

District: Southwest

Date: December 16, 2019

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$315,803.07	\$0.00	\$315,803.07
		Project Work:	(\$17,689.62)
		Advertised Value:	\$298,113.45

District: Southwest

Date: December 16, 2019

Timber Description

Location: T37 S R8W Sec 13 (Unit 1 and 2) Sec 1 (Unit 3) Located five miles North of Selma. Unit 1 and 2 are located up Forest Service Road 25 and Unit 3 is located up Slate Creek 20 Road.

Stand Stocking: 85%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	15	0	90
Ponderosa Pine	12	0	90

Volume by Grade	2S	3S & 4S 6"- 11"	Camprun	Total
Douglas - Fir	216	969	0	1,185
Ponderosa Pine	0	0	29	29
Total	216	969	29	1,214

Comments: BKS GNA Timber Sale out of Grants Pass field office.

SOURCE OF POND VALUES

Local Pond Values, October, 2019

PRICING FOR SPECIES NOT LISTED IN VOLUME TABLE (Pond Value minus Logging Costs = Stumpage)

White Fir and other true fir, 478/MBF - 367.88/MBF = 110.12/MBFIncense Cedar other cedars, 700/MBF - 367.88/MBF = 332.12/MBF

PULP PRICE

Pulp (Conifer and Hardwood) = \$5/ton

SEE PROJECT COST SUMMARY:

OTHER COSTS WITH PROFIT AND RISK TO BE ADDED

Road Brushing (Light) \$1,225 Waterbars, Skid Roads \$2,200 Temporary Road Closure \$1,000 Dust Abatement \$2,896 TOTAL \$7,321

OTHER COSTS NO PROFIT AND RISK ADDED

Equipment Weed Wash \$350

SLASH DISPOSAL COSTS

Landing Piles \$4,000

ROAD MAINTENANCE COSTS = 1.98/MBF

District: Southwest

Date: December 16, 2019

	Log	gging Conditions
Combination#: 1	Douglas - Fir	10.46%
Logging System: yarding distance: tree size:	Cable: Small Tower <=40 Medium (800 ft) Small / Thinning 12in (130 Bft/tree),	Process: Manual Falling/Delimbing downhill yarding: No 12-17 logs/MBF
loads / day: cost / mbf: machines:	6 \$258.33 Log Loader (A) Tower Yarder (Small)	bd. ft / load: 4000
Combination#: 2	Douglas - Fir	58.65%
Logging System: yarding distance: tree size:	Cable: Small Tower <=40 Medium (800 ft) Small / Thinning 12in (130 Bft/tree),	Process: Feller Buncher downhill yarding: No 12-17 logs/MBF
loads / day: cost / mbf: machines:	6 \$245.83 Log Loader (A) Feller Buncher w/ Delimber Tower Yarder (Small)	bd. ft / load: 4000
Combination#: 3	Douglas - Fir Ponderosa Pine	30.89% 100.00%
Logging System: yarding distance: tree size:	Track Skidder Short (400 ft) Small / Thinning 12in (130 Bft/tree),	Process: Feller Buncher downhill yarding: No 12-17 logs/MBF
loads / day: cost / mbf: machines:	7 \$146.05 Log Loader (B) Stroke Delimber (B) Feller Buncher w/ Delimber Track Skidder	bd. ft / load: 4000

District: Southwest

Date: December 16, 2019

Logging Costs			
Operating Seasons: 1.00 Profit Risk: 15%			
Project Costs: \$17,689.62	Other Costs (P/R): \$7,321.00		
Slash Disposal: \$4,000.00	Other Costs: \$350.00		

Miles of Road		Road Maintenance:	\$0.00
Dirt	Rock (Contractor)	Rock (State)	Paved
3.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	4.0
Ponderosa Pine	\$0.00	3.0	3.8

District: Southwest

Date: December 16, 2019

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$216.32	\$1.98	\$3.62	\$87.09	\$6.03	\$47.26	\$3.29	\$2.00	\$0.29	\$367.88
Ponderosa	a Pine								
\$146.05	\$1.98	\$3.62	\$91.66	\$6.03	\$37.40	\$3.29	\$2.00	\$0.29	\$292.32

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$631.99	\$264.11	\$0.00
Ponderosa Pine	\$0.00	\$390.00	\$97.68	\$0.00

District: Southwest

Date: December 16, 2019

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Ponderosa Pine	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	1,185	\$264.11	\$312,970.35
Ponderosa Pine	29	\$97.68	\$2,832.72

	Gross Timber Sale Value	
	Recovery:	\$315,803.07
Prepared By: K	yle Syfert	Phone: 541-471-3152

PROJECT SUMMARY

Purchaser would only be reimbursed for projects accomplished to specifications. For Example, if any project is deleted in the operations plan, and not accomplished, Purchaser would not be reimbursed.

Project 1

Temporary Road Construction and Improvement	Length Ft S	Stations	Acres	Base Rate	
B - D Off 742 Road into Unit 2					
Excavation	3176	31.76		\$122	\$3,875
Clearing and Grubbing - Scatter outside ROW	3176		1.4582	\$1,337	\$1,950
Slate Creek off the 20 Rd into Unit 3					
E - F Slate Creek off the 20 Rd into Unit 3	1				
Excavation	3619	36.19		\$122	\$4,415
Clearing and Grubbing - Scatter outside ROW	3619		1.6616	\$1,337	\$2,222
					\$12,461

Project 2 Surface Replacement (Repairing Potholes) 50 CY on 20 Road T-813 \$/Yard \$/Load Yards \$750.00 Rock \$15/Yard 50 \$15.00 Hauling 20 Miles Round Trip (\$2/Mile* 5 trips) \$400.00 50 \$8.00 \$80 Water, Scarify Potholes, Rock and Compact Rock. \$968.50 50 \$19.37 *Stein Quarry in Wilderville approved weed free. 50 \$2,118.50 Subtotal 2,118.50

**50 yards (Rock Spec Size 3/4-0" crushed aggregate) as directed by State at 2" depth and 12' running surface

Project 3						
		Tir	nes			
Road Grading/Blading T-811		Miles Gr	aded \$	5/Mile		
Do not pull ditches	20 Rd	1.2	3	\$300	\$1,080	
	306 Rd	1.7	3	\$300	\$1,530	
	A-D					
	Move-In Grader				\$500	
					\$3,110 \$	Suk

Grade road as needed, before, during and after logging. Appraised for twice graded.

Projects Total 17,689.62

3,110.00

SUMMARY OF ADDITIONAL COSTS

Road Brushing T-842		Miles	\$/Mile				
	20 Rd	1.2	\$250	\$300			
	306 Rd	1.7	•				
	25 Rd	2	\$250				
Light Brushing by hand				\$1,225		Subtotal	1,225.00
			Ctations				
C-D Waterbarring - Temporary Roads, Sk	rid Roads		Stations 11	\$200		Subtotal	2,200.00
				Υ <u></u> 200		Subtotal	2,200.00
Pull slash back across subsoiled	skid road for a	85% cove	erage of e	xposed m	nineral soil.		
	B	Berms	Hours	\$/Hour			
Temporary Road Closure (T-835)		40	10	\$100		Subtotal	1,000.00
Road Closure at Point C and E							
Waterbars from A-D, E-F							
Dust Abatement T-812							
		Miles/		Min/			
Slate Creek 20 Road past pavement	Trips/Day	Trip	MPH	Trip			
	2	1.2	5	14.4			
	Days \$	/hour	\$/Trip	ć / Dav	Kenn nme Hours/Trip		Total
	Days Ş	ynoui	γmμ	Ş/Daγ	nours/ mp		TULA
Watering Road	30	\$90	\$22	\$43			1,296.00
Refill	30	\$90	\$45	\$45	0.50		1,350.00
Move-In	1	•	\$ 250				250.00
Water = 3,520 gallons per mile (1/2 gallo	on per yard). V		-	ning or at	night.	Subtotal	2,896.00
Use Nearest Water Source.				U U	0		
					Additional Co	osts Total	7,321.00
Additional Projects No Profit and Risk							,
	Ν	/lachines	Hours	\$/Hour			
Equipment Weed Wash		7	7	50		Subtotal	350.00
All Road Maintenance and Logg	ing Equipmen [.]	t would b	be				
cleaned prior to entering the Tir							

Slash Disposal	Piles	Hou	rs \$,	/Hour		
Landing Piling and Firewood Sorting.		48	40	\$100	Subtotal	4,000.00

TIMBER SALE SUMMARY

- 1. <u>Type of Sale</u>: Recovery sale, sealed bid auction of 149 acres of thinning.
- 2. <u>Revenue Distribution</u>: USFS regional agreement 18-GN-11061000-048 Project GF7918-07 PCA 02604
- 3. <u>Sale Acreage</u>: For the sale, 149 net acres were used for the cruise expansion. Acreage was determined with ArcGIS 10.7 and GPS traverse.
- 4. <u>Volume</u>: The table below describes the volume by grade over the three unit sale area. A more detailed look is available in the cruise summary. Pine is broken out by approximate grade but was appraised as camprun. The majority of volume is in Douglas-fir.
- <u>Cruise Data</u>: The volume of the sale is estimated to be 1,214 MBF (7.7% sampling error). The volume of individual species or sale areas will be more variable due to the smaller sample compared to the total volume sample. See the cruise report for more detail. Additional SuperAce reports available upon request.
- 6. <u>Timber Description</u>: Unit 1 and 2 have Douglas-fir 14" and 17" in diameter and 80-100' tall. Unit 3 on Slate Creek has 15" Douglas-fir 70-90' tall. The volume is greatest in Unit 2. These stands are natural and 60-80 years old. The merchantable species will be almost entirely Douglas-fir with some pine taken in the temp roads. The cruise report gives a breakdown of log lengths and scaling diameters by species for the units in the cruise. Reserve timber has been marked with orange to remove the smaller trees in suppressed and intermediate canopy positions and to release dominant and co-dominant trees and improve the quality of the residual stand. The right-of-way timber is left unmarked in an approximately 30 foot width.
- 7. <u>Topography and Logging Method</u>: The topography of these units varies enough that there will be a variety of different ways to log the sale. Unit 1 has some areas that will allow a harvester for cutting, but should be 100% cable logged to avoid an adverse uphill skid and to pull away from the streams. The north portion may need intermediate supports. Streams in the sale area should not have ground-based equipment within 100'. Unit 2 could be ground-based logged in the southern portion but will need cable in the north. Unit 3 will be a combination of ground and cable on steeper portions greater than 35%. See the detailed logging map which shows the logging plan.
- 8. <u>Access</u>: All hauling routes are located on Federal ground and County Roads. Access is secured to the west out the 742, 306, 25 road system of Units 1 and 2, but not out the old road to the east. Slate Creek to the south is approved for hauling. Oversize loads will need an oversize permit.
- 9. <u>Projects</u>: Road improvement in Slate Creek of 3,176 feet on an old road grade that will need grubbing of stumps. Temporary road construction of 3,619 feet in Unit 2 with stump removal. Placing 50 CY of rock on the gravel portion of Slate Creek (20) Road. Road grading. Road brushing the haul route as needed. Landing piling. Total costs for these projects is \$17,689.62. Road surfacing, blading and dust abatement are all described in in the Project Summary, Sale Prospectus, Maps and Exhibits...
- **10.** <u>Road Maintenance:</u> The appraisal also includes \$1.98/MBF for road maintenance (grading, pulling ditches, etc.) in addition to the project costs.
- 11. <u>Other Costs:</u> Dust abatement and weed wash. Slash disposal (landing piling) as described above.
- **12.** <u>Slash Disposal:</u> Yard tops to the landing. Purchaser will pile slash on landings with an excavator or log loader, sorting out firewood into a separate piles. USFS will burn the slash piles.

OREGON DEPARTMENT of FORESTRY CRUISE REPORT

- 1. Acreage Calculation: For the BKS Timber Sale, there are 149 net cruise acres in the sale area determined by a combination of GPS traverse waypoints and ArcGIS 10.7 software. Net acres do not include the riparian management areas, regeneration areas within the stand, and non-stocked areas which were not cruised.
- 2. Cruise Method: The BKS timber sale was cruised by ODF during the Fall and Winter of 2019. A variable plot cruise was conducted on the sale area.
- **3. RIGHT of WAY VOLUMES**: The right of way area is 4.7 total acres using a 30 foot width for the road right of way. The ROW volume would boost the sale volume up about 40 MBF.

4. Sampling Intensity:

Plots 53 Total Plots (27 Measured, 25 Count Plots)

 CV (BDFT)
 <u>56.4%</u>
 (total)

 SE (BDFT)
 <u>7.7%</u>
 (total)

As per ODF standards, total harvest volume of conifers and hardwoods ("take" trees) is estimated to be 1,214 MBF \pm 93.5 MBF at the 68% confidence level and a sampling error of 7.7%. The volume estimate will be within 1,120.5 MBF and 1,307.5 MBF 68% of the time.

- 5. Computation Procedures: Volume was computed using the SuperACE cruise program. Volumes reported are based on the Scribner Log Rule (West).
- 6. Form Factors: Form factors (a ratio of diameter at 4 and 16 feet) were sampled across the diameter distribution in all strata.
- 7. Height Standards: Most conifer trees were measured for total height with a laser rangefinder.
- 8. Diameter standards: Diameters were measured outside bark at breast height to the nearest inch.
- **9. Grading System:** Trees were graded primarily as 34 foot segments lengths and according to the Official Log Scaling and Grading Rules published by the Northwest Log Rules Advisory Group.
- **10. Merchantable top:** Conifer were graded to a merchantable top specified by the official log scaling rules. For all species except pine, 2S segments were graded to a 12" top inside bark, 3S to a 6" top, and 4S to a 5" top (inside bark). Pine 4S logs were graded to a 12" top inside bark, 5S to a 6" top, and 6S to a 5" top (inside bark).
- **11. Deductions for Cull, Defect and Breakage:** All visible field cull was removed in the cruise computation. Additional volume was deducted for the anticipated amount of hidden cull and breakage during logging. The estimated volume reduction used for this anticipated loss to volume was 4%.
- 12. Cruisers: Cruising was performed by Chris Rudd, and Kyle Syfert

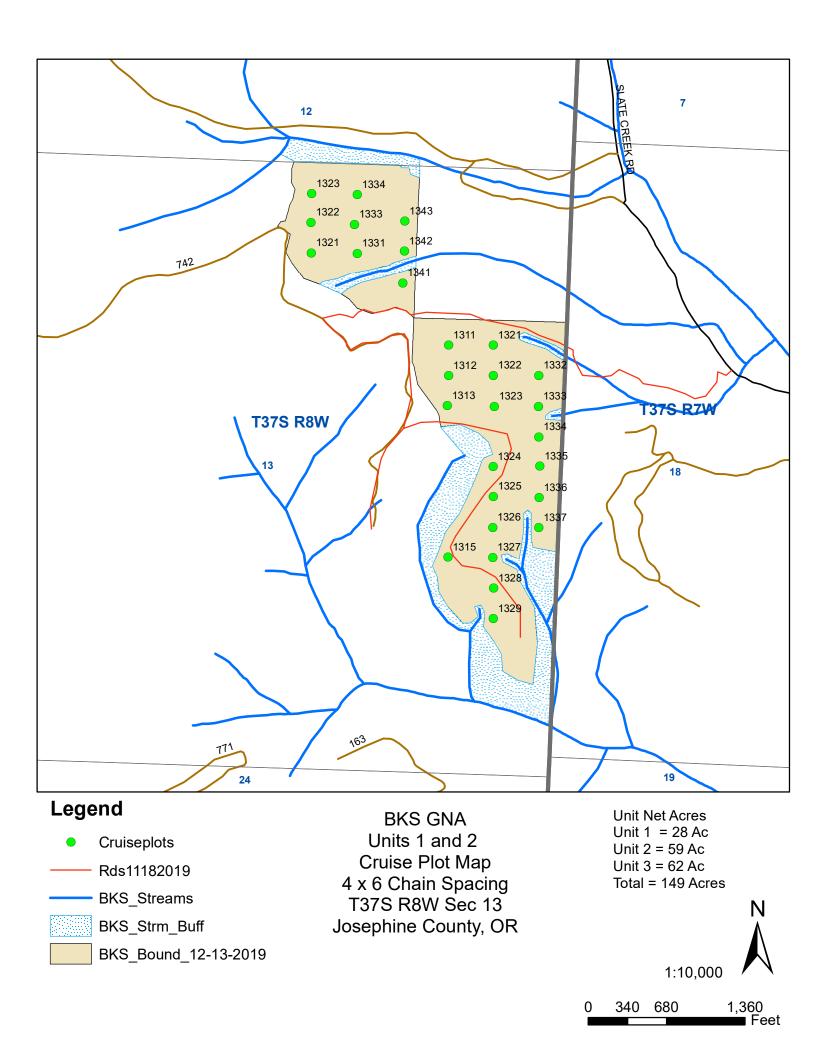
*ODF does not guarantee the volume of this or any other cruise. Prospective purchasers are advised to do their own cruise and sale volume calculations. Additional SuperAce Reports available upon request.

Reviewed by /s *Chris Rudd*, Unit Forester: 7/16/2019

VOLUME SUMMARY

	CRUIS		R ACRE			ADJUSTE		BF/ACRE*
						2 Saw		
		2 Saw (4S	3 Saw (5S		Cruise	(4S	3 Saw (5S	4 Saw (6S
Species (Take)	Unit	PP)	PP)	4 Saw (6S PP)	Vol/Acre	PP)	PP)	PP)
DF	1		3,389	1,227	4,616	0	3,253	1,178
DF	2	3,308	6,983	1,974	12,265	3,176	6,704	1,895
DF	3	477	3,002	2,672	6,151	458	2,882	2,565
PP,SP	3		485		485	0	466	0
Sale Volume		3,785	13,859	5,873	23,517			

*Adjusted 4% for hidden cull and breakage


TOTAL ADJUSTE		JME MBF						
Species (Take)	Unit	NET ACRES	2 Saw	3 Saw	4 Saw	5 Saw	6 Saw	Total Volume
DF	1	28.0	0	91,096	32,982	0	0	124,078
DF	2	59.0	187,365	395,517	111,807	0	0	694,690
DF	3	62.0	28,391	178,679	159,037	0	0	366,108
PP,SP	3		0	0	0	28,892	0	28,892
Sale Volume		149.0	215,756	665,292	303,827	28,892	0	1,213,767

		GRADE BY PE	RCENTAGE			
	2 Saw	3 Saw	4 Saw	5 Saw	6 Saw	Total
DF	18%	55%	25%		0%	98%
РР				2%		2%
Sale Volume	18%	55%	25%	2%	0%	100%

*4% Hidden Cull and Breakage factored in for all areas.

** Volume Estimates by Unit are not as accurate as the total sale volume. Cutout volumes will be more accurate for the total volume than individual units. ODF does not guarantee the volume of this or any other cruise. Prospective purchasers are advised to do their own cruise and sale. These volumes reflect merchantable saw logs. A small amount of pulp logs could be harvested from the sale area, particularly in the sub-merch pine species.

Additional SuperAce Reports are available upon request.

