

Sale AT-341-2021-W00572-01

District: Astoria Date: December 08, 2020

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$367,905.90	\$17,094.84	\$385,000.74
		Project Work:	(\$12,035.00)
		Advertised Value:	\$372,965.74

Sale AT-341-2021-W00572-01

District: Astoria Date: December 08, 2020

Timber Description

Location:

Stand Stocking: 60%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)	
Douglas - Fir	19	0	97	
Western Hemlock / Fir	13	0	96	
Alder (Red)	15	0	95	

Volume by Grade	28	3S & 4S 6"- 11"	38	48	12"+	Total
Douglas - Fir	472	214	0	0	0	686
Western Hemlock / Fir	13	91	0	0	0	104
Alder (Red)	28	0	20	28	18	94
Total	513	305	20	28	18	884

Comments: Pond Values Used: Local Pond Values, October, 2020.

Expected Log Markets: Tillamook, Warrenton, Garibaldi, Banks, North Plains, Forest Grove, Mist, Clastkanie, Willamina, Longview, WA.

PRICING:

Western Red Cedar and other Cedars stumpage = pond value - (Douglas-fir) logging cost. \$980/MBF = \$1,300/MBF - \$320/MBF

Other Costs (with Profit & Risk to be added):

Machine Washing for Invasive Weed Compliance = \$2,000

TOTAL Other Costs (with Profit & Risk to be added): \$2,000

Other Costs (No Profit & Risk added): None.

SLASH PILING

(See attached appraisal. Includes move-in, pile materials, and end-hauling) = \$1,748

ROAD MAINTENANCE

(See attached Road Maintenance Cost Summary Sheet)
TOTAL Road Maintenance: \$9,548/884 MBF = \$10.80/MBF

Sale AT-341-2021-W00572-01

District: Astoria Date: December 08, 2020

Logging Conditions

Combination#: 1 Douglas - Fir 21.00%

Western Hemlock / Fir 21.00% Alder (Red) 21.00%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 11 bd. ft / load: 4600

cost / mbf: \$130.43

machines: Log Loader (A)

Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 3.00%

Western Hemlock / Fir 3.00% Alder (Red) 3.00%

Logging System: Shovel Process: Manual Falling/Delimbing

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 10 bd. ft / load: 4600

cost / mbf: \$85.60

machines: Shovel Logger

Combination#: 3 Douglas - Fir 76.00%

Western Hemlock / Fir 76.00% Alder (Red) 76.00%

Logging System: Track Skidder Process: Manual Falling/Delimbing

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 7 bd. ft / load: 4100

cost / mbf: \$155.24

machines: Log Loader (B)

Track Skidder

Sale AT-341-2021-W00572-01

Date: December 08, 2020 **District: Astoria**

Logging Costs

Operating Seasons: 2.00

Profit Risk: 12%

Project Costs: \$12,035.00 Slash Disposal: \$1,748.00

Other Costs (P/R): \$2,000.00

Other Costs: \$0.00

Miles of Road

Road Maintenance:

\$10.80

Dirt	Rock (Contractor)	Rock (State)	Paved	
0.0	0.0	0.0	0.0	

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	2.0	4.4
Western Hemlock / Fir	\$0.00	2.0	4.3
Alder (Red)	\$0.00	2.0	3.9

1/05/21 4

Sale AT-341-2021-W00572-01

District: Astoria Date: December 08, 2020

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$147.94	\$11.12	\$9.93	\$111.19	\$2.26	\$33.89	\$1.98	\$2.00	\$0.00	\$320.31
Western H	emlock	/ Fir							
\$147.94	\$11.23	\$9.93	\$114.89	\$2.26	\$34.35	\$1.98	\$2.00	\$0.00	\$324.58
Alder (Red)									
\$147.94	\$11.34	\$9.93	\$127.88	\$2.26	\$35.92	\$1.98	\$2.00	\$0.00	\$339.25

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$813.08	\$492.77	\$0.00
Western Hemlock / Fir	\$0.00	\$611.75	\$287.17	\$0.00
Alder (Red)	\$0.00	\$521.11	\$181.86	\$0.00

Sale AT-341-2021-W00572-01

District: Astoria Date: December 08, 2020

Summary

Amortized

Specie	MBF	Value	Total	
Douglas - Fir	0	\$0.00	\$0.00	
Western Hemlock / Fir	0	\$0.00	\$0.00	
Alder (Red)	0	\$0.00	\$0.00	

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	686	\$492.77	\$338,040.22
Western Hemlock / Fir	104	\$287.17	\$29,865.68
Alder (Red)	94	\$181.86	\$17,094.84

Gross Timber Sale Value

Recovery: \$385,000.74

Prepared By: Ryan Simpson Phone: 503-338-1391

			Site Prep App	raisal			
			Vegetation Type/Zone	Vegetation Type/Zone Code	Production Rate (hr/ac)	Estimated Piles/Acre	Landing Production Rate (hrs/30 acres)
Sale Number:	: AT-341-2021-V	N00572-01	Doug-fir	T A	0.5	0.5	6
	Seuss Split		Hemlock/Fir	В	1.3	4.5	8
	11/16/2020		Hemlock/Spruce	С	1.8	6.0	10
			Hemlock	D	1.8	6.0	8
			Conifer/Hardwood	Е	1.0	2.0	8
			Whole Tree Yarding	F	0.5	0.5	12
Sale Area	Harvest Type	Veg Type/Zone	Ground Based Yarding Acres	Estimated Piling Hours/Area	Cost/Hour	Total Cost/Area	
2	MC	В	1	1	\$145.00	\$188.50	
2	WIO	D		FALSE	\$145.00	\$0.00	
				FALSE	\$145.00	\$0.00	
				FALSE	\$145.00	\$0.00	
				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	In-unit Piling	Sub Total =	\$188.50
Sale Area	Number of Landings to b Piled	e # cable acres per area	Total Cost/Area	Number of In- Unit Piles	Material Cost/Pile	Total Cost/Area	
2	3	6	\$232.00	7.5	\$5.00	\$37.50	
			FALSE	0	\$5.00	\$0.00	
			FALSE	0	\$5.00	\$0.00	
			FALSE	0	\$5.00	\$0.00	
Cost includes se	parating firewoo	od	TO THE REAL PROPERTY OF THE PR	Marie Andrews	Materials	Sub Total =	\$37.50
Move-In	nal Move-in all Number of	Total Move-In			Landing Piling	Sub Total =	\$232.00
Allowance	Move-In's	Allowance					
\$1,290.00		1 \$1,290.00					
Slash Endhaul					Move-In	Sub Total =	\$1,290.00
Dump Truck hrs	Cost/Hour	Total	Loader hrs	Cost/Hour	Total		
	\$89.00	\$0.00		\$145.00	\$0.00	одилини	
	-					Sub Total =	\$0.00
					Control of the Contro	Name of the Control o	

Road Maintenance Cost Summary (Interim and Post Harvest)

Sale:

Seuss Split

MBF: ____

884.00

Date:

November 13, 2020

\$\$/MBF:

\$10.80

Ву:

Ryan Simpson

		Move-in				
Type	Equipment/Rationale	Rate	Times	Hours	Rate	Cost
Interim	Grader 14G	\$875	1	4	\$113	\$1,327
	Vibratory Roller	\$875	1	4	\$87	\$1,223
	Dump Truck 12CY	\$184	1	4	\$89	\$540
	Rubber-Tire Backhoe	\$361	1	4	\$87	\$709
	Grader 14G	\$875	1	8	\$113	\$1,779
	Dump Truck 12CY	\$184	1	6	\$89	\$718
Final Road	Rubber-Tire Backhoe	\$361	1	6	\$87	\$883
Maintenance	Vibratory Roller	\$875	1	8	\$87	\$1,571
	Water Truck 2,500 gallon	\$214	1	4	\$101	\$618
	Labor			4	\$45	\$180
Total						

Interim Operations Road Maintenance

Production Rates	Miles/day	Distance (miles)	Days	Hours
Grader	2.5	1.4	0.6	4

Final Road Maintenance

Production Rates	Miles/day	Distance (miles)	Days	Hours
Grader	1.5	1.4	0.9	7
Vibratory Roller	1.5	1.4	0.9	7

Pro	ocess and compact: All crushed rock roads	
	Course Alley Dood 1 Miles	
	Seuss Alley Road 1 Miles Unnamed Spur 0.07 Miles	
	Spur 15 0.32	
	Grade & Process Total = 1.39 Miles	

SUMMARY OF ALL PROJECT COSTS

SALE NAME:	Seuss Split				
Project No. 1:	ROAD CONSTRUCTION:				
	Road segment 1A, 1B, 2A to 2B	<u>Length (Sta)</u> 1.45	Length (Mile) 0.03	<u>Cost</u> \$5,631.04	
	Road Maint. Move-In TOTALS	1.45	0.03	\$678.00 \$5,725.50	\$12,035
Project No. 2:	ROAD IMPROVEMENT:				
	<u>Road segment</u>	<u>Length (Sta)</u>	<u>Length (Mile)</u>	<u>Cost</u>	
	Road Maint. Move-In TOTALS				,
SPECIAL PROJ	IECTS (Move-In and Road Maint. are inc	cluded separetly as neede	d, for each Special Project):		
	<u>Description</u>		<u>Length/Vol.</u>	<u>Cost</u>	
	TOTAL				
					442.025
GRAND TOTA	L				\$12,035
Compiled By:	Ryan Simpso	on FL		Date:	11/25/2020

Move In and Maintenance Calculator for Construction and Improvement

SALE NAME:	Seuss Split											
Project No. 1: ROAD CONSTRUCTION:												
	Road segment 1A, 1B, 2A to 2B TOTALS	Length/Sta 1.45 1.45	Length/Mile 0.03 0.03	<u>Cost</u> \$5,631	\$5,631							
Project No. 2:	ROAD IMPROVEMEN	IT:										
	Road segment	Length/Sta	Length/Mile	Cost								
	TOTALS											
MOVE IN (Con	struction & Improve	ment Only)										
		x2 oe	Length/Mile	Cost \$875.00 \$368.00 \$875.00 \$875.00 \$361.00 \$2,371.50								
	TOTAL				\$5,725.50							
ROAD MAINTE	NANCE (Construction	n & Improvemen		_								
	Final Project Road	Maintenance	<u>Length/Mile</u>	<u>Cost</u> \$678.00								
	TOTAL				\$678.00							

SUMMARY OF CONSTRUCTION COSTS

SALE NAME	: Seuss Split			_		NSTRUCTION:		STATIONS	0.03 MILE
ROAD:	2A to 2B (1.45	sta.)			IIV	IPROVEMENT:		STATIONS	0.00 MILE
POINTS:	1A & 1B								
CLEARING 8	GRUBBING								
	Method			Acres/amount	Х	Rate	=	Cost	
						4100.00		#4.004.00	
,	Scatter outside	of right-of-way	/	8.00	X	\$128.00	=	\$1,024.00	
2A to 2B	w/ D6 (\$/hr)								
CLID TOTAL	FOR CLEARING	S & GDI IDDINA	G						\$1,024
SUB TOTAL	FOR CLEARING	o di Gilobbila	<u> </u>						V1,02
XCAVATIO	N								
	Material			Cy/amount	X	Rate	=	Cost	
2A to 2B	Balanced cons	truction (\$/Sta.	.)	1.45	Х	\$138.00	=	\$200.10	
	Landing constr	ruction (\$/ldg)		1.00	X	\$438.00	=	\$438.00	
					X	\$0.79	=	\$0.00	
					X	\$49.00	=	\$0.00	
				100		0.400.00	_	\$438.00	
1A	Landing constr			1.00	X	\$438.00 \$438.00	=	\$438.00	
1B	Landing constr	uction (\$/lag)		1.00	X	\$438.00	=	\$0.00	
					X		=	\$0.00	
					Х		_	\$0.00	
SUB TOTAL	FOR EXCAVAT	ION							\$1,514
302 . 0 . 7									
CULVERT M	ATERIALS AND	INSTALLATIO	ON						
Location	Dia/type	Lineal ft.	Rate	Cost	Location	Dia/type	Lineal ft.	Rate	Cost
				\$0.00					\$0.00
				\$0.00					\$0.00
				\$0.00					\$0.00
				\$0.00					\$0.00
				\$0.00					\$0.00
				\$0.00					\$0.00
				\$0.00					\$0.00
				\$0.00					\$0.00
				\$0.00					\$0.00
				\$0.00					\$0.00
				Description		Quantity	Rate	Cost	
	Other/miscella	ineons.		Description		Quantity	Nate	0031	
	Othermiscena	irieous.							
	Culvert stakes	& markers						\$0.00	
	Carvert Startes	G. Markoro.							
						1	1		
SUB TOTAL	FOR CULVERT	MATERIALS	& INSTALL	ATION					\$0
							Subtotal of C	learing, Exc., Culv.	\$2,538

SURFACING								Stations/		Rate/		
	Subgrade prep:		Description					amount	x	sta/amt	Cost	
		Grade, Shape		16'				1.45	Х	\$20.63	\$29.91	
		Subgrade Com	paction					1.45] x	\$22.69	\$32.91	
ROAD SEGMENT	2A to 2B			POINT T	O POINT	Sta. to	Sta.		925			
			Depth of	2A t	o 2B	0+00 to	1+45	TOTAL	Rate/			
A U 41	Rock Size		Rock	Volum	e (CY)	Num		VOLUME	Sta./	Cost		
Application	and Type	Location	(inches)	pe		of		(CY)	amt.			
Base Rock	6"-0"Pit-run	0+00 to 1+45	10	station		stations	1.45	91	\$4.74	\$433		
Turnarounds	6"-0"Pit-run	0+50	10	TA	33	TA's	1	33	\$4.74	\$156		
Junctions	1 1/2"-0" Crushed	0+00	n/a	iunction		junctions	1	22	\$3.89	\$86		
Landings	6"-0"Pit-run	1+45	n/a	landing	77	landings	1	77	\$4.74	\$365		
Total Rock for Road			2A to 2B			iamanigo	· ·	223	¥	+++++++++++++++++++++++++++++++++++++	\$1,040	
ROAD SEGMENT	1A			POINT T	O POINT	Sta. to	Sta.		SINCE CORRESPOND		Ψ1,010	
	designation of succession		Depth of					TOTAL	Rate/			
	Rock Size		Rock	Volum	e (CY)	Num	ber	VOLUME	Sta./	Cost		
Application	and Type	Location	(inches)	pe		of		(CY)	amt.			
Junctions	1 1/2"-0" Crushed		n/a	junction		junctions	CHARLES AND AND ALTHUR	22	\$3.89	\$86		
Landings	6"-0"Pit-run	n/a	n/a	landing		landings	1	77	\$4.74	\$365		
Total Rock for Road		1	0	landing		larianigo	<u> </u>	99	Ψ4.74	Ψ000	\$451	
ROAD SEGMENT	1B		Called State of	POINT TO	O POINT	Sta. to	Sta	1	554004250	RESERVED SERVED IN	φ451	
		I	Depth of	1 0011	010111	Ota. to	Otu,	TOTAL	Rate/			
	Rock Size		Rock	Volum	o (CV)	Num	hor	VOLUME	Sta./	Cost		
Application	and Type	Location	(inches)	pe		of		(CY)	amt.			
Junctions	1 1/2"-0" Crushed		n/a	junction	22	junctions	1	22	\$3.89	\$86		
Landings	6"-0"Pit-run	n/a	n/a	landing	77	landings	1	77	\$4.74	\$365		
Total Rock for Road		1,,,	0	landing		landings		99	Ψ τ. / τ	Ψ303	\$451	
Total Mook for Moda	oogmone.										φ 4 51	
		Processing:		Description					No.sta	Rate/sta	Cost	
			Compact E	Base Rock (6"-0"):				\$1.45	\$35.45	\$51.40	
			ı		Residence of the		1 1/2"-0"		6101.0223 (SCI) (SCI	1		
					6"-0"pr		crushed		Total			
	SUB TOTAL FOR	STIREACING			355	THE SACRED NOTES TO SECTION S	66		421	421		\$2,05
	OOD TOTALT OF	COOK! AOINO			000		00		421	421		\$2,05
	SPECIAL PROJE	ECTS										
					Description				Cost			
				Develop	Pit-run		\$ 2.92	/cy	\$1,037.62			
			-						L			
	SUB TOTAL FOR	R SPECIAL PRO	DJECTS									\$1,03
										Surfacing & S	,	\$3,093
									Subtotal	of Clearing, E	Exc., Culv.	\$2,538
	GRAND TOTAL											\$5,631
												Ψυ,υυ Ι

Date: 11/25/2020

Compiled By:

Ryan Simpson

Projects Road Maintenance Cost Summary

FL

62	Δ.
Ja	E.

