Timber Sale Appraisal Upper Horsehawk Sale AT-341-2020-W00733-01 District: Astoria Date: April 18, 2019 # **Cost Summary** | | Conifer | Hardwood | Total | |----------------------------|----------------|-------------------|----------------| | Gross Timber
Sale Value | \$4,560,875.88 | \$317,325.90 | \$4,878,201.78 | | | | Project Work: | (\$1,000.00) | | | | Advertised Value: | \$4,877,201.78 | 1 5/31/19 # Timber Sale Appraisal Upper Horsehawk Sale AT-341-2020-W00733-01 District: Astoria Date: April 18, 2019 # **Timber Description** Location: Portions of Section 2 T6N, R6W, and Sections 25, 26, 35 & 36T7N, R6W, W.M., Clatsop County, Oregon Stand Stocking: 80% | Specie Name | AvgDBH | Amortization (%) | Recovery (%) | |-----------------------|--------|------------------|--------------| | Douglas - Fir | 19 | 0 | 98 | | Western Hemlock / Fir | 17 | 0 | 98 | | Alder (Red) | 16 | 0 | 95 | | Maple | 15 | 0 | 95 | | Volume by Grade | 2\$ | 3S & 4S 6"-
11" | 8" - 9" | 10" - 11" | 12"+ | 6" - 7" | Camprun | Total | |--------------------------|-------|--------------------|---------|-----------|------|---------|---------|--------| | Douglas - Fir | 8,249 | 2,398 | 0 | 0 | 0 | 0 | 0 | 10,647 | | Western Hemlock
/ Fir | 51 | 85 | 0 | 0 | 0 | 0 | 0 | 136 | | Alder (Red) | 0 | 0 | 60 | 378 | 191 | 163 | 0 | 792 | | Maple | 0 | 0 | 0 | 0 | 0 | 0 | 62 | 62 | | Total | 8,300 | 2,483 | 60 | 378 | 191 | 163 | 62 | 11,637 | Comments: Pond Values: Local Pond Values, March 2019. Expected Log Markets: Mist, Willamina, Banks, North Plains, Clatskanie, Tillamook, Garibaldi, Forest Grove, Noti, Warrenton, Longview, WA, Vancouver, WA, Elma, WA, and Chehalis, WA. 3 Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$937.95/MBF = \$1200.00/MBF-\$262.05/MBF Other hardwoods Stumpage Price = Pond Value minus Logging Cost: \$151.17/MBF = \$459.00/MBF - \$307.83/MBF Other Costs (With Profit and Risk to be added): Machine Washing for Invasive Weed Compliance = \$2,000 Ditch Filters: 20 bales of straw @ \$10/bale = \$200 8 hours of labor @ \$40/hour = \$320 TOTAL Other Costs (with Profit and Risk to be added): \$2,520 SLASH PILING (See attached Site Prep Cost Summary Sheet) TOTAL Site Prep Cost: \$11,888.67 Other Costs (No Profit and Risk added): None ROAD MAINTENANCE (See attached Road Maintenance Cost Summary Sheet) TOTAL Road Maintenance: \$22,904/11,637MBF = \$1.97/MBF 5/31/19 # Timber Sale Appraisal Upper Horsehawk # Sale AT-341-2020-W00733-01 District: Astoria Date: April 18, 2019 # **Logging Conditions** Combination#: 1 Douglas - Fir 85.00% Western Hemlock / Fir 85.00% Alder (Red) 85.00% Maple 85.00% yarding distance: Medium (800 ft) downhill yarding: No tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF loads / day: 10 bd. ft / load: 4600 cost / mbf: \$143.48 machines: Log Loader (A) Tower Yarder (Medium) Combination#: 2 Douglas - Fir 15.00% Western Hemlock / Fir 15.00% Alder (Red) 15.00% Maple 15.00% Logging System: Shovel Process: Manual Falling/Delimbing yarding distance: Medium (800 ft) downhill yarding: No tree size: Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF loads / day: 15 bd. ft / load: 4100 cost / mbf: \$64.02 machines: Shovel Logger # Timber Sale Appraisal Upper Horsehawk Sale AT-341-2020-W00733-01 District: Astoria Date: April 18, 2019 # **Logging Costs** **Operating Seasons: 2.00** Profit Risk: 10% Project Costs: \$1,000.00 Slash Disposal: \$11,888.67 Other Costs (P/R): \$2,520.00 Other Costs: \$0.00 Miles of Road Road Maintenance: \$1.97 | Dirt | Rock
(Contractor) | Rock
(State) | Paved | | |------|----------------------|-----------------|-------|--| | 0.0 | 0.0 | 0.0 | 0.0 | | ## **Hauling Costs** | Species | \$/MBF | Trips/Day | MBF / Load | |-----------------------|--------|-----------|------------| | Douglas - Fir | \$0.00 | 2.0 | 4.8 | | Western Hemlock / Fir | \$0.00 | 2.0 | 3.8 | | Alder (Red) | \$0.00 | 2.0 | 3.5 | | Maple | \$0.00 | 2.0 | 3.5 | # Timber Sale Appraisal Upper Horsehawk Sale AT-341-2020-W00733-01 District: Astoria Date: April 18, 2019 # **Logging Costs Breakdown** | Logging | Road
Maint | Fire
Protect | Hauling | Other
P/R appl | Profit &
Risk | Slash
Disposal | Brand & Paint | Other | Total | |------------|---------------|-----------------|----------|-------------------|------------------|-------------------|---------------|--------|----------| | Douglas - | Fir | | | | | | | | | | \$131.56 | \$2.01 | \$0.75 | \$100.94 | \$0.22 | \$23.55 | \$1.02 | \$2.00 | \$0.00 | \$262.05 | | Western H | emlock | / Fir | | | | | | | | | \$131.56 | \$2.01 | \$0.75 | \$127.50 | \$0.22 | \$26.20 | \$1.02 | \$2.00 | \$0.00 | \$291.26 | | Alder (Red | l) | | | | | | | | | | \$131.56 | \$2.07 | \$0.75 | \$142.50 | \$0.22 | \$27.71 | \$1.02 | \$2.00 | \$0.00 | \$307.83 | | Maple | | | | | | | | | | | \$131.56 | \$2.07 | \$0.75 | \$142.50 | \$0.22 | \$27.71 | \$1.02 | \$2.00 | \$0.00 | \$307.83 | | Specie | Amortization | Pond Value | Stumpage | Amortized | |-----------------------|--------------|------------|----------|-----------| | Douglas - Fir | \$0.00 | \$686.97 | \$424.92 | \$0.00 | | Western Hemlock / Fir | \$0.00 | \$561.50 | \$270.24 | \$0.00 | | Alder (Red) | \$0.00 | \$696.66 | \$388.83 | \$0.00 | | Maple | \$0.00 | \$459.00 | \$151.17 | \$0.00 | # Timber Sale Appraisal Upper Horsehawk Sale AT-341-2020-W00733-01 District: Astoria Date: April 18, 2019 # **Summary** #### Amortized | Specie | MBF | Value | Total | |-----------------------|-----|--------|--------| | Douglas - Fir | 0 | \$0.00 | \$0.00 | | Western Hemlock / Fir | 0 | \$0.00 | \$0.00 | | Alder (Red) | 0 | \$0.00 | \$0.00 | | Maple | 0 | \$0.00 | \$0.00 | ### Unamortized | Specie | MBF | Value | Total | |-----------------------|--------|----------|----------------| | Douglas - Fir | 10,647 | \$424.92 | \$4,524,123.24 | | Western Hemlock / Fir | 136 | \$270.24 | \$36,752.64 | | Alder (Red) | 792 | \$388.83 | \$307,953.36 | | Maple | 62 | \$151.17 | \$9,372.54 | # **Gross Timber Sale Value** **Recovery:** \$4,878,201.78 Prepared By: Cody Valencia Phone: 503-325-5451 | | | Site | Prep/Machine Pil | ing Appraisa | al | | | |-----------------------------|--------------------------------|------------------------|-------------------------------|---------------------------------|----------------------------|----------------------|---| | | | | Vegetation
Type/Zone | Vegetation
Type/Zone
Code | Production
Rate (hr/ac) | Estimated Piles/Acre | Landing
Production
Rate (hrs/30
acres) | | Sale Number: | AT-341-2019-W0 | 00733-01 | Doug-fir | А | 0.5 | 0.5 | 6 | | Sale Name: | Upper Horsehawk | | Hemlock/Fir | В | 1.3 | 4.5 | 8 | | | 04/16/2019 | | Hemlock/Spruce | С | 1.8 | 6.0 | 10 | | | | | Hemlock | D | 1.8 | 6.0 | 8 | | | | | Conifer/Hardwood | Е | 1.0 | 2.0 | 8 | | | | | Whole Tree Yarding | F | 0.5 | 0.5 | 12 | | | | - | | Estimated | | | | | Sale Area | Harvest Type | Veg
Type/Zone | Ground Based
Yarding Acres | Piling
Hours/Area | Cost/Hour | Total
Cost/Area | | | 1 | MC | E | 3 | 3 | \$145 | \$435 | | | 2 | MC | Α | 6 | 3 | \$145 | \$435 | | | 3 | MC | Α | 8 | 4 | \$145 | \$580 | | | 4 | MC | F | 19 | 10 | \$145 | \$1,378 | | | | | | | | In-unit Piling | Sub Total = | \$2,828 | | | Number of | | | | | | | | | Landings to be | # cable acres | | Number of In- | Material | Total | | | Sale Area | Piled | per area | Total Cost/Area | Unit Piles | Cost/Pile | Cost/Area | | | 1 | 5 | 64 | \$2,475 | 11 | \$5 | \$55 | | | 2 | 4 | 49 | \$1,421 | 7 | \$5 | \$35 | | | 3 | 5 | 83 | \$2,407 | 9 | \$5 | \$45 | | | 4 | 2 | 2 | \$116 | 11.5 | \$5 | \$58 | | | *Cost includes se | parating firewood | | · | | Materials | Sub Total = | \$193 | | Move-In | nal Move-in allov
Number of | wance
Total Move-In | | | Landing Piling | Sub Total = | \$6,419 | | Allowance | Move-In's | Allowance | | | | | | | \$1,290.00 | Move-In's | | | | | | | | | | | | | Move-In | Sub Total = | \$1,290 | | \$1,290.00 | 1 | | Loader hrs | Cost/Hour | Move-In
Total | Sub Total = | \$1,290 | | \$1,290.00
Slash Endhaul | 1 | \$1,290 | Loader hrs | Cost/Hour
\$145 | | Sub Total = | \$1,290 | | \$1,290.00
Slash Endhaul | 1 Cost/Hour | \$1,290
Total | | | Total | Sub Total = | \$1,290
\$1,160 | Grand Total = \$11,888.67 ## **Road Maintenance Cost Summary (Interim and Post Harvest)** Sale: Upper Horsehawk MBF: 11,637.00 Date: April 16, 2019 \$\$/MBF: \$1.97 By: Ella Salkeld | | | Move-in | | | | | |------------------------------|---|---|------------------|---------------------------|--|---| | Type | Equipment/Rationale | Rate | Times | Hours | Rate | Cost | | | Grader 14G | \$875 | 2 | 26 | \$113 | \$4,688 | | Interim | Dump Truck 12CY | \$184 | 2 | 12 | \$89 | \$1,436 | | Operations | FE Loader C966 | \$875 | 1 | 4 | \$94 | \$1,251 | | | Vibratory Roller | \$875 | 1 | 8 | \$87 | \$1,571 | | Final
Road
Maintenance | Grader 14G Dump Truck 12CY FE Loader C966 Vibratory Roller Water Truck 2,500 gallon | \$875
\$184
\$875
\$875
\$214 | 1
1
1
1 | 30
10
8
30
15 | \$113
\$89
\$94
\$87
\$101 | \$4,265
\$1,074
\$1,627
\$3,485
\$1,729 | | | Rubber Tired Backhoe-small | \$361 | 1 | 8 | \$87 | \$1,057 | | | Labor | | | 8 | \$45 | \$721 | | | | | | | | | | Total | | | | | | | ### Interim Operations Road Maintenance | Production Rates | Miles/day | Distance (miles) | Days | Hours | |------------------|-----------|------------------|------|-------| | Grader | 2.5 | 5.6 | 2.2 | 18 | #### Final Road Maintenance | Production Rates | Miles/day | Distance (miles) | Days | Hours | |------------------|-----------|------------------|------|-------| | Grader | 1.5 | 5.6 | 3.7
| 30 | | Vibratory Roller | 1.5 | 5.6 | 3.7 | 30 | | Process and compact: All crushed rock roads | |---| | Fishhawk Tie-Through 0.7 Miles | | Fishhawk Loop Road 3.0 Miles | | Greasy Spoon Road 0.20 Miles | | Unamed Spurs 1.7 Miles | | | | | | Grade & Process Total = 5.6 | | | Upper Horsehawk Project No 1. Stream Enhancement Number of trees Placement | Location | Site | per site | method | \$/tree | Cost per Site | |----------|------|----------|---------|---------|---------------| | SE1-SE2 | 1 | 52 | Felling | \$40.00 | \$1,000.00 | Project Total \$1,000 # UPPER HORSEHAWK Timber Sale FY 2019 TIMBER CRUISE REPORT **1. Sale Area Location:** Areas 1, 2, 3, and 4 are located in portions of Sections 25, 26, 35, and 36, T7N, R6W and portions of Section 2, T6N, R6W, W.M., Clatsop County, Oregon 2. Fund Distribution: Fund: BOF 100% CSL 0% Tax Code: 8-01 100% #### 3. Sale Acreage by Area: | Area | Harvest
Type | Gross
Acres | Green
Tree
Area | Stream
Buffer
Acres | New
R/W
Acres | Existing
R/W
Acres | Net
Acreage | |------|-----------------|----------------|-----------------------|---------------------------|---------------------|--------------------------|----------------| | 1 | MC | 87 | - | 18 | _ | 2 | 67 | | 2 | MC | 63 | _ | 5 | _ | 3 | 55 | | 3 | MC | 112 | - | 17 | _ | 4 | 91 | | 4 | MC | 25 | - | 1 | - | 3 | 21 | | ТО | TALS | 287 | - | 41 | = | 12 | 234 | - 4. Cruisers and Cruise Dates: Area 1 was cruised on 4/9/19 by John Choate, Ella Salkeld, Justin Bush, Bryce Rodgers, and Avery Petersen. Areas 2 and 3 were cruised by John Choate, Ella Salkeld, Cody Valencia, and Bryce Rodgers on 4/2/2019 and 4/9/2019. Area 4 was cruised on 4/4/2019, 4/9/2019, and 4/10/2019 by John Choate, Ella Salkeld, Cody Valencia, Bryce Rodgers, Avery Petersen and Justin Bush. - **5.** Cruise Method and Computation: Area 1 is a modified clearcut unit. A variable plot cruise with a 54.44 BAF was used in this area. These plots were located on a 5 chain by 3 chain grid, with a count/cruise plot ratio of 2:1. A total of 45 plots were sampled with 19 measure plots and 26 count plots. Area 2 and 3 are modified clearcut units. A variable plot cruise with a 54.44 BAF was used in this area. These plots were located on a 8 chain by 4 chain grid, with a count/cruise plot ratio of 2:1. A total of 52 plots were sampled with 20 measure plots and 32 count plots. Three count plots had minor species on them, resulting in additional measure plots. One count plot had a minor species measured, resulting in an additional measure plot. Area 4 is a modified clearcut unit. A variable plot cruise with a 40 BAF was used in this area. These plots were located on a 3 chain by 2 chain grid, with a count/cruise ratio of 2:1. A total of 37 plots were sampled with 14 measure plots and 23 count plots. Cruisers used Allegro 2 data collectors, and were downloaded to the Atterbury <u>Super A.C.E.</u> program at the Astoria District for computing. See the attached <u>Cruise Design</u> for more details on the cruise method. The cruise calculations were processed in the Astoria District office. | AREAS | PROJECT | TRACT | CRUISE TYPE | |---------|---------|-------|--------------------| | 1 | UPPERH | | OOMC and TAKE | | 2 and 3 | UPPERH | A23 | OOMC and TAKE | | 4 | UPPERH | A4 | OOMC and TAKE | 6. Timber Description: Area 1 is approximately 70 year old stand of Douglas-fir, red alder, and western hemlock. The average take Douglas-fir tree size for harvest is approximately 20 inches DBH, with an average merchantable tree height of 75 feet. The average take red alder tree size is approximately 16 inches DBH, with an average merchantable tree height of 56 feet. The average take hemlock tree size is approximately 17 inches DBH, with an average merchantable tree height of 46 feet. The average volume per acre to be harvested (net) is approximately 55 MBF. All trees were cruised to a merchantable top of 6 inch DIB or 40% fp. <u>Areas 2 and 3</u> are approximately 65 year old stands of Douglas-fir, red alder, maple, and western hemlock. The average take Douglas-fir tree size for harvest is approximately 19 inches DBH, with an average merchantable tree height of 66 feet. The average take red alder tree size is approximately 17 inches DBH, with an average merchantable tree height of 58 feet. The average take maple tree size for harvest is approximately 15 inches DBH, with an average merchantable tree height of 40 feet. The average take hemlock tree size is approximately 16 inches DBH, with an average merchantable tree height of 77 feet. The average volume per acre to be harvested (net) is approximately 49 MBF. All trees were cruised to a merchantable top of 6 inch DIB or 40% fp. <u>Area 4</u> is an approximately 70 year old stand of Douglas-fir, western hemlock, and red alder. The average take Douglas-fir tree size for harvest is approximately 20 inches DBH, with an average merchantable tree height of 79 feet. The average take hemlock tree size is approximately 18 inches DBH, with an average merchantable tree height of 51 feet. The average take red alder tree size is approximately 15 inches DBH, with an average merchantable tree height of 53 feet. The average volume per acre to be harvested (net) is approximately 34 MBF. All trees were cruised to a merchantable top of 6 inch DIB or 40% fp. This stand was previously thinned in the late 1990's. Cedar is a reserved species. #### 7. Statistical Analysis: (See also "Statistics Reports," attached.) | Area | Target CV | Target SE% | Actual CV | Actual SE% | |---------|-----------|------------|-----------|------------| | 1 | 55 | 8 | 41.3 | 6.1 | | 2 and 3 | 55 | 8 | 39.4 | 5.5 | | 4 | 45 | 8 | 33.4 | 5.5 | The statistics are for all areas and Take and Leave trees combined based on Net BF/Acre. **8.** Take Volumes by Species and Log Grades for All Sale Areas by MBF: (See "Species, Sort Grade-Board Feet Volumes (Project)", "Statistics (Project)", and the "Stand Table Summary" attached). Volumes do not include "in-growth." The majority of defect and breakage was taken out during the cruise. Conifer | Species | DBH | Net Vol.