TC PS	TATS					DJECT S	STATI BKS				PAGE DATE	1 12/16/2019
гwр	RGE	SC	TRACT	,	ТҮРЕ		AC	CRES	PLOTS	TREES	CuFt	BdFt
37S	08	13	BKS		013N			28.00	9	38	S	W
4211				- <u></u>		TREES		ESTIMATED TOTAL		ERCENT SAMPLE	···· • · · · ·	
]	PLOTS	TREES		PER PLOT		TREES		TREES		
TOT	AL		9	38		4.2	,					
	IISE I COUNT OREST		3	15		5.0		3,825		.4		
COU BLA 100 9	INT NKS		6	23		3.8						
100	/0			,	STA	ND SUM	MARY					
		S/	MPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
			TREES	ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOU	JG FIR-L		4	47.0	13.2	69	12.3	44.8	6,128	6,128	1,420	1,420
	JG FIR-T		3	41.0	13.6	80	11.2	41.1	4,616	4,616	1,194	1,185
OTH	HDWD-I		6	46.3	13.3	60	12.3	44.8				
	.PINE-L		2	2.4	29.4	125	2.1	11.2	1,911	1,911	420	414
тот	AL		15	136.6	13.8	70	38.2	141.9	12,656	12,656	3,034	3,019
SD:	1.0		VAR.%	S.E.%	Ι	JOW	AVG	HIGH		5	10	1:
DOU												
	IG FIR-L		79.2 70.0	45.3		166	303	439				
DOU OTH	IG FIR-L IG FIR-T HDWD-I PINE-L		79.2 70.9 20.0	45.3 49.0 18.7		166 68 663	303 133 815	439 199 967				
DOU OTH	IG FIR-T HDWD-I PINE-L	J	70.9	49.0		68	133	199		511	128	57
DOU OTH SUG TOT	IG FIR-T HDWD-I PINE-L		70.9 20.0	49.0 18.7		68 663	133 815 295	199 967 395	#	<i>511</i> OF TREES		57 INF. POP.
DOU OTH SUG TOT CL SD:	UG FIR-T HDWD-I PINE-L YAL 68.1 1.0		70.9 20.0 <i>107.9</i> COEFF VAR.%	49.0 18.7 <i>34.1</i> S.E.%	I	68 663 <i>194</i> SAMPL LOW	133 815 295 E TREE AVG	199 967 395 S - CF HIGH	#			INF. POP.
DOU OTH SUG TOT CL SD: DOU	IG FIR-T HDWD-I PINE-L YAL 68.1 1.0 IG FIR-L		70.9 20.0 <i>107.9</i> COEFF VAR.% 73.8	49.0 18.7 <i>34.1</i> S.E.% 42.1	I	68 663 <i>194</i> SAMPL 20W 40	133 815 295 E TREE AVG 69	199 967 <i>395</i> S - CF HIGH 99	#	OF TREES	REQ.	INF. POP.
DOU OTH SUG TOT CL SD: DOU	IG FIR-T HDWD-I PINE-L AL 68.1 1.0 IG FIR-L IG FIR-L		70.9 20.0 <i>107.9</i> COEFF VAR.%	49.0 18.7 <i>34.1</i> S.E.%	I	68 663 <i>194</i> SAMPL LOW	133 815 295 E TREE AVG	199 967 395 S - CF HIGH	#	OF TREES	REQ.	INF. POP.
DOU OTH SUG TOT CL SD: DOU DOU	IG FIR-T HDWD-I PINE-L YAL 68.1 1.0 IG FIR-L IG FIR-T HDWD-I		70.9 20.0 107.9 COEFF VAR.% 73.8 65.5	49.0 18.7 <i>34.1</i> S.E.% 42.1 45.3	I	68 663 <i>194</i> SAMPL COW 40 18	133 815 295 E TREE AVG 69 34	199 967 395 S - CF HIGH 99 49	#	OF TREES	REQ.	INF. POP.
DOU OTH SUG TOT CL SD: DOU DOU	G FIR-T HDWD-I PINE-L YAL 68.1 1.0 G FIR-L JG FIR-T HDWD-I PINE-L		70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3	49.0 18.7 <i>34.1</i> S.E.% 42.1 45.3 13.4	I	68 663 <i>194</i> SAMPL 20W 40	133 815 295 E TREE AVG 69 34 176	199 967 395 S - CF HIGH 99 49 199	#	OF TREES 5	REO. 10	INF. POP. 1
DOU OTH SUG TOT CL SD: DOU DOU OTH SUG TOT	G FIR-T HDWD-I PINE-L YAL 68.1 1.0 G FIR-L JG FIR-T HDWD-I PINE-L YAL		70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6	49.0 18.7 <i>34.1</i> S.E.% 42.1 45.3	I	68 663 194 SAMPL COW 40 18 152 45	133 815 295 E TREE AVG 69 34 176 66	199 967 395 S - CF HIGH 99 49		OF TREES 5	REQ. 10 113	INF. POP. 1: 5(
DOU OTH SUG TOT CL SD: DOU DOU DOU OTH SUG TOT	G FIR-T HDWD-I PINE-L YAL 68.1 1.0 G FIR-L JG FIR-T HDWD-I PINE-L YAL 68.1		70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF	49.0 18.7 <i>34.1</i> <u>S.E.%</u> 42.1 45.3 13.4 <i>32.1</i>		68 663 194 SAMPL OW 40 18 152 45 TREES/	133 815 295 E TREE AVG 69 34 176 66 ACRE	199 967 395 S - CF HIGH 99 49 199 88		OF TREES 5 5 453 OF PLOTS	REO. 10 <i>113</i> REQ.	INF. POP. 1: 5(INF. POP.
DOU OTH SUG TOT CL SD: DOU DOU OTH SUG TOT CL SD:	G FIR-T HDWD-I .PINE-L YAL 68.1 1.0 G FIR-L JG FIR-T HDWD-I .PINE-L YAL		70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6	49.0 18.7 <i>34.1</i> S.E.% 42.1 45.3 13.4		68 663 194 SAMPL COW 40 18 152 45	133 815 295 E TREE AVG 69 34 176 66	199 967 395 S - CF HIGH 99 49 199		OF TREES 5	REQ. 10 113	INF. POP. 1: 50 INF. POP.
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU	G FIR-T HDWD-I PINE-L YAL 68.1 1.0 G FIR-L JG FIR-T HDWD-I PINE-L YAL 68.1 1.0		70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.%	49.0 18.7 <i>34.1</i> S.E.% 42.1 45.3 13.4 <i>32.1</i> S.E.%		68 663 194 SAMPL OW 40 18 152 45 TREES/ OW	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG	199 967 395 S - CF HIGH 99 49 199 88 HIGH		OF TREES 5 5 453 OF PLOTS	REO. 10 <i>113</i> REQ.	INF. POP. 1: 5(INF. POP.
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU DOU OTH	G FIR-T HDWD-I .PINE-L YAL 68.1 1.0 G FIR-L JG FIR-T HDWD-I YAL 68.1 1.0 G FIR-L JG FIR-L JG FIR-T HDWD-I		70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.% 71.9 96.6 145.2	49.0 18.7 34.1 S.E.% 42.1 45.3 13.4 32.1 S.E.% 25.4 34.1 51.3		68 663 194 SAMPL .OW 40 18 152 45 TREES/ .OW 35 27 23	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG 47 41 46	199 967 395 S - CF HIGH 99 49 199 88 <u>HIGH</u> 59 55 70		OF TREES 5 5 453 OF PLOTS	REO. 10 <i>113</i> REQ.	INF. POP. 1: 5(INF. POP.
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU DOU OTH SUG	G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L G FIR-T HDWD-I JG FIR-T HDWD-I HDWD-I PINE-L		70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.% 71.9 96.6 145.2 150.8	49.0 18.7 34.1 S.E.% 42.1 45.3 13.4 32.1 S.E.% 25.4 34.1 51.3 53.2		68 663 194 SAMPL OW 40 18 152 45 TREES/ OW 35 27 23 1	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG 47 41 46 2	199 967 395 S - CF HIGH 99 49 199 88 HIGH 59 55 70 4		OF TREES 5 5 0F PLOTS 5	REQ. 10 113 REQ. 10	INF. POP. 1: 5(INF. POP. 1:
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU DOU OTH	G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L G FIR-T HDWD-I JG FIR-T HDWD-I HDWD-I PINE-L		70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.% 71.9 96.6 145.2	49.0 18.7 34.1 S.E.% 42.1 45.3 13.4 32.1 S.E.% 25.4 34.1 51.3		68 663 194 SAMPL .OW 40 18 152 45 TREES/ .OW 35 27 23	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG 47 41 46	199 967 395 S - CF HIGH 99 49 199 88 <u>HIGH</u> 59 55 70		OF TREES 5 5 453 OF PLOTS	REO. 10 <i>113</i> REQ.	INF. POP. 1: 5(INF. POP. 1:
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH SUG TOT	G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-T HDWD-I G FIR-L G FIR-T HDWD-I DG FIR-L JG FIR-T HDWD-I PINE-L XAL 68.1		70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.% 71.9 96.6 145.2 150.8 41.4 COEFF	49.0 18.7 34.1 S.E.% 42.1 45.3 13.4 32.1 S.E.% 25.4 34.1 51.3 53.2 14.6	I	68 663 194 SAMPL OW 40 18 152 45 TREES/ OW 35 27 23 1 117 BASAL	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG 47 41 46 2 137 AREA/A	199 967 395 S - CF HIGH 99 49 199 88 HIGH 59 55 70 4 157 XCRE	#	OF TREES 5 453 OF PLOTS 5 77 OF PLOTS	REQ. 10 113 REQ. 10 19 REQ.	INF. POP. 1: 5(INF. POP. 1: 9 INF. POP.
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH SUG TOT	G FIR-T HDWD-I .PINE-L 'AL 68.1 1.0 G FIR-L JG FIR-L 'AL 68.1 1.0 JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L AL 68.1 1.0 HDWD-I .PINE-L 'AL		70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.% 71.9 96.6 145.2 150.8 41.4 COEFF VAR.%	49.0 18.7 34.1 S.E.% 42.1 45.3 13.4 32.1 S.E.% 25.4 34.1 51.3 53.2 14.6 S.E.%	I	68 663 194 SAMPL OW 40 18 152 45 TREES/ OW 35 27 23 1 117 BASAL OW	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG 47 41 46 2 137 AREA/A AVG	199 967 395 S - CF HIGH 99 49 199 88 HIGH 59 55 70 4 157 CRE HIGH	#	OF TREES 5 5 OF PLOTS 5 77	REQ. 10 <i>113</i> REQ. 10	INF. POP. 1: 5(INF. POP. 1: 9 INF. POP.
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU	G FIR-T HDWD-I .PINE-L 'AL 68.1 1.0 G FIR-L G FIR-T HDWD-I .PINE-L 'AL 68.1 1.0 G FIR-L JG FIR-T HDWD-I .PINE-L 'AL 68.1 1.0 JG FIR-L 'AL		70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.% 71.9 96.6 145.2 150.8 41.4 COEFF VAR.% 37.5	49.0 18.7 34.1 S.E.% 42.1 45.3 13.4 32.1 S.E.% 25.4 34.1 51.3 53.2 14.6 S.E.% 13.2	I	68 663 194 SAMPL OW 40 18 152 45 TREES/ OW 35 27 23 1 117 BASAL OW 39	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG 47 41 46 2 137 AREA/A AVG 45	199 967 395 S - CF HIGH 99 49 199 88 HIGH 55 70 4 157 CRE HIGH 51	#	OF TREES 5 453 OF PLOTS 5 77 OF PLOTS	REQ. 10 113 REQ. 10 19 REQ.	INF. POP. 1: 5(INF. POP. 1: 9 INF. POP.
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH	G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-T HDWD-I PINE-L CAL 68.1 1.0 G FIR-T HDWD-I PINE-L CAL 68.1 1.0 G FIR-T HDWD-I PINE-L CAL	· · · · · · · · · · · · · · · · · · ·	70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.% 71.9 96.6 145.2 150.8 41.4 COEFF VAR.% 37.5 98.3	49.0 18.7 34.1 S.E.% 42.1 45.3 13.4 32.1 S.E.% 25.4 34.1 51.3 53.2 14.6 S.E.% 13.2 34.7	I	68 663 194 SAMPL OW 40 18 152 45 TREES/ OW 35 27 23 1 117 BASAL OW 39 27	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG 47 41 46 2 137 AREA/A AVG 45 41	199 967 395 S - CF HIGH 99 49 199 88 HIGH 55 70 4 157 CRE HIGH 51 55	#	OF TREES 5 453 OF PLOTS 5 77 OF PLOTS	REQ. 10 113 REQ. 10 19 REQ.	INF. POP. 1: 50 INF. POP. 1: 9 INF. POP.
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: CL SD: CL	G FIR-T HDWD-I PINE-L AL 68.1 1.0 IG FIR-L IG FIR-T HDWD-I PINE-L AL 68.1 1.0 IG FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I HDWD-I	· · · · · · · · · · · · · · · · · · ·	70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.% 71.9 96.6 145.2 150.8 41.4 COEFF VAR.% 37.5 98.3 145.2	49.0 18.7 34.1 S.E.% 42.1 45.3 13.4 32.1 S.E.% 25.4 34.1 51.3 53.2 14.6 S.E.% 13.2 34.7 51.3	I	68 663 194 SAMPL OW 40 18 152 45 TREES/ OW 35 27 23 1 117 BASAL OW 39 27 22	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG 47 41 46 2 137 AREA/A AVG 45 41 45	199 967 395 S - CF HIGH 99 49 199 88 HIGH 55 70 4 157 ACRE HIGH 51 55 68	#	OF TREES 5 453 OF PLOTS 5 77 OF PLOTS	REQ. 10 113 REQ. 10 19 REQ.	INF. POP. 1: 50 INF. POP. 1: 9 INF. POP.
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: CL SD: CL	G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-L G FIR-L G FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L	· · · · · · · · · · · · · · · · · · ·	70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.% 71.9 96.6 145.2 150.8 41.4 COEFF VAR.% 37.5 98.3	49.0 18.7 34.1 S.E.% 42.1 45.3 13.4 32.1 S.E.% 25.4 34.1 51.3 53.2 14.6 S.E.% 13.2 34.7	I	68 663 194 SAMPL OW 40 18 152 45 TREES/ OW 35 27 23 1 117 BASAL OW 39 27	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG 47 41 46 2 137 AREA/A AVG 45 41	199 967 395 S - CF HIGH 99 49 199 88 HIGH 55 70 4 157 CRE HIGH 51 55	#	OF TREES 5 453 OF PLOTS 5 77 OF PLOTS	REQ. 10 113 REQ. 10 19 REQ.	INF. POP. 1: 50 INF. POP. 1: INF. POP. 1:
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH SUG TOT	G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-T HDWD-I PINE-L AL G FIR-T HDWD-I PINE-L AL	· · · · · · · · · · · · · · · · · · ·	70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.% 71.9 96.6 145.2 150.8 41.4 COEFF VAR.% 37.5 98.3 145.2 150.0 44.0	49.0 18.7 34.1 S.E.% 42.1 45.3 13.4 32.1 S.E.% 25.4 34.1 51.3 53.2 14.6 S.E.% 13.2 34.7 51.3 52.9	I	68 663 194 SAMPL OW 40 18 152 45 TREES/ OW 35 27 23 1 117 BASAL OW 39 27 22 5 120	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG 47 41 46 2 137 AREA/A AVG 45 41 45 11 142	199 967 395 S - CF HIGH 99 49 199 88 HIGH 55 70 4 157 ACRE HIGH 51 55 68 17	#	OF TREES 5 453 OF PLOTS 5 77 OF PLOTS 5 87	REO. 10 113 REO. 10 19 REO. 10 22	INF. POP. 1: 50 INF. POP. 1: 9 INF. POP. 1: 10
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH SUG TOT	G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-L G FIR-L G FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L	· · · · · · · · · · · · · · · · · · ·	70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.% 71.9 96.6 145.2 150.8 41.4 COEFF VAR.% 37.5 98.3 145.2 150.0	49.0 18.7 34.1 S.E.% 42.1 45.3 13.4 32.1 S.E.% 25.4 34.1 51.3 53.2 14.6 S.E.% 13.2 34.7 51.3 52.9	I	68 663 194 SAMPL OW 40 18 152 45 TREES/ OW 35 27 23 1 117 BASAL OW 39 27 22 5	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG 47 41 46 2 137 AREA/A AVG 45 41 45 11 142	199 967 395 S - CF HIGH 99 49 199 88 HIGH 55 70 4 157 CRE HIGH 51 55 68 17 164	#	OF TREES 5 453 OF PLOTS 5 77 OF PLOTS 5	REO. 10 113 REO. 10 19 REO. 10 22	INF. POP. 1: 50 INF. POP. 1: 9 INF. POP. 1: 10 INF. POP.
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH SUG TOT	G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L AL G FIR-T HDWD-I PINE-L AL G FIR-T HDWD-I PINE-L AL	· · · · · · · · · · · · · · · · · · ·	70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.% 71.9 96.6 145.2 150.8 41.4 COEFF VAR.% 37.5 98.3 145.2 150.0 44.0 COEFF	49.0 18.7 34.1 S.E.% 42.1 45.3 13.4 32.1 S.E.% 25.4 34.1 51.3 53.2 14.6 S.E.% 13.2 34.7 51.3 52.9 15.5	I	68 663 194 SAMPL OW 40 18 152 45 TREES/ OW 35 27 23 1 117 BASAL OW 39 27 22 5 120 NET BF	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG 47 41 46 2 137 AREA/A AVG 45 41 45 11 142 /ACRE	199 967 395 S - CF HIGH 99 49 199 88 HIGH 55 70 4 157 ACRE HIGH 51 55 68 17	#	OF TREES 5 453 OF PLOTS 5 77 OF PLOTS 5 87 OF PLOTS	REO. 10 113 REQ. 10 19 REO. 10 22 REQ.	INF. POP. 1: 50 INF. POP. 1: 9 INF. POP. 1: 10 INF. POP.
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: SD: CL SD: SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: SD: SD: SD: SD: SD: SD: SD: SD: SD:	G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L AL G FIR-T		70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.% 71.9 96.6 145.2 150.8 41.4 COEFF VAR.% 37.5 98.3 145.2 150.0 44.0 COEFF VAR.%	49.0 18.7 34.1 S.E.% 42.1 45.3 13.4 32.1 S.E.% 25.4 34.1 51.3 53.2 14.6 S.E.% 13.2 34.7 51.3 52.9 15.5 S.E.%	I	68 663 194 SAMPL OW 40 18 152 45 TREES/ OW 35 27 23 1 117 BASAL OW 39 27 22 5 120 NET BF OW	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG 47 41 46 2 137 AREA/A AVG 45 41 45 11 142 /ACRE AVG	199 967 395 S - CF HIGH 99 49 199 88 HIGH 55 70 4 157 ACRE HIGH 51 55 68 17 164 HIGH	#	OF TREES 5 453 OF PLOTS 5 77 OF PLOTS 5 87 OF PLOTS	REO. 10 113 REQ. 10 19 REO. 10 22 REQ.	INF. POP. 1: 50
DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: DOU OTH SUG TOT CL SD: SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: SD: CL SD: CL SD: SD: CL SD: CL SD: SD: SD: SD: SD: SD: SD: SD: SD: SD:	G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L AL 68.1 1.0 G FIR-L G FIR-T HDWD-I PINE-L AL G FIR-T HDWD-I PINE-L AL G FIR-T HDWD-I PINE-L AL G FIR-T		70.9 20.0 107.9 COEFF VAR.% 73.8 65.5 14.3 101.6 COEFF VAR.% 71.9 96.6 145.2 150.8 41.4 COEFF VAR.% 37.5 98.3 145.2 150.0 44.0 COEFF VAR.% 31.3	49.0 18.7 34.1 S.E.% 42.1 45.3 13.4 32.1 S.E.% 25.4 34.1 51.3 53.2 14.6 S.E.% 13.2 34.7 51.3 52.9 15.5 S.E.% 11.0	I	68 663 194 SAMPL OW 40 18 152 45 TREES/ OW 35 27 23 1 117 BASAL OW 39 27 22 5 120 NET BF OW 5,451	133 815 295 E TREE AVG 69 34 176 66 ACRE AVG 47 41 46 2 137 AREA/A AVG 45 41 45 11 142 //ACRE AVG 6,128	199 967 395 S - CF HIGH 99 49 199 88 HIGH 59 55 70 4 157 ACRE HIGH 51 55 68 17 164 HIGH 6,805	#	OF TREES 5 453 OF PLOTS 5 77 OF PLOTS 5 87 OF PLOTS	REO. 10 113 REQ. 10 19 REO. 10 22 REQ.	INF. POP. 15 50 INF. POP. 15 INF. POP. 15 10 INF. POP.