Seuss Split

Date:

13-Nov-20

By: Ryan Simpson

Туре	Equipment/Rationale		Hours	Rate	Cost	
Project Work	Grader 14G		6	\$113	\$678	
Final Haul					\$0	
Road					\$0	
Maintenance					\$0	
					\$0	
	*					
Total						\$6

Production Rates Grader

Miles/day	Distance(miles)	Days
5.0	2.00	0.4

NOTE: Maintain road surface used for roack haul from Cole Mtn. Quarry to Seuss Alley Stockpile

		Miles
		Miles
		Miles
TOTAL=	2.00	Miles

PIT RUN ROCK COST

SALE NAME: Seuss Split
PROJECT: New Road Const. DATE: 11/25/2020 MATERIAL: 6"-0" Pit Run BY: Ryan Simpson QUARRY: Cole Mtn. Quarry

QUARRY:		ole ivith. Qu	arry									
Road	T a:	Cubic					ONE W	AY HAUL IN	MILES			Total
Segment	Stations	Yards	50	MPH	30	MPH			15 MPH	10 MPH	5 MPH	Haul
2A to 2B	1.45	201					0.30	0.60	0.50	0.16	0.10	1.66
1A		77					0.30	0.50	0.37	0.16	0.10	1.43
1B		77					0.30	0.60	0.50	0.17	0.10	1.67
			_									
	-											-
			-									1
	-											1
	-		-									1
	-											1
			-									1
												1
			-									1
		******************	_									1
												1
											d-10-10-10-10-10-10-10-10-10-10-10-10-10-	1
												1
												1
												1
												1
												1
												1
]
]
]
]
TOTAL	1.45	355	1									AVERAGE
	STA./NO.	CU. YD.						(_		HAUL
CUBIC YARD	WEIGHTED	HAUL					0.3	0.6	0.5	0.2	0.1	1.61
								verage Rou	nd Trip Dista	ance (miles)	3.22	

ROCK HAUL:

Truck type:	D20	No. trucks:			
Delay min.:	8	Efficiency:	85%	Ave haul: \$2.34	/cy
				Load: \$0.84	/cy
Truck type:	D12	No. trucks:	2	Spread: \$1.56	/cy
Delay min.:	6	Efficiency:	85%		
Truck type:	D10	No. trucks:		Production: cy/day =	540
Delay min.:	5	Efficiency:	85%		

PIT RUN ROCK HAUL COSTS 355 cy @ \$4.74 /cy

CRUSHED ROCK COST

SALE NAME: Seuss Split DATE: 11/25/2020
PROJECT: New Road Const. MATERIAL: 1 1/2"-0" Crushed BY: Ryan Simpson
Stockpile: Soapstone Stockpile

o to o tip o .		•									
Road	0, ,;	Cubic				ONE W	AY HAUL IN	MILES			Total
Segment	Stations	Yards	50 MPH	30	MPH			15 MPH	10 MPH	5 MPH	
2A to 2B	1.45	22				0.30	0.30	0.11	0.10	0.10	0.91
1A		22				0.30	0.30	0.20	0.13	0.13	1.06
1B		22				0.30	0.30	0.30	0.25	0.13	1.28
											1
											1
			-		-						
											i
											1
											1
TOTAL	1.45	66]								AVERAGE
	STA./NO.	CU. YD.	[HAUL
CUBIC YARD	WEIGHTED	HAUL				0.30	0.30	0.20	0.16	0.12	1.08
						A	verage Rour	nd Trip Dista	nce (miles)	2.17	

ROCK HAUL:

Truck type:	D20	No. trucks:			
Delay min.:	8	Efficiency:	85%	Ave haul: \$1.91	/cy
				Load: \$0.72	/cy
Truck type:	D12	No. trucks:	2	Spread: \$1.26	/cy
Delay min.:	6	Efficiency:	85%		
Truck type:	D10	No. trucks:		Production: cy/day =	663
Delay min.:	5	Efficiency:	85%		

CRUSHED ROCK HAUL COSTS

66 cy @ \$3.89 /cy

Seuss Split TIMBER CRUISE REPORT FY 2021

1. Sale Area Location: Portions of Sections 15 of T4N, R9W, W.M., Clatsop County, OR.

2. Fund Distribution:

BOF 100%

Tax Code: 8-01 (100%)

3. Sale Acreage by Area:

Unit	Harvest Type	Gross Acres	Stream Buffer Acres	Existing R/W Acres	New R/W Stocked	Net Acres	Survey Method
1	Partial Cut	24	2	0	0	22	GIS
2	Modified Clearcut	9	2	<1	<1	7	GIS
3	R/W	<1				<1	GIS
TOTALS		33	4	<1	<1	29	

4. Cruisers and Cruise Dates: Avery Petersen, Justin Bush, John Czarnecki, and Ryan Simpson (10/28/2020 – 10/29/2020)

5. Cruise Method and Computation:

<u>Unit 1</u>: Unit 1 was variable plot cruised with a 33.61 BAF. A total of 49 plots were sampled on a 1.5 by 3 chain spacing with a grade to count ratio of 1:2, resulting in 33 count plots and 15 grade plots. One grade plot was dropped. Due to no take trees present in some of the plots, the number of count and grade plots on the take tree statistics page (PC1_TK) do not equal those of the whole stand. However, the total number of plots on the take tree statistics page do equal that of the whole stand.

<u>Unit 2</u>: Unit 2 was variable plot cruised with a 54.45 BAF. A total of 25 plots were sampled on a 1 by 2.5 chain spacing with a grade to count ratio of 1:1, resulting in 12 count plots and 13 grade plots. One count plot and one grade plot were dropped.

Unit 3 (R/W): Right-of-way in Unit 2 totals less than one acre, of which less than half of an acre is stocked.

Data was collected on Allegro 2 data collectors and downloaded to the Atterbury SuperACE 2008 program for computing. See the attached Cruise Designs for more details on the cruise method. The cruise calculations were processed in the Astoria District office.

UNIT(s)	CRUISE	TRACT	TYPE	ACRES
1	SSPLIT	PC1	00PC	22
2	SSPLIT	MC1	00MC	7

6. Timber Description:

<u>Unit 1</u> is a partial cut with an average age of 59 years. The stand consist of Douglas-fir, western hemlock, and red alder, and minor components of Sitka spruce and western redcedar. Average take Douglas-fir is 15 inches DBH and 60 feet to a merchantable top. Average take western hemlock is 13 inches DBH and 40 feet to a merchantable top. Average take red alder is 15 inches DBH and 50 feet to a merchantable top. Average net volume to be harvested per acre is 15 MBF. All trees were cruised to a merchantable top of six inches DIB, 40% of form point, or an otherwise anticipated break point. The target basal area is 130 to 150 and the target SDI is 30%.

<u>Unit 2</u> is a modified clearcut with an average age of 78 years. The stand consist of Douglas-fir and minor components of western hemlock and red alder. Average Douglas-fir is approximately 21 inches DBH and 96 feet to a merchantable top. Average western hemlock is approximately 14 inches DBH and 32 feet to a merchantable top. Average red alder is approximately 16 inches DBH and 62 feet to a merchantable top.

Average net volume to be harvested per acre is 86 MBF. All trees were cruised to a merchantable top of six inches DIB, 40% of form point, or an otherwise anticipated break point.

Unit 3 (R/W) contains negligible volume similar to Units 1 and 2.

7. Statistical Analysis and Stand Summary:

Statistics for Stand B.F. volumes

Unit	Estimated CV	Target SE%	Actual CV	Actual SE%
1	60%	12%	34.9%	5.0%
2	50%	10%	30.9%	6.3%

8. Volumes by Species and Log Grade:

Volumes by Species and Grade for Units 1 & 2: (MBF) Volumes do not include "in-growth."

Conifer

Species	DBH	Net Vol.	2 Saw	3 Saw	4 Saw	% D & B	% Sale
Douglas-fir	19	686	472	195	19	0.4%	78%
Western hemlock	13	104	13	65	26	0.5%	12%
TOTALS		790	485	260	45		

Hardwood

Species	DBH	Net Vol.	12"+	10"-11"	8"-9"	6"-7"	% D & B	% Sale
Red alder	15	94	18	28	20	28	0.9%	10%
TOTALS		94	18	28	20	28		

TOTAL VOLUME	884 MBF
--------------	---------

9. Approvals:

Prepared by: _____ Ryan Simpson ____ Date: ____11/04/2020

Unit Forester Approval: 12/15/2020 Date: 12/15/2020

10. Attachments: Cruise Design and Map (6 pages)

Volume Reports (3 pages) Statistics Reports (7 pages) Stand Table Summary (2 pages) Log Stock Table (2 pages)

Stand Table Summary (Project) (2 pages)

CRUISE DESIGN ASTORIA DISTRICT

Sa	le Name: Seuss Split Unit 1
На	rvest Type: Partial Cut
Αp	prox. Cruise Acres: _22_ Estimated CV% _60_Net BF/Acre SE% Objective _12_ Net BF/Acre
Pla	anned Sale Volume : 315 MBF Estimated Sale Area Value/Acre: \$5400/Acre
A.	<u>Cruise Goals:</u> (a) Grade minimum <u>100</u> conifer trees (b) Sample <u>49</u> cruise plots (<u>16</u> grade/ <u>33</u> count); (c) Other goals (<u>Determine "automark" thinning standards; <u>X</u> Determine log grades for sale value; <u>X</u> Determine snag and leave tree species and sizes.</u>
B.	Cruise Design: 1. Plot Cruises: BAF 33.61 (Full point) Cruise Line Directions Unit 1: 90°/270°, Cruise Line Spacing 3 (chains) 198 (Feet) Cruise Plot Spacing 1.5 (chains) 99 (Feet) Grade/Count Ratio 1:2
	Take plots as marked on cruise map. All cedar will be reserved. Record all snags as SN.
	DO NOT RECORD 12', 22' and 32' (for Hardwoods).
	DO NOT RECORD 22' LENGTHS.
	DO NOT RECORD SNAGS UNDER 12" DBH; DO NOT RECORD SNAGS ON COUNT PLOTS.
	All hardwood will be measured to a G, or as appropriate.
	Mark trees with dbh > 40" as "leave". Mark all alder with dbh > 10" as "take".
	Mark at least 3 "leave" trees per plot.
	Mark all cedar as "leave".
	Mark all spruce as "leave".
	The target basal area for this PC is 130-150.

C. <u>Tree Measurements</u>:

1. Diameter: Minimum DBH to cruise is 8" for conifers and 8" for hardwoods.

Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.

- **2. Bole Length:** Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- **3.** Top Cruise Diameter (TCD): Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 20" dbh and 40% of dob @ FP for conifer trees > 20" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. Hardwoods shall be recorded in 8' and 10' multiples.

6. Species, Sort, and Grade Codes:

- A. <u>Species</u>: Record as D (Douglas-fir); H (western hemlock); S (Sitka Spruce); C (Western redcedar); NF (noble fir); SF (silver fir); A (red alder); M (bigleaf maple); SN (Snag). For "leave trees", add an "L" to the species code (such as DL, HL, CL, etc.)
- B. Sort: Use code "1" (Domestic).
- C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull Hardwoods: <u>Alder Grades</u>: 12" + = 1 Sawmill; 10"-12" = 2 Sawmill; 10"-8" = 3 Sawmill; and 8"-6" 4 Sawmill, 0 = Cull.

Grade oversized 3-SAW (DIB ≥ 12", knots > 2½" inside scaling cylinder affecting > 50% of log)

- **7. Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than Douglas-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Clinometer, Logger's Tape (with dbh on back), Compass, Allegro II Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.

10.Attachments: A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design	by: Ryan Simpson	
Approved by:	In Tube	
Date:	12/11/2020	_

CRUISE DESIGN ASTORIA DISTRICT

Sa	le Name: Seuss Split Unit 2
На	rvest Type: Modified Clearcut
٩p	prox. Cruise Acres: _7_ Estimated CV% _50_Net BF/Acre SE% Objective _10_ Net BF/Acre
Pla	anned Sale Volume : 245 MBF Estimated Sale Area Value/Acre: \$12,600/Acre
۷.	<u>Cruise Goals</u> : (a) Grade minimum100 conifer trees (b) Sample_27_ cruise plots (13 grade/ 14 count); (c) Other goals (Determine "automark" thinning standards;X Determine log grades for sale value; _X Determine snag and leave tree species and sizes.
3.	Cruise Design: 1. Plot Cruises: BAF _54.45(Full point) Cruise Line Directions Unit 1: 172°/352°, Cruise Line Spacing _2.5 (chains) _165 (Feet) Cruise Plot Spacing _1 (chains) _66 (Feet) Grade/Count Ratio _1:2
	Take plots as marked on cruise map. All cedar will be reserved. Record all snags as SN.
	DO NOT RECORD 12', 22' and 32' (for Hardwoods).
	DO NOT RECORD 22' LENGTHS.

DO NOT RECORD SNAGS UNDER 12" DBH; DO NOT RECORD SNAGS ON COUNT PLOTS.

All hardwood will be measured to a G, or as appropriate.

C. Tree Measurements:

- 1. Diameter: Minimum DBH to cruise is _8" for conifers and _8" for hardwoods.


 Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- **2. Bole Length:** Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- 3. Top Cruise Diameter (TCD): Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 20" dbh and 40% of dob @ FP for conifer trees > 20" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.

- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. Hardwoods shall be recorded in 8' and 10' multiples.
- 6. Species, Sort, and Grade Codes:
- A. <u>Species</u>: Record as D (Douglas-fir); H (western hemlock); S (Sitka Spruce); C (Western redcedar); NF (noble fir); SF (silver fir); A (red alder); M (bigleaf maple); SN (Snag). For "leave trees", add an "L" to the species code (such as DL, HL, CL, etc.)
- B. Sort: Use code "1" (Domestic).
- C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull Hardwoods: <u>Alder Grades</u>: 12" + = 1 Sawmill; 10"-12" = 2 Sawmill; 10"-8" = 3 Sawmill; and 8"-6" 4 Sawmill, 0 = Cull.