MBF | 2 Saw | 3Saw | 4 Saw | % D&B | % Sale | |-------------|-----|-----------------|-------|-------|-------|-------|--------| | Douglas-fir | 19 | 10,647 | 8,249 | 2,043 | 355 | 2.1 | 91% | | W. Hemlock | 17 | 136 | 51 | 64 | 21 | 0.9 | 1% | Hardwoods | Species | DBH | Net Vol.
MBF | 12"+ | 10-12" | 8-10" | 6-8" | %
D&B | % Sale | |---------------|-----|-----------------|------|--------|-------|------|----------|--------| | Red Alder | 16 | 792 | 191 | 378 | 60 | 163 | 2.7 | 7% | | Bigleaf Maple | 15 | 62 | 33 | 0 | 0 | 29 | 9.4 | <1% | | TOTAL NET VOLUME | 11,637 | |------------------|--------| |------------------|--------| | | 9. | Prepared | by: | Ella | Salkeld | |--|----|----------|-----|------|---------| |--|----|----------|-----|------|---------| Date: ____4/16/19 10. Approved by: Date: 4/23/19 11. Attachments: Cruise Plans & Maps (6) Species, Sort, Grade Report (4) Statistics Reports (4) Stand Table Summary Report (2) Log Stock Table Report MBF (3) ## CRUISE DESIGN ASTORIA DISTRICT | Sale Name:Upper Horsehawk | Area1 | |--|---| | Harvest Type: (MC) Modified Clearcut | | | Approx. Cruise Acres: _71_ Estimated CV% _55_Net BF/Acre | SE% Objective 8 Net BF/Acre | | Planned Sale Volume: <u>9.9 MMBF</u> Estimated Sale Area Val | ue/Acre: \$19,400/Acre (40 MBF/Ac. @ \$485/MBF) | | A. <u>Cruise Goals</u> : (a) Grade minimum <u>80</u> conifer and <u>20</u> (b) Sample <u>45</u> cruise plots (<u>19</u> grade/ <u>26</u> count); (c) Other thinning standards; <u>X</u> Determine log grades for sale value tree species and sizes. | goals (Determine "automark" | | B. Cruise Design: 1. Plot Cruises: BAF54.45 | | | Take plots as marked on cruise map. All cedar will be reserve | d. Record all snags as SN. | | DO NOT RECORD 12', 22' and 32' (for Hardwoods). | | | DO NOT RECORD 22' LENGTHS. | | | All hardwood will be measured to a G, or as appropriate. | | | | | #### C. Tree Measurements: - **1. Diameter:** Minimum DBH to cruise is <u>8</u>" for conifers and <u>8</u>" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate. - 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable. - 3. Top Cruise Diameter (TCD): Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for conifer trees > 18" dbh. - **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87. 5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. Hardwoods shall be recorded in 8' and 10' multiples. ## 6. Species,
Sort, and Grade Codes: - A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.) - B. Sort: Use code "1" (Domestic). - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull Hardwoods: <u>Alder Grades</u>: 12" + = 1 Sawmill; 10"-12" = 2 Sawmill; 10"-8" = 3 Sawmill; and 8"-6" 4 Sawmill, or R = Camp Run; 0 = Cull. All Maple Camp Run = R - 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce. - **8. Standard Field Procedures:** Plot Type Cruises: Mark cruise line beginning and end points with <u>blue/yellow</u> flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie <u>yellow</u> flagging above eye level near plot center and another <u>yellow</u> flagging around a sturdy wooden stake marking plot center. On each <u>yellow</u> flagging, write the plot identification number. Between plots, along the cruise line, tie <u>blue</u> flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in <u>yellow</u> paint. All trees on the plot may be marked this way, if the cruiser chooses. - **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint. - **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale. | Cruise Design | by: SALKELA | |---------------|-------------| | Approved by: | In tillt. | | Date: | 1 4/2/2019 | ### CRUISE DESIGN ASTORIA DISTRICT | Sale Name: Upper Horsehawk | Area 2 and 3 | |---|---| | Harvest Type: (MC) Modified Clearcut | | | Approx. Cruise Acres: <u>151</u> Estimated CV% <u>55</u> Net BF/Acre | SE% Objective 8 Net BF/Acre | | Planned Sale Volume: <u>9.9 MMBF</u> Estimated Sale Area Valu | 1e/Acre: \$20,664/Acre (42 MBF/Ac. @ \$492/MBF) | | A. <u>Cruise Goals</u> : (a) Grade minimum <u>100</u> conifer and <u>10</u> (b) Sample <u>52</u> cruise plots (<u>20</u> grade/ <u>32</u> count); (c) Other thinning standards; <u>X</u> Determine log grades for sale value tree species and sizes. | goals (Determine "automark" | | 3. Cruise Design: 1. Plot Cruises: BAF _54.45(Full point) Cruise Line Directions: Area 2: 143/323 & A Cruise Plot Spacing _4 (chains) _264 (Four Spacing _8 (chains) _528 (Grade/Count Ratio _1:2 | Feet) | | Take plots as marked on cruise map. All cedar will be reserved | d. Record all snags as SN. | | DO NOT RECORD 12', 22' and 32' (for Hardwoods). | | | DO NOT RECORD 22' LENGTHS. | | #### C. Tree Measurements: All hardwood will be measured to a G, or as appropriate. - **1. Diameter:** Minimum DBH to cruise is <u>8</u>" for conifers and <u>8</u>" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate. - 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable. - 3. Top Cruise Diameter (TCD): Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for conifer trees > 18" dbh. - **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87. 5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. Hardwoods shall be recorded in 8' and 10' multiples. #### 6. Species, Sort, and Grade Codes: - A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.) - B. Sort: Use code "1" (Domestic). - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull Hardwoods: <u>Alder Grades</u>: 12" + = 1 Sawmill; 10"-12" = 2 Sawmill; 10"-8" = 3 Sawmill; and 8"-6" 4 Sawmill, or R = Camp Run; 0 = Cull. All Maple Camp Run = R - **7. Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce. - 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with <u>blue/yellow</u> flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie <u>yellow</u> flagging above eye level near plot center and another <u>yellow</u> flagging around a sturdy wooden stake marking plot center. On each <u>yellow</u> flagging, write the plot identification number. Between plots, along the cruise line, tie <u>blue</u> flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in <u>yellow</u> paint. All trees on the plot may be marked this way, if the cruiser chooses. - **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint. - **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale. | Cruise Design | ı by: 👙 | SALKELD |
 | |---------------|---------|---|------| | Approved by: | | ~ Till- | | | Date: | 1 | 4/2/19 | | | • | | , | | ## CRUISE DESIGN ASTORIA DISTRICT | Sale Name: Upper Horsehawk | Area4 | |--|--| | Harvest Type: (MC) Modified Clearcut | | | Approx. Cruise Acres: <u>21</u> Estimated CV% <u>45</u> Net BF/Acre | SE% Objective 8 Net BF/Acre | | Planned Sale Volume: <u>9.9 MMBF</u> Estimated Sale Area Valu | u e/Acre: <u>\$16,800/Acre</u>
(32 MBF/Ac. @ \$525/MBF) | | A. <u>Cruise Goals</u> : (a) Grade minimum50conifer and15(b) Sample <u>37</u> cruise plots (<u>14</u> grade/ <u>23</u> count); (c) Other thinning standards;X Determine log grades for sale value tree species and sizes. | goals (Determine "automark" | | B. Cruise Design: 1. Plot Cruises: BAF 40 (Full point) Cruise Line Directions: 90/270 Cruise Plot Spacing 2 (chains) 132 (Formula Cruise Line Spacing 3 (chains) 198 (Grade/Count Ratio 1:2 | | | Take plots as marked on cruise map. All cedar will be reserved | d. Record all snags as SN. | | DO NOT RECORD 12', 22' and 32' (for Hardwoods). | | | DO NOT RECORD 22' LENGTHS. | | | All hardwood will be measured to a G, or as appropriate. | | | | | #### C. Tree Measurements: - **1. Diameter:** Minimum DBH to cruise is <u>8</u>" for conifers and <u>8</u>" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate. - 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable. - 3. Top Cruise Diameter (TCD): Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or
<u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for conifer trees > 18" dbh. - **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87. **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. Hardwoods shall be recorded in 8' and 10' multiples. ## 6. Species, Sort, and Grade Codes: - A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.) - B. Sort: Use code "1" (Domestic). - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull Hardwoods: <u>Alder Grades</u>: 12" + = 1 Sawmill; 10"-12" = 2 Sawmill; 10"-8" = 3 Sawmill; and 8"-6" 4 Sawmill, or R = Camp Run; 0 = Cull. All Maple Camp Run = R - 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce. - 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses. - **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint. - **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale. | Cruise Design | by: <u>SALKELA</u> | |---------------|--------------------| | Approved by: | In Tuffic | | Date: | 4/2/2019 | | ТС | PSPCSTGR | | $\mathbf{S}_{]}$ | pecies, | Sort G | rade - Boar | d Foot | Vo. | lume | es (P | roject |) | | | | | | | | |------------------|--|---------------------|---------------------|----------------------------------|----------------------------|---------------------------|------------|--------------|----------------------------|----------|----------------|----------------|---------------|-----------------------|----------------------|----------------------|-----------|--------------------------------------|----------------------------------| | T(| 07N R06W S35
07N R06W S35
07N R06W S36 | 5 Ty00N | MC 1 | 67.00
46.00
21.00 | | Project: Acres | UPPI
23 | ERF
34.00 | | | | | | | | Page
Date
Time | 4/ | 1
16/20
:06:0 | 19 | | Spp | S So Gr
T rt ad | %
Net
BdFt | Bd. F
Def% | t, per Acre
Gross | :
Net | Total
Net MBF | Log | g Scal | Net Bo
le Dia.
