

Sale WO-341-2020-W00789-01

District: West Oregon Date: August 13, 2019

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$745,448.55	\$45,216.15	\$790,664.70
		Project Work:	(\$75,104.00)
		Advertised Value:	\$715,560.70

Sale WO-341-2020-W00789-01

District: West Oregon Date: August 13, 2019

Timber Description

Location: Portions of Sections 5, 6 and 7, T10S, R8W, W.M., Lincoln and Polk Counties, Oregon.

Stand Stocking: 60%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	19	0	95
Alder (Red)	14	0	90
Maple	18	0	90

Volume by Grade	2\$	3S & 4S 6"- 11"	SM & Better	Camprun	Total
Douglas - Fir	1,169	724	46	0	1,939
Alder (Red)	0	0	0	304	304
Maple	0	0	0	89	89
Total	1,169	724	46	393	2,332

Comments: Pond Values Used: Local Pond Values, August, 2019

Western Hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost:

244/MBF = 533/MBF - 289/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost:

\$649/MBF = \$938/MBF - \$289/MBF

PULP (Conifer and Hardwood Price) = \$2.5/TON

Other Costs (with Profit & Risk to be added):

Intermediate Support/Tail Trees: 8 supports @ \$100/support = \$800

Flaggers for Logsden County Road: 2 flaggers x 2 days @ \$320/day = \$640

Loader Cleanup Logsden County Road: 16 hrs @ \$150/hr = \$2,400 Directional Felling Logsden County Road: 1 acre @ \$200/acre = \$200

TOTAL Other Costs (with Profit & Risk to be added) = \$4,040

Other Costs (No Profit & Risk added):

Equipment Cleaning (Invasive Species): \$2,000

Move-in Loader for Controlled Felling in Area 2 = \$905

Water Bar and Block Dirt Roads: (A to B)&(Unsurfaced portion of E to F) 28 stations @ \$15.96/station = \$447

(Pts. G, I and K to be blocked upon completion of Slash Piling. Landing Slash Piling: 7 Landings @ \$100/Landing = \$700

Landing Slash Piling and sorting out firewood: 5 Landings @ \$180/Landing = \$900

TOTAL Other Costs (No Profit & Risk added) = \$4,952

ROAD MAINTENANCE

Temporary Culvert removal and Haul to Philomath: 2 Culverts @ 250/culvert = \$500

Move-in: (Grader) \$875 and (Backhoe) \$361

Final Road Maintenance: \$10,500

TOTAL Road Maintenance: \$12,236/2,332 MBF = \$5.25/MBF

SLASH DISPOSAL Move-In: \$1,290 Machine Wash: \$300

Project Work: 56 hrs @ \$150/hr = \$8,400

TOTAL Slash Disposal = \$9,990

Sale WO-341-2020-W00789-01

District: West Oregon Date: August 13, 2019

Logging Conditions

Combination#: 1 Douglas - Fir 71.12%

 Alder (Red)
 43.12%

 Maple
 43.37%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 12 bd. ft / load: 4600

cost / mbf: \$144.57

machines: Log Loader (A)

Forwarder Harvester

Tower Yarder (Large)

Combination#: 2 Douglas - Fir 28.88%

Alder (Red) 56.88% Maple 56.63%

Logging System: Shovel Process: Harvester Head Delimbing

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF

loads / day: 14 bd. ft / load: 3800

cost / mbf: \$100.45
machines: Forwarder

Harvester

8/13/19 4

Sale WO-341-2020-W00789-01

Date: August 13, 2019 **District: West Oregon**

Logging Costs

Operating Seasons: 2.00

Profit Risk: 14%

Project Costs: \$75,104.00 Slash Disposal: \$9,990.00

Other Costs (P/R): \$4,040.00

Other Costs: \$4,952.00

Miles of Road

Road Maintenance:

\$4.50

Dirt	Rock (Contractor)	Rock (State)	Paved	
0.0	0.0	0.0	0.0	

Hauling Costs

Species	\$ / MBF Trips/Day		MBF / Load
Douglas - Fir	\$0.00	2.0	4.8
Alder (Red)	\$0.00	2.0	3.5
Maple	\$0.00	2.0	3.5

Sale WO-341-2020-W00789-01

District: West Oregon Date: August 13, 2019

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$131.83	\$4.73	\$3.76	\$103.91	\$1.73	\$34.43	\$4.28	\$2.00	\$2.12	\$288.79
Alder (Red)									
\$119.48	\$4.95	\$3.76	\$149.28	\$1.73	\$39.09	\$4.28	\$2.00	\$2.12	\$326.69
Maple									
\$119.59	\$4.95	\$3.76	\$149.28	\$1.73	\$39.10	\$4.28	\$2.00	\$2.12	\$326.81

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$673.24	\$384.45	\$0.00
Alder (Red)	\$0.00	\$454.00	\$127.31	\$0.00
Maple	\$0.00	\$400.00	\$73.19	\$0.00

8/13/19 6

Sale WO-341-2020-W00789-01

District: West Oregon Date: August 13, 2019

Summary

Amortized

Specie	MBF	Value	Total	
Douglas - Fir	0	\$0.00	\$0.00	
Alder (Red)	0	\$0.00	\$0.00	
Maple	0	\$0.00	\$0.00	

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	1,939	\$384.45	\$745,448.55
Alder (Red)	304	\$127.31	\$38,702.24
Maple	89	\$73.19	\$6,513.91

Gross Timber Sale Value

Recovery: \$790,664.70

Prepared By: Aaron McEwen Phone: 541-929-9168

8/13/19 7

SUMMARY OF ALL PROJECT COSTS

Sale Name: Rock Fall

Project #1 - New Construction

Road Segment	Cost Allocation	<u>Length</u>	<u>Length</u>	Cost
A to B	CSL	21.4 sta		\$ 12,095
C to D	CSL 0.8 sta	0.8 sta		\$ 726
E to F	BOF		15.2 sta	\$ 25,920
G to H	BOF		1.2 sta	\$ 1,033
I to J	CSL	2.0 sta		\$ 1,759
K to L	CSL	7.9 sta		\$ 3,838
	TOTALS	32.1 sta	16.4 sta	\$ 45,371

Project #1	\$	45 371
	Ψ	.0,0.

Project #2 - Road Improvement

Road Segment		<u>Length</u>	<u>Length</u>	Cost
1 to 2	BOF/CSL	64.5 sta		\$ 16,434
3 to 4	BOF/CSL		45.0 sta	\$ 3,988
5 to 6	BOF		7.1 sta	\$ 109
7 to 8	BOF		8.0 sta	\$ 123
	TOTAL	64.5 sta	60.1 sta	\$ 20 654

Project #2 \$ 20,6	54
---------------------------	----

Project #3 - Roadside Brushing

	Length	2.35 miles	Project #3	\$ 2,960
Project #4 - Move in		Cost		
Excavator, C325 or equiv.		· · · · · · · · · · · · · · · · · · ·	450	
Dozer, D-7 or equiv.		· · · · · · · · · · · · · · · · · · ·	905	
Grader, Cat 14-G or equiv.		·	875	
Road brusher		\$	778	
Backhoe		\$	361	
Front end loader		\$	875	
Vibratory roller		\$	875	
TOTAL		\$ 6,	119	

Project #4	\$	6,119
------------	----	-------

75,104

GRAND TOTAL \$

Compiled by Jim Stuart/J. Long Date 08/01/2019

SALE ROAD	Rock Fall A to B		Project #1		Con	struction	LEN	NGTH	21.4	sta		
CLEARING AN	ID GRUBBING											
1.8 acr	es @			\$1,337.00	/acre				=	\$	2,407	
						то	TAL CI	EARIN	G AND	GRUI	BBING = \$	2,407
EXCAVATION			dozer or eq		_					_		
Construct road		21.4	stations	@	\$	214.00			=	\$	4,580	
Construct landi	•	1	landing	@	\$	438.00	-		=	\$	438	
Shape subgrad (with road grad		21.4	stations	@	\$	15.40	/ sta		=	\$	330	
Compact subgr (with vibratory r	ade	21.4	stations	@	\$	14.00	/ sta		=	\$	300	
Endpush (expa		250	CY	@	\$	2.50	/ CY		=	\$	625	
Construct Turns		230	TA.	@	\$	50.00			_	\$	100	
(no rock)	around		17.	•	Ψ	30.00	, ,,		_	Ψ	100	
(110 Tools)								то	TAL E	XCAV	ATION = \$	6,373
												- ,
Culverts (2)												
(Sta. 11+80 &	13+55)			Size			C	Cost				
18"x 30' CPP (2		60	ft			@		\$12.06	/ft =		\$724	
Install culvts (2	hrs each+remove old	5	hr			@		140.00	/hr =		\$700	
Bedding/backfil	II 1 1/2"-0" (2)	20	CY	1 1/2"-0		@		\$31.25	/CY =		\$625	
Install dissipato	ors (2)	2	hr			@	\$	140.00	/hr =		\$280	
Dissipator Rock	k (2)	10	CY	Pit-run		@		\$27.93	/CY =		\$279	
Old Culvert Dis	posal	1				@	\$	100.00	=		\$100	
											·	
								TOTA	L CUL	VERT	COST =	\$2,708
SURFACING				Size			Co	st/vd				
Junction rock		20	CY	3" - 0		@	\$	29.59	/CY =	\$	592	
Process surfac	ina	0.50	station			@	\$	15.40			8	
(with road grade	•	-				•	•			*	-	
Compact surface		0.50	station			@	\$	14.00	/sta =	\$	7	
(with vibratory r	oller)											
							7	TOTAL S	SURFA	CING	COST = \$	607
Compiled by:		Jim Stuar	t/.L.Long									
Date:		Aug 1, 20	J					GR	AND T	ОТАІ	. ====> \$	12,095
_ 4.0.								O.K		J.AL	Ψ	, 000

SALE ROAD	Rock Fall C to D		F	Project #	1		Construction		LENG	ГН	0.8 sta	
CLEARING AN	D GRUBBII	NG										
0.07 acr	es @		\$	1,337.00	/ acre			=	\$	94		
							TOTAL CLEA	ARIN	G AND (GRUBBING	G = \$	94
EXCAVATION		With D7	dozer or equiv	/alent								
Construct road		0.8	stations	@	\$ 21	4.00	/ sta	=	\$	171		

Construct landing 1 Landing @ \$ 438.00 / ldg = \$ 438 Shape subgrade 0.8 stations @ \$ 15.40 / sta \$ 12 (with road grader) \$ Compact subgrade 0.8 stations @ 14.00 / sta 11 (with vibratory roller)

