14	87	93	17.340	9.37	27.84	10.4	40.2		288	1,119		484	
Н	11	18	87	82	17.477	11.45	23.12	13.2	46.9		306	1,083		514	182
Н	12	29	87		24.251	19.05	39.42	13.7	46.6		538	1,836		904	308
Н	13	30	86		17.360	16.00	30.20	14.8	44.9		446	1,357		749	
Н	14	32	87		16.282	17.41	31.29	18.9	68.5		591	2,144		994	
Н	15	26	86		10.161	12.47	18.03	20.0	68.3		360	1,231		605	
H	16	29	87		11.051	15.43	22.62	24.3	86.5		549	1,956		923	
Н	17	36	87		12.072	19.03	24.14	25.2	86.7		609	2,093		1,023	
Н	18 19	36 28	87 86		9.949	17.58 12.43	21.49	30.0	106.1		644	2,279		1,082	
Н	20	28 19	80 87		6.312 5.180	11.30	13.34 11.65	31.1 36.5	102.2 142.0		415 425	1,363		697	
H H	21	12	87		2.902	6.98	6.97	36.6	132.3		255	1,653 922		713 429	
п Н	22	4	87		.790	2.09	1.58	45.9	175.7		73	278		122	
Н	23	6	83		.959	2.77	1.92	50.6	165.4		97	317		163	
H	25	2	86		.412	1.40	1.24	42.6	189.0		53	234		88	
Н	26	2	88		.381	1.40	.76	74.7	297.0		57	226		96	
Н	27	8	83		1.049	4.17	2.10	56.6	201.8		119	423		199	
Н	28	2	80		.328	1.40	.66	45.4	166.5		30	109		50	
Н	29	2	82	61	.148	.68	.15	107.1	288.0		16	43		27	
Н	30	2	75	113	.286	1.40	.57	52.7	220.5		30	126		51	21
Н	Totals	354	87	81	181.804	195.42	309.37	19.9	70.0		6,149	21,658		10,331	3,639
D	11	6	85	47	8.065	5.32	8.06	12.3	36.7		99	296		167	50
D	12	14	84	59	4.989	3.92	5.70	14.0	43.9		80	251		134	42
D	13	8	86		4.906	4.52	7.89	15.8	50.1		125	395		210	66
D	14	12	83		4.278	4.57	6.68	16.9	49.2		113	328		189	
D	15	10	86		2.281	2.80	4.11	18.5	59.1		76	243		127	
D	16	9	85		2.239	3.13	4.08	20.3	63.2		83	258		139	
D	17	4	84		.710	1.12	1.42	24.7	80.8		35	115		59	
D	18	8	86		1.872	3.31	3.74	31.2	106.9		117	400		196	
D	19	4	84 86		.569	1.12	1.14	30.2	90.2		34	103		58	
D	20 21	8 2		96 104	2.006 .677	4.38 1.63	4.01 1.35	39.0 47.5	130.3 161.5		157 64	523 219		263	
D	22	2.		123	.617	1.63	1.85	1	136.2		64	252		108 107	
D D	23	4		102	.759	2.19	1.52	52.0	165.0		79	250		132	
D	25	2	85		.164	.56	.33	1	156.8		16	51		28	
D	Totals	93	85	69	34.132	40.19	51.88	22.0	71.0		1,142	3,683		1,918	619
S	13	2	82	61	1.107	1.02	1.11	9.0	36.0		10	40		17	7
S	16	4	86	80	1.448	2.02	2.90	23.9	83.4		69	241		116	41
S	17	2		103	.647	1.02	1.29	31.9	117.0		41	151		69	25
S	19	2	89		.518	1.02	1.04	43.2	162.0		45	168		75	28
S	20	2		111	.468	1.02	1.40	32.4	108.0		45	151		76	
S	29	2		138	.222	1.02	.67	80.4	378.0		54	252		90	
S	31	2	83		.195	1.02	.39	104.4	387.0		41	151		68	
S	34	2		108	.162	1.02	.49	84.6	291.0		41	141		69	
S	35	2		124	.153	1.02	.31	139.9	751.5		43	229		72	
S	37	2		141	.137	1.02	.41	129.6	627.0		53	257		89	
S	Totals	22	85		5.056	11.20	9.99	44.2	178.4		442	1,783		742	
A	10 12	2 2	86 87	40 69	2.694 .917	1.47 .72	2.69 .92	9.0 24.0	30.0 70.0		24 22	81 64		41	
A	12	2	8/	UY	.91/	.12	.92	24.0	70.0		42	04		37	11