12-16 | | oot Volu | Log L | | 36-99 | | Avera
Dia
In | | g
CF/
Lf | Logs
Per
/Acre | | D
D
D | DOCU
DO2S
DO3S
DO4S | 77
19
4 | 100.0
.8
.3 | 663
35,521
8,756
1,517 | 35,254
8,729
1,517 | 8,249
2,043
355 | | 98 | 34 | 66 | 0
2
68 | 1
8
25 | 1
19
2 | 97
72
5 | 12
39
36
18 | 10 | 94 | 0.00
2.52
0.74
0.44 | 13.4
75.0
93.2
57.0 | | D | Totals | 91 | 2.1 | 46,456 | 45,500 | 10,647 | | 22 | 26 | 52 | 3 | 3 | 4 | 89 | 31 | 11 | 191 | 1.38 | 238.6 | | H
H
H | DO2S
DO3S
DO4S | 37
47
16 | 2.4 | 223
273
90 | 217
273
90 | 51
64
21 | 1 | 100 | 55
21 | 45
17 | 1
33
6 | 5
39
8 | 6
19
16 | 89
80
12 | 38
37
24
31 | 17
9
7 | 125
38 | 2.40
0.94
0.64 | .5
2.2
2.4 | | A
A
A
A | DOCU
DO1S
DO2S
DO3S
DO4S | 24
47
8
21 | 100.0
.8
1.4 | 70
815
1,630
254
708 | 815
1,617
254
698 | 191
378
60
163 | 1 | 100
100 | 100 | | 4 51 | 20
36
8 | 6 | 100
71
64
41 | 39
35
35
24 | 11
9
6 | | 0.00
1.69
1.20
0.77
0.50 | .8
3.4
11.0
2.8
21.9 | | A | Totals | 7 | 2.7 | 3,477 | 3,383 | 792 | | 76 | 24 | | 13 | 14 | 3 | 71 | 29 | 8 | 85 | 0.90 | 39.9 | | M
M
M | DOCU
DO1S
DO4S | 53
47
1 | 100.0
8.9
9.4 | 15
143
138
296 | 143
126
269 | 33
29
62 -63 | <u> </u> | 100
47 | 54
29 | 46
24 | 46
57
51 | 54
12
35 | 30 | · | 25
21 | 17
14
7 | 31 | 0.00
1.57
0.59 | .3
.8
4.1
5.2 | | Tot | als | | 2.1 | 50,815 | 49,732 | 11,637 | | 26 | 26 | 47 | 4 | 4 | 4 | 87 | 31 | 10 | 172 | 1.31 | 288.8 | | | (SPCSTG | | | | Species, | Sort G
Projec | rade - Boar
t: UPP | d Fo
ERH | ot V | olun | nes (7 | Гуре) | | | | I
T | Page
Date
Γime | e 4, | 1
/16/20
::08:20 | 6PM | |--------------------|---|----------|-------------|---------------|---------------------|------------------|-----------------------|-------------|--------|-----------------|--------|----------------|----------------|--------|-------|-----------------|----------------------|--------|------------------------|--------------| | T07N
Twj
07N | | ge | Sec | Tract
AKEA | 1 | Type
00M | | | Plots | | _ | le Tree
.02 | s | C
1 | uFt | T07
BdI
W | | R06W 3 | S35 T | 00MC | | | *************************************** | | % | | | | | Perc | cent N | let Bo | ard Fo | oot Vol | ume | | | Av | erag | ge Log | | Logs | | Spp | - | Gr
ad | Net
BdFt | Bd.
Def% | Ft. per Ac
Gross | re
Net | Total
Net MBF | Lc
4-5 | | ale Di
12-16 | | Lo. | g Ler
21-30 | _ | 36-99 | Ln I
Ft I | | | CF/
Lf | Per
/Acre | | D | DO | CU | | 100.0 | 734 | | | | | | | | | | | 14 | 9 | V | 0.00 | 14.2 | | D | DO | 2S | 76 | 1.1 | 35,085 | 34,697 | 2,325 | | | 42 | 58 | 1 | 1 | 1 | 98 | 40 | 16 | 438 | 2.31 | 79.3 | | D | DO | 3S | 20 | .4 | 8,897 | 8,862 | 594 | | 96 | 1 | 4 | 3 | 5 | 20 | 72 | 35 | 9 | 101 | 0.80 | 88.0 | | D | DO | 4S | 4 | | 1,663 | 1,663 | 111 | | 100 | | | 44 | 39 | 4 | 13 | 22 | 6 | 30 | 0.45 | 54.8 | | D | Totals | - | 83 | 2.5 | 46,380 | 45,223 | 3,030 | | 22 | 32 | 45 | 3 | 3 | 4 | 89 | 32 | 11 | 191 | 1.35 | 236.2 | | A | DO | CU | | 100.0 | 244 | | | | | | | | | | | 7 | 14 | | 0.00 | 2.7 | | A | DO | 1S | 32 | | 2,845 | 2,845 | 191 | | | 100 | | | | | 100 | 39 | 13 | 238 | 1.69 | 12.0 | | Α | DO | 2S | 36 | 1.4 | 3,262 | 3,215 | 215 | | 100 | | | 7 | 19 | 10 | 64 | 34 | 11 | 140 | 1.18 | 22.9 | | A | DO | 3S | 9 | | 762 | 762 | 51 | | 100 | | | | 42 | | 58 | 34 | 9 | 86 | 0.76 | 8.8 | | A | DO | 4S | 23 | 1.7 | 2,063 | 2,028 | 136 | | 100 | | | 45 | 6 | | 49 | 25 | 6 | 34 | 0.50 | 58.9 | | A | Totals | | 16 | 3.6 | 9,176 | 8,850 | 593 | | 68 | 32 | | 13 | 12 | 4 | 72 | 29 | 8 | 84 | 0.88 | 105.3 | | Н | DO | 3S | 69 | | 390 | 390 | 26 | | 100 | | | | | | 100 | 40 | 10 | 150 | 0.98 | 2.6 | | Н | DO | 4S | 31 | | 170 | 170 | 11 | | 100 | | | 46 | 54 | | | 22 | 7 | 35 | 0.69 | 4.9 | | Н | Totals | | 1 | | 560 | 560 | 38 | | 100 | | | 14 | 16 | | 70 | 28 | 8 | 75 | 0.83 | 7.5 | | Туре | Γotals | | | 2.6 | 56,116 | 54,633 | 3,660 | | 31 | 32 | 37 | 5 | 5 | 4 | 86 | 31 | 10 | 157 | 1.21 | 349.1 | | Т | TSPCSTG | R | | | Species, | Sort G
Projec | rade - Boar
t: UPP | d Foo | t Vo | lum | ies (T | Type) | | | | Paş
Da
Tin | te 4 | 1
/16/20
3:08:5 | | |-------------------|---------------------------|----------------------|------------------|----------------|---------------------------------|--------------------------|-----------------------|-------|-------------|---------|--------|----------------|---------------|---------|----------|------------------------|---------------------|------------------------------|-------------------------------| | T07N
Tw
07N | - | ge | Sec | Tract
'AKEA | 23 | Type
00M | | | Plots
52 | į | - | le Trees
80 | 3 | Cı
1 | uFt | T07N
BdFt
W | R06W | S35 T | 00MC | | Spp | _ | Gr
ad | %
Net
BdFt | Bd.
Def% | Ft. per Ac
Gross | re
Net | Total
Net MBF | Log | Scal | e Dia | | Log | , Len | _ | 36-99 | Aver
Ln Di
Ft In | age Log
Bd
Ft | CF/
Lf | Logs
Per
/Acre | | D
D
D | DO
DO
DO | CU
2S
3S
4S | 78
19
3 | .6 | 677
37,382
8,943
1,424 | 37,160
8,918
1,424 | 5,425
1,302
208 | | 99 | 29
1 | 71 | 0 1 86 | 2
10
14 |
1
19 | 97
70 | 10 10
39 17
36 8 | 495
88 | 0.00
2.67
0.70
0.43 | 13.5
75.1
101.1
59.1 | | D | Totals | | 96 | 1.9 | 48,425 | 47,502 | 6,935 | | 22 | 23 | 55 | 3 | 4 | 4 | 89 | 31 11 | 191 | 1.41 | 248.8 | | A
A | DO
DO
Totals | 2S
4S | 87
13 | | 1,067
152 | 1,067
152 | 156
22
178 | 1 | 100 | | | 100 | 22 | | 78
68 | 37 11
19 6 | | 1.21
0.50 | 6.8
6.8 | | M
M
M | DO
DO
DO | CU
1S
4S | 53 47 | 8.9 | 25
229
222 | 229 | 33
29 | | 100 | 54 | 46 | 46
57 | 54
12 | 30 | | 4 17
25 14
21 7 | 172 | 0.00
1.57
0.59 | .5
1.3
6.5 | | м
Н | Totals DO | 3S | 100 | 9.4 | 180 | 430
180 | 63 | | 47
100 | 29 | 24 | 51 | 35 | 25 | 75 | 21 9
36 9 | 52
120 | 0.77 | 8.3
1.5 | | Н | Totals | | 0 | | 180 | 180 | 26 | 1 | 100 | | | | | 25 | 75 | 36 9 | 120 | 0.87 | 1.5 | | Туре | Totals | | | 1.9 | 50,298 | 49,331 | 7,202 | | 24 | 22 | 54 | 4 | 4 | 4 | 88 | 30 10 | 181 | 1.37 | 272.1 | | T 7 | TSPCSTG! | R | | | Species, | Sort G
Projec | rade - Boar
t: UPP | d Foo
ERH | ot Vo | olun | ies (T | Гуре) | | | | | Page
Date
Time | 4 | 1
/16/20
3:09:2 | | |-------------|----------|----------|-------------|---------------|---------------------|------------------|-----------------------|--------------|-------------|----------------|-------------|-----------------|----------------|--------|-------|---------------|----------------------|----------|-----------------------|--------------| | T07N
Twi | • - | ge | Sec | Tract
AKEA | 4 | Type
00M | | | Plots
37 | | Samp | le Tree
66 | s | C
1 | uFt | T0
Bd
W | | R06W | S36 T | 00MC | | | | | % | | | | | Perce | ent N | et Bo | ard F | oot Vol | ume | | | A | verag | ge Log | | Logs | | Spp | m | Gr
ad | Net
BdFt | Bd.
Def% | Ft. per Ac
Gross | re
Net | Total
Net MBF | i | | le Di
12-16 | a.
5 17+ | Lo ₂ | g Ler
21-30 | _ | 36-99 | Ln
Ft | Dia
In | Bd
Ft | CF/
Lf | Per
/Acre | | D | DO | CU | | 00.0 | 334 | | | | | | | | | | | 17 | 7 | | 0.00 | 9.8 | | D | DO | 2S | 73 | .8 | 23,973 | 23,774 | 499 | | | 45 | 55 | | | 2 | 98 | 40 | 16 | 395 | 2.16 | 60.2 | | D | DO | 3S | 21 | .3 | 7,007 | 6,987 | 147 | 1 | 100 | | | 1 | 3 | 13 | 83 | 37 | 9 | 127 | 0.93 | 54.8 | | D | DO | 4S | 6 | | 1,703 | 1,703 | 36 |] | 100 | | | 41 | 45 | 7 | 7 | 23 | 7 | 34 | 0.50 | 50.0 | | D | Totals | | 88 | 1.7 | 33,016 | 32,464 | 682 | | 27 | 33 | 40 | 2 | 3 | 5 | 90 | 33 | 11 | 186 | 1.32 | 174.8 | | Н | DO | 2S | 70 | 2.4 | 2,482 | 2,422 | 51 | | | 55 | 45 | | 5 | 6 | 89 | 38 | 17 | 412 | 2.40 | 5.9 | | Н | DO | 3S | 16 | | 547 | 547 | 11 |] | 100 | | | 6 | | 48 | 45 | 36 | 9 | 96 | 1.00 | 5.7 | | Н | DO | 4S | 14 | | 456 | 456 | 10 | 1 | 100 | | | 18 | 21 | 35 | 27 | 27 | 7 | 42 | 0.58 | 10.9 | | Н | Totals | | 9 | 1.7 | 3,485 | 3,425 | 72 | | 29 | 39 | 32 | 3 | 6 | 17 | 74 | 32 | 10 | 153 | 1.26 | 22.4 | | A | DO | 2S | 34 | | 343 | 343 | 7 | | 100 | | | | | | 100 | 40 | 10 | 150 | 1.15 | 2.3 | | A | DO | 3S | 41 | | 405 | 405 | 8 |] : | 100 | | | | | | 100 | 40 | 9 | 120 | 0.85 | 3.4 | | A | DO | 4S | 25 | | 248 | 248 | 5 |] : | 100 | | | 18 | 82 | | | 25 | 6 | 27 | 0.49 | 9.0 | | A | Totals | | 3 | | 995 | 995 | 21 | | 100 | | | 5 | 20 | | 75 | 31 | 7 | 68 | 0.73 | 14.7 | | Type 7 | Totals | | | 1.6 | 37,497 | 36,884 | 775 | | 29 | 33 | 38 | 2 | 4 | 6 | 88 | 33 | 10 | 174 | 1.28 | 212.0 | | TC PST | TATS | | | | | JECT
OJECT | | STICS
PERH | | | PAGE
DATE | 1
4/16/2019 | |--|--|----------------|---|--|----------------------|---|---|--|-----------|--|------------------------|--| | ГWР | RGE | SC | TRACT | | TYPE | | AC | RES | PLOTS | TREES | CuFt | BdFt | | 07N
07N
07N | 06
06W
06W | 35
35
36 | TAKEA1
TAKEA23
TAKEA4 | | 00MC
00MC
00MC | | | 234.00 | 134 | 678 | 1 | W | | | | | | | | TREES | | ESTIMATED
TOTAL | | ERCENT
SAMPLE | | | | | | I | PLOTS | TREES | | PER PLOT | • | TREES | | TREES | | | | TOTA | AL. | | 134 | 678 | | 5.1 | | | | | | | | CRUI | ISE | | 54 | 247 | | 4.6 | | 32,689 | | .8 | | | | | COUNT | | | | | | | | | | | | | | DREST | | | | | | | | | | | | | COU | | | 80 | 425 | | 5.3 | | | | | | | | BLAN
100 % | | | | | | | | | | | | | | 100 / | | | | | STA | ND SUM | MARY | | | | | VIII | | | | S/ | AMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | DOU | G FIR | | 200 | 112.4 | 19.2 | 69 | 51.5 | 225.8 | 46,456 | 45,500 | 10,497 | 10,363 | | R AL | | | 30 | 21.3 | 16.1 | 56 | 7.5 | 30.0 | 3,477 | 3,383 | 1,039 | 1,026 | | WHE | MLOCK | | 13 | 3.2 | 16.9 | 52 | 1.2 | 5.0 | 585 | 580 | 161 | 161 | | BL M | 1APLE | | 4 | 2.8 | 14.6 | 40 | 0.9 | 3.3 | 296 | 269 | 85 | 83 | | TOT | AL | | 247 | 139.7 | 18.6 | 66 | 61.2 | 264.1 | 50,815 | 49,732 | 11,782 | 11,633 | | CON | | | MITS OF T
TIMES OU | | | ME WILL | BE WIT | HIN THE SAI | MPLE ERRO | OR | | | | CL | 68.1 | | COEFF | Г ОГ 100 Т | HE VOLU | SAMPI | LE TREE | S - BF | | OF TREES | | INF. POP. | | CL
SD: | 68.1
1.0 | | COEFF
VAR.% | Γ OF 100 T
S.E.% | HE VOLU | SAMPI
OW | LE TREE
AVG | S - BF
HIGH | | | REO.