TOTAL EXCAVATION = \$ 632

Compiled by: Jim Stuart/J. Long

Date: Aug 1, 2019 **GRAND TOTAL =====> \$ 726**

SALE ROAD	Rock Fall E to F		Project #1		Const	ruction	LEN	GTH	15.2	sta					
CLEARING AND GI	RUBBING														
1.30 acre	es @			\$ 1,337.00	/ acre	:			=	\$	1,738				
						TOT	ΓAL C	LEARING	AND (SRUE	BBING =			\$	1,738
DECLAIM EVICTING		нег		(Ctation 0 : 00) to Cto	· 0.04	. D	{	D4 F 4= 1	D+ 0\					
RECLAIM EXISTING			(Ct- (t)	(Station 0+00	100 Sta	tion 2+81	i, Reu			,				ı,	000
2.81 Sta.	@	9 36	/Sta (est)	=	100			@	\$8.00	per	cu yd =			\$	800
EXCAVATION		With D7	dozer or e	quivalent											
Excavation (drift)		1,505	CY	. @	\$	2.36	/ CY		=	\$	3,552				
End-haul ` ´		300	CY	@	\$	4.50	/ CY		=	\$	1,350				
Embankment compa	action	1,838	CY	@	\$	0.80	/ CY		=	\$	1,470				
Waste Area creation (2 WA's)	1	1.0	hr	@	\$	162.00	/ hr		=	\$	162				
Waste compaction		300	CY	@	\$	0.45	/ CY		=	\$	135				
Construct landing		3	Landing	@	\$	438.00	/ ldg		=	\$	1,314				
Shape subgrade		15.20	stations	@	\$	21.56	/ sta		=	\$	328				
(with road grader)															
Compact subgrade		15.20	stations	@	\$	19.60	/ sta		=	\$	298				
(with vibratory roller))														
								TO	TAL EX	CAVA	ATION =			\$	8,609
SURFACING	(Station 0+00	to Station	n 8+60)	Size				Cost							
Base rock (33 cy/sta	•	280	CY	3" - 0		@	\$	29.59	/CY		=	\$	8,285		
Traction rock (11 cy	, , ,	100	CY	3/4"-0		@	\$	31.25	/CY		=	\$	3,125		
Landing rock	,, ,	80	CY	Jaw-run		@	\$	28.59	/CY		=	\$	2,287		
Turnout rock (Sta. 2	+20)	20	CY	Jaw-run		@	\$	28.59	/CY		=	\$	572		
Process base rock		8.6	station	3" - 0		@	\$	15.40	/sta		=	\$	132		
(with road grader)															
Compact base rock		8.6	station			@	\$	14.00	/sta		=	\$	120		
(with vibratory roller)	1														
Process surfacing		8.6	station	3/4"-0		@	\$	15.40	/sta		=	\$	132		
(with road grader)												_			
Compact surfacing		8.6	station			@	\$	14.00	/sta		=	\$	120		
(with vibratory roller)															
							-	TOTAL S	URFAC	ING	COST =			\$	14,773
									-	_	====>			\$	25,920

SALE ROAD	Rock Fall G to H	Project	#1	Con	struction	LEN	GTH	1.2	2 sta				
	S AND GRUBBI	NG	# 4 007 00						Φ.	404			
0.10	acres @		\$1,337.00	/ac	re			=	\$	134			
							TOTAL	CLEA	RING	AND	GRUE	BBING = \$	134
EXCAVAT	ION												
Construct r	road	1.2 station	ns @	\$	214.00	/ sta		=	\$	257			
Shape sub (with road of		1.2 station	ns @	\$	15.40	/ sta		=	\$	18			
Compact s		1.2 station	ns @	\$	14.00	/ sta		=	\$	17			
(with vibrat	ory roller)								тот	AL EX	(CAVA	ATION = \$	292
SURFACIN	NG		<u>Size</u>				Cost						
Two-way J	unction	20 CY	3" - 0		@	\$	29.59	/CY		=	\$	592	
Process su (with road of	ırfacing	0.50 statio	n		@	\$	15.40	/sta		=	\$	8	
Compact s (with vibrat	urfacing	0.50 statio	n		@	\$	14.00	/sta		=	\$	7	
,	, ,							TOT	AL SI	JRFA	CING	COST = \$	607
Compiled b	by:	Jim Stuart/J. Lon Aug 1, 2019	g					GRAI	ND TO	TAL :		:> \$	1,033

SALE ROAD	Rock Fa I to J	ll I	Project #1		Cor	struction	LENC	GTH	2.0) sta			
CLEARING	AND GRU	JBBING											
0.17	acres	@		\$ 1,337.00	/ ad	cre			=	\$ 227			
							ТО	TAL CLEA	RING	AND GR	RUBBI	NG =	\$ 227
EXCAVAT	ION	With D7	dozer or ed	guivalent									
Construct I	anding	1		@	\$	438.00	/ Ida		=	\$ 438			
Construct r	•	2.0	•	@	\$	214.00	_		=	\$ 428			
Shape sub (with road of	-	2.0	stations	@	\$	15.40	/ sta		=	\$ 31			
Compact s (with vibrat	ubgrade	2.0	stations	@	\$	14.00	/ sta		=	\$ 28			
,	, ,								TOT	AL EXC	AVAT	ION =	\$ 925
SURFACIN	NG			<u>Size</u>				Cost					
Two-way ju		20	CY	3" - 0		@	\$	29.59	/CY	=	\$	592	
Process su (with road o	•	0.50	station			@	\$	15.40	/sta	=	\$	8	
Compact s (with vibrat		0.50	station			@	\$	14.00	/sta	=	\$	7	
(**************************************	,,							TC	TAL S	SURFAC	ING (COST =	\$ 607
Compiled b	oy:	Jim Stua	rt/J. Long										
Date:		Aug 1, 20	019						GRAN	ND TOT	4L ==	===>	\$ 1,759

SALE ROAD	Rock Fall K to L	I	Project #1		Con	struction	LEN	GTH	7.9	sta					
	G AND GRUE acres	BBING @		\$ 1,337.00	/ ac	re			=	\$	869				
							-	TOTAL C	LEAF	RING	AND GRU	JBBIN	G =	\$	869
EXCAVAT Construct	landing		dozer or ed Landing stations	quivalent @ @	\$ \$	438.00 214.00	_		=	\$	438 1,691				
Shape sub (with road		7.9	stations	@	\$	15.40	/ sta		=	\$	122				
Compact s		7.9	stations	@	\$	14.00	/ sta		=	\$	111				
										-	TOTAL EX	CAVA ⁻	TION =	\$	2,362
SURFACII Two-way ju Process su (with road	unction urfacing grader)	20 0.5 0.5	CY station	<u>Size</u> 3" - 0		@ @	\$	Cost \$29.59 15.40	/CY /sta /sta		=	\$	592 8 7		
Compact s (with vibrate		0.5	Station			@	Ф	14.00	/Sta		=	\$,		
									T	ATC	L SURFAC	ING C	OST =	= \$	607
Compiled I	by:	Jim Stua Aug 1, 20	rt/J. Long)19						(GRA	IND TOTA	L ====	==>	\$	3,838

SALE ROAD	Rock Fall 1 to 2	Hatchery Fa	Project #2 II Creek Roa	ad	lmp	rovement	LE	ENGTH	64.5	sta	l				
	ank slough	(With excava	ator) CY	@	\$	4.50	/C`	Y	=	\$	450				
(36+19 to Cutslope r End-haul t Level road Spur E to (Haul to S	ounding o waste area I with F	2 100 250	sta CY CY	@ @	\$ \$ \$	49.00 4.50 4.50	/C`	Y	= = =	\$ \$	98 450 1,125				
									TC	TAI	EXC	AVATI	ION =	\$ 2,12	23
IMPROVE Remove s and brushi	od	64.5	stations	@	\$	15.40	/ s	ta	=	\$	993				
Pull Ditch	and Scatter erial (Pt. A to	12.0	stations	@	\$	44.00	/ s	ta	=	\$	528				
Pull Ditch waste mat	and Endhaul erial (Pt. A to	11.0	stations	@	\$	64.00	/ s	ta	=	\$	704				
Sta. 38+22	<u>-</u>)								TOT	ΓAL	IMPR	OVEM	IENT =	\$ 2,22	25
SURFACII	NG			<u>Size</u>				Cost							
Spot Rock		210	CY	1 1/2"-0		@	\$		/CY		=	\$	6,563		
	(6" lift) + CW	60	CY	3" - 0		@	\$	29.59	/CY		=	\$	1,775		
	ock (3" lift)	30	CY	1 1/2"-0		@	\$	31.25	/CY		=	\$	938		
Process b		3.0	station	3" - 0		@	\$	15.40	/sta		=	\$	46		
(with road Compact to (with vibra	oase rock	3.0	station			@	\$	14.00	/sta		=	\$	42		
Process so (with road	urfacing	20.0	station	1 1/2"-0		@	\$	15.40	/sta		=	\$	308		
Compact s (with vibra	•	20.0	station			@	\$	14.00	/sta		=	\$	280		
									TOTA	AL S	URFA	CING	COST =	\$ 9,95	52
Culverts															
(Sta. 5+90))			<u>Size</u>				Cost							
24"x 30' C	PP	30 f	ft			@		\$20.50	/ft =		\$615				
Install culv	ert	2 I	hr			@		140.00	/hr =		\$280				
Install diss	•	1.5 I				@		140.00	/hr =		\$210				
	ackfill 1 1/2"-0"	20 (1 1/2"-0		@		\$31.25			\$625				
Dissipator		10 (CY	Pit-run		@		\$27.93			\$279				
Old Culve	π Disposai	1				@	\$	100.00	=		\$100			00.1	
CDECIAL	DDO IECTO					obor [©]			101	AL	CULV	EKIC	OST =	\$2,1	09
Clean out (inlets and		1	culvert	@	\$ \$	<u>abor \$</u> 25.00		ea =	\$ 25						
(IIIIE 615IIII)	i ouliels)						Т	OTAL S	SPECIA	L P	ROJE	СТЅ С	COST =	\$ 2	25

Compiled by: Jim Stuart/J. Long Date: Aug 1, 2019

GRAND TOTAL ====>

\$ 16,434

SALE ROAD	Rock Fall 3 to 4	Hatchery Fa	Project #2 II Creek Ro	oad	Imp	rovemen	t	LENGT	Н		45.0	sta			
IMPROVEMI Remove sod and brushing (with grader		45	stations	@	\$	15.40	/ sta	a	=	\$	693				
Waste Area		1	hrs	@	\$	162.00	/hr		=	\$	162				
(2 WA's) Waste Area	Compaction	100	CY	@	\$	0.45	/ C\	1	=	\$	45				
										TOTA	AL IMPF	ROVE	MENT = \$		900
SURFACING	}			Size				Cost							
Spot rock (Pt. 3 to Pt. 4	1)	80	CY	1 1/2"-0		@	\$	31.25	/CY	=	=	\$	2,500		
Process surf (with road gr	ace rock	20	stations			@	\$	15.40	/ sta	:	=	\$	308		
Compact roa (Pt. 3 to Pt. 4	nd surface	20	stations			@	\$	14.00	/ sta	=	=	\$	280		
(· <i>1</i>								٦	OTAL	SURFA	CING	COST = \$	3	3,088

GRAND TOTAL ====> \$

3,988

Compiled by:

Date:

Jim Stuart/J. Long

Aug 1, 2019

SALE Rock Fall Project #2 Improvement LENGTH 7.1 sta

ROAD 5 to 6 (Surfaced)

IMPROVEMENT

Remove sod and 7.1 sta @ \$ 15.40 / sta = \$ 109

woody debris (with road grader)

TOTAL IMPROVEMENT = \$ 109

Compiled by:

Date: Jim Stuart/J. Long GRAND TOTAL =====> \$ 109

Aug 1, 2019

SALE Rock Fall Project # 2 Improvement LENGTH 8.0 sta

ROAD 7 to 8 (Dirt)

IMPROVEMENT

Remove sod and 8.0 sta @ \$ 15.40 / sta = \$ 123

woody debris (with road grader)

