Sale SW-341-2020-GF7718-01 District: Southwest Date: July 17, 2019 ## **Cost Summary** | | Conifer | Hardwood | Total | |----------------------------|--------------|-------------------|---------------| | Gross Timber
Sale Value | \$393,374.03 | \$0.00 | \$393,374.03 | | | | Project Work: | (\$54,356.30) | | | | Advertised Value: | \$339,017.73 | 7/24/19 ### Sale SW-341-2020-GF7718-01 District: Southwest Date: July 17, 2019 ## **Timber Description** **Location:** Portions of Sections 32, 34, 35 of Township 34S R4E and Sections 3, 4, 8, 10 of T35S R4E, Willamette Meridian, Jackson County Oregon. **Stand Stocking:** 40% | Specie Name | AvgDBH | Amortization (%) | Recovery (%) | |----------------|--------|------------------|--------------| | Douglas - Fir | 14 | 0 | 98 | | White Fir | 16 | 0 | 95 | | Ponderosa Pine | 12 | 0 | 90 | | Volume by Grade | 28 | 3S & 4S 6"-
11" | Camprun | Total | |-----------------|-----|--------------------|---------|-------| | Douglas - Fir | 69 | 917 | 0 | 986 | | White Fir | 105 | 307 | 0 | 412 | | Ponderosa Pine | 0 | 0 | 367 | 367 | | Total | 174 | 1,224 | 367 | 1,765 | **Comments:** GNA Timber Sale on Southwest Oregon District. Located in Butte Falls, Or. 206 acres of tractor logging. Logging Costs Placeholder Incense Cedar Pond Value \$675-(315.02 Logging) = 359.98 Branding and Painting Cost Allowance \$2/MBF Road Maintenance \$5/MBF Summary of Additional Costs: Equipment weed washing \$350 Temporary road closure \$1,000 Seeding \$1,100 Stump Treatment \$6,180 Total: \$8,630 Slash Disposal \$2,000 ## Sale SW-341-2020-GF7718-01 District: Southwest Date: July 17, 2019 ## **Logging Conditions** Combination#: 1 Douglas - Fir 100.00% White Fir 100.00% Ponderosa Pine 100.00% Logging System: Track Skidder Process: Feller Buncher yarding distance: Medium (800 ft) downhill yarding: No tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF loads / day: 6 bd. ft / load: 3700 cost / mbf: \$184.20 machines: Log Loader (B) Stroke Delimber (B) Feller Buncher w/ Delimber Track Skidder ## Sale SW-341-2020-GF7718-01 District: Southwest Date: July 17, 2019 ## **Logging Costs** **Operating Seasons: 1.00** Profit Risk: 10% **Project Costs:** \$54,356.30 Other Costs (P/R): \$0.00 Slash Disposal: \$2,000.00 Other Costs: \$8,630.00 #### Miles of Road Road Maintenance: \$5.00 | Dirt | Rock
(Contractor) | Rock
(State) | Paved | |------|----------------------|-----------------|-------| | 0.0 | 0.0 | 5.0 | 0.0 | ### **Hauling Costs** | Species | \$/MBF | Trips/Day | MBF / Load | |----------------|--------|-----------|------------| | Douglas - Fir | \$0.00 | 3.0 | 3.7 | | White Fir | \$0.00 | 3.0 | 3.9 | | Ponderosa Pine | \$0.00 | 3.0 | 3.5 | ## Sale SW-341-2020-GF7718-01 District: Southwest Date: July 17, 2019 ## **Logging Costs Breakdown** | Logging | Road
Maint | Fire
Protect | Hauling | Other
P/R appl | Profit &
Risk | Slash
Disposal | Brand & Paint | Other | Total | |-----------|---------------|-----------------|---------|-------------------|------------------|-------------------|---------------|--------|----------| | Douglas - | Fir | | | | | | | | | | \$184.20 | \$5.10 | \$2.49 | \$87.30 | \$0.00 | \$27.91 | \$1.13 | \$2.00 | \$4.89 | \$315.02 | | White Fir | | | | | | | | | | | \$184.20 | \$5.25 | \$2.49 | \$85.26 | \$0.00 | \$27.72 | \$1.13 | \$2.00 | \$4.89 | \$312.94 | | Ponderosa | Pine | | | | | | | | | | \$184.20 | \$5.50 | \$2.49 | \$99.53 | \$0.00 | \$29.17 | \$1.13 | \$2.00 | \$4.89 | \$328.91 | | Specie | Amortization | Pond Value | Stumpage | Amortized | |----------------|--------------|------------|----------|-----------| | Douglas - Fir | \$0.00 | \$650.00 | \$334.98 | \$0.00 | | White Fir | \$0.00 | \$425.00 | \$112.06 | \$0.00 | | Ponderosa Pine | \$0.00 | \$375.00 | \$46.09 | \$0.00 | ## Sale SW-341-2020-GF7718-01 District: Southwest Date: July 17, 2019 ## **Summary** #### Amortized | Specie | MBF | Value | Total | |----------------|-----|--------|--------| | Douglas - Fir | 0 | \$0.00 | \$0.00 | | White Fir | 0 | \$0.00 | \$0.00 | | Ponderosa Pine | 0 | \$0.00 | \$0.00 | ### Unamortized | Specie | MBF | Value | Total | |----------------|-----|----------|--------------| | Douglas - Fir | 986 | \$334.98 | \$330,290.28 | | White Fir | 412 | \$112.06 | \$46,168.72 | | Ponderosa Pine | 367 | \$46.09 | \$16,915.03 | ## **Gross Timber Sale Value** **Recovery:** \$393,374.03 Prepared By: Kyle Syfert Phone: 541-471-4252 #### **PROJECT SUMMARY** Purchaser would only be reimbursed for projects accomplished to specifications. For Example, winter logging on frozen ground would not require dust abatement. #### Project 1 | Surface Replacement (Repairing Potholes) 190 CY | | | | | | | |--|-------|------------|--------|------------|----------|-----------| | on 32/37 Road (\$4.88/MBF/Mile) T-813 | Yards | \$/Yard \$ | S/Load | | | | | Rock \$15/Yard | 190 | \$20.00 | | \$3,800.00 | | | | Hauling 30 Miles Round Trip (\$2/Mile* 19 trips) | 190 | \$6.00 | \$60 | \$1,140.00 | | | | Water, Scarify Potholes, Rock and Compact Rock. | 190 | \$19.37 | | \$3,680.30 | | | | *Scallon Bros. Managed Pits near Butte Falls. | 190 | \$45.37 | | \$8,620.30 | Subtotal | \$8,620.3 | Rock Spec Size 1.5"-0" would cover 2,567' at 2" depth and 12' running surface #### **Project 2** | | | Tir | nes | | | | |----------------------------|----------------|----------|--------|---------|------------|---------| | Road Grading/Blading T-811 | | Miles Gr | aded S | \$/Mile | | | | | 32 Road | 6.6 | 2 | \$300 | \$3,960 | | | | 3240 Road | 3.2 | 1 | \$300 | \$960 | | | | 37 road | 8.8 | 2 | \$300 | \$5,280 | | | | Move-In Grader | | | | \$500 | | | | | | | | \$10,700 S | ubtotal | Grade road as needed, before, during and after logging. Appraised for twice graded. ### **Project 3** | Road Brushing T-842 | | Miles \$ | /Mile | | |---------------------|-----------|----------|-------|---------| | | 32 Road | 6.6 | \$500 | \$3,300 | | | 3240 Road | 0 | \$500 | \$0 | | | 37 road | 8.8 | \$500 | \$4,400 | | Brushing by hand | | | | \$7,700 | Project 4 MPH | | | | | Ref | fill Time | | | |------------------------------|-------------|------|---------|-------------|-----------|---------|---------| | Dust Abatement T-812 | 1 Trips/day | | | 10 Ho | urs/Day | Refill | | | | Miles | Days | \$/hour | \$/Road Mil | е | | Total | | 32 Road to 46 and 72 | 6.6 | 10 | \$90 | \$59 | 3.30 | \$2,970 | \$3,564 | | 3240 Road to 72 | 3.2 | 5 | \$90 | \$29 | 1.60 | \$720 | \$864 | | 37 road to 60, 68, 70 and 71 | 8.8 | 15 | \$90 | \$79 | 4.40 | \$5,940 | \$7,128 | | Move-In | | 1 | \$ 250 | | | | \$250 | Water = 3,520 gallons per mile (1/2 gallon per yard). Water in the morning or at night. Subtotal \$11,806 Use Nearest Water Source. #### **Project 5** | Marking Timber | \$/MBF | MBF left to Mark | Subtotal | \$13,330 | |------------------------|--------|------------------|----------|----------| | See Marking Guidelines | \$10 | 1,333 | | | #### **Project 6** | Subsoiling, Waterbarring - Temporary Roads, Skid Roads | 11 | \$200 | Subtotal | \$2,200 | | | | | |--|----|-------|----------|------------|--|--|--|--| | The main skid roads shall be subsoiled to a depth of a | | | | | | | | | | Pull slash back across subsoiled skid road for 60% coverage of exposed mineral soil. | | | | | | | | | | | | | Total | ¢E4.2E6.20 | | | | | Total \$54,356.30 \$7,700 #### **SUMMARY OF ADDITIONAL COSTS** | Additional Projects No Profit and Risk | { | | | | | | |--|--------------------|-------------|----------|-------------|----------|---------| | | Ma | achine: Ho | urs \$ | /Hour | | | | Equipment Weed Wash | | 7 | 7 | 50 | Subtotal | \$350 | | All Road Maintenance and Log | gging Equipment | would be | | | | | | cleaned prior to entering the | Timber Sale Area | and Haulir | ng Vicin | ity. | | | | | Ве | erms Ho | urs \$ | /Hour | | | | Temporary Road Closure (T-835) | | 40 | 10 | \$100 | Subtotal | \$1,000 | | | | Mil | es \$ | /Mile | | | | Seeding | | Mil | es \$ | /Mile | | | | Purchaser will be required to | seed skid trails, | | 11 | \$100 | Subtotal | \$1,100 | | temporary roads and landings | . See Exhibit E fo | r Instructi | ons. | | | | | Stump Treatment Annosus Root Rot | Ac | res | \$ | /Acre | | | | Treat true fir and hemlock Stu | ımps over 12" | 206 | | \$30 | Subtotal | \$6,180 | | Note, units 1-46, 5-71 and 6-7 | 2 have only mind | or amounts | of the | se species. | | | | | | | | | Total | \$8,630 | | | | | | | | | #### **Slash Disposal** | Landing Piling and Firewood Sorting. | Piles H | ours \$ | \$/Hour | | | |--|--------------|---------|---------|-------|---------| | | 20 | 20 | \$100 | Total | \$2,000 | | All piles shall be covered with 4 mil black po | olyethylene. | | | | | #### TIMBER SALE SUMMARY 1. <u>Type of Sale</u>: Recovery sale, sealed bid auction of 206 acres of thinning. 2. Revenue Distribution: USFS regional agreement 18-GN-11061000-048 Project GF7718-07 PCA 2604 **3.** <u>Sale Acreage</u>: For the sale, 206 net acres were used for the cruise expansion. Acreage was determined with ArcGIS 10.6 and GPS traverse. **4. Volume:** The table below describes the volume by grade over the six unit sale area. A more detailed look is available in the cruise summary. Pine is broken out by approximate grade but was appraised as camprun. The majority of volume is in Douglas-fir and white fir. | SPECIES | 2 SAW | 3 SAW | 4 SAW | CR | NET VOL (MBF) | |----------------|-------|-------|-------|-----|---------------| | Douglas-fir | 69 | 682 | 234 | | 985.4 | | White Fir | 105 | 205 | 102 | | 412.4 | | Ponderosa Pine | | | | 367 | 367.1 | | Total | 174 | 887 | 336 | 367 | 1,765 | - 5. <u>Cruise Data</u>: The total volume above is measured to 10.64% sampling error, meaning the actual volume will fall
between 1,577.2 MBF and 1,952.8 MBF (68% of the time). The volume of individual species or sale areas will be more variable due to the smaller sample compared to the total volume sample. See the cruise report for more detail. Additional SuperAce reports available upon request. - 6. <u>Timber Description</u>: These stands are plantations started in the 1950's and 1960's with mixed conifer of Douglas-fir, True Fir and "offsite Pine". The trees are 70 to 100' tall with the White fir the largest and the pine the smallest. The average DBH for take trees are: Douglas-fir 14", White Fir 16" and Ponderosa Pine 12". The cruise report gives a breakdown of log lengths and scaling diameters by species for the combined cruise. The timber has been marked in Area 3-68 and 6-72 to remove the smaller trees in suppressed and intermediate canopy positions and to release dominant and co-dominant trees and improve the quality of the residual stand. All other units in the sale have 3 acre demonstration areas marked. Purchaser is responsible for marking the remainder of the sale prior to logging. - 7. <u>Topography and Logging Method</u>: The sale areas are all ground-based logging with slopes less than 30%. The preferred logging method is with a harvester or feller buncher able to bunch logs in skid roads working in conjunction with a skidder or forwarder. The sale may be logged when dry or frozen ground winter logging. - **8.** <u>Access</u>: All hauling routes are located on Federal ground and County Roads. Access is secured. Road surfacing, blading and dust abatement are all described in in the sale prospectus, maps and exhibits. - **9. Projects:** See project Summary. Projects include Road Surfacing, grading and brushing. Dust abatement, marking timber and road vacation (subsoiling, waterbarring etc.). Total costs for these projects is \$54,536.30. Due to the seasonality of some of these projects, it may not be necessary to complete them all. The project credit will be adjusted accordingly. There are other costs as shown below. - 10. Road Maintenance: The appraisal includes \$5.10/MBF for road maintenance (grading, pulling ditches, etc.). - **11.** Other Costs: Additional costs were appraised for equipment weed washing, temporary road closure, grass seeding and Stump Treatment, totaling \$8,630. - **12.** <u>Slash Disposal:</u> Purchaser will pile slash on landings with an excavator or log loader, sorting out firewood into a separate piles. The appraisal includes \$2,000 for machine piling on the landings. USFS will burn the slash piles. #### OREGON DEPARTMENT of FORESTRY CRUISE REPORT - 1. Acreage Calculation: For the Edge No. 1 Timber Sale, there are 206 net cruise acres in the sale area determined by a combination of GPS traverse waypoints and ArcGIS 10.6 software. Net acres do not include the riparian management areas, regeneration areas within the stand, and non-stocked areas which were not cruised. - 2. Cruise Method: The Edge timber sale was cruised by ODF during the Fall and Winter of 2018/2019. A variable plot cruise was conducted on the sale area. - 3. RIGHT of WAY VOLUMES: There is currently no right of way volume associated with this sale. - 4. Sampling Intensity: # Plots 108 Total Plots (49 Measured, 59 Count Plots) CV (BDFT) 181.5% (take) SE (BDFT) <u>10.64%</u> (take) As per ODF standards, total harvest volume of conifers and hardwoods ("take" trees) is estimated to be 1,765 MBF ± 187.8 MBF at the 68% confidence level and a sampling error of 10.64%*. 68 times out of 100 the volume estimate will be within range of error specified. - **5. Computation Procedures:** Volume was computed using the SuperACE cruise program. Volumes reported are based on the Scribner Log Rule (West). - **6. Form Factors:** Form factors (a ratio of diameter at 4 and 16 feet) were sampled across the diameter distribution in all strata. Those form factors which were not measured were estimated by SuperACE. - **7. Height Standards:** Most conifer trees were measured for total height with a laser rangefinder. - 8. Diameter standards: Diameters were measured outside bark at breast height to the nearest inch. - **9. Grading System:** Trees were graded primarily as 34 foot segments lengths and according to the Official Log Scaling and Grading Rules published by the Northwest Log Rules Advisory Group. - **10. Merchantable top:** Conifer were graded to a merchantable top specified by the official log scaling rules. For all species except pine, 2S segments were graded to a 12" top inside bark, 3S to a 6" top, and 4S to a 5" top (inside bark). Pine 4S logs were graded to a 12" top inside bark, 5S to a 6" top, and 6S to a 5" top (inside bark). - 11. Deductions for Cull, Defect and Breakage: All visible field cull was removed in the cruise computation. Additional volume was deducted for the anticipated amount of hidden cull and breakage during logging. The estimated volume reduction used for this anticipated loss to volume was 4%. - 12. Cruisers: Cruising was performed by Chris Rudd and Kyle Syfert. Reviewed by Is Chris Rudd, Unit Forester: 7/22/2019 ^{*}ODF does not guarantee the volume of this or any other cruise. Prospective purchasers are advised to do their own cruise and sale volume calculations. Additional SuperAce Reports available upon request. ### **VOLUME SUMMARY** | | CRU | ISE VOLUI | ME /ACRE | | | ADJUSTED | VOLUME N | MBF/A * | |-------------------|------|------------------|------------------|------------------|--------------------|------------------|------------------|------------------| | Species
(Take) | Unit | 2 Saw
(4S PP) | 3 Saw
(5S PP) | 4 Saw
(6S PP) | Cruise
Vol/Acre | 2 Saw
(4S PP) | 3 Saw
(5S PP) | 4 Saw