Grade oversized 3-SAW (DIB ≥ 12", knots > 2½" inside scaling cylinder affecting > 50% of log)

- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than Douglas-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with <u>blue/yellow</u> flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie <u>yellow</u> flagging above eye level near plot center and another <u>yellow</u> flagging around a sturdy wooden stake marking plot center. On each <u>yellow</u> flagging, write the plot identification number. Between plots, along the cruise line, tie <u>blue</u> flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in <u>yellow</u> paint. All trees on the plot may be marked this way, if the cruiser chooses.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Clinometer, Logger's Tape (with dbh on back), Compass, Allegro II Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10. Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design k	oy: Ryan Simpson	
Approved by: _	In Table	
Date:	12/11/2020	

TC	PSPCSTGR		S	pecies,	Sort G	rade - Bo	ard I	Foo	ot Vo	olume	es (P	roject	:)							
	04N R07W S1 04N R07W S1	-		7.00 22.00		Project: Acres	S	SSF	PLIT 29.0								Page Date Time	12	1 2/11/2 :06:0	020 1AM
		%					F	Perce	ent of	Net Bo	ard F	oot Volu	me				Avera	ige Lo	g	Logs
	S So Gr	Net	Bd. F	t. per Acre	e	Total		Lo	og Sca	ale Dia.			Log L	ength		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-:	5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
D D D	DO2S DO3S DO4S	68 29 3	.4 .5	16,345 6,769 666	16,272 6,736 666	1	72 95 19	7	1 100 93	36	63	0 3 41	0 8 57	2 15	97 74 2	39 35 22	16 8 6	424 97 25	2.26 0.76 0.41	38.4 69.7 26.4
D	Totals	78	.4	23,779	23,674	686 61	37	0	32	24	43	2	4	. 6	88	34	10	176	1.21	134.5
H H H	DO2S DO3S DO4S	12 63 25	4.0	467 2,238 882	448 2,238 882		13 55 26	1	28 100 99	72		82	72 17 17	1	28 83	34 37 18	11 8 6	91	1.49 0.74 0.41	3.3 24.7 44.9
Н	Totals	12	.5	3,587	3,568	104 +)3	0	91	9		20	24	0	56	25	7	49	0.64	72.9
A A A	DO1S DO2S DO3S DO4S	18 30 22 30	1.3 1.1 1.5	615 967 712 965 3,259	607 956 702 965	2	18 28 20 28	1 0	91 100 99 78	100 9		17	40 39 56 25	35 23 16 20	60 26 20 42	32 32 31 27	13 11 9 6	131 87 38	1.59 1.10 0.90 0.54	3.1 7.3 8.0 25.2 43.7
Tot			0.5	30,625	30,472	88	34	0	44	22	34	5	10	7	79	30	9	121	1.01	251.0

T ?	TSPCSTGR				Species,	Sort G Projec	rade - Boar t: SSP		oot V	olun	nes (T	ype)				D	age ate ime	12/8/2 12:30	
T04N Tw 04N			Sec	Tract IC1		Type 00M			Plot 25		_	e Tree 79	s	C 1	uFt	T04N BdFt W		W S15	Т00МС
			%					Per	cent N	Vet Bo	oard Fo	ot Vol	ume			Ave	rage L	og	Logg
Spp	S So Gr		Net BdFt	Bd. Def%	Ft. per Ac Gross	re Net	Total Net MBF	L 4-5	og Sc 6-11		a. 6 17+	Log	g Ler 21-30	_	36-99	Ln D Ft Ir			Logs Per /Acre
D	DO	2S	76	.4	65,090	64,835	454		1	33	66	0	0	2	97	39 1	6 4	45 2.3	3 145.8
D	DO	3S	22	.7	19,286	19,150	134		100			4	7	17	72	35	8	94 0.7	203.1
D	DO	4S	2		1,086	1,086	8	5	95			47	48		5	22	6	25 0.4	44.1
D	Totals		99	.5	85,462	85,072	596	0	25	25	50	2	2	5	90	35 1	1 21	6 1.3	392.9
A	DO	2S	36		368	368	3			100					100	40 1	2 2	00 1.3	1.8
A	DO	3S	55		564	564	4		100				34		66	34	9	91 0.8	6.2
A	DO	4S	9		87	87	1		100			100				15	7	20 0.4	5 4.4
A	Totals		1		1,019	1,019	7		64	36		9	19		73	28	8 8	2 0.8	12.4
Н	DO	4S	100		41	41	0	100						100		32	4	20 0.5	2.0
Н	Totals		0		41	41	0	100						100		32	4 2	0 0.5	2.0
Type T	Totals			.5	86,522	86,132	603	0	25	25	49	2	3	5	90	35 1	1 21	1.3	407.4

Т	TSPCSTG	R		;	Species,	Sort G Projec	rade - Boar t: SSP		ot V	olumes (T	Гуре)					Page Date Time	1	1 2/8/20 2:30:3	
T04N Tw 04N		e	Sec	Tract C1_TK		Type 00Pe			Plot	-	le Tree 44	s	C 1	uFt	T04 Bd2 W		.07W	S15 T	00PC
			%					Perc	ent N	let Board Fo	oot Vol	ume			A	verag	e Log		Logs
Spp		Gr ad	Net BdFt	Bd. Def%	Ft. per Ac Gross	re Net	Total Net MBF	Lc 4-5		ale Dia. 12-16 17+	Log	g Ler 21-30	_	36 - 99	Ln Ft	Dia In		CF/ Lf	Per /Acre
Н	DO	2S	12	4.0	720	691	15		28	72		72		28	34	11	136	1.49	5.1
Н	DO	3S	63		3,455	3,455	76		100			17		83	37	8	91	0.74	38.1
Н	DO	4S	25		1,345	1,345	30		100		83	17			18	6	20	0.41	68.6
Н	Totals		37	.5	5,520	5,491	121		91	9	20	24		56	25	7	49	0.64	111.8
A	DO	1S	20	1.3	949	937	21			100		40		60	32	13	194	1.59	4.8
A	DO	2S	29	1.2	1,355	1,338	29		100			43	39	19	31	11	127	1.08	10.6
A	DO	3S	19	1.8	890	873	19		100			62	29	9	31	9	87	0.90	10.1
A	DO	4S	32		1,456	1,456	32	1	99		15	26	16	43	27	6	39	0.54	37.3
A	Totals		31	1.0	4,650	4,605	101	0	79	20	5	40	22	33	29	8	73	0.79	62.7
D	DO	2S	19	1.8	977	960	21			100				100	40	12	196	1.43	4.9
D	DO	3S	68		3,261	3,261	72		100			11	11	78	37	9	102	0.82	32.0
D	DO	4S	13		623	623	14	8	92		37	63			22	6	26	0.42	24.3
D	Totals		32	.4	4,862	4,844	107	1	79	20	5	15	7	73	31	8	79	0.77	61.2
Type	Totals			.6	15,032	14,940	329	0	84	16	10	26	9	54	28	7	63	0.72	235.7

TC PS	TATS				OJECT :	STATI SSP				PAGE DATE	1 12/11/2020
TWP	RGE	SC TRAC	CT	TYPE		AC	CRES	PLOTS	TREES	CuFt	BdFt
04N	07	15 MC1		00MC			29.00	73	357	1	W
04N	07W	15 PC1_T	K	00PC	TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PLOTS	TREES		PER PLOT	,	TREES	,	TREES		
TOT	AI.	73	357		4.9						
CRU		23	123		5.3		3,838		3.2		
	COUNT						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
REF	OREST										
COU	INT	43	228		5.3						
BLA	NKS	7									
100 9	%										
				STA	AND SUM	MARY					
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
	JG FIR	85	56.9	19.0	82	25.7	112.2	23,779	23,674	5,509	5,509
	EMLOCK	12	48.4	12.5	40	11.7	41.4	3,587	3,568	1,181	1,181
	LDER	23	26.2	15.1	51	8.3	32.4	3,259	3,230	1,008	1,008
SNA		3	.8	25.1	54	0.5	2.6	20.625	20.452	5 5	5 40 5
TOT	AL	123	132.3	16.2	60	46.9	188.7	30,625	30,472	7,697	7,697
CL	68.1	COEF	OUT OF 100 7 	HE VOLU		E TREE			F OF TREES	REQ.	INF. POP.
SD:	1.0	VAR.	% S.E.%	I	LOW	AVG	HIGH		5	10	15
DOU	JG FIR	96.8	10.5		788	881	973				
	EMLOCK	79.2			75	98	122				
	LDER	53.0	11.3		126	142	158				
SNA TOT		122.9	11.1		573	645	716		603	151	67
CL	68.1	COEF			TREES				OF PLOTS		INF. POP.
SD:	1.0	VAR.		1	LOW	AVG	HIGH	1.	5	10	15
	JG FIR	115.7			49	57	65				
	EMLOCK	208.8			37	48					
R AL					31	40	60				
		209.4			20	26	60 33				
SNA	.G	209.4 472.4	24.5 55.2			26 1	33 1				
	.G		24.5 55.2		20	26	33		223	56	25
SNA	.G	472.4	24.5 55.2 8.7		20 0 121	26 1	33 1 144	#	223 # OF PLOTS		<i>25</i> INF. POP.
SNA TOT	G T AL	472.4 <i>74.7</i>	24.5 55.2 8.7		20 0 121	26 1 132	33 1 144	#			INF. POP.
SNA TOT CL SD: DOU	G FAL 68.1 1.0 JG FIR	472.4 74.7 COEF VAR. 113.9	24.5 55.2 8.7 FF % S.E.%		20 0 121 BASAL LOW 97	26 1 132 AREA /A AVG 112	33 1 144 ACRE HIGH 127	#	FOF PLOTS	REQ.	INF. POP.
SNA TOT CL SD: DOU WHE	GEAL 68.1 1.0 UG FIR EMLOCK	472.4 74.7 COEF VAR. 113.9 206.0	24.5 55.2 8.7 FF % S.E.% 13.3 24.1		20 0 121 BASAL LOW 97 31	26 1 132 AREA/A AVG 112 41	33 1 144 ACRE HIGH 127 51	<i>‡</i>	FOF PLOTS	REQ.	INF. POP.
SNA TOT CL SD: DOU WHE R AL	GEAL 68.1 1.0 UG FIR EMLOCK LDER	472.4 74.7 COEF VAR. 113.9 206.0 202.6	24.5 55.2 8.7 FF % S.E.% 13.3 24.1 5 23.7	1	20 0 121 BASAL LOW 97 31 25	26 1 132 AREA/A AVG 112 41 32	33 1 144 ACRE HIGH 127 51 40	#	FOF PLOTS	REQ.	INF. POP.
SNA TOT CL SD: DOU WHE R AL SNA	68.1 1.0 UG FIR EMLOCK LDER G	472.4 74.7 COEF VAR. 113.9 206.0 202.6 444.0	24.5 55.2 8.7 % S.E.% 13.3 24.1 5 23.7 5 1.9		20 0 121 BASAL LOW 97 31 25 1	26 1 132 AREA/A AVG 112 41 32 3	33 1 144 ACRE HIGH 127 51 40 4	#	FOF PLOTS	REO. 10	INF. POP.
SNA TOT CL SD: DOU WHE R AL SNA TOT	68.1 1.0 UG FIR EMLOCK LDER G	472.4 74.7 COEF VAR. 113.9 206.0 202.6 444.0 60.7	24.5 55.2 8.7 FF % S.E.% 13.3 24.1 5 23.7 51.9 7.1		20 0 121 BASAL LOW 97 31 25 1 175	26 1 132 AREA/A AVG 112 41 32 3 189	33 1 144 ACRE HIGH 127 51 40		FOF PLOTS 5	REQ. 10	INF. POP. 15
SNA TOT CL SD: DOU WHE R AL SNA TOT	68.1 1.0 JG FIR EMLOCK LDER G FAL 68.1	472.4 74.7 COEF VAR. 113.9 206.0 202.6 444.0 60.7 COEF	24.5 55.2 8.7 % S.E.% 13.3 24.1 5 23.7 5 1.9 7.1		20 0 121 BASAL LOW 97 31 25 1 175 NET BE	26 1 132 AREA/A AVG 112 41 32 3 189	33 1 144 ACRE HIGH 127 51 40 4 202		FOF PLOTS 5 147 FOF PLOTS	REQ. 10 37 REQ.	INF. POP. 15
SNA TOT CL SD: DOU WHE R AL SNA TOT CL SD:	68.1 1.0 JG FIR EMLOCK LDER G FAL 68.1 1.0	472.4 74.7 COEF VAR. 113.9 206.0 202.6 444.0 60.7 COEF	24.5 55.2 8.7 FF % S.E.% 13.3 24.1 5 23.7 5 1.9 7.1 FF % S.E.%		20 0 121 BASAL LOW 97 31 25 1 175 NET BE	26 1 132 AREA/A AVG 112 41 32 3 189 F/ACRE AVG	33 1 144 ACRE HIGH 127 51 40 4 202		FOF PLOTS 5	REQ. 10	INF. POP. 15
SNA TOT CL SD: DOU WHE R AL SNA TOT CL SD: DOU	68.1 1.0 UG FIR EMLOCK LDER GFAL 68.1 1.0 UG FIR	472.4 74.7 COEF VAR. 113.9 206.0 202.6 444.0 60.7 COEF VAR. 125.1	24.5 55.2 8.7 FF % S.E.% 13.3 24.1 5 23.7 5 1.9 7.1 FF % S.E.%		20 0 121 BASAL LOW 97 31 25 1 175 NET BE LOW 20,209	26 1 132 AREA/A AVG 112 41 32 3 189 F/ACRE AVG 23,674	33 1 144 ACRE HIGH 127 51 40 4 202 HIGH 27,138		FOF PLOTS 5 147 FOF PLOTS	REQ. 10 37 REQ.	INF. POP. 15
CL SD: DOU WHE R AL SD: DOU WHE SD: DOU WHE SD: DOU WHE	68.1 1.0 JG FIR EMLOCK LDER G FAL 68.1 1.0 JG FIR EMLOCK	472.4 74.7 COEF VAR. 113.9 206.0 202.6 444.0 60.7 COEF VAR. 125.1 207.9	24.5 55.2 8.7 FF % S.E.% 0 13.3 24.1 6 23.7 51.9 7.1 FF % S.E.% 14.6 24.3		20 0 121 BASAL LOW 97 31 25 1 175 NET BF LOW 20,209 2,700	26 1 132 AREA/A AVG 112 41 32 3 189 F/ACRE AVG 23,674 3,568	33 1 144 ACRE HIGH 127 51 40 4 202 HIGH 27,138 4,436		FOF PLOTS 5 147 FOF PLOTS	REQ. 10 37 REQ.	INF. POP. 15
CL SD: DOU WHE SNA TOT CL SD: DOU WHE R AL	68.1 1.0 JG FIR EMLOCK LDER G FAL 68.1 1.0 JG FIR EMLOCK LDER	472.4 74.7 COEF VAR. 113.9 206.0 202.6 444.0 60.7 COEF VAR. 125.1	24.5 55.2 8.7 FF % S.E.% 0 13.3 24.1 5 23.7 51.9 7.1 FF % S.E.% 14.6 24.3		20 0 121 BASAL LOW 97 31 25 1 175 NET BE LOW 20,209	26 1 132 AREA/A AVG 112 41 32 3 189 F/ACRE AVG 23,674	33 1 144 ACRE HIGH 127 51 40 4 202 HIGH 27,138		FOF PLOTS 5 147 FOF PLOTS	REQ. 10 37 REQ.	15 16
CL SD: DOU WHE SD: DOU WHE SD: DOU WHE	68.1 1.0 JG FIR EMLOCK LDER G FAL 68.1 1.0 JG FIR EMLOCK LDER G	472.4 74.7 COEF VAR. 113.9 206.0 202.6 444.0 60.7 COEF VAR. 125.1 207.9	24.5 55.2 8.7 % S.E.% 13.3 24.1 5 23.7 51.9 7.1 FF % S.E.% 14.6 24.3 24.1	1	20 0 121 BASAL LOW 97 31 25 1 175 NET BF LOW 20,209 2,700 2,451	26 1 132 AREA/A AVG 112 41 32 3 189 F/ACRE AVG 23,674 3,568	33 1 144 ACRE HIGH 127 51 40 4 202 HIGH 27,138 4,436		FOF PLOTS 5 147 FOF PLOTS	REQ. 10 37 REQ.	INF. POP. 15 16 INF. POP.

