

Timber Sale Appraisal Upper Horsehawk

Sale AT-341-2020-W00733-01

District: Astoria Date: April 18, 2019

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$4,560,875.88	\$317,325.90	\$4,878,201.78
		Project Work:	(\$1,000.00)
		Advertised Value:	\$4,877,201.78

1

5/31/19

Timber Sale Appraisal Upper Horsehawk Sale AT-341-2020-W00733-01

District: Astoria Date: April 18, 2019

Timber Description

Location: Portions of Section 2 T6N, R6W, and Sections 25, 26, 35 & 36T7N, R6W, W.M., Clatsop County, Oregon

Stand Stocking: 80%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	19	0	98
Western Hemlock / Fir	17	0	98
Alder (Red)	16	0	95
Maple	15	0	95

Volume by Grade	2\$	3S & 4S 6"- 11"	8" - 9"	10" - 11"	12"+	6" - 7"	Camprun	Total
Douglas - Fir	8,249	2,398	0	0	0	0	0	10,647
Western Hemlock / Fir	51	85	0	0	0	0	0	136
Alder (Red)	0	0	60	378	191	163	0	792
Maple	0	0	0	0	0	0	62	62
Total	8,300	2,483	60	378	191	163	62	11,637

Comments: Pond Values: Local Pond Values, March 2019.

Expected Log Markets: Mist, Willamina, Banks, North Plains, Clatskanie, Tillamook, Garibaldi, Forest Grove, Noti, Warrenton, Longview, WA, Vancouver, WA, Elma, WA, and Chehalis, WA.

3

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$937.95/MBF = \$1200.00/MBF-\$262.05/MBF

Other hardwoods Stumpage Price = Pond Value minus Logging Cost: \$151.17/MBF = \$459.00/MBF - \$307.83/MBF

Other Costs (With Profit and Risk to be added):

Machine Washing for Invasive Weed Compliance = \$2,000

Ditch Filters: 20 bales of straw @ \$10/bale = \$200 8 hours of labor @ \$40/hour = \$320

TOTAL Other Costs (with Profit and Risk to be added): \$2,520

SLASH PILING (See attached Site Prep Cost Summary Sheet) TOTAL Site Prep Cost: \$11,888.67

Other Costs (No Profit and Risk added): None

ROAD MAINTENANCE (See attached Road Maintenance Cost Summary Sheet) TOTAL Road Maintenance: \$22,904/11,637MBF = \$1.97/MBF

5/31/19

Timber Sale Appraisal Upper Horsehawk

Sale AT-341-2020-W00733-01

District: Astoria Date: April 18, 2019

Logging Conditions

Combination#: 1 Douglas - Fir 85.00%

 Western Hemlock / Fir
 85.00%

 Alder (Red)
 85.00%

 Maple
 85.00%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 10 bd. ft / load: 4600

cost / mbf: \$143.48

machines: Log Loader (A)

Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 15.00%

 Western Hemlock / Fir
 15.00%

 Alder (Red)
 15.00%

 Maple
 15.00%

Logging System: Shovel Process: Manual Falling/Delimbing

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 15 bd. ft / load: 4100

cost / mbf: \$64.02

machines: Shovel Logger

Timber Sale Appraisal Upper Horsehawk Sale AT-341-2020-W00733-01

District: Astoria Date: April 18, 2019

Logging Costs

Operating Seasons: 2.00

Profit Risk: 10%

Project Costs: \$1,000.00 Slash Disposal: \$11,888.67 Other Costs (P/R): \$2,520.00

Other Costs: \$0.00

Miles of Road

Road Maintenance:

\$1.97

Dirt	Rock (Contractor)	Rock (State)	Paved	
0.0	0.0	0.0	0.0	

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	2.0	4.8
Western Hemlock / Fir	\$0.00	2.0	3.8
Alder (Red)	\$0.00	2.0	3.5
Maple	\$0.00	2.0	3.5

Timber Sale Appraisal Upper Horsehawk

Sale AT-341-2020-W00733-01

District: Astoria Date: April 18, 2019

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$131.56	\$2.01	\$0.75	\$100.94	\$0.22	\$23.55	\$1.02	\$2.00	\$0.00	\$262.05
Western H	emlock	/ Fir							
\$131.56	\$2.01	\$0.75	\$127.50	\$0.22	\$26.20	\$1.02	\$2.00	\$0.00	\$291.26
Alder (Red	l)								
\$131.56	\$2.07	\$0.75	\$142.50	\$0.22	\$27.71	\$1.02	\$2.00	\$0.00	\$307.83
Maple									
\$131.56	\$2.07	\$0.75	\$142.50	\$0.22	\$27.71	\$1.02	\$2.00	\$0.00	\$307.83

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$686.97	\$424.92	\$0.00
Western Hemlock / Fir	\$0.00	\$561.50	\$270.24	\$0.00
Alder (Red)	\$0.00	\$696.66	\$388.83	\$0.00
Maple	\$0.00	\$459.00	\$151.17	\$0.00

Timber Sale Appraisal Upper Horsehawk Sale AT-341-2020-W00733-01

District: Astoria Date: April 18, 2019

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00
Maple	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	10,647	\$424.92	\$4,524,123.24
Western Hemlock / Fir	136	\$270.24	\$36,752.64
Alder (Red)	792	\$388.83	\$307,953.36
Maple	62	\$151.17	\$9,372.54

Gross Timber Sale Value

Recovery: \$4,878,201.78

Prepared By: Cody Valencia Phone: 503-325-5451

		Site	Prep/Machine Pil	ing Appraisa	al		
			Vegetation Type/Zone	Vegetation Type/Zone Code	Production Rate (hr/ac)	Estimated Piles/Acre	Landing Production Rate (hrs/30 acres)
Sale Number:	AT-341-2019-W0	00733-01	Doug-fir	А	0.5	0.5	6
Sale Name:	Upper Horsehawk		Hemlock/Fir	В	1.3	4.5	8
	04/16/2019		Hemlock/Spruce	С	1.8	6.0	10
			Hemlock	D	1.8	6.0	8
			Conifer/Hardwood	Е	1.0	2.0	8
			Whole Tree Yarding	F	0.5	0.5	12
		-		Estimated			
Sale Area	Harvest Type	Veg Type/Zone	Ground Based Yarding Acres	Piling Hours/Area	Cost/Hour	Total Cost/Area	
1	MC	E	3	3	\$145	\$435	
2	MC	Α	6	3	\$145	\$435	
3	MC	Α	8	4	\$145	\$580	
4	MC	F	19	10	\$145	\$1,378	
					In-unit Piling	Sub Total =	\$2,828
	Number of						
	Landings to be	# cable acres		Number of In-	Material	Total	
Sale Area	Piled	per area	Total Cost/Area	Unit Piles	Cost/Pile	Cost/Area	
1	5	64	\$2,475	11	\$5	\$55	
2	4	49	\$1,421	7	\$5	\$35	
3	5	83	\$2,407	9	\$5	\$45	
4	2	2	\$116	11.5	\$5	\$58	
*Cost includes se	parating firewood		·		Materials	Sub Total =	\$193
Move-In	nal Move-in allov Number of	wance Total Move-In			Landing Piling	Sub Total =	\$6,419
Allowance	Move-In's	Allowance					
\$1,290.00	Move-In's						
					Move-In	Sub Total =	\$1,290
\$1,290.00	1		Loader hrs	Cost/Hour	Move-In Total	Sub Total =	\$1,290
\$1,290.00 Slash Endhaul	1	\$1,290	Loader hrs	Cost/Hour \$145		Sub Total =	\$1,290
\$1,290.00 Slash Endhaul	1 Cost/Hour	\$1,290 Total			Total	Sub Total =	\$1,290 \$1,160

Grand Total =

\$11,888.67

Road Maintenance Cost Summary (Interim and Post Harvest)

 Sale:
 Upper Horsehawk
 MBF:
 11,637.00

 Date:
 April 16, 2019
 \$\$/MBF:
 \$1.97

By: Ella Salkeld

		Move-in				
Type	Equipment/Rationale	Rate	Times	Hours	Rate	Cost
	Grader 14G	\$875	2	26	\$113	\$4,688
Interim	Dump Truck 12CY	\$184	2	12	\$89	\$1,436
Operations	FE Loader C966	\$875	1	4	\$94	\$1,251
	Vibratory Roller	\$875	1	8	\$87	\$1,571
Final Road Maintenance	Grader 14G Dump Truck 12CY FE Loader C966 Vibratory Roller Water Truck 2,500 gallon	\$875 \$184 \$875 \$875 \$214	1 1 1 1	30 10 8 30 15	\$113 \$89 \$94 \$87 \$101	\$4,265 \$1,074 \$1,627 \$3,485 \$1,729
	Rubber Tired Backhoe-small	\$361	1	8	\$87	\$1,057
	Labor			8	\$45	\$721
Total						

Interim Operations Road Maintenance

Production Rates	Miles/day	Distance (miles)	Days	Hours
Grader	2.5	5.6	2.2	18

Final Road Maintenance

Production Rates	Miles/day	Distance (miles)	Days	Hours
Grader	1.5	5.6	3.7	30
Vibratory Roller	1.5	5.6	3.7	30

Process and compact: All crushed rock roads
Fishhawk Tie-Through 0.7 Miles
Fishhawk Loop Road 3.0 Miles
Greasy Spoon Road 0.20 Miles
Unamed Spurs 1.7 Miles
Grade & Process Total = 5.6

Upper Horsehawk Project No 1. Stream Enhancement

Number of trees Placement

Location	Site	per site	method	\$/tree	Cost per Site
SE1-SE2	1	52	Felling	\$40.00	\$1,000.00