(6S PP) | | DF | 46 | 0 | 723 | 181 | 904 | 0 | 694 | 174 | | PP | 46 | 931 | 1,132 | 222 | 2,285 | 894 | 1,087 | 213 | | DF | 60 | 164 | 3,609 | 1,234 | 5,007 | 157 | 3,465 | 1,185 | | WF, GF, SRF | 60 | 0 | 1,566 | 509 | 2,075 | 0 | 1,503 | 489 | | PP | 60 | 0 | 264 | 258 | 522 | 0 | 253 | 248 | | DF | 68 | 1,132 | 1,432 | 882 | 3,446 | 1,087 | 1,375 | 847 | | WF, GF, SRF | 68 | 0 | 1,142 | 228 | 1,370 | 0 | 1,096 | 219 | | PP | 68 | 0 | 2,685 | 960 | 3,645 | 0 | 2,578 | 922 | | DF | 70 | 444 | 4,912 | 1,228 | 6,584 | 426 | 4,716 | 1,179 | | WF, GF, SRF | 70 | 3,290 | 1,658 | 1,713 | 6,661 | 3,158 | 1,592 | 1,644 | | DF | 71 | 818 | 5,318 | 2,171 | 8,307 | 785 | 5,105 | 2,084 | | PP | 71 | 439 | 3,090 | 1,149 | 4,678 | 421 | 2,966 | 1,103 | | DF | 72 | 0 | 306 | 102 | 408 | 0 | 294 | 98 | | PP | 72 | 0 | 4,363 | 1,286 | 5,649 | 0 | 4,188 | 1,235 | | Sale Volume | | 7,218 | 32,200 | 12,123 | 51,541 | 6,929 | 30,912 | 11,638 | ^{*4%} Hidden Cull and Breakage factored in for all areas. | SALE VOLUME BY GRADE MBF | | | | | | | | | | | | |--------------------------|---------|---------|---------|---------|--------|-----------|--|--|--|--|--| | Species | 2 Saw | 3 Saw | 4 Saw | 5 Saw | 6 Saw | Total | | | | | | | DF | 69,378 | 682,123 | 233,943 | 0 | 0 | 985,444 | | | | | | | WF, GF, SRF | 105,175 | 204,922 | 102,339 | 0 | 0 | 412,436 | | | | | | | PP | 0 | 0 | 31,047 | 241,316 | 94,790 | 367,154 | | | | | | | Sale Volume | 174,553 | 887,045 | 367,329 | 241,316 | 94,790 | 1,765,033 | | | | | | | GRADE BY PERCENTAGE | | | | | | | | | | | | |------------------------------------|-----|-----|-----|-----|----|-----------|--|--|--|--|--| | 2 Saw 3 Saw 4 Saw 5 Saw 6 Saw Tota | | | | | | | | | | | | | DF | 4% | 39% | 13% | 0% | 0% | 985,444 | | | | | | | WF,GF, SRF | 6% | 12% | 6% | 0% | 0% | 412,436 | | | | | | | PP | 0% | 0% | 2% | 14% | 5% | 367,154 | | | | | | | Sale Volume | 10% | 50% | 21% | 14% | 5% | 1,765,033 | | | | | | State Timber Sale Contract Edge No. 1 GNA SW-341-2020-GF7718-01 | | VOLUME BY UNIT MBF** | | | | | | | | | | | | |-------------|----------------------|---------|---------|---------|---------|--------|-----------|--|--|--|--|--| | Unit | Acres | 2 Saw | 3 Saw | 4 Saw | 5 Saw | 6 Saw | Total | | | | | | | 46 | 18.8 | 0 | 13,049 | 20,069 | 20,430 | 4,007 | 57,555 | | | | | | | 60 | 91.5 | 14,406 | 454,572 | 153,105 | 23,190 | 22,663 | 667,935 | | | | | | | 68 | 13.1 | 14,236 | 32,371 | 13,959 | 33,767 | 12,073 | 106,406 | | | | | | | 70 | 33.3 | 119,369 | 210,030 | 94,018 | 0 | 0 | 423,416 | | | | | | | 71 | 33.8 | 26,542 | 172,558 | 84,689 | 100,264 | 37,283 | 421,337 | | | | | | | 72 | 15.2 | 0 | 4,465 | 1,488 | 63,665 | 18,765 | 88,384 | | | | | | | Sale Volume | 205.7 | 174,553 | 887,045 | 367,329 | 241,316 | 94,790 | 1,765,033 | | | | | | ^{**} Volume Estimates by Unit are not as accurate as the total sale volume. Cutout volumes will be more accurate for the total volume than individual units. ODF does not guarantee the volume of this or any other cruise. Prospective purchasers are advised to do their own cruise and sale. These volumes reflect merchantable saw logs. A small amount of pulp logs could be harvested from the sale area, particularly in the sub-merch pine species. Additional SuperAce Reports are available upon request. Cruise Map Edge No. 1 GNA - Timber Sale SW-341-2020-GF7718-01 Area 1-46 Cruise Plot Locations T34S R4E Sections 32 Jackson County, OR Edge No. 1 GNA - Timber Sale SW-341-2020-GF7718-01 Area 2-60 Cruise Plot Locations T34S R4E Sections 34, 35 T35S R4E Sections 2, 3 Jackson County, OR Cruise Map Edge No. 1 GNA - Timber Sale SW-341-2020-GF7718-01 Areas 3-68, 6-72 Cruise Plot Locations T35S R4E Sections 4 and 8 Jackson County, OR Cruise Map Edge No. 1 GNA - Timber Sale SW-341-2020-GF7718-01 Areas 4-70, 5-71 Cruise Plot Locations T35S R4E Section 10 Jackson County, OR 0 270 540 1,080 Feet | | TS | | | | ST | ATIST | FICS | | | PAGE | 1 | |---|--------------------------------------|--------------------------------|----------------|------------|-------------|----------------------|--------------------|----------------|-------------------|----------------|--------------| | | | | | | PROJEC | | EDGE | | | | 7/12/2019 | | TWP | RGE
| SECT TR | RACT | | ТҮРЕ | AC | CRES | PLOTS | TREES | CuFt | BdFt | | 35S | 04E | 27 EE | OGE | | 0046 | | 19.00 | 12 | 55 | S | W | | | | | | | TREES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | | PLOTS | TREES | | PER PLOT | | TREES | • | ΓREES | | | | TOTAL | , | 12 | 55 | | 4.6 | | | | | | | | CRUISI | | 5 | 29 | | 5.8 | | 2,930 | | 1.0 | | | | DBH C | | | | | | | | | | | | | REFOR
COUNT | | 7 | 26 | | 3.7 | | | | | | | | BLANK | | , | 20 | | 5.7 | | | | | | | | 100 % | | | | | | | | | | | | | | **** | | | STA | ND SUMN | /IARY | | | | | | | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | DOUG | FIR-L | 8 | 67.9 | 15.0 | 85 | 21.5 | 83.3 | 10,506 | 10,506 | 2,533 | 2,533 | | DOUG | FIR-T | 3 | 10.8 | 13.0 | 73 | 2.8 | 10.0 | 904 | 904 | 252 | 252 | | PONDE | EROS-L | 4 | 13.4 | 16.5 | 87 | 4.9 | 20.0 | 2,285 | 2,285 | 593 | 593 | | PONDE | | 11 | 48.9 | 14.6 | 68 | 14.8 | 56.7 | 4,971 | 4,971 | 1,381 | 1,381 | | CON FI | | 2 | 4.6 | 16.2 | 64 | 1.7 | 6.7 | 493 | 493 | 156 | 156 | | INC CE | | 1 | 8.5 | 12.0 | 44 | 1.9 | 6.7 | 255 | 255 | 105 | 105 | | TOTAI | L, | 29 | 154.2 | 14.8 | 76 | 47.7 | 183.3 | 19,413 | 19,413 | 5,020 | 5,020 | | CONFI | | E LIMITS OF T | | | WILL BE | WITHIN | THE SAMPI | LE ERROR | | | | | CL: 6 | 58.1 % | COEFF | 2.00 | | SAMPL | E TREE: | S - BF | # | OF TREES | REQ. | INF. POP. | | SD: | 1.0 | VAR.% | S.E.% | L | OW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | | 32.2 | 12.1 | | 152 | 173 | 193 | | | | | | DOUG I
PONDE | | 69.5 | 39.7 | | 125
142 | 125
235 | 125
328 | | | | | | PONDE | | 53.5 | 16.9 | | 109 | 131 | 153 | | | | | | CON FI | IR-L | 76.1 | 71.3 | | 37 | 130 | 223 | | | | | | INC CE | | | | | | | | | | | | | TOTAI | | 56.5 | 10.9 | | 137 | 154 | 170 | | 132 | 33 | 15 | | | 8.1 % | COEFF | | | SAMPL | | | # | OF TREES | | INF. POP. | | SD:
DOUG I | 1.0 | VAR.%
35.8 | S.E.%
13.5 | L | OW 37 | AVG
42 | HIGH
48 | | 5 | 10 | 15 | | DOUG I | | 33.0 | 13.3 | | 35 | 35 | 35 | | | | | | PONDE | | 62.9 | 35.9 | | 38 | 60 | 82 | | | | | | PONDE | | 53.9 | 17.0 | | 30 | 37 | 43 | | | | | | CON FI | | 71.1 | 66.6 | | 14 | 41 | 68 | | | | | | INC CE
TOTAI | | 52.4 | 10.1 | | 37 | 41 | 45 | | 114 | 28 | 13 | | | | COEFF | | <u> </u> | TREES/A | | | | OF PLOTS | | INF. POP. | | | 1.0 | VAR.% | S.E.% | L | | AVG | HIGH | Ti | 5 | 10 | 15 | | DOUG I | FIR-L | 66.3 | 20.0 | | 54 | 68 | 81 | | | | | | DOUG I | | 248.6 | 74.9 | | 3 | 11 | 19 | | | | | | PONDE | | 168.1
94.3 | 50.6
28.4 | | 7
35 | 13
49 | 20
63 | | | | | | PUNIDE | | 346.4 | 104.3 | | ل ل | 5 | 9 | | | | | | PONDE
CON FI | | 233.5 | 70.3 | | 3 | 8 | 14 | | | | | | CON FI | | 233.3 | | | 100 | 154 | 175 | | 91 | 23 | 10 | | CON FI | | 45.6 | 13.7 | | 133 | 154 | 1/3 | | | | 10 | | CON FI | L | | 13.7 | | BASAL A | | | # | OF PLOTS | | INF. POP. | | CON FILL INC CE. TOTAL CL: 6 SD: | L
58.1 %
1.0 | 45.6
COEFF
VAR.% | S.E.% | Lo | BASAL A | AREA/A
AVG | CRE
HIGH | # | | | | | CON FILE INC CE: TOTAL CL: 6 SD: DOUG I | L
58.1 %
1.0
FIR-L | 45.6
COEFF
VAR.%
62.9 | S.E.%
19.0 | Lo | BASAL A | AREA/A
AVG
83 | CRE
HIGH
99 | # | FOF PLOTS | REQ. | INF. POP. | | CON FILL INC CE. TOTAL CL: 6 SD: | L
58.1 %
1.0
FIR-L
FIR-T | 45.6
COEFF
VAR.% | S.E.% | Lo | BASAL A | AREA/A
AVG | CRE
HIGH | #. | FOF PLOTS | REQ. | INF. POP. | | TC TST | ATS | | | S
PROJ | TATIS
ECT | TICS
EDGE | | | PAGE
DATE | 2
7/12/2019 | |--------|---------|--------|-------|-------------|--------------|--------------|-------|------------|--------------|----------------| | TWP | RGE | SECT T | RACT | TYPE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 35S | 04E | 27 E | DGE | 0046 | | 19.00 | 12 | 55 | S | W | | CL: | 68.1% | COEFF | 7 | BASA | L AREA/ | ACRE | | # OF PLC | TS REQ. | INF. POP. | | SD: | 1.0 | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | CON | FIR-L | 346.4 | 104.3 | | 7 | 14 | | | | | | INC C | CED-L | 233.5 | 70.3 | 2 | 7 | 11 | | | | | | TOTA | AL | 42.1 | 12.7 | 160 | 183 | 207 | | 77 | 19 | 9 | | CL: | 68.1 % | COEFF | | NET BF/ACRE | | | | # OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOU | G FIR-L | 63.3 | 19.1 | 8,504 | 10,506 | 12,508 | | | | | | DOUG | G FIR-T | 259.3 | 78.1 | 198 | 904 | 1,610 | | | | | | PONI | DEROS-L | 132.0 | 39.7 | 1,377 | 2,285 | 3,193 | | | | | | PONI | DEROS-T | 90.5 | 27.3 | 3,616 | 4,971 | 6,327 | | | | | | CON | FIR-L | 346.4 | 104.3 | | 493 | 1,007 | | | | | | INC C | CED-L | 233.5 | 70.3 | 76 | 255 | 434 | | | | | | TOTA | AL | 41.5 | 12.5 | 16,989 | 19,413 | 21,838 | | 75 | 19 | 8 | | CL: | 68.1 % | COEFF | 7 | NET C | CUFT FT/ | 'ACRE | | # OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | G FIR-L | 63.0 | 19.0 | 2,053 | 2,533 | 3,014 | | | | | | DOUG | G FIR-T | 256.2 | 77.2 | 58 | 252 | 447 | | | | | | PONI | DEROS-L | 131.3 | 39.5 | 358 | 593 | 827 | | | | | | PONI | DEROS-T | 89.0 | 26.8 | 1,011 | 1,381 | 1,751 | | | | | | CON | FIR-L | 346.4 | 104.3 | | 156 | 320 | | | | | | INC C | CED-L | 233.5 | 70.3 | 31 | 105 | 178 | | | | | | TOTA | AL | 40.9 | 12.3 | 4,402 | 5,020 | 5,639 | | 73 | 18 | 8 | | т т | rspo | CSTG | R | | \$ | Species, | Sort G | rade - Boai
:: EDC | | oot V | olumes (T | (ype) | *** | | |] | Page
Date
Fime | 7. | 1
/12/20
2:09:0 | | |--------------------|------|------------------|----------|-------------|---------------|---------------------|--------------|-----------------------|----------|--------|-----------------------|---------------|--------------|---------|--------------|-----------------|----------------------|-------|-----------------------|----------------------| | T35S
Twp
35S | p | 4E S
Rg
04 | | Sec | Tract
DGE | | Type
0046 | Acre
19. | | Plot | - | e Trees
29 | | Cı
S | uFt | T35
Bdl
W | | 04E S | 27 T0 | 046 | | | | | | % | | | | | Per | cent N | let Board Fo | ot Volu | me | | | A۱ | erag | e Log | | Loge | | Spp | | | Gr
ad | Net
BdFt | Bd. l
Def% | Ft. per Ac
Gross | re
Net | Total
Net MBF | L
4-5 | | ale Dia.
12-16 17+ | Log | Ler
21-30 | _ | 36-99 | Ln
Ft | | | CF/
Lf | Logs
Per
/Acre | | DF | | DO | CU | | | | | | | | | | | | | 3 | 6 | | 0.00 | 17. | | DF | | DO | 2M | 28 | | 3,006 | 3,006 | 57 | | | 100 | | | 100 | | 34 | 12 | 170 | 1.18 | 17. | | DF | | DO | 3M | 57 | | 5,928 | 5,928 | 113 | | 100 | | | | 100 | | 34 | 8 | 87 | 0.62 | 67. | | DF | | DO | 4M | 15 | | 1,572 | 1,572 | 30 | 81 | 19 | | 39 | 61 | | | 22 | 5 | 27 | 0.30 | 57. | | DF I | L | Total | s | 54 | | 10,506 | 10,506 | 200 | 12 | 59 | 29 | 6 | 9 | 85 | | 26 | 7 | 65 | 0.60 | 160. | | DF | т | DO | 3M | 80 | | 723 | 723 | 14 | | 100 | | . | | 100 | | 34 | 8 | 67 | 0.55 | 10. | | DF
DF | | DO | 4M | 20 | | 181 | 181 | 3 | 100 | 100 | | 20 | 80 | | | 19 | | | 0.23 | 10 | | DF 7 | Т | Total | s | 5 | | 904 | 904 | 17 | 20 | 80 | | 4 | 16 | 80 | - | 27 | 6 | 42 | 0.44 | 21 | | PP | т | DO | CU | | | | | | | | | | | | | 6 | 5 | | 0.00 | 23 | | PP | | DO | 2M | 8 | | 410 | 410 | 8 | | | 100 | | | 100 | | 34 | 13 | 210 | 1.66 | 2 | | PP | | DO | 3M | 63 | | 3,138 | 3,138 | 60 | | 100 | | | | 100 | | 34 | 9 | 101 | 0.83 | 31 | | PP | T | DO | 4M | 29 | | 1,424 | 1,424 | 27 | 46 | 54 | | 61 | 20 | 10 | 9 | 21 | 6 | 27 | 0.37 | 51 | | PP 7 | r ' | Total | s | 26 | | 4,971 | 4,971 | 94 | 13 | 79 | 8 | 17 | 6 | 74 | 3 | 21 | 7 | 46 | 0.59 | 108 | | PP | L | DO | CU | | | | | | | | | | | | | | 6 | | 0.00 | 2 | | PP | | DO | 2M | 40 | | 931 | 931 | 18 | | | 100 | | | 100 | | 34 | 14 | 240 | 1.69 | 3 | | PP | L | DO | 3M | 50 | | 1,132 | 1,132 | 21 | | 100 | | | | 100 | | 34 | 8 | 84 | 0.66 | 13 | | PP | L | DO | 4M | 10 | | 222 | 222 | 4 | 100 | | | 43 | | 57 | | 21 | 5 | 20 | 0.31 | 11 | | PP I | L | Total | s | 12 | | 2,285 | 2,285 | 43 | 10 | 50 | 41 | 4 | | 96 | | 27 | 7 | 74 | 0.73 | 30 | | WF | L | DO | CU | | | | | | | | | | | | | 6 | 5 | | 0.00 | 4 | | WF | | DO | 2M | 52 | | 260 | 260 | 5 | | | 100 | | | 100 | | 34 | 12 | | 1.38 | 1 | | WF | L | DO | 3M | 38 | | 187 | 187 | 4 | | 100 | | | | 100 | | 34 | 7 | 60 | 0.59 | 3 | | WF | L | DO | 4M | 10 | | 46 | 46 | 1 | 100 | | | | | 100 | | 31 | 5 | 30 | 0.46 | 1 | | WF | L | Tota | ıls | 3 | | 493 | 493 | 9 | 9 | 38 | 53 | | | 100 | | 22 | 7 | 46 | 0.67 | 10 | | IC | 1. | DO | CU | | | | | | | | | | | | | | 5 | | 0.00 | 8 | | IC | | DO | | 100 | | 255 | 255 | 5 | 100 | | | | | 100 | | 31 | 5 | 30 | 0.40 | 8 | | IC I | L ' | Total | s | 1 | | 255 | 255 | 5 | 100 | | | | | 100 | | 16 | 5 | 15 | 0.40 | 17 | | Type 7 | Tota | ls | | | | 19,413 | 19,413 | 369 | 14 | 63 | 24 | 8 | 7 | 84 | 1 | 24 | 7 | 56 | 0.59 | 349 | | C TSTATS | | | | ST
PROJEC | ATIST
CT I | ICS
EDGE | | | | 1
/12/2019 |
--|---|---|-------------------------------------|---|--|--|-------------------------------|-------------------------------|-----------------------------|--------------------------| | TWP RGE | SECT | TRACT | | TYPE | ACI | RES | PLOTS | TREES | CuFt | BdFt | | 34S 04E | 34 | EDGE | | 0060 | | 91.00 | 38 | 231 | S | W | | VII | <u> </u> | | | TREES | E | ESTIMATED TOTAL | P | ERCENT
AMPLE | | | | | PLOTS | TREES | | PER PLOT | 1 | TREES | | REES | | | | TOTAL | 38 | | | 6.1 | | TREES | 1 | KLLS | | | | CRUISE | 17 | 113 | | 6.6 | | 11,097 | | 1.0 | | | | DBH COUNT | 1, | 115 | | 0.0 | | 11,000 | | 1.0 | | | | REFOREST | | | | | | | | | | | | COUNT | 21 | 118 | | 5.6 | | | | | | | | BLANKS | | | | | | | | | | | | 100 % | | | | | | | | | | | | | | | STA | ND SUM | MARY | | | L.Control V | , | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | DOUG FIR-L | 3: | 5 27.4 | 20.9 | 86 | 14.3 | 65.5 | 7,987 | 7,987 | 2,093 | 2,09 | | DOUG FIR-T | 2 | 7 36.2 | 15.3 | 74 | 11.8 | 46.0 | 5,007 | 5,007 | 1,345 | 1,34 | | NOB FIR-L | 20 | | 19.0 | 72 | 7.1 | 31.0 | 3,061 | 3,061 | 852 | 85 | | NOB FIR-T | 9 | 9 9.4 | 17.1 | 77 | 3.6 | 15.0 | 1,553 | 1,553 | 422 | 42: | | CON FIR-L | 13 | | 16.2 | 64 | 5.5 | 22.1 | 2,536 | 2,536 | 641 | 64 | | CON FIR-T | | 3 3.9 | 18.2 | 85 | 1.7 | 7.1 | 688 | 688 | 203 | 19 | | PONDEROS-L | | 1 .7 | 26.0 | 80 | 0.5 | 2.7 | 230 | 230 | 73 | 7. | | PONDEROS-T | ' | 4 12.6 | 11.9 | 56 | 2.8 | 9.7 | 522 | 522 | 172 | 17: | | | | | | | | 1.8 | 249 | 249 | 63 | 6 | | E SPRUCE-L | | 1 .4 | 30.0 | 84 | 0.3 | | | | | | | INC CED-L TOTAL CONFIDENCE | 11.
CE LIMITS (| 1 .1 | 40.0
17.4
LE | 69
74 | 0.1
48.3 | .9
201.7 | 75
21,907 | 75
21,907 | 23
5,886 | | | INC CED-L TOTAL CONFIDENCE | 11.
CE LIMITS (| 1 .1
3 121.9
OF THE SAMP
JT OF 100 THE | 40.0
17.4
LE | 69
74
WILL BE | 0.1
48.3 | .9
201.7
THE SAMP | 75
21,907
LE ERROR | 75 | 5,886 | 5,87 | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 | 21.
CE LIMITS O
TIMES OU
COE
VAF | 1 .1 3 121.9 OF THE SAMP JT OF 100 THE EFF R.% S.E.% | 40.0
<i>17.4</i>
LE
VOLUME | 69
74
WILL BE
SAMPL
OW | 0.1
48.3
WITHIN
E TREES
AVG | .9
201.7
THE SAMP
- BF
HIGH | 75
21,907
LE ERROR | 75
21,907 | 5,886 | <i>5,87</i>
INF. POF | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L | 21.
CE LIMITS O
TIMES OU
COE
VAR
75. | 1 .1
3 121.9
OF THE SAMP
JT OF 100 THE
EFF
&% S.E.%
4 12.7 | 40.0
<i>17.4</i>
LE
VOLUME | 69
74
WILL BE
SAMPL
OW
340 | 0.1
48.3
WITHIN
E TREES
AVG
389 | .9
201.7
THE SAMP
- BF
HIGH
439 | 75
21,907
LE ERROR | 75
21,907
OF TREES | 5,886
REO. | <i>5,87</i>
INF. POF | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-T | COE LIMITS OF COE VARIOUS | 1 .1
3 121.9
OF THE SAMP
JT OF 100 THE
EFF
&% S.E.%
4 12.7
4 7.5 | 40.0
<i>17.4</i>
LE
VOLUME | 69
74
WILL BE
SAMPL
OW
340
161 | 0.1
48.3
WITHIN
E TREES
AVG
389
174 | .9
201.7
THE SAMP
1- BF
HIGH
439
187 | 75
21,907
LE ERROR | 75
21,907
OF TREES | 5,886
REO. | <i>5,87</i>
INF. POF | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-T NOB
FIR-L | COE LIMITS OF COE VAR TS. 38. 49. | 1 .1
3 121.9
OF THE SAMP
JT OF 100 THE
SFF
2.% S.E.%
4 12.7
4 7.5
4 11.3 | 40.0
<i>17.4</i>
LE
VOLUME | 69
74
WILL BE
SAMPL
OW
340
161
217 | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245 | .9
201.7
THE SAMP
1- BF
HIGH
439
187
273 | 75
21,907
LE ERROR | 75
21,907
OF TREES | 5,886
REO. | <i>5,87</i>
INF. POF | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-L | COE LIMITS OF COE VAR TS. 38. 49. 26. | 1 .1
3 121.9
OF THE SAMP
JT OF 100 THE
SFF
3.% S.E.%
4 12.7
4 7.5
4 11.3
7 9.4 | 40.0
<i>17.4</i>
LE
VOLUME | 69
74
WILL BE
SAMPL
OW
340
161
217
165 | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245
182 | .9
201.7
THE SAMP
F - BF
HIGH
439
187
273
199 | 75
21,907
LE ERROR | 75
21,907
OF TREES | 5,886
REO. | <i>5,87</i>
INF. POF | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-L NOB FIR-T CON FIR-L | COE LIMITS OF COE VAR TS. 38. 49. | 1 .1
3 121.9
OF THE SAMP
JT OF 100 THE
EFF
2.% S.E.%
4 12.7
4 7.5
4 11.3
7 9.4
0 19.9 | 40.0
<i>17.4</i>
LE
VOLUME | 69
74
WILL BE
SAMPL
OW
340
161
217 | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245 | .9
201.7
THE SAMP
1- BF
HIGH
439
187
273 | 75
21,907
LE ERROR | 75
21,907
OF TREES | 5,886
REO. | <i>5,877</i>
INF. POF | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-L | 71.
CE LIMITS O
TIMES OU
VAF
75.
38.
49.
26.
66. | 1 .1
3 .121.9
OF THE SAMP
JT OF 100 THE
EFF
2.% S.E.%
4 .12.7
4 .7.5
4 .11.3
7 .9.4
0 .19.9 | 40.0
<i>17.4</i>
LE
VOLUME | 69
74
WILL BE
SAMPL
OW
340
161
217
165
288 | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245
182
359 | .9
201.7
THE SAMP.
4-BF
HIGH
439
187
273
199
431
198 | 75
21,907
LE ERROR | 75
21,907
OF TREES | 5,886
REO. | <i>5,877</i>
INF. POF | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-L NOB FIR-T CON FIR-L CON FIR-L PONDEROS-T | 71.