10 | | | CL
SD:
DOU | 68.1
1.0
G FIR | | COEFF
VAR.%
77.3 | Γ OF 100 T
S.E.%
5.5 | HE VOLU | SAMPI | LE TREE | S - BF | | OF TREES | | | | CL
SD:
DOUG
R AL | 68.1
1.0
G FIR | 3.1 | COEFF
VAR.% | Γ OF 100 T
S.E.% | HE VOLU | SAMPI
OW
752 | LE TREE
AVG
796 | S - BF
HIGH
839 | | OF TREES | | | | CL
SD:
DOUG
R AL
WHE | 68.1
1.0
G FIR
.DER | 3.1 | COEFF
VAR.%
77.3
45.8 | S.E.%
5.5
8.5
26.9
44.0 | HE VOLU | SAMPI
OW
752
165 | AVG 796 181 357 133 | S - BF
HIGH
839
196
453
191 | | OF TREES
5 | | 15 | | CL
SD:
DOUG
R AL
WHE | 68.1
1.0
G FIR
DER
EMLOCK | 3.1 | COEFF
VAR.%
77.3
45.8
93.4 | S.E.%
5.5
8.5
26.9 | HE VOLU | SAMPI
OW
752
165
261 | AVG
796
181
357 | S - BF
HIGH
839
196
453 | | OF TREES | | 15 | | CL SD: DOUGRAL WHE BL M TOT. CL | 68.1
1.0
G FIR
DER
MLOCK
MAPLE
AL | 3.1 | COEFF
VAR.%
77.3
45.8
93.4
77.1
87.8
COEFF | S.E.%
5.5
8.5
26.9
44.0
5.6 | HE VOLU | SAMPI
OW
752
165
261
74
649
TREES | AVG 796 181 357 133 687 | S - BF
HIGH
839
196
453
191
725 | # | FOF TREES 5 308 FOF PLOTS | 10
77
REO. | 34
INF. POP. | | CL
SD:
DOUG
R AL
WHE
BL M
TOT:
CL
SD: | 68.1
1.0
G FIR
DER
EMLOCK
MAPLE
AL
68.1
1.0 | 3.1 | COEFF
VAR.%
77.3
45.8
93.4
77.1
87.8
COEFF
VAR.% | S.E.% S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% | HE VOLU | SAMPI
OW
752
165
261
74
649
TREES |
AVG 796 181 357 133 687 /ACRE AVG | S - BF
HIGH
839
196
453
191
725 | # | OF TREES 5 | 10
77
REO. | 34
INF. POP. | | CL SD: DOUGH R ALL WHE BL M TOT. CL SD: DOUGH SD: | 68.1
1.0
G FIR
DER
EMLOCK
MAPLE
AL
68.1
1.0 | 3.1 | COEFF
VAR.%
77.3
45.8
93.4
77.1
87.8
COEFF
VAR.%
106.1 | S.E.%
5.5
8.5
26.9
44.0
5.6
S.E.%
9.2 | HE VOLU | SAMPI OW 752 165 261 74 649 TREES OW 102 | AVG 796 181 357 133 687 /ACRE AVG 112 | S - BF
HIGH
839
196
453
191
725
HIGH
123 | # | FOF TREES 5 308 FOF PLOTS | 10
77
REO. | 34
INF. POP. | | CL SD: DOUGH ALL SD: CL SD: DOUGH ALL SD: DOUGH ALL | 68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 G FIR DER | | COEFF
VAR.%
77.3
45.8
93.4
77.1
87.8
COEFF
VAR.%
106.1
219.5 | S.E.%
5.5
8.5
26.9
44.0
5.6
S.E.%
9.2
18.9 | HE VOLU | SAMPI OW 752 165 261 74 649 TREES OW 102 17 | AVG 796 181 357 133 687 /ACRE AVG 112 21 | S - BF
HIGH
839
196
453
191
725
HIGH
123
25 | # | FOF TREES 5 308 FOF PLOTS | 10
77
REO. | 34
INF. POP. | | CL SD: DOUGH ALL SD: CL SD: DOUGH ALL WHE | 68.1
1.0
G FIR
DER
EMLOCK
MAPLE
AL
68.1
1.0 | | COEFF
VAR.%
77.3
45.8
93.4
77.1
87.8
COEFF
VAR.%
106.1 | S.E.%
5.5
8.5
26.9
44.0
5.6
S.E.%
9.2 | HE VOLU | SAMPI OW 752 165 261 74 649 TREES OW 102 | AVG 796 181 357 133 687 /ACRE AVG 112 | S - BF
HIGH
839
196
453
191
725
HIGH
123 | # | FOF TREES 5 308 FOF PLOTS | 10
77
REO. | 34
INF. POP. | | CL SD: DOUGH ALL SD: CL SD: DOUGH ALL WHE | 68.1 1.0 G FIR DER MLOCK APLE AL 68.1 1.0 G FIR DER EMLOCK APLE | | COEFF
VAR.%
77.3
45.8
93.4
77.1
87.8
COEFF
VAR.%
106.1
219.5
308.3 | S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 | HE VOLU | SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 | AVG 796 181 357 133 687 /ACRE AVG 112 21 3 | S - BF
HIGH
839
196
453
191
725
HIGH
123
25
4 | # | FOF TREES 5 308 FOF PLOTS | 10
77
REO. | 15
34 | | CL SD: DOUGH ALL WHE BL M TOT: CL SD: DOUGH ALL WHE BL M TOT: | 68.1 1.0 G FIR DER MLOCK APLE AL 68.1 1.0 G FIR DER EMLOCK APLE | | COEFF
VAR.%
77.3
45.8
93.4
77.1
87.8
COEFF
VAR.%
106.1
219.5
308.3
741.9
87.1
COEFF | S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 | L L | SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAI | AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A | S - BF
HIGH
839
196
453
191
725
HIGH
123
25
4
5
150 | # | OF TREES 5 308 OF PLOTS 5 303 | 77 REO. 10 76 REO. | 34
INF. POP.
15
34
INF. POP. | | CL SD: DOUG R AL WHE BL M TOT: CL SD: DOUG R AL WHE BL M TOT: CL SD: CL SD: | 68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 68.1 1.0 | | COEFF
VAR.%
77.3
45.8
93.4
77.1
87.8
COEFF
VAR.%
106.1
219.5
308.3
741.9
87.1
COEFF
VAR.% | S.E.% S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% | L L | SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAL | AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A | S - BF
HIGH
839
196
453
191
725
HIGH
123
25
4
5
150
ACRE
HIGH | # | 308 4 OF PLOTS 5 | 77 REO. 10 | 34
INF. POP.
15 | | CL SD: DOUGH ALL WHE BL M TOT. CL WHE BL M TOT. CL SD: DOUGH ALL WHE BL M TOT. CL SD: DOUGH SD: DOUGH ALL DOUG | 68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 G FIR DER EMLOCK MAPLE AL 68.1 1.0 G FIR OFF | | COEFF
VAR.%
77.3
45.8
93.4
77.1
87.8
COEFF
VAR.%
106.1
219.5
308.3
741.9
87.1
COEFF
VAR.% | S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 | L L | SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAL OW 210 | AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 | S - BF
HIGH
839
196
453
191
725
HIGH
123
25
4
5
150
ACRE
HIGH
242 | # | OF TREES 5 308 OF PLOTS 5 303 | 77 REO. 10 76 REO. | 34
INF. POP.
15 | | CL SD: DOUG R AL WHE BL M TOT: CL SD: DOUG R AL WHE BL M TOT: CL SD: DOUG R AL | 68.1 1.0 G FIR DER MLOCK APLE AL 68.1 1.0 G FIR DER MLOCK APLE AL 68.1 1.0 G FIR DER AL 68.1 1.0 | | COEFF
VAR.%
77.3
45.8
93.4
77.1
87.8
COEFF
VAR.%
106.1
219.5
308.3
741.9
87.1
COEFF
VAR.% | S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7 | L L | SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAL OW 210 24 | AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 30 | S - BF
HIGH
839
196
453
191
725
HIGH
123
25
4
5
150
ACRE
HIGH
242
36 | # | OF TREES 5 308 OF PLOTS 5 303 | 77 REO. 10 76 REO. | 34
INF. POP.
15 | | CL SD: DOUGRAL WHE BL M TOT: CL SD: DOUGRAL WHE BL M TOT: CL SD: DOUGRAL WHE WHE SD: DOUGRAL WHE | 68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 G FIR DER EMLOCK MAPLE AL 68.1 1.0 G FIR OFF | | COEFF
VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF VAR.% 80.7 216.6 293.3 | S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7 25.3 | L L | SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAL OW 210 | AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 | S - BF
HIGH
839
196
453
191
725
HIGH
123
25
4
5
150
ACRE
HIGH
242 | # | OF TREES 5 308 OF PLOTS 5 303 | 77 REO. 10 76 REO. | 34
INF. POP.
15
34
INF. POP. | | CL SD: DOUGH ALL WHE | 68.1 1.0 G FIR DER MLOCK APLE AL 68.1 1.0 G FIR DER EMLOCK APLE G FIR DER EMLOCK APLE 68.1 1.0 G FIR DER EMLOCK APLE 68.1 1.0 G FIR DER EMLOCK APLE | | COEFF
VAR.%
77.3
45.8
93.4
77.1
87.8
COEFF
VAR.%
106.1
219.5
308.3
741.9
87.1
COEFF
VAR.% | S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7 | L L | SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAI OW 210 24 4 | AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 30 5 | S - BF
HIGH
839
196
453
191
725
HIGH
123
25
4
5
150
ACRE
HIGH
242
36
6 | # | OF TREES 5 308 OF PLOTS 5 303 | 77 REO. 10 76 REO. | 34 INF. POP. 15 34 INF. POP. | | CL SD: DOUG R AL WHE BL M TOT: CL SD: DOUG R AL WHE BL M TOT: CL SD: WHE BL M TOT: CL SD: DOUG R AL WHE BL M TOT: CL SD: DOUG R AL WHE SD: DOUG R AL | 68.1 1.0 G FIR DER MLOCK APLE AL 68.1 1.0 G FIR DER EMLOCK APLE G FIR DER EMLOCK APLE 68.1 1.0 G FIR DER EMLOCK APLE 68.1 1.0 G FIR DER EMLOCK APLE | | COEFF
VAR.%
77.3
45.8
93.4
77.1
87.8
COEFF
VAR.%
106.1
219.5
308.3
741.9
87.1
COEFF
VAR.%
80.7
216.6
293.3
689.9 | S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7 25.3 59.5 | L L | SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAI OW 210 24 4 1 248 | AVG AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 30 5 3 | S - BF HIGH 839 196 453 191 725 HIGH 123 25 4 5 150 ACRE HIGH 242 36 6 5 | # | 308 FOF PLOTS 5 303 FOF PLOTS 5 | 77 REO. 10 76 REO. 10 | 34 INF. POP. 15 34 INF. POP. | | CL SD: DOUGH ALL SD: DOUGH ALL WHE BL M. TOT. CL SD: DOUGH ALL SD: CL | 68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 G FIR DER EMLOCK MAPLE 68.1 1.0 | | COEFF
VAR.%
77.3
45.8
93.4
77.1
87.8
COEFF
VAR.%
106.1
219.5
308.3
741.9
87.1
COEFF
VAR.%
80.7
216.6
293.3
689.9
68.9
COEFF
VAR.% | S.E.% S.E.% S.E.% S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7 25.3 59.5 5.9 S.E.% | THE VOLU | SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAL OW 210 24 4 1 248 NET B | AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 30 5 3 264 F/ACRE AVG | S - BF
HIGH
839
196
453
191
725
HIGH
123
25
4
5
150
ACRE
HIGH
242
36
6
5
280
HIGH | # | 308 4 OF PLOTS 5 303 4 OF PLOTS 5 | 77 REO. 10 76 REO. 10 | 34 INF. POP. 15 34 INF. POP. 15 | | CL SD: DOUGRAL WHE BL M TOT: CL SD: DOUGRAL WHE BL M TOT: CL SD: DOUGRAL WHE SD: DOUGRAL WHE BL M TOT: CL SD: DOUGRAL WHE BL M TOT: CL SD: DOUGRAL | 68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 G FIR DER MLOCK MAPLE CAL 68.1 1.0 G FIR DER MLOCK MAPLE 68.1 1.0 G FIR DER MLOCK MAPLE 68.1 1.0 G FIR DER MLOCK MAPLE CAL 68.1 1.0 G FIR DER MLOCK MAPLE CAL 68.1 1.0 | | COEFF
VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF VAR.% 80.7 216.6 293.3 689.9 68.9 COEFF VAR.% 79.4 | S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7 25.3 59.5 5.9 S.E.% 6.9 | THE VOLU | SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAL OW 210 24 4 1 248 NET B | AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 30 5 3 264 F/ACRE AVG 45,500 | S - BF
HIGH
839
196
453
191
725
HIGH
123
25
4
5
150
ACRE
HIGH
242
36
6
5
280
HIGH
48,617 | # | OF TREES 5 308 OF PLOTS 5 4 OF PLOTS 5 | 77 REO. 10 76 REO. 10 | 34 INF. POP. 15 34 INF. POP. 15 | | CL SD: DOUGH ALL WHE BL M TOT: CL SD: DOUGH ALL WHE BL M TOT | 68.1 1.0 G FIR DER EMLOCK MAPLE AL 68.1 1.0 G FIR DER EMLOCK MAPLE CAL 68.1 1.0 G FIR DER CAL 68.1 | | COEFF
VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF VAR.% 80.7 216.6 293.3 689.9 68.9 COEFF VAR.% 79.4 219.0 | S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7 25.3 59.5 5.9 S.E.% 6.9 18.9 | THE VOLU | SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAI OW 210 24 4 1 248 NET B OW 42,383 2,744 | AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 30 5 3 264 F/ACRE AVG 45,500 3,383 | S -
BF
HIGH
839
196
453
191
725
HIGH
123
25
4
5
150
ACRE
HIGH
242
36
6
5
280
HIGH
48,617
4,023 | # | OF TREES 5 308 OF PLOTS 5 4 OF PLOTS 5 | 77 REO. 10 76 REO. 10 | 34 INF. POP. 15 34 INF. POP. 15 | | CL SD: DOUGH ALL WHE BL M TOT: CL SD: DOUGH ALL WHE BL M TOT: CL SD: DOUGH ALL WHE BL M TOT CL SD: DOUGH ALL WHE BL M TOT CL SD: DOUGH ALL WHE SD: DOUGH ALL WHE SD: DOUGH ALL WHE SD: DOUGH ALL WHE | 68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 G FIR DER MLOCK MAPLE CAL 68.1 1.0 G FIR DER MLOCK MAPLE 68.1 1.0 G FIR DER MLOCK MAPLE 68.1 1.0 G FIR DER MLOCK MAPLE CAL 68.1 1.0 G FIR DER MLOCK MAPLE CAL 68.1 1.0 | | COEFF
VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF VAR.% 80.7 216.6 293.3 689.9 68.9 COEFF VAR.% 79.4 | S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7 25.3 59.5 5.9 S.E.% 6.9 | THE VOLU | SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAL OW 210 24 4 1 248 NET B | AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 30 5 3 264 F/ACRE AVG 45,500 | S - BF
HIGH
839
196
453
191
725
HIGH
123
25
4
5
150
ACRE
HIGH
242
36
6
5
280
HIGH
48,617 | # | OF TREES 5 308 OF PLOTS 5 4 OF PLOTS 5 | 77 REO. 10 76 REO. 10 | 34 INF. POP. 15 34 INF. POP. 15 | | TC TSTA | ATS | | | | ST.