Project Total \$1,000

UPPER HORSEHAWK Timber Sale FY 2019 TIMBER CRUISE REPORT

1. Sale Area Location: Areas 1, 2, 3, and 4 are located in portions of Sections 25, 26, 35, and 36, T7N, R6W and portions of Section 2, T6N, R6W, W.M., Clatsop County, Oregon

2. Fund Distribution: Fund:

BOF 100%

CSL 0%

Tax Code:

8-01 100%

3. Sale Acreage by Area:

Area	Harvest Type	Gross Acres	Green Tree Area	Stream Buffer Acres	New R/W Acres	Existing R/W Acres	Net Acreage
1	MC	87	-	18	_	2	67
2	MC	63	_	5	_	3	55
3	MC	112	-	17	_	4	91
4	MC	25	-	1	-	3	21
ТО	TALS	287	-	41	=	12	234

- 4. Cruisers and Cruise Dates: Area 1 was cruised on 4/9/19 by John Choate, Ella Salkeld, Justin Bush, Bryce Rodgers, and Avery Petersen. Areas 2 and 3 were cruised by John Choate, Ella Salkeld, Cody Valencia, and Bryce Rodgers on 4/2/2019 and 4/9/2019. Area 4 was cruised on 4/4/2019, 4/9/2019, and 4/10/2019 by John Choate, Ella Salkeld, Cody Valencia, Bryce Rodgers, Avery Petersen and Justin Bush.
- **5.** Cruise Method and Computation: Area 1 is a modified clearcut unit. A variable plot cruise with a 54.44 BAF was used in this area. These plots were located on a 5 chain by 3 chain grid, with a count/cruise plot ratio of 2:1. A total of 45 plots were sampled with 19 measure plots and 26 count plots.

Area 2 and 3 are modified clearcut units. A variable plot cruise with a 54.44 BAF was used in this area. These plots were located on a 8 chain by 4 chain grid, with a count/cruise plot ratio of 2:1. A total of 52 plots were sampled with 20 measure plots and 32 count plots. Three count plots had minor species on them, resulting in additional measure plots. One count plot had a minor species measured, resulting in an additional measure plot.

Area 4 is a modified clearcut unit. A variable plot cruise with a 40 BAF was used in this area. These plots were located on a 3 chain by 2 chain grid, with a count/cruise ratio of 2:1. A total of 37 plots were sampled with 14 measure plots and 23 count plots.

Cruisers used Allegro 2 data collectors, and were downloaded to the Atterbury <u>Super A.C.E.</u> program at the Astoria District for computing. See the attached <u>Cruise Design</u> for more details on the cruise method. The cruise calculations were processed in the Astoria District office.

AREAS	PROJECT	TRACT	CRUISE TYPE
1	UPPERH		OOMC and TAKE
2 and 3	UPPERH	A23	OOMC and TAKE
4	UPPERH	A4	OOMC and TAKE

6. Timber Description: Area 1 is approximately 70 year old stand of Douglas-fir, red alder, and western hemlock. The average take Douglas-fir tree size for harvest is approximately 20 inches DBH, with an average merchantable tree height of 75 feet. The average take red alder tree size is approximately 16 inches DBH, with an average merchantable tree height of 56 feet. The average take hemlock tree size is approximately 17 inches DBH, with an average merchantable tree height of 46 feet. The average volume per acre to be harvested (net) is approximately 55 MBF. All trees were cruised to a merchantable top of 6 inch DIB or 40% fp.

<u>Areas 2 and 3</u> are approximately 65 year old stands of Douglas-fir, red alder, maple, and western hemlock. The average take Douglas-fir tree size for harvest is approximately 19 inches DBH, with an average merchantable tree height of 66 feet. The average take red alder tree size is approximately 17 inches DBH, with an average merchantable tree height of 58 feet. The average take maple tree size for harvest is approximately 15 inches DBH, with an average merchantable tree height of 40 feet. The average take hemlock tree size is approximately 16 inches DBH, with an average merchantable tree height of 77 feet. The average volume per acre to be harvested (net) is approximately 49 MBF. All trees were cruised to a merchantable top of 6 inch DIB or 40% fp.

<u>Area 4</u> is an approximately 70 year old stand of Douglas-fir, western hemlock, and red alder. The average take Douglas-fir tree size for harvest is approximately 20 inches DBH, with an average merchantable tree height of 79 feet. The average take hemlock tree size is approximately 18 inches DBH, with an average merchantable tree height of 51 feet. The average take red alder tree size is approximately 15 inches DBH, with an average merchantable tree height of 53 feet. The average volume per acre to be harvested (net) is approximately 34 MBF. All trees were cruised to a merchantable top of 6 inch DIB or 40% fp. This stand was previously thinned in the late 1990's.

Cedar is a reserved species.

7. Statistical Analysis: (See also "Statistics Reports," attached.)

Area	Target CV	Target SE%	Actual CV	Actual SE%
1	55	8	41.3	6.1
2 and 3	55	8	39.4	5.5
4	45	8	33.4	5.5

The statistics are for all areas and Take and Leave trees combined based on Net BF/Acre.

8. Take Volumes by Species and Log Grades for All Sale Areas by MBF: (See "Species, Sort Grade-Board Feet Volumes (Project)", "Statistics (Project)", and the "Stand Table Summary" attached). Volumes do not include "in-growth." The majority of defect and breakage was taken out during the cruise.

Conifer

Species	DBH	Net Vol. MBF	2 Saw	3Saw	4 Saw	% D&B	% Sale
Douglas-fir	19	10,647	8,249	2,043	355	2.1	91%
W. Hemlock	17	136	51	64	21	0.9	1%

Hardwoods

Species	DBH	Net Vol. MBF	12"+	10-12"	8-10"	6-8"	% D&B	% Sale
Red Alder	16	792	191	378	60	163	2.7	7%
Bigleaf Maple	15	62	33	0	0	29	9.4	<1%

TOTAL NET VOLUME	11,637
------------------	--------

	9.	Prepared	by:	Ella	Salkeld
--	----	----------	-----	------	---------

Date: ____4/16/19

10. Approved by:

Date: 4/23/19

11. Attachments:

Cruise Plans & Maps (6)

Species, Sort, Grade Report (4)

Statistics Reports (4)

Stand Table Summary Report (2) Log Stock Table Report MBF (3)

CRUISE DESIGN ASTORIA DISTRICT

Sale Name:Upper Horsehawk	Area1
Harvest Type: (MC) Modified Clearcut	
Approx. Cruise Acres: _71_ Estimated CV% _55_Net BF/Acre	SE% Objective 8 Net BF/Acre
Planned Sale Volume: <u>9.9 MMBF</u> Estimated Sale Area Val	ue/Acre: \$19,400/Acre (40 MBF/Ac. @ \$485/MBF)
A. <u>Cruise Goals</u> : (a) Grade minimum <u>80</u> conifer and <u>20</u> (b) Sample <u>45</u> cruise plots (<u>19</u> grade/ <u>26</u> count); (c) Other thinning standards; <u>X</u> Determine log grades for sale value tree species and sizes.	goals (Determine "automark"
B. Cruise Design: 1. Plot Cruises: BAF54.45	
Take plots as marked on cruise map. All cedar will be reserve	d. Record all snags as SN.
DO NOT RECORD 12', 22' and 32' (for Hardwoods).	
DO NOT RECORD 22' LENGTHS.	
All hardwood will be measured to a G, or as appropriate.	

C. Tree Measurements:

- **1. Diameter:** Minimum DBH to cruise is <u>8</u>" for conifers and <u>8</u>" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- 3. Top Cruise Diameter (TCD): Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for conifer trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.

5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. Hardwoods shall be recorded in 8' and 10' multiples.

6. Species, Sort, and Grade Codes:

- A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.)
- B. Sort: Use code "1" (Domestic).
- C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull Hardwoods: <u>Alder Grades</u>: 12" + = 1 Sawmill; 10"-12" = 2 Sawmill; 10"-8" = 3 Sawmill; and 8"-6" 4 Sawmill, or R = Camp Run; 0 = Cull. All Maple Camp Run = R
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- **8. Standard Field Procedures:** Plot Type Cruises: Mark cruise line beginning and end points with <u>blue/yellow</u> flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie <u>yellow</u> flagging above eye level near plot center and another <u>yellow</u> flagging around a sturdy wooden stake marking plot center. On each <u>yellow</u> flagging, write the plot identification number. Between plots, along the cruise line, tie <u>blue</u> flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in <u>yellow</u> paint. All trees on the plot may be marked this way, if the cruiser chooses.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design	by: SALKELA
Approved by:	In tillt.
Date:	1 4/2/2019

CRUISE DESIGN ASTORIA DISTRICT

Sale Name: Upper Horsehawk	Area 2 and 3
Harvest Type: (MC) Modified Clearcut	
Approx. Cruise Acres: <u>151</u> Estimated CV% <u>55</u> Net BF/Acre	SE% Objective 8 Net BF/Acre
Planned Sale Volume: <u>9.9 MMBF</u> Estimated Sale Area Valu	1e/Acre: \$20,664/Acre (42 MBF/Ac. @ \$492/MBF)
A. <u>Cruise Goals</u> : (a) Grade minimum <u>100</u> conifer and <u>10</u> (b) Sample <u>52</u> cruise plots (<u>20</u> grade/ <u>32</u> count); (c) Other thinning standards; <u>X</u> Determine log grades for sale value tree species and sizes.	goals (Determine "automark"
3. Cruise Design: 1. Plot Cruises: BAF _54.45(Full point) Cruise Line Directions: Area 2: 143/323 & A Cruise Plot Spacing _4 (chains) _264 (Four Spacing _8 (chains) _528 (Grade/Count Ratio _1:2	Feet)
Take plots as marked on cruise map. All cedar will be reserved	d. Record all snags as SN.
DO NOT RECORD 12', 22' and 32' (for Hardwoods).	
DO NOT RECORD 22' LENGTHS.	

C. Tree Measurements:

All hardwood will be measured to a G, or as appropriate.