CE LIMITS OF TIMES OUT COE VAR 75.
38.
49.
26.
66. | 1 .1
3 .121.9
OF THE SAMP
JT OF 100 THE
EFF
2.% S.E.%
4 .12.7
4 .7.5
4 .11.3
7 .9.4
0 .19.9 | 40.0
<i>17.4</i>
LE
VOLUME | 69
74
WILL BE
SAMPL
OW
340
161
217
165
288 | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245
182
359 | .9
201.7
THE SAMP.
4-BF
HIGH
439
187
273
199
431 | 75
21,907
LE ERROR | 75
21,907
OF TREES | 5,886
REO. | <i>5,87</i>
INF. POF | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-T NOB FIR-T CON FIR-L CON FIR-T PONDEROS-L PONDEROS-T E SPRUCE-L | 71.
CE LIMITS OF TIMES OUT COE VAR 75.
38.
49.
26.
66. | 1 .1
3 .121.9
OF THE SAMP
JT OF 100 THE
EFF
2.% S.E.%
4 .12.7
4 .7.5
4 .11.3
7 .9.4
0 .19.9 | 40.0
<i>17.4</i>
LE
VOLUME | 69
74
WILL BE
SAMPL
OW
340
161
217
165
288
156 | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245
182
359
177 | .9
201.7
THE SAMP.
4-BF
HIGH
439
187
273
199
431
198 | 75
21,907
LE ERROR | 75
21,907
OF TREES | 5,886
REO. | <i>5,87</i>
INF. POF | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-L NOB FIR-L CON FIR-L CON FIR-L CON FIR-L E SPRUCE-L INC CED-L | 26. 17. CE LIMITS OF TIMES TIMES. | 1 .1
3 121.9
OF THE SAMP
JT OF 100 THE
EFF
8.% S.E.%
4 12.7
4 7.5
4 11.3
7 9.4
0 19.9
3 12.0 | 40.0
<i>17.4</i>
LE
VOLUME | 69
74
WILL BE
SAMPL
OW
340
161
217
165
288
156
57 | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245
182
359
177
57 | .9
201.7
THE SAMP
4- BF
HIGH
439
187
273
199
431
198
57 | 75
21,907
LE ERROR | 75
21,907
OF TREES
5 | 5,886
REO.
10 | 2.
5,877 | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-T CON FIR-L CON FIR-L CON FIR-L CON FIR-L CON FIR-L INC CED-L TOTAL | 78. | 1 .1
3 121.9
OF THE SAMP.
JT OF 100 THE
SFF
2.% S.E.%
4 12.7
4 7.5
4 11.3
7 9.4
0 19.9
3 12.0 | 40.0
<i>17.4</i>
LE
VOLUME | 69
74
WILL BE
SAMPL
OW
340
161
217
165
288
156
57 | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245
182
359
177
57 | .9
201.7
THE SAMP.
4-BF
HIGH
439
187
273
199
431
198
57 | 75
21,907
LE ERROR
| 75
21,907
OF TREES
5 | 5,886
REO.
10 | 5,877 | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-L NOB FIR-L CON C | 78 CE LIMITS OF TIMES OUT CORE VAR 75. 38. 49. 26. 66. 17. | 1 .1
3 .121.9
OF THE SAMP.
JT OF 100 THE
EFF
8.% S.E.%
4 .12.7
4 .7.5
4 .11.3
7 .9.4
0 .19.9
3 .12.0
3 .7.4 | 40.0
17.4
LE
VOLUME | 69 74 WILL BE SAMPL OW 340 161 217 165 288 156 57 261 SAMPL | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245
182
359
177
57
282
E TREES | .9
201.7
THE SAMP.
4-BF
HIGH
439
187
273
199
431
198
57
303 | 75
21,907
LE ERROR
| 75
21,907
OF TREES
5 | 5,886 REQ. 10 | 5,877 | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-L NOB FIR-L CON C | 78 CE LIMITS OF TIMES OUT CORE VAR 75. 38. 49. 26. 66. 17. | 1 .1
3 .121.9
OF THE SAMP.
JT OF 100 THE
EFF
8.% S.E.%
4 .12.7
4 .7.5
4 .11.3
7 .9.4
0 .19.9
3 .12.0
3 .7.4
EFF
8.% S.E.% | 40.0
17.4
LE
VOLUME | 69 74 WILL BE SAMPL OW 340 161 217 165 288 156 57 261 SAMPL OW | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245
182
359
177
57
282
E TREES
AVG | .9
201.7
THE SAMP.
- BF
HIGH
439
187
273
199
431
198
57
303
3 - CF
HIGH | 75
21,907
LE ERROR
| 75
21,907
OF TREES
5 | 5,886
REO.
10 | 5,877 | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-L NOB FIR-L CON C | 78 COE LIMITS OF TIMES OUT COE VAR TE | 1 .1
3 .121.9
OF THE SAMP.
JT OF 100 THE
EFF
R.% S.E.%
4 .12.7
4 .7.5
4 .11.3
7 .9.4
0 .19.9
3 .12.0
3 .7.4
EFF
R.% S.E.%
3 .7.4 | 40.0
17.4
LE
VOLUME | 69 74 WILL BE SAMPL OW 340 161 217 165 288 156 57 261 SAMPL OW 88 | 0.1 48.3 WITHIN E TREES AVG 389 174 245 182 359 177 57 282 E TREES AVG 97 | .9
201.7
THE SAMP.
- BF
HIGH
439
187
273
199
431
198
57
303
- CF
HIGH
107 | 75
21,907
LE ERROR
| 75
21,907
OF TREES
5 | 5,886 REQ. 10 | 5,87 | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-T NOB FIR-T CON FIR-L CON FIR-T PONDEROS-T E SPRUCE-L INC CED-L TOTAL CL: 68.1 % SD: 1.0 DOUG FIR-T | 78 COE VAF 75 78 COE VAF 79 78 78 39 39 | 1 .1 3 .121.9 OF THE SAMP. JT OF 100 THE EFF R.% S.E.% 4 .12.7 4 .7.5 4 .11.3 7 .9.4 0 .19.9 3 .12.0 3 .7.4 EFF R.% S.E.% 3 .10.0 3 .7.7 | 40.0
17.4
LE
VOLUME | 69 74 WILL BE SAMPL OW 340 161 217 165 288 156 57 261 SAMPL OW 88 44 | 0.1 48.3 WITHIN E TREES AVG 389 174 245 182 359 177 57 282 E TREES AVG 97 47 | .9 201.7 THE SAMP - BF HIGH 439 187 273 199 431 198 57 303 - CF HIGH 107 51 | 75
21,907
LE ERROR
| 75
21,907
OF TREES
5 | 5,886 REQ. 10 | 5,87 | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-T NOB FIR-T CON FIR-T CON FIR-L CON FIR-L CON FIR-T PONDEROS-L PONDEROS-L INC CED-L TOTAL CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L DOUG FIR-L | 78 COE LIMITS OF TIMES OUT COE VAR TE | 1 .1
3 .121.9
OF THE SAMP
JT OF 100 THE
EFF
2.% S.E.%
4 .12.7
4 .7.5
4 .11.3
7 .9.4
0 .19.9
3 .12.0
3 .7.4
EFF
2.% S.E.%
3 .10.0
3 .7.7
6 .10.7 | 40.0
17.4
LE
VOLUME | 69 74 WILL BE SAMPL OW 340 161 217 165 288 156 57 261 SAMPL OW 88 | 0.1 48.3 WITHIN E TREES AVG 389 174 245 182 359 177 57 282 E TREES AVG 97 | .9
201.7
THE SAMP.
- BF
HIGH
439
187
273
199
431
198
57
303
- CF
HIGH
107 | 75
21,907
LE ERROR
| 75
21,907
OF TREES
5 | 5,886 REQ. 10 | 5,87 | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-T NOB FIR-T CON FIR-L CON FIR-T PONDEROS-T E SPRUCE-L INC CED-L TOTAL CL: 68.1 % SD: 1.0 DOUG FIR-T | 78 COE VAF 75. 38. 49. 26. 66. 17. 78 COE VAF 59. 39. 46. | 1 .1
3 .121.9
OF THE SAMP.
JT OF 100 THE
EFF
2.% S.E.%
4 .12.7
4 .7.5
4 .11.3
7 .9.4
0 .19.9
3 .12.0
3 .7.4
EFF
2.% S.E.%
3 .10.0
3 .7.7
6 .10.7
1 .12.1 | 40.0
17.4
LE
VOLUME | 69 74 WILL BE SAMPL OW 340 161 217 165 288 156 57 261 SAMPL OW 88 44 60 | 0.1 48.3 WITHIN E TREES AVG 389 174 245 182 359 177 57 282 E TREES AVG 97 47 68 | .9 201.7 THE SAMP 3-BF HIGH 439 187 273 199 431 198 57 303 - CF HIGH 107 51 75 | 75
21,907
LE ERROR
| 75
21,907
OF TREES
5 | 5,886 REQ. 10 | 5,87 | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-L CON FIR-T PONDEROS-L FONDEROS-L TOTAL CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-L NOB FIR-L | 78 COE VAF 75. 38. 49. 26. 66. 17. 78 COE VAF 59. 39. 46. 34. | 1 .1
3 .121.9
OF THE SAMP.
JT OF 100 THE
EFF
2% S.E.%
4 .12.7
4 .7.5
4 .11.3
7 .9.4
0 .19.9
3 .12.0
3 .7.4
EFF
2.%
S.E.%
3 .10.0
3 .7.7
6 .10.7
1 .12.1
4 .17.3 | 40.0
17.4
LE
VOLUME | 69 74 WILL BE SAMPL OW 340 161 217 165 288 156 57 261 SAMPL OW 88 44 60 45 | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245
182
359
177
57
282
E TREES
AVG
97
47
68
51 | .9 201.7 THE SAMP 3-BF HIGH 439 187 273 199 431 198 57 303 3-CF HIGH 107 51 75 57 | 75
21,907
LE ERROR
| 75
21,907
OF TREES
5 | 5,886 REQ. 10 | 5,87 | | CL: 68.1 % SD: 1.0 DOUG FIR-L NOB FIR-L CON FIR-L CON FIR-T PONDEROS-L PONDEROS-L TOTAL CL: 68.1 % SD: 1.0 DOUG FIR-T PONDEROS-L TOTAL CL: 68.1 % SD: 1.0 DOUG FIR-L CON | 78 COE VAF 75. 38. 49. 26. 66. 17. 78 COE VAF 59. 39. 46. 34. 57. 28. | 1 .1
3 .121.9
OF THE SAMP.
JT OF 100 THE
EFF
2% S.E.%
4 .12.7
4 .7.5
4 .11.3
7 .9.4
0 .19.9
3 .12.0
3 .7.4
EFF
2.% S.E.%
3 .10.0
3 .7.7
6 .10.7
1 .12.1
4 .17.3 | 40.0
17.4
LE
VOLUME | 69 74 WILL BE SAMPL OW 340 161 217 165 288 156 57 261 SAMPL OW 88 44 60 45 74 44 | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245
182
359
177
57
282
E TREES
AVG
97
47
68
51
90
54 | .9 201.7 THE SAMP 1-BF HIGH 439 187 273 199 431 198 57 303 3-CF HIGH 107 51 75 57 106 65 | 75
21,907
LE ERROR
| 75
21,907
OF TREES
5 | 5,886 REQ. 10 | 5,87 | | CL: 68.1 % CDUG FIR-L NOB FIR-L CON CL: 68.1 % SD: 1.0 DOUG FIR-L NOB FIR-L NOB FIR-L NOB FIR-L NOB FIR-L NOB FIR-L NOB FIR-L CON FIR-T | 78 COE VAF 75. 38. 49. 26. 66. 17. 78 COE VAF 59. 39. 46. 34. 57. 28. | 1 .1
3 .121.9
OF THE SAMP.
JT OF 100 THE
EFF
2% S.E.%
4 .12.7
4 .7.5
4 .11.3
7 .9.4
0 .19.9
3 .12.0
3 .7.4
EFF
2.% S.E.%
3 .10.0
3 .7.7
6 .10.7
1 .12.1
4 .17.3 | 40.0
17.4
LE
VOLUME | 69 74 WILL BE SAMPL OW 340 161 217 165 288 156 57 261 SAMPL OW 88 44 60 45 74 | 0.1 48.3 WITHIN ETREES AVG 389 174 245 182 359 177 57 282 ETREES AVG 97 47 68 51 90 | .9 201.7 THE SAMP 3-BF HIGH 439 187 273 199 431 198 57 303 3-CF HIGH 107 51 75 57 106 | 75
21,907
LE ERROR
| 75
21,907
OF TREES
5 | 5,886 REQ. 10 | 5,87 | | CL: 68.1 % SD: 1.0 DOUG FIR-L NOB FIR-L CON FIR-L CON FIR-T PONDEROS-L PONDEROS-L TOTAL CL: 68.1 % SD: 1.0 DOUG FIR-L CON FIR-T PONDEROS-L PONDEROS-L TOTAL CL: 68.1 % SD: 1.0 DOUG FIR-L CON | 78 COE VAF 75. 38. 49. 26. 66. 17. 78 COE VAF 59. 39. 46. 34. 57. 28. | 1 .1
3 .121.9
OF THE SAMP.
JT OF 100 THE
EFF
2% S.E.%
4 .12.7
4 .7.5
4 .11.3
7 .9.4
0 .19.9
3 .12.0
3 .7.4
EFF
2.% S.E.%
3 .10.0
3 .7.7
6 .10.7
1 .12.1
4 .17.3 | 40.0
17.4
LE
VOLUME | 69 74 WILL BE SAMPL OW 340 161 217 165 288 156 57 261 SAMPL OW 88 44 60 45 74 44 | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245
182
359
177
57
282
E TREES
AVG
97
47
68
51
90
54 | .9 201.7 THE SAMP 1-BF HIGH 439 187 273 199 431 198 57 303 3-CF HIGH 107 51 75 57 106 65 | 75
21,907
LE ERROR
| 75
21,907
OF TREES
5 | 5,886 REQ. 10 | 5,877 | | CL: 68.1 % SD: 1.0 DOUG FIR-L NOB FIR-T CON FIR-L CON FIR-L CON FIR-T PONDEROS-L PONDEROS-L TOTAL CL: 68.1 % SD: 1.0 DOUG FIR-L CON FIR-T PONDEROS-L PONDEROS-L TOTAL CL: 68.1 % SD: 1.0 DOUG FIR-L CON | 78 COE VAR 75. 38. 49. 26. 66. 17. 78 COE VAR 59. 39. 46. 34. 57. 28. | 1 .1 3 .121.9 OF THE SAMP. JT OF 100 THE FF 2.% S.E.% 4 12.7 4 7.5 4 11.3 7 9.4 0 19.9 3 12.0 3 7.4 EFF 2.% S.E.% 3 10.0 3 7.7 6 10.7 1 12.1 4 17.3 0 19.4 | 40.0
17.4
LE
VOLUME | 69 74 WILL BE SAMPL OW 340 161 217 165 288 156 57 261 SAMPL OW 88 44 60 45 74 44 19 | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245
182
359
177
57
282
E TREES
AVG
97
47
68
51
90
54 | .9 201.7 THE SAMP 3-BF HIGH 439 187 273 199 431 198 57 303 3-CF HIGH 107 51 75 57 106 65 19 | 75
21,907
LE ERROR
| 75
21,907
OF TREES
5 | 5,886 REO. 10 61 REO. 10 | 5,87 | | INC CED-L TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB FIR-L NOB FIR-L CON FIR-L CON FIR-L PONDEROS-L PONDEROS-L INC CED-L TOTAL CL: 68.1 % SD: 1.0 DOUG FIR-L DOUG FIR-L NOB | 78 COE VAF 75. 38. 49. 26. 66. 17. 78 COE VAF 59. 39. 46. 34. 57. 28. | 1 .1 3 .121.9 OF THE SAMP. JT OF 100 THE | 40.0
17.4
LE
VOLUME | 69 74 WILL BE SAMPL OW 340 161 217 165 288 156 57 261 SAMPL OW 88 44 60 45 74 44 19 | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245
182
359
177
57
282
E TREES
AVG
97
47
68
51
90
54
19 | .9 201.7 THE SAMP 1-BF HIGH 439 187 273 199 431 198 57 303 3-CF HIGH 107 51 75 57 106 65 | 75
21,907
LE ERROR
| 75
21,907
OF TREES
5 | 5,886 REO. 10 61 REO. 10 | 5,87 | | CL: 68.1 % SD: 1.0 DOUG FIR-L NOB FIR-T CON FIR-L CON FIR-L CON FIR-T PONDEROS-L PONDEROS-L TOTAL CL: 68.1 % SD: 1.0 DOUG FIR-L CON FIR-T PONDEROS-L PONDEROS-L TOTAL CL: 68.1 % SD: 1.0 DOUG FIR-L CON | 78 COE VAR 75. 38. 49. 26. 66. 17. 78 COE VAR 59. 39. 46. 34. 57. 28. | 1 .1 3 121.9 OF THE SAMP. JT OF 100 THE FF 2.% S.E.% 4 12.7 4 7.5 4 11.3 7 9.4 0 19.9 3 12.0 3 7.4 EFF 2.% S.E.% 3 10.0 3 7.7 1 12.1 4 17.3 0 19.4 | 40.0 17.4 LE VOLUME | 69 74 WILL BE SAMPL OW 340 161 217 165 288 156 57 261 SAMPL OW 88 44 60 45 74 44 19 | 0.1
48.3
WITHIN
E TREES
AVG
389
174
245
182
359
177
57
282
E TREES
AVG
97
47
68
51
90
54
19 | .9 201.7 THE SAMP 3-BF HIGH 439 187 273 199 431 198 57 303 3-CF HIGH 107 51 75 57 106 65 19 | 75
21,907
LE ERROR
| 75
21,907
OF TREES
5 | 5,886 REO. 10 61 REO. 10 | <i>5,87</i> 7 | | TC TSTA | ATS | | | | | STATIS | | | | PAGE
DATE | 2
7/12/2019 | |---------|-------------------|------|------------|--------------|---------|----------|--------------|-------|-----------|--------------|----------------| | TWP | RGE | SECT | TD | ACT | TYP | JECT A | EDGE
CRES | PLOTS | TREES | CuFt | BdFt | | Į | | | ED | | 0060 | | 91.00 | 38 | 231 | S | W | | 34S | 04E | 34 | ED | GE . | 0000 | <u></u> | 91.00 | | 4,71 | <u> </u> | | | CL: | 68.1% | CO | EFF | | TRE | ES/ACRE | | | | OTS REQ. | INF. POP. | | SD: | 1.0 | VA | AR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | FIR-T | 164 | 4.5 | 26.7 | 27 | 36 | 46 | | | | | | NOB F | FIR-L | 179 | 9.9 | 29.2 | 11 | 16 | 20 | | | | | | NOB F | FIR-T | 25 | 8.6 | 41.9 | 5 | 9 | 13 | | | | | | CON F | | | 7.7 | 46.6 | 8 | 16 | 23 | | | | | | CONF | | | 9.2 | 51.7 | 2 | 4 | 6 | | | | | | 1 | EROS-L | | 6.1 | 56.1 | 0 | 1 | 1 | | | | | | | EROS-T | | 6.3 | 38.3 | 8 | 13 | 17 | | | | | | 1 | UCE-L | | 0.0 | 69.7 | 0 | 0 | 1 | | | | | | INC C | | | 6.4 | 99.9 | 0 | 0 | 0 | | 191 | 48 | 21 | | ТОТА | | | 9.2 | 11.2 | 108 | 122 | 136 | | | | | | l | 68.1 % | | DEFF | | | AL AREA | | | # OF PLOT | | INF. POP. | | | 1.0 | | AR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | | G FIR-L | | 1.3 | 16.4 | 55 | 65 | 76
57 | | | | | | | 3 FIR-T | | 4.2 | 25.0 | 34 | 46 | 40 | | | | | | NOB I | | | 3.8 | 28.2 | 22 | 31
15 | 21 | | | | | | NOB I | | | 2.1 | 39.2 | 9
13 | 22 | 31 | | | | | | CONI | | | 0.4 | 42.2 | 3 | 7 | 11 | | | | | | CONI | | | 5.4 | 51.1
56.1 | 3 | 3 | 4 | | | | | | | DEROS-L | | 6.1
9.7 | 38.9 | 6 | 10 | 14 | | | | | | | DEROS-T
RUCE-L | | 9.7
0.0 | 56.9
69.7 | 1 | 2 | 3 | | | | | | INC C | | | 6.4 | 99.9 | 0 | 1 | 2 | | | | | | TOTA | | | 0.5 | 9.8 | 182 | 202 | 221 | | 146 | 37 | 16 | | | 68.1 % | | DEFF | | NIET | BF/ACRI | | | # OF PLOT | 'S REO | INF. POP. | | SD: | 1.0 | | AR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | | G FIR-L | | 3.0 | 16.7 | 6,653 | 7,987 | 9,320 | | | | | | DOUG | G FIR-T | | 55.8 | 25.3 | 3,742 | 5,007 | 6,272 | | | | | | NOB I | FIR-L | | 73.1 | 28.1 | 2,202 | 3,061 | 3,920 | | | | | | NOB | FIR-T | 24 | 16.4 | 39.9 | 932 | 1,553 | 2,173 | | | | | | CON | FIR-L | 26 | 50.1 | 42.2 | 1,467 | 2,536 | 3,606 | | | | | | CON | FIR-T | 31 | 5.6 | 51.2 | 336 | 688 | 1,040 | | | | | | PONE | DEROS-L | 34 | 16.1 | 56.1 | 101 | 230 | 359 | | | | | | PONE | DEROS-T | 24 | 10.3 | 38.9 | 319 | 522 | 725 | | | | | | li . | RUCE-L | | 30.0 | 69.7 | 75 | 249 | 422 | | | | | | INC C | | | 16.4 | 99.9 | 0 | 75 | 150 | | | | 10 | | TOTA | AL | 6. | 4.6 | 10.5 | 19,614 | 21,907 | 24,199 | | 166 | 42 | 18 | | CL: | 68.1 % | CC | OEFF | | NET | CUFT F | T/ACRE | | # OF PLOT | | INF. POP. | | SD: | | | AR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | G FIR-L | |)2.3 | 16.6 | 1,746 | 2,093 | 2,440 | | | | | | | G FIR-T | | 54.0 | 25.0 | 1,007 | 1,341 | 1,676 | | | | | | 1 | FIR-L | | 73.5 | 28.1 | 613 | 852 | 1,092 | | | | | | 1 | FIR-T | | 42.4 | 39.3 | 256 | 422 | 587 | | | | | | | FIR-L | | 54.2 | 42.8 | 366 | 641 | 915 | | | | | | 1 | FIR-T | | 13.4 | 50.8 | 97 | 197 | 298 | | | | | | 1 | DEROS-L | | 46.1 | 56.1 | 32 | 73 | 114 | | | | | | | DEROS-T | | 40.4 | 39.0 | 105 | 172 | 239 | | | | | | 1 | RUCE-L | | 30.0 | 69.7 | 19 | 63 | 107 | | | | | | 1 | CED-L | | 16.4 | 99.9 | 0 | 23 | 46 | | 157 | 20 | 177 | | TOT | AL | 6 | 52.7 | 10.2 | 5,280 | 5,877 | 6,474 | | 157 | 39 | 17 | | | | | | | | | Project | t: EDG | d Fo
SE | | | | | | | | | Date
I'ime | | /12/20
l:56:5 | | |----------|----|------------------------------------|----------|-------------|---------------|-----------------------|--------------|------------------|------------|----------------|-------|-------------|----------|--------------|--------|-------|-----------------|---------------|-------|------------------|--------------| | 345 | p | 04E S
Rg
04 | _ | Sec | Tract
EDGE | 318184 | Туре
0060 | | | Plots | } | - | le Trees | | C
S | uFt | T34
BdI
W | |)4E S | 34 T0 | 060 | | ., | | | | % | Ï | | | | Per | cent N | et Bo | ard Fo | oot Volu | me | | | Αv | erage | e Log | | Logs | | Spp | | s _{So}
^T rt | Gr
ad | Net
BdFt | Bd.