TC PS	TATS				PROJECT	-				PAGE DATE	2 12/16/2019
TWP	RGE	SC	TRACT	TY	PE	Α	CRES	PLOTS	TREES	CuFt	BdFt
37S	08	13	BKS	013	N		28.00	9	38	S	W
CL	68.1		COEFF		NET	BF/ACRE			# OF PLO	TS REQ.	INF. POP
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
тот	AL		31.7	11.2	11,242	12,656	14,070		45	11	5
CL	68.1		COEFF		NET	CUFT FT/	ACRE		# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR-L		32.1	11.3	1,259	1,420	1,581				
DOU	G FIR-T		101.7	35.9	760	1,185	1,610				
OTH	HDWD-I										
SUG.	PINE-L		150.0	52.9	195	414	633				
TOT	AL		33.1	11.7	2,666	3,019	3,371		49	12	5

T37S R08W S13	Ty013	N 28.00		Project: Acres	BK	3S 28.0	00							Page Date Time	12	1 2/16/2 :09:2	
	%				Perc	cent of	Net Bo	ard Fo	oot Volur	ne				Avera		g	I
S So Gr	Net	Bd. Ft. per Acre		Total	L	.og Sca	ile Dia.			Log L	ength		Ln	Dia	Bd	CF/	ł
Spp T rt ad	BdFt	Def% Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/
DF L DO2M	43	2,664	2,664	75			48	52			100		34	16	341		
DF L DO3M	33	2,025	2,025	57		100					100		34	10		1.04	
DF L DO4M	24	1,439	1,439	40	100				6	74		20	27	5	31	0.29	
DF Totals	48	6,128	6,128	172	23	33	21	23	1	17	77	5	29	7	88	0.70	
DF T DOCU													11	5		0.00	
DF T DO3M	73	3,389	3,389	95		100					100		34	8	83	0.66	
DF T DO4M	27	1,227	1,227	34	58	42				100			25	6	38	0.34	L
DF Totals	36	4,616	4,616	129	15	85				27	73		26	7	51	0.50	L
SP L DO4M	100	1,911	1,911	54	5		31	64			95	5	35	13	268	1.64	
SP Totals	15	1,911	1,911	54	5		31	64			95	5	35	13	268	1.64	Γ

TC PL	OTTREELI	ST						o t Tree Project	List - V BKS	7 olumes S				Page Date	1 12/16/	2019
TWP	RGE	SC	TRA	\CT		ΤY	PE		A	CRES	PLOTS	TF	REES	CRUISI	ED DATE	,
375	08W	13	BKS			013				28.00	9		15	:	5/1/2019	
Plot	Tree			<u>,</u>	Tr	ees	-,	16'	Tot	BA	Trees	Logs	Net	Net	Total	
No.	No.	Age	SI	Spp St	Me.	Ct. I	OBH	FF	Ht.	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
3N21	0001	70	100	DF L		2	13.0	82	69	67.2	70.52	104.6	2,130	9,193	66	29
	0002	70		OHL		1	13.0	62	60	33.6	34.69					
3N21			100			3	13.3	75	66	100.8	105.21	104.6	2,130	9,193	66	29
3N22	0001	70	100	OH L	5		14.0	61	60	168.1	157.20					
	0002	70	100	OH L	1		11.0	65	60	33.6	50.93					
	0003	70	100	DF L	1		22.0	86	100	33.6	12.73	38.2	1,203	5,347	37	17
	0004	70		SP L	1		31.0	86	125	33.6	6.41	19.2	1,242	5,963	39	19
3N22			100		8		14.7	64	64	268.9	227.27	57.4	2,444	11,311	76	35
3N23	0001	70	100	DF L		1	13.0	82	69	33.6	35.26	52.3	1,065	4,596	33	14
	0002	70	100	OH L		2	13.0	62	60	67.2	69.38					
	0003	70	100	DF T		3	13.0	85	80	100.8	100.58	179.7	2,908	11,331	90	35
3N23			100			6	13.4	77	71	201.7	205.22	232.0	3,973	15,928	124	50
3N31	0001	70	100	DF L		1	13.0	82	69	33.6	35.26	52.3	1,065	4,596	33	14
	0002	70	100	DF T		1	13.0	85	80	33.6	33.53	59.9	969	3,777	30	12
3N31			100	······		2	13.4	83	74	67.2	68.79	112.2	2,034	8,373	63	26
3N33	0001	70	100	DF L		1	13.0	82	69	33.6	35.26	52.3	1,065	4,596	33	14
	0002	70	100	OH L		1	13.0	62	60	33.6	34.69					
	0003	70	100	DF T		3	13.0	85	80	100.8	100.58	179.7	2,908	11,331	90	35
3N33			100			5	13.4	80	74	168.1	170.53	232.0	3,973	15,928	124	50
3N34	0001	70	100	DF L	1		24.0	87	110	33.6	10.70	32.1	1,325	6,098	41	19
	0002	70	100	DF T	1		17.0	85	107	33.6	21.32	64.0	1,247	5,117	39	16
	0003	70	100	DF T	1		13.0	83	83	33.6	36.46	72.9	987	3,646	31	11
	0004	70	100	SP L	1		28.0	84	124	33.6	7.86	23.6	1,242	5,502	39	17
3N34			100	······	4		18.0	84	98	134.4	76.34	192.6	4,800	20,364	149	63
3N41	0001	70	100	DF L		2	13.0	82	69	67.2	70.52	104.6	2,130	9,193	66	29
	0002	70	100	DF T		1	13.0	85	80	33.6	33.53	59.9	969	3,777	30	12
3N41			100			3	13.3	83	73	100.8	104.05	164.5	3,099	12,970	96	40
3N42	0001	70	100	DF T	1		12.0	86	63	33.6	42.79	42.8	675	2,568	21	8
	0002	70	100	DF L	1		8.0	81	55	33.6	96.29	96.3	608	2,889	19	9
	0003	70		DF L	1		17.0	84	90	33.6	21.32	42.6	1,125	4,051	35	13
3N42			100		3		10.7	83	62	100.8	160.40	181.7	2,407	9,508	75	30
3N43	0001	70	100	SP L		1	29.0	85	124	33.6	7.14	21.4	1,242	5,733	39	18
	0002	70	100	OH L		2	13.0	62	60	67.2	69.38					
	0003	70		DF L		1	13.0	82	69	33.6	35.26	52.3	1,065	4,596	33	14
3N43			100			4	14.9	70	67	134.4	111.77	73.7	2,307	10,329	72	32
TYPE			100		15		13.8		70	141.9				12,656	845	354

IC PS	TATS				DJECT S Roject	TATI BKS				PAGE DATE	1 12/16/201
WP	RGE	SC TRACT	, , , , , , , , , , , , , , , , , , , ,	ТҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt
37S	08	13 BKS		013S			59.00	19	99	S	W
					TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA		19	99		5.2		6 007		.9		
CRU	ISE COUNT	8	47		5.9		5,327		.9		
	DREST										
COU		10	52		5.2						
BLA	NKS	1									
100 %	6										
				STA	ND SUMN	IARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
	G FIR-L	16	21.1	21.5 16.6	106	11.4 20.8	53.1 84.9	9,178 12,264	9,178 12,264	2,089 3,017	2,026 2,987
	G FIR-T PINE-L	21 6	56.5 6.6	16.6 27.1	94 120	20.8 5.1	84.9 26.5	4,500	4,500	5,017 974	2,987 974
	HDWD-L		5.0	16.1	52	1.8	7.1	.,200	.,		
	DEROS-L	-	1.1	24.0	103	0.7	3.5	484	484	121	121
тот	AL	47	90.3	18.9	97	40.3	175.1	26,427	26,427	6,200	6,108
CL	68.1	COEFF									
SD:		VAR.%		I	SAMPLI LOW	E TREE AVG	S - BF HIGH	3	# OF TREES 5	REQ. 10	
	08.1 <u>1.0</u> IG FIR-L			I		AVG 811		3			
DOU DOU	<u>1.0</u> G FIR-L G FIR-T	VAR.% 100.9 89.6	S.E.% 26.0 20.0	I	600 276	AVG 811 345	HIGH 1,022 414	3			
DOU DOU SUG OTH	1.0 G FIR-L G FIR-T .PINE-L HDWD-I	VAR.% 100.9 89.6 64.3	S.E.% 26.0	I	LOW 600	AVG 811	HIGH 1,022	3			
DOU DOU SUG OTH	1.0 G FIR-L G FIR-T .PINE-L HDWD-I DEROS-L	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0	<u> </u>	600 276	AVG 811 345	HIGH 1,022 414	3			1
DOU DOU SUG OTH PON	1.0 G FIR-L G FIR-T .PINE-L HDWD-I DEROS-L	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 16.1	I	600 276 659	AVG 811 345 923 557	HIGH 1,022 414 1,188 647		5	10 122 REQ.	1 5 INF. POP
DOU DOU SUG OTH PON TOT CL SD:	1.0 IG FIR-L IG FIR-T .PINE-L HDWD-I DEROS-L YAL 68.1 1.0	VAR.% 100.9 89.6 64.3 , , , , , , , , , , , , , , , , , , ,	S.E.% 26.0 20.0 28.6 <i>16.1</i> S.E.%		LOW 600 276 659 <i>467</i> SAMPL LOW	AVG 811 345 923 557 E TREE AVG	HIGH 1,022 414 1,188 <i>647</i> S - CF HIGH		5 488	10 122	1 5 INF. POP
DOU DOU SUG OTH PON TOT CL SD: DOU	1.0 IG FIR-L IG FIR-T PINE-L HDWD-L DEROS-L YAL 68.1 1.0 IG FIR-L	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 <i>16.1</i> S.E.% 22.0		LOW 600 276 659 467 SAMPL LOW 127	AVG 811 345 923 557 E TREE AVG 163	HIGH 1,022 414 1,188 647 S - CF HIGH 199		5 488 # OF TREES	10 122 REQ.	1 5 INF. POP
DOU DOU SUG OTH PON TOT CL SD: DOU DOU	1.0 IG FIR-L IG FIR-T PINE-L HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L IG FIR-T	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 <i>16.1</i> S.E.% 22.0 17.4		LOW 600 276 659 467 SAMPL LOW 127 66	AVG 811 345 923 557 E TREE AVG 163 80	HIGH 1,022 414 1,188 647 S - CF HIGH 199 94		5 488 # OF TREES	10 122 REQ.	1 5 INF. POP
DOU DOU SUG OTH PON TOT CL SD: DOU SUG	1.0 IG FIR-L IG FIR-T PINE-L HDWD-L DEROS-L YAL 68.1 1.0 IG FIR-L	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 <i>16.1</i> S.E.% 22.0		LOW 600 276 659 467 SAMPL LOW 127	AVG 811 345 923 557 E TREE AVG 163	HIGH 1,022 414 1,188 647 S - CF HIGH 199		5 488 # OF TREES	10 122 REQ.	1 5 INF. POP
DOU DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH PON	1.0 IG FIR-L IG FIR-T PINE-L HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L JG FIR-L PINE-L HDWD-I DEROS-L	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 <i>16.1</i> 5.E.% 22.0 17.4 24.9		LOW 600 276 659 467 SAMPL LOW 127 66 144	AVG 811 345 923 557 E TREE AVG 163 80 192	HIGH 1,022 414 1,188 647 S - CF HIGH 199 94 240		5 488 # OF TREES 5	10 <i>122</i> REQ. 10	1 55 INF. POP. 1
DOU DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH	1.0 IG FIR-L IG FIR-T PINE-L HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L JG FIR-L PINE-L HDWD-I DEROS-L	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 <i>16.1</i> S.E.% 22.0 17.4		LOW 600 276 659 467 SAMPL LOW 127 66	AVG 811 345 923 557 E TREE AVG 163 80	HIGH 1,022 414 1,188 647 S - CF HIGH 199 94		5 488 # OF TREES	10 122 REQ.	1 55 INF. POP. 1 3
DOU DOU SUG OTH PON TOI CL SD: DOU DOU SUG OTH PON TOI	1.0 IG FIR-L IG FIR-T HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L JG FIR-L HDWD-I DEROS-L YAL 68.1 2000 FIR-L 100	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 <i>16.1</i> 5.E.% 22.0 17.4 24.9 <i>13.6</i>]	LOW 600 276 659 467 SAMPLI LOW 127 66 144 102 TREES/	AVG 811 345 923 557 E TREE AVG 163 80 192 118 ACRE	HIGH 1,022 414 1,188 647 S - CF HIGH 199 94 240 134		5 488 # OF TREES 5 349 # OF PLOTS	10 <i>122</i> REQ. 10 <i>87</i> REQ.	1 55 INF. POP 1 3 INF. POP
DOU DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH PON TOT CL SD:	1.0 IG FIR-L IG FIR-T PINE-L HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L IG FIR-T PINE-L HDWD-I DEROS-L YAL 68.1 1.0 CAL 68.1 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 <i>16.1</i> <u>S.E.%</u> 22.0 17.4 24.9 <i>13.6</i> <u>S.E.%</u>]	LOW 600 276 659 467 SAMPL LOW 127 66 144 102 TREES/ LOW	AVG 811 345 923 557 E TREE AVG 163 80 192 118 ACRE AVG	<u>НІGH</u> 1,022 414 1,188 647 S - CF <u>НІGH</u> 199 94 240 <i>134</i> НІGH		5 488 # OF TREES 5 349	10 <i>122</i> REQ. 10 <i>87</i>	1 INF. POP 1 SINF. POP
DOU DOU SUG OTH PON TOT DOU DOU SUG OTH PON TOT CL SD: DOU	1.0 IG FIR-L IG FIR-T PINE-L HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L IG FIR-L HDWD-I DEROS-L YAL 68.1 1.0 JG FIR-L 0 0 0 0 0 0 0 0 0 0 0 0 0	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 <i>16.1</i> <u>S.E.%</u> 22.0 17.4 24.9 <i>13.6</i> <u>S.E.%</u> 26.2]	LOW 600 276 659 467 SAMPL LOW 127 66 144 102 TREES/ LOW 16	AVG 811 345 923 557 E TREE AVG 163 80 192 118 ACRE AVG 21	HIGH 1,022 414 1,188 647 S - CF HIGH 199 94 240 <i>134</i> HIGH 27		5 488 # OF TREES 5 349 # OF PLOTS	10 <i>122</i> REQ. 10 <i>87</i> REQ.	1 INF. POP 1 SINF. POP
DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH PON TOT CL SD: DOU DOU	1.0 IG FIR-L IG FIR-T PINE-L HDWD-I DEROS-L 'AL 68.1 1.0 IG FIR-L DG FIR-L DEROS-L 'AL 68.1 1.0 JG FIR-L JG FIR-L JG FIR-L JG FIR-T	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 <i>16.1</i> <u>S.E.%</u> 22.0 17.4 24.9 <i>13.6</i> <u>S.E.%</u> 26.2 13.0]	LOW 600 276 659 467 SAMPL LOW 127 66 144 102 TREES/ LOW	AVG 811 345 923 557 E TREE AVG 163 80 192 118 ACRE AVG	<u>НІGH</u> 1,022 414 1,188 647 S - CF <u>НІGH</u> 199 94 240 <i>134</i> НІGH		5 488 # OF TREES 5 349 # OF PLOTS	10 <i>122</i> REQ. 10 <i>87</i> REQ.	1 INF. POP 1 SINF. POP
DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH PON TOT CL SD: DOU SUG	1.0 IG FIR-L IG FIR-T PINE-L HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L IG FIR-L HDWD-I DEROS-L YAL 68.1 1.0 JG FIR-L 0 0 0 0 0 0 0 0 0 0 0 0 0	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 <i>16.1</i> <u>S.E.%</u> 22.0 17.4 24.9 <i>13.6</i> <u>S.E.%</u> 26.2]	LOW 600 276 659 467 SAMPL LOW 127 66 144 102 TREES/ LOW 16 49	AVG 811 345 923 557 E TREE AVG 163 80 192 118 ACRE AVG 21 56	HIGH 1,022 414 1,188 647 S - CF HIGH 199 94 240 134 HIGH 27 64		5 488 # OF TREES 5 349 # OF PLOTS	10 <i>122</i> REQ. 10 <i>87</i> REQ.	1 55 INF. POP 1 3 INF. POP
DOU SUG OTH PON TOT CL SD: DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH PON	1.0 IG FIR-L IG FIR-T HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L IG FIR-L HDWD-I DEROS-L YAL 68.1 1.0 JG FIR-L JG FIR-L JG FIR-L I G FIR-T PINE-L HDWD-I IDEROS-I	VAR.% 100.9 89.6 64.3 110.5 COEFF VAR.% 85.2 77.8 55.9 93.5 COEFF VAR.% 111.1 55.0 162.5 206.1 299.5	S.E.% 26.0 20.0 28.6 16.1 S.E.% 22.0 17.4 24.9 13.6 S.E.% 26.2 13.0 38.3 48.6 70.6]	LOW 600 276 659 467 SAMPL LOW 127 66 144 102 TREES/ LOW 16 49 4 3 0	AVG 811 345 923 557 E TREE AVG 163 80 192 118 ACRE AVG 21 56 7 5 1	HIGH 1,022 414 1,188 647 S - CF HIGH 199 94 240 134 HIGH 27 64 9 7 2		5 488 # OF TREES 5 349 # OF PLOTS 5	10 <i>122</i> REQ. 10 87 REQ. 10	1 55 INF. POP. 1 3 INF. POP 1
DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH	1.0 IG FIR-L IG FIR-T HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L IG FIR-L HDWD-I DEROS-L YAL 68.1 1.0 JG FIR-L JG FIR-L JG FIR-L I G FIR-T PINE-L HDWD-I IDEROS-I	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 16.1 S.E.% 22.0 17.4 24.9 13.6 S.E.% 26.2 13.0 38.3 48.6]	LOW 600 276 659 467 SAMPL LOW 127 66 144 102 TREES/ LOW 16 49 4 3	AVG 811 345 923 557 E TREE AVG 163 80 192 118 ACRE AVG 21 56 7 5	HIGH 1,022 414 1,188 647 S - CF HIGH 199 94 240 <i>134</i> HIGH 27 64 9 7		5 488 # OF TREES 5 349 # OF PLOTS 5 84	10 <i>122</i> REQ. 10 87 REQ. 10 21	1 55 INF. POP. 1 3 INF. POP 1
DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH PON TOT DOU SUG OTH PON TOT	1.0 IG FIR-L IG FIR-T PINE-L HDWD-I DEROS-L AL 68.1 1.0 IG FIR-L JG FIR-L HDWD-I DEROS-L AL 68.1 1.0 JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L AL 1.0 JG FIR-L JG FIR-L AL 68.1 1.0 JG FIR-L JG FIR-L JG FIR-L AL 68.1 1.0 68.1 1.	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 16.1 S.E.% 22.0 17.4 24.9 13.6 S.E.% 26.2 13.0 38.3 48.6 70.6 10.5]	LOW 600 276 659 467 SAMPLI LOW 127 66 144 102 TREES/ LOW 16 49 4 3 0 81 BASAL	AVG 811 345 923 557 E TREE AVG 163 80 192 118 ACRE AVG 21 56 7 5 1 90 AREA/A	HIGH 1,022 414 1,188 647 S - CF HIGH 199 94 240 134 HIGH 27 64 9 7 2 100 CRE		<u>5</u> <u>488</u> # OF TREES <u>5</u> <u>349</u> # OF PLOTS <u>5</u> <u>84</u> # OF PLOTS	10 <i>122</i> REQ. 10 87 REQ. 10 21 5 REQ.	1 INF. POP. 1 INF. POP 1 INF. POP
DOU SUG OTH PON TOT CL SD: DOU SUG OTH PON TOT CL SD: DOU SUG OTH PON TOT CL SD: CL SUG OTH PON TOT	1.0 IG FIR-L IG FIR-T PINE-L HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L JG FIR-L DEROS-L YAL 68.1 1.0 JG FIR-L JG FIR-L JG FIR-L I HDWD-I DEROS-I YAL 68.1 1.0 JG FIR-L JG FIR-L I HDWD-I DEROS-I YAL 68.1 1.0 JG FIR-L JG FIR-L JG FIR-L JG FIR-L 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 16.1 S.E.% 22.0 17.4 24.9 13.6 S.E.% 26.2 13.0 38.3 48.6 70.6 10.5 S.E.%]	LOW 600 276 659 467 SAMPL LOW 127 66 144 102 TREES/ LOW 16 49 4 3 0 81 BASAL LOW	AVG 811 345 923 557 E TREE AVG 163 80 192 118 ACRE AVG 21 56 7 5 1 90 AREA/A AVG	НІGН 1,022 414 1,188 647 S - CF НІGН 199 94 240 134 НІGH 27 64 9 7 2 100 ССКЕ НІGH		5 488 # OF TREES 5 349 # OF PLOTS 5 84	10 <i>122</i> REQ. 10 87 REQ. 10 21	1 INF. POP. 1 INF. POP 1 INF. POP
DOU SUG OTH PON TOT CL SD: DOU SUG OTH PON TOT CL SD: DOU SUG OTH PON TOT CL SD: CL SD: DOU DOU SUG OTH PON TOT	1.0 IG FIR-L IG FIR-T HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L IG FIR-L HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L IG FIR-L IG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L	VAR.% 100.9 89.6 64.3 110.5 COEFF VAR.% 85.2 77.8 55.9 93.5 COEFF VAR.% 111.1 55.0 162.5 206.1 299.5 44.6 COEFF VAR.% 106.2	S.E.% 26.0 20.0 28.6 16.1 S.E.% 22.0 17.4 24.9 13.6 S.E.% 26.2 13.0 38.3 48.6 70.6 10.5 S.E.% 25.0]	LOW 600 276 659 467 SAMPL LOW 127 66 144 102 TREES/ LOW 16 49 4 3 0 81 BASAL LOW 40	AVG 811 345 923 557 E TREE AVG 163 80 192 118 ACRE AVG 21 56 7 5 1 90 AREA/A AVG 53	НІGH 1,022 414 1,188 647 S - CF НІGH 199 94 240 <i>134</i> НІGH 27 64 9 7 2 <i>100</i> ССКЕ НІGH 66		<u>5</u> <u>488</u> # OF TREES <u>5</u> <u>349</u> # OF PLOTS <u>5</u> <u>84</u> # OF PLOTS	10 <i>122</i> REQ. 10 87 REQ. 10 21 5 REQ.	1 INF. POP. 1 INF. POP 1 INF. POP
DOU DOU SUG OTH PON TOT CL SD: DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH PON TOT	1.0 IG FIR-L IG FIR-T HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L IG FIR-L HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L IG FIR-T PINE-L HDWD-I IDEROS-I YAL 68.1 1.0 JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 16.1 S.E.% 22.0 17.4 24.9 13.6 S.E.% 26.2 13.0 38.3 48.6 70.6 10.5 S.E.%]	LOW 600 276 659 467 SAMPL LOW 127 66 144 102 TREES/ LOW 16 49 4 3 0 81 BASAL LOW	AVG 811 345 923 557 E TREE AVG 163 80 192 118 ACRE AVG 21 56 7 5 1 90 AREA/A AVG	НІGН 1,022 414 1,188 647 S - CF НІGН 199 94 240 134 НІGH 27 64 9 7 2 100 ССКЕ НІGH		<u>5</u> <u>488</u> # OF TREES <u>5</u> <u>349</u> # OF PLOTS <u>5</u> <u>84</u> # OF PLOTS	10 <i>122</i> REQ. 10 87 REQ. 10 21 5 REQ.	1 INF. POP 1 INF. POP 1 INF. POP
DOU DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH PON TOT CL SD: SD: SD: SD: SD: SD: SD: SD: SD: SD:	1.0 IG FIR-L IG FIR-T HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L IG FIR-L HDWD-I DEROS-L YAL 68.1 1.0 IG FIR-L IG FIR-L IG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L IDEROS-I YAL 68.1 1.0 JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L JG FIR-L	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 16.1 S.E.% 22.0 17.4 24.9 13.6 S.E.% 26.0 38.3 48.6 70.6 10.5 S.E.% 25.0 13.3]	LOW 600 276 659 467 SAMPLJ LOW 127 66 144 102 TREES/ LOW 16 49 4 3 0 81 BASAL LOW 40 74	AVG 811 345 923 557 E TREE AVG 163 80 192 118 ACRE AVG 21 56 7 5 1 90 AREA/A AVG 53 85	НІGH 1,022 414 1,188 647 S - CF НІGH 199 94 240 134 НІGH 27 64 9 7 2 100 ССКЕ НІGH 66 96		<u>5</u> <u>488</u> # OF TREES <u>5</u> <u>349</u> # OF PLOTS <u>5</u> <u>84</u> # OF PLOTS	10 <i>122</i> REQ. 10 87 REQ. 10 21 5 REQ.	1 INF. POP. 1 INF. POP 1 INF. POP
DOU DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH PON TOT CL SD: DOU DOU SUG OTH PON TOT	1.0 IG FIR-L IG FIR-T PINE-L HDWD-I DEROS-L AL 68.1 1.0 IG FIR-L IG FIR-L IG FIR-L IG FIR-L IG FIR-L IG FIR-L IDEROS-I CAL 68.1 1.0 JG FIR-L JDEROS-I CAL 68.1 1.0 JG FIR-L JG FI	VAR.% 100.9 89.6 64.3	S.E.% 26.0 20.0 28.6 16.1 S.E.% 22.0 17.4 24.9 13.6 S.E.% 26.2 13.0 38.3 48.6 70.6 10.5 S.E.% 25.0 13.3 36.7]	LOW 600 276 659 467 SAMPL LOW 127 66 144 102 TREES/ LOW 16 49 4 3 0 81 BASAL LOW 40 74 17	AVG 811 345 923 557 E TREE AVG 163 80 192 118 ACRE AVG 21 56 7 5 1 90 AREA/A AVG 53 85 27	НІGH 1,022 414 1,188 647 S - CF НІGH 199 94 240 134 НІGH 27 64 9 7 2 100 АСRE НІGH 66 96 36		<u>5</u> <u>488</u> # OF TREES <u>5</u> <u>349</u> # OF PLOTS <u>5</u> <u>84</u> # OF PLOTS	10 <i>122</i> REQ. 10 87 REQ. 10 21 5 REQ.	INF. POP. 1 5 INF. POP. 1 INF. POP. 1 INF. POP. 1