- **1. Diameter:** Minimum DBH to cruise is <u>8</u>" for conifers and <u>8</u>" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- 3. Top Cruise Diameter (TCD): Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for conifer trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.

5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. Hardwoods shall be recorded in 8' and 10' multiples.

6. Species, Sort, and Grade Codes:

- A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.)
- B. Sort: Use code "1" (Domestic).
- C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull Hardwoods: <u>Alder Grades</u>: 12" + = 1 Sawmill; 10"-12" = 2 Sawmill; 10"-8" = 3 Sawmill; and 8"-6" 4 Sawmill, or R = Camp Run; 0 = Cull. All Maple Camp Run = R
- **7. Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with <u>blue/yellow</u> flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie <u>yellow</u> flagging above eye level near plot center and another <u>yellow</u> flagging around a sturdy wooden stake marking plot center. On each <u>yellow</u> flagging, write the plot identification number. Between plots, along the cruise line, tie <u>blue</u> flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in <u>yellow</u> paint. All trees on the plot may be marked this way, if the cruiser chooses.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design	ı by: 👙	SALKELD	
Approved by:		~ Till-	
Date:	1	4/2/19	
•		, , , , , , , , , , , , , , , , , , , ,	

CRUISE DESIGN ASTORIA DISTRICT

Sale Name: Upper Horsehawk	Area4
Harvest Type: (MC) Modified Clearcut	
Approx. Cruise Acres: <u>21</u> Estimated CV% <u>45</u> Net BF/Acre	SE% Objective 8 Net BF/Acre
Planned Sale Volume: <u>9.9 MMBF</u> Estimated Sale Area Valu	u e/Acre: <u>\$16,800/Acre</u> (32 MBF/Ac. @ \$525/MBF)
A. <u>Cruise Goals</u> : (a) Grade minimum50conifer and15(b) Sample <u>37</u> cruise plots (<u>14</u> grade/ <u>23</u> count); (c) Other thinning standards;X Determine log grades for sale value tree species and sizes.	goals (Determine "automark"
B. Cruise Design: 1. Plot Cruises: BAF 40 (Full point) Cruise Line Directions: 90/270 Cruise Plot Spacing 2 (chains) 132 (Formula Cruise Line Spacing 3 (chains) 198 (Grade/Count Ratio 1:2	
Take plots as marked on cruise map. All cedar will be reserved	d. Record all snags as SN.
DO NOT RECORD 12', 22' and 32' (for Hardwoods).	
DO NOT RECORD 22' LENGTHS.	
All hardwood will be measured to a G, or as appropriate.	

C. Tree Measurements:

- **1. Diameter:** Minimum DBH to cruise is <u>8</u>" for conifers and <u>8</u>" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- 3. Top Cruise Diameter (TCD): Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for conifer trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.

5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. Hardwoods shall be recorded in 8' and 10' multiples.

6. Species, Sort, and Grade Codes:

- A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.)
- B. Sort: Use code "1" (Domestic).
- C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull Hardwoods: <u>Alder Grades</u>: 12" + = 1 Sawmill; 10"-12" = 2 Sawmill; 10"-8" = 3 Sawmill; and 8"-6" 4 Sawmill, or R = Camp Run; 0 = Cull. All Maple Camp Run = R
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design	by: <u>SALKELA</u>
Approved by:	In Tuffic
Date:	4/2/2019

ТС	PSPCSTGR		$\mathbf{S}_{]}$	pecies,	Sort G	rade - Boar	d Foot	Vo.	lume	es (P	roject)							
T(07N R06W S35 07N R06W S35 07N R06W S36	5 Ty00N	MC 1	67.00 46.00 21.00		Project: Acres	UPPI 23	ERF 34.00								Page Date Time	4/	1 16/20 :06:0	19
Spp	S So Gr T rt ad	% Net BdFt	Bd. F Def%	t, per Acre Gross	: Net	Total Net MBF	Log	g Scal	Net Bo le Dia. 12-16		oot Volu	Log L		36-99		Avera Dia In		g CF/ Lf	Logs Per /Acre
D D D	DOCU DO2S DO3S DO4S	77 19 4	100.0 .8 .3	663 35,521 8,756 1,517	35,254 8,729 1,517	8,249 2,043 355		98	34	66	0 2 68	1 8 25	1 19 2	97 72 5	12 39 36 18	10	94	0.00 2.52 0.74 0.44	13.4 75.0 93.2 57.0
D	Totals	91	2.1	46,456	45,500	10,647		22	26	52	3	3	4	89	31	11	191	1.38	238.6
H H H	DO2S DO3S DO4S	37 47 16	2.4	223 273 90	217 273 90	51 64 21	1	100	55 21	45 17	1 33 6	5 39 8	6 19 16	89 80 12	38 37 24 31	17 9 7	125 38	2.40 0.94 0.64	.5 2.2 2.4
A A A A	DOCU DO1S DO2S DO3S DO4S	24 47 8 21	100.0 .8 1.4	70 815 1,630 254 708	815 1,617 254 698	191 378 60 163	1	100 100	100		4 51	20 36 8	6	100 71 64 41	39 35 35 24	11 9 6		0.00 1.69 1.20 0.77 0.50	.8 3.4 11.0 2.8 21.9
A	Totals	7	2.7	3,477	3,383	792		76	24		13	14	3	71	29	8	85	0.90	39.9
M M M	DOCU DO1S DO4S	53 47 1	100.0 8.9 9.4	15 143 138 296	143 126 269	33 29 62 -63	<u> </u>	100 47	54 29	46 24	46 57 51	54 12 35	30	·	25 21	17 14 7	31	0.00 1.57 0.59	.3 .8 4.1 5.2
Tot	als		2.1	50,815	49,732	11,637		26	26	47	4	4	4	87	31	10	172	1.31	288.8

	(SPCSTG				Species,	Sort G Projec	rade - Boar t: UPP	d Fo ERH	ot V	olun	nes (7	Гуре)				I T	Page Date Γime	e 4,	1 /16/20 ::08:20	6PM
T07N Twj 07N		ge	Sec	Tract AKEA	1	Type 00M			Plots		_	le Tree .02	s	C 1	uFt	T07 BdI W		R06W 3	S35 T	00MC
	***************************************		%					Perc	cent N	let Bo	ard Fo	oot Vol	ume			Av	erag	ge Log		Logs
Spp	-	Gr ad	Net BdFt	Bd. Def%	Ft. per Ac Gross	re Net	Total Net MBF	Lc 4-5		ale Di 12-16		Lo.	g Ler 21-30	_	36-99	Ln I Ft I			CF/ Lf	Per /Acre
D	DO	CU		100.0	734											14	9	V	0.00	14.2
D	DO	2S	76	1.1	35,085	34,697	2,325			42	58	1	1	1	98	40	16	438	2.31	79.3
D	DO	3S	20	.4	8,897	8,862	594		96	1	4	3	5	20	72	35	9	101	0.80	88.0
D	DO	4S	4		1,663	1,663	111		100			44	39	4	13	22	6	30	0.45	54.8
D	Totals	-	83	2.5	46,380	45,223	3,030		22	32	45	3	3	4	89	32	11	191	1.35	236.2
A	DO	CU		100.0	244											7	14		0.00	2.7
A	DO	1S	32		2,845	2,845	191			100					100	39	13	238	1.69	12.0
Α	DO	2S	36	1.4	3,262	3,215	215		100			7	19	10	64	34	11	140	1.18	22.9
A	DO	3S	9		762	762	51		100				42		58	34	9	86	0.76	8.8
A	DO	4S	23	1.7	2,063	2,028	136		100			45	6		49	25	6	34	0.50	58.9
A	Totals		16	3.6	9,176	8,850	593		68	32		13	12	4	72	29	8	84	0.88	105.3
Н	DO	3S	69		390	390	26		100						100	40	10	150	0.98	2.6
Н	DO	4S	31		170	170	11		100			46	54			22	7	35	0.69	4.9
Н	Totals		1		560	560	38		100			14	16		70	28	8	75	0.83	7.5
Туре	Γotals			2.6	56,116	54,633	3,660		31	32	37	5	5	4	86	31	10	157	1.21	349.1

Т	TSPCSTG	R			Species,	Sort G Projec	rade - Boar t: UPP	d Foo	t Vo	lum	ies (T	Type)				Paş Da Tin	te 4	1 /16/20 3:08:5	
T07N Tw 07N	-	ge	Sec	Tract 'AKEA	23	Type 00M			Plots 52	į	-	le Trees 80	3	Cı 1	uFt	T07N BdFt W	R06W	S35 T	00MC
Spp	_	Gr ad	% Net BdFt	Bd. Def%	Ft. per Ac Gross	re Net	Total Net MBF	Log	Scal	e Dia		Log	, Len	_	36-99	Aver Ln Di Ft In	age Log Bd Ft	CF/ Lf	Logs Per /Acre
D D D	DO DO DO	CU 2S 3S 4S	78 19 3	.6	677 37,382 8,943 1,424	37,160 8,918 1,424	5,425 1,302 208		99	29 1	71	0 1 86	2 10 14	1 19	97 70	10 10 39 17 36 8	495 88	0.00 2.67 0.70 0.43	13.5 75.1 101.1 59.1
D	Totals		96	1.9	48,425	47,502	6,935		22	23	55	3	4	4	89	31 11	191	1.41	248.8
A A	DO DO Totals	2S 4S	87 13		1,067 152	1,067 152	156 22 178	1	100			100	22		78 68	37 11 19 6		1.21 0.50	6.8 6.8
M M M	DO DO DO	CU 1S 4S	53 47	8.9	25 229 222	229	33 29		100	54	46	46 57	54 12	30		4 17 25 14 21 7	172	0.00 1.57 0.59	.5 1.3 6.5
м Н	Totals DO	3S	100	9.4	180	430 180	63		47 100	29	24	51	35	25	75	21 9 36 9	52 120	0.77	8.3 1.5
Н	Totals		0		180	180	26	1	100					25	75	36 9	120	0.87	1.5
Туре	Totals			1.9	50,298	49,331	7,202		24	22	54	4	4	4	88	30 10	181	1.37	272.1