TC TST	ATS				ST PROJE	CT S	TICS SSPLIT			PAGE DATE 1	1 2/11/2020
TWP	RGE	SECT	TRACT		TYPE		RES	PLOTS	TREES	CuFt	BdFt
04N	07W	15	MC1		00MC		7.00	25	174	1	W
							ESTIMATED	P	ERCENT		
					TREES		TOTAL		AMPLE		
		PLOTS	TREES		PER PLOT	r	TREES	т	REES		
							TIGES		TCLU		
TOTA		25	174		7.0						
CRUI		13	79		6.1		1,112		7.1		
	COUNT										
REFO											
COUN	TV	12	89		7.4						
BLAN	IKS										
100 %	ó										
				STA	ND SUM	MARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOUG	G FIR	72	147.5	21.1	96	77.8	357.2	85,462	85,072	18,879	18,879
SNAC	j	3	3.2	25.1	54	2.2	10.9				
R ALI		3	6.2	16.0	62	2.2	8.7	1,019	1,019	312	312
	MLOCK	1		14.0	32	0.6	2.2	41	41	33	33
TOTA		79		20.9	93	82.9	379.0	86,522	86,132	19,223	
1017	AL.		130.9	20.9	93	02.9	3/9.0	00,322	00,132	19,223	19,223
CL:	68.1		OF THE SAMPI IT OF 100 THE FF						OF TREES	PEO	INE POP
CL: SD:		TIMES OU	T OF 100 THE	VOLUME		E WITHIN LE TREES AVG			OF TREES	REQ.	
SD:	68.1 % 68.1 % 1.0 G FIR	TIMES OU	T OF 100 THE FF .% S.E.%	VOLUME	SAMPI	LE TREES	S - BF			-	
SD:	68.1 % 68.1 % 1.0 G FIR	TIMES OU COE VAR	FF% S.E.% 2 10.1	VOLUME	SAMPI DW	LE TREES	S - BF HIGH			-	
SD: DOUG SNAG R ALI	68.1 % 68.1 % 1.0 G FIR	COE VAR 86.3	FF% S.E.% 2 10.1	VOLUME	SAMPI DW 905	AVG 1,007	S - BF HIGH 1,109			-	
SD: DOUG SNAG R ALI	68.1 % 1.0 G FIR G DER MLOCK	COE VAR 86.3	FF% S.E% 2 10.1 33.3	VOLUME	SAMPI DW 905	AVG 1,007	S - BF HIGH 1,109			-	1
SD: DOUG SNAG R ALI WHEN	68.1 % 1.0 G FIR DER MLOCK	COE VAR 86 48.	FF .% S.E.% 2 10.1 1 33.3 1 10.6	VOLUME	SAMPI DW 905 118 827	AVG 1,007 177 924	S - BF HIGH 1,109 236	#	353	88	3
SD: DOUG SNAG R ALI WHEN TOTA	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 %	COE VAR 86 48. 94.1	FF% S.E.% 2 10.1 1 33.3 1 10.6 FF	VOLUME	SAMPI DW 905 118 827 TREES	AVG 1,007 177 924 /ACRE	S - BF HIGH 1,109 236 1,022	#	5 353 OF PLOTS	88 REO.	3 INF. POP
SD: DOUG SNAG R ALI WHEI TOTA CL: SD:	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0	COE VAR 86 48. 94.1 COE VAR	FF% S.E.% 2 10.1 1 33.3 1 10.6 FF% S.E.%	VOLUME	SAMPI DW 905 118 827 TREES DW	AVG 1,007 177 924 /ACRE AVG	S - BF HIGH 1,109 236 1,022 HIGH	#	353	88	3 INF. POP
SD: DOUG SNAC R ALL WHEI TOTA CL: SD: DOUG	68.1 % 1.0 G FIR DER MLOCK AL 68.1 % 1.0 G FIR	COE VAR 48. 94.1 COE VAR 42.	FF% S.E.% 2 10.1 1 33.3 1 10.6 FF% S.E.% 7 8.7	VOLUME	SAMPI DW 905 118 827 TREES	AVG 1,007 177 924 /ACRE	S - BF HIGH 1,109 236 1,022	#	5 353 OF PLOTS	88 REO.	3 INF. POP
SD: DOUG SNAG R ALI WHEI TOTA CL: SD:	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G	COE VAR 48. 94.1 COE VAR 42.	FF% S.E.% 2 10.1 1 33.3 1 10.6 FF% S.E.% 7 8.7 7 54.6	VOLUME	SAMPI DW 905 118 827 TREES DW 135	AVG 1,007 177 924 /ACRE AVG 147	S - BF HIGH 1,109 236 1,022 HIGH 160	#	5 353 OF PLOTS	88 REO.	3 INF. POP
SD: DOUG SNAG R ALI WHEI TOTA CL: SD: DOUG SNAG R ALI	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER	COE VAR 48. 94.1 COE VAR 42.	FF% S.E.% 10.6 FF% S.E.% 7 8.7 7 54.6 1 48.8	VOLUME	SAMPI DW 905 118 827 TREES DW 135 1	AVG 1,007 177 924 /ACRE AVG 147 3	S - BF HIGH 1,109 236 1,022 HIGH 160 5	#	5 353 OF PLOTS	88 REO.	3 INF. POP
SD: DOUG SNAG R ALI WHEI TOTA CL: SD: DOUG SNAG R ALI WHEI	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK	COE VAR 86.2 48. 94.1 COE VAR 42.2 267.239. 500.0	FF% S.E.% 2 10.1 1 33.3 1 10.6 FF% S.E.% 7 8.7 7 54.6 1 48.8 0 102.0	VOLUME	SAMPI DW 905 118 827 TREES DW 135 1 3	AVG 1,007 177 924 /ACRE AVG 147 3 6 2	S - BF HIGH 1,109 236 1,022 HIGH 160 5 9	#	5 353 OF PLOTS 5	88 REO.	3 INF. POP
SD: DOUG SNAG R ALI WHEI TOTA CL: SD: DOUG SNAG R ALI WHEI TOTA	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK	COE VAR 86 48. 94. I COE VAR 42 267 239.	FF% S.E.% 2 10.1 1 33.3 4 10.6 FF% S.E.% 7 8.7 7 54.6 1 48.8 0 102.0 0 6.9	VOLUME	SAMPI DW 905 118 827 TREES DW 135 1 3	AVG 1,007 177 924 /ACRE AVG 147 3 6 2 159	S - BF HIGH 1,109 236 1,022 HIGH 160 5 9 4 170	#	5 353 OF PLOTS 5	88 REO. 10	S INF. POP
SD: DOUG SNAG R ALI WHEI TOTA CL: DOUG SNAG R ALI WHEI TOTA CL:	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 68.1 %	COE VAR 48. 94.1 COE VAR 42. 267. 239. 500. 34.6 COE	FF% S.E.% 2 10.1 1 33.3 1 10.6 FF% S.E.% 7 8.7 7 54.6 1 48.8 10 102.0 0 6.9 FF	Lo	SAMPI DW 905 118 827 TREES DW 135 1 3	AVG 1,007 177 924 /ACRE AVG 147 3 6 2 159 AREA/A	S - BF HIGH 1,109 236 1,022 HIGH 160 5 9 4 170	#	5 353 OF PLOTS 5	88 REO. 10	INF. POP
SD: DOUG SNAG R ALI WHEI TOTA CL: SD: DOUG SNAG R ALI WHEI TOTA	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.1 68.1 % 1.1 68.1 %	COE VAR 86 48. 94.1 COE VAR 42.: 267. 239. 500.: 34.6	FF% S.E.% 10.6 FF% S.E.% 2 10.1 1 33.3 7 10.6 FF% S.E.% 7 8.7 7 54.6 1 48.8 10 102.0 0 6.9 FF% S.E.%	Lo	SAMPI DW 905 118 827 TREES DW 135 1 3 148 BASAL	AVG 1,007 177 924 /ACRE AVG 147 3 6 2 159	S - BF HIGH 1,109 236 1,022 HIGH 160 5 9 4 170 CRE	#	5 353 OF PLOTS 5	88 REO. 10	JINF. POP
SD: DOUG SNAG R ALI WHEI TOTA CL: SD: DOUG SNAG R ALI WHEI TOTA CL: SD:	68.1 % 1.0 G FIR 3 DER MLOCK AL 68.1 % 1.0 G FIR 68.1 % 1.0 G FIR 68.1 % 1.0 G FIR	COE VAR 48. 94.1 COE VAR 42. 267. 239. 500. 34.0 COE VAR	FF% S.E.% 10.6 FF% S.E.% 7 8.7 7 54.6 1 48.8 0 102.0 0 6.9 FF% S.E.% 0 6.7	Lo	SAMPI DW 905 118 827 TREES DW 135 1 3 148 BASAL	AVG 1,007 177 924 /ACRE AVG 147 3 6 2 159 AREA/A AVG	S - BF HIGH 1,109 236 1,022 HIGH 160 5 9 4 170 CRE HIGH	#	5 353 OF PLOTS 5	88 REO. 10	JINF. POP
SD: DOUG SNAG R ALI WHEI TOTA CL: SD: DOUG SNAG R ALI WHEI TOTA CL: SD: DOUG	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G	COE VAR 48. 94.1 COE VAR 42. 267. 239. 500. 34.0 COE VAR 33.	FF% S.E.% 10.6 FF% S.E.% 7 8.7 7 54.6 1 48.8 0 102.0 0 6.9 FF% S.E.% 0 6.7 0 51.0	Lo	SAMPI DW 905 118 827 TREES DW 135 1 3 148 BASAL	AVG 1,007 177 924 /ACRE AVG 147 3 6 2 159 AREA/A AVG 357	S - BF HIGH 1,109 236 1,022 HIGH 160 5 9 4 170 CRE HIGH 381	#	5 353 OF PLOTS 5	88 REO. 10	JINF. POP
SD: DOUG SNAG R ALI WHEN TOTA CL: SD: DOUG SNAG R ALI WHEN TOTA CL: SD: DOUG SNAG R ALI R ALI	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G	COE VAR 48. 94.1 COE VAR 42. 267. 239. 500. 34.0 COE VAR 33. 250.	FF% S.E.% 10.6 FF% S.E.% 7 8.7 7 54.6 1 48.8 0 102.0 0 6.9 FF% S.E.% 0 6.7 0 51.0 9 47.7	Lo	SAMPI DW 905 118 827 TREES DW 135 1 3 148 BASAL DW 333 5	AVG 1,007 177 924 /ACRE AVG 147 3 6 2 159 AREA/A AVG 357 11	S - BF HIGH 1,109 236 1,022 HIGH 160 5 9 4 170 CRE HIGH 381 16	#	5 353 OF PLOTS 5	88 REO. 10	INF. POP
SD: DOUG SNAG R ALI WHEN TOTA CL: SD: DOUG SNAG R ALI WHEN TOTA CL: SD: DOUG SNAG R ALI R ALI	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK	COE VAR 48. 94.1 COE VAR 42. 267. 239. 500. 34.0 COE VAR 33. 250. 233.	FF% S.E.% 10.6 FF% S.E.% 7 8.7 7 54.6 1 48.8 0 102.0 0 6.9 FF% S.E.% 0 6.7 0 51.0 9 47.7	Lo	SAMPI DW 905 118 827 TREES DW 135 1 3 148 BASAL DW 333 5	AVG 1,007 177 924 /ACRE AVG 147 3 6 2 159 AREA/A AVG 357 11 9	S - BF HIGH 1,109 236 1,022 HIGH 160 5 9 4 170 CRE HIGH 381 16 13	#	5 353 OF PLOTS 5	88 REO. 10	3 INF. POP
SD: DOUG SNAG R ALI WHEI TOTA CL: SD: DOUG SNAG R ALI WHEI TOTA CL: SD: TOTA TOTA TOTA TOTA	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK	COE VAR 48. 94.1 COE VAR 42. 267. 239. 500. 34.0 COE VAR 33. 250. 233.	FF .% S.E.% 2 10.1 1 33.3 7 10.6 FF .% S.E.% 7 8.7 7 54.6 1 48.8 0 102.0 0 6.9 FF .% S.E.% 0 6.7 0 51.0 9 47.7 0 102.0 7 5.3	Lo	SAMPI DW 905 118 827 TREES DW 135 1 3 148 BASAL DW 333 5 5	AVG 1,007 177 924 /ACRE AVG 147 3 6 2 159 AREA/A AVG 357 11 9 2 379	S - BF HIGH 1,109 236 1,022 HIGH 160 5 9 4 170 CRE HIGH 381 16 13 4	#	5 353 OF PLOTS 5 48 OF PLOTS 5	88 REO. 10 12 REO. 10	INF. POP
SD: DOUG SNAG R ALI WHEI TOTA CL: SD: DOUG SNAG R ALI WHEI TOTA CL: SD: CL: CL: CL: CCL: CCL: CCL: CCL: CCL:	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 %	COE VAR 48. 94.1 COE VAR 42. 267. 239. 500. 34.0 COE VAR 33. 250. 26.1 COE	FF% S.E.% 10.6 FF% S.E.% 7 8.7 7 54.6 1 48.8 0 102.0 0 6.9 FF% S.E.% 0 6.7 0 51.0 9 47.7 0 102.0 7 5.3	Lo	SAMPI DW 905 118 827 TREES DW 135 1 3 148 BASAL DW 333 5 5	AVG 1,007 177 924 /ACRE AVG 147 3 6 2 159 AREA/A AVG 357 11 9 2 379 F/ACRE	S - BF HIGH 1,109 236 1,022 HIGH 160 5 9 4 170 CRE HIGH 381 16 13 4	#	5 353 OF PLOTS 5 48 OF PLOTS 5	88 REO. 10 12 REO. 10	INF. POP
SD: DOUG SNAG R ALI WHEI TOTA CL: SD: DOUG SNAG R ALI WHEI TOTA CL: SD: TOTA TOTA TOTA TOTA	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL	COE VAR 48. 94.1 COE VAR 42. 267. 239. 500. 34.0 COE VAR 33.0 250.0 26.1	FF% S.E.% 10.6 FF% S.E.% 2 10.1 1 33.3 7 10.6 FF% S.E.% 7 8.7 7 54.6 1 48.8 10 102.0 0 6.9 FF% S.E.% 102.0 0 6.7 0 51.0 9 47.7 0 102.0 7 5.3 FF% S.E.%	Lo	SAMPI DW 905 118 827 TREES DW 135 1 3 148 BASAL DW 333 5 5 5	AVG 1,007 177 924 /ACRE AVG 147 3 6 2 159 AREA/A AVG 357 11 9 2 379	S - BF HIGH 1,109 236 1,022 HIGH 160 5 9 4 170 CRE HIGH 381 16 13 4 399	#	5 353 OF PLOTS 5 48 OF PLOTS 5	88 REO. 10 12 REO. 10	3 INF. POP
SD: DOUG SNAG R ALI WHEN TOTA CL: SD: DOUG SNAG R ALI WHEN TOTA CL: SD: CL: SD: CL: SNAG R ALI WHEN TOTA CL: SNAG R ALI WHEN TOTA CL: SNAG R ALI WHEN TOTA	68.1 % 1.0 G FIR	COE VAR 48. 94.1 COE VAR 42. 267. 239. 500. 34.0 COE VAR 33. 250. 26.1 COE VAR	FF% S.E.% 10.6 FF% S.E.% 2 10.1 1 33.3 7 10.6 FF% S.E.% 7 8.7 7 54.6 1 48.8 10 102.0 0 6.9 FF% S.E.% 102.0 0 6.7 0 51.0 9 47.7 0 102.0 7 5.3 FF% S.E.%	Lo	SAMPI DW 905 118 827 TREES DW 135 1 3 148 BASAL DW 333 5 5 5 7	AVG 1,007 177 924 /ACRE AVG 147 3 6 2 159 AREA/A AVG 357 11 9 2 379 F/ACRE AVG	S - BF HIGH 1,109 236 1,022 HIGH 160 5 9 4 170 CRE HIGH 381 16 13 4 399 HIGH	#	5 353 OF PLOTS 5 48 OF PLOTS 5	88 REO. 10 12 REO. 10	INF. POP
SD: DOUG SNAG R ALI WHEN TOTA CL: SD: DOUG SNAG R ALI WHEN TOTA CL: SD: DOUG SNAG R ALI WHEN TOTA CL: SD: DOUG SNAG R ALI WHEN TOTA	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 %	COE VAR 48. 94.1 COE VAR 42. 267. 239. 500. 34.0 COE VAR 33. 250. 26.1 COE VAR	FF% S.E.% 10.6 FF% S.E.% 7 8.7 7 54.6 1 48.8 0 102.0 0 6.9 FF% S.E.% 0 6.7 0 51.0 9 47.7 0 102.0 7 5.3 FF% S.E.% 5.6.6	Lo	SAMPI DW 905 118 827 TREES DW 135 1 3 148 BASAL DW 333 5 5 5 7	AVG 1,007 177 924 /ACRE AVG 147 3 6 2 159 AREA/A AVG 357 11 9 2 379 F/ACRE AVG	S - BF HIGH 1,109 236 1,022 HIGH 160 5 9 4 170 CRE HIGH 381 16 13 4 399 HIGH 90,717 1,524	#	5 353 OF PLOTS 5 48 OF PLOTS 5	88 REO. 10 12 REO. 10	INF. POP
SD: DOUG SNAG R ALI WHEI TOTA CL: SD: DOUG R ALI WHEI TOTA	68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 % 1.0 G FIR G DER MLOCK AL 68.1 %	COE VAR 48. 94.1 COE VAR 42. 267. 239. 500. 34.0 COE VAR 33. 500. 26.1 COE VAR 32.	FF% S.E.% 10.6 FF% S.E.% 7 8.7 7 54.6 1 48.8 0 102.0 0 6.9 FF% S.E.% 0.0 1.0.0 6.7 0 51.0 9 47.7 0 102.0 7 5.3 FF% S.E.% 5.66 8 49.5 0 102.0	Lo Lo	SAMPI DW 905 118 827 TREES DW 135 1 3 148 BASAL DW 333 5 5 5 MET BI DW 9,426 515	AVG 1,007 177 924 /ACRE AVG 147 3 6 2 159 AREA/A AVG 357 11 9 2 379 F/ACRE AVG 85,072	S - BF HIGH 1,109 236 1,022 HIGH 160 5 9 4 170 CRE HIGH 381 16 13 4 399 HIGH 90,717	#	5 353 OF PLOTS 5 48 OF PLOTS 5	88 REO. 10 12 REO. 10	INF. POP