PROJE | CT | ICS
UPPERH | | | PAGE
DATE 4 | 1
-/16/2019 | |---|---|--|---|-----------------------|---|--|--|----------------------|-------------------------------------|---------------------------------------|---| | TWP | RGE | SECT 7 | CRACT | | TYPE | AC | RES | PLOTS | TREES | CuFt | BdFt | | 07N | 06W | 35 | TAKEA1 | | 00MC | | 67.00 | 45 | 251 | 11 | W | | | | PLOTS | TREES | | TREES
PER PLO | • | ESTIMATED
FOTAL
TREES | SA | ERCENT
AMPLE
REES | · · · · · · · · · · · · · · · · · · · | | | TOTA | T | 45 | 251 | | 5.6 | _ | | | | | | | CRUIS | SE
COUNT
REST
NT
IKS | 19 | 101 | | 5.6 5.3 5.7 | | 11,171 | | .9 | | , | | | | | | STA | ND SUM | MARY | | | | | | | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | DOUG | | 76 | 105.1 | 19.5 | 75 | 49.3 | 217.8 | 46,380 | 45,223 | 10,448 | 10,292 | | R ALE | | 23 | 56.7 | 15.9 | 56 | 19.7 | 78.6 | 9,176 | 8,850 | 2,730 | 2,686 | | TOTA | MLOCK | 2
101 | 4.9
<i>166.7</i> | 16.5
18.3 | 46
<i>6</i> 8 | 1.8
71.0 | 7.3
<i>303.7</i> | 560
<i>56,116</i> | 560
<i>54,633</i> | 176
<i>13,353</i> | 176
13,154 | | | FIDENC | | F THE SAMPI
T OF 100 THE | Æ | | E WITHIN | THE SAMP | LE ERROR | | | | | CONI | FIDENCI
68.1
68.1 % | TIMES OUT | F THE SAMPI
T OF 100 THE
F | LE
VOLUME | WILL B | LE TREES | S - BF | | OF TREES | | INF. POP. | | CONI | FIDENCE
68.1
68.1 %
1.0 | TIMES OU' COEF | F THE SAMPI
F OF 100 THE
F
S.E.% | LE
VOLUME | WILL B
SAMPI
OW | L E TREE S
AVG | S - BF
HIGH | | OF TREES | REO.
10 | INF. POP. | | CL:
SD:
DOUC | FIDENCE
68.1
68.1 %
1.0
G FIR | COEF
VAR.
78.3 | F THE SAMPI
F OF 100 THE
F
S.E.%
9.0 | LE
VOLUME | WILL BY SAMPY OW 722 | LE TREES
AVG
793 | S - BF
HIGH
864 | | | | | | CL:
SD:
DOUC
R ALL | FIDENCE
68.1
68.1 %
1.0
G FIR | TIMES OU' COEF | F THE SAMPI
F OF 100 THE
F
S.E.% | LE
VOLUME | WILL B
SAMPI
OW | L E TREE S
AVG | S - BF
HIGH | | | | | | CL:
SD:
DOUC
R ALL | FIDENCE
68.1
68.1 %
1.0
FIR
DER
MLOCK | COEF
VAR.
78.3
46.6 | F THE SAMPI
F OF 100 THE
F
S.E.%
9.0
9.9 | LE
VOLUME | WILL B
SAMP
OW
722
170 | LE TREES
AVG
793
188 | S - BF
HIGH
864
207 | | | | | | CL:
SD:
DOUG
R ALD
WHEN | FIDENCE
68.1
68.1 %
1.0
FIR
DER
MLOCK | TIMES OU' COEF VAR. 78.3 46.6 90.0 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.0
9.9
84.3
9.3 | LE
VOLUME | WILL B. SAMP! OW 722 170 17 582 | AVG
793
188
110 | S - BF
HIGH
864
207
203 | # | 5 | 10
88 | 15 | | CL:
SD:
DOUC
R ALL
WHEN
TOTA
CL:
SD: | 68.1 % 1.0 3 FIR DER MLOCK AL 68.1 % 1.0 | COEF
VAR.
78.3
46.6
90.0
93.7 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.0
9.9
84.3
9.3
F
% S.E.% | LE
VOLUME | WILL B. SAMP! OW 722 170 17 582 | AVG 793 188 110 642 S/ACRE AVG | S - BF
HIGH
864
207
203 | # | 350 | 10
88 | 39 | | CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC | 68.1 % 1.0 3 FIR DER MLOCK AL 68.1 % 1.0 5 FIR | COEF
VAR.
78.3
46.6
90.0
93.7
COEF
VAR.
90.1 | F THE SAMPI
T OF 100 THE
F
% S.E.%
9.0
9.9
84.3
9.3
F
% S.E.%
13.4 | LE
VOLUME | WILL B: SAMP! OW 722 170 17 582 TREES OW 91 | AVG 793 188 110 642 6/ACRE AVG 105 | S - BF
HIGH
864
207
203
702
HIGH
119 | # | 5
350
OF PLOTS | 88 S REO. | 39 INF. POP. | | CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL | 68.1 % 1.0 G FIR DER MLOCK AL 68.1 % 1.0 G FIR DER | COEF
VAR.
78.3
46.6
90.0
93.7
COEF
VAR.
90.1
134.5 | F THE SAMPI
T OF 100 THE
F
% S.E.%
9.0
9.9
84.3
9.3
F
% S.E.%
13.4
20.0 | LE
VOLUME | WILL B: SAMP! OW 722 170 17 582 TREES OW 91 45 | AVG 793 188 110 642 6/ACRE AVG 105 57 | S - BF
HIGH
864
207
203
702
HIGH
119
68 | # | 5
350
OF PLOTS | 88 S REO. | 39 INF. POP. | | CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN | FIDENCE
68.1 %
1.0
G FIR
DER
MLOCK
AL
68.1 %
1.0
G FIR
DER
MLOCK | COEF
VAR.
78.3
46.6
90.0
93.7
COEF
VAR.
90.1
134.5
303.5 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.0
9.9
84.3
9.3
F
% S.E.%
13.4
20.0
45.2 | LE
VOLUME | WILL B. SAMPI OW 722 170 17 582 TREES OW 91 45 3 | AVG 793 188 110 642 6/ACRE AVG 105 57 5 | S - BF
HIGH
864
207
203
702
HIGH
119
68
7 | # | 5
350
OF PLOTS
5 | 88
REO.
10 | 39
INF. POP.
15 | | CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA | FIDENCE
68.1 %
1.0
G FIR
DER
MLOCK
AL
68.1 %
1.0
G FIR
DER
MLOCK | COEF
VAR.
78.3
46.6
90.0
93.7
COEF
VAR.
90.1
134.5 | F THE SAMPI
F OF 100
THE
F
% S.E.%
9.0
9.9
84.3
9.3
F
% S.E.%
13.4
20.0
45.2
8.8 | LE
VOLUME | WILL B: SAMP! OW 722 170 17 582 TREES OW 91 45 3 152 | AVG 793 188 110 642 6/ACRE AVG 105 57 5 167 | S - BF
HIGH
864
207
203
702
HIGH
119
68
7
181 | # | 5
350
OF PLOTS
5 | 88
REO.
10 | 39 INF. POP. 15 | | CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA | FIDENCE
68.1 %
1.0
G FIR
DER
MLOCK
AL
68.1 %
1.0
G FIR
DER
MLOCK
AL | COEF
VAR.
78.3
46.6
90.0
93.7
COEF
VAR.
90.1
134.5
303.5
59.4 | F THE SAMPI
T OF 100 THE
F
% S.E.%
9.0
9.9
84.3
9.3
F
% S.E.%
13.4
20.0
45.2
8.8 | LE
VOLUME
L | WILL B: SAMP! OW 722 170 17 582 TREES OW 91 45 3 152 | AVG 793 188 110 642 6/ACRE AVG 105 57 5 | S - BF
HIGH
864
207
203
702
HIGH
119
68
7
181 | # | 5
350
OF PLOTS
5 | 88
REO.
10 | 39
INF. POP.
15 | | CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R | 68.1 % 1.0 G FIR DER MLOCK AL 68.1 % 1.0 G FIR DER MLOCK AL 68.1 % 1.0 G FIR DER MLOCK AL 68.1 % 1.0 G FIR | COEF
VAR.
78.3
46.6
90.0
93.7
COEF
VAR.
90.1
134.5
303.5
59.4
COEF
VAR. | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.9
84.3
9.3
F
% S.E.%
13.4
20.0
45.2
8.8
F | LE
VOLUME
L | WILL B. SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 | AVG 793 188 110 642 6/ACRE AVG 105 57 5 167 AREA/A AVG 218 | S - BF
HIGH
864
207
203
702
HIGH
119
68
7
181
CRE
HIGH
238 | # | 5 350 OF PLOTS 5 | 88 REO. 10 | 39 INF. POP. 15 16 INF. POP. | | CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL R ALL SD: DOUC R ALL | 68.1 % 1.0 G FIR DER MLOCK 1.0 G FIR DER | COEF
VAR.
78.3
46.6
90.0
93.7
COEF
VAR.
90.1
134.5
303.5
59.4
COEF
VAR.
61.7
130.8 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.0
9.9
84.3
9.3
F
% S.E.%
13.4
20.0
45.2
8.8
F
% S.E.% | LE
VOLUME
L | WILL B. SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 63 | AVG 793 188 110 642 S/ACRE AVG 105 57 5 167 AREA/A AVG 218 79 | S - BF
HIGH
864
207
203
702
HIGH
119
68
7
181
CRE
HIGH
238
94 | # | 5 350 OF PLOTS 5 | 88 REO. 10 | 39 INF. POP. 15 16 INF. POP. | | CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA | 68.1 % 1.0 G FIR DER MLOCK ML 68.1 % 1.0 G FIR DER MLOCK ML 68.1 % | COEF VAR. 90.1 134.5 303.5 59.4 COEF VAR. 61.7 130.8 303.4 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.0
9.9
84.3
9.3
F
% S.E.%
13.4
20.0
45.2
8.8
F
% S.E.%
9.2
19.5
45.2 | LE
VOLUME
L | WILL B: SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 63 4 | AVG 105 57 5 167 AREA/A AVG 218 79 7 | S - BF
HIGH
864
207
203
702
HIGH
119
68
7
181
CRE
HIGH
238
94
11 | # | 5 350 OF PLOTS 5 141 OF PLOTS 5 | 88 SREO. 10 35 SREO. 10 | 39 INF. POP. 15 16 INF. POP. 15 | | CL: SD: DOUC R ALE WHEN TOTA CL: SD: DOUC R ALE WHEN TOTA CL: SD: DOUC R ALE WHEN TOTA | 68.1 % 1.0 3 FIR DER MLOCK 1.0 3 FIR DER MLOCK 1.0 3 FIR DER MLOCK 1.0 5 FIR DER MLOCK 1.0 68.1 % 1.0 3 FIR DER MLOCK 1.0 3 FIR DER MLOCK 1.0 | COEF
VAR.
78.3
46.6
90.0
93.7
COEF
VAR.
90.1
134.5
303.5
59.4
COEF
VAR.
61.7
130.8
303.4 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.0
9.9
84.3
9.3
F
% S.E.%
13.4
20.0
45.2
8.8
F
% S.E.%
9.2
19.5
45.2
5.9 | LE
VOLUME
L | WILL B. SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 63 | AVG 793 188 110 642 S/ACRE AVG 105 57 5 167 AREA/A AVG 218 79 | S - BF
HIGH
864
207
203
702
HIGH
119
68
7
181
CRE
HIGH
238
94 | # | 5 350 OF PLOTS 5 | 88 REO. 10 | 15 39 INF. POP. 15 16 INF. POP. 15 | | CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA CL: SD: CL: CL: CL: | FIDENCE
68.1 %
1.0
G FIR
DER
MLOCK
1.0
G FIR
DER
MLOCK
1.0
MLOCK
1.0
G FIR
MLOCK
1.0
G FIR
MLOCK
1.0
G FIR
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0
MLOCK
1.0 | COEF
VAR.
78.3
46.6
90.0
93.7
COEF
VAR.
90.1
134.5
303.5
59.4
COEF
VAR.
61.7
130.8
303.4
39.4 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.0
9.9
84.3
9.3
F
% S.E.%
13.4
20.0
45.2
8.8
F
% S.E.%
9.2
19.5
45.2
5.9 | LE VOLUME L | WILL B: SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 63 4 286 NET B | AVG 105 57 5 167 AREA/A AVG 218 79 7 304 | S - BF
HIGH
864
207
203
702
HIGH
119
68
7
181
CRE
HIGH
238
94
11
321 | # | 5 350 OF PLOTS 5 141 OF PLOTS 5 | 88 S REO. 10 35 S REO. 10 16 S REO. | 15 39 INF. POP. 15 16 INF. POP. 7 INF. POP. | | CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA CL: SD: CL: SD: CL: SD: CL: SD: CL: SD: CL: SD: | 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 | COEF
VAR.
78.3
46.6
90.0
93.7
COEF
VAR.
90.1
134.5
303.5
59.4
COEF
VAR.
61.7
130.8
303.4
39.4
COEF | F THE SAMPI
F OF 100 THE F S.E.% 9.0 9.9 84.3 9.3 F 8 S.E.% 13.4 20.0 45.2 8.8 F 8 S.E.% 9.2 19.5 45.2 5.9 F | E
VOLUME
L | WILL B: SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 63 4 286 NET B OW | AVG 793 188 110 642 6/ACRE AVG 105 57 5 167 6/AREA/A AVG 218 79 7 304 F/ACRE AVG | S - BF HIGH 864 207 203 702 HIGH 119 68 7 181 CRE HIGH 238 94 11 321 HIGH | # | 5 350 OF PLOTS 5 141 OF PLOTS 5 | 88 S REO. 10 35 S REO. 10 | 15 39 INF. POP. 15 16 INF. POP. 15 | | CL: SD: DOUC R ALL WHEN TOTA | FIDENCE
68.1 %
1.0
G FIR
DER
MLOCK
1.0
G FIR
D | COEF
VAR.
78.3
46.6
90.0
93.7
COEF
VAR.
90.1
134.5
303.5
59.4
COEF
VAR.