TC PSTNDSUM	Stand Table Summary	Page Date:	2 3/8/2022
T06N R08W S08 Ty00MC	Project GSADD	Time:	8:36:54AM
THRU T07N R09W S36 Ty00MC	Acres 168.00	Grown Year:	

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Averag Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
Α	13	4	86	43	2.375	2.19	2.38	19.3	49.9		46	118		77	20
Α	15	2	87	63	1.197	1.47	2.39	18.5	65.0		44	156		74	26
Α	16	6	86	63	2.084	2.91	3.65	23.3	78.5		85	287		143	48
Α	17	2	87	69	.932	1.47	1.86	25.5	90.0		48	168		80	28
A	21	2	86	96	.299	.72	.60	50.0	175.0		30	105		50	18
Α	Totals	20	86	55	10.498	10.95	14.49	20.6	67.5		299	978		502	164
SN	12	2	87	85	.025	.02									
SN	13	1	89	55	.011	.01									
SN	14	3	88	45	.027	.03									
SN	15	1	85	35	.002	.00									
SN	16	1	88	45	.007	.01									
SN	17	1	88	95	.006	.01									
SN	19	1	89	17	.005	.01									
SN	Totals	10	88	60	.083	.09									
Totals		499	86	78	231.573	257.85	385.74	20.8	72.9		8,032	28,103		13,493	4,721

TC TSTNDSUM	Stand Ta	tand Table Summary								
	Project	GSADD								
T06N R08W S08 T00PC Twp Rge Sec Tract 06N 08W 08 U3_LEAVE	Type 00PC		lots Sample Trees 31 52	T06N R08W S08 T00PC Page: 1 Date: 02/17/20/ Time: 2:13:09PM						