T 7	TSPCSTG!	R			Species,	Sort G Projec	rade - Boar t: UPP	d Foo ERH	ot Vo	olun	ies (T	Гуре)					Page Date Time	4	1 /16/20 3:09:2	
T07N Twi	• -	ge	Sec	Tract AKEA	4	Type 00M			Plots 37		Samp	le Tree 66	s	C 1	uFt	T0 Bd W		R06W	S36 T	00MC
			%					Perce	ent N	et Bo	ard F	oot Vol	ume			A	verag	ge Log		Logs
Spp	m	Gr ad	Net BdFt	Bd. Def%	Ft. per Ac Gross	re Net	Total Net MBF	i		le Di 12-16	a. 5 17+	Lo ₂	g Ler 21-30	_	36-99	Ln Ft	Dia In	Bd Ft	CF/ Lf	Per /Acre
D	DO	CU		00.0	334											17	7		0.00	9.8
D	DO	2S	73	.8	23,973	23,774	499			45	55			2	98	40	16	395	2.16	60.2
D	DO	3S	21	.3	7,007	6,987	147	1	100			1	3	13	83	37	9	127	0.93	54.8
D	DO	4S	6		1,703	1,703	36]	100			41	45	7	7	23	7	34	0.50	50.0
D	Totals		88	1.7	33,016	32,464	682		27	33	40	2	3	5	90	33	11	186	1.32	174.8
Н	DO	2S	70	2.4	2,482	2,422	51			55	45		5	6	89	38	17	412	2.40	5.9
Н	DO	3S	16		547	547	11]	100			6		48	45	36	9	96	1.00	5.7
Н	DO	4S	14		456	456	10	1	100			18	21	35	27	27	7	42	0.58	10.9
Н	Totals		9	1.7	3,485	3,425	72		29	39	32	3	6	17	74	32	10	153	1.26	22.4
A	DO	2S	34		343	343	7		100						100	40	10	150	1.15	2.3
A	DO	3S	41		405	405	8] :	100						100	40	9	120	0.85	3.4
A	DO	4S	25		248	248	5] :	100			18	82			25	6	27	0.49	9.0
A	Totals		3		995	995	21		100			5	20		75	31	7	68	0.73	14.7
Type 7	Totals			1.6	37,497	36,884	775		29	33	38	2	4	6	88	33	10	174	1.28	212.0