61.7
130.8
303.4
39.4
COEF
VAR. | F THE SAMPI
F OF 100 THE F S.E.% 9.0 9.9 84.3 9.3 F S.E.% 13.4 20.0 45.2 8.8 F S.E.% 9.2 19.5 45.2 5.9 F | L
VOLUME
L
L | WILL B. SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 63 4 286 NET B OW 1,205 | AVG 105 57 5 167 AREA/A AVG 218 79 7 304 F/ACRE AVG 45,223 | S - BF HIGH 864 207 203 702 HIGH 119 68 7 181 CRE HIGH 238 94 11 321 HIGH 49,241 | # | 5 350 OF PLOTS 5 141 OF PLOTS 5 | 88 S REO. 10 35 S REO. 10 16 S REO. | 15 39 INF. POP. 15 16 INF. POP. 7 INF. POP. | | CL: SD: DOUC R ALL WHEN TOTA | FIDENCE
68.1 %
1.0
G FIR
DER
MLOCK
1.0
G FIR
D | COEF
VAR.
78.3
46.6
90.0
93.7
COEF
VAR.
90.1
134.5
303.5
59.4
COEF
VAR.
61.7
130.8
303.4
39.4
COEF | F THE SAMPI
F OF 100 THE F S.E.% 9.0 9.9 84.3 9.3 F 8 S.E.% 13.4 20.0 45.2 8.8 F 8 S.E.% 9.2 19.5 45.2 5.9 F | L
VOLUME
L
L | WILL B: SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 63 4 286 NET B OW | AVG 793 188 110 642 6/ACRE AVG 105 57 5 167 6/AREA/A AVG 218 79 7 304 F/ACRE AVG | S - BF HIGH 864 207 203 702 HIGH 119 68 7 181 CRE HIGH 238 94 11 321 HIGH | # | 5 350 OF PLOTS 5 141 OF PLOTS 5 | 88 S REO. 10 35 S REO. 10 16 S REO. | 15 39 INF. POP. 15 16 INF. POP. 7 INF. POP. | | TC TST. | ATS | | | | | | TATIST | | | | PAGE | 1 | |-------------------------------|----------------|------------|--------------|--------------|--------|-------------------|----------------------|-----------------------------|--------|-------------------------|--------|-----------| | | | | | | | PROJE | | UPPERH | | | | /16/2019 | | TWP | RGE | SECT | TRA | | | TYPE | | RES | PLOTS | TREES | CuFt | BdFt | | 07N | 06W | 35 | TAI | CEA23 | | 00MC | | 146.00 | 52 | 244 | 1 | W | | | | PLOTS | } | TREES | | TREES
PER PLOT | , | ESTIMATED
TOTAL
TREES | S | ERCENT
AMPLE
REES | | | | TOTA | ΛŢ. | 52 | | 244 | | 4.7 | | | | | | | | CRUI: | SE
COUNT | 21 | | 80 | | 3.8 | | 19,431 | | .4 | | | | REFO
COUN
BLAN
100 % | NKS | 31 | I | 159 | | 5.1 | | | | | | | | | | | | | STA | ND SUM | MARY | | | | | | | | | SAMPLE | 3 | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | TREES | 3 | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | DOUG | | | 71 | 121.0 | 19.0 | 66 | 54.7 | 238.7 | 48,425 | 47,502 | 10,921 | 10,788 | | R ALI | | | 4 | 6.8 | 16.9 | 58 | 2.5 | 10.5 | 1,218 | 1,218 | 365 | 365 | | BL M | | | 4 | 4.5 | 14.6 | 40 | 1.4 | 5.2 | 475 | 430 | 137 | 133 | | | MLOCK | | 1 | .7 | 16.0 | 77 | 0.3 | 1.0 | 180 | 180 | 47 | 47 | | TOTA | AL | | 80 | 133.1 | 18.8 | 65 | 59.0 | 255.4 | 50,298 | 49,331 | 11,470 | 11,333 | | CL: | 68.1 % | | UT OF
EFF | F
100 THE | VOLUME | | E WITHIN
LE TREE! | THE SAMP S - BF | | OF TREES | REQ. | INF. POP. | | SD: | 1.0 | | R.% | S.E.% | L | OW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | | | 9.9 | 9.5 | | 826 | 913 | 999 | | | | | | R ALI
BL M | | | 0.0
7.1 | 11.4
44.0 | | 164
74 | 185
133 | 206
191 | | | | | | | MLOCK | | | | | | | | | | | | | TOTA | AL | 87 | .6 | 9.8 | | 748 | 829 | 910 | | 307 | 77 | 34 | | CL: | 68.1 % | CO | EFF | | | TREES | ACRE | | # | OF PLOTS | REO. | INF. POP. | | SD: | 1.0 | VA | R,% | S.E.% | L | OW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | | | 9.7 | 9.7 | | 109 | 121 | 133 | | | | | | R ALI | | 288 | | 40.0 | | 4 | 7 | 9 | | | | | | | IAPLE
MLOCK | 458
721 | | 63.5
99.9 | | 2
0 | 5
1 | 7
1 | | | | | | TOTA | | 63 | | 8.8 | | 121 | 133 | 145 | | 160 | 40 | 18 | | | 68.1 % | | EFF | | | | AREA/A | | | OF PLOTS | | INF. POP. | | | 1.0 | | R.% | S.E.% | L | OW
OW | AVG | HIGH | †† | 5 5 | 10 | 15 | | DOU(| | | 2.4 | 5.9 | | 225 | 239 | 253 | | | 10 | 1.0 | | R ALI | | 292 | | 40.5 | | 6 | 10 | 15 | | | | | | | IAPLE | 425 | | 58.9 | | 2 | 5 | 8 | | | | | | | MLOCK | 721 | | 99.9 | | 0 | 1 | 2 | | (2) | 1.5 | ~ | | TOTA | | 39 | | 5.4 | | 242 | 255 | 269 | | 62 | 15 | 7 | | | 68.1 % | | EFF | | | | F/ACRE | | # | OF PLOTS | | INF. POP. | | | 1.0 | | R.% | S.E.% | | OW | AVG | HIGH | · | 5 | 10 | 15 | | DOUG
R ALI | | 42
291 | 2.1 | 5.8
40.4 | 4 | 4,731
727 | 47,502
1,218 | 50,273
1,710 | | | | | | | IAPLE | 437 | | 60.7 | | 169 | 430 | 691 | | | | | | | MLOCK | 721 | | 99.9 | | 0 | 180 | 360 | | | | | | TOTA | | 39 | 0.4 | 5.5 | 40 | 6,634 | 49,331 | 52,027 | | 62 | 16 | 7 | | | | | | | | | | | | | | | . | TC TST. | AIS | | | | ST
PROJE | ATIST | ICS
UPPERH | | | PAGE
Date 4 | 1
/16/2019 | |---|--|--|--|--|--|--|--|----------|--|---|--| | ГWР | RGE | SECT | TRACT | | TYPE | AC | RES | PLOTS | TREES | CuFt | BdFt | | 07N | 06W | 36 | TAKEA4 | | 00MC | | 21.00 | 37 | 183 | 1 | W | | | | | | | | | ESTIMATED | pi | ERCENT | | | | | | | | 7 | TREES | | TOTAL | | AMPLE | | | | | | PLOTS | TREES | I | PER PLOT | • | TREES | T | REES | | | | TOTA | т | 37 | 183 | | 4.9 | | | | | | | | CRUI | | 14 | 66 | | 4.7 | | 2,088 | | 3.2 | | | | | COUNT | | | | | | _, | | | | | | REFO | | | | | | | | | | | | | COUN | | 23 | 117 | | 5.1 | | | | | | | | BLAN | IKS | | | | | | | | | | | | 100 % | ,
) | | | | | | | | | | | | | | | | STAI | ND SUM | MARY | | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | DOUG | 3 FIR | 53 | 3 75.7 | 19.8 | 79 | 36.4 | 162.2 | 33,016 | 32,464 | 7,706 | 7,634 | | | MLOCK | 10 | | 17.6 | 51 | 5.9 | 24.9 | 3,485 | 3,425 | 902 | 902 | | R ALI | | 3 | 3 9.0 | 14.8 | 53 | 2.8 | 10.8 | 995 | 995 | 332 | 332 | | TOTA | | 60 | | 19.1 | 72 | 45.3 | 197.8 | 37,497 | 36.884 | 8,940 | 8,868 | | 0011 | | | OF THE SAMP
JT OF 100 THE | | WILL BE | E WITHIN | THE SAMP | LE ERROR | | | | | CL: | 68.1 % | TIMES OU | JT OF 100 THE | E VOLUME | SAMPL | E TREES | S - BF | | OF TREES | | INF. POP. | | CL:
SD: | 68.1 %
1.0 | TIMES OU
COE
VAR | JT OF 100 THE
EFF
2.% S.E.% | E VOLUME | SAMPL
DW | E TREES | S - BF
HIGH | | OF TREES | S REO.
10 | | | CL:
SD:
DOUG | 68.1 %
1.0 | TIMES OU | UT OF 100 THE
EFF
8.% S.E.%
1 7.8 | E VOLUME | SAMPL | E TREES | S - BF | | | | | | CL:
SD:
DOUG | 68.1 %
1.0
G FIR
MLOCK | COE
VAR
57. | UT OF 100 THE
EFF
2.% S.E.%
1 7.8
5 28.5 | E VOLUME | SAMPL
OW
592 | LE TREES
AVG
642 | S - BF
HIGH
693 | | | | | | CL:
SD:
DOUG | 68.1 % 1.0 3 FIR MLOCK DER | COE
VAR
57.
85. | JT OF 100 THE
EFF
2.% S.E.%
1 7.8
5 28.5
9 44.9 | E VOLUME | SAMPL
DW
592
299 | AVG
642
418 | S - BF HIGH 693 537 | | | | 15 | | CL:
SD:
DOUG
WHE:
R ALL | 68.1 % 1.0 3 FIR MLOCK DER | TIMES OU
COE
VAR
57.
85.
64. | TOF 100 THE S.E.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 | E VOLUME | SAMPL
DW
592
299
64 | AVG 642 418 117 585 | S - BF HIGH 693 537 169 | # | 5 | 10 | 15 | | CL:
SD:
DOUG
WHE:
R ALL
TOTA | 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 | COE VAR 57. 85. 64. | TOF 100 THE S.E.% S.E.% T.8 S.E.% 44.9 T.9 SEFF | LO | SAMPL
DW
592
299
64
538 | AVG 642 418 117 585 | S - BF HIGH 693 537 169 | # | 5 | 10 | 15
19
INF. POP. | | CL:
SD:
DOUG
WHE:
R ALL
TOTA
CL:
SD: | 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR | COE VAR 57. 85. 64. 64. COE VAR | TOF 100 THE EFF 2.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF 2.% S.E.% 3 8.1 | LO | SAMPI
DW
592
299
64
538
TREES
DW
70 | AVG 642 418 117 585 /ACRE AVG 76 | S - BF
HIGH
693
537
169
631
HIGH
82 | # | 5
167
OF PLOTS | 10
42
S REQ. | 15
19
INF. POP. | | CL:
SD:
DOUG
WHE:
R ALD
TOTA
CL:
SD:
DOUG
WHE: | 68.1 % 1.0 3 FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK | COE VAR 57. 85. 64. 64. COE VAR 49. | TOF 100 THE EFF 8.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF 8.% S.E.% 3 8.1 8 22.8 | LO | SAMPI
592
299
64
538
TREES
DW
70
11 | AVG 642 418 117 585 /ACRE AVG 76 15 | S - BF
HIGH
693
537
169
631
HIGH
82
18 | # | 5
167
OF PLOTS | 10
42
S REQ. | 15
19
INF. POP. | | CL:
SD:
DOUG
WHE:
R ALL
TOTA
CL:
SD:
DOUG
WHE:
R ALL | 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER | COE VAR 57. 85. 64. 64.0 COE VAR 49. 138. 283. | TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 | LO | SAMPL
DW
592
299
64
538
TREES
DW
70
11
5 | AVG 642 418 117 585 /ACRE AVG 76 15 9 | S - BF
HIGH
693
537
169
631
HIGH
82
18
13 | # | 5 167 OF PLOTS 5 | 10
42
S REO.
10 | 15
19
INF. POP. | | CL:
SD:
DOUG
WHE.
R ALI
TOTA
CL:
SD:
DOUG
WHE.
R ALI
TOTA | 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL | TIMES OU COE VAR 57. 85. 64. 64. COE VAR 49. 138. 283. 48. | TOF 100 THE EFF 2.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF 2.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 | LO | SAMPI
592
299
64
538
TREES
DW
70
11 | AVG 642 418 117 585 /ACRE AVG 76 15 | S - BF
HIGH
693
537
169
631
HIGH
82
18 | # | 5
167
OF PLOTS | 10
42
S REQ. | 15
19 | | CL:
SD:
DOUG
WHE:
R ALL
TOTA
CL:
SD:
DOUG
WHE:
R ALL | 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL | COE VAR 57. 85. 64. 64. COE VAR 49. 138. 283. 48. | TOF 100 THE EFF 8.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF 8.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF | LO | SAMPI DW 592 299 64 538 TREES DW 70 11 5 92 BASAL | AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A | S - BF
HIGH
693
537
169
631
HIGH
82
18
13
107 | # | 5 167 OF PLOTS 5 92 OF PLOTS | 10 42 S REO. 10 23 S REO. | 15 19 INF. POP. 15 10 INF. POP. | | CL: SD: DOUG WHE: R ALI TOTA CL: SD: DOUG WHE: R ALI TOTA CL: SD: | 68.1 % 1.0 3 FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 1.0 G FIR MLOCK DER AL 1.0 | COE VAR 57. 85. 64. 64. COE VAR 49. 138. 283. 48 COE | TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% | LO | SAMPL
DW 592
299
64
538
TREES
DW 70
11
5
92
BASAL | AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG | S - BF
HIGH
693
537
169
631
HIGH
82
18
13
107
CRE
HIGH | # | 5 167 OF PLOTS 5 | 10
42
S REO.
10 | 15 19 INF. POP. 15 10 INF. POP. | | CL: SD: DOUG R ALL TOTA CL: SD: DOUG WHE R ALL TOTA CL: SD: DOUG DOUG DOUG | 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR 1.0 G FIR | COE VAR 57. 85. 64. 64.6 COE VAR 49. 138. 283. 48. COE VAR | TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% 4 5.5 | LO | SAMPL DW 592 299 64 538 TREES DW 70 11 5 92 BASAL DW 153 | AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG 162 | S - BF
HIGH
693
537
169
631
HIGH
82
18
13
107
CRE
HIGH
171 | # | 5 167 OF PLOTS 5 92 OF PLOTS | 10 42 S REO. 10 23 S REO. | 15 17 18 18 18 18 18 18 18 | | CL: SD: DOUG WHE: R ALL TOTA CL: SD: DOUG WHE: R ALL TOTA CL: SD: DOUG WHE: WHE: SD: DOUG WHE: SD: | 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 MLOCK | COE VAR 57. 85. 64. 64.6 COE VAR 49. 138. 283. 48. COE VAR 33. 133. | TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% 4 5.5 3 21.9 | LO | SAMPL
DW 592
299
64
538
TREES DW
70
11
5
92
BASAL DW 153
19 | AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG 162 25 | S - BF
HIGH
693
537
169
631
HIGH
82
18
13
107
CRE
HIGH
171
30 | # | 5 167 OF PLOTS 5 92 OF PLOTS | 10 42 S REO. 10 23 S REO. | 15
INF. POP.