					Av			_	ł .	ige Log		Net	Net	Т	otals	
	S		Sample		Ht	Trees/		Logs	Net	Net	Tons/	Cu.Ft.	Bd.Ft.			
Spc	T	DBH	Trees	16'	Tot	Acre	Acre	Acre		Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
HL		11	1	80	70	5.476	3.61	5.48	18.0	60.0		99	329		41	14
HL		12	2	86	53	9.612	7.23	14.21	12.6	39.7		180	564		75	24
HL		13	3	85	60	11.762		15.68	18.0	57.5		282	902		119	38
HL		14	3	84	72	10.397		20.79	16.3	50.1		339	1,042		142	44
HL		16	1	86	82	2.588	3.61	5.18	26.0	95.0		135	492		57	21
HL		17	1	85	57	2.293	3.61	4.59	21.5	70.0		99	321		41	13
HL		18	2	85	80	4.090	7.23	8.18	32.5	102.5		266	838		112	35
HL		20	5	87	82	8.283		16.57	41.0	142.0		679	2,352		285	99
HL		21	4	87	89	6.010		12.02	48.1	173.8		578	2,089		243	88
HL		22	1	85	89	1.369	3.61	2.74	51.0	175.0		140	479		59	20
HL		23	2	84	76	2.505	7.23	5.01	50.5	157.5		253	789		106	33
HL		24	1	86	84	1.150	3.61	2.30	58.5	205.0		135	472		57	20
HL		26	1	85	79	.980	3.61	1.96	64.5	235.0		126	461		53	19
HL		Totals	27	85	71	66.516	97.58	114.70	28.9	97.0		3,310	11,130		1,390	467
DL		13	1	85	46	3.321	3.06	3.32	17.0	50.0		56	166		24	7
DL		14	3	85	71	8.591	9.18	14.32	17.6	58.0		252	830		106	35
DL		15	1	86	61	2.495	3.06	4.99	15.0	55.0		75	274		31	12
DL		16	4	85	62	8.770	12.25	15.35	18.0	57.1		276	877		116	37
DL		17	4	84	77	7.768	12.25	13.59	27.1	82.9		369	1,126		155	47
DL		19	1	85	81	1.555	3.06	3.11	31.0	105.0		96	327		40	14
DL		20	2	84	80	2.806	6.12	5.61	35.7	105.0		201	589		84	25
DL		22	1	85	87	1.160	3.06	2.32	45.0	145.0		104	336		44	14
DL		Totals	17	85	69	36.466	52.04	62.61	22.8	72.3		1,430	4,526		601	190
AL		10	1	87	80	6.957	3.79	6.96	17.0	60.0		118	417		50	18
AL		16	1	87	51	2.718	3.79	2.72	30.0	60.0		82	163		34	7
AL		20	1	87	72	1.739	3.79	3.48	36.5	125.0		127	435		53	18
AL		21	1	87	35	1.578	3.79	1.58	40.0	110.0		63	174		27	7
AL		Totals	4	87	67	12.992	15.18	14.73	26.5	80.7		390	1,189		164	50
SL		13	1	85	20	1.568	1.45	1.57	14.0	50.0		22	78		9	3
SL		25	1	85	69	.424	1.45	.85	55.5	205.0		47	174		20	7
SL		31	1	86	89	.276	1.45	.55	108.5	410.0		60	226		25	9
SL		Totals	3	85	38	2.268	4.34	2.97	43.4	161.2		129	478		54	20
SN		11	1	86	52	1.643	1.08									
SN		Totals	1	86	52	1.643	1.08							A CONTRACTOR OF THE CONTRACTOR		
Totals			52	85	69	119.885	170.22	195.02	27.0	88.8		5259	17,323		2,209	728

TC PLOGSTVB Log Stock Table - MBF

T06N R08W S08 Ty00MC
THRU
T07N R09W S36 Ty00MC

Project: Acres GSADD 168.00 Page 1
Date 2/17/2022
Time 2:12:36PM

s	So Gr	Log	Gross	Def	Net	%	% Net Volume by Scaling Diameter in Inches											
Ѕрр Т	rt de	_	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11			16-19	20-23	24-29	30-39	40+
Н	DO 2S	16	9	14.3	8	.2							8					
Н	DO 2S	20	57	11.9	50	1.4						8	29	13				
Н	DO 2S	32	400	11.2	355	9.8				11		309	10	26				
Н	DO 2S	40	945	13.7	815	22.4						433	254	128				
Н	DO 3S	20	4	10.0	4	.1					4							· · · · · · · · · · · · · · · · · · ·
Н	DO 3S	26	53	10.0	48	1.3			4	44								
Н	DO 3S	28	46	10.0	41	1.1			11	10	20							
Н	DO 3S	30	57	10.0	51	1.4			3	30	18							
Н	DO 3S	32	655	12.7	572	15.7			215	199	158							
Н	DO 3S	34	62	10.0	56	1.5			39	4	13							
Н	DO 3S	36	119	13.0	104	2.9			72	31								
Н	DO 3S	38	74	10.0	66	1.8			35		31							
Н	DO 3S	40	1,115	10.9	993	27.3			253	234	505							
Н	DO 4S	12	13	10.0	11	.3			9	3								
Н	DO 4S	14	33	6.4	31	.9			29	2								
Н	DO 4S	16	79	10.6	71	1.9			69	1								
Н	DO 4S	18	28	7.7	26	.7			18	8								
Н	DO 4S	20	105	10.0	94	2.6			93	1								
Н	DO 4S	24	97	9.0	89	2.4		9	71	8								
H	DO 4S	26	41	7.1	38	1.1			38									
Н	DO 4S	28		14.0	64	1.8			64									
Н	DO 4S	30		18.0	45	1.2			45									
Н	DO 4S	32	8	28.0	6	.2			6									
Н	Total	S	4,130	11.9	3,639	77.1		9	1077	587	749	750	301	167				
S	DO 2S	30	13	10.0	12	4.0									12			
S	DO 2S	40	233	12.1	205	68.3						20	40	13	79	52		
s	DO 3S	28	4	10.0	3	1.1					3							
S	DO 3S	32	33	11.5	30	9.9				6	18		5					
s	DO 3S	38	5	10.0	4	1.4					4							
s	DO 3S	40	35	10.0	31	10.4			11		20							
s	DO 4S	12	7	10.0	7	2.2					7							
S	DO 4S	14	3	10.0	2	.8			1		1							
s	DO 4S	20	2	10.0	2	.7			2									
s	DO 4S	26	4	10.0	3	1.1			3									
S	Totals	3	339	11.6	299	6.3			18	6	53	20	46	13	91	52		