TOTAL IMPROVEMENT = \$ 123

Compiled by: Jim Stuart/J. Long GRAND TOTAL =====> \$ 123

Date: Aug 1, 2019

Rock Fall Timber Sale WO-341-2020-W00787-01

Project No. 3

Mechanical Road Brushing Costs (Lincoln County)

c	202	
5	_	
C	Э.	
C	V	
	•	
•	-	
,	~	
:	≃′	
-	_	
<	Aug	
;	٠:	
١	ַע	
7	ם מונה.	
٤	~	
L	┙	

	CSL		1,020			1,020
Sosts ation			\$			\$
Total Costs Allocation	BOF	1,464		221	255	1,940
		\$		\$	\$	\$
Cost / Mile		1,200.00	1,200.00	1,700.00	1,700.00	
		\$	\$	\$	\$	
Brush Density		Medium	Medium	Heavy	Heavy	
Miles		1.22	0.85	0.13	0.15	2.35
Feet) tion	CSL		45.0			45.0
Length (Feet) Allocation	BOF	64.5		7.1	8.0	9.62
Road Segment	Point	1 to 2	3 to 4	5 to 6	7 to 8	Totals

2,960.00

S

Total Cost

2.35 Miles

Rock Haul Cost Computation

	_			- 1 00	1.0
SALE NAME:		ock Fall	DATE:	<i>J</i> ,	19
ROAD NAME:	_	to F		: Medium	
ROCK SOURC		ickard		truck	
Route:			y 20, Eddyville-	= =	=
		ogsden Rd, Ste	er Cr, Beaver Cr,	Hatchery Fa	all Cr.
TIME Compu					
	time factors				
1.		8.2 MRT			minutes
2.		MRT			minutes
3.	_	MRT			minutes
4.		16.2 MRT			minutes
5.	. 35 MPH	14.6 MRT		25.0	minutes
6.	. 30 MPH	MRT		0.0	minutes
7.	. 25 MPH	3.2 MRT		7.7	minutes
8.	. 20 MPH	7.7 MRT		23.1	minutes
9.	. 15 MPH	MRT		0.0	minutes
10.	. 10 MPH	1.0 MRT		6.0	minutes
11.	. 05 МРН	0.5 MRT		6.0	minutes
Total h (100% e	read time per auling cycle fficiency) fficiency cor	time for this s	etting 85	0.50 101.50 119.41	minutes minutes minutes
=	ency correcti		. 90	132.68	minutes
Truck capa	city (CY)	10	.00	13.27	min/CY
Loading ti	me, delay tim	e per CY		0.25	min/CY
TIME (minu	tes) per cubi	c yard		13.52	min/CY
	-	_			
COST per C	Y computation				
Cost of	truck and op	erator per hou		\$90.00	/hr
Cost of	truck and op	erator per minu	te	\$1.50	/min
	-	-			
Cost per C	Υ			\$20.28	/CY
Spread and	compact W	ater truck, Gr	der & Roller	\$1.50	/CY
		Cost	Delivered	Cost Deliv	ered
Size	Cost/Yd (Pit) w/o <u>r</u>	rocessing	with proce	ssing
1½ - 0"	\$ 10.97	\$31	. 25	\$32.75	
3 - 0"	\$ 9.31	\$29	.59	\$31.09	
Jaw Run	\$ 8.31	\$28	. 59	\$30.09	
Pit-Run	7.65	\$27	. 93	\$29.43	
Pit-Run Boulders	7.65 \$ 23.94	\$27 \$44		\$29.43	

Rock Haul Cost Computation

SALE NAME:	Rock		DATE:	<i>J</i> ,	19
ROAD NAME:	E to			: Medium	
ROCK SOURCE	: Ricka	rd	20 CY	truck	
Route:			y 20, Eddyville-1	2	
	Logsd	en Rd, Stee	r Cr, Beaver Cr,	Hatchery Fa	all Cr.
TIME Computa					
Road speed	time factors:				
1.	55 MPH	8.2 MRT		8.9	minutes
2.	50 MPH	MRT		0.0	minutes
3.	45 MPH	MRT		0.0	minutes
4.	40 MPH	16.2 MRT		24.3	minutes
5.	35 MPH	14.6 MRT		25.0	minutes
6.	30 MPH	MRT		0.0	minutes
7.	25 MPH	3.2 MRT		7.7	minutes
8.	20 MPH	7.7 MRT		23.1	minutes
9.	15 MPH	MRT		0.0	minutes
10.	10 MPH	1.0 MRT		6.0	minutes
11.	05 MPH	0.5 MRT		6.0	minutes
Total ha	ead time per RT uling cycle time ficiency)	for this se	etting	0.50	minutes minutes
Operator ef	ficiency correct	ion 0.	85	119.41	minutes
-	ncy correction		90		minutes
002 0111010.		•		102.00	
Truck capac	ity (CY)	20.	00	6.63	min/CY
Loading time	e, delay time pe	r CY		0.25	min/CY
TIME (minute	es) per cubic ya	rd		6.88	min/CY
	computation				
	truck and operat			·	/hr
Cost of	truck and operat	or per minu	ce	\$1.50	/min
Cost per CY				\$10.32	/CY
Spread and	compact Water	truck, Gra	der & Roller	\$1.50	/CY
		Cost 1	Delivered	Cost Deliv	ered
Size	Cost/Yd (Pit)		rocessing	with proce	
1½ - 0"	\$ 10.97	\$21.	-	\$22 . 79	-
3 - 0"	\$ 9.31	\$19.		\$21.13	
Jaw Run	\$ 8.31	\$18.		\$20.13	
Pit-Run					
	7.65	\$17.	97	\$19.47	
Boulders	7.65 \$ 23.94	\$17. \$34.		\$19.47	

SUMMARY OF MAINTENANCE COST

SALE Rock Fall

- Final Maintenance Cost Estimate

(Costed in appraisal, not in project costs)

SALVAGE CULVERTS

			R	emove	ŀ	Haul to				
Road Segment	Station	Salvage		Cost	Pł	nilomath	Т	otal cost	_	
Spur A to B	11+80	18" x 30'	\$	150	\$	100	\$	250	_	
Spur A to B	13+55	18" x 30'	\$	150	\$	100	\$	250	_	
							\$	500		
Grading	Move-in							Total	\$	500
J	Grader		\$	875						
	Backhoe		\$	361				Total	\$	1,236
2.7 miles	20	hrs		@		\$113.00		/hr =	\$	2,260

MAINTENANCE ROCK

Rock Size	Miles	Volume	Cost/CY	Cost	
1½-0"	1.35	140	\$31.25	\$4,375.00	
1½-0"	1.35	100	\$21.29	\$2,129.00	
				Total	\$ 6,504

	GRAND	\$ 10,500	
TS Volume	MBF =	2,332	
	Cost / MBF =	\$ 4.50	

NOTES: Grade surface rock on all roads used for hauling 2.70 miles to County road.

Rock Fall (WO-341-2020-W00789-01) FY 2020

TIMBER CRUISE REPORT

1. Sale Area Location: Portions of Sections 5, 6 and 7, T10S, R8W, W.M., Lincoln and Polk Counties, Oregon.

2. Fund Distribution:

a. Fund BOF 58%, CSL 42%

b. Tax Code

3. Sale Acreage by Area:

Area	Treatment	Gross Acres	Stream Buffers	Existing Roads	Green Tree Retention Acres	Slope Buffer Acres	Net Sale Acres	Acreage Comp. Method
1	Modified Clearcut	80	10	1	3	0	66	Ortho photo, GIS, GPS
2	Modified Clearcut	43	4	0	0	3	36	Ortho photo, GIS, GPS
Total		123	14	1	3	3	102	

- **4.** Cruisers and Cruise Dates: All sale areas were cruised by Aaron McEwen and Jon Long. Both areas were cruised in March of 2019.
- **5. Cruise Method and Computation:** All Areas of the sale were cruised using variable radius plot sampling using a 40 BAF for conifers, and a 33.61 BAF for hardwoods. A total of 42 plots were taken in Area 1 consisting of 23 measure and 19 count plots 7 chains by 3 chains apart. Plot #'s 7 and 15 were dropped due to being within stream buffers. A total of 25 plots were taken in Area 2 consisting of 14 measure and 11 count plots spaced 7 chains by 3 chains apart. Plot #5 was dropped due to being within a slope buffer.

Digital ortho photos, LiDar, and ArcMap 10.6 were used to map the boundaries for the sale, and ArcMap 10.6 was used to determine gross and net acreage.

- **6. Measurement Standards:** Measure plots were measured for DBH, height, form factor, grade, and defect. Data was entered into the Atterbury SuperACE cruise program to determine stand statistics and net board foot volume. Additional volume was removed to account for hidden defect and breakage.
- 7. **Timber Description:** Timber in the sale areas consists of 52-54 year-old planted Douglas-fir and natural hardwoods. The average DBH of Douglas fir in Area 1 is approximately 18 inches, and approximately 14 inches DBH for red alder. The average volume per acre of Douglas fir to be harvested (net) in Area 1 is approximately 12 MBF, and 5 MBF of red alder and bigleaf maple. The average DBH of Douglas fir for Area 2 is approximately 19 inches, and approximately 14 inches DBH for red alder. The average volume per acre of Douglas fir to be harvested (net) in Area 2 is approximately 32 MBF, and 2 MBF of red alder and bigleaf maple. Western Hemlock are reserved from cutting in both sale areas.
- **8.** Total Volume (MBF) by Species and Grade: (See attached volume report "Species, Sort Grade Board Foot Volumes Project").

Area	Species	Gross Cruise Volume	Cruised D&B	Cruised D&B (MBF)	Hidden D&B	Hidden D&B (MBF)	Net Sale Volume
	Douglas-fir	840	2.7%	(23)	2%	(17)	800
1	Red alder	266	5.4%	(14)	2%	(5)	247
	Bigleaf maple	82	10.5%	(9)	1%	(1)	72
	Douglas-fir	1,182	1.6%	(19)	2%	(24)	1,139
2	Red alder	59	2.4%	(1)	2%	(1)	57
	Bigleaf maple	18	6%	(1)	1%	-	17
Total		2,447	2.7%	(67)	2%	(48)	2,332

Grade % Breakdown / Volume by Grade

Area	Species	Ave. DBH	Tot. Net Vol.	2-Saw	3-Saw	4-Saw	SM	Camp Run
	Douglas-fir	18	Grade %	55%	37%	8%	-	-
	Douglas-III	18	800	440	296	64	-	-
1	Red alder	14	Grade %	-	-	-	-	100%
1	Red alder	14	247	-	-	-	-	247
	D' -1 C1 -	17	Grade %	-	-	-	-	100%
	Bigleaf maple	17	72	-	-	-	-	72
	Danalas fin	10	Grade %	64%	26%	6%	4%	-
	Douglas-fir	19	1,139	729	296	68	46	-
	D . 1 .11	1.4	Grade %	-	-	-	-	100%
2	Red alder	14	57	-	-	-	-	57
	D' -1 C1 -	20	Grade %	-	-	-	-	100%
	Bigleaf maple	20	17	-	-	-	-	17
	T-4-1 All A		Grade %	50%	25%	6%	2%	17%
	Total All Areas		2,332	1,169	592	132	46	393

Attachments:

- -Cruise Maps
- -Cruise Design
- Project Statistics (All Areas)
- Species/Sort/Grade-BF Vol. (All Areas)
- Stand Table Summary (All Areas)Log Stock Table (All Areas)

Prepared by: A	aron McEwen	Date: <u>5/15/2019</u>	
Unit Forester:		Date:	
_	Evelyn Hukari		