TC PST	TATS					JECT OJECT		STICS PERH			PAGE DATE	1 4/16/2019
ГWР	RGE	SC	TRACT		TYPE		AC	RES	PLOTS	TREES	CuFt	BdFt
07N 07N 07N	06 06W 06W	35 35 36	TAKEA1 TAKEA23 TAKEA4		00MC 00MC 00MC			234.00	134	678	1	W
						TREES		ESTIMATED TOTAL		ERCENT SAMPLE		
		I	PLOTS	TREES		PER PLOT	•	TREES		TREES		
TOTA	AL.		134	678		5.1						
CRUI	ISE		54	247		4.6		32,689		.8		
	COUNT											
	DREST											
COU			80	425		5.3						
BLAN 100 %												
100 /					STA	ND SUM	MARY					VIII
		S/	AMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
			TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOU	G FIR		200	112.4	19.2	69	51.5	225.8	46,456	45,500	10,497	10,363
R AL			30	21.3	16.1	56	7.5	30.0	3,477	3,383	1,039	1,026
WHE	MLOCK		13	3.2	16.9	52	1.2	5.0	585	580	161	161
BL M	1APLE		4	2.8	14.6	40	0.9	3.3	296	269	85	83
TOT	AL		247	139.7	18.6	66	61.2	264.1	50,815	49,732	11,782	11,633
CON			MITS OF T TIMES OU			ME WILL	BE WIT	HIN THE SAI	MPLE ERRO	OR		
CL	68.1		COEFF	Г ОГ 100 Т	HE VOLU	SAMPI	LE TREE	S - BF		OF TREES		INF. POP.
CL SD:	68.1 1.0		COEFF VAR.%	Γ OF 100 T S.E.%	HE VOLU	SAMPI OW	LE TREE AVG	S - BF HIGH			REO. 10	
CL SD: DOU	68.1 1.0 G FIR		COEFF VAR.% 77.3	Γ OF 100 T S.E.% 5.5	HE VOLU	SAMPI	LE TREE	S - BF		OF TREES		
CL SD: DOUG R AL	68.1 1.0 G FIR	3.1	COEFF VAR.%	Γ OF 100 T S.E.%	HE VOLU	SAMPI OW 752	LE TREE AVG 796	S - BF HIGH 839		OF TREES		
CL SD: DOUG R AL WHE	68.1 1.0 G FIR .DER	3.1	COEFF VAR.% 77.3 45.8	S.E.% 5.5 8.5 26.9 44.0	HE VOLU	SAMPI OW 752 165	AVG 796 181 357 133	S - BF HIGH 839 196 453 191		OF TREES 5		15
CL SD: DOUG R AL WHE	68.1 1.0 G FIR DER EMLOCK	3.1	COEFF VAR.% 77.3 45.8 93.4	S.E.% 5.5 8.5 26.9	HE VOLU	SAMPI OW 752 165 261	AVG 796 181 357	S - BF HIGH 839 196 453		OF TREES		15
CL SD: DOUGRAL WHE BL M TOT. CL	68.1 1.0 G FIR DER MLOCK MAPLE AL	3.1	COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF	S.E.% 5.5 8.5 26.9 44.0 5.6	HE VOLU	SAMPI OW 752 165 261 74 649 TREES	AVG 796 181 357 133 687	S - BF HIGH 839 196 453 191 725	#	FOF TREES 5 308 FOF PLOTS	10 77 REO.	34 INF. POP.
CL SD: DOUG R AL WHE BL M TOT: CL SD:	68.1 1.0 G FIR DER EMLOCK MAPLE AL 68.1 1.0	3.1	COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.%	S.E.% S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.%	HE VOLU	SAMPI OW 752 165 261 74 649 TREES	AVG 796 181 357 133 687 /ACRE AVG	S - BF HIGH 839 196 453 191 725	#	OF TREES 5	10 77 REO.	34 INF. POP.
CL SD: DOUGH R ALL WHE BL M TOT. CL SD: DOUGH SD:	68.1 1.0 G FIR DER EMLOCK MAPLE AL 68.1 1.0	3.1	COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1	S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2	HE VOLU	SAMPI OW 752 165 261 74 649 TREES OW 102	AVG 796 181 357 133 687 /ACRE AVG 112	S - BF HIGH 839 196 453 191 725 HIGH 123	#	FOF TREES 5 308 FOF PLOTS	10 77 REO.	34 INF. POP.
CL SD: DOUGH ALL SD: CL SD: DOUGH ALL SD: DOUGH ALL	68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 G FIR DER		COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5	S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9	HE VOLU	SAMPI OW 752 165 261 74 649 TREES OW 102 17	AVG 796 181 357 133 687 /ACRE AVG 112 21	S - BF HIGH 839 196 453 191 725 HIGH 123 25	#	FOF TREES 5 308 FOF PLOTS	10 77 REO.	34 INF. POP.
CL SD: DOUGH ALL SD: CL SD: DOUGH ALL WHE	68.1 1.0 G FIR DER EMLOCK MAPLE AL 68.1 1.0		COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1	S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2	HE VOLU	SAMPI OW 752 165 261 74 649 TREES OW 102	AVG 796 181 357 133 687 /ACRE AVG 112	S - BF HIGH 839 196 453 191 725 HIGH 123	#	FOF TREES 5 308 FOF PLOTS	10 77 REO.	34 INF. POP.
CL SD: DOUGH ALL SD: CL SD: DOUGH ALL WHE	68.1 1.0 G FIR DER MLOCK APLE AL 68.1 1.0 G FIR DER EMLOCK APLE		COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3	S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6	HE VOLU	SAMPI OW 752 165 261 74 649 TREES OW 102 17 2	AVG 796 181 357 133 687 /ACRE AVG 112 21 3	S - BF HIGH 839 196 453 191 725 HIGH 123 25 4	#	FOF TREES 5 308 FOF PLOTS	10 77 REO.	15 34
CL SD: DOUGH ALL WHE BL M TOT: CL SD: DOUGH ALL WHE BL M TOT:	68.1 1.0 G FIR DER MLOCK APLE AL 68.1 1.0 G FIR DER EMLOCK APLE		COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF	S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5	L L	SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAI	AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A	S - BF HIGH 839 196 453 191 725 HIGH 123 25 4 5 150	#	OF TREES 5 308 OF PLOTS 5 303	77 REO. 10 76 REO.	34 INF. POP. 15 34 INF. POP.
CL SD: DOUG R AL WHE BL M TOT: CL SD: DOUG R AL WHE BL M TOT: CL SD: CL SD:	68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 68.1 1.0		COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF VAR.%	S.E.% S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.%	L L	SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAL	AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A	S - BF HIGH 839 196 453 191 725 HIGH 123 25 4 5 150 ACRE HIGH	#	308 4 OF PLOTS 5	77 REO. 10	34 INF. POP. 15
CL SD: DOUGH ALL WHE BL M TOT. CL WHE BL M TOT. CL SD: DOUGH ALL WHE BL M TOT. CL SD: DOUGH SD: DOUGH ALL SD: DOUG	68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 G FIR DER EMLOCK MAPLE AL 68.1 1.0 G FIR OFF		COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF VAR.%	S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0	L L	SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAL OW 210	AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226	S - BF HIGH 839 196 453 191 725 HIGH 123 25 4 5 150 ACRE HIGH 242	#	OF TREES 5 308 OF PLOTS 5 303	77 REO. 10 76 REO.	34 INF. POP. 15
CL SD: DOUG R AL WHE BL M TOT: CL SD: DOUG R AL WHE BL M TOT: CL SD: DOUG R AL	68.1 1.0 G FIR DER MLOCK APLE AL 68.1 1.0 G FIR DER MLOCK APLE AL 68.1 1.0 G FIR DER AL 68.1 1.0		COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF VAR.%	S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7	L L	SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAL OW 210 24	AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 30	S - BF HIGH 839 196 453 191 725 HIGH 123 25 4 5 150 ACRE HIGH 242 36	#	OF TREES 5 308 OF PLOTS 5 303	77 REO. 10 76 REO.	34 INF. POP. 15
CL SD: DOUGRAL WHE BL M TOT: CL SD: DOUGRAL WHE BL M TOT: CL SD: DOUGRAL WHE WHE SD: DOUGRAL WHE	68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 G FIR DER EMLOCK MAPLE AL 68.1 1.0 G FIR OFF		COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF VAR.% 80.7 216.6 293.3	S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7 25.3	L L	SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAL OW 210	AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226	S - BF HIGH 839 196 453 191 725 HIGH 123 25 4 5 150 ACRE HIGH 242	#	OF TREES 5 308 OF PLOTS 5 303	77 REO. 10 76 REO.	34 INF. POP. 15 34 INF. POP.
CL SD: DOUGH ALL WHE SD: DOUGH	68.1 1.0 G FIR DER MLOCK APLE AL 68.1 1.0 G FIR DER EMLOCK APLE G FIR DER EMLOCK APLE 68.1 1.0 G FIR DER EMLOCK APLE 68.1 1.0 G FIR DER EMLOCK APLE		COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF VAR.%	S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7	L L	SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAI OW 210 24 4	AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 30 5	S - BF HIGH 839 196 453 191 725 HIGH 123 25 4 5 150 ACRE HIGH 242 36 6	#	OF TREES 5 308 OF PLOTS 5 303	77 REO. 10 76 REO.	34 INF. POP. 15 34 INF. POP.
CL SD: DOUG R AL WHE BL M TOT: CL SD: DOUG R AL WHE BL M TOT: CL SD: WHE BL M TOT: CL SD: DOUG R AL WHE BL M TOT: CL SD: DOUG R AL WHE SD: DOUG R AL	68.1 1.0 G FIR DER MLOCK APLE AL 68.1 1.0 G FIR DER EMLOCK APLE G FIR DER EMLOCK APLE 68.1 1.0 G FIR DER EMLOCK APLE 68.1 1.0 G FIR DER EMLOCK APLE		COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF VAR.% 80.7 216.6 293.3 689.9	S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7 25.3 59.5	L L	SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAI OW 210 24 4 1 248	AVG AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 30 5 3	S - BF HIGH 839 196 453 191 725 HIGH 123 25 4 5 150 ACRE HIGH 242 36 6 5	#	308 FOF PLOTS 5 303 FOF PLOTS 5	77 REO. 10 76 REO. 10	34 INF. POP. 15 34 INF. POP.
CL SD: DOUGH ALL SD: DOUGH ALL WHE BL M. TOT. CL SD: DOUGH ALL SD: CL SD:	68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 G FIR DER EMLOCK MAPLE 68.1 1.0		COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF VAR.% 80.7 216.6 293.3 689.9 68.9 COEFF VAR.%	S.E.% S.E.% S.E.% S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7 25.3 59.5 5.9 S.E.%	THE VOLU	SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAL OW 210 24 4 1 248 NET B	AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 30 5 3 264 F/ACRE AVG	S - BF HIGH 839 196 453 191 725 HIGH 123 25 4 5 150 ACRE HIGH 242 36 6 5 280 HIGH	#	308 4 OF PLOTS 5 303 4 OF PLOTS 5	77 REO. 10 76 REO. 10	34 INF. POP. 15 34 INF. POP. 15
CL SD: DOUGRAL WHE BL M TOT: CL SD: DOUGRAL WHE BL M TOT: CL SD: DOUGRAL WHE SD: DOUGRAL WHE BL M TOT: CL SD: DOUGRAL WHE BL M TOT: CL SD: DOUGRAL	68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 G FIR DER MLOCK MAPLE CAL 68.1 1.0 G FIR DER MLOCK MAPLE 68.1 1.0 G FIR DER MLOCK MAPLE 68.1 1.0 G FIR DER MLOCK MAPLE CAL 68.1 1.0 G FIR DER MLOCK MAPLE CAL 68.1 1.0		COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF VAR.% 80.7 216.6 293.3 689.9 68.9 COEFF VAR.% 79.4	S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7 25.3 59.5 5.9 S.E.% 6.9	THE VOLU	SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAL OW 210 24 4 1 248 NET B	AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 30 5 3 264 F/ACRE AVG 45,500	S - BF HIGH 839 196 453 191 725 HIGH 123 25 4 5 150 ACRE HIGH 242 36 6 5 280 HIGH 48,617	#	OF TREES 5 308 OF PLOTS 5 4 OF PLOTS 5	77 REO. 10 76 REO. 10	34 INF. POP. 15 34 INF. POP. 15
CL SD: DOUGH ALL WHE BL M TOT: CL SD: DOUGH ALL WHE BL M TOT	68.1 1.0 G FIR DER EMLOCK MAPLE AL 68.1 1.0 G FIR DER EMLOCK MAPLE CAL 68.1 1.0 G FIR DER CAL 68.1		COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF VAR.% 80.7 216.6 293.3 689.9 68.9 COEFF VAR.% 79.4 219.0	S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7 25.3 59.5 5.9 S.E.% 6.9 18.9	THE VOLU	SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAI OW 210 24 4 1 248 NET B OW 42,383 2,744	AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 30 5 3 264 F/ACRE AVG 45,500 3,383	S - BF HIGH 839 196 453 191 725 HIGH 123 25 4 5 150 ACRE HIGH 242 36 6 5 280 HIGH 48,617 4,023	#	OF TREES 5 308 OF PLOTS 5 4 OF PLOTS 5	77 REO. 10 76 REO. 10	34 INF. POP. 15 34 INF. POP. 15
CL SD: DOUGH ALL WHE BL M TOT: CL SD: DOUGH ALL WHE BL M TOT: CL SD: DOUGH ALL WHE BL M TOT CL SD: DOUGH ALL WHE BL M TOT CL SD: DOUGH ALL WHE SD: DOUGH ALL WHE SD: DOUGH ALL WHE SD: DOUGH ALL WHE	68.1 1.0 G FIR DER MLOCK MAPLE AL 68.1 1.0 G FIR DER MLOCK MAPLE CAL 68.1 1.0 G FIR DER MLOCK MAPLE 68.1 1.0 G FIR DER MLOCK MAPLE 68.1 1.0 G FIR DER MLOCK MAPLE CAL 68.1 1.0 G FIR DER MLOCK MAPLE CAL 68.1 1.0		COEFF VAR.% 77.3 45.8 93.4 77.1 87.8 COEFF VAR.% 106.1 219.5 308.3 741.9 87.1 COEFF VAR.% 80.7 216.6 293.3 689.9 68.9 COEFF VAR.% 79.4	S.E.% 5.5 8.5 26.9 44.0 5.6 S.E.% 9.2 18.9 26.6 64.0 7.5 S.E.% 7.0 18.7 25.3 59.5 5.9 S.E.% 6.9	THE VOLU	SAMPI OW 752 165 261 74 649 TREES OW 102 17 2 1 129 BASAL OW 210 24 4 1 248 NET B	AVG 796 181 357 133 687 /ACRE AVG 112 21 3 3 140 AREA/A AVG 226 30 5 3 264 F/ACRE AVG 45,500	S - BF HIGH 839 196 453 191 725 HIGH 123 25 4 5 150 ACRE HIGH 242 36 6 5 280 HIGH 48,617	#	OF TREES 5 308 OF PLOTS 5 4 OF PLOTS 5	77 REO. 10 76 REO. 10	34 INF. POP. 15 34 INF. POP. 15