Def% | Ft. per Acro
Gross | e
Net | Total
Net MBF | Lo
4-5 | og
Sca
6-11 | | a.
5 17+ | Log | Ler
21-30 | _ | 36-99 | Ln 1
Ft 1 | | | CF/
Lf | Per
/Acre | | DF | L | , DO | 2M | 10 | | 856 | 856 | 78 | | | 43 | 57 | | | 100 | | 34 | 17 | 433 | 2.59 | 2.0 | | DF | L | DO | 3M | 65 | | 5,143 | 5,143 | 468 | | 10 | 74 | 16 | | | 100 | | 34 | | | 1.73 | 21.7 | | DF | L | , DO | 4M | 25 | | 1,988 | 1,988 | 181 | 42 | 37 | 13 | 8 | 13 | 46 | 20 | 21 | 29 | 7 | 53 | 0.61 | 37.2 | | DF | L | Total | ls | 36 | | 7,987 | 7,987 | 727 | 10 | 15 | 56 | 18 | 3 | 12 | 80 | 5 | 31 | 9 | 131 | 1.12 | 60.8 | | DF | Т | DO | 2M | 3 | | 164 | 164 | 15 | | | 100 | | | | 100 | | 34 | 13 | 210 | 1.45 | .8 | | DF | | , DO | 3M | 72 | | 3,609 | 3,609 | 328 | | 66 | 34 | | | | 100 | | 34 | 10 | 135 | 1.03 | 26.7 | | DF | T | . DO | 4M | 25 | | 1,234 | 1,234 | 112 | 92 | 8 | | | 13 | 38 | 25 | 24 | 27 | 5 | 33 | 0.36 | 37.9 | | DF | T | Total | ls | 23 | | 5,007 | 5,007 | 456 | 23 | 50 | 28 | | 3 | 9 | 82 | 6 | 30 | 7 | 77 | 0.68 | 65.4 | | NF | Į. | , DO | CU | | | | | | | | | | | | | | 11 | 5 | | 0.00 | 1.7 | | NF | | DO | 3M | 88 | | 2,697 | 2,697 | 245 | | 33 | 60 | 6 | | | 100 | | 34 | 11 | 172 | 1.26 | 15.7 | | NF | L | DO | 4M | 12 | | 364 | 364 | 33 | 100 | | | | 25 | 21 | 38 | 16 | 25 | 5 | 26 | 0.52 | 14.0 | | NF | L | Tota | ls | 14 | | 3,061 | 3,061 | 279 | 12 | 30 | 53 | 6 | 3 | 2 | 93 | 2 | 29 | 8 | 98 | 0.95 | 31.4 | | NF | т | . DO | 3M | 83 | | 1,302 | 1,302 | 118 | | 68 | 32 | | | | 100 | | 34 | 10 | 139 | 1.03 | 9.4 | | NF | | DO | 4M | 17 | | 251 | 251 | 23 | 100 | | | | 17 | 74 | 9 | | 25 | 5 | 27 | 0.40 | 9.4 | | NF | Т | Tota | ls | 7 | | 1,553 | 1,553 | 141 | 16 | 57 | 27 | | 3 | 12 | 85 | | 30 | 8 | 83 | 0.76 | 18.8 | | WF | L | , DO | 2M | 7 | | 195 | 195 | 18 | | | | 100 | | | 100 | | 34 | 17 | 390 | 2.49 | .5 | | WF | L | | 3M | 62 | | 1,567 | 1,567 | 143 | | | 64 | 36 | | | 100 | | 34 | 15 | 282 | 2.01 | 5.6 | | WF | L | DO DO | 4M | 31 | | 774 | 774 | 70 | 59 | 13 | 28 | | 21 | 63 | 8 | 7 | 27 | 6 | 42 | 0.44 | 18.4 | | WF | L | Tota | als | 12 | | 2,536 | 2,536 | 231 | 18 | 4 | 48 | 30 | 7 | 19 | 72 | 2 | 29 | 8 | 104 | 0.91 | 24.4 | | WF | Т | r do | 3M | 79 | | 550 | 550 | 50 | | 67 | 33 | | | | 100 | | 34 | 11 | 141 | 1.12 | 3.9 | | WF | | ΓDO | | 21 | | 138 | 138 | 13 | 100 | | | | 13 | | | 87 | 33 | 5 | 35 | 0.38 | 3.9 | | WF | T | Tota | als | 3 | | 688 | 688 | 63 | 20 | 53 | 27 | | 3 | | 80 | 17 | 33 | 8 | 88 | 0.76 | 7.8 | | PP | Т | r do | CU | | | | | | | | | | | | | | 8 | 5 | | 0.00 | 5.3 | | PP | | . DO | | 50 | | 264 | 264 | 24 | | 100 | | | | | 100 | | 34 | 6 | 50 | 0.49 | 5.3 | | PP | T | r do | 4M | 50 | | 258 | 258 | 23 | 100 | | | | | 43 | 57 | | 31 | 5 | 35 | 0.37 | 7.4 | | PP | T | Tota | ls | 2 | | 522 | 522 | 47 | 49 | 51 | | | | 21 | 79 | | 25 | 5 | 29 | 0.38 | 17.9 | | pр | L | L DO | 3M | 100 | | 230 | 230 | 21 | 13 | | 87 | | 13 | | 87 | | 21 | 8 | 107 | 1.58 | 2.2 | | PP | L | Tota | ls | 1 | | 230 | 230 | 21 | 13 | | 87 | | 13 | | 87 | | 21 | 8 | 107 | 1.58 | 2.2 | | | | | | 94 | | 234 | 234 | 21 | | | | 100 | | | 100 | | 34 | 21 | 650 | 3.66 | .4 | | ES
ES | | L DO
L DO | | l . | | 234
14 | 14 | | 100 | | | 100 | | | 100 | 100 | | 5 | | 1.27 | 1 | | | | Tota | | 1 | | 249 | 249 | 23 | 6 | | | 94 | | | 94 | 6 | 37 | 13 | 345 | 2.37 | .7 | | | | | | 0.5 | | 70 | 70 | 7 | | | | 100 | | | 100 | | 21 | 22 | 710 | 5.47 | .1 | | IC
IC | | L DO
L DO | | | | 72
3 | 72
3 | | 1 | | | 100 | | 100 | | | | 5 | | 1.39 | | | | L | טט | TIVE | | | J | J | ľ | | | | | | | | | | | _ | | | | T TS | PCSTGR | and the second | , | Species, | Sort G | rade - Boar
t: EDC | | oot V | olun | nes (T | 'ype) | | |] | Page
Date
Fime | . 7 | 2
7/12/20
1:56:5 | | |----------------------|--------------------------|-------------------|---------------|---------------------|--------------|-----------------------|----------|----------------|-----------------|--------|-----------|-----|-------|-----------------|----------------------|----------|------------------------|--------------| | T34S F
Twp
34S | R04E S34 T
Rge
04E | 0060
Sec
34 | Tract
EDGE | | Type
0060 | | | Plots | | • | e Trees | S | CuFt | T34
Bd1
W | | 04E S | 634 T0 | 060 | | | | % | | | | | Per | cent N | let Bo | ard Fo | ot Volume | *** | | A۱ | erag | ge Log | 3 | Logs | | Spp | S _{So} Gr | Net
BdFt | i | Ft. per Ac
Gross | ore
Net | Total
Net MBF | L
4-5 | og Sca
6-11 | ale Di
12-16 | | Log L | - | 36-99 | Ln
Ft | | Bd
Ft | CF/
Lf | Per
/Acre | | IC L | Totals | 0 | | 75 | 75 | 7 | 4 | | | 96 | 4 | 96 | | 31 | 14 | 370 | 3.63 | .2 | | Type To | tals | | | 21,907 | 21,907 | 1,994 | 16 | 28 | 43 | 12 | 3 10 | 82 | 4 | 30 | 8 | 95 | 0.87 | 229.6 | | TC TST | ATS | 1911 | | | ST
PROJEC | ATIST | 'ICS
EDGE | | | PAGE
DATE 7 | 1
/12/2019 | |-------------|----------------------------|-----------------|-------------------------|--------------|-----------------------------------|------------|--------------------|----------------|-------------------|----------------|---------------| | TWP | RGE | SECT T | RACT | , | TYPE | | RES | PLOTS | TREEŞ | CuFt | BdFt | | 35S | 04E | | DGE | | 0068 | 110 | 13.00 | 10 | 52 | S | W | | | | | | | TREES | | ESTIMATED
TOTAL | I | PERCENT
SAMPLE | | | | | | PLOTS | TREES | | PER PLOT | | TREES | | ΓREES | | | | TOTA | L. | 10 | 52 | | 5.2 | | | | | | | | CRUI
DBH | SE
COUNT
PREST
NT | 6 | 18 | | 4.55.7 | | 1,538 | | 1.2 | | | | 100 % | , | | | | | | | | | ····· | | | | | | | | ND SUMN | | | | | | | | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | | G FIR-L | 2 | 21.0 | 20.5 | 80 | 10.6 | 48.0 | 5,194 | 5,194 | 1,399 | 1,399 | | | G FIR-T | 2 | 25.6 | 16.9 | 69 | 9.7 | 40.0 | 3,447 | 3,447 | 975 | 937 | | | FIR-L | 4 | 19.9 | 17.2 | 67 | 7.7 | 32.0 | 3,868 | 3,868 | 895 | 895 | | | FIR-T | 1 | 7.6 | 17.0 | 80 | 2.9 | 12.0 | 1,370
832 | 1,370
832 | 354
246 | 354
246 | | | DEROS-L | 1 | 3.3 | 21.0 | 92
02 | 1.7
7.8 | 8.0
32.0 | 3,645 | 832
3,645 | 246
981 | 246
981 | | | DEROS-T | 2
6 | 21.2
19.7 | 16.7
17.3 | 92
60 | 7.8
7.7 | 32.0 | 2,200 | 2,200 | 730 | 730 | | TOTA | CED-L | 18 | 118.3 | 17.3
17.8 | 75 | 48.4 | 204.0 | 20,555 | 20,555 | 5,580 | 5,542 | | 1012 | AL. | 10 | 110.3 | 17.0 | /3 | 40.4 | 204.0 | 20,333 | 20,333 | 2,200 | 3,342 | | CON | | | THE SAMPI
OF 100 THE | | WILL BE | WITHIN | THE SAMP | LE ERROR | | | | | CL: | 68.1 % | COEFF | 7 | | SAMPL | E TREES | S - BF | # | OF TREES | S REQ. | INF. POP. | | SD: | 1.0 | VAR.9 | | L | OW | AVG | HIGH | | 5 | 10 | 1 | | | G FIR-L | 28.3 | 26.5 | | 184 | 250 | 316 | | | | | | | G FIR-T | 5.2
105.9 | 4.9
60.5 | | 128
127 | 135
323 | 142
518 | | | | | | | FIR-L
FIR-T | 103.9 | 60.3 | | 127 | 323 | 316 | | | | | | | DEROS-L | | | | | | | | | | | | | DEROS-T | 42.0 | 39.4 | | 112 | 185 | 258 | | | | | | | CED-L | 57.4 | 25.6 | | 93 | 125 | 157 | | | | | | TOT | AL | 85.3 | 20.7 | | 159 | 201 | 242 | | 308 | 77 | 3 | | CL: | 68.1 % | COEFI | 7 | | SAMPI | E TREES | S - CF | | FOF TREES | SREO | INF. POP. | | SD: | 1.0 | VAR.% | 6 S.E.% | I. | OW | AVG | HIGH | • | 5 | 10 | 1 | | _ | G FIR-L | 22.6 | 21.2 | | 53 | 67 | 81 | | - | · · · · · | - | | | G FIR-T | 16.5 | 15.4 | | 31 | 37 | 43 | | | | | | | FIR-L | 93.2 | 53.3 | | 33 | 71 | 109 | | | | | | | FIR-T | | | | | | | | | | | | | DEROS-L | 25.0 | 255 | | 22 | 40 | <i>(</i> 7 | | | | | | | DEROS-T | 37.9
47.3 | 35.5
21.0 | | 32
32 | 49
41 | 67
50 | | | | | | TOT | CED-L
Al. | 63.2 | 15.3 | | 32
45 | 53 | 61 | | 169 | 42 | 1 | | | | | | | | | <u> </u> | - | | | | | | 68.1 % | COEFI | | _ | TREES | | 111011 | ì | # OF PLOTS | | INF. POP | | SD: | 1.0 | VAR.9 | 6 S.E.%
48.6 | I | OW 11 | AVG
21 | HIGH
31 | | 5 | 10 | 1 | | | G FIR-L
G FIR-T | 145.9
156.4 | 48.6
52.1 | | 12 | 26 | 39 | | | | | | | FIR-L | 104.8 | 34.9 | | 13 | 20 | 27 | | | | | | | FIR-T | 161.0 | 53.6 | | 4 | 8 | 12 | | | | | | | DEROS-L | 210.8 | 70.2 | | 1 | 3 | 6 | | | | | | | DEROS-T | 202.4 | 67.4 | | 7 | 21 | 35 | | | | | | | CED-L | 124.9 | 41.6 | | 11 | 20 | 28 | | | | | | TOT | | 47.9 | 15.9 | | 99 | 118 | 137 | | 101 | 25 | 1 | | CL: | 68.1 % | COEF | F | · | RACAT | AREA/A | CRE | | # OF PLOTS | SREO | INF. POP. | | JU. | 00.1 ~ | JOLI | - | | DASAL | AKLA/A | CRE | | " OL LUOIS | J KLO. | IIVI. FOF | SD: 1.0 VAR.% S.E.% LOW AVG HIGH 10 | TC TSTATS | S | | | S'
PROJI | TATIS
ECT | TICS
EDGE | | | PAGE
DATE | 2
7/12/2019 | |-----------|-------|----------|-------|-------------|--------------|--------------|-------|------------|--------------|----------------| | TWP R | GE. | SECT TRA | CT | TYPE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 35S 0 | 4E | 27 EDG | GE | 0068 | | 13.00 | 10 | 52 | <u>S</u> | W | | CL: 68 | 8.1% | COEFF | | BASA | L AREA/. | ACRE | | # OF PLO | TS REQ. | INF. POP. | | 1 | .0 | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOUG F | IR-L | 145.9 | 48.6 | 25 | 48 | 71 | | | | | | DOUG F | IR-T | 156.3 | 52.0 | 19 | 40 | 61 | | | | | | CON FIR | k-L | 98.6 | 32.8 | 22 | 32 | 42 | | | | | | CON FIR | t-T | 161.0 | 53.6 | 6 | 12 | 18 | | | | | | PONDER | ROS-L | 210.8 | 70.2 | 2 | 8 | 14 | | | | | | PONDER | ROS-T | 202.4 | 67.4 | 10 | 32 | 54 | | | | | | INC CED |)-L | 129.1 | 43.0 | 18 | 32 | 46 | | | | | | TOTAL | | 52.7 | 17.5 | 168 | 204 | 240 | | 123 | 31 | 14 | | CL: 68 | 3.1 % | COEFF | | NET B | F/ACRE | | | # OF PLOTS | REQ. | INF. POP. | | SD: 1 | | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOUG F | IR-L | 145.9 | 48.6 | 2,671 | 5,194 | 7,716 | | | | | | DOUG F | IR-T | 156.4 | 52.0 | 1,653 | 3,447 | 5,240 | | | | | | CON FIR | t-L | 101.4 | 33.7 | 2,563 | 3,868 | 5,173 | | | | | | CON FIR | R-T | 161.0 | 53.6 | 636 | 1,370 | 2,105 | | | |
| | PONDER | ROS-L | 210.8 | 70.2 | 248 | 832 | 1,415 | | | | | | PONDER | ROS-T | 202.4 | 67.4 | 1,190 | 3,645 | 6,101 | | | | | | INC CEL | D-L | 134.1 | 44.6 | 1,218 | 2,200 | 3,182 | | | | | | TOTAL | | 54.2 | 18.0 | 16,850 | 20,555 | 24,260 | | 130 | 32 | 14 | | CL: 68 | 3.1 % | COEFF | | NET C | CUFT FT/ | ACRE | | # OF PLOTS | REQ. | INF. POP. | | SD: 1 | .0 | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOUG F | IR-L | 145.9 | 48.6 | 720 | 1,399 | 2,079 | | | | | | DOUG F | IR-T | 156.3 | 52.0 | 450 | 937 | 1,425 | | | | | | CON FIR | R-L | 102.3 | 34.0 | 590 | 895 | 1,200 | | | | | | CON FIR | R-T | 161.0 | 53.6 | 164 | 354 | 544 | | | | | | PONDE | ROS-L | 210.8 | 70.2 | 73 | 246 | 418 | | | | | | PONDER | ROS-T | 202.4 | 67.4 | 320 | 981 | 1,641 | | | | | | INC CEL |)-L | 136.6 | 45.4 | 398 | 730 | 1,061 | | | | | | TOTAL | | 53.6 | 17.8 | 4,553 | 5,542 | 6,530 | | 127 | 32 | 14 | | T TSPCSTGR | | Species | , Sort G
Projec | rade - Boai
t: EDC | | oot V | 'olu | mes (T | (ype) | | | | Pag
Dat
Tim | e 7 | 1
//12/2(
2:10:1 | | |---|------|---------------|--------------------|-----------------------|-----|--------|-------|---------|---------|-------|-----------|--------|-------------------|--------|------------------------|----------| | T35S R04E S27 T00
Twp Rge
35S 04E | Sec | Tract
DGE | Type
0068 | | | Plot | | Samp | le Tree | es | CuFt