тс	PSPCSTGR		$\mathbf{S}_{\mathbf{l}}$	pecies, S	ort Gra	ide - Boa	ard F	oot V	olum	es (Pi	oject	t)								
T1	0S R08W S6 Ty	yCC		66.00		Project Acres	:	RO	CKF.								Page Date Time		1 20/20 :16:55	19
		%						Рего	ent of l	Vet Boar	rd Foot	Volume					Avera	ge Log	3	Logs
	S So Gr	Net	Bd. Ft.	рег Асге		Total		1	Log Sca	ale Dia.			Log l	ength		Ln	Dia	Bd	CF/	Per
Spp	T rtad	BdFt	Def%	Gross	Net	Net MBF		4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Fŧ	In	Ft	Lf	/Асте
RA	CU CU															6	11		0.00	6.0
RA	DO CR	100	5.3	4,031	3,815		252	0	80	20		13	32	25	30	27	8	58	0.74	66.2
RA	Totals	22	5.3	4,031	3,815		252	0	80	20		13	32	25	30	25	8	53	0.72	72.2
DF DF	CU CU DO 2M DO 3M	55 37	2.7 2.7	7,068 4,725	6,878 4,599	, , , , , , , , , , , , , , , , , , , ,	454 304		97	72 3	28		11 4	19 19	70 77	1 36 37	15 14 7	254 82	0.00 1.84 0.75	2.7 27.0 56.4
DF	DO 4M	8	3.9	930	894		59	47	53	9		33	53	14	.,	21	5	25	0.43	35.9
DF	Totals	71	2,8	12,724	12,371		817	3	40	41	15	2	12	18	68	32	8	101	0,96	122.0
BM BM	CU CU DO CR	100	10.5	1,245	1,114		74	7	93			10	56		34	1 25	10 8	60	0.00 0.94	5,5 18.6
ВМ	Totals	6	10.5	1,245	1,114		74	7	93			10	56		34	20	8	46	0.93	24.0
WH WH WH	CU CU DO 2M DO 3M	91 9		84 7	84 7		6		100		100		100	100		32	29 20 7	560 50	0.00 3.62 1.21	.1
WH	Totals	1		91	91		6		8		92		8	92		23	19	203	2.17	.4
Total	is		3.9	18,090	17,391		1,148	3	52	34	11	5	19	19	57	28	8	80	0.89	218.7

.

<u> </u>	1					1	T										20:40/1	
S		Log	Gross	Def	Net	%			l .		_		r in Inche		1		<u> </u>	
Spp T	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	DO 2M	1 24	8		8	.7						8						
DF	DO 2M	í 26	12		12	1.0						3	9					
DF	DO 2M				10	l								10				
DF	DO 2M	1 32	21	3.7	21	1.8						9				12		
DF	DO 2M	1 34	8		8	.7						8						
DF	DO 2M	36	18	2.9	18	1,5						18						
DF	DO 2M	[38	15		15	1.3						15						
DF	DO 2M	i 40	660		654	56.3						135	150	157	112	84	16	
DF	DO 3M	16	3	16.7	2	.2					2							
DF	DQ 3M	- 1		5,9	8							8						
DF	DO 3M			2,6	65				10	30	19			7				
DF	DO 3M	i		30,8	8						8							
DF	DO 3M		20		20	1,7			6	9	4							
DF	DO 3M	38	19		19	1.6			14	5								
DF	DO 3M	40	881		188	16.2			46	75	36			5		9		17
DF	DO 4M	12	3		3	,2		1	2									
DF	DO 4M	- 1			1	.1			1									
DF	DO 4M				0	.0			0									
DF	DO 4M	15	1		1	.1			1									
DF	DO 4M	16	4		4	.4		2	2									
DF	DO 4M	. 17	3		3	.2		1	2									
DF	DO 4M	18	3		3	.2			3									
DF	DO 4M	20	8		8	.7		5	3									
DF	DO 4M	22	6		6	.5			6									
DF	DO 4M	24	11		11	.9		8	3									
DF	DO 4M	26	1		1	.1			1			İ						
DF	DO 4M	28	1		1	.1			1									
DF	DO 4M	30	1		1	.1		1										
DF	DO 4M	- 1	13		13	1.1			13									
DF	DO 4M	- 1	2	25,0	1	.1		1										
DF	DO 4M	- 1	5		5	.4			5									
DF	DO 4M	40	5		5	.4		4			1							
DF	DO SM	40	42	1.0	41	3.6								26	15			
DF	Totals		1,182	1.6	1,163	93,0		23	118	119	70	204	160	205	127	104	16	17
вм	DO CR	15	4	13.6	3	17.9								3				
вм	DO CR	16	1		1	3.3			1									

TC PI	LOC	3STVB						Log	Stock '	Table -	MBF									
Tios	RO	8W S6	ГуС	С	3	6.00		Proje Acre		ROG	CKFALI 36	L .00					Page Date Time	5/2	2 0/2019 20:40A	м
	s	So G		Log	Gross	Def	Net	%			let Volu	ne by S	caling Dia	mete	r in Inche	s				
Spp	ľ	rt de		Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11 12-	-13	14-15	16-19	20-23	24-29	30-39	40+
ВМ		DO	CR	17	1		1	4,2			1									
ВМ	١	DO	CR	32	3	8.3	3	18,4					3							
BM	ı	DO	CR	38	3	5,9	2	13,9					2							
ВМ	ı	DO	CR	40	7	2.6	. 7	42.3		1	1		5							
вм		То	tals		18	6.1	17	1.4		1	2		11			3				
SN	1	То	tals		120	100.0														
WH		DO :	3М	38	10	2,1	10	69.9				·							10	
WH	L	DO :	3M	40	4		4	28.6									4			
WH		DO 4	4M	24	0		0	1.5				0								
WH		То	tals		14	1.5	14	1,1				0					4		10	
RA		DO (CR.	12	1		1	1.4			1									
RA		DO (CR	16	2	23.4	1	2.4			1	3								
RA		DO (CR	30	4		4	7,6			4									
RA		DO (CR	32	20	5.0	19	32,9			11			8						
RA	I	DO 6	CR	36	6		6	11.1			6									
RA		DO 0	CR	40	26		26	44.7			9	6	11							
RA	\prod	To	tals		59	2.4	57	4.6			31	7	11	8						
Total		All Spe	cies	l	1,393	10.2	1,251	100.0		23	152	126	92	212	160	208	131	104	26	17

TC PSTNDSUM		Stand Table Summary	Page Date:	1 5/20/2019
T10S R08W S6 TyCC	66,00	Project ROCKFALL	Time:	8:16:59AM
		Acres 66.00	Grown Year:	

<u> </u>	T							1		Γ			T
S S pc Т	рвн	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	c Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Totals Tous Cunits MBF
DF	12	3	88	51	7.599	5,97	7.60	17.0	53.3		129	405	85 2
DF	13	2	86	59	4.316	3.98	6.47	15,3	46.7		99	302	66 2
DF	14	5	86	68	9.305	9.95	13.03	20.3	57.1	i	264	744	174 4
DF	15	6	87	85	9.726	11.94	19,45	20,2	66.7		392	1,297	259 8
DF	16	2	86	78	2.850	3.98	5.70	21.7	65.0		124	370	82 2
DF	17	7	87	83	8.834	13,93	17.67	26.3	89.3	ŀ	464	1,578	307 10
DF	18	2	87	84	2,251	3,98	4.50	28,5	95.0		128	428	85 2
DF	19	5	88	81	5.052	9.95	10.10	32.1	106.0		324	1,071	214 7
DF	20	2	87	91	1.824	3,98	3,65	38.8	130.0		141	474	93 3
DF	21	5	87	81	4.135	9.95	8.27	40.0	124.0		331	1,026	218 6
DF	22	2	87	95	1.507	3.98	3.01	49.2	162.5		148	490	98 3
DF	23	4	86	101	2,758	7.96	6.89	45,0	167.0		310	1,151	205 7
DF	24	2	86	89	1,266	3.98	2.53	54.7	172.5		139	437	92 2
DF	25	3	88	104	1.751	5.97	4.09	59.1	211.4		242	864	159 5
DF	26	2	86	93	1.079	3.98	2.16	66.5	250.0		144	540	95 3
DF	28	2	86	103	.930	3,98	2,33	69.0	270.0		161	628	106 4
DF	30	1	88	92	.405	1.99	.81	90.0	330,0		73	267	· 48 1
DF	32	1	85	92	.356	1.99	1.07	65.7	280.0		70	299	46 2
DF	Totals	56	87	78	65,945	111.40	119.34	30.9	103.7		3,684	12,371	2,432 81
RA	10	5	86	27	10.322	5.63	10.32	7.4	24.0		76	248	50 1
RA	11	4	87	53	6.824	4.50	6.82	14.0	42.5		96	290	63 1
RA	12	3	86	32	4,301	3,38	4,30	12.3	36.7		53	158	35 1
RA	13	6	86	60	7.329	6.76	8,55	19.1	58,6		164	501	108 3
RA	14	7	87	56	7.373	7.88	9.48	19.4	54.4		184	516	122 3
RA	15	7	87	50	6,422	7.88	6.42	27.1	64.3		174	413	115 2
RA	16	7	87	63	5,645	7.88	8.06	25.8	74.0		208	597	137 3
RA	17	3	86	75	2.143	3.38	4.29	26.8	91.7		115	393	76 2
RA	18	6	87	57	3,823	6,76	6.37	27,4	81.0		175	516	115 3
RA	19	1	87	71	.572	1.13	1.14	30.0	105.0		34	120	23
RA	22	1	87	50	.427	1,13	.43	54.0	150.0		23	64	15
RA	Totals	50	87	50	55.180	56,30	66,19	19.7	57.6		1,302	3,815	859 25
вм	15	1	87	67	5.478	6.72	10.96	17.5	60.0		192	657	127 4
ВМ	18	2	86	41	7,608	13.44	7.61	33,0	60.0		251	456	166 3
ВМ	Totals	3	86	52	13.085	20.17	18.56	23.9	60.0		443	1,114	292 7
WH	35	1	82	81	.150	1,00	.30	75.0	305.0		22	91	15
WH	Totals	1	82	81	.150	1.00	.30	75.0	305.0		22	91	15
Totais		110	87	64	134.361	188.87	204.39	26.7	85.1		5,452	17,391	3,598 1,14
										_			