	TATS				ST PROJE	CT S	ICS SSPLIT			PAGE DATE	1 12/11/2020
TWP	RGE	SECT T	RACT		TYPE	AC	RES	PLOTS	TREES	CuFt	BdFt
04N	07W	15 P	C1 TK		00PC		22.00	48	183	1	W
]	ESTIMATED	P	ERCENT		
					TREES	,	TOTAL	S	AMPLE		
		PLOTS	TREES		PER PLOT		TREES	T	REES		
TOTA	AL.	48	183		3.8						
CRUI	ISE	10	44		4.4		2,725		1.6		
DBH	COUNT										
REFC	DREST										
COU	NT	31	139		4.5						
BLAN	VKS	7									
100 %	6										
				STA	ND SUM	MARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
WHE	MLOCK	11	63.2	12.5	40	15.2	53.9	4,715	4,690	1,546	1,546
R AL		20	32.5	15.0	50	10.3	39.9	3,972	3,933	1,230	
	G FIR	13	28.1	15.0	60	8.9	34.3	4,153	4,138	1,255	1
TOTA		44	123.9	13.8	47	34.5	128.1	12,840	12,762	4.030	*
	68.1	TIMES OUT									
CL:	68.1 %	TIMES OUT	OF 100 THE	VOLUME	SAMPI	LE TREES	6 - BF		OF TREES		INF. POP.
CL: SD:	68.1 % 1.0	COEFF VAR.%	OF 100 THE S.E.%	VOLUME	SAMPI OW	LE TREES	S - BF HIGH		OF TREES	S REO. 10	INF. POP.
CL: SD: WHE	68.1 % 68.1 % 1.0 MLOCK	COEFF VAR.%	OF 100 THE S.E.% 23.2	VOLUME	SAMPI OW 81	LE TREES AVG 105	S - BF HIGH 130				
CL: SD: WHE R AL	68.1 % 68.1 % 1.0 MLOCK DER	COEFF VAR.% 73.5 54.6	OF 100 THE S.E.% 23.2 12.5	VOLUME	SAMPI OW 81 120	AVG 105 137	S - BF HIGH 130 154				
CL: SD: WHE R AL	68.1 68.1 % 1.0 MLOCK DER G FIR	COEFF VAR.%	OF 100 THE S.E.% 23.2	VOLUME	SAMPI OW 81	LE TREES AVG 105	S - BF HIGH 130				
CL: SD: WHE R AL DOUG	68.1 % 1.0 MLOCK DER G FIR AL	COEFF VAR.% 73.5 54.6 57.0 61.8	OF 100 THE S.E.% 23.2 12.5 16.4 3.3	VOLUME	SAMPI OW 81 120 153 129	AVG 105 137 183 143	6 - BF HIGH 130 154 213	#	5 152	38	15
CL: SD: WHE R AL DOUG TOT.	68.1 % 1.0 MLOCK DER G FIR AL 68.1 %	COEFF VAR.% 79.5 54.6 57.0 61.8 COEFF	OF 100 THE S.E.% 23.2 12.5 16.4 9.3	VOLUME L	SAMPI OW 81 120 153 129 TREES	AVG 105 137 183 143 /ACRE	S - BF HIGH 130 154 213 156	#	5 152 OF PLOTS	38 S REQ.	15 17 INF. POP.
CL: SD: WHE R AL: DOUG TOTA CL: SD:	68.1 % 1.0 MLOCK DER G FIR AL	COEFF VAR.% 73.5 54.6 57.0 61.8	OF 100 THE S.E.% 23.2 12.5 16.4 9.3	VOLUME L	SAMPI OW 81 120 153 129	AVG 105 137 183 143	6 - BF HIGH 130 154 213	#	5 152	38	15 17 INF. POP.
CL: SD: WHE R AL: DOUG TOTA CL: SD:	68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0 MLOCK	COEFF VAR.% 55,5 54,6 57,0 61.8 COEFF VAR.%	OF 100 THE S.E.% 23.2 12.5 16.4 9.3 S.E.%	VOLUME L	SAMPI OW 81 120 153 129 TREES OW	AVG 105 137 183 143 /ACRE AVG	S - BF HIGH 130 154 213 156 HIGH	#	5 152 OF PLOTS	38 S REQ.	15 17 INF. POP.
CL: SD: WHE R AL DOUG TOT CL: SD: WHE R AL	68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0 MLOCK	COEFF VAR.% 18.5 54.6 57.0 61.8 COEFF VAR.% 161.4	OF 100 THE S.E.% 23.2 12.5 16.4 9.3 S.E.% 23.3	VOLUME L	SAMPI OW 81 120 153 129 TREES OW 48	AVG 105 137 183 143 /ACRE AVG 63	S - BF HIGH 130 154 213 156 HIGH 78	#	5 152 OF PLOTS	38 S REQ.	15
CL: SD: WHE R AL DOUG TOT CL: SD: WHE R AL	68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0 MLOCK DER G FIR	COEFF VAR.% 18.5 54.6 57.0 61.8 COEFF VAR.% 161.4 171.9	S.E.% 23.2 12.5 16.4 9.3 S.E.% 23.3 24.8	VOLUME L	SAMPI OW 81 120 153 129 TREES OW 48 24	AVG 105 137 183 143 /ACRE AVG 63 33	S - BF HIGH 130 154 213 156 HIGH 78 41	#	5 152 OF PLOTS	38 S REQ.	15 17 INF. POP.
CL: SD: WHE R AL. DOUG TOT. CL: SD: WHE R AL. DOUG TOT.	68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 68.1 %	COEFF VAR.% 18.5 54.6 57.0 61.8 COEFF VAR.% 161.4 171.9 191.3 82.5 COEFF	S.E.% 23.2 12.5 16.4 9.3 S.E.% 23.3 24.8 27.6 11.9	VOLUME L	SAMPI OW 81 120 153 129 TREES OW 48 24 20 109	AVG 105 137 183 143 /ACRE AVG 63 33 28 124 AREA/A	S - BF HIGH 130 154 213 156 HIGH 78 41 36 139	#	5 152 OF PLOTS 5	38 S REQ. 10	15 17 INF. POP.
CL: SD: WHE R AL. DOUG TOT. CL: SD: WHE R AL. DOUG TOT. CL: SD:	68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0 1.0	COEFF VAR.% 18.5 54.6 57.0 61.8 COEFF VAR.% 161.4 171.9 191.3 82.5 COEFF VAR.%	S.E.% 23.2 12.5 16.4 23.3 24.8 27.6 11.9 S.E.%	L	SAMPI OW 81 120 153 129 TREES OW 48 24 20 109 BASAL OW	AVG 105 137 183 143 /ACRE AVG 63 33 28 124 AREA/A AVG	S - BF HIGH 130 154 213 156 HIGH 78 41 36 139	#	5 152 OF PLOTS 5	38 S REQ. 10	15 INF. POP. 15 30 INF. POP.
CL: SD: WHE R AL. DOUG TOT. CL: SD: WHE R AL. DOUG TOT. CL: SD: WHE	68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0 MLOCK DER MLOCK DER MLOCK DER MLOCK DER MLOCK DER MLOCK DER MLOCK	COEFF VAR.% 18.5 54.6 57.0 61.8 COEFF VAR.% 161.4 171.9 191.3 82.5 COEFF VAR.%	S.E.% 23.2 12.5 16.4 9.3 S.E.% 23.3 24.8 27.6 11.9 S.E.% 23.0	L	SAMPI OW 81 120 153 129 TREES OW 48 24 20 109 BASAL OW 42	AVG 105 137 183 143 /ACRE AVG 63 33 28 124 AREA/A AVG 54	S - BF HIGH 130 154 213 156 HIGH 78 41 36 139 CRE HIGH	#	5 152 OF PLOTS 5 272 OF PLOTS	38 S REQ. 10 68 S REQ.	15 17 INF. POP. 15
CL: SD: WHE R AL DOUG TOT. CL: SD: WHE R AL DOUG TOT. CL: SD: WHE R AL	68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0	COEFF VAR.% 18.5 54.6 57.0 61.8 COEFF VAR.% 161.4 171.9 191.3 82.5 COEFF VAR.% 159.4 167.2	S.E.% 23.2 12.5 16.4 9.3 S.E.% 23.3 24.8 27.6 11.9 S.E.% 23.0 24.1	L	SAMPI OW 81 120 153 129 TREES OW 48 24 20 109 BASAL OW 42 30	AVG 63 33 28 AVG AVG 63 34 AVG AVG 54 40	S - BF HIGH 130 154 213 156 HIGH 78 41 36 139 CRE HIGN	#	5 152 OF PLOTS 5 272 OF PLOTS	38 S REQ. 10 68 S REQ.	15 17 INF. POP. 15 30 INF. POP.
CL: SD: WHE R AL. DOUG SD: WHE R AL. DOUG TOT. CL: SD: WHE R AL. DOUG TOT.	68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0	COEFF VAR.% 78.5 54.6 57.0 61.8 COEFF VAR.% 161.4 171.9 191.3 82.5 COEFF VAR.% 159.4 167.2 192.2	S.E.% 23.2 12.5 16.4 9.3 S.E.% 23.3 24.8 27.6 11.9 S.E.% 23.0 24.1 27.7	L	SAMPI OW 81 120 153 129 TREES OW 48 24 20 109 BASAL OW 42 30 25	AVG 63 33 28 AVG AVG 63 33 28 AVG AVG 54 40 34	S - BF HIGH 130 154 213 156 HIGH 78 41 36 139 CRE HIGN 66 50 44	#	5 152 OF PLOTS 5 272 OF PLOTS 5	38 S REQ. 10 68 S REQ. 10	15 17 INF. POP. 15 30 INF. POP. 15
CL: SD: WHE R AL. DOUG TOT. CL: SD: WHE R AL. DOUG TOT. CL: SD: WHE TOT. CL: TOT.	68.1 68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0 MLOCK DER G FIR AL 68.1 % 1.0 MLOCK DER G FIR AL	COEFF VAR.% 78.5 54.6 57.0 61.8 COEFF VAR.% 161.4 171.9 191.3 82.5 COEFF VAR.% 159.4 167.2 192.2 76.1	S.E.% 23.2 12.5 16.4 9.3 S.E.% 23.3 24.8 27.6 11.9 S.E.% 23.0 24.1 27.7 11.0	L	SAMPI OW 81 120 153 129 TREES OW 48 24 20 109 BASAL OW 42 30 25 114	AVG AVG 105 137 183 143 /ACRE AVG 63 33 28 28 AVG 40 34 128	S - BF HIGH 130 154 213 156 HIGH 78 41 36 139 CRE HIGN	#	5 152 OF PLOTS 5 272 OF PLOTS 5	38 S REQ. 10 68 S REQ. 10	15 17 INF. POP. 15 30 INF. POP. 15
CL: SD: WHE R AL DOUG TOT. CL: SD: WHE R AL DOUG TOT. CL: SD: WHE CL: CL: CL: CL:	68.1 % 1.0 MLOCK DER G FIR AL 68.1 %	COEFF VAR.% 18.5 54.6 57.0 61.8 COEFF VAR.% 161.4 171.9 191.3 82.5 COEFF VAR.% 159.4 167.2 192.2 76.1 COEFF	S.E.% 23.2 12.5 16.4 33 S.E.% 23.3 24.8 27.6 11.9 S.E.% 23.0 24.1 27.7 11.0	L	SAMPI OW 81 120 153 129 TREES OW 48 24 20 109 BASAL OW 42 30 25 114 NET BI	AVG 63 33 28 AVG AVG 63 33 28 AVG AVG 54 40 34 128	S - BF HIGH 130 154 213 156 HIGH 78 41 36 139 CRE HIGN 66 50 44 142	#	5 152 OF PLOTS 5 272 OF PLOTS 5	38 S REQ. 10 68 S REQ. 10 58 S REQ.	15 17 INF. POP. 15 26 INF. POP.
CL: SD: WHE R AL. DOUG TOT. CL: SD: WHE R AL. DOUG TOT. CL: SD: WHE R AL. DOUG TOT. CL: SD:	68.1 % 1.0 MLOCK DER G FIR AL	COEFF VAR.% 18.5 54.6 57.0 61.8 COEFF VAR.% 161.4 171.9 191.3 82.5 COEFF VAR.% 159.4 167.2 192.2 76.1 COEFF VAR.%	S.E.% 23.2 12.5 16.4 23.3 24.8 27.6 11.9 5 S.E.% 23.0 24.1 27.7 11.0 5 S.E.%	L L	SAMPI OW 81 120 153 129 TREES OW 48 24 20 109 BASAL OW 42 30 25 114 NET BIOW	AVG 105 137 183 143 /ACRE AVG 63 33 28 124 AVG 54 40 34 128 F/ACRE AVG	S - BF HIGH 130 154 213 156 HIGH 78 41 36 139 CRE HIGN 66 50 44 142 HIGH	#	5 152 OF PLOTS 5 272 OF PLOTS 5	38 S REQ. 10 68 S REQ. 10	15 17 INF. POP. 15 30 INF. POP. 15
CL: SD: WHE R AL DOUG TOT. CL: SD:	68.1 % 1.0 MLOCK DER G FIR AL	COEFF VAR.% 18.5 54.6 57.0 61.8 COEFF VAR.% 161.4 171.9 191.3 82.5 COEFF VAR.% 159.4 167.2 192.2 76.1 COEFF VAR.%	S.E.% 23.2 12.5 16.4 9.3 S.E.% 23.3 24.8 27.6 11.9 S.E.% 23.0 24.1 27.7 11.0 S.E.% 23.0	L	SAMPI OW 81 120 153 129 TREES OW 48 24 20 109 BASAL OW 42 30 25 114 NET BI OW 3,614	AVG 105 137 183 143 /ACRE AVG 63 33 28 124 ANG 54 40 34 128 F/ACRE AVG 4,690	S - BF HIGH 130 154 213 156 HIGH 78 41 36 139 SRE HIGN 66 50 44 142 HIGH 5,767	#	5 152 OF PLOTS 5 272 OF PLOTS 5	38 S REQ. 10 68 S REQ. 10 58 S REQ.	15 17 INF. POP. 15 26 INF. POP.
CL: SD: WHE R AL DOUG TOT.	68.1 % 1.0 MLOCK DER G FIR AL	COEFF VAR.% 18.5 54.6 57.0 61.8 COEFF VAR.% 161.4 171.9 191.3 82.5 COEFF VAR.% 159.4 167.2 192.2 76.1 COEFF VAR.%	S.E.% 23.2 12.5 16.4 9.3 S.E.% 23.3 24.8 27.6 11.9 S.E.% 23.0 24.1 27.7 11.0 S.E.% 23.0 24.9	L	SAMPI OW 81 120 153 129 TREES OW 48 24 20 109 BASAL OW 42 30 25 114 NET BI OW 3,614 2,954	AVG 105 137 183 143 /ACRE AVG 63 33 28 124 AREA/A AVG 54 40 34 128 F/ACRE AVG 4,690 3,933	S - BF HIGH 130 154 213 156 HIGH 78 41 36 139 SRE HIGN 66 50 44 142 HIGH 5,767 4,913	#	5 152 OF PLOTS 5 272 OF PLOTS 5	38 S REQ. 10 68 S REQ. 10 58 S REQ.	15 17 INF. POP. 15 26 INF. POP.
CL: SD: WHE R AL. DOUG TOT. CL: SD: WHE R AL. DOUG TOT. CL: SD: WHE R AL. DOUG TOT. CL: SD: WHE R AL.	68.1 % 1.0 MLOCK DER G FIR AL	COEFF VAR.% 18.5 54.6 57.0 61.8 COEFF VAR.% 161.4 171.9 191.3 82.5 COEFF VAR.% 159.4 167.2 192.2 76.1 COEFF VAR.%	S.E.% 23.2 12.5 16.4 9.3 S.E.% 23.3 24.8 27.6 11.9 S.E.% 23.0 24.1 27.7 11.0 S.E.% 23.0	L	SAMPI OW 81 120 153 129 TREES OW 48 24 20 109 BASAL OW 42 30 25 114 NET BI OW 3,614 2,954 2,987	AVG 105 137 183 143 /ACRE AVG 63 33 28 124 ANG 54 40 34 128 F/ACRE AVG 4,690	S - BF HIGH 130 154 213 156 HIGH 78 41 36 139 SRE HIGN 66 50 44 142 HIGH 5,767	#	5 152 OF PLOTS 5 272 OF PLOTS 5	38 S REQ. 10 68 S REQ. 10 58 S REQ.	15 17 INF. POP. 15 30 INF. POP. 15