S | | dFt | R04E S | 5 27 T0 | 006 | | | % | | | | Per | cent l | Net B | oard Fo | oot Vol | ume | | Τ. | Avera | ge Log | 5 | Ι, | | S So Gr | Net | Bd. Ft. per A | cre | Total | | og Sc | ale D | ia. | Lo | g Lei | ngth | L | ı Dia | Bd | CF/ | d I | | Spp ^T rt ad | BdFt | Def% Gross | Net | Net MBF | 4-5 | | | 16 17+ | | | 31-35 36- | 1 | In | Ft | Lf | / | | DF L DO CU | | | | | | | | | † | | | \top | 4 6 | | 0.00 | T | | DF L DO 2M | 82 | 4,265 | 4,265 | 55 | | | 100 | | | | 100 | 3 | 4 13 | 203 | 1.50 | | | DF L DO 3M | 11 | 599 | 599 | 8 | | 100 | | | | | 100 | 3 | 4 7 | 60 | 0.67 | | | DF L DO 4M | 7 | 330 | 330 | 4 | | 100 | | | 100 | | | 1 | 7 8 | 30 | 0.57 | | | DF L Totals | 25 | 5,194 | 5,194 | 68 | | 18 | 82 | | 6 | | 94 | 2 | 1 9 | 83 | 1.05 | \vdash | | DF T DO 2M | 32 | 1,132 | 1,132 | 15 | | | 100 | | 100 | | | 1 | 7 13 | 100 | 1.34 | | | DF T DO 3M | 42 | 1,432 | 1,432 | 19 | | 100 | | | | 100 | | 2 | 4 11 | 100 | 0.83 | | | DF T DO 4M | 26 | 882 | 882 | 11 | 100 | | | | | | 100 | 3 | 3 5 | 34 | 0.46 | İ | | DF T Totals | 17 | 3,447 | 3,447 | 45 | 26 | 42 | 33 | | 33 | 42 | 26 | 2 | 7 8 | 67 | 0.67 | | | WF L DO CU | | | | | | | | | | | | | 6 | | 0.00 | | | WF L DO 2M | 58 | 2,267 | 2,267 | 29 | | | 51 | 49 | | | 100 | 3 | 4 15 | 306 | 1.85 | | | WF L DO 3M | 24 | 928 | 928 | 12 | | 100 | | | | | 100 | 3 | 4 8 | 99 | 0.76 | | | WF L DO 4M | 18 | 673 | 673 | 9 | 31 | 69 | | | 94 | 6 | | 1 | 7 7 | 27 | 0.45 | | | WF L Totals | 19 | 3,868 | 3,868 | 50 | 5 | 36 | 30 | 29 | 16 | 1 | 83 | 1 | 9 8 | 76 | 0.90 | | | WF T DO 3M | 83 | 1,142 | 1,142 | 15 | | 100 | | | | | 100 | 3 | 4 11 | 150 | 1.03 | | | WF T DO 4M | 17 | 228 | 228 | 3 | 100 | | | | | 100 | | 2 | 9 5 | 30 | 0.40 | | | WF T Totals | 7 | 1,370 | 1,370 | 18 | 17 | 83 | | | | 17 | 83 | 3 | 2 8 | 90 | 0.74 | - | | PP T DO 3M | 73 | 2,685 | 2,685 | 35 | | 49 | 51 | | | | 100 | 3 | 4 10 | 127 | 1.00 | | | PP T DO 4M | 27 | 960 | 960 | 12 | 58 | 42 | | | | 100 | | - 1 | 4 6 | | 0.37 | | | PP T Totals | 18 | 3,645 | 3,645 | 47 | 15 | 47 | 38 | | | 26 | 74 | 1 2 | 8 8 | 72 | 0.69 | t | | PP L DO 3M | 84 | 698 | 698 | 9 | | | 100 | | | | 100 | 3 | 4 13 | 210 | 1.55 | | | PP L DO 4M | 16 | 133 | 133 | 2 | 100 | | | | | | 10 |) 4 | 0 5 | 40 | 0.53 | | | PP L Totals | 4 | 832 | 832 | 11 | 16 | | 84 | | | | 84 1 | 5 3 | 7 9 | 125 | 1.00 | t | | IC L DO 3M | 76 | 1,675 | 1,675 | 22 | | 72 | 28 | | 14 | 21 | 66 | 2 | 7 10 | 109 | 1.17 | | | IC L DO 4M | 24 | 525 | 525 | 7 | 100 | | | | 35 | 15 | 5 | 0 2 | 5 5 | | 0.49 | 1 | | IC L Totals | 11 | 2,200 | 2,200 | 29 | 24 | 55 | 21 | | 19 | 19 | 50 1 | 2 2 | 6 7 | 63 | 0.80 | | | Type Totals | Î | 20,555 | 20,555 | 267 | | 38 | | 5 | 12 | 15 | 71 | 2 2 | 25 8 | 75 | 0.82 | | | TC TSTA | ATS | | | | | ATIST | | | | PAGE | 1 | |-------------------------|----------|--------------------------|----------------|------------|-------------|-------------|--------------------|----------------|-----------------|----------------|--------------| | | | | | | PROJEC | | EDGE | | | 14.000000 | /12/2019 | | | RGE | | RACT | | TYPE | AC | RES | PLOTS | TREES | CuFt | BdFt | | <u>35S</u> | 04E | 10 E | DGE | | 0070 | ···· | 33.00 | 16 | 94 | S | W | | | | | | | TREES | | ESTIMATED
FOTAL | | ERCENT
AMPLE | | | | | | PLOTS | TREES | | PER PLOT | | TREES | T | REES | | | | TOTA | L | 16 | 94 | | 5.9 | | | | | | | | CRUIS
DBH C
REFOI | COUNT | 7 | 44 | | 6.3 | | 4,273 | | 1.0 | | | | COUN
BLAN
100 % | KS | 9 | 50 | | 5.6 | | | | | | | | | | | | STA | ND SUMN | MARY | | | | | | | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | DOUG | FIR-L | 12 | 36.3 | 18.1 | 87 | 15.3 | 65.0 | 8,165 | 8,033 | 2,100 | 2,087 | | | FIR-T | 13 | 44.3 | 15.8 | 82 | 15.1 | 60.0 | 6,584 | 6,584 | 1,791 | 1,791 | | NOB F | IR-L | 6 | 7.7 | 28.8 | 100 | 6.5 | 35.0 | 5,540 | 5,458 | 1,277 | 1,277 | | NOB F | FIR-T | 5 | 14.1 | 21.4 | 88 | 7.6 | 35.0 | 4,872 | 4,753 | 1,205 | 1,205 | | CON F | FIR-L | 5 | 14.2 | 18.0 | 68 | 5.9 | 25.0 | 3,436 | 3,436 | 784 | 784 | | CON F | FIR-T | 3 | 12.9 | 14.6 | 85 | 3.9 | 15.0 | 1,789 | 1,789 | 437 | 437 | | TOTA | L. | 44 | 129.5 | 18.2 | 84 | 55.0 | 235.0 | 30,386 | 30,053 | 7,594 | 7,581 | | CONI | | E LIMITS OF
TIMES OUT | | | WILL BE | WITHIN | THE SAMP | LE ERROR | | | | | CL: | 68.1 % | COEFF | | | SAMPL | E TREES | S - BF | # | OF TREES | REQ. | INF. POP. | | SD: | 1.0 | VAR.% | S.E.% | L | OW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | FIR-L | 25.0 | 7.9 | | 255 | 277 | 299 | | | | | | | FIR-T | 22.0 | | | 227 | 227 | 227 | | | | | | NOB I | | 33.9
12.5 | 15.1
6.2 | | 647
319 | 762
340 | 877
361 | | | | | | CON I | | 82.4 | 40.9 | | 461 | 780 | 1,099 | | | | | | CONI | | 02.1 | .0.5 | | 210 | 210 | 210 | | | | | | TOTA | L | <i>78.9</i> | 12.8 | | 360 | 413 | 465 | | 249 | 62 | 28 | | CL: | 68.1 % | COEFF | | | SAMPL | E TREES | S - CF | # | OF TREES | REO | INF. POP. | | | 1.0 | VAR.% | S.E.% | L | OW. | AVG | HIGH | " | 5 | 10 | 15 | | | FIR-L | 12.3 | 3.9 | | 69 | 71 | 74 | | | | | | DOUG | 3 FIR-T | | | | 62 | 62 | 62 | | | | | | NOB I | | 29.3 | 13.0 | | 154 | 177 | 200 | | | | | | NOB I | | 12.0 | 5.9 | | 81 | 86
167 | 91
222 | | | | | | CON I | | 79.2 | 39.3 | | 101
52 | 167
52 | 233
52 | | | | | | TOTA | | 66.2 | 10.7 | | 89 | 99 | 110 | | 175 | 44 | 19 | | | 68.1 % | COEFF | | | TREES | | | 1 | OF PLOTS | | INF. POP. | | | 1.0 | VAR.% | | ĭ | OW. | ACRE
AVG | HIGH | # | 5 5 | 10 | 1Nr. POP. | | | FIR-L | 115.2 | 29.7 | <u>L</u> | 26 | 36 | 47 | | | 10 | 1.3 | | | 3 FIR-T | 132.1 | 34.1 | | 29 | 44 | 59 | | | | | | NOB 1 | | 155.4 | 40.1 | | 5 | 8 | 11 | | | | | | NOB I | | 190.7 | 49.2 | | 7 | 14 | 21 | | | | | | CONI | | 179.1 | 46.2 | | 8 | 14 | 21 | | | | | | CON | | 273.3 | 70.5 | | 4 | 13 | 22 | | 120 | 25 | 15 | | TOTA | | 56.9 | 14.7 | | 110 | 129 | 148 | | 138 | 35 | | | | 68.1 % | COEFF | | | | AREA/A | | # | OF PLOTS | | INF. POP. | | | 1.0 | VAR.% | | I. | .OW | AVG | HIGH | | 5 | 10 | 15 | | | G FIR-L | 105.1 | 27.1 | | 47
40 | 65
60 | 83
80 | | | | | | NOB ! | 3 FIR-T | 131.1
155.4 | 33.8
40.1 | | 40
21 | 35 | 80
49 | | | | | | NOB | | 155.4 | 40.1 | | 21
10 | 33
35 | 49
52 | | | | | NOB FIR-T 190.7 49.2 18 35 52 | TC TST | TATS | | | | | STATIS
JECT | TICS
EDGE | | | PAGE
DATE | 2
7/12/2019 | |--------|---------|------|-----|-------|--------|----------------|--------------|-------|------------|--------------|----------------| | TWP | RGE | SECT | TRA | CT | TYPI | E A | CRES | PLOTS | TREES | CuFt | BdFt | | 35S | 04E | 10 | EDG | E | 0070 | | 33.00 | 16 | 94_ | S | W | | CL: | 68.1% | СО | EFF | | BASA | AL AREA | ACRE | | # OF PL | OTS REQ. | INF. POP. | | SD: | 1.0 | VA | R. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | CON | FIR-L | 153 | 3.2 | 39.5 | 15 | 25 | 35 | | | | | | CON | FIR-T | 273 | 3.3 | 70.5 | 4 | 15 | 26 | | | | | | TOTA | AL | 37 | .7 | 9.7 | 212 | 235 | 258 | | 61 | 15 | 7 | | CL: | 68.1 % | CO | EFF | | NET | BF/ACRE | , | | # OF PLOTS | S REQ. | INF. POP. | | SD: | 1.0 | VA | R.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOU | G FIR-L | 102 | 2.9 | 26.5 | 5,901 | 8,033 | 10,164 | | | | | | DOU | G FIR-T | 133 | 1.5 | 33.9 | 4,350 | 6,584 | 8,818 | | | | | | NOB | FIR-L | 155 | 5.7 | 40.2 | 3,266 | 5,458 | 7,650 | | | | | | NOB | FIR-T | 190 |).7 | 49.2 | 2,415 | 4,753 | 7,091 | | | | | | CON | FIR-L | 158 | 3.0 | 40.8 | 2,035 | 3,436 | 4,836 | | | | | | CON | FIR-T | 273 | 3.3 | 70.5 | 528 | 1,789 | 3,050 | | | | | | TOT | AL | 35 | .2 | 9.1 | 27,325 | 30,053 | 32,781 | | 53 | 13 | 6 | | CL: | 68.1 % | CO | EFF | | NET | CUFT FT | /ACRE | | # OF PLOT | S REQ. | INF. POP. | | SD: | 1.0 | VA | R.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOU | G FIR-L | 104 | 1.2 | 26.9 | 1,526 | 2,087 | 2,648 | | | | | | DOU | G FIR-T | 130 |).7 | 33.7 | 1,187 | 1,791 | 2,394 | | | | | | NOB | FIR-L | 15: | 5.5 | 40.1 | 765 | 1,277 | 1,790 | | | | | | NOB | FIR-T | 190 |).7 | 49.2 | 612 | 1,205 | 1,797 | | | | | | CON | FIR-L | 150 | 5.2 | 40.3 | 468 | 784 | 1,100 | | | | | | CON | FIR-T | 273 | 3.3 | 70.5 | 129 | 437 | 745 | | | | | | TOT | AL | 36 | .5 | 9.4 | 6,868 | 7,581 | 8,294 | | 57 | 14 | 6 | | Tr 1 | rsi | PCST | GR | | | | Species, | Sort G
Projec | rade - Boar
t: EDC | | ot V | olun | nes (T | Type) | | | | | Page
Date
Time | e 7 | 1
//12/20
2:07:5 | | |-------------------|-----|------
------------|----|------|--------------|-----------|------------------|-----------------------|-----|--------|-------|-------------|---------------|-------|--------|-------|---------------|----------------------|--------|------------------------|-----| | T35S
Tw
35S | p | I | S10
Rge | | Sec | Tract
DGE | | Туре | | | Plot | | | le Tree
44 | s | C
S | uFt | T3
Bd
W | | 04E S | 10 T0 | 070 | | | | | | | % | | | | | Per | cent 1 | let B | oard Fo | ot Vol | ume | | | A | vera | ge Log | , | 1. | | | 1 | S So | G | ir | Net | Bd | Ft. per A | cre | Total | L | og Sc | ale D | ia. | Log | g Lei | ngth | | Ln | Dia | Bd | CF/ | Lo | | Spp | • | Γ rt | a | .d | BdFt | Def% | Gross | Net | Net MBF | 4-5 | | | 6 17+ | 12-20 | - | _ | 36-99 | Ft | | Ft | Lf | /A | | DF | L | D(| ·
) | 2M | 19 | | 1,548 | 1,548 | 51 | | | 100 | | | | 100 | | 34 | 14 | 259 | 1.85 | | | DF | | DO | | 3M | 56 | 2.9 | 4,631 | 4,498 | 148 | | 42 | 58 | | | | 100 | | 34 | 11 | 148 | 1.09 | | | DF | L | DO |) | 4M | 25 | | 1,986 | 1,986 | 66 | 56 | 44 | | | 10 | 55 | 17 | 18 | 27 | 6 | 42 | 0.47 | | | DF | L | Tot | als | | 27 | 1.6 | 8,165 | 8,033 | 265 | 14 | 35 | 52 | | 3 | 14 | 80 | 4 | 30 | 9 | 97 | 0.84 | | | DF | Т | , DO |) | CU | | | | | | | | | | | | | | | 6 | | 0.00 | | | DF | T | DO |) | 2M | 6 | | 444 | 444 | 15 | | | 100 | | | | 100 | | 34 | 13 | 210 | 1.55 | Ì | | DF | Т | DO |) | 3M | 75 | | 4,912 | 4,912 | 162 | | 100 | | | | | 100 | | 34 | 9 | 117 | 0.86 | | | DF | T | DO |) | 4M | 19 | | 1,228 | 1,228 | 41 | 100 | | | | | 50 | 34 | 16 | 32 | 5 | 31 | 0.35 | | | DF | Т | Tot | als | | 22 | | 6,584 | 6,584 | 217 | 19 | 75 | 7 | | | 9 | 88 | 3 | 31 | 7 | 74 | 0.65 | | | NF | L | , D(|) | 2M | 70 | 2.1 | 3,918 | 3,836 | 127 | | | 16 | 84 | | | 100 | | 34 | 19 | 497 | 3.29 | | | NF | I | DO | C | 3M | 16 | İ | 860 | 860 | 28 | 13 | | 87 | | | 100 | | | 26 | 9 | 112 | 1.09 | | | NF | I | , DO | O | 4M | 14 | | 762 | 762 | 25 | 15 | | 85 | | | 100 | | | 26 | 9 | 98 | 0.98 | | | NF | L | Tot | als | | 18 | 1.5 | 5,540 | 5,458 | 180 | 4 | | 37 | 59 | | 30 | 70 | | 29 | 12 | 236 | 1.93 | | | NF | T | , D0 | Э | CU | | | | | | | | | | | | | | | 12 | | 0.00 | | | NF | 7 | DO | С | 2M | 66 | 3.6 | 3,290 | 3,171 | 105 | | | 100 | | | | 100 | | 34 | 14 | 225 | 1.76 | | | NF | Γ | . Do | С | 3M | 6 | | 257 | 257 | 8 | | | 100 | | 100 | | | | 1 | 12 | | 0.93 | | | NF | 7 | . Do | С | 4M | 28 | | 1,325 | 1,325 | 44 | 22 | 78 | | | | 100 | | | 24 | 8 | 61 | 0.60 | | | NF | T | To | tals | | 16 | 2.5 | 4,872 | 4,753 | 157 | 6 | 22 | 72 | | 5 | 28 | 67 | | 25 | 10 | 113 | 1.15 | | | WF | I | D | С | 2M | 35 | | 1,208 | 1,208 | 40 | | | | 100 | | | 100 | | 34 | 22 | 759 | 4.32 | | | WF | I | , D | О | 3M | 31 | | 1,072 | 1,072 | 35 | | | 45 | 55 | | | 100 | | 34 | 14 | 312 | 1.96 | | | WF | Ι | D | О | 4M | 34 | | 1,156 | 1,156 | 38 | 34 | 12 | 17 | 37 | 12 | 88 | | | 27 | 7 | 60 | 0.63 | | | WF | L | To | tals | 3 | 11 | | 3,436 | 3,436 | 113 | 12 | 4 | 20 | 65 | 4 | 30 | 66 | | 28 | 9 | 142 | 1.15 | | | WF | 7 | D D | 0 | 3M | 78 | | 1,401 | 1,401 | 46 | | 100 | | | | | 100 | | 34 | 9 | 108 | 0.74 | | | WF | 7 | D | О | 4M | 22 | | 388 | 388 | 13 | 100 | | | | | 72 | 28 | | 28 | 3 5 | 30 | 0.31 | | | WF | Т | To | tals | 3 | 6 | | 1,789 | 1,789 | 59 | 22 | 78 | | | | 16 | 84 | | 31 | 7 | 69 | 0.54 | | | | | tals | - | | | 1.1 | 30,386 | 30,053 | 992 | | 34 | 36 | 18 | 2 | 20 | 76 | 2 | | | 105 | 0.90 | | | TC TST. | ATS | | | | ST
PROJEC | ATIST: | ICS
EDGE | | | PAGE
DATE 7. | 1
/12/2019 | |--|--|--|---|-------------|--|--|---|----------------|-------------------------------------|---------------------------------|------------------------------| | TWP | RGE | SECT | TRACT | | TYPE | ACI | | PLOTS | TREES | CuFt | BdFt | | 35S | 04E | | EDGE | | 0071 | | 34.00 | 22 | 154 | S | W | | 555_ | 0412 | 00 1 | <i>5</i> D G <u>D</u> | • | TREES | E | ESTIMATED
COTAL | P
S | PERCENT
SAMPLE | | | | | | PLOTS | TREES | | PER PLOT | | TREES | T | REES | | | | TOTA | | 22 | 154 | | 7.0 | | | | | | | | | COUNT
PREST | 11 | 70
84 | | 6.4
7.6 | | 4,460 | | 1.6 | | | | BLAN
100 % | | | | | | | | | | | | | | | | | STA | ND SUM | MARY | | | | | | | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | DOUG | G FIR-L | 22 | 60.2 | 17.1 | 80 | 23.3 | 96.2 | 12,438 | 12,405 | 2,986 | 2,986 | | DOUG | G FIR-T | 14 | 41.8 | 16.6 | 88 | 15.4 | 62.6 | 8,307 | 8,307 | 2,043 | 2,043 | | PONE | DEROS-L | 6 | 2.8 | 24.7 | 85 | 1.8 | 9.2 | 892 | 892 | 232 | 232 | | PONE | DEROS-T | 22 | 22.8 | 19.5 | 85 | 10.7 | 47.4 | 4,677 | 4,655 | 1,356 | 1,351 | | GR FI | IR-L | 2 | 1.8 | 37.0 | 125 | 2.3 | 13.7 | 3,524 | 3,524 | 643 | 643 | | GR FI | IR-T | 1 | .4 | 25.0 | 100 | 0.3 | 1.5 | 242 | 242 | 57 | 57 | | | FIR-L | 3 | 1.3 | 24.9 | 83 | 0.9 | 4.6 | 760 | 760 | 158 | 158 | | TOTA | AL | 70 | 131.2 | 18.1 | 84 | 55.2 | 235.3 | 30,841 | 30,785 | 7,475 | 7,470 | | CON | | | F THE SAMPI | | | | mr. 0 1 1 m | |
 | | | | | | Г OF 100 THE
FF | VOLUME | SAMPL | E TREES | 6 - BF | | F OF TREE | | INF. POP. | | CL:
SD: | 68.1 %
1.0 | TIMES OU
COEF
VAR. | Γ OF 100 THE
FF
% S.E.% | VOLUME | SAMPL
OW | E TREES
AVG | S - BF
HIGH | | | S REO.
10 | | | CL:
SD:
DOUG | 68.1 %
68.1 %
1.0
G FIR-L | TIMES OU
COEF
VAR.
62.3 | F OF 100 THE SF S.E.% 13.9 | VOLUME | SAMPL
OW
242 | E TREES
AVG
281 | 6 - BF
HIGH
321 | | F OF TREE | | | | CL:
SD:
DOUG | 68.1 %
68.1 %
1.0
G FIR-L
G FIR-T | COEF
VAR.
62.3
39.4 | F OF 100 THE F S.E.% 13.9 11.4 | VOLUME | SAMPL
OW
242
226 | E TREES
AVG
281
255 | 6 - BF
HIGH
321
284 | | F OF TREE | | | | CL:
SD:
DOUG
DOUG
PONI | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L | COEF
VAR.
62.3
39.4
63.3 | FF S.E.% 13.9 11.4 28.2 | VOLUME | SAMPL
OW
242 | E TREES
AVG
281 | 6 - BF
HIGH
321 | | F OF TREE | | | | CL:
SD:
DOUG
DOUG
PONI | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T | COEF
VAR.