тс	PSPCSTGR		S	pecies, S	ort Gra	de - Board	Foot	Volum	ies (Pi	roject	t)								
T1	0S R08W S6 T ₃	/CC		36,00		Project: Acres	R	OCKF 36.								Page Date Time	5/:	1 20/20: 20:41	19
		%			·	<u> </u>	Pe	rcent of	Net Boa	rd Foot	Volume				1	Aver	age Lo	3	Logs
	S So Gr	Net	Bd. Ft	. per Acre		Total		Log Sc	ale Dia.			Log	Length		Ln	Dia	Bď	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	CU CU		100,0	148											5	13		0.00	7.8
DF	DO 2M	64	.9	20,888	20,694	74	1.5		52	48		4	4	92	1	15	352	2.02	58.7
DF	DO 3M	26	2.0	8,789	8,615	3	- 1	85	3	12	1	3	23	73	37	8	97	0.77	88.5
DF	DO 4M	6	.7	1,851	1,838	,	66 34	66			34	30	22	14	22	6	27	0.40	67.1
DF	DO SM	4	1.0	1,164	1,152	,	1			100				100	40	19	600	3.07	1.9
DF	Totals	93	1.6	32,840	32,299	1,10	3 :	26	34	37	2	5	10	83	32	9	144	1.10	224.0
ВМ	CU CU														8	17		0,00	1.8
BM	DO CR	100	6.1	504	474	j	.7 4	78		18	25		18	56	29	9	87	1,10	5.4
ВМ	Totals	1	6.1	504	474		.7 4	78		18	25		18	56	24	11	66	1,01	7.2
SN	cu cu		100.0	3,327						•					70	72		0.00	1.9
SN	Totals		100.0	3,327											70	72		0.00	1.9
WH WH WH	CU CU DO 3M DO 4M	98 2	1.5	384 6	378 6		4 0	100		100		100		100	1 39 24	33 28 8	1310 40	0.00 6.78 1.38	.I .3 .1
WH	Totals	1	1.5	390	384	1	4	2		98		2	·	98	26	24	665	5,46	.6
RA	DO CR	100	2.4	1,629	1,590	5	7	86	14		4	8	33	56	32	7	66	0,72	24.2
RA	Totals	5	2.4	1,629	1,590		7	86	14		4	8	33	56	32	7	66	0.72	24.2
Total	S		10.2	38,690	34,746	1,25	1 2	30	32	36	3	5	11	81	32	10	135	1.06	257.9

	ATS					OJECT OJECT	STATIS ROC	STICS EKFALL			PAGE DATE	1 5/20/2019
TWP	RGE	SC	TRACT		TYPE		ΛC	RES	PLOTS	TREES	CuFt	BdFt
108	08	6	A2		CC			36.00	24	133	1	W
								ESTIMATED	P	ERCENT		
						TREES		TOTAL	S	AMPLE		
		l	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA	L		24	133		5.5						
CRUI	SE		14	92		6.6		4,385		2.1		
	COUNT											
REFO			9	(1								
COUN			į	41		4,6						
100 %												
					STA	ND SUMM	IARY					
			MPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		7	REES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DF	n tan		70	95.7	18.6	74	42.0	181,1	32,840	32,299	7,905	7,873
R ALE BL M			14 5	20,9 3,2	14.1 20.1	40 53	6.0 1.6	22.7 7.0	1,629 504	1,590 474	565 172	56. 17:
SNAG			2	3.2 1.9	17.4	70	0.7	3,1	3,327	4/4	1/2	17.
	MLOCK.		1	.1	46.0	94	0.2	1.7	390	384	81	8
TOTA			92	121.8	18.0	68	50.8	215.5	38,690	34,746	8,724	8,69.
CL	68,1		7715 64				E TREES -				-	
CD.										-		
SD; DF	1.0		VAR.% 118.7	S.E.% 14,2	L	OW 564	AVG 657	HIGH 750		5	10	
					D					5	10	
DF R ALE BL MA SNAG	DER APLE		118.7	14.2		564	657	750		5	10	
DF R ALE BL MA SNAG	DER APLE MLOCK		118.7 61.0	14,2 16,9		564 78	657 94	750 109		5 745	186	
DF R ALE BL MA SNAG WHEN	DER APLE MLOCK		118.7 61.0 41.4	14,2 16.9 20.6	U	564 78 119	657 94 150	750 109 181	#		186	
DF R ALE BL MA SNAG WHEN TOTA	DER APLE MLOCK		118.7 61.0 41.4 <i>136.6</i>	14,2 16.9 20.6		564 78 119	657 94 150	750 109 181	#	745	186	INF, POP.
DF R ALC BL MA SNAG WHEN TOTA CL SD: DF	DER APLE MLOCK AL 68.1		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3	14.2 16.9 20.6 14.2 S.E.%		564 78 119 473 TREES/2 DW 79	657 94 150 551 ACRE AVG 96	750 109 181 630 HIGH 112	#	<i>745</i> Of PLOTS RI	<i>186</i> 3Q.	INF, POP.
DF R ALE BL MA SNAG WHEN TOTA CL SD: DF R ALE	DER APLE MLOCK AL 68,1 1.0 DER		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0		564 78 119 473 TREES/A DW 79 6	657 94 150 551 ACRE AVG 96 21	750 109 181 630 HIGH 112 36	#	<i>745</i> Of PLOTS RI	<i>186</i> 3Q.	INF, POP.
DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC BL MA	DER APLE MLOCK LL 68.1 1.0 DER APLE		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8 363.2	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7		564 78 119 473 TREES/A DW 79 6	657 94 150 551 ACRE AVG 96 21 3	750 109 181 630 HIGH 112 36 6	#	<i>745</i> Of PLOTS RI	<i>186</i> 3Q.	INF, POP.
DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC BL MA SNAG	DER APLE MLOCK AL 68.1 1.0 DER APLE		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7 84.7		564 78 119 473 TREES/A DW 79 6	657 94 150 551 ACRE AVG 96 21	750 109 181 630 HIGH 112 36	#	<i>745</i> Of PLOTS RI	<i>186</i> 3Q.	INF, POP.
DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC BL MA SNAG	DER APLE MLOCK AL 68.1 1.0 DER APLE		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8 363.2 406.5	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7		564 78 119 473 TREES/A DW 79 6	657 94 150 551 ACRE AVG 96 21 3	750 109 181 630 HIGH 112 36 6	#	<i>745</i> Of PLOTS RI	<i>186</i> 3Q.	INF, POP,
DF R ALE BL MA SNAG WHEN TOTA CL SD: DF R ALE BL MA SNAG WHEN TOTA	DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8 363.2 406.5 489.9 72.8 COEFF	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7 84.7 102.1 15.2	L	78 119 473 TREES/ADW 79 6 1 0	657 94 150 551 ACRE AVG 96 21 3 2 0 122	750 109 181 630 HIGH 112 36 6 3 0 140		745 OF PLOTS RI 5 5 221 OF PLOTS RI	186 EQ. 10 55	INF, POP.
DF R ALE BL MA SNAG WHEN TOTA CL SD: DF R ALE BL MA SNAG WHEN TOTA CL SD:	DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8 363.2 406.5 489.9 72.8 COEFF VAR.%	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7 84.7 102.1 15.2	L	564 78 119 473 TREES/A DW 79 6 1 0 103 BASAL A	657 94 150 551 ACRE AVG 96 21 3 2 0 122 AREA/ACI	750 109 181 630 HIGH 112 36 6 3 0 140		745 OF PLOTS RI 5	186 3Q. 10	INF, POP.
DF R ALE BL MA SNAG WHEN TOTA CL SD: DF R ALE BL MA SNAG WHEN TOTA CL SD: DF	DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8 363.2 406.5 489.9 72.8 COEFF VAR.%	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7 84.7 102.1 15.2 S.E.% 15.6	L	78 119 473 TREES/ADW 79 6 1 0 103 BASAL ADW 153	657 94 150 551 ACRE AVG 96 21 3 2 0 122 AREA/ACI AVG 181	750 109 181 630 HIGH 112 36 6 3 0 140		745 OF PLOTS RI 5 5 221 OF PLOTS RI	186 EQ. 10 55	INF, POP.
DF R ALE BL MA SNAG WHEN TOTA CL SD: DF R ALE BL MA SNAG WHEN TOTA CL SD: DF R ALE R ALE SNAG WHEN TOTA	DER APLE MILOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 68.1		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8 363.2 406.5 489.9 72.8 COEFF VAR.%	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7 84.7 102.1 15.2	L	564 78 119 473 TREES/A DW 79 6 1 0 103 BASAL A	657 94 150 551 ACRE AVG 96 21 3 2 0 122 AREA/ACI	750 109 181 630 HIGH 112 36 6 3 0 140		745 OF PLOTS RI 5 5 221 OF PLOTS RI	186 EQ. 10 55	INF, POP.
DF R ALE BL MA SNAG WHEN TOTA CL SD: DF R ALE BL MA SNAG WHEN TOTA CL SD: DF	DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8 363.2 406.5 489.9 72.8 COEFF VAR.% 74.8 279.0	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7 84.7 102.1 15.2 S.E.% 15.6 58.1	L	78 119 473 TREES/A DW 79 6 1 0 103 BASAL A DW	657 94 150 551 ACRE AVG 96 21 3 2 0 122 AREA/ACI AVG 181 23	750 109 181 630 HIGH 112 36 6 3 0 140 RE HIGH 209 36		745 OF PLOTS RI 5 5 221 OF PLOTS RI	186 EQ. 10 55	INF. POP.
DF R ALE BL MA SNAG WHEN TOTA CL SD: DF R ALE BL MA SNAG WHEN TOTA CL SD: DF R ALD BL MA SNAG SNAG	DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8 363.2 406.5 489.9 72.8 COEFF VAR.% 74.8 279.0 399.8 340.2 489.9	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7 84.7 102.1 15.2 S.E.% 15.6 58.1 83.3 70.9 102.1	L	564 78 119 473 TREES/A DW 79 6 1 0 103 BASAL A DW	657 94 150 551 ACRE AVG 96 21 3 2 0 122 AREA/ACI AVG 181 23 7	750 109 181 630 HIGH 112 36 6 3 0 140 RE HIGH 209 36 13		745 OF PLOTS RI 5 221 OF PLOTS RI 5	186 EQ. 10 55 EQ. 10	INF. POP.
DF R ALE BL MA SNAG WHEN TOTA CL SD: DF R ALE BL MA SNAG WHEN TOTA CL SD: DF R ALD BL MA SNAG SNAG	DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK APLE MLOCK APLE		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8 363.2 406.5 489.9 72.8 COEFF VAR.% 74.8 279.0 399.8 340.2	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7 84.7 102.1 15.2 S.E.% 15.6 58.1 83.3 70.9	L	564 78 119 473 TREES/A DW 79 6 1 0 103 BASAL A DW	657 94 150 551 ACRE AVG 96 21 3 2 0 122 AREA/ACI AVG 181 23 7	750 109 181 630 HIGH 112 36 6 3 0 140 RE HIGH 209 36 13		745 OF PLOTS RI 5 5 221 OF PLOTS RI	186 EQ. 10 55	INF. POP.
DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC SD: DF R ALC SD: CL SNAG WHEN TOTA CL CL CL CL	DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE AL 68.1 68.1		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8 363.2 406.5 489.9 72.8 COEFF VAR.% 74.8 279.0 399.8 340.2 489.9 56.7 COEFF	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7 84.7 102.1 15.2 S.E.% 15.6 58.1 83.3 70.9 102.1 11.8	L	564 78 119 473 TREES/OW 79 6 1 0 103 BASAL A OW 153 9 1 1 1	657 94 150 551 ACRE AVG 96 21 3 2 0 122 AREA/ACI AVG 181 23 7 3 2 216	750 109 181 630 HIGH 112 36 6 3 0 140 RE HIGH 209 36 13 5 3 241	#	745 OF PLOTS RI 5 221 OF PLOTS RI 5	186 3Q. 10 55 3Q. 10	INF, POP.
DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALD CL SD:	DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK APLE MLOCK APLE MLOCK APLE MLOCK APLE		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8 363.2 406.5 489.9 72.8 COEFF VAR.% 74.8 279.0 399.8 340.2 489.9 56.7 COEFF VAR.%	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7 84.7 102.1 15.2 S.E.% 15.6 58.1 83.3 70.9 102.1 11.8	L	564 78 119 473 TREES/OW 79 6 1 0 103 BASAL A DW 153 9 1 1 190 NET BE/OW	657 94 150 551 ACRE AVG 96 21 3 2 0 122 AREA/ACI AVG 181 23 7 3 2 216 ACRE AVG	750 109 181 630 HIGH 112 36 6 3 0 140 RE HIGH 209 36 13 5 3 241	#	745 OF PLOTS RI 5 221 OF PLOTS RI 5	186 EQ. 10 55 EQ. 10	INF. POP.
DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC SD: DF CL SD: DF	DER APLE MLOCK ML 68.1 1.0 DER APLE MLOCK L 68.1 1.0 DER APLE MLOCK L 68.1 1.0		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8 363.2 406.5 489.9 72.8 COEFF VAR.% 74.8 279.0 399.8 340.2 489.9 56.7 COEFF VAR.% 78.5	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7 84.7 102.1 15.2 S.E.% 15.6 58.1 83.3 70.9 102.1 11.8 S.E.% 16.4	L	564 78 119 473 TREES/OW 79 6 1 0 103 BASAL A DW 153 9 1 1 190 NET BE/	657 94 150 551 ACRE AVG 96 21 3 2 0 122 AREA/ACI AVG 181 23 7 3 2 216 ACRE AVG	750 109 181 630 HIGH 112 36 6 3 0 140 RE HIGH 209 36 13 5 3 241 HIGH 37,584	#	745 OF PLOTS RI 5 221 OF PLOTS RI 5	186 3Q. 10 55 3Q. 10	INF, POP.
DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC BL MA SNAG WHEN TOTA	DER APLE MILOCK MILO		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8 363.2 406.5 489.9 72.8 COEFF VAR.% 74.8 279.0 399.8 340.2 489.9 56.7 COEFF VAR.%	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7 84.7 102.1 15.2 S.E.% 15.6 58.1 83.3 70.9 102.1 11.8	L	564 78 119 473 TREES/OW 79 6 1 0 103 BASAL A DW 153 9 1 1 190 NET BE/OW	657 94 150 551 ACRE AVG 96 21 3 2 0 122 AREA/ACI AVG 181 23 7 3 2 216 ACRE AVG	750 109 181 630 HIGH 112 36 6 3 0 140 RE HIGH 209 36 13 5 3 241	#	745 OF PLOTS RI 5 221 OF PLOTS RI 5	186 3Q. 10 55 3Q. 10	INF, POP.
DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC BL MA SNAG WHEN TOTA CL SD: DF R ALC BL MA SNAG WHEN TOTA	DER APLE MILOCK MILO		118.7 61.0 41.4 136.6 COEFF VAR.% 82.3 345.8 363.2 406.5 489.9 72.8 COEFF VAR.% 74.8 279.0 399.8 340.2 489.9 56.7 COEFF VAR.% 78.5 285.3	14.2 16.9 20.6 14.2 S.E.% 17.1 72.0 75.7 84.7 102.1 15.2 S.E.% 15.6 58.1 83.3 70.9 102.1 11.8 S.E.% 16.4 59.4	L	564 78 119 473 TREES/ADW 79 6 1 0 103 BASAL ADW 153 9 1 1 190 NET BF/DW 7,014 645	657 94 150 551 ACRE AVG 96 21 3 2 0 122 AREA/ACI AVG 181 23 7 3 2 216 ACRE AVG 32,299 1,590	750 109 181 630 HIGH 112 36 6 3 0 140 RE HIGH 209 36 13 5 3 241 HIGH 37,584 2,534	#	745 OF PLOTS RI 5 221 OF PLOTS RI 5	186 3Q. 10 55 3Q. 10	INF, POP.