 TC PLOGSTVB
 Log Stock Table - MBF

 T06N R08W S08 Ty00MC
 Project: GSADD Date 2/17/2022

 THRU T07N R09W S36 Ty00MC
 Acres 168.00
 Time 2:12:36PM

	s	So Gr	Log	Gross	Def	Net	%										
Spp	T	rt de			%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23 24-29	30-39 40+
D		DO 2S	16	19	5.0	18	2.9								18		
D		DO 2S	32	15	13.8	13	2.0						13				
D		DO 2S	40	178	7.9	164	26.5						93	71			
D		DO 3S	20	10		10	1.6					10					
D		DO 38	28	2	5.0	2	.3			2							
D		DO 3S	3 (17	9.3	15	2.5					15					
D		DO 35	32	124	10.1	112	18.1			38	28	45					
D		DO 38	34	11		11	1.8			11							
D		DO 35	3 36	52	5.0	49	8.0			18	32						
D	ļ	DO 35	38	8	5.0	7	1.2	<u> </u>		7							
D		DO 38	S 40	136	6.2	128	20.7			46	23	59					
D	Ī	DO 45	5 12	. 1	5.0	1	.2			1							
D		DO 48	5 16	5 9	17.9	7	1.2			7							
D		DO 45	S 18	3 7	3.5	7	1.1			7							
D		DO 45	S 20	21	3.7	20	3.2			13	7						
D		DO 45	S 24	1 22		22	3.5			22							
D		DO 45	S 20	5 8	5.0	7	1.2			7							
D		DO 45	S 28	3 10	1.7	10	1.6	İ		10							
D		DO 49	3 3) 4	5.0	4	.6			4							
D		DO 45	S 32	2 15	20.0	12	1.9			12							
D		Tota	ıls	668	7.4	619	13.1			206	90	129	106	71	18		
Α		DO 15	S 30	23		23	14.3						23				
Α		DO 15	S 4	15		15	8.9							15			
Α		DO 25	S 30	68	3.8	65	39.6					65					
A		DO 45	S 10	5 4	-	4	2.4			4							
Α		DO 48	S 1	8 5		5	3.2			5							
Α		DO 48	S 2	5		5	2.9			5							
Α		DO 45	S 2	4 14	+	14	8.3			14							
Α		DO 45	S 2	6 11		11	6.5			11							
Α		DO 43	S 3	8 3	1	3	1.8			3							
Α		DO 4	S 4	0 20)	20	12.1			20				:			
A		Tota	als	167	1.6	164	3.5			61		65	23	15			
Total		All Spe	cies	5,304	11.0	4,721	100.0		9	1362	683	995	898	432	198	91 52	