15
INF. POP. | | CL: SD: DOUG R ALL TOTA CL: SD: DOUG WHE R ALL TOTA CL: SD: DOUG WHE R ALL | 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER | COE VAR 57. 85. 64. 64.6 VAR 49. 138. 283. 48. COE VAR 33. 133. 284. | TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% 4 5.5 3 21.9 6 46.7 | LO | SAMPL
DW 592
299
64
538
TREES
DW 70
11
5
92
BASAL
DW 153
19
6 | AVG AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG 162 25 11 | S - BF
HIGH
693
537
169
631
HIGH
82
18
13
107
CRE
HIGH
171
30
16 | # | 5 167 OF PLOTS 5 92 OF PLOTS 5 | 10 42 S REO. 10 23 S REO. 10 | 15 INF. POP. 15 INF. POP. 15 | | CL: SD: DOUG WHE: R ALI TOTA CL: SD: DOUG WHE: R ALI TOTA CL: SD: DOUG WHE: R ALI TOTA | 68.1 % 1.0 G FIR MLOCK DER AL | TIMES OU COE VAR 57. 85. 64. 64. COE VAR 49. 138. 283. 48. COE VAF 33. 133. 284. 34. | TOF 100 THE EFF 8.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF 8.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF 8.% S.E.% 4 5.5 3 21.9 6 46.7 0 5.6 | LO | SAMPL
DW 592
299
64
538
TREES
DW 70
11
5
92
BASAL
DW 153
19
6
187 | AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG 162 25 11 198 | S - BF
HIGH
693
537
169
631
HIGH
82
18
13
107
CRE
HIGH
171
30 | # | 5 167 OF PLOTS 5 92 F OF PLOTS 5 | 10 42 S REO. 10 23 S REO. 10 | 15 INF. POP. 15 INF. POP. 15 | | CL: SD: DOUG WHE: R ALI TOTA CL: SD: DOUG WHE: R ALI TOTA CL: SD: CL: CL: CCL: | 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % | COE VAR 57. 85. 64. 64.6 COE VAR 49. 138. 283. 48 COE VAF 33. 133. 284. 34 COE | TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% 4 5.5 3 21.9 6 46.7 0 5.6 | LO | SAMPI DW 592 299 64 538 TREES DW 70 11 5 92 BASAL DW 153 19 6 187 NET BI | AVG 162 25 11 198 F/ACRE | S - BF
HIGH
693
537
169
631
HIGH
82
18
13
107
CRE
HIGH
171
30
16
209 | # | 5 167 OF PLOTS 5 92 OF PLOTS 5 46 OF PLOTS | 10 42 S REO. 10 23 S REO. 10 12 S REO. | 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | | CL: SD: DOUG WHE: R ALI TOTA CL: SD: DOUG WHE: R ALI TOTA CL: SD: CL: SD: CL: SD: CL: SD: CL: SD: CL: SD: | 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR | COE VAR 57. 85. 64. 64.6 COE VAR 49. 138. 283. 48. COE VAR 33. 133. 284. 34. COE VAR | TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% 4 5.5 3 21.9 6 46.7 0 5.6 EFF R.% S.E.% | LO | SAMPI DW 592 299 64 538 TREES DW 70 11 5 92 BASAL DW 153 19 6 187 NET BI DW | AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG 162 25 11 198 F/ACRE AVG | S - BF
HIGH
693
537
169
631
HIGH
82
18
13
107
CRE
HIGH
171
30
16
209 | # | 5 167 OF PLOTS 5 92 F OF PLOTS 5 | 10 42 S REO. 10 23 S REO. 10 | 15 19 INF. POP. 15 10 INF. POP. 15 | | CL: SD: DOUG WHE: R ALL TOTA CL: SD: DOUG WHE: R ALL TOTA CL: SD: CL: SD: DOUG WHE R ALL TOTA CL: SD: DOUG WHE R ALL TOTA | 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR | COE VAR 57. 85. 64. 64.6 COE VAR 49. 138. 283. 48 COE VAF 33. 133. 284. 34 COE | TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% 4 5.5 3 21.9 6 46.7 0 5.6 EFF R.% S.E.% 9 5.9 | LO L | SAMPL
DW 592
299
64
538
TREES DW 70
11
5
92
BASAL
DW 153
19
6
187
NET BIOW 0,551 | AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG 162 25 11 198 F/ACRE AVG 32,464 | S - BF
HIGH
693
537
169
631
HIGH
82
18
13
107
CRE
HIGH
171
30
16
209
HIGH
34,377 | # | 5 167 OF PLOTS 5 92 OF PLOTS 5 46 OF PLOTS | 10 42 S REO. 10 23 S REO. 10 12 S REO. | 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | | CL: SD: DOUG WHE: R ALI TOTA CL: SD: DOUG WHE: R ALI TOTA CL: SD: DOUG WHE R ALI TOTA CL: SD: DOUG WHE R ALI TOTA | 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK | COE VAR 57. 85. 64. 64.6 COE VAR 49. 138. 283. 48. COE VAR 33. 133. 284. 34. COE VAR 35. | TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% 4 5.5 3 21.9 6 46.7 0 5.6 EFF R.% S.E.% 9 5.9 3 26.2 | LO L | SAMPI DW 592 299 64 538 TREES DW 70 11 5 92 BASAL DW 153 19 6 187 NET BI DW | AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG 162 25 11 198 F/ACRE AVG | S - BF
HIGH
693
537
169
631
HIGH
82
18
13
107
CRE
HIGH
171
30
16
209 | # | 5 167 OF PLOTS 5 92 OF PLOTS 5 46 OF PLOTS | 10 42 S REO. 10 23 S REO. 10 12 S REO. | 15 INF. POP. 15 INF. POP. 15 INF. POP. | | Т | C PSTNDSUM | | Stand Table Summary | Page | 1 | |----|--|-----------------|---------------------|-------------|-----------| | _ | | | | Date: | 4/16/2019 | | | T07N R06W S35 Ty00MC | 67.00 | Project UPPERH | Time: | 3:18:41PM | | 11 | T07N R06W S35 Ty00MC
T07N R06W S36 Ty00MC | 146.00
21.00 | Acres 234.00 | Grown Year: | | | | 110011 5 | 30 TYUUIV | | 21.0 | <u> </u> | | | , | | | | | | | | |--------|----------|-----------|----------|------------|----------------|--------------|---------------|----------------|-----------------|-------|------------|--------------|------|------------------------|--------| | | | | | Tot | | | | Averag | e Log | | Net | Net | | | | | S | | Sample | | Av | Trees/ | | Logs | Net | Net | Tons/ | Cu.Ft. | Bd.Ft. | _ | Totals | | | Spc T | DBH | Trees | 16' | Ht | Acre | Acre | Acre | Cu.Ft. | Bd.Ft. | Acre | Acre | Acre | Tons | Cunits | MBF | | D | 8 | 3 | 89 | 21 | 9.146 | 3.19 | | | | | | | | | | | D | 9 | 3 | 86 | 81 | 10.118 | 4.47 | 10.12 | 14.3 | 58.2 | | 145 | 588 | | 338 | 138 | | D | 10 | 4 | 87 | 65 | 10.700 | 5.84 | 14.55 | 9.3 | 38.4 | | 135 | 558 | | 315 | 131 | | D | 11 | 3 | 89 | 85 | 7.600 | 5.02 | 13.96 | 10.1 | 36.8 | | 141 | 514 | | 330 | | | D | 12 | 3 | 87 | 55 | 6.386 | 5.02 | 9.06 | 11.8 | 42.3 | | 107 | 383 | | 250 | | | D | 13 | 5 | 87 | 81 | 5.836 | 5.38 | 9.89 | 16.5 | 54.1 | | 163 | 535 | | 382 | | | D | 14 | 2 | 90 | 106 | 2.730 | 2.92 | 5.46 | 22.7 | 91.6 | | 124 | 500 | | 290 | | | D | 15 | 8 | 87 | 102 | 6.095 | 7.48 | 13.53 | 20.4 | 75.6 | | 275 | 1,022 | | 644 | | | D | 16 | 4 | 86 | 85 | 2.483 | 3.47 | 4.97 | 23.9 | 75.7 | | 119 | 376 | | 278 | | | D | 17 | 7 | | 120 | 4.225 | 6.66 | 10.30 | 29.6 | 112.8
98.5 | | 305
236 | 1,162
870 | | 71 ²
551 | | | D | 18 | 4
7 | | 113 | 2.994
4.308 | 5.29
8.48 | 8.83
10.65 | 26.7
36.9 | 140.2 | | 393 | 1,494 | | 920 | | | D | 19 | 11 | | 128 | 3.386 | 7.39 | 9.41 | 39.7 | 160.9 | | 374 | 1,514 | | 874 | | | D | 20
21 | 9 | | 128 | 2.466 | 5.93 | 7.40 | 39.7 | 157.3 | | 279 | 1,164 | | 653 | | | D | 22 | 5 | | | 1.831 | 4.83 | 5.49 | 44.5 | 184.5 | | 244 | 1,013 | | 572 | | | D
D | 23 | 12 | | 118 | 5.311 | 15.32 | 13.75 | 50.8 | 206.3 | | 699 | 2,838 | | 1,63: | | | D | 24 | 10 | | 132 | 2.323 | 7.30 | 6.62 | 55.6 | 236.3 | | 368 | 1,564 | | 862 | | | D | 25 | 8 | | 128 | 2.569 | 8.76 | 7.09 | 61.1 | 257.8 | | 433 | 1,829 | | 1,014 | | | D | 26 | 14 | | 138 | 3.118 | 11.50 | 9.35 | 62.1 | 267.7 | | 580 | 2,504 | | 1,358 | | | D | 27 | 12 | | 121 | 2.432 | 9.67 | 6.77 | 63.6 | 277.1 | | 430 | 1,876 | | 1,00′ | | | D | 28 | 9 | | 148 | 1.642 | 7.02 | 4.93 | 79.3 | 373.8 | | 391 | 1,842 | | 914 | | | D | 29 | 10 | 85 | 138 | 2.943 | 13.50 | 8.83 | 78.6 | 353.6 | | 694 | 3,121 | | 1,623 | 3 730 | | D | 30 | 10 | 88 | 146 | 2.230 | 10.94 | 6.69 | 89.5 | 428.5 | | 599 | 2,866 | | 1,40 | 671 | | D | 31 | 7 | 87 | 139 | 2.070 | 10.85 | 6.21 | 89.9 | 427.0 | | 558 | 2,652 | | 1,30 | 621 | | D | 32 | 11 | 87 | 138 | 3.119 | 17.42 | 8.83 | 100.8 | 481.8 | | 890 | | | 2,08 | | | D | 33 | 5 | 89 | | 1.121 | 6.66 | 3.01 | 108.3 | 541.7 | | 326 | | | 762 | | | D | 34 | 3 | | 148 | .998 | 6.29 | 2.99 | 116.4 | 562.2 | | 349 | - | | 81 | | | D | 36 | 1 | | 157 | .116 | .82 | .35 | 136.3 | 716.7 | | 47 | | | 11 | | | D | 37 | 2 | | 140 | .562 | 4.20 | 1.69 | 132.7 | 666.7 | | 224 | - | | 52: | | | D | 38 | 2 | | 147 | .533 | 4.20 | 1.60 | 125.8 | 626.7 | | 201 | , | | 47 | | | D | 39 | 1 | | 157 | .099 | .82 | .30 | 160.0 | 846.7 | | 47 | | | 11 | | | D | 40 | 1 | | 157 | .240 | 2.10 | .72 | 170.3 | 876.7 | | 123 | | | 28 | | | D | 42 | 1 | | 157 | .218 | 2.10 | .65 | 190.3 | 1010.0 | | 124 | | | 29
25 | | | D | 44
45 | 1
1 | | 138
103 | .199
.190 | 2.10
2.10 | .60
.38 | 182.3
219.0 | 993.3
1000.0 | | 109
83 | | | 19 | | | D | 46 | 1 | | 154 | .071 | .82 | .21 | | 1196.7 | | 48 | | | 11: | | | D | 40 | 1 | | | | | | , | | | | | | | | | D | Totals | 200 | 88 | 97 | 112.408 | 225.83 | 225.18 | 46.0 | 202.1 | | 10,363 | 45,500 | | 24,25 | 10,647 | | Α | 10 | 1 | 87 | | 1.795 | .98 | 1.79 | 16.0 | 60.0 | | 29 | | | 6 | | | A | 11 | 1 | 86 | | 1.483 | .98 | 2.97 | 13.0 | 45.0 | | 39 | | | 9 | | | A | 12 | 1 | 87 | 61 | 1.246 | .98 | 1.25 | 22.0 | 60.0 | | 27 | | | 6 | | | A | 13 | 2 | 87 | 86 | 2.124 | 1.96 | 4.25 | 17.5 | 60.0 | 1 | 74 | | | 17 | | | A | 14 | 2 | 87 | 69 | .605 | .65 | .91 | 20.7 | 60.0 | | 19 | | | 4 | | | A | 15 | 2 | 87 | 69 | 2.128 | 2.61 | 4.26 | 19.7 | 65.0 | | 84 | | | 19 | | | A | 16 | 3 | 86 | 66 | 2.103 | 2.94 | 4.21 | 22.5 | 78.3 | | 95 | | | 22
16 | | | A | 17 | 2 | 86 | 79
76 | 1.241 | 1.96 | 2.48
9.24 | 29.1
31.3 | 101.7
99.4 | | 72
289 | | | 67 | | | A | 18 | 7 | 87
86 | 76
66 | 4.618
1.492 | 8.16
2.94 | 9.24
2.49 | 1 | 99.4
106.0 | |
289
91 | | | 21 | | | A | 19
20 | 3 | 86
86 | | 1.492 | 2.94 | 3.14 | 1 | 106.0 | | 111 | | | 26 | | | A | 21 | 1 | 86 | | .407 | .98 | | 47.5 | 165.0 | | 39 | | | 9 | | | A | 22 | 1 | 86 | | .371 | .98 | | 1 | 135.0 | | 33 | | | 7 | | | A
A | 24 | 1 | 87 | | .312 | .98 | | 1 | 135.0 | | 25 | | | 5 | | | | Totals | 30 | 87 | 77 | 21.272 | | 39.15 | | 86.4 | | 1,026 | | | 2,40 | | | A | Totals | 30 | 8/ | // | 41.414 | 30.02 | 27.13 | 20.2 | 00.4 | | 1,020 | 2,203 | | 2,40 | 4 192 | | TC PSTNDSUM | Stand Table Summary | Page
Date: | 2
4/16/2019 | |---|---------------------|---------------|----------------| | T07N R06W S35 Ty00MC 67.00
T07N R06W S35 Ty00MC 146.00 | Project UPPERH | Time: | 3:18:41PM | | T07N R06W S36 Ty00MC 21.00 | Acres 234.00 | Grown Year | : | | S
Spc T | DBH | Sample
Trees | FF
16' | Tot
Av
Ht | Trees/
Acre | BA/
Acre | Logs
Acre | Averag
Net
Cu.Ft. | ge Log
Net
Bd.Ft. | Tons/
Acre | Net
Cu.Ft.