TC PS	ГАТЅ				PROJEC					PAGE DATE	2 12/16/2019
TWP	RGE	SC	TRACT	TYI	РЕ	A	CRES	PLOTS	TREES	CuF	t BdFt
378	08	13	BKS	0135	5		59.00	19	99	S	W
CL	68.1		COEFF		NET	BF/ACRE			# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
	G FIR-L		116.6	27.5	6,657	9,178	11,700				
DOU	G FIR-T		60.5	14.2	10,517	12,264	14,012				
SUG.	PINE-L		155.6	36.7	2,850	4,500	6,150				
ОТН	HDWD-I										
PON	DEROS-L	,	299.5	70.6	142	484	826				
тот	AL		55.0	13.0	23,004	26,427	29,850		128	32	14
CL	68.1		COEFF		NET	CUFT FT/	ACRE		# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR-L	11.000	112.0	26.4	1,491	2,026	2,561				
DOU	G FIR-T		58.2	13.7	2,578	2,987	3,397				
SUG.	PINE-L		155.6	36.7	617	974	1,330				
ОТН	HDWD-I	-									
PON	DEROS-I		299.5	70.6	36	121	206				
тот	'AL		50.7	11.9	5,378	6,108	6,837		108	27	12

TC PSPC	STGR		Sp	oecies,	Sort G	rade - Boa	rd Fo	oot V	olum	es (P	rojec	t)						· · · ·	
T37S R0	98W S13	Ty013	S 5	9.00		Project: Acres	BI	KS 59.	00		<u> </u>				<u></u>	Page Date Time	12	1 2/16/2 :13:3	019 5AM
-	So Gr rtad	% Net BdFt	Bd. Ft. Def%	. per Acre Gross	e Net	Total Net MBF		Log Sc	f Net Bo ale Dia. 12-16		oot Volu		ength 31-35	36-99	Ln Ft	Avera Dia In		g CF/ Lf	Logs Per /Acre
DF T D DF T D	00CU 002M 003M 004M	26 57 17		3,308 6,983 1,974	3,308 6,983 1,974	195 412 116	80	66 16	41 30 5	59 4	11	26	100 100 42	21	11 34 34 29	5 16 9 5	359 114 38	0.00 2.21 0.84 0.36	7.4 9.2 61.2 52.5
	IIs DO2M DO3M	46 27 54		12,264 2,496 5,016	12,264 2,496 5,016	724 147 296	13	40 31	29 13 38	18 87 31	2	4	91 100 98	3	31 34 34	8 20 12		0.74 3.39 1.41	130.4 4.2 23.1
DF L D DF Tota		19 35		1,666 9,178	1,666 9,178	98 542	42		15 27	7 42	2	53 10	30 86	15 3	30 31	7 10		0.51 1.12	30.1 57.4
	002M 003M 004M	20 51 29		928 2,305 1,267	928 2,305 1,267	55 136 75	16	9 10	50 24 28	50 68 46		34	100 100 66			16 15 8	340 349 109	2.05 2.14 0.90	2.7 6.6 11.7
SP Total	ls DO4M	17 100		4,500 484	4,500 484	266			30 70	58		10 30	90 70		31 28			1.49 1.28	21.0 3.4
PP Tota	ls	2		484 26,427	484	29			70 29	33		30 7	70 89	2	28	10 9		1.28 0.93	3.4