TC TSTATS					ATIST					1
				PROJEC		SPLIT				2/8/2020
TWP RGE		RACT		TYPE	AC]		PLOTS	TREES	CuFt	BdFt
04N 07W	15 PC	C1 WHOLE		00PC		22.00	48	404	l	W
						ESTIMATED		ERCENT		
	DI OTTO	mp.c.c.c		TREES	7	TOTAL		AMPLE		
mom + r	PLOTS	TREES		PER PLOT		TREES	1	REES		
TOTAL CRUISE	48 15	404 124		8.4 8.3		3,588		3.5		
DBH COUNT	13	127		0.5		5,500		5.5		
REFOREST										
COUNT	33	280		8.5						
BLANKS										
100 %					*					
			STA	ND SUM	MARY					
	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
HEMLEAV	39	17.2	27.0	86	13.2	68.6	13,600	13,198	3,215	3,215
WHEMLOCK	11	63.2	12.5	40	15.2	53.9	4,715	4,690	1,546	1,546
SPRUCELV	14 20	5.3 32.5	37.4 15.0	76 50	6.6 10.3	40.6 39.9	9,420 3,972	8,997	1,970	1,929
R ALDER DOUGLEAV	18	32.3 11.8	23.3	84	7.3	35.0	6,652	3,933 6,639	1,230 1,599	1,230 1,599
DOUGLEAV DOUG FIR	13	28.1	15.0	60	8.9	34.3	4,153	4,138	1,255	1,255
CEDLEAV	3	1.0	32.9	52	1.0	5.6	728	666	187	187
SNAG	5	2.6	17.3	61	1.0	4.2				
ALDRLEAV	1	1.3	10.0	56	0.2	.7	116	116	30	30
TOTAL	124	163.1	17.8	55	67.0	282.9	43,355	42,377	11,031	10,990
		THE SAMPLI								
68.1 CL: 68.1 %	TIMES OUT (WITHIN E TREES			OF TREES	REO.	INF. POP.
	TIMES OUT	OF 100 THE \ S.E.%	OLUME L	SAMPL OW	E TREES	S - BF HIGH		OF TREES	REO. 10	INF. POP.
CL: 68.1 % SD: 1.0 HEMLEAV	COEFF VAR.% 92.2	OF 100 THE V S.E.% 14.8	OLUME L	SAMPL OW 1,018	E TREES AVG 1,194	S - BF HIGH 1,370				
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK	COEFF VAR.% 92.2 73.5	S.E.% 14.8 23.2	OLUME L	SAMPL OW 1,018 81	E TREES AVG 1,194 105	5 - BF HIGH 1,370 130				
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV	COEFF VAR.% 92.2 73.5 77.9	S.E.% 14.8 23.2 21.6	OLUME L	SAMPL OW 1,018 81 2,702	E TREES AVG 1,194 105 3,445	5 - BF HIGH 1,370 130 4,188				
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK	COEFF VAR.% 92.2 73.5	S.E.% 14.8 23.2	OLUME L	SAMPL OW 1,018 81	E TREES AVG 1,194 105	5 - BF HIGH 1,370 130				
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4	OLUME L	SAMPL OW 1,018 81 2,702 120 825 153	E TREES AVG 1,194 105 3,445 137 1,049 183	5 - BF HIGH 1,370 130 4,188 154 1,273 213				
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0	S.E.% 14.8 23.2 21.6 12.5 21.3	OLUME L	SAMPL OW 1,018 81 2,702 120 825	E TREES AVG 1,194 105 3,445 137 1,049	5 - BF HIGH 1,370 130 4,188 154 1,273				
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4	OLUME L	SAMPL OW 1,018 81 2,702 120 825 153	E TREES AVG 1,194 105 3,445 137 1,049 183	5 - BF HIGH 1,370 130 4,188 154 1,273 213				
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4	OLUME L	SAMPL OW 1,018 81 2,702 120 825 153	E TREES AVG 1,194 105 3,445 137 1,049 183	5 - BF HIGH 1,370 130 4,188 154 1,273 213				
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5	OLUME L	SAMPL OW 1,018 81 2,702 120 825 153 727	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553	5 - BF HIGH 1,370 130 4,188 154 1,273 213 4,380	#	915	10 229	15
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 %	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5	VOLUME L	SAMPL OW 1,018 81 2,702 120 825 153 727	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553	5 - BF HIGH 1,370 130 4,188 154 1,273 213 4,380	#	5 915 FOF PLOTS	229 REQ.	15
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 %	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4 151.4 COEFF	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5	VOLUME L	SAMPL OW 1,018 81 2,702 120 825 153 727 890 TREES/OW 16	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553 1,030 ACRE AVG 17	5 - BF HIGH 1,370 130 4,188 154 1,273 213 4,380 1,170 HIGH	#	915	10 229	102 INF. POP.
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4 COEFF VAR.% 69.5 161.4	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5 13.6 S.E.% 10.0 23.3	VOLUME L	SAMPL OW 1,018 81 2,702 120 825 153 727 890 TREES/OW 16 48	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553 1,030 ACRE AVG 17 63	5 - BF HIGH 1,370 130 4,188 154 1,273 213 4,380 1,170 HIGH 19 78	#	5 915 FOF PLOTS	229 REQ.	102 INF. POP.
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4 COEFF VAR.% 69.5 161.4 108.9	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5 13.6 S.E.% 10.0 23.3 15.7	VOLUME L	SAMPL OW 1,018 81 2,702 120 825 153 727 890 TREES/OW 16 48 4	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553 1,030 ACRE AVG 17 63 5	5 - BF HIGH 1,370 130 4,188 154 1,273 213 4,380 1,170 HIGH 19 78 6	#	5 915 FOF PLOTS	229 REQ.	102 INF. POP.
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4 151.4 COEFF VAR.% 69.5 161.4 108.9 171.9	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5 13.6 S.E.% 10.0 23.3 15.7 24.8	VOLUME L	SAMPLOW 1,018 81 2,702 120 825 153 727 890 TREES/OW 16 48 4 24	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553 1,030 ACRE AVG 17 63 5 33	5 - BF HIGH 1,370 130 4,188 154 1,273 213 4,380 1,170 HIGH 19 78 6 41	#	5 915 FOF PLOTS	229 REQ.	102 INF. POP.
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4 COEFF VAR.% 69.5 161.4 108.9	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5 13.6 S.E.% 10.0 23.3 15.7	VOLUME L	SAMPL OW 1,018 81 2,702 120 825 153 727 890 TREES/OW 16 48 4	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553 1,030 ACRE AVG 17 63 5	5 - BF HIGH 1,370 130 4,188 154 1,273 213 4,380 1,170 HIGH 19 78 6	#	5 915 FOF PLOTS	229 REQ.	102 INF. POP.
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4 151.4 COEFF VAR.% 69.5 161.4 108.9 171.9 141.1 191.3 302.8	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5 13.6 S.E.% 10.0 23.3 15.7 24.8 20.3	VOLUME L	SAMPLOW 1,018 81 2,702 120 825 153 727 890 TREES/OW 16 48 4 24 9	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553 1,030 ACRE AVG 17 63 5 33 12	5 - BF HIGH 1,370 130 4,188 154 1,273 213 4,380 1,170 HIGH 19 78 6 41 14	#	5 915 FOF PLOTS	229 REQ.	15 102 INF. POP.
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4 151.4 COEFF VAR.% 69.5 161.4 108.9 171.9 141.1 191.3 302.8 321.5	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5 13.6 S.E.% 10.0 23.3 15.7 24.8 20.3 27.6 43.7 46.4	VOLUME L	SAMPLOW 1,018 81 2,702 120 825 153 727 890 TREES/OW 16 48 4 24 9 20 1 1	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553 1,030 ACRE AVG 17 63 5 33 12 28 1 3	5 - BF HIGH 1,370 130 4,188 154 1,273 213 4,380 1,170 HIGH 19 78 6 41 14 36 1 4	#	5 915 FOF PLOTS	229 REQ.	15 102 INF. POP.
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4 151.4 COEFF VAR.% 69.5 161.4 108.9 171.9 141.1 191.3 302.8 321.5 692.8	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5 13.6 S.E.% 10.0 23.3 15.7 24.8 20.3 27.6 43.7 46.4 99.9	VOLUME L	SAMPLOW 1,018 81 2,702 120 825 153 727 890 TREES/OW 16 48 4 24 9 20 1 1 0	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553 1,030 ACRE AVG 17 63 5 33 12 28 1 3 1	5 - BF HIGH 1,370 130 4,188 154 1,273 213 4,380 1,170 HIGH 19 78 6 41 14 36 1 4 3	#	5 915 FOF PLOTS 5	229 REO. 10	102 INF. POP. 15
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4 151.4 COEFF VAR.% 69.5 161.4 108.9 171.9 141.1 191.3 302.8 321.5 692.8 64.6	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5 13.6 S.E.% 10.0 23.3 15.7 24.8 20.3 27.6 43.7 46.4 99.9 9.3	VOLUME L	SAMPLOW 1,018 81 2,702 120 825 153 727 890 TREES/OW 16 48 4 24 9 20 1 1 0 148	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553 1,030 ACRE AVG 17 63 5 33 12 28 1 3 1 163	5 - BF HIGH 1,370 130 4,188 154 1,273 213 4,380 1,170 HIGH 19 78 6 41 14 36 1 4 3 178	#	5 915 FOF PLOTS 5	229 REO. 10	102 INF. POP. 15
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CEDLEAV CEDL	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4 151.4 COEFF VAR.% 69.5 161.4 108.9 171.9 141.1 191.3 302.8 321.5 692.8 64.6 COEFF	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5 13.6 S.E.% 10.0 23.3 15.7 24.8 20.3 27.6 43.7 46.4 99.9 9.3	L	SAMPLOW 1,018 81 2,702 120 825 153 727 890 TREES/OW 16 48 4 24 9 20 1 1 0 148 BASAL	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553 1,030 ACRE AVG 17 63 5 33 12 28 1 3 1 163 AREA/A	F - BF HIGH 1,370 130 4,188 154 1,273 213 4,380 1,170 HIGH 19 78 6 41 14 36 1 4 3 178 CRE	#	5 915 FOF PLOTS 5	229 REQ. 10 42 REQ.	102 INF. POP. 15 INF. POP.
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SD: 1.0	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4 151.4 COEFF VAR.% 69.5 161.4 108.9 171.9 141.1 191.3 302.8 321.5 692.8 64.6 COEFF VAR.%	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5 13.6 S.E.% 10.0 23.3 15.7 24.8 20.3 27.6 43.7 46.4 99.9 9.3 S.E.%	L	SAMPL OW 1,018 81 2,702 120 825 153 727 890 TREES/ OW 16 48 4 24 9 20 1 1 0 148 BASAL OW	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553 1,030 ACRE AVG 17 63 5 33 12 28 1 3 1 163 AREA/A AVG	F HIGH 1,370 130 4,188 154 1,273 213 4,380 1,170 HIGH 19 78 6 41 14 36 1 4 3 178 CRE HIGH	#	5 915 FOF PLOTS 5	229 REO. 10	102 INF. POP. 15
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CEDLEAV CEDLEAV CEDLEAV CEDLEAV CEDLEAV SNAG CEDLEAV	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4 151.4 COEFF VAR.% 69.5 161.4 108.9 171.9 141.1 191.3 302.8 321.5 692.8 64.6 COEFF VAR.% 69.2	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5 13.6 S.E.% 10.0 23.3 15.7 24.8 20.3 27.6 43.7 46.4 99.9 9.3	L	SAMPLOW 1,018 81 2,702 120 825 153 727 890 TREES/OW 16 48 4 24 9 20 1 1 0 148 BASAL	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553 1,030 ACRE AVG 17 63 5 33 12 28 1 3 1 163 AREA/A	F - BF HIGH 1,370 130 4,188 154 1,273 213 4,380 1,170 HIGH 19 78 6 41 14 36 1 4 3 178 CRE	#	5 915 FOF PLOTS 5	229 REQ. 10 42 REQ.	102 INF. POP. 15 INF. POP.
CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV WHEMLOCK SPRUCELV R ALDER DOUGLEAV DOUG FIR CEDLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SPRUCELV SNAG ALDRLEAV SNAG ALDRLEAV SNAG ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV	COEFF VAR.% 92.2 73.5 77.9 54.6 88.0 57.0 103.4 151.4 COEFF VAR.% 69.5 161.4 108.9 171.9 141.1 191.3 302.8 321.5 692.8 64.6 COEFF VAR.% 69.2	S.E.% 14.8 23.2 21.6 12.5 21.3 16.4 71.5 13.6 S.E.% 10.0 23.3 15.7 24.8 20.3 27.6 43.7 46.4 99.9 9.3 S.E.% 10.0	L	SAMPL OW 1,018 81 2,702 120 825 153 727 890 TREES/ OW 16 48 4 24 9 20 1 1 0 148 BASAL OW 62	E TREES AVG 1,194 105 3,445 137 1,049 183 2,553 1,030 ACRE AVG 17 63 5 33 12 28 1 3 1 163 AREA/A AVG 69	F HIGH 1,370 130 4,188 154 1,273 213 4,380 1,170 HIGH 19 78 6 41 14 36 1 4 3 178 CRE HIGH 75	#	5 915 FOF PLOTS 5	229 REQ. 10 42 REQ.	102 INF. POP. 15 INF. POP.