62.3
39.4 | FF S.E.% 13.9 11.4 28.2 8.0 | VOLUME
L | SAMPL
OW
242
226
227 | E TREES
AVG
281
255
317 | S - BF
HIGH
321
284
406 | | F OF TREE | | | | CL:
SD:
DOUG
DOUG
PONI
PONI | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L | COEF VAR. 62.3 39.4 63.3 36.6 25.0 | FF S.E.% 13.9 11.4 28.2 8.0 23.4 | VOLUME
L | SAMPL
OW
242
226
227
205
1,517 | E TREES
AVG
281
255
317
223
1,980 | 3- BF
HIGH
321
284
406
241
2,443 | | F OF TREE | | | | CL:
SD:
DOUG
PONI
PONI
GR FI
GR FI | 68.1
68.1 %
1.0
G FIR-L
G FIR-T
DEROS-L
DEROS-T
IR-L
IR-T
FIR-L | COEF VAR. 62.3 39.4 63.3 36.6 25.0 | FF S.E.% 13.9 11.4 28.2 8.0 23.4 | VOLUME
L | SAMPL
OW
242
226
227
205
1,517 | E TREES
AVG
281
255
317
223
1,980 | 3- BF
HIGH
321
284
406
241
2,443 | | # OF TREE:
5 | 10 | 15 | | CL:
SD:
DOUG
PONI
PONI
GR FI
GR F | 68.1
68.1 %
1.0
G FIR-L
G FIR-T
DEROS-L
DEROS-T
IR-L
IR-T
FIR-L | COEF VAR. 62.3 39.4 63.3 36.6 25.0 | FF S.E.% 13.9 11.4 28.2 8.0 23.4 | VOLUME
L | SAMPL
OW
242
226
227
205
1,517 | E TREES
AVG
281
255
317
223
1,980 | 3- BF
HIGH
321
284
406
241
2,443 | | F OF TREE | | 15 | | CL:
SD:
DOUG
PONI
PONI
GR FI
GR FI
CON | 68.1
68.1 %
1.0
G FIR-L
G FIR-T
DEROS-L
DEROS-T
IR-L
IR-T
FIR-L | COEF VAR. 62.3 39.4 63.3 36.6 25.0 | FF S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 | VOLUME
L | SAMPL
OW
242
226
227
205
1,517
395
298 | E TREES
AVG
281
255
317
223
1,980 | 3- BF
HIGH
321
284
406
241
2,443
1,505
390 | # | # OF TREE:
5 | 121 | 54 INF. POP. | | CL:
SD:
DOUG
PONI
PONI
GR FI
CON
TOT. | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 | COEH VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEH VAR. | FF S.E.% S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% | L | SAMPL
OW
242
226
227
205
1,517
395
298
SAMPL
OW | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG | 3- BF
HIGH
321
284
406
241
2,443
1,505
390
S- CF
HIGH | # | # OF TREE:
5 | 121 | 15
54 | | CL:
SD:
DOUG
PONI
PONI
GR FI
CON
TOTA | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L | COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.3 | FF S.E.% S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% 12.4 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 | 3- BF
HIGH
321
284
406
241
2,443
1,505
390
S- CF
HIGH | # | # OF TREE:
5
484
OF TREE | 10
121
S REO. | 54 INF. POP. | | CL:
SD:
DOUG
PONI
PONI
GR FI
CON
TOT.
CL:
SD:
DOUG | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T | COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.3 31.8 | FF S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% 12.4 9.2 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 | 3- BF
HIGH
321
284
406
241
2,443
1,505
390
8- CF
HIGH
75
68 | # | # OF TREE:
5
484
OF TREE | 10
121
S REO. | 54
INF. POP. | | CL: SD: DOUG PONI PONI GR FI CON TOT. CL: SD: DOUG PONI | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-L | COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.2 31.8 55.2 | FF S.E.% S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% 12.4 9.2 24.6 | L | SAMPL OW 242 226 227 205 1,517 395 298 SAMPL OW 58 57 62 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 82 | 3- BF
HIGH
321
284
406
241
2,443
1,505
390
S- CF
HIGH | # | # OF TREE:
5
484
OF TREE | 10
121
S REO. | 54
INF. POP. | | CL: SD: DOUG PONI PONI GR FI CON TOT. CL: SD: DOUG PONI | 68.1 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T | COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.3 31.8 | F OF 100 THE S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% 12.4 9.2 24.6 8.5 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 | S - BF
HIGH
321
284
406
241
2,443
1,505
390
S - CF
HIGH
75
68
102 | # | # OF TREE:
5
484
OF TREE | 10
121
S REO. | 54
INF. POP. | | CL: SD: DOUG PONI GR FI CON TOT. CL: SD: DOUG PONI PONI PONI | 68.1 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T EGROS-T EGROS-T | COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.3 31.8 55.2 38.9 | F OF 100 THE S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% 12.4 9.2 24.6 8.5 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 62 61 276 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 82 67 361 | 3- BF
HIGH
321
284
406
241
2,443
1,505
390
8- CF
HIGH
75
68
102
73
447 | # | # OF TREE:
5
484
OF TREE | 10
121
S REO. | 54 INF. POP. | | CL: SD: DOUG PONI PONI GR FI CON TOT. CL: SD: DOUG PONI PONI GR F GR F CON | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L G FIR-T T DEROS-L T DEROS-T T IR-L T FIR-L | COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.2 38.9 25.3 74.8 | F OF 100 THE S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF S.E.% 12.4 9.2 24.6 8.5 23.7 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 62 61 276 89 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 82 67 361 | S - BF
HIGH
321
284
406
241
2,443
1,505
390
S - CF
HIGH
75
68
102
73
447 | # | # OF TREE: 5 484 # OF TREE 5 | 121
S REO.
10 | 54
INF. POP.
15 | | CL: SD: DOUG PONI PONI GR FI CON TOT. CL: SD: DOUG PONI PONI GR F GR F | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L G FIR-T T DEROS-L T DEROS-T T IR-L T FIR-L | COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.2 31.8 55.2 38.9 25.3 | FF S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% 12.4 9.2 24.6 8.5 23.7 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 62 61 276 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 82 67 361 | 3- BF
HIGH
321
284
406
241
2,443
1,505
390
8- CF
HIGH
75
68
102
73
447 | # | # OF TREE:
5
484
OF TREE | 10
121
S REO. | 54
INF. POP.
15 | | CL: SD: DOUG PONI PONI GR FI CON TOT. CL: SD: DOUG PONI GR F CON TOT. TOT. | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L G FIR-T T DEROS-L T DEROS-T T IR-L T FIR-L | COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.2 38.9 25.3 74.8 | FF S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% 12.4 9.2 24.6 8.5 23.7 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 62 61 276 89 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 82 67 361 185 82 | S - BF
HIGH
321
284
406
241
2,443
1,505
390
S - CF
HIGH
75
68
102
73
447 | <i>‡</i> | # OF TREE: 5 484 # OF TREE 5 | 121
S REO.
10 | 54 INF. POP. | | CL: SD: DOUG PONI GR FI CON TOT. CL: SD: DOUG PONI GR F CON TOT. CL: SD: CCN TOT. CL: SD: CCN TOT. CCN TOT. CCN TOT. CCN TOT. | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T SIR-L FIR-L FIR-L AL 68.1 % 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.3 31.8 55.2 38.9 25.3 74.8 82.7 COEF VAR. | F OF 100 THE S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF S.E.% 12.4 9.2 24.6 8.5 23.7 6 10.0 FF % S.E.% | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 62 61 276 89 74 TREES | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 82 67 361 185 82 /ACRE AVG | S - BF
HIGH
321
284
406
241
2,443
1,505
390
S - CF
HIGH
75
68
102
73
447
281
90
HIGH | <i>‡</i> | # OF TREE: 5 484 # OF TREE 5 | 121
S REO.
10 | 54 INF. POP. 15 | | CL: SD: DOUG PONI GR FI CON TOT. CL: SD: DOUG PONI GR F CON TOT. CL: SD: DOUG PONI GR F CON TOT. CL: SD: DOUG PONI GR F CON TOT. | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-T EIR-L T FIR-L AL 68.1 % 1.0 G FIR-L OBEROS-T EIR-L FIR-L FIR-L
FIR-L OBEROS-T | COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.2 31.8 55.2 38.9 25.3 74.8 82.7 COEF VAR. 114.5 | F S.E.% S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% 12.4 9.2 24.6 8.5 23.7 6 10.0 FF % S.E.% 5 25.0 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 62 61 276 89 74 TREES OW 45 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 82 67 361 185 82 /ACRE AVG 60 | S - BF
HIGH
321
284
406
241
2,443
1,505
390
S - CF
HIGH
75
68
102
73
447
281
90
HIGH
75 | <i>‡</i> | # OF TREE: 5 484 # OF TREE 5 | 121
S REO.
10 | 54 INF. POP. 15 | | CL: SD: DOUG PONI PONI GR FI CON TOTA CL: SD: DOUG PONI GR F CON TOTA CL: SD: DOUG PONI FONI GR F CON TOTA CL: SD: DOUG DOUG PONI FONI FONI FONI FONI FONI FONI FONI F | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L G FIR-T DEROS-L OB FIR-L G FIR-T OB FIR-L G | COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.2 31.8 55.2 38.9 25.3 74.8 82.7 COEF VAR. 114.9 | F S.E.% S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% 12.4 9.2 24.6 8.5 23.7 6 10.0 FF % S.E.% 37.0 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 62 61 276 89 74 TREES COW 45 26 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 82 67 361 185 82 /ACRE AVG 60 42 | S - BF
HIGH
321
284
406
241
2,443
1,505
390
S - CF
HIGH
75
68
102
73
447
281
90
HIGH
75
57 | <i>‡</i> | # OF TREE: 5 484 # OF TREE 5 | 121
S REO.
10 | 54
INF. POP.
15 | | CL: SD: DOUG PONI PONI GR FI GR FI CON TOT. SD: DOUG PONI GR F CON TOT CL: SD: DOUG PONI GR F CON TOT CON TOT CON TOT | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-T FIR-L G FIR-T DEROS-T FIR-L OBG FIR-L G FIR-T OBG FIR-L G FIR-T OBG FIR-L G FIR-T OBG FIR-L G FIR-T DEROS-T FIR-L CAL 68.1 % 1.0 G FIR-L G FIR-T DEROS-T OBG FIR-L G FIR-T DEROS-L | COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.3 31.8 55.2 38.9 25.3 74.8 82.7 COEF VAR. 114.1 169.8 205.5 | FF S.E.% S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% 12.4 9.2 24.6 8.5 23.7 6 10.0 FF % S.E.% 3.7 4.8 5.8 4.8 5.8 5.8 5.8 6.8 6.8 6.8 6.8 6 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 62 61 276 89 74 TREES COW 45 26 2 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 82 67 361 185 82 /ACRE AVG 60 42 3 | S - BF
HIGH
321
284
406
241
2,443
1,505
390
S - CF
HIGH
75
68
102
73
447
281
90
HIGH
75
57
4 | <i>‡</i> | # OF TREE: 5 484 # OF TREE 5 | 121
S REO.
10 | 54
INF. POP.
15 | | CL: SD: DOUG PONI PONI GR FI GR FI CON TOT. SD: DOUG PONI GR F CON TOT. CL: SD: DOUG PONI FONI GR F CON TOT. CD: DOUG PONI PONI FONI FONI PONI PONI PONI PONI PONI PONI PONI P | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-T EIR-L DEROS-T OBEROS-T | TIMES OU COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.3 31.8 55.2 38.9 25.3 74.8 82.7 COEF VAR. 114.1 169.3 205.3 176.2 | F S.E.% S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% 12.4 9.2 24.6 8.5 23.7 6 10.0 FF % S.E.% 3 37.0 44.8 2 38.4 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 62 61 276 89 74 TREES.OW 45 26 2 14 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 82 67 361 185 82 /ACRE AVG 60 42 3 23 | S - BF
HIGH
321
284
406
241
2,443
1,505
390
S - CF
HIGH
75
68
102
73
447
281
90
HIGH
75
57
4 | <i>‡</i> | # OF TREE: 5 484 # OF TREE 5 | 121
S REO.
10 | 54
INF. POP.
15 | | CL: SD: DOUG PONI PONI GR FI CON TOT. SD: DOUG PONI PONI GR F CON TOT. CL: SD: DOUG PONI PONI GR F CON TOT. CL: SD: DOUG PONI PONI GR F CON TOT. CL: SD: | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-T EIR-L DEROS-T OBEROS-T | TIMES OU COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.3 31.8 55.2 38.9 25.3 74.8 82.7 COEF VAR. 114.1 169.3 205.3 176.3 268.4 268. | FF S.E.% S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% 12.4 9.2 24.6 8.5 23.7 6 10.0 FF % S.E.% 3 37.0 4 4.8 2 38.4 4 58.5 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 62 61 276 89 74 TREES COW 45 26 2 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 82 67 361 185 82 /ACRE AVG 60 42 3 | S - BF
HIGH
321
284
406
241
2,443
1,505
390
S - CF
HIGH
75
68
102
73
447
281
90
HIGH
75
57
4 | <i>‡</i> | # OF TREE: 5 484 # OF TREE 5 | 121
S REO.
10 | 54 INF. POP. 15 | | CL: SD: DOUG PONI PONI GR FI CON TOT. CL: SD: DOUG PONI PONI GR F CON TOT. CL: SD: DOUG PONI PONI GR F GR F CON TOT. CL: SD: CON TOT. CR F CON TOT. CL: SD: CON TOT. CL: SD: CON TOT. CR F CON TOT. CR F CON TOT. CR F CON TOT. | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-T EIR-L DEROS-T OBEROS-T | TIMES OU COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.3 31.8 55.2 38.9 25.3 74.8 82.7 COEF VAR. 114.1 169.3 205.3 176.2 | F S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF 8 S.E.% 12.4 9.2 24.6 8.5 23.7 10.0 FF 8 S.E.% 3 7.0 4 4.8 2 38.4 4 58.5 102.2 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 62 61 276 89 74 TREES.OW 45 26 2 14 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 82 67 361 185 82 /ACRE AVG 60 42 3 23 23 | S - BF
HIGH
321
284
406
241
2,443
1,505
390
S - CF
HIGH
75
68
102
73
447
281
90
HIGH
75
57
4
31
3 | <i>‡</i> | # OF TREE: 5 484 # OF TREE 5 | 121
S REO.
10 | 54 INF. POP. 15 | | CL: SD: DOUG PONI PONI GR FI CON TOT. CL: SD: DOUG PONI PONI GR F CON TOT. CL: SD: DOUG PONI PONI GR F GR F CON TOT. CL: SD: CON TOT. CR F CON TOT. CL: SD: CON TOT. CL: SD: CON TOT. CR F CON TOT. CR F CON TOT. CR F CON TOT. | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-T TER-L DEROS-T TER-L DEROS-T TER-L DEROS-T TER-L TER-T FIR-L TOFIR-L TOFIR-L TOFIR-L TOFIR-L TOFIR-L TOFIR-T TOFIR-L TOFIR-T TOFIR-T TOFIR-T TOFIR-L TOFIR-T TOFIR-L | TIMES OU COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.2 38.9 25.3 74.8 82.7 COEF VAR. 114.5 169.8 205.6 176.6 268.4 469.0 | F OF 100 THE F S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% 12.4 9.2 24.6 8.5 23.7 8 51.7 10.0 FF % S.E.% 37.0 44.8 25.0 37.0 44.8 25.0 38.4 45.5 102.2 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 62 61 276 89 74 TREES.OW 45 26 2 14 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 82 67 361 185 82 AVG 60 42 3 23 2 0 | S - BF
HIGH
321
284
406
241
2,443
1,505
390
S - CF
HIGH
75
68
102
73
447
281
90
HIGH
75
57
4
31
3
1 | <i>‡</i> | # OF TREE: 5 484 # OF TREE 5 | 121
S REO.
10 | 54 INF. POP. 15 INF. POP. 15 | | CL: SD: DOUG PONI GR FI GR FI CON TOT. CL: SD: DOUG PONI PONI GR F GR F CON TOT. CL: SD: DOUG PONI PONI GR F CON TOT. TOT. TOT. TOT. | 68.1 % 1.0 G FIR-L G FIR-T DEROS-L DEROS-T IR-L IR-T FIR-L AL 68.1 % 1.0 G FIR-L G FIR-T DEROS-T TER-L DEROS-T TER-L DEROS-T TER-L DEROS-T TER-L TER-T FIR-L TOFIR-L TOFIR-L TOFIR-L TOFIR-L TOFIR-L TOFIR-T TOFIR-L TOFIR-T TOFIR-T TOFIR-T TOFIR-L TOFIR-T TOFIR-L | TIMES OU COEF VAR. 62.3 39.4 63.3 36.6 25.0 84.4 110.1 COEF VAR. 55.2 38.9 25.3 74.8 82.7 COEF VAR. 114.5 169.8 205.6 176.6 268.4 469.0 469.0 | F S.E.% S.E.% 13.9 11.4 28.2 8.0 23.4 58.4 13.3 FF % S.E.% 12.4 9.2 24.6 8.5 23.7 6 10.0 FF % S.E.% 3.8 4.1 3.8 4.1 58.5 10.2 10.2 10.2 10.2 10.2 10.2 | L | SAMPLOW 242 226 227 205 1,517 395 298 SAMPLOW 58 57 62 61 276 89 74 TREES OW 45 26 2 14 1 | E TREES AVG 281 255 317 223 1,980 950 344 E TREES AVG 67 62 82 67 361 185 82 AVG 60 42 3 23 2 0 1 | S - BF HIGH 321 284 406 241 2,443 1,505 390 S - CF HIGH 75 68 102 73 447 281 90 HIGH 75 57 4 31 3 1 3 147 | <i>‡</i> | # OF TREE: 5 484 # OF TREE 5 | 10 121 S REO. 10 68 S REO. 10 | 54
INF.
POP.
15 | | TC TSTA | ATS | | | S
PROJ | TATIS' | ΓICS
EDGE | | | PAGE
DATE | 2
7/12/2019 | |---------|-----------|----------|-------|-----------|----------|--------------|-------|------------|--------------|----------------| | TWP | RGE | SECT TRA | CT | ТҮРЕ | A | CRES | PLOTS | TREES | CuFt | BdFt | | 35S | 04E | 08 EDC | GE | 0071 | | 34.00 | 22 | 154 | S | W | | CL: | 68.1% | COEFF | | BASA | L AREA/A | ACRE | | # OF PLO | TS REQ. | INF. POP. | | SD: | 1.0 | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | FIR-L | 114.2 | 24.9 | 72 | 96 | 120 | | | | | | | FIR-T | 170.7 | 37.2 | 39 | 63 | 86 | | | | | | | EROS-L | 201.8 | 44.0 | 5 | 9 | 13 | | | | | | | EROS-T | 163.4 | 35.6 | 30 | 47 | 64 | | | | | | GR FI | | 268.4 | 58.5 | 6 | 14 | 22 | | | | | | GR FI | R-T | 469.0 | 102.2 | | 2 | 3 | | | | | | CON I | | 469.0 | 102.2 | | 5 | 9 | | | | | | TOTA | | 41.8 | 9.1 | 214 | 235 | 257 | | 73 | 18 | 8 | | CL: | 68.1 % | COEFF | | NET I | BF/ACRE | | | # OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | | FIR-L | 118.3 | 25.8 | 9,206 | 12,405 | 15,604 | | | | | | | FIR-T | 174.5 | 38.0 | 5,148 | 8,307 | 11,466 | | | | | | POND | EROS-L | 225.8 | 49.2 | 453 | 892 | 1,331 | | | | | | POND | EROS-T | 168.5 | 36.7 | 2,945 | 4,655 | 6,364 | | | | | | GR FI | | 268.4 | 58.5 | 1,462 | 3,524 | 5,586 | | | | | | GR FI | R-T | 469.0 | 102.2 | | 242 | 489 | | | | | | CON | FIR-L | 469.0 | 102.2 | | 760 | 1,538 | | | | | | TOTA | AL | 42.6 | 9.3 | 27,926 | 30,785 | 33,644 | | 76 | 19 | 8 | | CL: | 68.1 % | COEFF | | NET (| CUFT FT/ | ACRE | | # OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | 3 FIR-L | 116.7 | 25.4 | 2,226 | 2,986 | 3,745 | | | | | | DOUG | 3 FIR-T | 172.1 | 37.5 | 1,276 | 2,043 | 2,809 | | | | | | PONE | DEROS-L | 227.4 | 49.6 | 117 | 232 | 348 | | | | | | PONE | DEROS-T | 163.6 | 35.7 | 870 | 1,351 | 1,833 | | | | | | GR FI | | 268.4 | 58.5 | 267 | 643 | 1,019 | | | | | | GR FI | R-T | 469.0 | 102.2 | | 57 | 115 | | | | | | CON | FIR-L | 469.0 | 102.2 | | 158 | 319 | | | | | | TOTA | AL | 41.4 | 9.0 | 6,795 | 7,470 | 8,145 | | 72 | 18 | 8 | | T T | TSPC | CSTGR | | | ţ | Species, | Sort G | rade - Boar
: EDC | | ot V | olun | ıes (T | Type) | | | | 1 | Page
Date
Time | | 1
/12/20
2:05:2 | | |--------------------------------|------|----------------------|---------------|----------|--------------|------------|--------------|----------------------|-----|--------|---------|--------|---------------|----------|---------|----------|-----------------|----------------------|-------|-----------------------|-------------| | T35S
Tw _l
35S | p | 4E S08
Rge
04E | S | lec | Tract
DGE | | Type
0071 | | | Plots | | - | le Tree
70 | s | C
S | uFt | T35
Bdl
W | |)4E S | 08 T0 | 071 | | | | | | % | | -A. HVIS | | | Per | cent N | let Bo | ard Fo | ot Vol | ume | | | Av | erage | e Log | | - | | | S | So G | . | Net | Rd | Ft. per Ac | re | Total | т. | og Sca | do Di | | LIO | g Len | voth. | | I m | Dia | D4 | CF/ | Logs
Per | | Spp | | rt a | - 1 | BdFt | Def% | Gross | Net | | 4-5 | | | | 12-20 | | - | 36-00 | Ft | | | Lf | /Acre | | БРР | | ~ • | \rightarrow | Duri | D0170 | 01000 | 1,01 | 1400 141151 | 4-3 | 0-11 | 12-10 | 17- | 12-20 | 21-30 | 31-33 | 30-99 | | | | | | | DF | | DO | CU | | | | | O.W. | | | 0.1 | 10 | | | 100 | | 4 | | 205 | 0.00
1.86 | 4.