T10S R08W S6 TyCC 36.00 Project ROCKFALL Time: 8:20:44AM Acres 36.00 Grown Year:	TC PSTNDSUM	Stand Table Summary	Page Date:	1 5/20/2019
Acres 36.00 Grown Year:	T10S R08W S6 TyCC 36.00	Project ROCKFALL	Time:	8:20:44AM
		Acres 36.00	Grown Year:	

DF	10 11 12 13 14	Sample Trees I 2	FF 16' 86	Tot Av Ht	Trees/ Acre	BA/	Logs	Average Net			Net	Net		Totals		
DF	10 11 12 13	i 2				Acre	Acre	Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Cunits	M	BF
DF	11 12 13	2	•	76	4,005	2,18	4.00	15.0	60.0		60	240			22	
DF	12 13		87	77	7,878	5,20	11.82	11.7	46.7		138	551			50	2
DF DF DF DF DF DF DF DF DF			87	104	13.239	10.40	26.48	14.4	55,0		381	1,456		13	37	
DF DF DF DF DF DF DF	14	1	87	91	2.820	2,60	5,64	16,0	55.0		90	310		:	32	
DF DF DF DF DF		4	87	88	9.338	9.98	18.68	18.9	61,5		352	1,149		12	27	
DF DF DF DF DF	15	1	88	110	2.118	2.60	4.24	26.0	105.0		110	445		4	10	
DF DF DF DF	16	3	88	78	5,585	7.80	11,17	21.5	71.7		240	108		;	36	
DF DF DF	17	2	87	105	3.298	5.20	8.25	21.2	74.0		175	610			53	
DF DF DF	18	8	88	107	11,768	20.80	25.01	34.4	122.9		859	3,074			19]
DF DF	19	4	88	105	5.281	10.40	14.52	29.0	108,2		421	1,571		1:		
DF	20	6	88	115	7.149	15.60	19.06	36.6	136.2		698	2,598		2:		
	21	4	90	112	4.323	10,40	10,81	43,8	174.0		473	1,880		17		
OF 1	22	4	89	106	3,939	10,40	9.85	44.0	169.0		433	1,664		1:		
1	23	1	86	103	.901	2.60	2.70	39,0	153.3		105	414			8	
	24	2	89	133	1,655	5.20	4.96	52.7	225.0		261	1,117			14	
-	25	4	88	104	3.050	10.40	7.63	54.9	218.0		419	1,662		1:		
	26	3	89	128	2.115	7.80	6.35	61.1	266,7		388	1,692		14		
	27	1	89	117	,654	2,60	1.96	62.0	266.7		122	523			4	
- 1	28	3	87	155	1.824	7.80	6,69	67,1	311.8		449	2,085			2	
	29	1	88	114	.567	2.60	1.70	69.0	306,7		117	521			2	
·	30	2	90	151	1,059	5,20	3.71	81.4	401.4		302	1,488		10		
^ {	31	1	89	156	.496	2.60	1.98	75,2	360.0		149	714			4	
^ I	33	2	89	147	.875	5.20	3.06	93.9	484.3		288	1,484		10		
	34	1	85	156	.412	2.60	1,24	115.0	543.3		142	672			1	
	38	1	86	154	.330	2.60	1.32	110.0	545,0		145	720			2	
^ I\	39	2	92	145	,627	5.20	2.19	133.6	694.3		293	1,523		10		
^ I	43	1	91	118	.258	2.60	.77	158.0	763.3		122	590			4	
	55	1	89	140	.158	2.60	.47	294.0	1570.0		139	742			0	
DF To	otals	70	88	103	95.722	181,13	216,26	36,4	149.4		7,873	32,299		2,83	4	1,1
ta i	10	1	87	76	2.930	1.60	2.93	16.0	60,0		47	176			7	
EA .	11	1	86	53	2,421	1.60	2.42	14.0	50.0		34	121		1	2	
RA I	12	3	86	58	6.103	4.79	6,10	20.0	53,3		122	326		4	4	
ta i	14	2	87	42	2,989	3.20	2.99	19.0	50.0		57	149			0	
ta l	15	1	87	40	1,302	1,60	1.30	22.0	50.0		29	65			0	
RA I	16	1	86	87	1.144	1.60	2.29	26.0	85.0		60	195			1	
A I	18	1	86	56	1.076	1,90	1.08	44.0	90.0		47	97			7	
lA 2	20	4	87	58	2.930	6.39	5.13	33,1	90.0		170	461			1	
A To	otals	14	86	58	20,895	22.67	24.24	23.3	65,6		565	1,590	· · · · · · · · · · · · · · · · · · ·	20	3	
1	16	I	87	78	1.003	1.40	2.01	25.5	85.0		51	171			8	
	18	1	87	73	.792	1.40	1.58	19.5	65,0		31	103			1	
	22	t	86	61	.530	1.40	.53	45.0	60.0		24	32			9	
	24	1	86	68	.446	1.40	.89	41,0	115.0		37	103			3	
	25	1	86	51	.411	1.40	.41	73,0	160,0		30	66			1	
-	otals	5	87	69	3.183	7,00	5.42	31,8	87.3		172	474			2	
	46	1	89	118	.144	1.67	.43	187.3	886.7		81	384			9	
WHI Tot	otals	1	89	118	.144	1.67	.43	187,3	886.7		81	384		2	9	
SN I	13	1	86	72	1.519	1.40										
SN 3	30	1	88	88	.340	1.67						1				
N Tot	tals	2	86	75	1.859	3,07	<u> </u>									

тс	PSTNDSUM					1	Stand 7	Fable S	ummary				Page Date:	2 5/20/2	2019
Tios	R08W S6 TyCC	;		36.	00		Projec Acres	t R	36.0				Time: Grown Year		44AM
S Spc T	Samp DBH Tre			Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
Totals		92	87	94	121.803	215.54	246.35	35.3	141.0		8,691	34,746		3,12	9 1,251

<u></u>																Time 8:	23:12AM	
	s	So G		Log	Gross	Def	Net	%		Net Vol	ume by	v Sc	aling Diamete	r in Inch	es	1	1	
Spp	T	rt d	e	Len	MBF	%	MBF	Spc	2-3 4-5	6-7	8-9	_	10-11 12-13	14-15	16-19	20-23 24-29	30-39 40)+
RA		DO	CR	12	1		1	.5			l							
RA		DO	CR	16	20	18.0	16	6.5		1.	:	5						
RA		DO	CR	18	7		7	2,8		,	7	İ						
RA		DO	CR	20	9	4.4	9	3.6	1	:	3		5					
RA	1	DO	CR	22	7	26.9	. 5	2.0			5	1						
RA		DO	CR	23	8		8	3.3		1	3							
RA		DO	CR	24	27		27	10.9		14			7 6				ļ	
RA		DO	CR	25	6	20,0	5	1.8			:	5						
RA		DO	CR	26	2		2	.7		7	?							
RA		DO	CR	27	4		4	1.5		4								
RA		DO	CR	28	11	7.2	10	4.1		3	1		7					
RA		DO	CR	30	21	6.5	20	7.9		1	•		6 7					
RA		DO	CR	31	4		4	1.6		1	-							
RA		DO	CR	32	38	6.1	36	14.3			; (6	7 17					
RA		DO	CR.	33	5		5	1.9		5								
RA		DO	CR	34	18	5.5	17	6.9		3			7 8					
RA		DO	CR	36	5		5	1.9		1 5								
RA		DO	CR	38	8	7.1	8	3.1		1								
RA	l	DO	CR	40	63	1.6	62	24.5		26	20	3	15					
RA		Т	otals		266	5.3	252	21,9	1	123	36	5	42 50					
DF	Ī	DO	2M	26	11		11	1,3					11					
DF		DO	2M	30	40	2.1	39	4,8				ı	24			15		
DF		DO	2M	32	74		73	9.0					59		15			
DF		DO	2M	34	11		11	1,4					11			<u></u>		
DF		DO	2M	36	51	2.8	50	6,1					25	25				
DF		DO	2M	40	279	3.4	270	33.0					56	102	112			
DF		DO	3М	28	3		3	.3		3	i							
DF		DO	3M	30	10		10	1.2					10					
DF		DO		32	40	7.3	37	4.6		12	. 9	,	17					
DF		DO	3M	34	12		12	1,5		10	2	2						
DF		DO	3М	35	8		8	1,0		8								
DF		DO	3М	36	19		19	2,3		19								
DF		DO	3М	37	2		2	.3		2								
DF		DO	3M	38	19	1.4	18	2,2		18								
DF		DO	3М	40	199	2.6	194	23.7		40	119	,	35					
DF		DO	4M	12	2		2	,3	2			\dagger						
DF DF		DO		16	9		9	1.1	7	2								
Dr		DO	-+±VI	10	9		9	1.1	/			\perp		.,,			<u> </u>	