TC TST	ATS			S PROJ	TATIS ECT	TICS SSPLIT			PAGE DATE	2 12/8/2020
TWP	RGE	SECT 1	TRACT	TYPE	A	CRES	PLOTS	TREES	CuFt	BdFt
04N	07W	15 F	PC1 WHOLE	00PC		22.00	48	404	11	W
CL:	68.1%	COEF	F	BASA	L AREA/	ACRE		# OF PLC	TS REQ.	INF. POP
SD:	1.0	VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	GLEAV	138.6	20.0	28	35	42				
DOUG	G FIR	192.2	27.7	25	34	44				
CEDI	LEAV	285.8	41.2	3	6	8				
SNAC	j	314.2	45.3	2	4	6				
ALDF	RLEAV	692.8	99.9	0	1	1				
TOTA	AL	36.0	5.2	268	283	298		52	13	6
CL:	68.1 %	COEF	F	NET E	BF/ACRE			# OF PLOTS	REQ.	INF. POP.
SD:	1.0	VAR.9	% S.E.%	LOW	AVG	HIGH		5	10	15
HEM	LEAV	76.5	11.0	11,743	13,198	14,653				
WHE	MLOCK	159.2	23.0	3,614	4,690	5,767				
SPRU	ICELV	117.3	16.9	7,474	8,997	10,519				
R AL	DER	172.7	24.9	2,954	3,933	4,913				
DOU	GLEAV	146.8	21.2	5,234	6,639	8,044				
DOU	G FIR	192.9	27.8	2,987	4,138	5,289				
CEDI	LEAV	309.4	44.6	369	666	963				
SNAC	Ĵ									
ALDF	RLEAV	692.8	99.9	0	116	231				
TOT	AL	34.9	5.0	40,244	42,377	44,509		49	12	5

TC TST.	ATS				ST PROJEC	ATIST	ICS SSPLIT			PAGE DATE 1	1 2/8/2020
 ГWР	RGE	SECT T	RACT		TYPE		RES	PLOTS	TREES	CuFt	BdFt
04N					00PC	AC		48	221	1	W
J41N	07W	15 P	C1 LV		UUPC		22.00	46	221	1	VV
							ESTIMATED		ERCENT		
		DI OTTO			TREES		TOTAL		AMPLE		
		PLOTS	TREES		PER PLOT		TREES	1	REES		
TOTA		48 15	221 80		4.6 5.3		863		9.3		
	COUNT	13	00		5.5		803		7.5		
REFO											
COUN	TV	33	141		4.3						
BLAN											
100 %	, 										
				STA	ND SUM	MARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
HEMI		39	17.2	27.0	86	13.2	68.6	13,600	13,198	3,215	3,215
	CELV GLEAV	14 18	5.3 11.8	37.4 23.3	76 84	6.6 7.3	40.6 35.0	9,420 6,652	8,997 6,639	1,970 1,599	1,929 1,599
CEDL		3	11.8	23.3 32.9	84 52	1.0	5.6	728	666	1,399	1,399
SNAC		5	2.6	17.3	61	1.0	4.2	120	000	107	10/
	RLEAV	1	1.3	10.0	56	0.2	.7	116	116	30	30
TOTA		80	39.2	26.9	81	29.8	154.7	30,516	29,615	7,001	6,960
	68.1%	COEFF				E TREE		#	OF TREES		INF. POP.
SD: HEMI	1.0	VAR.% 92.2	S.E.% 14.8		OW 1,018	AVG 1,194	HIGH 1,370		5	10	1
	ICELV	77.9	21.6		2,702	3,445	4,188				
	GLEAV	88.0	21.3		825	1,049	1,273				
CEDL		103.4	71.5		727	2,553	4,380				
SNAC	G RLEAV										
TOTA		116.0	13.0		1,321	1,518	1,715		537	134	6
CL:	68.1 %	COEFF	,		TREES	/ACRE			F PLOTS	S REO	INF. POP.
SD:	1.0	VAR.%	S.E.%	L	OW	AVG	HIGH	,,	5	10	1
HEMI	LEAV	69.5	10.0	/	16	17	19				
	ICELV	108.9	15.7		4	5	6				
DOUG	GLEAV	141.1 302.8	20.3 43.7		9	12 1	14 1				
SNAC		302.8	46.4		1	3	4				
ALDF	RLEAV	692.8	99.9		0	1	3				
TOT	AL_	61.1	8.8		36	39	43		149	37	,1
CL:	68.1 %	COEFF	7		BASAL	AREA/A	CRE	#	OF PLOTS	S REQ.	INF. POP.
SD:	1.0	VAR.%		L	.OW	AVG	HIGH		5	10	1
	LEAV	69.2	10.0		62	69 41	75				
	JCELV GLEAV	106.6 138.6	15.4 20.0		34 28	41 35	47 42				
	LEAV	285.8	41.2		3	6	8				
SNAC		314.2	45.3		2	4	6	`			
	RLEAV	692.8	99.9		0	1	1				
TOTA		39.5	5.7		146	155	164	Ţ.	62	16	
	68.1 %	COEFF				F/ACRE		#	FOF PLOTS		INF. POP
SD:	1.0	VAR.9			OW 11.743	AVG	HIGH 14,653		5	10	1
	LEAV JCELV	76.5 117.3	11.0 16.9	J	11,743 7,474	13,198 8,997	14,653				
	GLEAV	146.8	21.2		5,234	6,639	8,044				
CEDI	LEAV	309.4	44.6		369	666	963				
SNAC		,			^	111	221				
AIDI	RLEAV	692.8	99.9		0	116	231				

TC TST	ATS				ST PROJE	CATIST CT	TICS SSPLIT			PAGE DATE 1	1 2/8/2020
TWP	RGE	SECT TI	RACT		TYPE	AC	RES	PLOTS	TREES	CuFt	BdFt
04N	07W		IC1		00MC	110	7.00	25	174	1	W
0411	07 **	15 10			UUIVIC		7.00		1/4	1	VV
					TREES		ESTIMATED TOTAL		ERCENT AMPLE		
		PLOTS	TREES		PER PLOT	`	TREES	TI	REES		
TOTA		25	174		7.0						
CRUI		13	79		6.1		1,112		7.1		
	COUNT										
	DREST	10	20		- ·						
COUN		12	89		7.4						
BLAN 100 %											
100 %	0			STA.	ND SUM	MADV					
		CANDIE	TDEEC				Digit	220.00) TOTAL	22022) III
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG		72	147.5	21.1	96	77.8	357.2	85,462	85,072	18,879	18,879
SNAC		3	3.2	25.1	54	2.2	10.9				
R ALI		3	6.2	16.0	62	2.2	8.7	1,019	1,019	312	312
	MLOCK	1	2.0	14.0	32	0.6	2.2	41	41	33	33
TOTA	AL	79	158.9	20.9	93	82.9	379.0	86,522	86,132	19,223	19,223
		E LIMITS OF TIMES OUT COEFF	OF 100 THE			E WITHIN			OF TREES	REO	INF. POP.
SD:	1.0	VAR.%	S.E.%	L	OW WC	AVG	HIGH	π	5	10	15
DOUG		86.2	10.1		905	1,007	1,109			10	13
SNAC R ALI		48.1	33.3		118	177	236				
	MLOCK										
TOTA	AL	94.1	10.6		827	924	1,022		353	88	39
CL:	68.1 %	COEFF			TREES	/ACRE		#	OF PLOTS	REQ.	INF. POP.
SD:	1.0	VAR.%	S.E.%	L	WC	AVG	HIGH		5	10	15
DOUG		42.7	8.7		135	147	160				
SNAC		267.7	54.6		1	3	5				
R ALI		239.1	48.8		3	6 2	9 4				
TOTA	MLOCK AL	500.0 <i>34.0</i>	102.0 <i>6.9</i>		148	2 159	4 170		48	12	5
	68.1 %	COEFF				AREA/A		#	OF PLOTS		INF. POP.
SD:	1.0	VAR.%	S.E.%	L	OW	AVG	HIGH	"	5	10	15
DOUG		33.0	6.7		333	357	381				
SNAC		250.0	51.0		5	11	16				
R ALI		233.9	47.7		5	9	13				
1	MLOCK	500.0	102.0		250	2	4		20	7	2
TOTA		26.1	5.3		359	379	399		28	7	3
l	68.1 %	COEFF			NET BE			#	OF PLOTS		INF. POP.
	1.0	VAR.%			OW .	AVG	HIGH		5	10	15
DOUG		32.5	6.6	7	9,426	85,072	90,717				
SNAC R ALI		242.8	49.5		515	1,019	1,524				
	MLOCK	500.0	102.0		213	41	82				
TOTA		30.9	6.3	80	0,709	86,132	91,555		40	10	4
L					, '	- · , · -	-,			- 0	

Stand Table Summary TC TSTNDSUM Project **SSPLIT** T04N R07W S15 T00PC T04N R07W S15 T00PC Page: 1 Tract Type Acres **Plots** Sample Trees Twp Rge Sec Date: 12/08/202 00PC 22.00 48 80 04N 07W15 PC1 LV Time: 12:55:22PM Net Net AvAverage Log Totals Sample FF Ht Trees/ BA/ Net Net Tons/ Cu.Ft. Bd.Ft. Logs **DBH** Trees Tons **MBF** T 16' Tot Acre Cu.Ft. Bd.Ft. Acre Acre Acre Cunits Spc Acre Acre 17 86 91 1.116 1.76 2.23 32.0 115.0 71 257 16 HL1 6 3 84 118 2.419 5.28 36.7 133.3 266 968 59 21 HL20 7.26 21 2 84 96 1.463 3.52 3.66 40.0 138.0 146 505 32 11 HLHL22 3 83 87 2.000 5.28 4.00 50.3 158.3 201 633 44 14 1.220 137 402 30 9 HI. 23 2 82 89 3.52 2.44 56.0 165.0 103 1.120 3.52 2.80 56.0 200.0 157 560 35 12 24 2 84 HL25 1.032 3.52 68.0 140 444 31 10 HL2 82 89 2.06 215.0 .477 1.76 79 310 17 7 HL26 1 83 107 1.43 55.3 216.7 27 2 82 97 .885 3.52 2.21 67.6 250.0 150 553 33 12 HL108 .823 78.8 687 36 15 HL28 2 85 3.52 2.06 334.0 162 29 81 99 .384 1.76 .77 93.0 315.0 71 242 16 5 1 HI. 119 39 30 2 .717 3.52 1.79 98.8 177 774 17 85 432.0 HL1.76 100.0 215 31 1 80 92 .336 .67 320.0 67 15 5 HL 33 2 82 115 .592 3.52 1.78 92.8 403.3 165 717 36 16 HL.790 5.28 120.4 1,304 29 35 3 83 134 2.37 550.0 285 63 HI. 36 92 152 .249 1.76 .75 151.0 833.3 113 622 25 14 1 HL.471 180 37 123 3.52 1.18 152.6 694.0 818 40 18 2 84 HL122.0 78 39 80 106 .212 1.76 556.7 354 17 HL1 .64 8 79 41 1 80 106 .192 1.76 .58 136.7 650.0 374 17 8 HL43 83 .174 1.76 .52 162.7 673.3 85 352 19 8 HL1 118 44 2 86 151 .333 3.52 1.17 186.6 1008.6 218 1,176 48 26 HL. 51 83 135 .124 1.76 .37 254.3 1286.7 95 479 21 11 HL1 54 1 82 131 .111 1.76 .33 278.3 1360.0 92 451 20 10 HLTotals 39 83 105 17.241 68.62 43.06 74.6 306.5 3,215 13,198 707 290 HL14 1 83 50 1.330 2.90 1.33 48.0 70.0 64 93 2 SL 20 2 83 1.459 5.80 2.92 77.8 255.0 227 744 50 16 SL 27 84 2.90 102 22 28 1 83 74 .678 1.36 75.0 245.0 332 7 SL42 77 79 .302 2.90 178.0 620.0 107 374 24 8 .60 SL 1 1,003 .275 2.90 170.8 912.5 188 41 22 44 82 160 1.10 SL 1 71 .222 2.90 226.5 800.0 100 22 8 SL 49 1 94 .44 354 52 86 153 .197 2.90 .59 239.3 1466.7 141 865 31 19 SL.170 299.2 203 SL 56 1 83 178 2.90 .68 1710.0 1,160 45 26 57 82 202 .164 2.90 .65 341.3 2005.0 223 1,313 49 29 1 SL 58 81 130 .158 2.90 47 326.3 1593.3 155 756 34 17 SL1 106 .130 2.90 .39 341.0 133 652 29 SL 64 1 81 1673.3 14 65 1 85 102 .126 2.90 .25 513.5 2350.0 129 592 28 13 SLSL 67 1 82 130 .118 2.90 .36 440.0 2133.3 156 758 34 17 Totals 91 173.1 807.3 1,929 8,997 424 198 14 82 5.327 40.61 11.14 SL 2 3.639 27 DL 14 84 85 3.89 7.28 17.0 52.5 124 382 8 .988 1.95 1.98 34.5 207 15 5 19 83 87 105.0 68 DL1 7 32.0 19 20 85 120 .892 1.95 2.67 86 312 DL 1 116.7 21 1 83 109 .809 1.95 2.43 33.3 116.7 81 283 18 6 DL 22 83 103 .737 1.95 1.47 53.0 175.0 78 258 17 6 DL1 1.238 52.3 194 18 DL24 2 86 131 3.89 3.71 216.7 805 43 25 89 158 .571 1.95 66.7 303.3 114 519 25 11 1 1.71 DL 26 3 86 136 1.583 5.84 4.22 70.5 307.5 298 1,298 65 29 DL 29 83 122 .424 1.95 1.27 69.7 290.0 89 369 19 8 DL 1 38 1 83 138 .247 1.95 .74 127.0 596.7 94 442 21 10 DL DL43 1 80 130 .193 1.95 .58 156.7 726.7 91 420 20 9

DL.