10. | | DF | | DO | 2M | 22 | 1.1 | 2,875 | 2,842 | 97 | | 50 | 81 | 19 | , | 17 | 100 | 10 | 34 | | | 0.80 | 71. | | DF | | DO | 3M | 63 | | 7,745 | 7,745 | 263 | 8 | 52 | 40
8 | | 35 | 17
34 | 69
7 | 12
24 | 25 | | | 0.50 | 44. | | DF | L | DO | 4M | 15 | | 1,818 | 1,818 | 62 | 54 | 39 | 0 | | 33 | 34 | | 24 | 23 | 0 | | 0.50 | | | DF : | L | Γotals | | 40 | .3 | 12,438 | 12,405 | 422 | 13 | 38 | 45 | 4 | 6 | 16 | 67 | 11 | 29 | 8 | 95 | 0.80 | 130 | | DF | т | DO | 2M | 9 | | 818 | 818 | 28 | | | 100 | | | | 100 | | 34 | 14 | 249 | 1.89 | 3 | | DF | | DO | 3M | 64 | | 5,318 | 5,318 | 181 | 4 | 33 | 63 | | | 7 | 84 | 9 | 34 | 10 | 130 | 0.84 | 40 | | DF | | DO | 4M | 27 | | 2,171 | 2,171 | 74 | 58 | 42 | | | 12 | 49 | 14 | 25 | 29 | 6 | 47 | 0.48 | 46 | | | | | | 07 | | | · | 202 | 17 | 32 | 50 | | 3 | 17 | 67 | 12 | 32 | 0 | 92 | 0.71 | 90 | | DF ' | T ' | Fotals | | 27 | | 8,307 | 8,307 | 282 | 17 | 32 | 30 | | 3 | 17 | 07 | 12 | 32 | 0 | 92 | 0.71 | 30 | | PP | T | DO | CU | | | | | | | | | | | | | | | 6 | | 0.00 | | | PP | T | DO | 2M | 9 | | 439 | 439 | 15 | | | 100 | | | | 100 | | 34 | 14 | 267 | 1.83 | 1 | | PP | T | DO | 3M | 66 | 1 | 3,090 | 3,090 | 105 | 2 | 34 | 64 | | 7 | 4 | 84 | 5 | 32 | 11 | 138 | 1.19 | 22 | | PP | T | DO | 4M | 25 | 1.9 | 1,149 | 1,126 | 38 | 69 | 9 | 22 | | | 34 | 41 | 25 | 29 | 6 | 44 | 0.55 | 25 | | PP ' | T | Fotals | | 15 | .5 | 4,677 | 4,655 | 158 | 18 | 25 | 57 | | 5 | 11 | 75 | 9 | 30 | 8 | 93 | 0.90 | 50 | | PP | т | DO | 3M | 78 | | 697 | 697 | 24 | | | 80 | 20 | | | 100 | | 34 | 15 | 285 | 2.04 | 2 | | PP | | DO | 4M | 22 | | 195 | 195 | 7 | 46 | 35 | 18 | 20 | 24 | 10 | 44 | 23 | 27 | | | 0.69 | 3 | | | | | 7171 | | ļ | | | - | | | | 1.6 | | | | | <u> </u> | | | | 5 | | PP] | L ' | Fotals | | 3 | | 892 | 892 | 30 | 10 | 8 | 67 | 16 | 5 | 2 | 88 | 5 | 30 | 10 | 154 | 1.34 | 3 | | GF | L | DO | 2M | 60 | | 2,118 | 2,118 | 72 | | | | 100 | | | 100 | | 34 | 27 | 1151 | 5.75 | 1 | | GF | L | DO | 3M | 30 | | 1,088 | 1,088 | 37 | | | | 100 | | | 100 | | 34 | 20 | 591 | 3.13 | 1 | | GF | L | DO | 4M | 10 | | 318 | 318 | 11 | 12 | | 88 | | 41 | 59 | | | 21 | 9 | 86 | 1.11 | 3 | | GF | L | Totals | | 11 | | 3,524 | 3,524 | 120 | 1 | | 8 | 91 | 4 | 5 | 91 | | 28 | 17 | 479 | 3.16 | 7 | | GF | Т | DO | 3M | 72 | | 175 | 175 | 6 | | | | 100 | | | 100 | | 34 | 17 | 390 | 2.49 | | | GF | | DO | 4M | 28 | | 67 | 67 | 2 | 13 | 87 | | - | 13 | | 87 | | 26 | | | 0.82 | | | | | Totals | | 1 | | 242 | 242 | 8 | 4 | 24 | | 72 | 4 | | 96 | | 28 | 11 | 180 | 1.49 | 1 | | | | | 2).4 | 58 | † | 447 | 447 | 15 | | | | 100 | | | 100 | | 34 | | | 4.27 | | | WF
WF | | DO
DO | 2M
3M | 38
37 | | 278 | 278 | 9 | | 47 | 18 | 36 | | | 100 | | 34 | | | 1.53 | 1 | | WF | | DO | 4M | 5 | | 35 | 35 | 1 | 100 | -1/ | 10 | 50 | 8 | 75 | 17 | | 24 | | | 0.53 | | | WF | L | Totals | | 2 | | 760 | 760 | 26 | 5 | 17 | 7 | 72 | 0 | 3 | 96 | | 30 | 11 | 239 | 1.67 | 3 | | | Tota | la | | | .2 | 30,841 | 30,785 | 1,047 | 13 | 29 | 43 | 15 | 4 | 13 | 73 | 9 | 30 | 9 | 107 | 0.87 | 289 | | TC TST | ATS | | | | | ATIST | | | | | 1/12/2010 | |--
--|---|--|------|---|---|--|----------|---|------------------------------------|-------------------------------| | | | | | | PROJEC | | EDGE | DI OMO | | | /12/2019 | | TWP | RGE | | TRACT | | TYPE | AC | RES | PLOTS | TREES | CuFt | BdFt | | 35S_ | 04E | 08 | EDGE | | 0072 | | 15.00 | 10 | 37 | S | W | | | | | | | TREES | | ESTIMATED
FOTAL | S | PERCENT
SAMPLE | | | | | | PLOTS | TREES | | PER PLOT | | TREES | Γ | REES | | | | TOTA | A L | 10 | 37 | | 3.7 | | | | | | | | CRUI | ISE | 5 | 17 | | 3.4 | | 1,624 | | 1.0 | | | | | COUNT | | | | | | | | | | | | | DREST | _ | • | | 4.0 | | | | | | | | COU | | 5 | 20 | | 4.0 | | | | | | | | BLAN
100 % | | | | | | | | | | | | | 100 / | | | | STA | ND SUMN | AARY | | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | DONI | DEROS-L | | 1 16.1 | 16.5 | 83 | 5.9 | 24.0 | 2,506 | 2,506 | 660 | 660 | | | | 8 | | 14.8 | 72 | 17.7 | 68.0 | 5,649 | 5,649 | 1,628 | 1,628 | | | DEROS-T
G FIR-L | 3 | | 22.1 | 98 | 8.5 | 40.0 | 5,849 | 5,849 | 1,386 | 1,386 | | | G FIR-T | I | | 12.0 | 78 | 1.2 | 4.0 | 407 | 407 | 101 | 101 | | | | | | 12.0 | 44 | 3.5 | 12.0 | 458 | 458 | 189 | 189 | | | CED-L | 1 | | 15.8 | 74 | 37.2 | 148.0 | 14,870 | 14,870 | 3,963 | 3,963 | | TOT | AL | 17 | 100.3 | 13.0 | | 37.2 | 140.0 | 14,070 | 17,070 | 3,700 | | | CON | | | OF THE SAMP
JT OF 100 THE | | E WILL BE | WITHIN | THE SAMP | LE ERROR | | | | | CL: | 68.1 % | COE | FF | | SAMPL | E TREES | S - RF | | # OF TREES | S REO. | INF. POP. | | SD: | | VAR | R.% S.E.% | ĭ | OW | AVG | HIGH | | 5 | 10 | 1 | | | DEROS-L | 48. | | | 143 | 198 | 0.50 | | | | | | | | | | | 110 | 190 | 252 | | | | | | PON | DEROS-T | 45. | | | 95 | 115 | 135 | | | | | | | DEROS-T
IG FIR - L | 45.5
33. | .8 17.3 | | | | | | | | | | DOU
DOU | IG FIR-L
IG FIR-T | | .8 17.3 | | 95 | 115 | 135 | | | | | | DOU
DOU
INC (| IG FIR-L
IG FIR-T
CED-L | 33. | 8 17.3
5 23.2 | | 95
312 | 115
407 | 135
501 | | 252 | £2 | 2 | | DOU
DOU
INC O | IG FIR-L
IG FIR-T
CED-L
`AL | 33.
77.3 | 8 17.3
5 23.2
3 19.3 | | 95 | 115 | 135 | | 253 | 63 | | | DOU
DOU
INC O | IG FIR-L
IG FIR-T
CED-L | 33. | 8 17.3
5 23.2
3 19.3 | | 95
312
<i>144</i>
SAMPL | 115
407
<i>179</i>
E TREES | 135
501
213 | ; | # OF TREE | S REQ. | INF. POP | | DOU
DOU
INC O
TOT
CL:
SD: | IG FIR-L
IG FIR-T
CED-L
YAL
68.1 %
1.0 | 77
COE
VAR | 8 17.3
.5 23.2
3 19.3
EFF
R.% S.E.% | Ţ | 95
312
<i>144</i>
SAMPL
OW | 115
407
<i>179</i>
E TREES
AVG | 135
501
213
S - CF
HIGH | ; | | | INF. POP | | DOU
DOU
INC O
TOT
CL:
SD: | IG FIR-L
IG FIR-T
CED-L
'AL
68.1 %
1.0
DEROS-L | 77.3
COE
VAR
54. | 8 17.3
5 23.2
3 19.3
EFF
2.% S.E.%
9 31.4 | I | 95
312
144
SAMPL
OW
37 | 115
407
179
E TREES
AVG
54 | 135
501
213
S - CF
HIGH
71 | į | # OF TREE | S REQ. | INF. POP. | | DOU
DOU
INC O
TOT
CL:
SD:
PON | G FIR-L
IG FIR-T
CED-L
'AL
68.1 %
1.0
DEROS-L
IDEROS-T | 77.3 COE VAR 54. 40. | 8 17.3
5 23.2
3 19.3
EFF
3.% S.E.%
9 31.4
4 15.2 | I | 95
312
144
SAMPL
COW
37
28 | 115
407
179
E TREES
AVG
54
33 | 135
501
213
S - CF
HIGH
71
38 | 1 | # OF TREE | S REQ. | INF. POP | | DOU
DOU
INC O
TOT
CL:
SD:
PON:
PON:
DOU | G FIR-L
IG FIR-T
CED-L
'AL
68.1 %
1.0
DEROS-L
IDEROS-T
JG FIR-L | 77.3
COE
VAR
54. | 8 17.3
5 23.2
3 19.3
EFF
3.% S.E.%
9 31.4
4 15.2 | I | 95
312
144
SAMPL
OW
37 | 115
407
179
E TREES
AVG
54 | 135
501
213
S - CF
HIGH
71 | 1 | # OF TREE | S REQ. | INF. POP | | DOU
DOU
INC C
TOT
CL:
SD:
PON
PON
DOU
DOU | G FIR-L IG FIR-T CED-L 'AL 68.1 % 1.0 DEROS-L DEROS-T JG FIR-L JG FIR-T | 77.3 COE VAR 54. 40. | 8 17.3
5 23.2
3 19.3
EFF
3.% S.E.%
9 31.4
4 15.2 | I | 95
312
144
SAMPL
COW
37
28 | 115
407
179
E TREES
AVG
54
33 | 135
501
213
S - CF
HIGH
71
38 | į | # OF TREE | S REQ. | INF. POP | | DOU
DOU
INC C
TOT
CL:
SD:
PON:
PON:
DOU
DOU
INC C | G FIR-L IG FIR-T CED-L AL 68.1 % 1.0 DEROS-L DEROS-T G FIR-L JG FIR-T CED-L | 33. 77.3 COE VAR 54. 40. 27. | 8 17.3
5 23.2
3 19.3
EFF
R.% S.E.%
9 31.4
.4 15.2
.9 19.3 | | 95
312
144
SAMPL
COW
37
28 | 115
407
179
E TREES
AVG
54
33 | 135
501
213
S - CF
HIGH
71
38 | ï | # OF TREE | S REQ. | INF. POP. | | DOU
DOU
INC O
TOT
CL:
SD:
PON:
PON:
DOU
INC O | G FIR-L G FIR-T CED-L 'AL 68.1 % 1.0 DEROS-L DEROS-T JG FIR-L JG FIR-T CED-L 'AL | 77.3 COE VAR 54. 40. 27. | 8 17.3
5 23.2
3 19.3
EFF
8.% S.E.%
9 31.4
.4 15.2
.9 19.3
0 17.0 | | 95
312
144
SAMPL
COW
37
28
77 | 115
407
179
E TREES
AVG
54
33
96 | 135
501
213
S - CF
HIGH
71
38
114 | | # OF TREE:
5 | S REQ.
10 | INF. POP | | DOU DOU INC O TOT | G FIR-L IG FIR-T CED-L AL 68.1 % 1.0 DEROS-L DEROS-T G FIR-L JG FIR-T CED-L TAL 68.1 % | 33. 77.3 COE VAR 54. 40. 27. 68.0 | 8 17.3
5 23.2
3 19.3
EFF
R.% S.E.%
9 31.4
.4 15.2
.9 19.3
0 17.0 | | 95
312
144
SAMPL
.OW
37
28
77
39
TREES. | 115
407
179
E TREES
AVG
54
33
96
47 | 135
501
213
S - CF
HIGH
71
38
114 | | # OF TREE:
5 | S REQ.
10
49
S REQ. | INF. POP | | DOU DOU INC O TOT OUT OUT OUT OUT OUT OUT OUT OUT O | G FIR-L IG FIR-T CED-L AL 68.1 % 1.0 DEROS-L DEROS-T JG FIR-L JG FIR-T CED-L TAL 68.1 % 1.0 | 33. 77: COE VAR 54. 40. 27. 68. COE
VAR | 8 17.3
5 23.2
3 19.3
EFF
R.% S.E.%
9 31.4
15.2
.9 19.3
0 17.0
EFF
R.% S.E.% | | 95
312
144
SAMPL
COW
37
28
77 | 115
407
179
E TREES
AVG
54
33
96 | 135
501
213
S - CF
HIGH
71
38
114 | | # OF TREE:
5
196
OF PLOT | S REQ.
10 | INF. POP | | DOU DOU INC (CL: SD: PON CL: S | G FIR-L IG FIR-T CED-L AL 68.1 % 1.0 DEROS-L DEROS-T G FIR-L JG FIR-T CED-L TAL 68.1 % | 33. 77.3 COE VAR 54. 40. 27. 68.0 | 8 17.3
5 23.2
3 19.3
EFF
R.% S.E.%
9 31.4
15.2
.9 19.3
0 17.0
EFF
R.% S.E.%
.6 39.1 | | 95
312
144
SAMPL
.OW
37
28
77
39
TREES | 115
407
179
E TREES
AVG
54
33
96
47
/ACRE
AVG | 135
501
213
S - CF
HIGH
71
38
114 | | # OF TREE:
5
196
OF PLOT | S REQ.
10
49
S REQ. | INF. POP | | DOUU DOUU INC CL: SD: PON: DOUU INC CTOTT CCL: SD: PON: PON: PON: PON: PON: PON: PON: PON | G FIR-L G FIR-T CED-L AL 68.1 % 1.0 DEROS-L DEROS-T G FIR-L G FIR-T CED-L TAL 68.1 % 1.0 DEROS-L | 33. 77: COE VAR 54. 40. 27. 68. COE VAR 117. | 8 17.3
5 23.2
3 19.3
EFF
R.% S.E.%
9 31.4
.4 15.2
.9 19.3
0 17.0
EFF
R.% S.E.%
.6 39.1
.3 41.0 | | 95
312
144
SAMPL
.OW
37
28
77
39
TREES.
.OW
10 | 115
407
179
E TREES
AVG
54
33
96
47
/ACRE
AVG
16 | 135
501
213
S - CF
HIGH
71
38
114
555
HIGH
22
80
22 | | # OF TREE:
5
196
OF PLOT | S REQ.
10
49
S REQ. | INF. POP | | DOUU DOUU INC CL: SD: PON DOUU INC CL: SD: PON DOUU INC CL: SD: PON DOUU INC CL: SD: PON DOUU DOUU INC CL: | G FIR-L G FIR-T CED-L AL 68.1 % 1.0 DEROS-L DEROS-T G FIR-L G FIR-T CED-L TAL 68.1 % 1.0 DEROS-L JDEROS-L JDEROS-L JDEROS-L JDEROS-L JDEROS-L JDEROS-L JDEROS-L JDEROS-T | 33. 77 COE VAR 54. 40. 27. 68. COE VAR 117. 123. | 8 17.3
5 23.2
3 19.3
EFF
R.% S.E.%
9 31.4
.4 15.2
.9 19.3
0 17.0
EFF
R.% S.E.%
.6 39.1
.3 41.0
.5 44.1
.2 105.2 | I | 95
312
144
SAMPL
OW
37
28
77
39
TREES
COW
10
33
8 | 115
407
179
E TREES
AVG
54
33
96
47
/ACRE
AVG
16
57
15
5 | 135
501
213
S - CF
HIGH
71
38
114
55
HIGH
22
80
22
10 | | # OF TREE:
5
196
OF PLOT | S REQ.
10
49
S REQ. | INF. POP | | DOUU DOUU INC CL: SD: PON DOUU INC CL: SD: PON DOUU INC CL: SD: PON DOUU INC CL: SD: PON DOUU INC CL: | G FIR-L G FIR-T CED-L 68.1 % 1.0 DEROS-L DEROS-T JG FIR-L G FIR-T CED-L TAL 68.1 % 1.0 DEROS-L DEROS-T JG FIR-T CED-L TAL JG FIR-T JG FIR-T JG FIR-L JG FIR-T JG FIR-L JG FIR-T CED-L | 33. 77 COE VAR 54. 40. 27. 68.0 COE VAF 117. 123. 132. 316. 161. | 8 17.3
5 23.2
3 19.3
EFF
R.% S.E.%
9 31.4
.4 15.2
.9 19.3
0 17.0
EFF
R.% S.E.%
.6 39.1
.3 41.0
.5 44.1
.2 105.2
.0 53.6 | I | 95
312
144
SAMPL
OW
37
28
77
39
TREES
COW
10
33
8 | 115
407
179
E TREES
AVG
54
33
96
47
/ACRE
AVG
16
57
15
5 | 135
501
213
S - CF
HIGH
71
38
114
555
HIGH
22
80
22
10
23 | | # OF TREE:
5
196
OF PLOT:
5 | S REQ.
10
49
S REO.
10 | INF. POP. 2 INF. POP. 1 | | DOU DOU INC CL: SD: PON! DOU INC CTOT CL: SD: PON DOU INC CTOT CL: SD: PON DOU | G FIR-L G FIR-T CED-L 68.1 % 1.0 DEROS-L DEROS-T JG FIR-L G FIR-T CED-L TAL 68.1 % 1.0 DEROS-L DEROS-T JG FIR-T CED-L TAL JG FIR-T JG FIR-T JG FIR-L JG FIR-T JG FIR-L JG FIR-T CED-L | 33. 77 COE VAR 54. 40. 27. 68.0 COE VAR 117. 123. 132. 316. | 8 17.3
5 23.2
3 19.3
EFF
R.% S.E.%
9 31.4
.4 15.2
.9 19.3
0 17.0
EFF
R.% S.E.%
.6 39.1
.3 41.0
.5 44.1
.2 105.2
.0 53.6 | I | 95
312
144
SAMPL
OW
37
28
77
39
TREES
COW
10
33
8 | 115
407
179
E TREES
AVG
54
33
96
47
/ACRE
AVG
16
57
15
5 | 135
501
213
S - CF
HIGH
71
38
114
55
HIGH
22
80
22
10 | | # OF TREE: 5 196 # OF PLOT: 5 | S REQ.
10
49
S REQ.
10 | INF. POP. | | DOU DOU INC (CL: SD: PON | G FIR-L G FIR-T CED-L 68.1 % 1.0 DEROS-L DEROS-T JG FIR-L G FIR-T CED-L TAL 68.1 % 1.0 DEROS-L DEROS-T JG FIR-T CED-L TAL JG FIR-T JG FIR-T JG FIR-L JG FIR-T JG FIR-L JG FIR-T CED-L | 33. 77 COE VAR 54. 40. 27. 68.0 COE VAF 117. 123. 132. 316. 161. | 8 17.3
5 23.2
3 19.3
GFF
R.% S.E.%
9 31.4
.4 15.2
.9 19.3
0 17.0
GFF
R.% S.E.%
.6 39.1
.3 41.0
.5 44.1
.2 105.2
.0 53.6
7 22.2 | I | 95
312
144
SAMPL
.OW
37
28
77
39
TREES.