TMP SR SC TRACT TYPE LACRES PLOTS TRES CRUSEDATE PM Tec Age R Spp 8 True Tot Auc Auc Auc Auc Auc Nat Auc Nat Auc Total S111 000 TO 100 DFT T Total Auc Total Auc Auc Auc Auc Auc Clund Clund S111 000 TO 100 DFT 1 100 88 72 33.6 61.02 61.6 66.03 3.64 2.01 1.4.54 1.4.6 4.60 3.64 2.01 1.4.53 4.4 1.00 1.01 1.01 1.01 1.01 3.3.6 2.02 1.1.6 1.5.2 2.7.31 1.450 6.655 4.65 4.53 3.0.1 1.4.23 7.42 4.4 1.0.2 0.00 1.0 DFT 1.1 3.2.0 1.3.3 5.03 1.0.0	IC PL	OTTREEL	151						ot Tree Project	e List - Y BK	Volumes S				Page Date	1 12/16/	2019
Na Na Ag SI Spp St Me CL DBI FF IL JAc JAc CurPAL BMPAL CUNTS 3511 0001 70 100 DFT 3 16.0 84 94 100.8 67.09 146.0 3.547 14.564 110 3511 0001 70 100 DFL 1 10.00 88 72.33.6 61.62 61.6 66.6 69.344 140 0001 70 100 DFL 1 16.0 86 13.33 63.452 9.11.6. 1.552 9.494 51 0004 70 100 DFT 1 3.50 81 133.36 9.12 7.3 1.450 6.645 45 0006 70 100 DFT 1 3.20 83 139 33.6 6.02 24.1 1.522 7.582 48 0001 70 100 DFT 1 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>A</th><th></th><th></th><th>TI</th><th></th><th></th><th></th><th></th></td<>										A			TI				
No. Age SI Spp 51 Me CL DHI FP HL /Ac. /Ac. /Ac. CuPUAL BUPUAL CUNTS 3511 0001 70 100 DFT 3 16.0 84 94 100.8 67.09 146.0 3.547 14.564 110 3511 0001 70 100 DFL 1 100.0 88 72 33.6 61.62 61.6 66 64.7 33.6 64.25 41.4 1.450 66.95 3.841 22.4 1.495 6.475 44 60.003 70 100 DFT< 1 1.60 80 40 33.6 2.401 1.450 65.45 451 0000 70 100 DFT 1 32.0 83 139 33.6 6.02 24.1 1.532 7.582 48 0010 70 100 DFT 1 22.0 81 130.4 35.0 22.13	Plot	Tree				Tre	ees		16'	Tot	BA	Trees	Logs	Net	Net	Tota	1
Image: 100 3 16.6 84 94 100.8 67.09 146.0 3.547 14.564 110 3512 0001 70 100 DFT 1 10.0 88 72 33.6 61.62 61.6 669 3.081 21 0003 70 100 DFL 1 46.0 86 143 33.6 2.91 11.6 1.652 9.494 51 0005 70 100 DFL 1 35.0 84 131 33.6 5.03 2.01 1.423 7.474 44 0006 70 100 DFL 1 32.0 83 139 33.6 6.02 2.41 1.532 7.582 48 0001 70 100 DFT 1 22.0 81 80 33.6 12.73 38.2 1.322 5.347 44.32 7.342 448 0011 70 100 DFT 1 2.0	No.		Age	SI	Spp St			DBH	FF	Ht.	/Ac.		-	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
I 100 3 16.6 84 94 100.8 67.09 146.0 3.547 14.564 110 3512 0001 70 100 DFT 1 10.0 88 72 33.6 61.62 61.6 669 3.081 21 0003 70 100 DFL 1 46.0 86 143 33.6 2.91 11.6 1.652 9.494 51 0005 70 100 DFL 1 46.0 86 143 33.6 2.01 1.453 6.655 45 0006 70 100 DFL 1 3.50 84 1.31 33.6 6.02 2.41 1.532 7.542 48 0007 70 100 DFT 1 22.0 81 30 33.6 1.27.3 82.5 9.793 3.14 13 0011 70 100 DFT 1 22.0 81 3.697	3S11	0001	70	100	DF T		3	16.0	84	94	100.8	67.09	146.0	3,547	14,564	110	4
3812 0001 70 100 DFT 1 10.0 88 72 33.6 61.62 61.6 66 9.081 21 0002 70 100 DFL 1 27.0 86 125 33.6 8.45 25.4 1,495 6,678 46 0003 70 100 DFL 1 46.0 86 143 33.6 2.91 11.6 1,652 9,494 51 0005 70 100 DFL 1 35.0 84 131 33.6 5.03 20.1 1,423 7,747 44 0007 70 100 DFT 1 32.0 83 139 33.6 6.02 2.41 1,532 7,582 48 0010 70 100 DFT 1 22.0 81 120 33.6 12.73 32.5 993 3,183 31 3131 310 DFT 1 2.0 <td< td=""><td>2011</td><td></td><td>·</td><td>100</td><td></td><td></td><td></td><td>16.6</td><td>0.4</td><td></td><td>100.0</td><td>(7.00</td><td></td><td></td><td></td><td></td><td></td></td<>	2011		·	100				16.6	0.4		100.0	(7.00					
0002 70 100 DFL 1 27.0 86 125 33.6 8.45 25.4 1,495 6,678 46 0003 70 100 DFL 1 46.0 86 143 33.6 2.91 11.6 1,652 9444 51 0005 70 100 DFT 1 2.60 87 123 33.6 9.12 27.3 1,450 6,655 45 0006 70 100 DFL 1 32.0 83 139 33.6 6.02 2.41 1,532 7,582 48 0010 70 100 DFT 1 22.0 81 80 36.6 12.23 33.6 6.02 2.41 1,532 7,582 48 0010 70 100 DFT 1 22.0 81 80 36.6 12.3 3.26 1,322 5,347 41 0101 70 100 DFT		0001	70		DF T	1	3				· · · ·						
003 70 100 DFL 1 46.0 86 143 33.6 2.91 11.6 1.652 9.494 \$1 0004 70 100 DFL 1 16.0 80 40 33.6 9.12 27.3 1.450 6.655 445 0005 70 100 DFL 1 35.0 83 139 33.6 6.02 24.1 1.532 7.582 48 0009 70 100 DFT 1 32.0 83 139 33.6 6.02 24.1 1.532 7.582 48 0011 70 100 DFT 1 22.0 81 80 33.6 12.31 27.5 13.44 64.372 41.73 3813 0001 70 100 DFT 2 16.8 84 94 134.4 89.45 194.7 4.730 19.419 147 3813 0001 70 100 DFT <td>2012</td> <td></td>	2012																
0004 70 100 DH L 1 16.0 80 40 33.6 24.07 0005 70 100 DF L 1 35.0 84 131 33.6 50.3 20.1 1.423 7.747 44 0007 70 100 DF L 1 32.0 83 139 33.6 6.02 24.1 1.532 7.582 48 0009 70 100 DF T 1 22.0 81 129 33.6 6.02 24.1 1.532 7.582 48 0010 70 100 DF T 1 22.0 81 80 33.6 12.73 32.5 593 3.183 31 212 100 11 21.0 84 94 67.2 44.73 97.4 2.365 9.79 73 3813 0001 70 100 DF T 2 16.0 84 94 134.4 76.74 124.0														•			
0006 70 100 DFL 1 35.0 84 131 33.6 5.03 20.1 1,423 7,747 44 0007 70 100 SPL 1 37.0 85 139 33.6 4.50 18.0 1.372 7,582 48 0009 70 100 DFT 1 32.0 83 139 33.6 6.02 24.1 1,532 7,582 48 0010 70 100 DFT 1 22.0 81 120 33.6 12.73 38.2 1.232 5.347 441 0011 70 100 DFT 2 16.0 84 94 67.2 44.73 97.4 2.36 9.79 73 0003 70 100 DFT 4 16.0 84 94 134.4 76.74 124.0 3.598 15.409 112 1313 100 4 16.0 84 94		0004	70	100		1		16.0	80		33.6	24.07		,			
0007 70 100 SP L 1 37.0 85 139 33.6 4.50 18.0 1,376 7,022 43 0008 70 100 DF L 1 32.0 83 139 33.6 6.02 24.1 1,532 7,582 48 0010 70 100 DF T 1 22.0 81 120 33.6 12.73 38.2 1,322 5,347 41 0011 70 100 DF T 1 22.0 81 80 33.6 12.73 38.2 1,322 5,787 413 313 0002 70 100 DF T 2 16.0 84 94 134.4 87.7 124.0 3,598 1,409 112 313 100 4 16.6 84 94 134.4 89.45 194.7 4,730 19,419 147 3141 100 DF T 4 16.6 84 94<		0005	70	100	DF T	1		26.0	87	123	33.6	9.12	27.3	1,450	6,655	45	
0008 70 100 DF L 1 32.0 83 139 33.6 6.02 24.1 1,532 7,582 48 0009 70 100 DF T 1 32.0 83 139 33.6 6.02 24.1 1,532 7,582 48 0011 70 100 DF T 1 22.0 81 80 33.6 12.73 25.5 993 3,183 31 3512 100 11 21.0 85 88 369.7 153.21 27.9 13,444 64,372 41.7 9003 70 100 DF L 1 16.0 84 94 134.4 89.45 194.7 4.730 194.19 147 1215 1001 70 100 DF L 5 21.0 84 134.4 89.45 194.7 4.730 194.19 147 1215 815 1001 DF L 5 21.0 84		0006	70	100	DF L	1		35.0	84	131	33.6	5.03	20.1	1,423	7,747	44	
0009 70 100 DFT 1 32.0 83 139 33.6 6.02 24.1 1,532 7,582 48 0010 70 100 DFT I 22.0 81 120 33.6 12.73 382 1,322 5,347 41 0011 70 100 DFT I 22.0 81 80 33.6 12.73 382 1,322 5,347 41 1813 0001 70 100 DFT 2 16.0 84 94 67.2 44.73 97.4 2,365 9,709 73 3002 70 100 OHL 1 16.0 80 52 33.6 2.64 141.79 83 84 134.4 89.45 194.7 4,730 19.419 147 1815 100 4 16.6 84 94 134.4 89.45 194.7 4,730 19.419 147 1815 000		0007	70	100	SP L	1		37.0	85	139	33.6	4.50	18.0	1,376	7,022	43	
0010 70 100 DFT 1 22.0 81 120 33.6 12.73 38.2 1,522 5,347 41 0011 70 100 DFT 1 22.0 81 80 33.6 12.73 25.5 993 3,183 31 3812 100 FT 2 16.0 84 94 67.2 44.73 97.4 2,365 9,709 73 0002 70 100 SPL 1 27.0 84 120 33.6 23.64 2.366 1,233 5,700 73 1813 100 4 17.9 83 84 134.4 76.74 124.0 3,56 194.19 147 1821 100 DFL 5 21.0 84 106 166.1 66.72 181.7 6.415 29,065 199 1821 100 DFL 1 15.0 83 84 33.6 27.39 54.8		0008	70	100	DF L	1		32.0	83	139	33.6	6.02	24.1	1,532	7,582	48	
0011 70 100 DFT 1 22.0 81 80 33.6 12.73 25.5 993 3,183 31 SS12 100 11 21.0 85 88 369.7 153.21 27.59 13,444 64,372 417 SS13 0001 70 100 DFT 2 16.0 84 94 67.2 44.73 97.4 2,365 9,709 73 0003 70 100 OHL 1 16.0 84 94 134.4 76.74 124.0 3,598 15,409 112 1815 100 4 16.6 84 94 134.4 89.45 194.7 4,730 194.19 147 1821 100 DFL 5 21.0 84 106 168.1 66.72 181.7 6.415 29.065 199 1821 100 DFL 1 15.0 83 94 33.6 27.39			70			1		32.0	83	139	33.6	6.02	24.1	1,532	7,582	48	
SS12 100 11 21.0 85 88 369.7 153.21 275.9 13.44 64.372 417 1813 0001 70 100 DFT 2 16.0 84 94 67.2 44.73 97.4 2,365 9,709 73 0003 70 100 OHL 1 16.0 80 52 33.6 8.38 26.6 1,233 5,700 38 100 OHL 1 16.0 84 94 134.4 76.74 124.0 3,598 15,409 112 1815 100 DFT 4 16.6 84 94 134.4 89.45 194.7 4,730 194.19 147 1821 100 DFL 5 21.0 84 106 168.1 66.72 181.7 6,415 29,065 199 1822 001 70 100 DFL 1 15.0 83 36 27.39				100	DF T	1			81					-	5,347		
3813 0001 70 100 DFT 2 16.0 84 94 67.2 44.73 97.4 2.365 9.709 73 0003 70 100 SPL 1 27.0 84 120 33.6 8.3.8 26.6 1.233 5.700 38 3813 100 4 17.9 83 84 134.4 76.74 124.0 3.598 15.409 112 3813 100 4 16.6 84 94 134.4 89.45 194.7 4.730 19.419 147 3815 100 FL 5 21.0 84 106 168.1 66.72 181.7 6.415 29.065 199 1521 100 DFL 1 15.0 83 94 33.6 27.39 54.8 1,180 4.656 37 0002 70 100 DFT 1 15.0 83 33.6 27.39 54.8		0011	70	100	DF T	1		22.0	81	80	33.6	12.73	25.5	993	3,183	31	
0002 70 100 SP L 1 27.0 84 120 33.6 8.38 26.6 1,233 5,700 38 3813 100 H 1 16.0 80 52 33.6 23.64 1 23.59 15,409 112 3813 100 H 16.0 84 94 134.4 89.45 194.7 4,730 19,419 147 3815 100 4 16.6 84 94 134.4 89.45 194.7 4,730 19,419 147 3821 100 FL 5 21.0 84 106 168.1 66.72 181.7 6,415 29,065 199 3822 001 70 100 DF L 1 15.0 83 98.3 33.6 27.39 54.8 1,180 4,656 37 003 70 100 DF T 1 15.0 84 99 33.6 11.44 <td< td=""><td>3512</td><td></td><td></td><td>100</td><td></td><td>11</td><td></td><td>21.0</td><td>85</td><td>88</td><td>369.7</td><td>153.21</td><td>275.9</td><td>13,444</td><td>64,372</td><td>417</td><td>2</td></td<>	3512			100		11		21.0	85	88	369.7	153.21	275.9	13,444	64,372	417	2
0003 70 100 OH L 1 16.0 80 52 33.6 23.64 3813 100 4 17.9 83 84 134.4 76.74 124.0 3.598 15.409 112 3815 0001 70 100 DF T 4 16.0 84 94 134.4 89.45 194.7 4.730 19,419 147 3815 100 4 16.6 84 94 134.4 89.45 194.7 4.730 19,419 147 3821 100 DF L 5 21.5 84 106 168.1 66.72 181.7 6.415 29,065 199 3822 001 70 100 DF L 1 15.0 83 94 33.6 27.39 54.8 1,030 3,560 32 0003 70 100 DF T 1 14.0 84 89 33.6 31.44 62.9 1,098	3S13	0001	70	100	DF T		2	16.0	84	94	67.2	44.73	97.4	2,365	9,709	73	
3813 100 4 17.9 83 84 134.4 76.74 124.0 3,598 15,409 112 3815 0001 70 100 DFT 4 16.0 84 94 134.4 89.45 194.7 4,730 19,419 147 3815 100 4 16.6 84 94 134.4 89.45 194.7 4,730 19,419 147 3821 100 DFL 5 21.0 84 106 168.1 66.72 181.7 6,415 29,065 199 3822 0001 70 100 DFL 1 15.0 83 94 33.6 27.39 54.8 1,030 3,560 32 0002 70 100 DFT 1 14.0 84 89 33.6 31.44 62.9 1,098 4,087 34 1822 100 4 14.7 84 91 134.4 113.60		0002	70	100	SP L		1	27.0	84	120	33.6	8.38	26.6	1,233	5,700	38	
ISIS 0001 70 100 DF T 4 16.0 84 94 134.4 89.45 194.7 4,730 19,419 147 ISIS 100 4 16.6 84 94 134.4 89.45 194.7 4,730 19,419 147 ISIS 100 DF L 5 21.0 84 106 168.1 66.72 181.7 6,415 29,065 199 ISIS 100 DF L 1 15.0 83 94 33.6 27.39 54.8 1,070 3,834 33 0002 70 100 DF L 1 15.0 83 88 33.6 27.39 54.8 1,030 3,560 32 0004 70 100 DF T 1 14.0 84 89 33.6 27.39 54.8 1,030 3,560 32 1622 100 4 14.7 84 91 134.4 113.60 22.72 4,379 16,138 136 1523 0001 70 1		0003	70	100	OHL		1	16.0	80	52	33.6	23.64					
S15 100 4 16.6 84 94 134.4 89.45 194.7 4,730 19,419 147 S21 0001 70 100 DF L 5 21.0 84 106 168.1 66.72 181.7 6,415 29,065 199 S21 100 5 21.5 84 106 168.1 66.72 181.7 6,415 29,065 199 S22 0001 70 100 DF L 1 15.0 83 94 33.6 27.39 54.8 1,070 3,834 33 0002 70 100 DF T 1 14.0 84 89 33.6 27.39 54.8 1,030 3,560 32 0004 70 100 DF T 1 14.0 84 89 33.6 31.44 62.9 1,098 4,087 34 S22 100 7 18.3 84 94 134.4 <td< td=""><td>S13</td><td></td><td></td><td>100</td><td></td><td></td><td>4</td><td>17.9</td><td>83</td><td>84</td><td>134.4</td><td>76.74</td><td>124.0</td><td>3,598</td><td>15,409</td><td>112</td><td></td></td<>	S13			100			4	17.9	83	84	134.4	76.74	124.0	3,598	15,409	112	
S21 0001 70 100 DF L 5 21.0 84 106 168.1 66.72 181.7 6,415 29,065 199 S21 100 5 21.5 84 106 168.1 66.72 181.7 6,415 29,065 199 S22 0001 70 100 DF L 1 15.0 83 94 33.6 27.39 54.8 1,070 3,834 33 0003 70 100 DF L 1 15.0 83 88 33.6 27.39 54.8 1,180 4,656 37 0004 70 100 DF T 1 14.0 84 89 33.6 31.44 62.9 1,098 4,087 34 S22 100 4 14.7 84 91 134.4 113.60 22.72 4,379 16,138 136 S23 0001 70 100 DF L 1 24.0 <	S15	0001	70	100	DF T		4	16.0	84	94	134.4	89.45	194.7	4,730	19,419	147	
NS21 0001 70 100 DF L 5 21.0 84 106 168.1 66.72 181.7 6,415 29,065 199 NS21 100 5 21.5 84 106 168.1 66.72 181.7 6,415 29,065 199 NS22 0001 70 100 DF L 1 15.0 83 94 33.6 27.39 54.8 1,070 3,834 33 0004 70 100 DF T 1 15.0 83 88 33.6 27.39 54.8 1,180 4,656 37 0004 70 100 DF T 1 14.0 84 89 33.6 31.44 62.9 1,098 4,087 34 102 70 100 DF T 4 16.0 84 94 134.4 180.0 2.849 17.439 120 1020 70 100 DF L 1 24.0 <	S15			100			4	16.6	84	94	134.4	89.45	194 7	4 730	19 419	147	
3822 0001 70 100 DF L 1 15.0 83 94 33.6 27.39 54.8 1,070 3,834 33 0002 70 100 DF L 1 15.0 83 94 33.6 27.39 54.8 1,070 3,834 33 0003 70 100 DF T 1 15.0 83 88 33.6 27.39 54.8 1,030 3,560 32 0004 70 100 DF T 1 14.0 84 89 33.6 31.44 62.9 1,098 4,087 34 3822 100 4 14.7 84 91 134.4 113.60 227.2 4,379 16,138 136 8823 0001 70 100 DF T 4 16.0 84 94 134.4 89.45 194.7 4,730 19.419 147 8824 0001 70 100 PF L <		0001	70		DF L												
3822 0001 70 100 DF L 1 15.0 83 94 33.6 27.39 54.8 1,070 3,834 33 0002 70 100 DF L 1 15.0 83 94 33.6 27.39 54.8 1,070 3,834 33 0003 70 100 DF T 1 15.0 83 88 33.6 27.39 54.8 1,030 3,560 32 0004 70 100 DF T 1 14.0 84 89 33.6 31.44 62.9 1,098 4,087 34 3822 100 4 14.7 84 91 134.4 113.60 227.2 4,379 16,138 136 3823 0001 70 100 DF L 3 21.0 84 94 134.4 89.45 194.7 4,730 19.419 147 3824 100 7 18.3 84	0001		<u></u>	100			-	21.6	0.4	107	1.00				-	100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0001	70		DEI	1	3								,		
0003 70 100 DF T 1 15.0 83 88 33.6 27.39 54.8 1,030 3,560 32 0004 70 100 DF T 1 14.0 84 89 33.6 31.44 62.9 1,098 4,087 34 3822 100 4 14.7 84 91 134.4 113.60 227.2 4,379 16,138 136 3823 0001 70 100 DF L 3 21.0 84 106 100.8 40.03 109.0 3,849 17,439 120 0002 70 100 DF T 4 16.0 84 94 134.4 89.45 194.7 4,730 19,419 147 3823 0001 70 100 PF L 1 24.0 82 103 33.6 10.70 32.1 1,148 4,600 36 824 0001 70 100 PF L	5522													-			
0004 70 100 DFT 1 14.0 84 89 33.6 31.44 62.9 1,098 4,087 34 3822 100 4 14.7 84 91 134.4 113.60 227.2 4,379 16,138 136 3823 0001 70 100 DFL 3 21.0 84 106 100.8 40.03 109.0 3,849 17,439 120 0002 70 100 DFT 4 16.0 84 94 134.4 89.45 194.7 4,730 19,419 147 3823 100 7 18.3 84 98 235.3 129.48 303.8 8,579 36,858 266 3824 0001 70 100 SP L 1 38.0 83 145 33.6 4.27.39 54.8 1,007 3,560 31 0003 70 100 DF T 1 14.0 81														•	,		
3822 100 4 14.7 84 91 134.4 113.60 227.2 4,379 16,138 136 3823 0001 70 100 DF L 3 21.0 84 106 100.8 40.03 109.0 3,849 17,439 120 0002 70 100 DF T 4 16.0 84 94 134.4 89.45 194.7 4,730 19,419 147 3823 100 7 18.3 84 98 235.3 129.48 303.8 8,579 36,858 266 3824 0001 70 100 PP L 1 24.0 82 103 33.6 10.70 32.1 1,148 4,600 36 0002 70 100 SP L 1 38.0 83 145 33.6 27.39 54.8 1,007 3,560 31 0003 70 100 DF T 1 14.0 81						-								-	-		
3823 0001 70 100 DF L 3 21.0 84 106 100.8 40.03 109.0 3,849 17,439 120 0002 70 100 DF T 4 16.0 84 94 134.4 89.45 194.7 4,730 19,419 147 3823 100 7 18.3 84 98 235.3 129.48 303.8 8,579 36,858 266 3824 0001 70 100 PL 1 24.0 82 103 33.6 10.70 32.1 1,148 4,600 36 0002 70 100 SP L 1 38.0 83 145 33.6 4.27 17.1 1,391 7,212 43 0003 70 100 DF L 1 15.0 81 84 33.6 31.44 62.9 1,107 4,402 34 0004 70 100 DF T 1 14.0 81 74 33.6 31.44 62.9 911 2,830 28	2011			100		4		147	01	01	124.4	112.60	227.2	4 270	16 129	126	
0002 70 100 DFT 4 16.0 84 94 134.4 89.45 194.7 4,730 19,419 147 3S23 100 7 18.3 84 98 235.3 129.48 303.8 8,579 36,858 266 3S24 0001 70 100 PP L 1 24.0 82 103 33.6 10.70 32.1 1,148 4,600 36 0002 70 100 SP L 1 38.0 83 145 33.6 4.27 17.1 1,391 7,212 43 0003 70 100 DF T 1 14.0 83 91 33.6 31.44 62.9 1,107 4,402 34 0005 70 100 DF T 1 14.0 81 74 33.6 31.44 62.9 911 2,830 28 3224 100 5 17.1 82 88 168.		0001	70		DF L		3										
3S23 100 7 18.3 84 98 235.3 129.48 303.8 8,579 36,858 266 SS24 0001 70 100 PP L 1 24.0 82 103 33.6 10.70 32.1 1,148 4,600 36 0002 70 100 SP L 1 38.0 83 145 33.6 4.27 17.1 1,391 7,212 43 0003 70 100 DF L 1 15.0 81 84 33.6 27.39 54.8 1,007 3,560 31 0004 70 100 DF T 1 14.0 83 91 33.6 31.44 62.9 1,107 4,402 34 0005 70 100 DF T 1 14.0 81 74 33.6 31.44 62.9 911 2,830 28 1524 100 5 17.1 82 88 168.1 </td <td></td>																	
3824 0001 70 100 PP L 1 24.0 82 103 33.6 10.70 32.1 1,148 4,600 36 0002 70 100 SP L 1 38.0 83 145 33.6 4.27 17.1 1,391 7,212 43 0003 70 100 DF L 1 15.0 81 84 33.6 27.39 54.8 1,007 3,560 31 0004 70 100 DF T 1 14.0 83 91 33.6 31.44 62.9 1,107 4,402 34 0005 70 100 DF T 1 14.0 81 74 33.6 31.44 62.9 911 2,830 28 3824 100 5 17.1 82 88 168.1 105.23 22.97 5,563 2,604 173 3825 0001 70 100 DF L 4 21.0 </td <td></td>																	
0002 70 100 SP L 1 38.0 83 145 33.6 4.27 17.1 1,391 7,212 43 0003 70 100 DF L 1 15.0 81 84 33.6 27.39 54.8 1,007 3,560 31 0004 70 100 DF T 1 14.0 83 91 33.6 31.44 62.9 1,107 4,402 34 0005 70 100 DF T 1 14.0 81 74 33.6 31.44 62.9 911 2,830 28 3824 100 5 17.1 82 88 168.1 105.23 229.7 5,563 22,604 173 3825 0001 70 100 DF L 4 21.0 84 94 100.8 67.09 146.0 3,547 14,564 110 3825 0003 70 100 DF L 1 22		0001	70		DDI		7										1
0003 70 100 DF L 1 15.0 81 84 33.6 27.39 54.8 1,007 3,560 31 0004 70 100 DF T 1 14.0 83 91 33.6 31.44 62.9 1,107 4,402 34 0005 70 100 DF T 1 14.0 81 74 33.6 31.44 62.9 911 2,830 28 3824 100 5 17.1 82 88 168.1 105.23 229.7 5,563 22,604 173 3825 0001 70 100 DF L 4 21.0 84 106 134.4 53.37 145.4 5,132 23,252 159 0002 70 100 DF L 1 22.0 82 100 33.6 12.73 38.2 1,154 4,584 36 0002 70 100 DF L 1 22.0	0524																
0004 70 100 DF T 1 14.0 83 91 33.6 31.44 62.9 1,107 4,402 34 0005 70 100 DF T 1 14.0 81 74 33.6 31.44 62.9 911 2,830 28 3524 100 5 17.1 82 88 168.1 105.23 229.7 5,563 22,604 173 3525 0001 70 100 DF L 4 21.0 84 106 134.4 53.37 145.4 5,132 23,252 159 0002 70 100 DF L 3 16.0 84 94 100.8 67.09 146.0 3,547 14,564 110 3525 100 7 18.9 84 99 235.3 120.46 291.4 8,680 37,816 270 3526 0003 70 100 DF L 1 55.123 33.6																	
0005 70 100 DF T 1 14.0 81 74 33.6 31.44 62.9 911 2,830 28 3824 100 5 17.1 82 88 168.1 105.23 229.7 5,563 22,604 173 3825 0001 70 100 DF L 4 21.0 84 106 134.4 53.37 145.4 5,132 23,252 159 0002 70 100 DF T 3 16.0 84 94 100.8 67.09 146.0 3,547 14,564 110 3825 100 7 18.9 84 99 235.3 120.46 291.4 8,680 37,816 270 3826 0003 70 100 DF T 1 15.0 81 90 33.6 27.39 54.8 1,038 3,834 32 0005 70 100 DF L 1 47.0 65																	
100 5 17.1 82 88 168.1 105.23 229.7 5,563 22,604 173 1825 0001 70 100 DF L 4 21.0 84 106 134.4 53.37 145.4 5,132 23,252 159 0002 70 100 DF T 3 16.0 84 94 100.8 67.09 146.0 3,547 14,564 110 1825 100 7 18.9 84 99 235.3 120.46 291.4 8,680 37,816 270 1825 100 7 18.9 84 99 235.3 120.46 291.4 8,680 37,816 270 1826 0003 70 100 DF L 1 22.0 82 100 33.6 12.73 38.2 1,154 4,584 36 0004 70 100 DF L 1 47.0 65 123 33.6 2.79<						_											
3S25 0001 70 100 DF L 4 21.0 84 106 134.4 53.37 145.4 5,132 23,252 159 0002 70 100 DF T 3 16.0 84 94 100.8 67.09 146.0 3,547 14,564 110 3S25 100 7 18.9 84 99 235.3 120.46 291.4 8,680 37,816 270 3S26 0003 70 100 DF L 1 22.0 82 100 33.6 12.73 38.2 1,154 4,584 36 0004 70 100 DF T 1 15.0 81 90 33.6 27.99 54.8 1,038 3,834 32 0005 70 100 DF L 1 47.0 65 123 33.6 2.79 11.2 824 4,547 26 0006 70 100 DF L 1 20.0 82 110 33.6 15.41 46.2 1,073 4,005 33 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>··· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										··· ·							
0002 70 100 DF T 3 16.0 84 94 100.8 67.09 146.0 3,547 14,564 110 1825 100 7 18.9 84 99 235.3 120.46 291.4 8,680 37,816 270 1825 100 7 18.9 84 99 235.3 120.46 291.4 8,680 37,816 270 1826 0003 70 100 DF L 1 22.0 82 100 33.6 12.73 38.2 1,154 4,584 36 0004 70 100 DF T 1 15.0 81 90 33.6 27.39 54.8 1,038 3,834 32 0005 70 100 DF L 1 47.0 65 123 33.6 2.79 11.2 824 4,547 26 0006 70 100 SP L 1 20.0 82 110 <		0001	70		DEI	5	<u></u>										
1825 100 7 18.9 84 99 235.3 120.46 291.4 8,680 37,816 270 1826 0003 70 100 DF L 1 22.0 82 100 33.6 12.73 38.2 1,154 4,584 36 0004 70 100 DF T 1 15.0 81 90 33.6 27.39 54.8 1,038 3,834 32 0005 70 100 DF L 1 47.0 65 123 33.6 2.79 11.2 824 4,547 26 0006 70 100 DF L 1 20.0 82 110 33.6 15.41 46.2 1,073 4,005 33 6526 100 4 20.6 81 99 134.4 58.32 150.3 4,090 16,970 127 6527 0001 70 100 DF T 3 16.0 84 94 100.8 67.09 146.0 3,547 14,564 110	525																
S26 0003 70 100 DF L 1 22.0 82 100 33.6 12.73 38.2 1,154 4,584 36 0004 70 100 DF T 1 15.0 81 90 33.6 27.39 54.8 1,038 3,834 32 0005 70 100 DF L 1 47.0 65 123 33.6 2.79 11.2 824 4,547 26 0006 70 100 DF L 1 20.0 82 110 33.6 15.41 46.2 1,073 4,005 33 S26 100 4 20.6 81 99 134.4 58.32 150.3 4,090 16,970 127 S27 0001 70 100 DF T 3 16.0 84 94 100.8 67.09 146.0 3,547 14,564 110	or -											,					
0004 70 100 DF T 1 15.0 81 90 33.6 27.39 54.8 1,038 3,834 32 0005 70 100 DF L 1 47.0 65 123 33.6 2.79 11.2 824 4,547 26 0006 70 100 SP L 1 20.0 82 110 33.6 15.41 46.2 1,073 4,005 33 S26 100 4 20.6 81 99 134.4 58.32 150.3 4,090 16,970 127 S27 0001 70 100 DF T 3 16.0 84 94 100.8 67.09 146.0 3,547 14,564 110		0000	70		DET		7										1
0005 70 100 DF L 1 47.0 65 123 33.6 2.79 11.2 824 4,547 26 0006 70 100 SP L 1 20.0 82 110 33.6 15.41 46.2 1,073 4,005 33 S26 100 4 20.6 81 99 134.4 58.32 150.3 4,090 16,970 127 S27 001 70 100 DF T 3 16.0 84 94 100.8 67.09 146.0 3,547 14,564 110	326																
0006 70 100 SP L 1 20.0 82 110 33.6 15.41 46.2 1,073 4,005 33 S26 100 4 20.6 81 99 134.4 58.32 150.3 4,090 16,970 127 S27 0001 70 100 DF T 3 16.0 84 94 100.8 67.09 146.0 3,547 14,564 110																	
S26 100 4 20.6 81 99 134.4 58.32 150.3 4,090 16,970 127 S27 0001 70 100 DF T 3 16.0 84 94 100.8 67.09 146.0 3,547 14,564 110																	
S27 0001 70 100 DF T 3 16.0 84 94 100.8 67.09 146.0 3,547 14,564 110		0000	10		JIL				02	110			40.2				
		0007			DDT	4	~~~~~				· · ·						
0002 70 100 PP L 1 23.0 82 103 33.6 10.70 32.1 1,148 4,600 36	\$27																
		0002	70	100	PP L		1	23.0	82	103	33.6	10.70	32.1	1,148	4,600	36	