TC TSTA	ATS				ST. PROJE	CT	ICS UPPERH			PAGE DATE 4	1 -/16/2019
TWP	RGE	SECT 7	CRACT		TYPE	AC	RES	PLOTS	TREES	CuFt	BdFt
07N	06W	35	TAKEA1		00MC		67.00	45	251	11	W
		PLOTS	TREES		TREES PER PLO	•	ESTIMATED FOTAL TREES	SA	ERCENT AMPLE REES	· · · · · · · · · · · · · · · · · · ·	
TOTA	T	45	251		5.6	_					
CRUIS	SE COUNT REST NT IKS	19	101		5.6 5.3 5.7		11,171		.9		,
				STA	ND SUM	MARY					
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG		76	105.1	19.5	75	49.3	217.8	46,380	45,223	10,448	10,292
R ALE		23	56.7	15.9	56	19.7	78.6	9,176	8,850	2,730	2,686
TOTA	MLOCK	2 101	4.9 <i>166.7</i>	16.5 18.3	46 <i>6</i> 8	1.8 71.0	7.3 <i>303.7</i>	560 <i>56,116</i>	560 <i>54,633</i>	176 <i>13,353</i>	176 13,154
	FIDENC		F THE SAMPI T OF 100 THE	Æ		E WITHIN	THE SAMP	LE ERROR			
CONI	FIDENCI 68.1 68.1 %	TIMES OUT	F THE SAMPI T OF 100 THE F	LE VOLUME	WILL B	LE TREES	S - BF		OF TREES		INF. POP.
CONI	FIDENCE 68.1 68.1 % 1.0	TIMES OU' COEF	F THE SAMPI F OF 100 THE F S.E.%	LE VOLUME	WILL B SAMPI OW	L E TREE S AVG	S - BF HIGH		OF TREES	REO. 10	INF. POP.
CL: SD: DOUC	FIDENCE 68.1 68.1 % 1.0 G FIR	COEF VAR. 78.3	F THE SAMPI F OF 100 THE F S.E.% 9.0	LE VOLUME	WILL BY SAMPY OW 722	LE TREES AVG 793	S - BF HIGH 864				
CL: SD: DOUC R ALL	FIDENCE 68.1 68.1 % 1.0 G FIR	TIMES OU' COEF	F THE SAMPI F OF 100 THE F S.E.%	LE VOLUME	WILL B SAMPI OW	L E TREE S AVG	S - BF HIGH				
CL: SD: DOUC R ALL	FIDENCE 68.1 68.1 % 1.0 FIR DER MLOCK	COEF VAR. 78.3 46.6	F THE SAMPI F OF 100 THE F S.E.% 9.0 9.9	LE VOLUME	WILL B SAMP OW 722 170	LE TREES AVG 793 188	S - BF HIGH 864 207				
CL: SD: DOUG R ALD WHEN	FIDENCE 68.1 68.1 % 1.0 FIR DER MLOCK	TIMES OU' COEF VAR. 78.3 46.6 90.0	F THE SAMPI F OF 100 THE F % S.E.% 9.0 9.9 84.3 9.3	LE VOLUME	WILL B. SAMP! OW 722 170 17 582	AVG 793 188 110	S - BF HIGH 864 207 203	#	5	10 88	15
CL: SD: DOUC R ALL WHEN TOTA CL: SD:	68.1 % 1.0 3 FIR DER MLOCK AL 68.1 % 1.0	COEF VAR. 78.3 46.6 90.0 93.7	F THE SAMPI F OF 100 THE F % S.E.% 9.0 9.9 84.3 9.3 F % S.E.%	LE VOLUME	WILL B. SAMP! OW 722 170 17 582	AVG 793 188 110 642 S/ACRE AVG	S - BF HIGH 864 207 203	#	350	10 88	39
CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC	68.1 % 1.0 3 FIR DER MLOCK AL 68.1 % 1.0 5 FIR	COEF VAR. 78.3 46.6 90.0 93.7 COEF VAR. 90.1	F THE SAMPI T OF 100 THE F % S.E.% 9.0 9.9 84.3 9.3 F % S.E.% 13.4	LE VOLUME	WILL B: SAMP! OW 722 170 17 582 TREES OW 91	AVG 793 188 110 642 6/ACRE AVG 105	S - BF HIGH 864 207 203 702 HIGH 119	#	5 350 OF PLOTS	88 S REO.	39 INF. POP.
CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL	68.1 % 1.0 G FIR DER MLOCK AL 68.1 % 1.0 G FIR DER	COEF VAR. 78.3 46.6 90.0 93.7 COEF VAR. 90.1 134.5	F THE SAMPI T OF 100 THE F % S.E.% 9.0 9.9 84.3 9.3 F % S.E.% 13.4 20.0	LE VOLUME	WILL B: SAMP! OW 722 170 17 582 TREES OW 91 45	AVG 793 188 110 642 6/ACRE AVG 105 57	S - BF HIGH 864 207 203 702 HIGH 119 68	#	5 350 OF PLOTS	88 S REO.	39 INF. POP.
CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN	FIDENCE 68.1 % 1.0 G FIR DER MLOCK AL 68.1 % 1.0 G FIR DER MLOCK	COEF VAR. 78.3 46.6 90.0 93.7 COEF VAR. 90.1 134.5 303.5	F THE SAMPI F OF 100 THE F % S.E.% 9.0 9.9 84.3 9.3 F % S.E.% 13.4 20.0 45.2	LE VOLUME	WILL B. SAMPI OW 722 170 17 582 TREES OW 91 45 3	AVG 793 188 110 642 6/ACRE AVG 105 57 5	S - BF HIGH 864 207 203 702 HIGH 119 68 7	#	5 350 OF PLOTS 5	88 REO. 10	39 INF. POP. 15
CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA	FIDENCE 68.1 % 1.0 G FIR DER MLOCK AL 68.1 % 1.0 G FIR DER MLOCK	COEF VAR. 78.3 46.6 90.0 93.7 COEF VAR. 90.1 134.5	F THE SAMPI F OF 100 THE F % S.E.% 9.0 9.9 84.3 9.3 F % S.E.% 13.4 20.0 45.2 8.8	LE VOLUME	WILL B: SAMP! OW 722 170 17 582 TREES OW 91 45 3 152	AVG 793 188 110 642 6/ACRE AVG 105 57 5 167	S - BF HIGH 864 207 203 702 HIGH 119 68 7 181	#	5 350 OF PLOTS 5	88 REO. 10	39 INF. POP. 15
CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA	FIDENCE 68.1 % 1.0 G FIR DER MLOCK AL 68.1 % 1.0 G FIR DER MLOCK AL	COEF VAR. 78.3 46.6 90.0 93.7 COEF VAR. 90.1 134.5 303.5 59.4	F THE SAMPI T OF 100 THE F % S.E.% 9.0 9.9 84.3 9.3 F % S.E.% 13.4 20.0 45.2 8.8	LE VOLUME L	WILL B: SAMP! OW 722 170 17 582 TREES OW 91 45 3 152	AVG 793 188 110 642 6/ACRE AVG 105 57 5	S - BF HIGH 864 207 203 702 HIGH 119 68 7 181	#	5 350 OF PLOTS 5	88 REO. 10	39 INF. POP. 15
CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R DOUC	68.1 % 1.0 G FIR DER MLOCK AL 68.1 % 1.0 G FIR DER MLOCK AL 68.1 % 1.0 G FIR DER MLOCK AL 68.1 % 1.0 G FIR	COEF VAR. 78.3 46.6 90.0 93.7 COEF VAR. 90.1 134.5 303.5 59.4 COEF VAR.	F THE SAMPI F OF 100 THE F % S.E.% 9.9 84.3 9.3 F % S.E.% 13.4 20.0 45.2 8.8 F	LE VOLUME L	WILL B. SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198	AVG 793 188 110 642 6/ACRE AVG 105 57 5 167 AREA/A AVG 218	S - BF HIGH 864 207 203 702 HIGH 119 68 7 181 CRE HIGH 238	#	5 350 OF PLOTS 5	88 REO. 10	39 INF. POP. 15 16 INF. POP.
CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL R ALL SD: DOUC R ALL	68.1 % 1.0 G FIR DER MLOCK 1.0 G FIR DER	COEF VAR. 78.3 46.6 90.0 93.7 COEF VAR. 90.1 134.5 303.5 59.4 COEF VAR. 61.7 130.8	F THE SAMPI F OF 100 THE F % S.E.% 9.0 9.9 84.3 9.3 F % S.E.% 13.4 20.0 45.2 8.8 F % S.E.%	LE VOLUME L	WILL B. SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 63	AVG 793 188 110 642 S/ACRE AVG 105 57 5 167 AREA/A AVG 218 79	S - BF HIGH 864 207 203 702 HIGH 119 68 7 181 CRE HIGH 238 94	#	5 350 OF PLOTS 5	88 REO. 10	39 INF. POP. 15 16 INF. POP.
CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA	68.1 % 1.0 G FIR DER MLOCK ML 68.1 % 1.0 G FIR DER MLOCK ML 68.1 %	COEF VAR. 90.1 134.5 303.5 59.4 COEF VAR. 61.7 130.8 303.4	F THE SAMPI F OF 100 THE F % S.E.% 9.0 9.9 84.3 9.3 F % S.E.% 13.4 20.0 45.2 8.8 F % S.E.% 9.2 19.5 45.2	LE VOLUME L	WILL B: SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 63 4	AVG 105 57 5 167 AREA/A AVG 218 79 7	S - BF HIGH 864 207 203 702 HIGH 119 68 7 181 CRE HIGH 238 94 11	#	5 350 OF PLOTS 5 141 OF PLOTS 5	88 SREO. 10 35 SREO. 10	39 INF. POP. 15 16 INF. POP. 15
CL: SD: DOUC R ALE WHEN TOTA CL: SD: DOUC R ALE WHEN TOTA CL: SD: DOUC R ALE WHEN TOTA	68.1 % 1.0 3 FIR DER MLOCK 1.0 3 FIR DER MLOCK 1.0 3 FIR DER MLOCK 1.0 5 FIR DER MLOCK 1.0 68.1 % 1.0 3 FIR DER MLOCK 1.0 3 FIR DER MLOCK 1.0	COEF VAR. 78.3 46.6 90.0 93.7 COEF VAR. 90.1 134.5 303.5 59.4 COEF VAR. 61.7 130.8 303.4	F THE SAMPI F OF 100 THE F % S.E.% 9.0 9.9 84.3 9.3 F % S.E.% 13.4 20.0 45.2 8.8 F % S.E.% 9.2 19.5 45.2 5.9	LE VOLUME L	WILL B. SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 63	AVG 793 188 110 642 S/ACRE AVG 105 57 5 167 AREA/A AVG 218 79	S - BF HIGH 864 207 203 702 HIGH 119 68 7 181 CRE HIGH 238 94	#	5 350 OF PLOTS 5	88 REO. 10	15 39 INF. POP. 15 16 INF. POP. 15
CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA CL: SD: CL: CL: CL:	FIDENCE 68.1 % 1.0 G FIR DER MLOCK 1.0 G FIR DER MLOCK 1.0 MLOCK 1.0 G FIR MLOCK 1.0 G FIR MLOCK 1.0 G FIR MLOCK 1.0	COEF VAR. 78.3 46.6 90.0 93.7 COEF VAR. 90.1 134.5 303.5 59.4 COEF VAR. 61.7 130.8 303.4 39.4	F THE SAMPI F OF 100 THE F % S.E.% 9.0 9.9 84.3 9.3 F % S.E.% 13.4 20.0 45.2 8.8 F % S.E.% 9.2 19.5 45.2 5.9	LE VOLUME L	WILL B: SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 63 4 286 NET B	AVG 105 57 5 167 AREA/A AVG 218 79 7 304	S - BF HIGH 864 207 203 702 HIGH 119 68 7 181 CRE HIGH 238 94 11 321	#	5 350 OF PLOTS 5 141 OF PLOTS 5	88 S REO. 10 35 S REO. 10 16 S REO.	15 39 INF. POP. 15 16 INF. POP. 7 INF. POP.
CL: SD: DOUC R ALL WHEN TOTA CL: SD: DOUC R ALL WHEN TOTA CL: SD: CL: SD: CL: SD: CL: SD: CL: SD: CL: SD:	68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0 68.1 % 1.0	COEF VAR. 78.3 46.6 90.0 93.7 COEF VAR. 90.1 134.5 303.5 59.4 COEF VAR. 61.7 130.8 303.4 39.4 COEF	F THE SAMPI F OF 100 THE F S.E.% 9.0 9.9 84.3 9.3 F 8 S.E.% 13.4 20.0 45.2 8.8 F 8 S.E.% 9.2 19.5 45.2 5.9 F	E VOLUME L	WILL B: SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 63 4 286 NET B OW	AVG 793 188 110 642 6/ACRE AVG 105 57 5 167 6/AREA/A AVG 218 79 7 304 F/ACRE AVG	S - BF HIGH 864 207 203 702 HIGH 119 68 7 181 CRE HIGH 238 94 11 321 HIGH	#	5 350 OF PLOTS 5 141 OF PLOTS 5	88 S REO. 10 35 S REO. 10	15 39 INF. POP. 15 16 INF. POP. 15
CL: SD: DOUC R ALL WHEN TOTA	FIDENCE 68.1 % 1.0 G FIR DER MLOCK 1.0 G FIR D	COEF VAR. 78.3 46.6 90.0 93.7 COEF VAR. 90.1 134.5 303.5 59.4 COEF VAR. 61.7 130.8 303.4 39.4 COEF VAR.	F THE SAMPI F OF 100 THE F S.E.% 9.0 9.9 84.3 9.3 F S.E.% 13.4 20.0 45.2 8.8 F S.E.% 9.2 19.5 45.2 5.9 F	L VOLUME L L	WILL B. SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 63 4 286 NET B OW 1,205	AVG 105 57 5 167 AREA/A AVG 218 79 7 304 F/ACRE AVG 45,223	S - BF HIGH 864 207 203 702 HIGH 119 68 7 181 CRE HIGH 238 94 11 321 HIGH 49,241	#	5 350 OF PLOTS 5 141 OF PLOTS 5	88 S REO. 10 35 S REO. 10 16 S REO.	15 39 INF. POP. 15 16 INF. POP. 7 INF. POP.
CL: SD: DOUC R ALL WHEN TOTA	FIDENCE 68.1 % 1.0 G FIR DER MLOCK 1.0 G FIR D	COEF VAR. 78.3 46.6 90.0 93.7 COEF VAR. 90.1 134.5 303.5 59.4 COEF VAR. 61.7 130.8 303.4 39.4 COEF	F THE SAMPI F OF 100 THE F S.E.% 9.0 9.9 84.3 9.3 F 8 S.E.% 13.4 20.0 45.2 8.8 F 8 S.E.% 9.2 19.5 45.2 5.9 F	L VOLUME L L	WILL B: SAMP OW 722 170 17 582 TREES OW 91 45 3 152 BASAI OW 198 63 4 286 NET B OW	AVG 793 188 110 642 6/ACRE AVG 105 57 5 167 6/AREA/A AVG 218 79 7 304 F/ACRE AVG	S - BF HIGH 864 207 203 702 HIGH 119 68 7 181 CRE HIGH 238 94 11 321 HIGH	#	5 350 OF PLOTS 5 141 OF PLOTS 5	88 S REO. 10 35 S REO. 10 16 S REO.	15 39 INF. POP. 15 16 INF. POP. 7 INF. POP.