.OW
10
33
8
7
84 | 115
407
179
E TREES
AVG
54
33
96
47
/ACRE
AVG
16
57
15
5 | 135
501
213
S - CF
HIGH
71
38
114
555
HIGH
22
80
22
10
23
132 | | # OF TREE: 5 196 # OF PLOT: 5 197 # OF PLOT | S REQ. 10 49 S REO. 10 49 S REQ. | INF. POP. 2 INF. POP. 1 | | DOUU DOUU INC CL: SD: PON DOUU INC CL: SD: PON DOUU INC CL: SD: PON DOUU INC CL: SD: PON DOUU INC CL: TOT | G FIR-L G FIR-T CED-L 68.1 % 1.0 DDEROS-L DDEROS-T JG FIR-L G FIR-T CED-L FAL 1.0 DDEROS-L DDEROS-L JDEROS-L JDEROS-L JDEROS-L JDEROS-L JDEROS-L JDEROS-L JG FIR-L JG FIR-T CED-L FAL 68.1 % | 33. 77.3 COE VAR 54. 40. 27. 68.0 COE VAR 117. 123. 132. 316. 161. 66. | 8 17.3
5 23.2
3 19.3
EFF
R.% S.E.%
9 31.4
15.2
.9 19.3
0 17.0
EFF
R.% S.E.%
.6 39.1
.3 41.0
.5 44.1
.2 105.2
.0 53.6
7 22.2 | I | 95 312 144 SAMPL OW 37 28 77 39 TREES COW 10 33 8 7 84 BASAL | 115
407
179
E TREES
AVG
54
33
96
47
/ACRE
AVG
16
57
15
5
15
108
AREA/A | 135
501
213
S - CF
HIGH
71
38
114
555
HIGH
22
80
22
10
23
132
ACRE
HIGH | | # OF TREE: 5 196 # OF PLOT: 5 | S REQ.
10
49
S REQ.
10 | INF. POP | | DOUU INC CL: SD: PON DOUU INC CTOT CL: SD: PON CL: SD: CL: SD: CL: SD: CCL: SD: CCL: SD: CCL: SD: CCL: SD: | G FIR-L G FIR-T CED-L 68.1 % 1.0 DDEROS-L DDEROS-T JG FIR-L G FIR-T CED-L FAL 68.1 % 1.0 DDEROS-L DDER | 33. 77 COE VAR 54. 40. 27. 68.0 COE VAR 117. 123. 132. 316. 66. COE VAR 1161. | 8 17.3
5 23.2
3 19.3
EFF
R.% S.E.%
9 31.4
.4 15.2
.9 19.3
0 17.0
EFF
R.% S.E.%
.6 39.1
.3 41.0
.5 44.1
.2 105.2
.0 53.6
7 22.2
EFF
R.% S.E.% | I | 95 312 144 SAMPL OW 37 28 77 39 TREES COW 10 33 8 7 84 BASAL LOW 15 | 115
407
179
E TREES
AVG
54
33
96
47
/ACRE
AVG
16
57
15
5
15
108
AREA/A
AVG
24 | 135
501
213
S - CF
HIGH
71
38
114
555
HIGH
22
80
22
10
23
132
ACRE
HIGH
33 | | # OF TREE: 5 196 # OF PLOT: 5 197 # OF PLOT | S REQ. 10 49 S REO. 10 49 S REQ. | INF. POP | | DOU DOU INC CL: SD: PON PON DOU INC CL: SD: PON PON CCL: SD: PON PON DOU INC TOT CL: SD: PON PON DOU INC TOT | G FIR-L IG FIR-T CED-L 68.1 % 1.0 IDEROS-L IDEROS-T IG FIR-L G FIR-T CED-L FAL 68.1 % 1.0 IDEROS-L IDE | 33. 77 COE VAR 54. 40. 27. 68.0 COE VAF 117. 123. 132. 316. 66. COE VAF 116. 121. | 8 17.3
5 23.2
3 19.3
EFF
R.% S.E.%
9 31.4
4 15.2
.9 19.3
0 17.0
EFF
R.% S.E.%
.6 39.1
.3 41.0
.5 44.1
.2 105.2
.0 53.6
7 22.2
EFF
R.% S.E.%
.6 38.8
.0 40.3 | I | 95
312
144
SAMPL
OW
37
28
77
39
TREES
COW
10
33
8
7
84
BASAL
LOW
15
41 | 115
407
179
E TREES
AVG
54
33
96
47
/ACRE
AVG
16
57
15
5
15
108
AREA/A
AVG
24
68 | 135
501
213
S - CF
HIGH
71
38
114
555
HIGH
22
80
22
10
23
132
ACRE
HIGH
33
95 | | # OF TREE: 5 196 # OF PLOT: 5 197 # OF PLOT | S REQ. 10 49 S REO. 10 49 S REQ. | INF. POP. 2 INF. POP. 1 | | DOU DOU INC CL: SD: PON DOU INC CL: SD: PON PON DOU INC CL: SD: PON DOU INC TOT CL: SD: PON DOU INC TOT CL: SD: PON DOU INC TOT | G FIR-L G FIR-T CED-L AL 68.1 % 1.0 DDEROS-L IDEROS-T JG FIR-L G FIR-T CED-L TAL 68.1 % 1.0 IDEROS-L IDEROS-L IDEROS-L IDEROS-L IDEROS-L IDEROS-L JG FIR-L JG FIR-T CED-L TAL 68.1 % 1.0 IDEROS-L JG FIR-T | 33. 77 COE VAR 54. 40. 27. 68.0 COE VAF 117. 123. 132. 316. 161. 66. COE VAF 116 121. 133 | 8 17.3
5 23.2
3 19.3
EFF
R.% S.E.%
9 31.4
.4 15.2
.9 19.3
0 17.0
EFF
R.% S.E.%
.6 39.1
.3 41.0
.5 44.1
.2 105.2
.0 53.6
7 22.2
EFF
R.% S.E.%
.6 38.8
.0 40.3
.3 44.4 | I | 95 312 144 SAMPL OW 37 28 77 39 TREES COW 10 33 8 7 84 BASAL LOW 15 | 115
407
179
E TREE
AVG
54
33
96
47
/ACRE
AVG
16
57
15
5
15
108
AREA/A
AVG
24
68
40 | 135 501 213 S - CF HIGH 71 38 114 555 HIGH 22 80 22 10 23 132 ACRE HIGH 33 95 58 | | # OF TREE: 5 196 # OF PLOT: 5 197 # OF PLOT | S REQ. 10 49 S REO. 10 49 S REQ. | INF. POP. 2 INF. POP. 1 | | DOU DOU INC CL: SD: PON DOU INC CL: SD: PON DOU INC CL: SD: PON DOU INC TOT CL: SD: PON DOU INC TOT CL: SD: PON DOU INC TOT CL: SD: PON DOU INC TOT CL: SD: PON DOU INC TOT | G FIR-L G FIR-T CED-L 'AL 68.1 % 1.0 DEROS-L IDEROS-T JG FIR-T CED-L 'AL 68.1 % 1.0 IDEROS-L IDEROS-L IDEROS-L IDEROS-L IDEROS-L IDEROS-L IDEROS-L JG FIR-T CED-L FAL 68.1 % 1.0 IDEROS-L JG FIR-T CED-L TAL 1.0 IDEROS-L IDEROS-T JG FIR-L JG FIR-L JG FIR-L JG FIR-T | 33. 77 COE VAR 54. 40. 27. 68.0 COE VAF 117. 123. 132. 316. 66. COE VAF 1161. 33. 316 | 8 17.3
5 23.2
3 19.3
EFF
R.% S.E.%
9 31.4
.4 15.2
.9 19.3
0 17.0
EFF
R.% S.E.%
.6 39.1
.3 41.0
.5 44.1
.2 105.2
.0 53.6
7 22.2
EFF
R.% S.E.%
.6 38.8
.0 40.3
.3 44.4
.6 30.1
.5 38.8
.6 39.1
.7 22.2 | I | 95 312 144 SAMPL OW 37 28
77 39 TREES OW 10 33 8 7 84 BASAL LOW 15 41 22 | 115
407
179
E TREES
AVG
54
33
96
47
/ACRE
AVG
16
57
15
5
15
108
AREA/A
AVG
24
68
40
4 | 135 501 213 S - CF HIGH 71 38 114 555 HIGH 22 80 22 10 23 132 ACRE HIGH 33 95 58 8 | | # OF TREE: 5 196 # OF PLOT: 5 197 # OF PLOT | S REQ. 10 49 S REO. 10 49 S REQ. | INF. POP | | DOU DOU INC CL: SD: PON DOU INC CL: SD: PON PON DOU INC CL: SD: PON DOU INC TOT CL: SD: PON DOU INC TOT CL: SD: PON DOU INC TOT CL: SD: PON DOU INC TOT | G FIR-L G FIR-T CED-L 'AL 68.1 % 1.0 DEROS-L IDEROS-T JG FIR-T CED-L 'AL 68.1 % 1.0 IDEROS-L JDEROS-L JDEROS-L JDEROS-L JDEROS-L JDEROS-L JG FIR-T CED-L FAL 68.1 % 1.0 IDEROS-L JG FIR-T CED-L TAL GED-L TAL CED-L | 33. 77 COE VAR 54. 40. 27. 68.0 COE VAF 117. 123. 132. 316. 161. 66. COE VAF 116 121. 133 | 8 17.3
5 23.2
3 19.3
EFF
R.% S.E.%
9 31.4
4 15.2
.9 19.3
0 17.0
EFF
R.% S.E.%
.6 39.1
.3 41.0
.5 44.1
.2 105.2
.0 53.6
7 22.2
EFF
R.% S.E.%
.6 38.8
.0 40.3
.3 44.4
.6 33.6
.6 38.8
.7 22.2
.8 5.6
.9 53.6
.9 53.6
.9 53.6
.0 53.6 | I | 95
312
144
SAMPL
OW
37
28
77
39
TREES
COW
10
33
8
7
84
BASAL
LOW
15
41 | 115
407
179
E TREE
AVG
54
33
96
47
/ACRE
AVG
16
57
15
5
15
108
AREA/A
AVG
24
68
40 | 135 501 213 S - CF HIGH 71 38 114 555 HIGH 22 80 22 10 23 132 ACRE HIGH 33 95 58 | | # OF TREE: 5 196 # OF PLOT: 5 197 # OF PLOT | S REQ. 10 49 S REO. 10 49 S REQ. | INF. POP. 1 2 INF. POP. 1 | | TC TST | ATS | | | | STATIS
JECT | STICS
EDGE | | | PAGE
DATE | 2
7/12/2019 | |--------|---------|------|----------|--------|----------------|---------------|--------------|------------|--------------|----------------| | TWP | RGE | SECT | TRACT | TYP | E A | CRES | PLOTS | TREES | CuFt | BdFt | | 35S | 04E | 08 | EDGE | 0072 | 2 | 15.00 | 10 | 37 | S | W | | CL: | 68.1% | COE | FF | NET | BF/ACRE | S | | # OF PLO | OTS REQ. | INF. POP | | SD: | 1.0 | VAR | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | CL: | 68.1 % | COE | FF | NET | BF/ACRE |
C | | # OF PLOTS | S REQ. | INF. POP. | | SD: | 1.0 | VAR | .% S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | PONI | DEROS-L | 112 | 3 37.4 | 1,569 | 2,506 | 3,442 | | | | | | PONI | DEROS-T | 119. | 6 39.8 | 3,401 | 5,649 | 7,897 | | | | | | DOU | G FIR-L | 133. | 1 44.3 | 3,258 | 5,849 | 8,440 | | | | | | DOU | G FIR-T | 316. | 2 105.2 | | 407 | 836 | | | | | | INC (| CED-L | 161. | 0 53.6 | 213 | 458 | 704 | | | | | | тот | AL | 59.1 | 19.7 | 11,947 | 14,870 | 17,792 | | 155 | 39 | 17 | | CL: | 68.1 % | COE | FF | NET | CUFT FT | /ACRE | | # OF PLOTS | S REQ. | INF. POP. | | SD: | 1.0 | VAR | % S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | PONI | DEROS-L | 115. | 7 38.5 | 405 | 660 | 914 | | | | | | PONI | DEROS-T | 120. | 9 40.2 | 973 | 1,628 | 2,282 | | | | | | DOU | G FIR-L | 133. | 4 44.4 | 771 | 1,386 | 2,002 | | | | | | DOU | G FIR-T | 316. | 2 105.2 | | 101 | 207 | | | | | | INC | CED-L | 161. | 0 53.6 | 88 | 189 | 290 | | | | | | тот | AL | 59.8 | 3 19.9 | 3,174 | 3,963 | 4,752 | | 158 | 40 | 18 | | Т | TS | PCSTGI | R | | | Species, | Sort G | rade - Boar
t: EDC | | oot V | 'olur | nes (T | Гуре) | | | | Page
Date
Fime | : 7 | 1
/12/20
2:06:3 | | |-----|-------|---------------------|----------|-------------|---------------|---------------------|--------------|-----------------------|----------|---------------|-------|--------------|---------------|----------------|---------------------|-----------------|----------------------|----------|-----------------------|--------------| | | wp | 04E S0
Rg
041 | e | Sec | Tract
EDGE | | Type
0072 | | | Plot | | - | le Tree
17 | s | CuFt
S | T35
Bdl
W | | 04E S | 08 T0 | 072 | | | | | | % | | | | | Per | cent l | let B | oard Fo | ot Vol | ume | | A | verag | ge Log | | Logs | | Spj | | | Gr
ad | Net
BdFt | Bd.
Def% | Ft. per Ac
Gross | re
Net | Total
Net MBF | L
4-5 | og Sc
6-11 | | ia.
6 17+ | 1 | g Lei
21-30 | ngth
31-35 36-99 | Ln
Ft | | Bd
Ft | CF/
Lf | Per
/Acre | | PP | Т | DO | CU | | | | | | | | | | | | | 5 | 5 | | 0.00 | 21.6 | | PP | | DO | 3M | 77 | | 4,363 | 4,363 | 65 | | 100 | | | | | 100 | 34 | 9 | 95 | 0.77 | 46.0 | | PP | T | DO | 4M | 23 | | 1,286 | 1,286 | 19 | 100 | | | | 22 | 30 | 49 | 25 | 5 | 28 | 0.36 | 46.0 | | PP | Т | Totals | l | 38 | | 5,649 | 5,649 | 85 | 23 | 77 | | | 5 | 7 | 88 | 25 | 6 | 50 | 0.58 | 113.6 | | PP | Ī | DO | 2M | 18 | | 458 | 458 | 7 | | | 100 | | | | 100 | 34 | 14 | 240 | 1.98 | 1.9 | | PP | | DO | 3M | 61 | | 1,531 | 1,531 | 23 | | 62 | 38 | | - | | 100 | 34 | | 108 | 0.79 | 14.2 | | PP | L | DO | 4M | 21 | | 517 | 517 | 8 | 73 | 27 | | | 56 | 33 | 11 | 21 | 6 | 27 | 0.37 | 18.9 | | PP | L | Totals | | 17 | | 2,506 | 2,506 | 38 | 15 | 44 | 41 | | 12 | 7 | 82 | 27 | 7 | 72 | 0.69 | 35.0 | | DF | L | DO | CU | | | | | | | | | | | | | 9 | 5 | | 0.00 | 5.5 | | DF | L | DO | 2M | 71 | | 4,186 | 4,186 | 63 | | | 64 | 36 | | | 100 | 34 | 15 | 279 | 1.82 | 15.0 | | DF | L | DO | 3M | 16 | | 919 | 919 | 14 | | 100 | | | | | 100 | 34 | 9 | 97 | 0.85 | 9.5 | | DF | L | DO | 4M | 13 | | 743 | 743 | 11 | 33 | 67 | | | | 100 | | 23 | 7 | 50 | 0.53 | 15.0 | | DF | L | Totals | 8 | 39 | <u> </u> | 5,849 | 5,849 | 88 | 4 | 24 | 45 | 26 | | 13 | 87 | 27 | 10 | 130 | 1.13 | 45.0 | | DF | Т | DO | 3M | 75 | | 306 | 306 | 5 | | 100 | | ٠ | | | 100 | 34 | 7 | 60 | 0.46 | 5.1 | | DF | T | DO | 4M | 25 | | 102 | 102 | 2 | 100 | | | | 100 | | | 20 | 5 | 20 | 0.20 | 5.1 | | DF | Т | Totals | 8 | 3 | | 407 | 407 | 6 | 25 | 75 | | | 25 | | 75 | 27 | 6 | 40 | 0.37 | 10.2 | | IC | L | DO | 4M | 100 | | 458 | 458 | 7 | 100 | | | | | | 100 | 31 | 5 | 30 | 0.40 | 15.3 | | IC | L | Totals | | 3 | | 458 | 458 | 7 | 100 | | | | | | 100 | 31 | 5 | 30 | 0.40 | 15.3 | | Тур | e Tot | als | | | | 14,870 | 14,870 | 223 | 17 | 48 | 25 | 10 | 5 | 9 | 87 | 26 | 7 | 68 | 0.69 | 219.0 | ▶►► Logging Corridors orridors LOGGING PLAN Sale No. SW-341-2020-GF7718-01 Edge No. 1 GNA - Timber Sale AREA 1-46 Other Road **Streams** Fish ---- Nonfish Fish Use Unknown The information shown on Exhibit "A" map(s) are approximate locations. Exact locations of features represented by map symbols will be determined on site and shall depend upon the conditions that exist on site. Activities shall be conducted based upon features determined on site rather than features shown on maps. Portions of Sections 2, 3, 4, 7, 8, & 10 T35S, R4E, W.M. - AND- Portions of Sections 32, 34, & 35 T34S, R4E, W.M. Jackson County, Oregon Regulated Use Area RR-2 Landowner: United States Forest Service | Sale Area | Cruise Acres | |-----------|--------------| | 1-46 | 18.8 | | 2-60 | 91.5 | | 3-68 | 13.1 | | 4-70 | 33.3 | | 5-71 | 33.8 | | 6-72 | 15.2 | | TOTAL | 205.7 | | | NI | ■■ Haul Route ---- Other Road #### Streams —— Fish ---- Nonfish #### - Fish Use Unknown The information shown on Exhibit "A" map(s) are approximate locations. Exact locations of features represented by map symbols will be determined on site and shall depend upon the conditions that exist on site. Activities shall be conducted based upon features determined on site rather than features shown on maps. LOGGING PLAN Sale No. SW-341-2020-GF7718-01 Edge No. 1 GNA - Timber Sale AREA 2-60 Portions of Sections 2, 3, 4, 7, 8, & 10 T35S, R4E, W.M. - AND- Portions of Sections 32, 34, & 35 T34S, R4E, W.M. Jackson County, Oregon Regulated Use Area RR-2 Landowner: United States Forest Service | Sale Area | Cruise Acres | |-----------|--------------| | 1-46 | 18.8 | | 2-60 | 91.5 | | 3-68 | 13.1 | | 4-70 | 33.3 | | 5-71 | 33.8 | | 6-72 | 15.2 | | TOTAL | 205.7 | ▶▶▶ Logging Corridors Sale No. SW-341-2020-GF7718-01 Edge No. 1 GNA - Timber Sale AREA 3-68 ■■■ Haul Route Other Road **Streams** — Fish ---- Nonfish - - Fish Use Unknown The information shown on Exhibit "A" map(s) are approximate locations. Exact locations of features represented by map symbols will be determined on site and shall depend upon the conditions that exist on site. Activities shall be conducted based upon features determined on site rather than features shown on maps. Portions of Sections 2, 3, 4, 7, 8, & 10 T35S, R4E, W.M. - AND-Portions of Sections 32, 34, & 35 T34S, R4E, W.M. Jackson County, Oregon | Jackson County, Oregon | |---| | Regulated Use Area RR-2 | | Landowner: United States Forest Service | | | Sale Area | Cruise Ac | res | |---|-----------|-----------|-------| | | 1-46 | 18.8 | | | | 2-60 | 91.5 | | | | 3-68 | 13.1 | | | | 4-70 | 33.3 | | | | 5-71 | 33.8 | | | | 6-72 | 15.2 | _ | | | TOTAL | 205.7 | | | | | N | | | | | A | | | | | | | | _ | _ | | | | 0 | 5 | 600 | 1,000 | | F | | | | | | F | eet | | | | | | | **▶ ▶** Logging Corridors Sale No. SW-341-2020-GF7718-01 Edge No. 1 GNA - Timber Sale AREA 5-71 & 4-70 ■■■ Haul Route ____ Other Road **Streams** — Fish ---- Nonfish - Fish Use Unknown The information shown on Exhibit "A" map(s) are approximate locations. Exact locations of features represented by map symbols will be determined on site and shall depend upon the conditions that exist on site. Activities shall be conducted based upon features determined on site rather than features shown on maps. Portions of Sections 2, 3, 4, 7, 8, & 10 T35S, R4E, W.M. - ANDPortions of Sections 32, 34, & 35 T34S, R4E, W.M. Jackson County, Oregon Regulated Use Area RR-2 Landowner: United States Forest Service | | Sale Area | Cruise Acr | es | |---|-----------|------------|-------| | | 1-46 | 18.8 | | | | 2-60 | 91.5 | | | | 3-68 | 13.1 | | | | 4-70 | 33.3 | | | | 5-71 | 33.8 | | | | 6-72 | 15.2 | _ | | | TOTAL | 205.7 | | | | | N | | | | | A | | | | | | | | | | ` | | | 0 | 5 | 500 | 1,000 | | E | | | | | | F | eet | | ____ Other Road **Streams** —— Fish ---- Nonfish
Fish Use Unknown The information shown on Exhibit "A" map(s) are approximate locations. Exact locations of features represented by map symbols will be determined on site and shall depend upon the conditions that exist on site. Activities shall be conducted based upon features determined on site rather than features shown on maps. LOGGING PLAN Sale No. SW-341-2020-GF7718-01 Edge No. 1 GNA - Timber Sale AREA 6-72 Portions of Sections 2, 3, 4, 7, 8, & 10 T35S, R4E, W.M. - AND- Portions of Sections 32, 34, & 35 T34S, R4E, W.M. Jackson County, Oregon Regulated Use Area RR-2 Landowner: United States Forest Service | Sale Area | Cruise Acres | |-----------|--------------| | 1-46 | 18.8 | | 2-60 | 91.5 | | 3-68 | 13.1 | | 4-70 | 33.3 | | 5-71 | 33.8 | | 6-72 | 15.2 | | TOTAL | 205.7 | | | |