TC PL	OTTREEL	IST						ot Tree Project	e List - V BKS					Page Date	2 12/16/	2019
TWP 37S	RGE 08W	SC 13	TRA BKS			TY 013			A	CRES 59.00	PLOTS 19	T	REES 47		ED DATE 5/1/2019	
Plot	Tree				Tre	es		16'	Tot	BA	Trees	Logs	Net	Net	Tota	1
No.	No.	Age	SI	Spp St	Me.	Ct. 1	DBH	FF	Ht.	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
3827			100			4	17.8	84	95	134.4	77.79	178.1	4,695	19,164	146	60
3S28	0001	70	100	DF T	1		16.0	83	91	33.6	24.07	48.1	1,090	4,092	34	13
	0002	70	100	DF L	1		30.0	82	96	33.6	6.85	20.5	1,113	4,861	35	15
	0003	70	100	SP L	1		34.0	86	107	33.6	5.33	16.0	1,134	5,224	35	16
3S28			100		3		22.6	83	94	100.8	36.25	84.7	3,337	14,178	104	44
3S29	0001	70	100	SP L		5	27.0	84	120	168.1	41.89	133.0	6,166	28,500	191	89
	0002	70	100	DF T		2	16.0	84	94	67.2	44.73	97.4	2,365	9,709	73	30
3S29			100		-	7	22.3	84	107	235.3	86.62	230.3	8,531	38,210	265	119
3832	0001	70	100	DF L	1		24.0	86	110	33.6	10.70	32.1	1,259	5,563	39	17
	0002	70	100	DF T	1		21.0	83	112	33.6	13.97	41.9	1,280	5,589	40	17
	0003	70	100	DF T	1		22.0	87	127	33.6	12.73	38.2	1,518	7,003	47	22
	0004	70	100	OHL	1		14.0	80	58	33.6	31.44					
3S32			100		4		18.9	83	90	134.4	68.84	112.2	4,057	18,155	126	50
3833	0001	70	100	DF L		2	21.0	84	106	67.2	26.69	72.7	2,566	11,626	80	3
	0002	70	100	SP L		2	27.0	84	120	67.2	16.76	53.2	2,466	11,400	77	3:
	0003	70	100	DF T		2	16.0	84	94	67.2	44.73	97.4	2,365	9,709	73	30
3833			100			6	20.5	84	103	201.7	88.17	223.2	7,398	32,736	230	102
3\$34	0001	70	100	DF L	1		17.0	86	105	33.6	21.32	64.0		5,117	36	10
	0002	70		DF T	1		14.0	84	100	33.6	31.44	62.9		4,402	36	14
	0003	70		DF L	1		31.0	84	131	33.6	6.41	25.6	-	7,246	46	2
	0004	70		DF T	1		19.0	85	108	33.6	17.07	51.2	,	5,121	40	1
	0005	70		DF L	1		19.0	85	120	33.6	17.07	51.2	,	5,975	44	1
	0006	70		DF T	1		12.0	84	90	33.6	42.79	85.6		3,851	31	12
	0007	70		DF L	1		19.0	85	120	33.6	17.07	51.2		5,975	44	19
	0008 0009	70 70		DF T OH L	1		25.0 20.0	85 78	135 60	33.6 33.6	9.86 15.41	39.4	1,535	7,296	48	Ζ.
2024	0005											421.2	10 456	44.082	325	14
3S34 3S35	0001	70	<u>100</u> 100	DF L	9		17.6	84	102	302.5	178.44	431.2	10,430	44,983	323	14
3835				<u>.</u>							0.00					
3836	0001	70	100	DF T	1		20.0	84	105	33.6	15.41	46.2	1,167	4,622	36	1
	0002	70		DF L	1		21.0	85	118	33.6	13.97	41.9		5,589	42	1
	0003	70		DF T	1		16.0	86	115	33.6	24.07	72.2		5,777	43	1
	0004	70		DF T	1		28.0	84	124	33.6	7.86	23.6		6,209	44	1
	0005	70		SP L	1		26.0	85	120	33.6	9.12	27.3	1,232	5,378	38	1
	0006	70		SP L	1		23.0	85	122	33.6	11.65	34.9	1,193	5,359	37	1
	0007	70	100	DF T	1		18.0	80	80	33.6	19.02	38.0	847	3,423	26	1
3836			100		7		20.7	84	109	235.3	101.09	284.3	8,582	36,358	267	11
3837	0001	70	100	DF T		4	16.0	84	94	134.4	89.45	194.7	4,730	19,419	147	6
	0002	70	100	SP L		1	27.0	84	120	33.6	8.38	26.6	1,233	5,700	38	1
3837			100			5	17.7	84	96	168.1	97.83	221.3	5,963	25,119	185	7
TYPE			100		47	52	18.9		97	175.1	90.28	204.7	6,108	26,427	3,604	1,55