DL

44

49

2

1

82 136

85 132

.368

.149

3.89

1.95

1.11

.45

170.3

214.0

793.3

1046.7

188

95

877

466

41

21

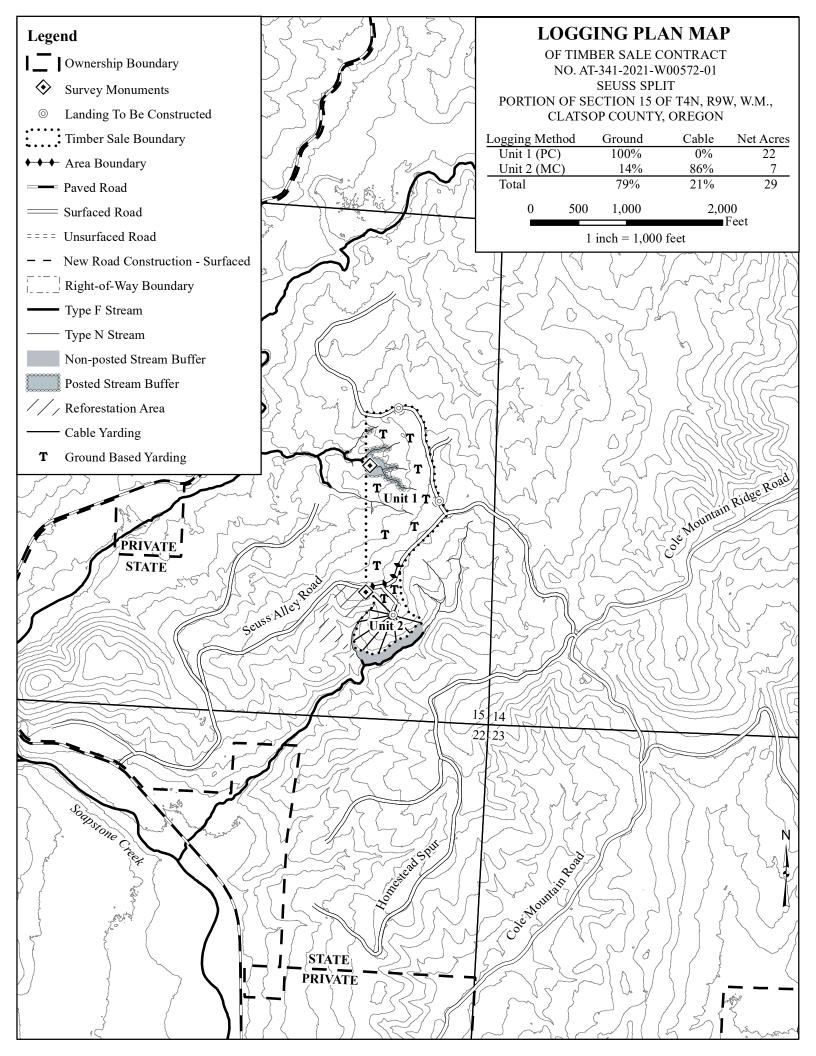
19

10

TC T	STN	NDSUM	1					Stand	l Table	Summa	ry					
								Proj	ect	SSPLIT						
T04N Twp 04N	F	.07W Rge 07W		00PC Tract PC1	t			Sype OPC		cres 22.00	Plots 48	Sample T		T04N R Page: Date: Time:	07W S15 2 12/08/20 12:55:22);
	S T		Sample Trees		Av Ht Tot	Trees/ Acre	BA/ Acre	Logs Acre	Net	age Log Net Bd.Ft.	Tons/	Net Cu.Ft. Acre	Net Bd.Ft. Acre	T ons	otals Cunits	MBF
DL		Totals	18	84	111	11.836	35.01	29.62	54.0	224.2		1,599	6,639		352	146
CL CL CL		21 55 75	1 1 1	81 83 76	59 93 125	.776 .113 .061	1.87 1.87 1.87	1.55 .23 .18	27.5 293.0 429.3	60.0 1090.0 1786.7		43 66 78	93 247 326		9 15 17	2 5 7
CL	1	Totals	3	81	67	.950	5.60	1.96	95.5	339.6		187	666		41	15
AL		10	1	87	112	1.284	.70	2.57	11.5	45.0		30	116		6	3
AL	Ī	Totals	1	87	112	1.284	.70	2.57	11.5	45.0		30	116		6	3
SN SN SN SN		12 15 19 26 30	1 1 1 1	88 89 88 88	60 83 75 16 16	1.070 .685 .427 .228 .171	.84 .84 .84 .84		-							
SN	7	Totals	5	88	62	2.580	4.20									
Totals			80	84	101	39.219	154.75	88.35	78.8	335.2		6960	29,615		1,531	652

 TC PLOGSTVB
 Log Stock Table - MBF

 T04N R07W S15 Ty00MC T04N R07W S15 Ty00PC
 7.00 Acres
 Project: SSPLIT SSPLIT Date 12/11/2020 Time 9:57:45AM


S	So Gr	Log	Gross	Def Net	%		7	Net Vol	ume by	Scalin	g Dian	neter in 1	nches				
Spp T	rt de		MBF	% MBF	Spc	2-3	4-5	6-7	8-9		12-13	14-15		20-23	24-29	30-39	40+
D	DO 2S	16	1	1	.2						1						
D	DO 2S	20	1	1	.1							1					
D	DO 2S	24	2	2	.2			,*			2						
D	DO 2S	32	9	9	1.4						4	4	1				
D	DO 2S	36	3	3	.5							2	2				
D	DO 2S	38	2	2	.2							2					
D	DO 2S	40	457	454	66.2					6	92	39	123	99	83	13	
D	DO 3S	16	4	4	.5			2		2		8					
D	DO 3S	20	1	1	.2			0	0	0							
D	DO 3S	24	1	1	.1				1								
D	DO 3S	26	4	4	.6	2		1	3								
D	DO 3S	28	2	2	.3				2					-			
D	DO 3S	30	9	9	1.3			1	7	1							
D	DO 3S	32	28	27	4.0			2	18	7							
D	DO 3S	34	2	2	.3				2	1		,		,			
D	DO 3S	36	3	3	.5			1		3							
D	DO 3S	38	15	15	2.2			7	6	2	!	7					
D	DO 3S	40	127	127	18.5			18	24	85			-				
D	DO 4S	12	1	1	.1			1									
D	DO 4S	14	0	0	.1			0									
D	DO 4S	18	0	0	.1	-		0									
D	DO 4S	20	6	6	.9			6									
D	DO 4S	24	8	8	1.1			7	0	7							
D	DO 4S	28	2	2	.3			2				,					
D	DO 4S	30	1	1	.1	,	1										
D	DO 4S	36	0	0	.1		0			1							
D	Tota		690	687			1	49	64	107			126	99	83	13	3
Н	DO 2S	30	10	5.6 9	9.0						9						
Н	DO 2S	40	4	4	3.6				4								
Н	DO 3S	26	8	8	7.6					8	3						
Н	DO 3S	30	3	3	2.9			3									
Н	DO 3S	40	54	54	52.1			31		23	3						
Н	DO 4S	12	4	4	4.2			4									
Н	DO 4S	18	6	6	5.7			6									
Н	DO 4S	20	11	11	10.2			11									
Н	DO 4S	24	2	2	1.6			2									

TC PLOGSTVB Log Stock Table - MBF																	
	R07W S15 R07W S15			.00		Proj Acre		SSPLIT 29.00						Page 2 Date 12/11/2020 Time 9:57:45AM			
S	~ ~ ~ .		Gross	Def	Net	%	Net Volume by Scaling Diameter i								· ·		
Spp T			MBF	%	MBF	Spc	2-3 4-3	5	6-7 8	-9	10-11	12-13	14-15	16-19	20-23 2	24-29	30-39 40+
Н	DO 4S		3		3	2.6			3								
Н	DO 4S	32	0		0	.3		0									
Н	Total	S	104		103	11.7	-	0	59	4	31	9					
A	DO 1S	26	7	3.1	7	7.4						7					
A	DO 1S	40	11		11	11.4						5	5				
A	DO 2S	26	7	4.5	7	7.0					7						
A	DO 2S	30	4		4	4.4					4						
A	DO 2S	32	4		4	4.7					4						
A	DO 2S	34	5		5	5.7					5						
A	DO 2S	40	7		7	7.8					5	3					
A	DO 3S	28	7		7	7.1				7							
A	DO 3S	30	5		5	5.1				1	3						
A	DO 3S	34	5		5	5.1				5							
A	DO 3S	36	2		2	2.0					2						
A	DO 3S	38	1		1	.8			1								
A	DO 3S	40	2	16.7	2	1.6				2							
A	DO 4S	14	0		0	.4			0								
A	DO 4S	16	2		2	2.6		0	2								
A	DO 4S	20	2		2	2.1			2								
A	DO 4S	24	6		6	6.7			6								
A	DO 4S	26	1		1	.9			1								
A	DO 4S	32	4		4	4.7			4								
A	DO 4S	38	4		4	4.3			4								
A	DO 4S	40	8		8	8.2			8								
A	Total	s	95		94	10.6		0	28	14	30	15	5				
Total	All Speci	ies	888		884	100.0		2	136	82	168	122	52	126	99	83	13

TC PSTNDSUM **Stand Table Summary** Page 1 Date: 12/11/2020 T04N R07W S15 Ty00MC 7.00 Project **SSPLIT** Time: 9:15:23AM T04N R07W S15 Ty00PC 22.00 Acres 29.00 Grown Year:

							110105		27.0	Ū			0.0111111			
S				Tot				Averag			Net	Net		70.		
Spc T	DBH	Sample Trees	FF 16'	Av Ht	Trees/ Acre		Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Totals Cunits	N	1BF
D	11	2	87	48	4.848	3.20	4.85	12.9	41.2		62	200			.8	6
D	12	2	86	51	4.074	3.20	5.60	12.1	38.2		68	214			20	6
D	13	3	83	93	5.643	5.20	9.11	20.1	62.4		184	568			53	16
D	14	3	84		4.113	4.40	9.35	19.4	70.8		182	662			3	19
D	15	4	86		3.903	4.79	8.78	24.3	96.7		214	849			52	25
D	16	3		113	3.149	4.40	8.01	24.4	88.9		196	713			57	21
D	17	6		122	6.090	9.60	16.24	26.7	96.1		434	1,560		12		45
D	18	9		131	7.009	12.39	19.22	32.1	122.7		616	2,358		17		68
D	19	6		117	4.467	8.79	11.17	34.7	124.0	-	387 170	1,384 631		11	19	40
D	20 21	3 2		124 126	1.647 .996	3.59 2.39	4.39 2.99	38.8 39.7	143.7 163.3		118	488			19 34	18 14
D	22	1	89		.454	1.20	1.36	50.0	216.7		68	295			20	9
D	23	1	89 89		.415	1.20	1.25	48.3	206.7		60	257			17	7
D	24	3	91		1.144	3.59	3.43	61.4	283.3		211	972			51	28
D D	25	7	87		2.459	8.38	7.38	60.8	258.6		449	1,907		13		55
D D	26	2		150	.650	2.39	1.95	69.5	321.7		135	627			39	18
D	27	3		138	.904	3.59	2.71	70.7	320.0		192	867			56	25
D	28	2		147	.560	2.39	1.68	79.2	385.0		133	647			39	19
D	29	2		147	.522	2.39	1.57	84.3	411.7		132	645			38	19
D	30	1		153	.244	1.20	.73	94.0	480.0		69	351			20	10
D	31	2	87		.457	2.39	1.60	89.3	434.3		143	695		4	11	20
D	32	4	88	154	.858	4.79	2.79	98.5	490.0		275	1,366		8	30	40
D	33	4	89	163	.806	4.79	2.82	101.8	527.9		287	1,490		8	33	43
D	34	1	82	163	.190	1.20	.57	115.7	550.0		66	313		1	19	9
D	35	1	89	167	.179	1.20	.72	105.7	590.0		76				22	12
D	36	2	89		.339	2.39	1.19	123.3	661.4		146				12	23
D	37	2		171	.321	2.39	1.28	119.4	681.3		153	874			14	25
D	40	2	85		.274	2.39	.82	153.8	778.3		127	641			37	19
D	43	1	86		.119	1.20	.47	158.8	872.5		75				22	12
D	44	1	89	187	.113	1.20	.45	179.5	1052.5		81	477			24	14
D	Totals	85	86	113	56.946	112.25	134.47	41.0	176.0		5,509	23,674		1,59	98	687
Н	9	1	89		8.417	3.72	8.42	7.0	20.0		59				17	5
Н	10	2	87		13.635	7.44	13.63	8.0	25.0		109				32	10
Н	11	1		104	5.634		11.27	12.5	40.0		141				41	13
Н	12	2	82		9.469		18.94	1	40.0		265				77	22
Н	14	1	92		.492	.53	.49	16.0	20.0		8			,	2	0
Н	15	1	85		3.030	3.72	6.06	1	55.0		106				31	10
Н	17	1	86		2.359	3.72	4.72	32.0	110.0		151				14 12	15 14
Н	18	1	82		2.104	3.72	4.21	34.5	115.0		145 119				+2 35	11
H H	19 22	1 1	86 88		1.888 1.409	3.72 3.72	3.78 1.41	31.5 55.0	100.0 90.0		77				22	4
Н	Totals	12	85	61	48.436	41.43	72.92	16.2	48.9		1,181	3,568		34	42	103
20751 Mill William	11	1	86		2.294	1.51	2.29	_	60.0		41				12	4
A A	12	1	87		1.928	1.51	1.93	1	60.0		42				12	3
A	13	4	86		6.570	6.06		1	52.9		182				53	18
A	14	2	87		2.072	2.21	4.14	1	68.9		80				23	8
A	15	1	86		1.234	1.51	1.23		60.0		37				11	2
A	16	7	87		7.590	10.60		1	73.8		325			9	94	30
A	17	2	86		1.405	2.21	2.81	28.0	95.8	1	79				23	8
A	18	1	86		.397	.70	.79	27.5	90.0		22	71			6	2
A	19	2	86		1.538	3.03	3.08	34.3	117.5	1	105				31	10
A	21	1	86	88	.629	1.51	1.26	48.5	170.0		61	214			18	6

TC	C PSTNDSUM Stand Table Summary										Page Date:	2 12/11/2020			
11		S15 Ty00N S15 Ty00H		7.0 22.0	00	Project SSPLIT Acres 29.00							Time: 9:15:23A Grown Year:		
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Averag Net Cu.Ft.	Net	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
Α	23	1	87	51	.525	1.51	.52	62.0	100.0		33	52		9	2
Α	Totals	23	86	68	26.180	32.38	43.65	23.1	74.0		1,008	3,230		292	94
SN SN SN	19 28 37	1 1 1	88 89 89	49 53 73	.445 .205 .117	.88 .88									
SN	Totals	3	88	54	.767	2.63									
Totals		123	86	84	132.330	188.68	251.05	30.7	121.4		7,697	30,472		2,232	884