TC PLO	DGSTVE	3					Log	Stock Table	- MBF									
T105 R	.08W S6	TyC	2	6	6.00		Proje Aere		CKFAL	L 6.00			•		Page Date Time	5/2	2 0/2019 23:12A	
s	So C	,	Log	Gross	Def	Net	%		Net Volu	me by S	Scaling D	iamete	r in Inche	s				
Spp T	rt d	e	Len	MBF	%	MBF	Spc	2-3 4-5	6-7	8-9	10-11		14-15	16-19	20-23	24-29	30-39	40+
DF	DO	4M	18	5		5	.6	:	. 2									
DF	DO	4M	20	3		3	.4	:	: I									
DF	DO	4M	22	6		6	.8		6									
DF	DO	4M	24	19	12.8	16	2.0	10	7									
DF	DO	4M	25	2		2	.3		2		·							
DF	DO	4M	26	1		1.	.2		i									
DF	DO	4M	29	3		3	.4	1										
DF	DO	4M	30	I		1	.2	:										
DF	DO	4M	32	8		8	1.0		8									
DF	Т	otals:		840	2.8	817	71.1	28	143	129	52	197	126	126	15			
вм	DO	CR	16	11	33.3	7	9.8		7									
ВМ	DO	CR	22	5		5	6.8	:										
ВМ	DO	CR	27	36		36	49.2				36							
ВМ	DO	CR	40	30	16.7	25	34.2			25								
ВМ	T	otals		82	10,5	74	6.4	5	7	25	36							
WH	DO	2M	32	6		6	91.8								6			
WH	DO	3M	28	0		. 0	8,2		0									
WH	Т	otals		6		6	.5		0						6			
Total	All S _I	oecies		1,194	3.9	1,148	100.0	34	273	191	130	247	126	126	20			

	TATS					OJECT ROJECT	STATIS ROC	STICS CKFALL			PAGE DATE	1 5/20/2019
WP	RGE	\mathbf{SC}	TRACT	•	TYPE		AC	RES	PLOTS	TREES	CuFt	BdFt
108	08	6	A1 EDIT		CC			66.00	40	206	1	W
						TREES		ESTIMATED TOTAL		ERCENT SAMPLE		
		Pl	LOTS	TREES		PER PLOT		TREES		TREES		
TOTA	ΔI.		40	206		5.2						
CRUI			22	110		5.0		8,868		1.2		
DBH (COUNT											
REFO	REST											
COUN	TV		16	96		6.0						
BLAN	VKS		2									
100 %	, 5											
					STA	ND SUMM	IARY					
			MPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TI	REES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DF	D.E.D.		56	65.9	17.6	59	26.6	111.4	12,724	12,371	3,684	3,684
R ALI			50 3	55.2 13.1	13.7 16.8	34 39	15.2 4.9	56,3 20,2	4,031 1,245	3,815 1,114	1,302 443	1,302 443
	MLOCK		1	.1	35.0	73	0.2	1,0	91	91	22	27
TOTA			110	134.4	16.1	47	47.1	188.9	18,090	17,391	5,452	5,452
CL	68.1		COEFF					IE SAMPLE E		OF TREES RE	 FO	INF POP
CL SD:	68.1		COEFF	S.E.%	L.	SAMPL	E TREES -	BF		OF TREES RI	•	INF. POP.
CL SD: DF	68.1		COEFF VAR.% 71.8	S.E.% 9.6	L					OF TREES RI	EQ. 10	
SD:	1,0		VAR.% 71.8 69.4	9.6 9.8	L	SAMPL OW 235 76	E TREES - AVG 260 84	BF HIGH 285 92			•	
SD: DF R ALD BL MA	1,0 DER APLE		VAR.% 71.8	9.6	L	SAMPL OW 235	E TREES - AVG 260	BF HIGH 285			•	
SD: DF R ALE BL MA	1,0 DER APLE MLOCK		71.8 69.4 66.1	9.6 9.8 45.8	L	SAMPL OW 235 76 43	E TREES - AVG 260 84 80	BF HIGH 285 92 117		5	10	1
SD: DF R ALE BL MA	1,0 DER APLE MLOCK		VAR.% 71.8 69.4 66.1 94.9	9.6 9.8	L.	SAMPL OW 235 76	E TREES - AVG 260 84	BF HIGH 285 92	#	359	90	4
SD: DF R ALC BL MA WHEN TOTA	1,0 DER APLE MLOCK AL 68.1		VAR.% 71.8 69.4 66.1 94.9 COEFF	9.6 9.8 45.8		SAMPL OW 235 76 43 162 TREES/	E TREES - AVG 260 84 80 178	BF HIGH 285 92 117	#	5 359 OF PLOTS RE	90 GQ.	INF, POP.
SD: DF R ALE BL MA WHEN TOTA CL SD:	1,0 DER APLE MLOCK		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.%	9.6 9.8 45.8 9.0 S.E.%		SAMPL OW 235 76 43 162 TREES/OW	E TREES - AVG 260 84 80 178 ACRE AVG	BF HIGH 285 92 117 194 HIGH	#	359	90	INF, POP.
SD: DF R ALE BL MA WHEN TOTA CL SD: DF	1.0 DER APLE MLOCK AL 68.1 1.0		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7	9.6 9.8 45.8 9.0 S.E.%		SAMPL OW 235 76 43 162 TREES/OW 55	E TREES - AVG 260 84 80 178 ACRE AVG 66	BF HIGH 285 92 117 194 HIGH	#	5 359 OF PLOTS RE	90 GQ.	INF, POP.
SD: DF R ALE BL MA WHEN TOTA CL SD: DF R ALE	1,0 DER APLE MLOCK AL 68.1 1.0 DER		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.%	9.6 9.8 45.8 9.0 S.E.%		SAMPL OW 235 76 43 162 TREES/OW	E TREES - AVG 260 84 80 178 ACRE AVG	BF HIGH 285 92 117 194 HIGH	#	5 359 OF PLOTS RE	90 GQ.	INF, POP.
SD: DF R ALE BL MA TOTA CL SD: DF R ALE BL MA	1,0 DER APLE MLOCK AL 68.1 1.0 DER		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7 143.6	9.6 9.8 45.8 9.0 S.E.% 15.9 22.7		SAMPL OW 235 76 43 162 TREES/ OW 55 43	E TREES - AVG 260 84 80 178 ACRE AVG 66 55	BF HIGH 285 92 117 194 HIGH 76 68	#	5 359 OF PLOTS RE	90 GQ.	INF, POP.
SD: DF R ALE BL MA WHEN TOTA CL SD: DF R ALE BL MA WHEN	1,0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7 143.6 317.7	9.6 9.8 45.8 9.0 S.E.% 15.9 22.7 50.2		SAMPL OW 235 76 43 162 TREES/ OW 55 43 7	E TREES - AVG 260 84 80 178 ACRE AVG 66 55 13	BF HIGH 285 92 117 194 HIGH 76 68 20	#	5 359 OF PLOTS RE	90 GQ.	INF. POP.
SD: DF R ALE BL MA WHEN TOTA CL SD: DF R ALE BL MA WHEN TOTA	1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK ALL LOCK ALL LOCK ALL		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7 143.6 317.7 632.5	9.6 9.8 45.8 9.0 S.E.% 15.9 22.7 50.2 99.9		SAMPLOW 235 76 43 162 TREES/OW 55 43 7 0 121	E TREES - AVG 260 84 80 178 ACRE AVG 66 55 13 0	BF HIGH 285 92 117 194 HIGH 76 68 20 0	#	5 359 OF PLOTS RE 5	90 GO. 10	INF. POP.
SD: DF R ALE BL MA WHEN TOTA CL SD: DF R ALE BL MA WHEN TOTA CL	1,0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7 143.6 317.7 632.5 61.0	9.6 9.8 45.8 9.0 S.E.% 15.9 22.7 50.2 99.9	L	SAMPLOW 235 76 43 162 TREES/OW 55 43 7 0 121	E TREES - AVG 260 84 80 178 ACRE AVG 66 55 13 0 134	BF HIGH 285 92 117 194 HIGH 76 68 20 0	#	5 359 OF PLOTS RE 5	90 GO. 10	INF. POP.
SD: DF R ALE BL MA WHEN TOTA CL SD: DF R ALE BL MA WHEN TOTA CL SD: CL SD: DF OTA	1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 68.1		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7 143.6 317.7 632.5 61.0 COEFF VAR.% 93.7	9.6 9.8 45.8 9.0 S.E.% 15.9 22.7 50.2 99.9 9.6 S.E.% 14.8	L	SAMPL OW 235 76 43 162 TREES/ OW 55 43 7 0 121 BASAL OW 95	E TREES - AVG 260 84 80 178 ACRE AVG 66 55 13 0 134 AREA/ACI AVG 111	BF HIGH 285 92 117 194 HIGH 76 68 20 0 147 RE HIGH	#	5 359 OF PLOTS RE 5 148 OF PLOTS RE	90 GQ. 10 37 GQ.	INF. POP.
SD: DF R ALE BL MA WHEN TOTA CL SD: DF R ALE BL MA WHEN TOTA CL SD: DF CL SD: DF R ALE R A	1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER DER DER DER DER DER DER DER DER DER		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7 143.6 317.7 632.5 61.0 COEFF VAR.% 93.7 145.9	9.6 9.8 45.8 9.0 S.E.% 15.9 22.7 50.2 99.9 9.6 S.E.% 14.8 23.0	L	SAMPL OW 235 76 43 162 TREES/ OW 55 43 7 0 121 BASAL OW 95 43	E TREES - AVG 260 84 80 178 ACRE AVG 66 55 13 0 134 AREA/ACI AVG 111 56	BF HIGH 285 92 117 194 HIGH 76 68 20 0 147 RE HIGH 128 69	#	5 359 OF PLOTS RE 5 148 OF PLOTS RE	90 GQ. 10 37 GQ.	INF. POP.
SD: DF R ALE BL MA TOTA CL SD: DF R ALE BL MA WHEN TOTA CL SD: DF R ALE BL MA BL MA BL MA BL MA BL MA BL MA	1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7 143.6 317.7 632.5 61.0 COEFF VAR.% 93.7 145.9 317.6	9.6 9.8 45.8 9.0 S.E.% 15.9 22.7 50.2 99.9 9.6 S.E.% 14.8 23.0 50.2	L	SAMPLOW 235 76 43 162 TREES/ OW 55 43 7 0 121 BASAL OW 95 43 10	E TREES - AVG 260 84 80 178 ACRE AVG 66 55 13 0 134 AREA/ACI AVG 111 56 20	BF HIGH 285 92 117 194 HIGH 76 68 20 0 147 RE HIGH 128 69 30	#	5 359 OF PLOTS RE 5 148 OF PLOTS RE	90 GQ. 10 37 GQ.	INF. POP.
SD: DF R ALE BL MA WHEN TOTA CL SD: DF R ALE BL MA WHEN TOTA CL SD: DF R ALD BL MA WHEN WHEN WHEN	1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL MAPLE MLOCK MAPLE MLOCK		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7 143.6 317.7 632.5 61.0 COEFF VAR.% 93.7 145.9	9.6 9.8 45.8 9.0 S.E.% 15.9 22.7 50.2 99.9 9.6 S.E.% 14.8 23.0	L	SAMPL OW 235 76 43 162 TREES/ OW 55 43 7 0 121 BASAL OW 95 43	E TREES - AVG 260 84 80 178 ACRE AVG 66 55 13 0 134 AREA/ACI AVG 111 56	BF HIGH 285 92 117 194 HIGH 76 68 20 0 147 RE HIGH 128 69	#	5 359 OF PLOTS RE 5 148 OF PLOTS RE	90 GQ. 10 37 GQ.	1 INF, POP. 1
SD: DF R ALC BL MA WHEN TOTA CL SD: DF R ALC BL MA WHEN TOTA CL SD: DF R ALC BL MA WHEN TOTA CL SD: DF R ALC SD: DF R A	1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL L MARINE MLOCK AL MARINE MLOCK MARI		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7 143.6 317.7 632.5 61.0 COEFF VAR.% 93.7 145.9 317.6 632.5 52.7	9.6 9.8 45.8 9.0 S.E.% 15.9 22.7 50.2 99.9 9.6 S.E.% 14.8 23.0 50.2 99.9	L	SAMPLOW 235 76 43 162 TREES/OW 55 43 7 0 121 BASAL OW 95 43 10 0 173	E TREES - AVG 260 84 80 178 ACRE AVG 66 55 13 0 134 AREA/ACI AVG 111 56 20 1 189	BF HIGH 285 92 117 194 HIGH 76 68 20 0 147 RE HIGH 128 69 30 2	#	5 359 OF PLOTS RE 5 148 OF PLOTS RE 5	90 GQ. 10 37 GQ. 10	4 INF, POP. 1 INF, POP. 1
SD: DF R ALL BL MA WHEN TOTA CL SD: DF R ALL BL MA WHEN TOTA CL SD: DF R ALL BL MA WHEN TOTA CL CL CL CL CL CL CL CL CL CL CL CL CL	1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7 143.6 317.7 632.5 61.0 COEFF VAR.% 93.7 145.9 317.6 632.5	9.6 9.8 45.8 9.0 S.E.% 15.9 22.7 50.2 99.9 9.6 S.E.% 14.8 23.0 50.2 99.9	L	SAMPLOW 235 76 43 162 TREES/OW 55 43 7 0 121 BASAL OW 95 43 10 0	E TREES - AVG 260 84 80 178 ACRE AVG 66 55 13 0 134 AREA/ACI AVG 111 56 20 1 189	BF HIGH 285 92 117 194 HIGH 76 68 20 0 147 RE HIGH 128 69 30 2	#	5 359 OF PLOTS RE 5 148 OF PLOTS RE 5	90 GQ. 10 37 GQ. 10 28	INF. POP. 1 INF. POP. 1
SD: DF R ALE BL MA WHEN TOTA CL SD: DF R ALE BL MA WHEN TOTA CL SD: DF R ALE BL MA BL MA BL MA BL MA BL MA BL MA	1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL L MARINE MLOCK AL MARINE MLOCK MARI		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7 143.6 317.7 632.5 61.0 COEFF VAR.% 93.7 145.9 317.6 632.5 52.7 COEFF	9.6 9.8 45.8 9.0 S.E.% 15.9 22.7 50.2 99.9 9.6 S.E.% 14.8 23.0 50.2 99.9 8.3	L.	SAMPLOW 235 76 43 162 TREES/OW 55 43 7 0 121 BASAL OW 95 43 10 0 173 NET BE/	E TREES - AVG 260 84 80 178 ACRE AVG 66 55 13 0 134 AREA/ACI AVG 111 56 20 1 189	BF HIGH 285 92 117 194 HIGH 76 68 20 0 147 RE HIGH 128 69 30 2 205	#	5 359 OF PLOTS RE 5 148 OF PLOTS RE 5	90 GQ. 10 37 GQ. 10	4 INF, POP. 1 INF, POP. 1
SD: DF R ALC BL MA WHEN TOTA CL SD: DF R ALC BL MA WHEN TOTA CL SD: DF R ALC BL MA WHEN TOTA CL SD: CL SD: CL SD: SD: SD: SD: SD: SD: SD: SD: SD: SD:	1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7 143.6 317.7 632.5 61.0 COEFF VAR.% 93.7 145.9 317.6 632.5 52.7 COEFF VAR.%	9.6 9.8 45.8 9.0 S.E.% 15.9 22.7 50.2 99.9 9.6 S.E.% 14.8 23.0 50.2 99.9 8.3	L.	SAMPLOW 235 76 43 162 TREES/OW 55 43 7 0 121 BASAL OW 95 43 10 0 173 NET BE/OW	E TREES - AVG 260 84 80 178 ACRE AVG 66 55 13 0 134 AREA/ACI AVG 111 56 20 1 189	BF HIGH 285 92 117 194 HIGH 76 68 20 0 147 RE HIGH 128 69 30 2 205 HIGH	#	5 359 OF PLOTS RE 5 148 OF PLOTS RE 5	90 GQ. 10 37 GQ. 10 28	INF. POP. 1 INF. POP. 1
SD: DF R ALE BL MA WHEN TOTA CL SD: DF R ALE BL MA WHEN TOTA CL SD: DF R ALD BL MA WHEN TOTA CL SD: DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF R ALD DF	1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7 143.6 317.7 632.5 61.0 COEFF VAR.% 93.7 145.9 317.6 632.5 52.7 COEFF VAR.%	9.6 9.8 45.8 9.0 S.E.% 15.9 22.7 50.2 99.9 9.6 S.E.% 14.8 23.0 50.2 99.9 8.3 S.E.% 14.3 28.3 50.4	L.	SAMPLOW 235 76 43 162 TREES/OW 55 43 7 0 121 BASAL OW 95 43 10 0 173 NET BE/OW 10,598	E TREES - AVG 260 84 80 178 ACRE AVG 66 55 13 0 134 AREA/ACI AVG 111 56 20 1 189 ACRE AVG 12371	BF HIGH 285 92 117 194 HIGH 76 68 20 0 147 RE HIGH 128 69 30 2 205 HIGH 14,145	#	5 359 OF PLOTS RE 5 148 OF PLOTS RE 5	90 GQ. 10 37 GQ. 10 28	INF. POP.
SD: DF R ALC BL MA WHEN TOTA CL SD: DF R ALC BL MA WHEN TOTA CL SD: DF R ALC DF R	1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK AL 68.1 1.0 DER APLE MLOCK APLE MLOCK APLE MLOCK APLE MLOCK		VAR.% 71.8 69.4 66.1 94.9 COEFF VAR.% 100.7 143.6 317.7 632.5 61.0 COEFF VAR.% 93.7 145.9 317.6 632.5 52.7 COEFF VAR.%	9.6 9.8 45.8 9.0 S.E.% 15.9 22.7 50.2 99.9 9.6 S.E.% 14.8 23.0 50.2 99.9 8.3 S.E.% 14.3 28.3	L.	SAMPLOW 235 76 43 162 TREES/OW 55 43 7 0 121 BASAL OW 95 43 10 0 173 NET BE/OW 10,598 2,734	E TREES - AVG 260 84 80 178 ACRE AVG 66 55 13 0 134 AREA/ACI AVG 111 56 20 1 189 ACRE AVG 12371 3,815	BF HIGH 285 92 117 194 HIGH 76 68 20 0 147 RE HIGH 128 69 30 2 205 HIGH 14,145 4,896	#	5 359 OF PLOTS RE 5 148 OF PLOTS RE 5	90 GQ. 10 37 GQ. 10 28	INF. POP.