^{0 205 410}

820 Feet

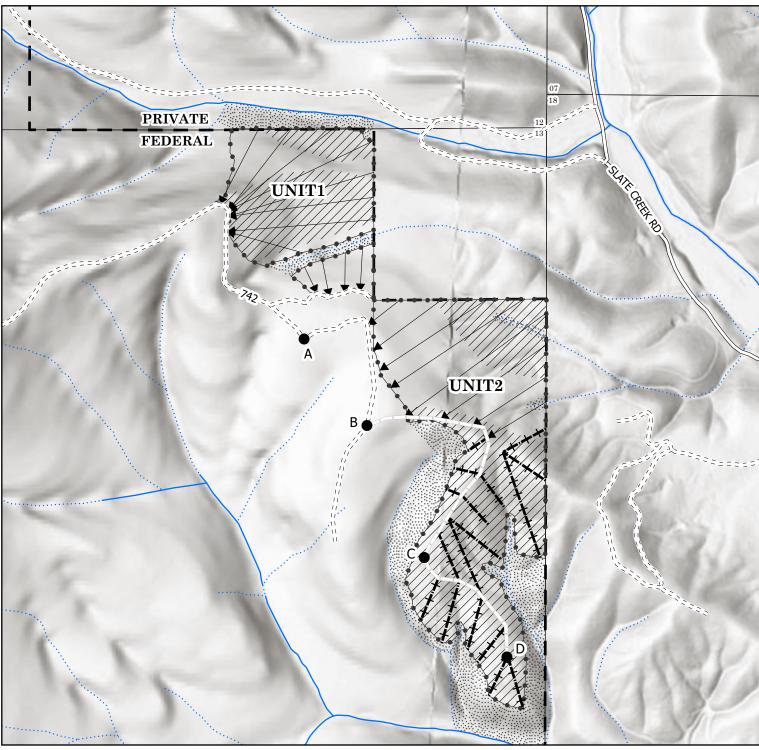
IC PST	TATS					JECT S OJECT	TATIS BKS	STICS			PAGE DATE	1 12/4/2019
WP	RGE	SC	TRACT		гүре		AC	RES	PLOTS	TREES	CuFt	BdFt
38S	08 OTAL RUISE BH COUNT EFOREST OUNT LANKS 00 % OUG FIR-L OUG FIR-L ONDEROS-L ONDEROS-L UG.PINE-L UG.PINE-T TH HDWD-I	01	BKS		SLT2			62.00	25	126	S	W
						TREES	Η	ESTIMATED TOTAL		PERCENT SAMPLE		
			PLOTS	TREES		PER PLOT		TREES		TREES		
ΤΟΤΑ	\L		25	126		5.0						
			15	73		4.9		8,112		.9		
DBH	COUNT											
REFO	DREST											
			10	49		4.9						
100 %	6			112.7480		<u></u>						
						ND SUMN			00.000		CROSS	NET
		5	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
			TREES	/ACRE	DBH	LEN	DEN	AREA 59.2	6,664		1,728	1,728
			24	36.3	17.3	65 72	14.2 15.9	59.2 60.5	6,064		1,728	1,728
			27	53.1 14.3	14.5 15.5	72 78	4.8	00.5 18.8	2,177		557	557
			10 1	.3	15.5 28.0	78 114	4.8 0.3	1.3	2,177	-	49	49
		L	5	.3 7.9	17.7	79	3.2	1.5	1,041		319	319
			1	1.0	22.0	95	0.6	2.7	306		80	80
		r	5	17.8	11.8	40	3.9	13.4				
TOTA			73	130.8	15.4	67	43.2	169.4	16,519	9 16,129	4,423	4,390
		CE I 3.1		T OF 100 T	HE VOLU		<u></u>	IIN THE SA			DEO	
	68 68.1 1.0		TIMES OU COEFF VAR.%	T OF 100 T		IME WILL SAMPL	<u></u>			ROR # OF TREES 5	REQ. 10	
SD:	68.1		COEFF VAR.% 185.1	S.E.% 39.4		SAMPL	E TREES AVG 445	5 - BF HIGH 621		# OF TREES		INF. POP.
SD: DOU DOU	68.1 <u>1.0</u> G FIR-L G FIR-T	3.1	COEFF VAR.% 185.1 62.6	S.E.% 39.4 13.3		SAMPL LOW 270 145	E TREES AVG 445 167	5 - BF HIGH 621 190		# OF TREES		
SD: DOUG DOUG PONI	68.1 1.0 G FIR-L	3.1	COEFF VAR.% 185.1	S.E.% 39.4		SAMPL	E TREES AVG 445	5 - BF HIGH 621		# OF TREES		
SD: DOUG DOUG PONI PONI SUG.	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L	3.1	COEFF VAR.% 185.1 62.6	S.E.% 39.4 13.3		SAMPL LOW 270 145	E TREES AVG 445 167	5 - BF HIGH 621 190		# OF TREES		
SD: DOUG DOUG PONI SUG. SUG.	68.1 1.0 G FIR-L G FIR-T DEROS-T DEROS-T DEROS-T PINE-L .PINE-T	3.1 L r	COEFF VAR.% 185.1 62.6 143.6	S.E.% 39.4 13.3 47.8		SAMPL LOW 270 145 234	E TREES AVG 445 167 449	S - BF HIGH 621 190 664		# OF TREES		
SD: DOUG DOUG PONI PONI SUG. SUG. OTH	68.1 1.0 G FIR-L G FIR-T DEROS-T DEROS-T DEROS-T PINE-L .PINE-T HDWD-	3.1 L	COEFF VAR.% 185.1 62.6 143.6	S.E.% 39.4 13.3 47.8		SAMPL LOW 270 145 234	E TREES AVG 445 167 449	S - BF HIGH 621 190 664		# OF TREES		1
SD: DOUG DOUG PONI PONI SUG. SUG. OTH TOT.	68.1 1.0 G FIR-L G FIR-T DEROS-T DEROS-T DEROS-T PINE-L .PINE-T HDWD-	3.1 L	COEFF VAR.% 185.1 62.6 143.6 63.6	S.E.% 39.4 13.3 47.8 31.6		SAMPL/ LOW 270 145 234 109	E TREES AVG 445 167 449 160 302	S - BF HIGH 621 190 664 211 370		# OF TREES 5	10 341 3 REQ.	1 15. INF. POP.
SD: DOUG PONI PONI SUG. SUG. OTH TOTA CL SD:	68.1 1.0 G FIR-L G FIR-T DEROS-I PINE-L PINE-T HDWD-I AL 68.1 1.0	3.1 L L L	COEFF VAR.% 185.1 62.6 143.6 63.6 184.9 COEFF VAR.%	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.%	Ι	SAMPL 20W 270 145 234 109 234 234 SAMPL LOW	E TREES AVG 445 167 449 160 <i>302</i> E TREES AVG	S - BF HIGH 621 190 664 211 <i>370</i> S - CF HIGH		# OF TREES 5 1,365	10 341	1 15. INF. POP.
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG	68.1 1.0 G FIR-L G FIR-T DEROS-I PINE-L PINE-T HDWD-I AL 68.1 1.0 G FIR-L	3.1 L L L	COEFF VAR.% 185.1 62.6 143.6 63.6 63.6 184.9 COEFF VAR.% 158.7	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8	Ι	SAMPL 20W 270 145 234 109 234 234 234 SAMPL LOW 70	E TREES AVG 445 167 449 160 <i>302</i> E TREES AVG 106	S - BF HIGH 621 190 664 211 <i>370</i> S - CF HIGH 142		# OF TREES 5 <i>1,365</i> # OF TREES	10 341 3 REQ.	1 15. INF. POP.
SD: DOUG DOUG PONI SUG. SUG. OTH TOT. CL SD: DOUG	68.1 1.0 G FIR-L G FIR-T DEROS-I PINE-L PINE-T HDWD-I AL 68.1 1.0 G FIR-L G FIR-T	3.1 L L	COEFF VAR.% 185.1 62.6 143.6 63.6 63.6 184.9 COEFF VAR.% 158.7 45.6	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7	Ι	SAMPL 20W 270 145 234 109 234 234 SAMPL LOW 70 42	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46	S - BF HIGH 621 190 664 211 <i>370</i> S - CF HIGH 142 50		# OF TREES 5 <i>1,365</i> # OF TREES	10 341 3 REQ.	1 15. INF. POP.
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG DOUG	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD-I AL 68.1 1.0 G FIR-L IG FIR-T DEROS-I	3.1 L L L	COEFF VAR.% 185.1 62.6 143.6 63.6 63.6 184.9 COEFF VAR.% 158.7	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8	Ι	SAMPL 20W 270 145 234 109 234 234 234 SAMPL LOW 70	E TREES AVG 445 167 449 160 <i>302</i> E TREES AVG 106	S - BF HIGH 621 190 664 211 <i>370</i> S - CF HIGH 142		# OF TREES 5 <i>1,365</i> # OF TREES	10 341 3 REQ.	1 15. INF. POP.
SD: DOUG DOUG PONI SUG. SUG. SUG. OTH TOT. CL SD: DOUG DOUG PONI PONI	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD-I AL 68.1 1.0 G FIR-L IG FIR-T DEROS-I DEROS-I	3.1 L L L	COEFF VAR.% 185.1 62.6 143.6 63.6 63.6 184.9 COEFF VAR.% 158.7 45.6 115.5	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7 38.4	Ι	SAMPL 20W 270 145 234 109 234 234 SAMPL LOW 70 42	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46	S - BF HIGH 621 190 664 211 <i>370</i> S - CF HIGH 142 50		# OF TREES 5 <i>1,365</i> # OF TREES	10 341 3 REQ.	1 15 INF. POP.
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG PONI PONI SUG.	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD- AL 68.1 1.0 IG FIR-L IG FIR-T DEROS-I DEROS- PINE-L	3.1 L L L	COEFF VAR.% 185.1 62.6 143.6 63.6 63.6 184.9 COEFF VAR.% 158.7 45.6	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7	Ι	SAMPL 20W 270 145 234 109 234 234 SAMPL LOW 70 42 63	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46 102	S - BF HIGH 621 190 664 211 370 S - CF HIGH 142 50 142		# OF TREES 5 <i>1,365</i> # OF TREES	10 341 3 REQ.	1 15. INF. POP.
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG PONI SUG. SUG. SUG.	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD-I AL 68.1 1.0 G FIR-L IG FIR-T DEROS-I DEROS-I	3.1 L L L	COEFF VAR.% 185.1 62.6 143.6 63.6 63.6 184.9 COEFF VAR.% 158.7 45.6 115.5	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7 38.4	Ι	SAMPL 20W 270 145 234 109 234 234 SAMPL LOW 70 42 63	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46 102	S - BF HIGH 621 190 664 211 370 S - CF HIGH 142 50 142		# OF TREES 5 <i>1,365</i> # OF TREES	10 341 3 REQ.	15. INF. POP. 1
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG PONI PONI SUG. SUG.	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD- 68.1 1.0 IG FIR-L G FIR-T DEROS-I DEROS- PINE-L PINE-T HDWD-	3.1 L L L	COEFF VAR.% 185.1 62.6 143.6 63.6 63.6 184.9 COEFF VAR.% 158.7 45.6 115.5	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7 38.4	Ι	SAMPL 20W 270 145 234 109 234 234 SAMPL LOW 70 42 63	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46 102	S - BF HIGH 621 190 664 211 370 S - CF HIGH 142 50 142		# OF TREES 5 <i>1,365</i> # OF TREES	10 341 3 REQ.	15. INF. POP. 1
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG PONI PONI SUG. SUG. OTH	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD- 68.1 1.0 IG FIR-L G FIR-T DEROS-I DEROS- PINE-L PINE-T HDWD-	3.1 L L L	COEFF VAR.% 185.1 62.6 143.6 63.6 63.6 184.9 COEFF VAR.% 158.7 45.6 115.5 53.9	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7 38.4 26.8	Ι	SAMPL 270 145 234 109 234 SAMPL LOW 70 42 63 35	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46 102 48 74	S - BF <u>HIGH</u> 621 190 664 211 370 S - CF <u>HIGH</u> 142 50 142 60 88		# OF TREES 5 1,365 # OF TREES 5 918 # OF PLOTS	10 341 3 REQ. 10 229 3 REQ.	1: 15. INF. POP. 1 10 INF. POP.
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG PONI PONI SUG. SUG. OTH TOT.	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD- AL 68.1 1.0 G FIR-L DEROS- PINE-L PINE-T HDWD- AL 68.1 1.0	3.1 L L L L	COEFF VAR.% 185.1 62.6 143.6 63.6 63.6 184.9 COEFF VAR.% 158.7 45.6 115.5 53.9 151.6 COEFF VAR.%	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7 38.4 26.8 18.5 S.E.%	I	SAMPL 20W 270 145 234 109 234 SAMPL 20W 70 42 63 35 61 TREES/ LOW	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46 102 48 74 74 74 74 74 74	S - BF HIGH 621 190 664 211 370 S - CF HIGH 142 50 142 60 88 HIGH		# OF TREES 5 1,365 # OF TREES 5 918	10 341 3 REQ. 10 229	15. INF. POP. 10 INF. POP.
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG PONI SUG. SUG. OTH TOT. CL SD: CL SD: DOUG	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD- AL G FIR-T DEROS-I DEROS- PINE-L PINE-T HDWD- AL 68.1 1.0 G FIR-T HDWD- AL 68.1 1.0 G FIR-T HDWD- AL 68.1 1.0 G FIR-T HDWD- AL 68.1 1.0 G FIR-T HDWD- G FIR-T HDWD- H	3.1 L L L L L L L	COEFF VAR.% 185.1 62.6 143.6 63.6 63.6 184.9 COEFF VAR.% 158.7 45.6 115.5 53.9 151.6 COEFF VAR.% 105.8	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7 38.4 26.8 18.5 S.E.% 21.6	I	SAMPL 20W 270 145 234 109 234 SAMPL 20W 70 42 63 35 61 TREES/ LOW 28	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46 102 48 74 74 74 74 74 74 74 74 74 74 74 74	S - BF HIGH 621 190 664 211 370 S - CF HIGH 142 50 142 60 88 HIGH 44		# OF TREES 5 1,365 # OF TREES 5 918 # OF PLOTS	10 341 3 REQ. 10 229 3 REQ.	1: 15. INF. POP. 1 10 INF. POP.
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG PONI SUG. SUG. OTH TOT. CL SD: DOUG DOUG DOUG DOUG DOUG DOUG DOUG DOUG	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD- AL G FIR-T DEROS-I DEROS- PINE-L PINE-T HDWD- AL 68.1 1.0 G FIR-T HDWD- G FIR-T HDWD- G FIR-T HDWD- AL G FIR-T HDWD- AL	3.1 L L L L L	COEFF VAR.% 185.1 62.6 143.6 63.6 63.6 184.9 COEFF VAR.% 158.7 45.6 115.5 53.9 151.6 COEFF VAR.% 105.8 80.2	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7 38.4 26.8 18.5 S.E.% 21.6 16.3	I	SAMPL 270 145 234 109 234 SAMPL LOW 70 42 63 35 61 TREES/ LOW 28 44	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46 102 48 74 74 74 74 74 74 74 74 74 74 74 74 74	S - BF HIGH 621 190 664 211 370 S - CF HIGH 142 50 142 60 88 HIGH 44 62		# OF TREES 5 1,365 # OF TREES 5 918 # OF PLOTS	10 341 3 REQ. 10 229 3 REQ.	1: 15. INF. POP. 1 10 INF. POP.
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG PONI SUG. SUG. OTH TOT. CL SD: DOU PONI SUG. SUG. OTH TOT. CL	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD- AL G FIR-T DEROS-I DEROS- PINE-L PINE-T HDWD- AL 68.1 1.0 G FIR-T HDWD- G FIR-T DEROS- NAL	3.1 L L L L L L	COEFF VAR.% 185.1 62.6 143.6 63.6 63.6 184.9 COEFF VAR.% 158.7 45.6 115.5 53.9 151.6 COEFF VAR.% 105.8 80.2 231.1	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7 38.4 26.8 18.5 S.E.% 21.6 16.3 47.1	I	SAMPL 20W 270 145 234 109 234 SAMPL 20W 70 42 63 35 61 TREES/ LOW 28	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46 102 48 74 74 ACRE AVG 36 53 14	S - BF HIGH 621 190 664 211 370 S - CF HIGH 142 50 142 60 88 HIGH 44 62 21		# OF TREES 5 1,365 # OF TREES 5 918 # OF PLOTS	10 341 3 REQ. 10 229 3 REQ.	15. INF. POP. 10 INF. POP.
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOU DOU PONI PONI PONI SUG. SUG. SUG. OTH TOT. PONI	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD-I AL G FIR-T DEROS-I PINE-L PINE-T HDWD- YAL 68.1 1.0 G FIR-L DEROS-I DEROS-	3.1 L L L L L L	COEFF VAR.% 185.1 62.6 143.6 63.6 63.6 184.9 COEFF VAR.% 158.7 45.6 115.5 53.9 151.6 COEFF VAR.% 105.8 80.2 231.1 500.0	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7 38.4 26.8 18.5 S.E.% 21.6 16.3 47.1 102.0	I	SAMPL 20W 270 145 234 109 234 SAMPL LOW 70 42 63 35 61 TREES/ LOW 28 44 8	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46 102 48 74 74 ACRE AVG 36 53 14 0	S - BF HIGH 621 190 664 211 370 S - CF HIGH 142 50 142 60 88 HIGH 44 62 21 1		# OF TREES 5 1,365 # OF TREES 5 918 # OF PLOTS	10 341 3 REQ. 10 229 3 REQ.	15. INF. POP. 10 INF. POP.
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG PONI SUG. SUG. OTH TOT. CL SD: DOU PONI SUG. SUG. SUG. SUG. SD: DOU SUG. SUG.	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD-I AL G FIR-L G FIR-T HDWD- YAL 68.1 1.0 G FIR-L HDWD- YAL 68.1 1.0 G FIR-L DEROS- D	3.1 L L L L L L	COEFF VAR.% 185.1 62.6 143.6 63.6 184.9 COEFF VAR.% 158.7 45.6 115.5 53.9 151.6 COEFF VAR.% 105.8 80.2 231.1 500.0 180.8	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7 38.4 26.8 18.5 S.E.% 21.6 16.3 47.1 102.0 36.9	I	SAMPL 270 145 234 109 234 SAMPL LOW 70 42 63 35 61 TREES LOW 28 44 8 5	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46 102 48 74 74 AVG 36 53 14 0 8	S - BF HIGH 621 190 664 211 370 S - CF HIGH 142 50 142 60 88 HIGH 44 62 21 1 11		# OF TREES 5 1,365 # OF TREES 5 918 # OF PLOTS	10 341 3 REQ. 10 229 3 REQ.	15. INF. POP. 10 INF. POP.
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG PONI SUG. SUG. OTH TOT. CL SD: DOU PONI SUG. SUG. SUG. SUG. SUG. SUG. SUG. SUG.	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD-I AL 68.1 1.0 G FIR-L DEROS-I PINE-L PINE-T HDWD-I AL 68.1 1.0 G FIR-L JG FIR-L JG FIR-L DEROS- PINE-L PINE-L PINE-L PINE-L PINE-L	3.1 L L L L L L L T	COEFF VAR.% 185.1 62.6 143.6 63.6 184.9 COEFF VAR.% 158.7 45.6 115.5 53.9 151.6 COEFF VAR.% 105.8 80.2 231.1 500.0 180.8 346.1	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7 38.4 26.8 18.5 S.E.% 21.6 16.3 47.1 102.0 36.9 70.6	I	SAMPL 270 145 234 109 234 SAMPL LOW 70 42 63 35 61 TREES LOW 28 44 8 5 0	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46 102 48 74 74 AVG 36 53 14 0 8 1	S - BF HIGH 621 190 664 211 370 S - CF HIGH 142 50 142 60 88 HIGH 44 62 21 1 11 2		# OF TREES 5 1,365 # OF TREES 5 918 # OF PLOTS	10 341 3 REQ. 10 229 3 REQ.	15. INF. POP. 10 INF. POP.
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG PONI SUG. SUG. OTH TOT. CL SD: DOU PONI SUG. SUG. OTH TOT. CL SD: DOU OU PONI SUG. SUG. OTH TOT.	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD-I AL 68.1 1.0 G FIR-L DEROS-I PINE-T HDWD-I AL 68.1 1.0 G FIR-L JG FIR-L JG FIR-L DEROS- PINE-L .PINE-T HDWD-I IG FIR-T DEROS- DEROS- .PINE-L .PINE-T I HDWD-I .PINE-T I HDWD-I .PINE-T .PI	3.1 L L L L L L L T	COEFF VAR.% 185.1 62.6 143.6 63.6 63.6 184.9 COEFF VAR.% 158.7 45.6 115.5 53.9 151.6 COEFF VAR.% 105.8 80.2 231.1 500.0 180.8 346.1 232.1	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7 38.4 26.8 18.5 S.E.% 21.6 16.3 47.1 102.0 36.9 70.6 47.3	I	SAMPL 270 145 234 109 234 SAMPL LOW 70 42 63 35 61 TREES LOW 28 44 8 5	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46 102 48 74 74 AVG 36 53 14 0 8	S - BF HIGH 621 190 664 211 370 S - CF HIGH 142 50 142 60 88 HIGH 44 62 21 1 11		# OF TREES 5 1,365 # OF TREES 5 918 # OF PLOTS	10 341 3 REQ. 10 229 3 REQ.	15. INF. POP. 1 10 INF. POP. 1
SD: DOUG PONI PONI SUG. SUG. OTH TOT. CL SD: DOUG PONI SUG. SUG. OTH TOT. CL SD: DOU PONI SUG. SUG. SUG. SUG. SUG. SUG. SUG. SUG.	68.1 1.0 G FIR-L G FIR-T DEROS-I DEROS-I PINE-L PINE-T HDWD-I AL 68.1 1.0 G FIR-L DEROS-I PINE-T HDWD-I AL 68.1 1.0 G FIR-L JG FIR-L JG FIR-L DEROS- PINE-L .PINE-T HDWD-I IG FIR-T DEROS- DEROS- .PINE-L .PINE-T I HDWD-I .PINE-T I HDWD-I .PINE-T .PI	3.1 L L L L L L L T	COEFF VAR.% 185.1 62.6 143.6 63.6 184.9 COEFF VAR.% 158.7 45.6 115.5 53.9 151.6 COEFF VAR.% 105.8 80.2 231.1 500.0 180.8 346.1	S.E.% 39.4 13.3 47.8 31.6 22.6 S.E.% 33.8 9.7 38.4 26.8 18.5 S.E.% 21.6 16.3 47.1 102.0 36.9 70.6 47.3 9.0	I	SAMPL <u>.OW</u> 270 145 234 109 234 SAMPL <u>LOW</u> 70 42 63 35 61 TREES/ LOW 28 44 8 5 0 9 119	E TREES AVG 445 167 449 160 302 E TREES AVG 106 46 102 48 74 74 AVG 36 53 14 0 8 1 18	S - BF HIGH 621 190 664 211 370 S - CF HIGH 142 50 142 60 88 HIGH 44 62 21 1 11 2 26 143		# OF TREES 5 1,365 # OF TREES 5 918 # OF PLOTS 5	10 341 3 REQ. 10 229 3 REQ. 10 20	

 $_{\psi}$ >

4

TC PS	TATS				PROJECT					PAGE DATE	2 12/4/2019
TWP	08 01 DUG FIR-L		TRACT	TY	PE	A	CRES	PLOTS	TREES	CuFt	BdFt
38S	08	01	BKS	SLT	Γ2		62.00	25	126	S	W
DOU	G FIR-L		96.0	19.6	48	59	71				
DOU	G FIR-T		76.9	15.7	51	60	70				
PON	DEROS-I		137.2	28.0	14	19	24				
PON	DEROS-1	ſ	500.0	102.0		1	3				
SUG.	PINE-L		176.8	36.0	9	13	18				
SUG.	PINE-T		346.1	70.6	1	3	5				
OTH	HDWD-I		204.1	41.6	8	13	19				
тот	AL		32.6	6.7	158	169	181		44	11	5
CL	68.1		COEFF		NET	BF/ACRE		7	# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR-L		98.9	20.2	5,210	6,526	7,841				
DOU	G FIR-T		78.4	16.0	4,989	5,939	6,888				
PON	DEROS-I		129.6	26.4	1,573	2,139	2,704				
PON	DEROS-1	r	500.0	102.0		179	362				
SUG	.PINE-L		175.9	35.9	668	1,041	1,415				
SUG	.PINE-T		346.1	70.6	90	306	521				
OTH	HDWD-	L									
тот	AL		45.4	9.3	14,635	16,129	17,624		86	21	10
CL	68.1		COEFF		NET	CUFT FT/	ACRE		# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	IG FIR-L		96.7	19.7	1,387	1,728	2,069				
DOU	G FIR-T		79.6	16.2	1,388	1,657	1,926				
PON	DEROS-I		127.0	25.9	413	557	701				
PON	DEROS-	ſ	500.0	102.0		49	98				
SUG	PINE-L		175.5	35.8	205	319	433				
SUG	PINE-T		346.1	70.6	23	80	136				
OTH	HDWD-	L									
тот	AL		45.3	9.2	3,985	4,390	4,796		85	21	9

- 1


з.