TC TST.	ATS						TATIST				PAGE	1
						PROJE		UPPERH				/16/2019
TWP	RGE	SECT	TRA			TYPE		RES	PLOTS	TREES	CuFt	BdFt
07N	06W	35	TAI	CEA23		00MC		146.00	52	244	1	W
		PLOTS	}	TREES		TREES PER PLOT	,	ESTIMATED TOTAL TREES	S	ERCENT AMPLE REES		
TOTA	ΛŢ.	52		244		4.7						
CRUI:	SE COUNT	21		80		3.8		19,431		.4		
REFO COUN BLAN 100 %	NKS	31	I	159		5.1						
					STA	ND SUM	MARY					
		SAMPLE	3	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	3	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOUG			71	121.0	19.0	66	54.7	238.7	48,425	47,502	10,921	10,788
R ALI			4	6.8	16.9	58	2.5	10.5	1,218	1,218	365	365
BL M			4	4.5	14.6	40	1.4	5.2	475	430	137	133
	MLOCK		1	.7	16.0	77	0.3	1.0	180	180	47	47
TOTA	AL		80	133.1	18.8	65	59.0	255.4	50,298	49,331	11,470	11,333
CL:	68.1 %		UT OF EFF	F 100 THE	VOLUME		E WITHIN LE TREE!	THE SAMP S - BF		OF TREES	REQ.	INF. POP.
SD:	1.0		R.%	S.E.%	L	OW	AVG	HIGH		5	10	15
DOUG			9.9	9.5		826	913	999				
R ALI BL M			0.0 7.1	11.4 44.0		164 74	185 133	206 191				
	MLOCK											
TOTA	AL	87	.6	9.8		748	829	910		307	77	34
CL:	68.1 %	CO	EFF			TREES	ACRE		#	OF PLOTS	REO.	INF. POP.
SD:	1.0	VA	R,%	S.E.%	L	OW	AVG	HIGH		5	10	15
DOUG			9.7	9.7		109	121	133				
R ALI		288		40.0		4	7	9				
	IAPLE MLOCK	458 721		63.5 99.9		2 0	5 1	7 1				
TOTA		63		8.8		121	133	145		160	40	18
	68.1 %		EFF				AREA/A			OF PLOTS		INF. POP.
	1.0		R.%	S.E.%	L	OW OW	AVG	HIGH	††	5 5	10	15
DOU(2.4	5.9		225	239	253			10	1.0
R ALI		292		40.5		6	10	15				
	IAPLE	425		58.9		2	5	8				
	MLOCK	721		99.9		0	1	2		(2)	1.5	~
TOTA		39		5.4		242	255	269		62	15	7
	68.1 %		EFF				F/ACRE		#	OF PLOTS		INF. POP.
	1.0		R.%	S.E.%		OW	AVG	HIGH	·	5	10	15
DOUG R ALI		42 291	2.1	5.8 40.4	4	4,731 727	47,502 1,218	50,273 1,710				
	IAPLE	437		60.7		169	430	691				
	MLOCK	721		99.9		0	180	360				
TOTA		39	0.4	5.5	40	6,634	49,331	52,027		62	16	7

.