	•	

Oregon Department of Forestry OPERATIONAL PERIODS and SEASONAL RESTRICTIONS

ODF/State Forests
Operational Periods and Seasonal Restriction
WALT Sys Gen Report 2014
Page 1 of 1

West Oregon, NWOA 24533 ALSEA HWY, PHILOMATH, OR 97370 (541) 929-3266

		Date			
		oe.	15		
ח Date	September 30, 2022	JanFebMarAprMayJulAugSepOctNovDec	15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15		
Expiration Date	tember 3	Oct	15 1		
Ä	Sep	o deg	15 1		
		S 6n	15 1		
		V I	15 1		
		n بر	15 1		
		η γι	15 1		
		. Wa	15 1		
		Apr	15 1		
a)		Mar	5 1 1		
Sale Name	Rock Fall	Feb	1.		
Se	2	Jan	1 15		
			Project		
			Units	1	1
oer	0789-01		Comments		Slash Piling
Sale Number	WO-341-2020-W00789-01		Harvesting	Ground yarding	Slash Treatment Slash
			I	Ground	Slash Tr

ĺ			
	Date		
	Эес	15	
		2 1	
	Nov	15	
		15 1	
	Aug Sep Oct Nov Dec	1 1	
	•	15	
	Sep	_	
	9	15	
	Au	1	
		15	
	Jul	_	
	<u>_</u>	15	
	Jun	1	
	ау	15	
	Мау	1	
	or	15	
	Apr	1	
	ar	15	
	Mar	1	
	Feb	15	
	Ĭ.	1	
	Jan	15	
	Jį	1	
		Project	
		Units	1, 2
		Comments	
		Hauling	Log Hauling on Unsurfaced Roads

											ļ	-	ŀ	ŀ			
				Jan	Feb	Mar	Apr	Мау	May Jun	Jul	Aug	Sep		Oct N	Nov Dec	Dec	Date
Project Work	Comments	Units	Project	1 15	1	15 1 15	1 15 1	1 15	1 15	1	1	5 1	15 1 15 1 15 1 15	15 1	15	1 15	
Activity in Live Streams Culvert Replacement	Culvert Replacement		1, 2														
Landing and Road Construction or Improvement Operations			1, 2, 3														
Non-project roads and landings																	

Activity Restricted 2 hours before sunset and 2 hours after sunrise Operation Restricted Operation Allowed

Logging Plan

OF TIMBER SALE CONTRACT NO. WO-341-2020-W00789-01 ROCK FALL

PORTIONS OF SECTIONS 5, 6, & 7, T10S, R08W, W.M., LINCOLN & POLK COUNTIES, OREGON

Legend

_	•	Ownership
		Timber Sale

· · · · Timber Sale Boundary

Stream Buffer

High Landslide Hazard Buffer -

Contolled Felling Area

Green Tree Retention Area

Paved Road

Surfaced Road

New Construction

- Type "F" Stream

- Type "N" Stream

Overhead Transmission Line

— Cable Corridor

Landing

House

Survey Monument

1 inch = 1,000 feet
Feet
0 500 1,000 2,000

N	AREA	Tractor Acres	0.001.
	1 (MC) 2 (MC)	46 0	20 36
	TOTAL	46	56

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.