TC	PSPCSTGR		SI	pecies, S	Sort G	rade - Boar	d Fo	ot Ve	olume	es (P	rojec	t)							
T3	8S R08W S01	TySLT	2 (52.00		Project: Acres	BK	(S 62.()0							Page Date Time	12	1 2/4/20 28:2	
		%					Perc	cent of	Net Bo	oard Fo	oot Volu	ıme				Avera	age Lo	g	Logs
	S So Gr	Net	Bd. Ft	. per Acre		Total	L	.og Sc	ale Dia.			Log L	.ength		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	L DOCU														14	5		0.00	1.8
DF	L DO2M	13		861	861	53			100				100			14		1.99	3.4
DF	L DO3M	37	4.8	2,568	2,445	152		29	59	11			96	4		10	141	1.16	17.3
DF	L DO4M	50	.5	3,235	3,220	200	32	18	18	32	12	36	27	26	26	7	74	0.70	43.3
DF	Totals	40	2.1	6,664	6,526	405	16	20	44	20	6	18	62	15	29	8	99	0.92	65.8
DF	T DOCU					T									16	5		0.00	1.6
DF	T DO2M	8		477	477	30			43	57			100			16	328		1.5
DF	T DO3M	48	5.0	3,002	2,852	177		90	10				100		34	9	106	0.91	27.0
DF	T DO4M	44	2.4	2,672	2,609	162	56	44			17	60	19	4	27	6	36	0.38	71.7
DF	Totals	37	3.5	6,152	5,939	368	24	63	8	5	7	26	64	2	28	7	58	0.57	101.8
SP SP SP	L DOCU L DO3M L DO4M	31 69		327 714	327 714	20 44	15	40 85	60			13	100 87		34 31	7 9 8		0.00 1.00 0.74	2.2 3.1 9.3
SP	Totals	6	Mand I - I	1,041	1,041	65	11	71	19			9	91		27	8	71	0.81	14.6
SP	T DO4M	100		306	306	19	7	23	70		23	7	70		25	9	100	1.05	3.1
SP	Totals	2		306	306	19	7	23	70		23	7	70		25	9	100	1.05	3.1
or	101818	<u></u>		500	500	15	<u>+ </u>	ل بيد								-			
PP PP	L DO3M L DO4M	12 88	2.0	267 1,910	267 1,871	17 116	21	30	31	100 18	2	35	100 59	4	34 28	28 7	1240 77	6.29 0.75	.2 24.3
РР	Totals	13	1.8	2,177	2,139	133	18	26	27	28	2	30	64	4	28	7	87	0.81	24.5
РР	T DO4M	100		179	179	11	5		26	68		26	74		32	11	190	1.63	.9
РР	Totals	1		179	179	11	5		26	68		26	74		32	11	190	1.63	.9
Tota	als		2.4	16,519	16,129	1,000	19	40	27	14	6	22	65	7	28	8	77	0.74	210.7

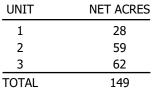
TC PL	OTTREEL	ST						ot Tree Project	List - V BK	7 olumes S				Page Date	1 12/4/2	019
TWP 38S	RGE 08W	SC 01	TRA BKS			TY SL		v	A	CRES 62.00	PLOTS 25	Tł	REES 78		ED DATE 5/1/2019	
Plot	Tree	······ ·		,	Tre	es		16'	Tot	ΒA	Trees	Logs	Net	Net	Total	
No.	No.	Age	SI	Spp St	Me.	Ct. I	OBH	FF	Ht.	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
0205	0001	70	100	SP L	1		23.0	80	99	33.6	11.65	34.9	985	3,611	24	9
	0002	70	100	DF T	1		14.0	85	74	33.6	31.44	62.9	839	2,830	21	7
	0003	70	100	DF T	1		15.0	85	84	33.6	27.39	54.8	941	3,560	23	9
	0004	70	100	DF L	1		22.0	84	90	33.6	12.73	25.5	1,117	4,202	28	10
	0005	70	100	DF T	1		18.0	82	85	33.6	19.02	38.0	1,042	3,614	26	9
	0006	70		DF L	1		19.0	84	80	33.6	17.07	34.1	1,043	3,414	26	8
	0007	70	100	SP L	1		15.0	80	64	33.6	27.39	27.4	622	1,643	15	4
0205			100		7		17.1	83	79	235.3	146.69	277.6	6,590	22,874	163	57
0206	0001	70	100	DF T		4	14.0	84	74	134.4	118.05	222.6	3,683	13,197	91	33
	0002	70	100	DF L		2	17.0	83	70	67.2	41.26	72.8	-	7,416	49	18
	0003	70	100	SP L		1	17.0	82	79	33.6	19.78	30.9	798	2,603	20	6
0206			100	•		7	15.5	84	74	235.3	179.09	326.4	6,444	23,216	160	58
0207	0001	70		SP L	1		15.0	82	81	33.6	27.39	27.4	660	1,917	16	5
	0002	70	100	DF L	1		18.0	85	95	33.6	19.02	57.1	1,174	4,565	29	11
	0003	70	100	SP L	1		19.0	84	85	33.6	17.07	34.1	842	3,073	21	8
	0004	70	100	DF T	1		12.0	86	80	33.6	42.79	85.6		3,423	22	8
	0005	70		DF T	1		13.0	84	79	33.6	36.46	72.9		2,917	22	7
	0006	70	100	PP L	1		15.0	80	90	33.6	27.39	54.8		3,287	24	8
	0007	70	100	DF T	1		17.0	82	95	33.6	21.32	42.6	1,150	4,051	29	10
0207			100		7		15.0	83	85	235.3	191.44	374.5	6,612	23,233	164	58
0208	0001	70	100	DF L		7	17.0	83	70	235.3	144.42	254.8	6,874	25,954	170	64
0208			100			7	17.3	83	70	235.3	144.42	254.8	6,874	25,954	170	64
0208	0001	70		PP L	1	/	8.0	75	62	33.6		. ,.		1,926	12	5
0203	0002	70		PP L	1		13.0	78	81	33.6	36.46	72.9	877	2,917	22	7
	0003	70		DF T	1		16.0	83	72	33.6	24.07	48.1	905	2,889	22	7
	0004	70	100	PP L	1		15.0	80	83	33.6	27.39	54.8	900	2,739	22	7
	0005	70	100	DF T	1		18.0	83	77	33.6	19.02	38.0	997	3,423	25	8
0209			100		5		12.3	78	71	168.1	203.23	310.2	4,170	13,894	103	34
0209	0001	70	· · · · ·	DF T		2	14.0		74	67.2					46	16
0210	0002	70		PP L		1	15.0	78	78	33.6	25.55	43.8	995	3,819	25	9
						3	14.0	02	75	100.8	84.57	155.1	2,836	10,418	70	26
0210	0001	70	100	DF L	1	3	<u>14.8</u> 20.0	<u>82</u> 85	81	33.6				·····	25	10
0211	0001	70		DF T	1		16.0		75	33.6					22	8
	0002	70		DF L	1		24.0		90	33.6					29	12
	0003	70		OHL	1		12.0		40	33.6			,			
	0001												2 092	11.002	76	30
0211	0001	70	100		4		<u>16.3</u> 22.0	<u>78</u> 87	62 75	<u>134.4</u> 33.6			and the second sec		<u>76</u> 24	<u> </u>
0301	0001	70 70		DF T DF T	1		22.0 14.0		75 81	33.6				-	24 24	10
	0002 0003	70 70		DF T DF L	1		28.0		102	33.6					24	9
	0003	70		PP L	1		20.0		96	33.6					26	9
	0004	70		DF L	1		20.0		78	33.6			-		24	7
	0003	70		DF L	1		25.0		84	33.6					25	8
															145	52
0301	0001	70	100	DF L	6	1	<u>20.1</u> 17.0		<u>84</u> 70	201.7					24	<u> </u>
0302	0001 0002	70 70		DF L DF T		4	17.0			134.4					91	33
	0002	70		SP L		4	14.0			67.2					40	13
	0003															
0302			100			7	15.6	83	75	235.3	178.24	320.9	6,260	22,112	155	55

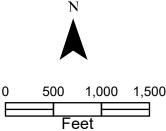
TC PL								ot Tree Project	e List - N BKS	Volumes S				Page Date	2 12/4/2	019
TWP 38S			TRA BKS			TY SL			A	CRES 62.00	PLOTS 25	TF	REES 78		ED DATE 5/1/2019	
Plot	Tree				Tre	ees		16'	Tot	BA	Trees	Logs	Net	Net	Total	
No.	No.	Age	SI	Spp St	Me.	Ct.	DBH	FF	Ht.	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
0303	0001	70	100	DF L	1		12.0	78	60	33.6	42.79	42.8	809	2,996	20	7
	0002	70	100	DF L	1		25.0	82	95	33.6	9.86	29.6	1,151	4,733	29	12
	0003	70	100	PP L	1		25.0	82	99	33.6	9.86	29.6	1,095	3,549	27	9
0202		-	100				17.2	79	72	100.8	62.51	102.0	3,054	11,278	76	28
0303 0304	0001	70	100	PP L	3	2	<u>17.2</u> 15.0	79	72	67.2	51.10	87.6	1,990	7,638	49	19
0304	0001	70		SP T		1	21.0	82	95	33.6	12.73	38.2	998	3,820	25	9
	0002	70		OHL	1	1	26.0	85	50	33.6	9.12			.,		
	0003	70		SP L	•	1	17.0	82	79	33.6	19.78	30.9	798	2,603	20	6
	0004						~~~~					,				
0304			100		1	4	18.2	80	78	168.1	92.73	156.7	3,785	14,062	<u>94</u> 25	35
0305	0001	70		SP T	1		22.0	82	95	33.6	12.73	38.2	998	3,820		
	0002	70		РР Т	1		28.0	78	114	33.6	7.86	23.6	1,214	4,480	30	11
	0003	70		DF L	1		12.0	82	66	33.6	42.79	42.8	579	1,712	14	4
	0004	70	100	PP L	1		16.0	82	78	33.6	24.07	48.1	844	3,129	21	
0305			100		4		16.8	82	78	134.4	87.46	152.7	3,635	13,141	90	33
0306	0001	70	100	DF T		1	14.0	84	74	33.6	29.51	55.7	921	3,299	23	1
	0002	70	100	SP L		1	17.0	82	79	33.6	19.78	30.9	798	2,603	20	
0206			100			2	15.8	83	76	67.2	49.29	86.6	1,718	5,903	43	1
0306 0307	0001	70		DF T	4	4	15.0	84	85	134.4	109.55	219.1	4,058	14,242	101	3
0307	0001	70		DF L	2		19.5	87	101	67.2		97.2	2,429	10,696	60	2
	0002	70		DF L	1		12.0		76	33.6	42.79	85.6	921	3,423	23	
	0005															
0307			100		77		15.3	85	86	235.3	184.76	401.9	7,408	28,361	184	7
0308	0001	70		DF T		3	14.0	84	74	100.8	88.54	167.0	2,762	9,898	68 73	2:
	0002	70	100	DF L		3	17.0	83	70	100.8	61.90	109.2	2,946	11,123	13	Z
0308			100			6	15.7	84	72	201.7	150.43	276.2	5,708	21,021	142	5
0309	0001	70	100	DF T	1		26.0	85	110	33.6		27.3	1,261	5,925	31	1
	0002	70	100	PP L	1		40.0	85	140	33.6	3.85	15.4	1,513	8,165	38	2
	0003	70	100	OH L	1		18.0	65	40	33.6	19.02					
	0004	70	100	OH L	2		9.0	60	40	67.2	152.16					
	0005	70	100	DF T	1		9.0	81	50	33.6	76.08	76.1	638	2,282	16	
0309			100		6		11.9	68	47	201.7	260.22	118.8	3,412	16,373	85	4
0401	0001	70		DF L	1		16.0		76	33.6		48.1	986	2,166	24	
	0002	70		DF T	1		14.0	83	64	33.6	31.44	62.9	865	1,886	21	
	0003	70		DF T	1		11.0		63	33.6	50.93	101.9	727	3,056	18	
	0004	70		DF L	1		18.0	82	75	33.6	19.02	38.0	982	3,423	24	
							14.0		(0	124.4	125.46	250.9	2 560	10,532	88	2
0401	0001	70	100		4	1	14.0		<u>68</u> 40	<u>134.4</u> 33.6		250.9	3,300	10,332	00	Z
0402	0001 0002	70 70		OH L OH L		1 1			40 40	33.6						
	0002		100	UL		1	11.0	0.5	40							
0402			100			2			40	67.2						
0403	0001	70		DF T	1		17.0		87	33.6					25	
	0002	70		DF T	1		14.0		93	33.6					28	
	0003	70		DF T	1		19.0		87	33.6		34.1	-	3,243	27	
	0004	70		DF L	1		60.0		120	33.6		5.1	-		36]
	0005	70		DF L	1		32.0		110	33.6		18.1			31	1
	0006	70		PP L	1		33.0		108	33.6					29	1
	0007	70	100	SP L	1		20.0	82	83	33.6	15.41	30.8	879	2,773	22	
0403			100		7		20.9	83	91	235.3	98.63	210.6	7,954	29,694	197	7
0404	0001	70		DF L	· · · ·	1			70	33.6					24	101000
	0002	70		OHL			11.0			33.6						

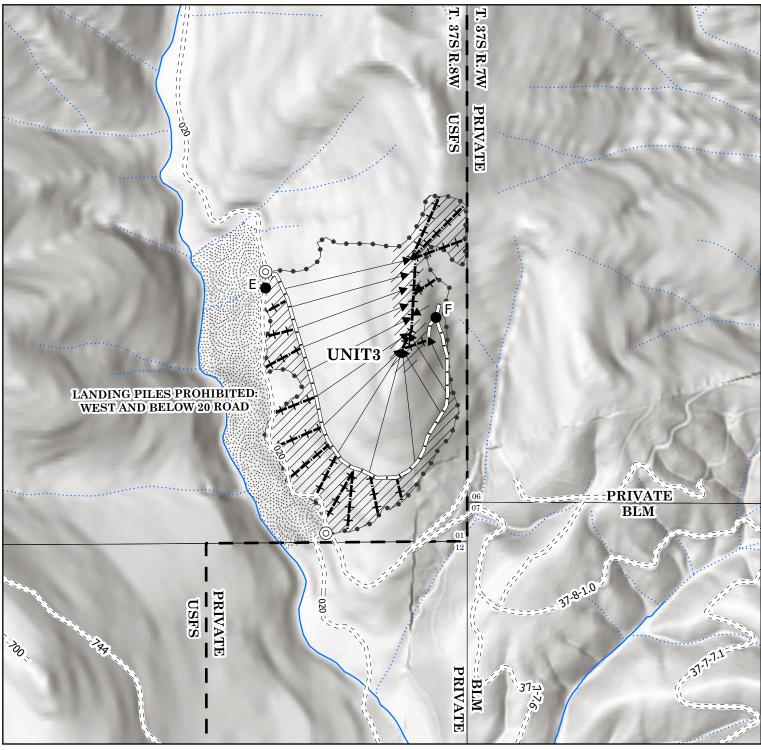
TC PL	OTTREELI	IST					Plo	ot Tree	List - V	olumes				Page	3	
							Р	roject	BKS					Date	12/4/2	019
TWP	RGE		CT		ΤY	PE		AC	CRES	PLOTS	TF	REES	CRUISI	ED DATE		
38S	08W	01	BKS			SĽ	Г2			62.00	25		78	:	5/1/2019	
Plot	Tree	anne a n			Tre	es		16'	Tot	BA	Trees	Logs	Net	Net	Total	l
No.	No.	Age	SI	Spp St	Me.	Ct. I	DBH	FF	Ht.	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
0404	0003	70	100	DF L		4	17.0	83	70	134.4	82.53	145.6	3,928	14,831	97	37
0404			100			6	15.8	77	61	201.7	147.78	182.0	4,910	18,539	122	46
0405	0001	70	100	DF L	1		30.0	83	88	33.6	6.85	20.5	1,099	4,382	27	11
	0002	70	100	PP L	1		26.0	83	87	33.6	9.12	18.2	1,017	3,464	25	9
0405			100		2		27.8	83	87	67.2	15.96	38.8	2,116	7,846	52	19
0406	0001	70		DF T		2	14.0	84	74	67.2	59.02	111.3	1,841	6,599	46	16
	0002	70	100	DF L		2	17.0	83	70	67.2	41.26	72.8	1,964	7,416	49	18
0406			100			4	15.7	84	72	134.4	100.29	184.1	3,805	14,014	94	35
0407	0001	70	100	DF L	1		14.0	87	63	33.6	31.44	62.9	811	3,773	20	9
	0002	70	100	DF T	1		18.0	85	78	33.6	19.02	38.0	943	3,423	23	8
	0003	70	100	DF T	1		16.0	80	65	33.6	24.07	24.1	385	2,407	10	6
	0004	70	100	DF L	1		16.0	80	63	33.6	24.07	24.1	714	1,204	18	3
0407			100		4		15.8	83	66	134.4	98.60	149.1	2,853	10,807	71	27
0408	0001	70	100	DF T		2	14.0	84	74	67.2	59.02	111.3	1,841	6,599	46	16
	0002	70	100	PP L		1	15.0	78	78	33.6	25.55	43.8	995	3,819	25	9
	0003	70	100	OHL		2	11.0	63	40	67.2	89.23					
0408			100			5	13.3	72	57	168.1	173.81	155.1	2,836	10,418	70	26
0505	0001	70	100	DF T	2		12.0	88	58	67.2	85.59	171.2	1,487	5,991	37	15
	0002	70	100	DF L	1		16.0	88	56	33.6	24.07	24.1	701	1,444	17	4
	0003	70	100	DF T	1		14.0	88	62	33.6	31.44	62.9	765	3,458	19	9
	0004	70	100	DF L	1		18.0	88	90	33.6	19.02	38.0	1,028	4,374	25	11
	0005	70	100	DF L	1		10.0	84	21	33.6	61.62	61.6	321	1,232	8	3
0505			100		6		12.9	87	51	201.7	221.74	357.8	4,302	16,501	107	41
TYPE			100		73	53	15.4		69	169.4	130.83	205.1	4,390	16,129	2,722	1,000

Sale Boundary

- Project Point
- O T & E Restriction No Piles Below Road
- Cable Logging
- Ground Based Logging
- // Harvester Permissible
- Paved
- = = Gravel
- Road Improvement
- New Construction Temporary Road
- Stream Class


···· Intermittent Other

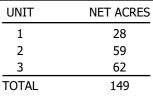

The information shown on Exhibit "A" map(s) are approximate locations. Exact locations of features represented by map symbols will be determined on site and shall depend upon the conditions that exist on site. Activities shall be conducted based upon features determined on site rather than features shown on maps.

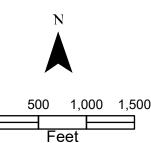

LOGGING PLAN

SW-341-2020-GF7918-07 GNA - Timber Sale BKS UNITS 1 & 2

Portions of Sections 1 & 13 T37S R8W, W.M. Josephine County, Oregon Regulated Use Area SK-3 Landowner: United States Forest Service

- 🖙 Sale Boundary
- Project Point
- \odot T & E Restriction - No Piles Below Road
- Cable Logging
- Ground Based Logging / / Harvester Permissible
- Stream Buffer
- = Paved
- = = Gravel
- C Road Improvement
- New Construction Temporary Road
- Stream Class


- Fish


···· Intermittent Other The information shown on Exhibit "A" map(s) are approximate locations. Exact locations of are approximate locations. Exact locations of features represented by map symbols will be determined on site and shall depend upon the conducted based upon features determined on site rather than features shown on maps.

LOGGING PLAN

SW-341-2020-GF7918-07 GNA - Timber Sale BKS UNIT 3

Portions of Sections 1 & 13 T37S R8W, W.M. Josephine County, Oregon Regulated Use Area SK-3 Landowner: United States Forest Service

0