Acre | Net
Bd.Ft.
Acre | Tons | Totals
Cunits | MBF | |------------|--------|-----------------|-----------|-----------------|----------------|-------------|--------------|-------------------------|-------------------------|---------------|-----------------------|-----------------------|------|------------------|--------| | Н | 12 | 2 | 87 | 39 | .568 | .45 | .57 | 14.0 | 40.0 | | 8 | 23 | | 19 | 5 | | Н | 15 | 1 | 86 | 48 | .182 | .22 | .18 | 26.0 | 60.0 | | 5 | 11 | | 11 | 3 | | Н | 16 | 2 | 87 | 90 | 1.212 | 1.69 | 2.42 | 27.2 | 101.6 | | 66 | 246 | | 154 | 58 | | Н | 17 | 2 | 82 | 32 | .801 | 1.26 | .80 | 24.0 | 45.3 | | 19 | 36 | | 45 | 8 | | Н | 22 | 3 | 90 | 107 | .254 | .67 | .68 | 46.6 | 193.8 | | 32 | 131 | | 74 | 31 | | Н | 24 | 1 | 89 | 99 | .071 | .22 | .14 | 70.5 | 275.0 | | 10 | 39 | | 23 | 9 | | Н | 27 | 1 | 89 | 111 | .056 | .22 | .17 | 65.0 | 273.3 | | 11 | 46 | | 26 | 11 | | H | 30 | 1 | 86 | 107 | .045 | .22 | .14 | 76.0 | 350.0 | | 10 | 48 | | 24 | 11 | | Н | Totals | 13 | 86 | 66 | 3.189 | 4.96 | 5.10 | 31.5 | 113.8 | | 161 | 580 | | 376 | 136 | | М | 11 | 1 | 87 | 53 | 1.237 | .82 | 2.47 | 8.0 | 25.0 | | 20 | 62 | | 46 | 14 | | M | 14 | 1 | 87 | 45 | .764 | .82 | .76 | 21.0 | 50.0 | | 16 | 38 | | 38 | 9 | | M | 17 | 1 | 86 | 65 | .518 | .82 | 1.04 | 25.0 | 85.0 | | 26 | 88 | | 61 | 21 | | М | 22 | 1 | 87 | 60 | .309 | .82 | .62 | 34.0 | 130.0 | | 21 | 80 | | 49 | 19 | | М | Totals | 4 | 87 | 54 | 2.828 | 3.27 | 4.89 | 16.9 | 54.9 | | 83 | 269 | | 194 | 63 | | Totals | | 247 | 87 | 92 | 139.698 | 264.08 | 274.32 | 42.4 | 181.3 | | 11,633 | 49,732 | | 27,221 | 11,637 | . | TC PLOGSTVB | Log Stock Table - I | MBF | | |--|--|---------------------|-----------------------------| | T07N R06W S35 Ty00MC
T07N R06W S35 Ty00MC
T07N R06W S36 Ty00MC | 67.00 Project: UPPEI 46.00 Acres 21.00 | RH Date 234.00 Time | 1
4/16/2019
3:17:51PM | | S | So Gr | Log | Gross | Def | Net | % | |] | Net Volu | me by | Scalin | | | | | | | | |-------|-------|------|-------|-------|-------|------|-----|-----|----------|-------|--------|-----|-------|------|-------|-------|-------|-----| | Spp Т | rt de | | MBF | % | MBF | Spc | 2-3 | 4-5 | | 8-9 | 10-11 | | 14-15 | | 20-23 | 24-29 | 30-39 | 40+ | |) | DO CL | J 4 | 9 | 100.0 | | | | | | | | | | | | | | | | D | DO CL | 5 | 7 | 100.0 | | | | | | | | | | | | | | | | D | DO CL | J 8 | 82 | 100.0 | | | | | | | | | | | | | | | | D | DO CU | J 10 | 3 | 100.0 | | | | | | | | | | | | | | | | D | DO CI | 12 | 14 | 100.0 | | | | | | | | | | | | | | | | D | DO CI | J 14 | 12 | 100.0 | | | | | | | | | | | | | | | | D | DO CI | J 16 | 11 | 100.0 | | | | | | | | | | | | | | | | D | DO CI | J 18 | 4 | 100.0 | | | | | | | | | | | | | | | | D | DO CI | J 20 | 13 | 100.0 | | | | | | | | | | | | | | | | D | DO 2S | 16 | 5 | | 5 | .0 | | | | | | 5 | | | | | | | | D | DO 2S | 20 | 36 | | 36 | .3 | | | | | | | | 19 | 17 | | | | | D | DO 2S | 24 | 87 | | 87 | .8 | | | | | | | | 49 | | 38 | | | | D | DO 2S | 26 | 9 | | 9 | .1 | | | | | | 9 | | | | | | | | D | DO 2S | 30 | 28 | | 28 | .3 | | | | | | | | | 28 | | | | | D | DO 2S | 32 | 72 | | 72 | .7 | | | | | | 6 | 66 | | | | | | | D | DO 2S | 36 | 47 | | 47 | .4 | | | | | | | 47 | | | | | | | D | DO 2S | 38 | 173 | | 173 | 1.6 | | | | | | 56 | 46 | 71 | | | | | | D | DO 2S | 40 | 7,855 | | 7,793 | 73.2 | | | | | | 755 | 1243 | 2393 | 2127 | 992 | 282 | | | D | DO 3S | 18 | 7 | | 7 | .1 | | | | | 7 | , | | | | | | | | D | DO 3S | 20 | 32 | | 32 | .3 | | | 2 | 8 | 22 | | | | | | | | | D | DO 3S | 24 | 27 | | 27 | .3 | | | | 4 | 23 | | | | | | | | | D | DO 3S | 26 | 19 | | 19 | .2 | | | 18 | 1 | | | | | | | | | | D | DO 3S | 28 | 37 | | 37 | .4 | | | | 19 | 9 | 9 | | | | | | | | D | DO 38 | 30 | 75 | 1.1 | 74 | .7 | | | 49 | 18 | 8 | } | | | | | | | | D | DO 3S | 32 | 282 | | 280 | 2.6 | | | 38 | 120 | 122 | ! | | | | | | | | D | DO 38 | 34 | 104 | | 104 | 1.0 | | | 77 | 21 | 6 | 5 | | | | | | | | D | DO 38 | 36 | 98 | | 98 | .9 | | | 48 | 38 | 12 | 2 | | | | | | | | D | DO 38 | 38 | 80 |) | 80 | .7 | | | 67 | 2 | 6 | 5 | 6 | | | | | | | D | DO 38 | 40 | 1,288 | 1 | 1,284 | 12.1 | | | 220 | 392 | 650 |) | | | | 21 | | | | D | DO 45 | 3 12 | 26 | | 26 | .2 | | | 4 | 22 | | | | | | | | | | D | DO 45 | S 14 | 63 | 1 | 63 | .6 | | | 57 | 6 | | | | | | | | | | D | DO 45 | S 16 | 93 | , | 93 | .9 | | | 83 | 10 | | | | | | | | | | D | DO 45 | S 18 | 27 | , | 27 | .3 | | | 9 | 18 | | | | | | | | | | D | DO 48 | S 20 | 33 | 3 | 33 | .3 | | | 30 | 4 | | | | | | | | | | D | DO 45 | S 24 | 42 | 2 | 42 | .4 | | | 24 | 19 | | | | | | | | | | D | DO 45 | 5 26 | 5 9 |) | 9 | .1 | | | 7 | 2 | | | | | | | | | | TC PLC | OGSTVB | | | | | Log | Stock | Table | - MB | F | | | | | | | | |--------|----------------------------------|-------|---------|--------------------|----------|--------------|-------|-------|-------------|-----|----------|-------|-------|-------|----------------------|-------|------------------------| | T07N F | R06W S35
R06W S35
R06W S36 | Ty00N | ИС 146 | 7.00
5.00
00 | | Proj
Acre | | UPI | PERH
234 | .00 | | | | | Page
Date
Time | 4/1 | 2
6/2019
17:51PM | | S | 1 ~ ~ ~ . | | | Def | Net | % | | | , | | Scaling | | | | 1 | | | | Spp T | | | MBF | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 40+ | | D | DO 4S | | 6 | | 6 | .1 | | | 6 | | | | | | | | | | D
D | DO 4S
DO 4S | | 31
7 | | 31 | .3 | | | 31 | | _ | | | | | | | | D | DO 45 | | | | 7
15 | .1 | | | 3
15 | | 5 | | | | | | | | D | DO 45 | | | | 2 | .0 | | | 2 | | | | | | | | | | | | - | | | | | | | ļ | | | | | | | | | | D | Total | | 10,871 | 2.1 | 10,647 | 91.5 | | | 789 | 703 | 871 | 840 | 1407 | | 2172 | 1051 | 282 | | H
H | DO 2S | | 3 | 8.3 | 2 | 1.7 | | | | | | | | 2 | | | | | H
H | DO 2S
DO 2S | | 3
47 | 2.3 | 3
46 | 2.2
33.5 | | | | | | | 3 | 20 | | | | | | 20 23 | 40 | 4/ | 4.3 | 40 | | | | | | | | 7 | 30 | 8 | | | | Н | DO 3S | 20 | 1 | | 1 | .5 | | | | | 1 | | | | | | | | Н | DO 3S | 32 | 12 | | 12 | 8.9 | | | 7 | | 6 | | | | | | | | Н | DO 3S | 40 | 51 | | 51 | 37.6 | | | 4 | 1 | 46 | | | | | | | | Н | DO 4S | 16 | 2 | | 2 | 1.3 | | | 1 | 1 | | | | | | | | | Н | DO 4S | 20 | 5 | | 5 | 3.8 | | | 5 | | | | | | | | | | Н | DO 4S | 24 | 8 | | 8 | 6.0 | | | 8 | | | | | | | | | | Н | DO 4S | 32 | 3 | | 3 | 2.4 | | | 3 | | | | | | } | | | | Н | DO 4S | 36 | 3 | | 3 | 1.9 | | | 3 | | | | | | | | | | Н | Total | s | 137 | | 136 | 1.2 | | | 31 | 2 | 52 | | 10 | 33 | 8 | | | | A | DO CL | J 3 | 1 | 100.0 | | | | | | | | | | | | | | | A | DO CU | J 12 | 15 | 100.0 | | | | | | | | | | | | | | | A | DO 1S | 36 | 27 | | 27 | 3.4 | | | | | | | 27 | | | | | | A | DO 1S | | | | 163 | 20.6 | | | | | | 136 | 28 | | | | | | | | | | | | | | | | | 0 | - | | | | | | | A | DO 2S | | 8 | | 8 | 1.1 | | | | | 8 | | | | | | | | A
A | DO 2S
DO 2S | | 7
76 | 2.5 | 7 | .9 | | | | | 7 | | | | | | | | A | DO 2S | | 21 | ۷.3 | 74
21 | 9.4
2.7 | | | | | 74
21 | | | | | | | | A | DO 2S | | 23 | | 23 | 2.7 | | | | | 23 | | | | | | | | A | DO 2S | | | | 244 | 30.8 | | | | | 244 | ļ | | | | A . | DO 3S | | 21 | | 21 | 2.7 | | | 4 | 17 | | | | | | | | | A | DO 3S | 40 | 38 | | 38 | 4.8 | | | | 38 | | | | | | | | | A | DO 4S | 14 | 3 | | 3 | .4 | | | 3 | | | | | | | | | | A | DO 4S | 16 | 11 | | 11 | 1.4 | | | 11 | | | | | | | | | | A | DO 4S | 18 | 20 | | 20 | 2.5 | | | 20 | | | | | | | | | | A | DO 4S | 20 | 49 | | 49 | 6.2 | | | 49 | | | | | | | | | | TC 3 | PLO | GSTVB | | | | | Log | Stock | Table | - MBI | ₹ | | | | | | | | | |-------|------|----------------------------------|-------|--------|-------------------|--------|---------------|-------|-------|-------------|-------|--------|--------|-----------|-------|----------------------|-------|----------------------|---| | Т07 | 'N R | .06W S35
.06W S35
.06W S36 | Ty001 | MC 146 | .00
.00
.00 | | Proje
Acre | | UPI | PERH
234 | .00 | | | | | Page
Date
Time | 4/1 | 3
6/201
17:51] | | | | S | So Gr | | Gross | Def | Net | % | | 1 | Net Volu | me by | Scalin | g Diam | eter in l | nches | | | | | | Spp | Т | rt de | Len | MBF | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 | 40+ | | A | | DO 4S | 28 | 4 | | 4 | .5 | | | 4 | | : | | | | | | | | | A | | DO 4S | 30 | 10 | 22.2 | 8 | 1.0 | | | 8 | | | | | | | | | | | A | | DO 4S | 38 | 25 | | 25 | 3.2 | | | 25 | | | | | | | | | | | A | | DO 4S | 40 | 42 | | 42 | 5.3 | | | 42 | | | | | | | | | | | A | | Tota | ls | 814 | 2.7 | 792 | 6.8 | | | 167 | 56 | 378 | 136 | 55 | | | | | *************************************** | | M | | DO CI | J 4 | 4 | 100.0 |
 | | | | | | | | | | | | | | M | | DO 1S | 16 | 15 | | 15 | 24.2 | | | | | | | | 15 | | | | | | M | | DO 1S | 30 | 18 | | 18 | 28.9 | | | | | | 18 | | | | | | | | M | | DO 4S | 16 | 17 | 16.7 | 14 | 23.0 | | | 6 | 9 | | | | | | | | | | M | | DO 48 | 20 | 2 | | 2 | 3.9 | | | 2 | | | | | | | | | | | M | | DO 48 | 30 | 4 | | 4 | 5.8 | | | 4 | | | | | | | | | | | M | | DO 48 | 34 | 9 | | 9 | 14.2 | | | 9 | | | | | | | | | | | M | | Tota | ls | 69 | 9.4 | 63 | .5 | | | 21 | 9 | | 18 | | 15 | | | | | | Total | | All Spec | ies | 11,891 | 2.1 | 11,637 | 100.0 | | | 1007 | 769 | 1301 | 994 | 1472 | 2580 | 2180 | 1051 | 282 | ! | .