TC TST.	AIS				ST PROJE	ATIST	ICS UPPERH			PAGE Date 4	1 /16/2019
ГWР	RGE	SECT	TRACT		TYPE	AC	RES	PLOTS	TREES	CuFt	BdFt
07N	06W	36	TAKEA4		00MC		21.00	37	183	1	W
							ESTIMATED	pi	ERCENT		
				7	TREES		TOTAL		AMPLE		
		PLOTS	TREES	I	PER PLOT	•	TREES	T	REES		
TOTA	т	37	183		4.9						
CRUI		14	66		4.7		2,088		3.2		
	COUNT						_,				
REFO											
COUN		23	117		5.1						
BLAN	IKS										
100 %	,)										
				STAI	ND SUM	MARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOUG	3 FIR	53	3 75.7	19.8	79	36.4	162.2	33,016	32,464	7,706	7,634
	MLOCK	10		17.6	51	5.9	24.9	3,485	3,425	902	902
R ALI		3	3 9.0	14.8	53	2.8	10.8	995	995	332	332
TOTA		60		19.1	72	45.3	197.8	37,497	36.884	8,940	8,868
0011			OF THE SAMP JT OF 100 THE		WILL BE	E WITHIN	THE SAMP	LE ERROR			
CL:	68.1 %	TIMES OU	JT OF 100 THE	E VOLUME	SAMPL	E TREES	S - BF		OF TREES		INF. POP.
CL: SD:	68.1 % 1.0	TIMES OU COE VAR	JT OF 100 THE EFF 2.% S.E.%	E VOLUME	SAMPL DW	E TREES	S - BF HIGH		OF TREES	S REO. 10	
CL: SD: DOUG	68.1 % 1.0	TIMES OU	UT OF 100 THE EFF 8.% S.E.% 1 7.8	E VOLUME	SAMPL	E TREES	S - BF				
CL: SD: DOUG	68.1 % 1.0 G FIR MLOCK	COE VAR 57.	UT OF 100 THE EFF 2.% S.E.% 1 7.8 5 28.5	E VOLUME	SAMPL OW 592	LE TREES AVG 642	S - BF HIGH 693				
CL: SD: DOUG	68.1 % 1.0 3 FIR MLOCK DER	COE VAR 57. 85.	JT OF 100 THE EFF 2.% S.E.% 1 7.8 5 28.5 9 44.9	E VOLUME	SAMPL DW 592 299	AVG 642 418	S - BF HIGH 693 537				15
CL: SD: DOUG WHE: R ALL	68.1 % 1.0 3 FIR MLOCK DER	TIMES OU COE VAR 57. 85. 64.	TOF 100 THE S.E.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9	E VOLUME	SAMPL DW 592 299 64	AVG 642 418 117 585	S - BF HIGH 693 537 169	#	5	10	15
CL: SD: DOUG WHE: R ALL TOTA	68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0	COE VAR 57. 85. 64.	TOF 100 THE S.E.% S.E.% T.8 S.E.% 44.9 T.9 SEFF	LO	SAMPL DW 592 299 64 538	AVG 642 418 117 585	S - BF HIGH 693 537 169	#	5	10	15 19 INF. POP.
CL: SD: DOUG WHE: R ALL TOTA CL: SD:	68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR	COE VAR 57. 85. 64. 64. COE VAR	TOF 100 THE EFF 2.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF 2.% S.E.% 3 8.1	LO	SAMPI DW 592 299 64 538 TREES DW 70	AVG 642 418 117 585 /ACRE AVG 76	S - BF HIGH 693 537 169 631 HIGH 82	#	5 167 OF PLOTS	10 42 S REQ.	15 19 INF. POP.
CL: SD: DOUG WHE: R ALD TOTA CL: SD: DOUG WHE:	68.1 % 1.0 3 FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK	COE VAR 57. 85. 64. 64. COE VAR 49.	TOF 100 THE EFF 8.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF 8.% S.E.% 3 8.1 8 22.8	LO	SAMPI 592 299 64 538 TREES DW 70 11	AVG 642 418 117 585 /ACRE AVG 76 15	S - BF HIGH 693 537 169 631 HIGH 82 18	#	5 167 OF PLOTS	10 42 S REQ.	15 19 INF. POP.
CL: SD: DOUG WHE: R ALL TOTA CL: SD: DOUG WHE: R ALL	68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER	COE VAR 57. 85. 64. 64.0 COE VAR 49. 138. 283.	TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5	LO	SAMPL DW 592 299 64 538 TREES DW 70 11 5	AVG 642 418 117 585 /ACRE AVG 76 15 9	S - BF HIGH 693 537 169 631 HIGH 82 18 13	#	5 167 OF PLOTS 5	10 42 S REO. 10	15 19 INF. POP.
CL: SD: DOUG WHE. R ALI TOTA CL: SD: DOUG WHE. R ALI TOTA	68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL	TIMES OU COE VAR 57. 85. 64. 64. COE VAR 49. 138. 283. 48.	TOF 100 THE EFF 2.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF 2.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9	LO	SAMPI 592 299 64 538 TREES DW 70 11	AVG 642 418 117 585 /ACRE AVG 76 15	S - BF HIGH 693 537 169 631 HIGH 82 18	#	5 167 OF PLOTS	10 42 S REQ.	15 19
CL: SD: DOUG WHE: R ALL TOTA CL: SD: DOUG WHE: R ALL	68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL	COE VAR 57. 85. 64. 64. COE VAR 49. 138. 283. 48.	TOF 100 THE EFF 8.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF 8.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF	LO	SAMPI DW 592 299 64 538 TREES DW 70 11 5 92 BASAL	AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A	S - BF HIGH 693 537 169 631 HIGH 82 18 13 107	#	5 167 OF PLOTS 5 92 OF PLOTS	10 42 S REO. 10 23 S REO.	15 19 INF. POP. 15 10 INF. POP.
CL: SD: DOUG WHE: R ALI TOTA CL: SD: DOUG WHE: R ALI TOTA CL: SD:	68.1 % 1.0 3 FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 1.0 G FIR MLOCK DER AL 1.0	COE VAR 57. 85. 64. 64. COE VAR 49. 138. 283. 48 COE	TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.%	LO	SAMPL DW 592 299 64 538 TREES DW 70 11 5 92 BASAL	AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG	S - BF HIGH 693 537 169 631 HIGH 82 18 13 107 CRE HIGH	#	5 167 OF PLOTS 5	10 42 S REO. 10	15 19 INF. POP. 15 10 INF. POP.
CL: SD: DOUG R ALL TOTA CL: SD: DOUG WHE R ALL TOTA CL: SD: DOUG DOUG DOUG	68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR 1.0 G FIR	COE VAR 57. 85. 64. 64.6 COE VAR 49. 138. 283. 48. COE VAR	TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% 4 5.5	LO	SAMPL DW 592 299 64 538 TREES DW 70 11 5 92 BASAL DW 153	AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG 162	S - BF HIGH 693 537 169 631 HIGH 82 18 13 107 CRE HIGH 171	#	5 167 OF PLOTS 5 92 OF PLOTS	10 42 S REO. 10 23 S REO.	15 17 18 18 18 18 18 18 18
CL: SD: DOUG WHE: R ALL TOTA CL: SD: DOUG WHE: R ALL TOTA CL: SD: DOUG WHE: WHE: SD: DOUG WHE: SD:	68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 MLOCK	COE VAR 57. 85. 64. 64.6 COE VAR 49. 138. 283. 48. COE VAR 33. 133.	TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% 4 5.5 3 21.9	LO	SAMPL DW 592 299 64 538 TREES DW 70 11 5 92 BASAL DW 153 19	AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG 162 25	S - BF HIGH 693 537 169 631 HIGH 82 18 13 107 CRE HIGH 171 30	#	5 167 OF PLOTS 5 92 OF PLOTS	10 42 S REO. 10 23 S REO.	15 INF. POP. 15 INF. POP.
CL: SD: DOUG R ALL TOTA CL: SD: DOUG WHE R ALL TOTA CL: SD: DOUG WHE R ALL	68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER	COE VAR 57. 85. 64. 64.6 VAR 49. 138. 283. 48. COE VAR 33. 133. 284.	TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% 4 5.5 3 21.9 6 46.7	LO	SAMPL DW 592 299 64 538 TREES DW 70 11 5 92 BASAL DW 153 19 6	AVG AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG 162 25 11	S - BF HIGH 693 537 169 631 HIGH 82 18 13 107 CRE HIGH 171 30 16	#	5 167 OF PLOTS 5 92 OF PLOTS 5	10 42 S REO. 10 23 S REO. 10	15 INF. POP. 15 INF. POP. 15
CL: SD: DOUG WHE: R ALI TOTA CL: SD: DOUG WHE: R ALI TOTA CL: SD: DOUG WHE: R ALI TOTA	68.1 % 1.0 G FIR MLOCK DER AL	TIMES OU COE VAR 57. 85. 64. 64. COE VAR 49. 138. 283. 48. COE VAF 33. 133. 284. 34.	TOF 100 THE EFF 8.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF 8.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF 8.% S.E.% 4 5.5 3 21.9 6 46.7 0 5.6	LO	SAMPL DW 592 299 64 538 TREES DW 70 11 5 92 BASAL DW 153 19 6 187	AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG 162 25 11 198	S - BF HIGH 693 537 169 631 HIGH 82 18 13 107 CRE HIGH 171 30	#	5 167 OF PLOTS 5 92 F OF PLOTS 5	10 42 S REO. 10 23 S REO. 10	15 INF. POP. 15 INF. POP. 15
CL: SD: DOUG WHE: R ALI TOTA CL: SD: DOUG WHE: R ALI TOTA CL: SD: CL: CL: CCL:	68.1 % 1.0 G FIR MLOCK DER AL 68.1 %	COE VAR 57. 85. 64. 64.6 COE VAR 49. 138. 283. 48 COE VAF 33. 133. 284. 34 COE	TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% 4 5.5 3 21.9 6 46.7 0 5.6	LO	SAMPI DW 592 299 64 538 TREES DW 70 11 5 92 BASAL DW 153 19 6 187 NET BI	AVG 162 25 11 198 F/ACRE	S - BF HIGH 693 537 169 631 HIGH 82 18 13 107 CRE HIGH 171 30 16 209	#	5 167 OF PLOTS 5 92 OF PLOTS 5 46 OF PLOTS	10 42 S REO. 10 23 S REO. 10 12 S REO.	15 17 18 18 18 18 18 18 18 18 18 18 18 18 18
CL: SD: DOUG WHE: R ALI TOTA CL: SD: DOUG WHE: R ALI TOTA CL: SD: CL: SD: CL: SD: CL: SD: CL: SD: CL: SD:	68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR	COE VAR 57. 85. 64. 64.6 COE VAR 49. 138. 283. 48. COE VAR 33. 133. 284. 34. COE VAR	TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% 4 5.5 3 21.9 6 46.7 0 5.6 EFF R.% S.E.%	LO	SAMPI DW 592 299 64 538 TREES DW 70 11 5 92 BASAL DW 153 19 6 187 NET BI DW	AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG 162 25 11 198 F/ACRE AVG	S - BF HIGH 693 537 169 631 HIGH 82 18 13 107 CRE HIGH 171 30 16 209	#	5 167 OF PLOTS 5 92 F OF PLOTS 5	10 42 S REO. 10 23 S REO. 10	15 19 INF. POP. 15 10 INF. POP. 15
CL: SD: DOUG WHE: R ALL TOTA CL: SD: DOUG WHE: R ALL TOTA CL: SD: CL: SD: DOUG WHE R ALL TOTA CL: SD: DOUG WHE R ALL TOTA	68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR	COE VAR 57. 85. 64. 64.6 COE VAR 49. 138. 283. 48 COE VAF 33. 133. 284. 34 COE	TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% 4 5.5 3 21.9 6 46.7 0 5.6 EFF R.% S.E.% 9 5.9	LO L	SAMPL DW 592 299 64 538 TREES DW 70 11 5 92 BASAL DW 153 19 6 187 NET BIOW 0,551	AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG 162 25 11 198 F/ACRE AVG 32,464	S - BF HIGH 693 537 169 631 HIGH 82 18 13 107 CRE HIGH 171 30 16 209 HIGH 34,377	#	5 167 OF PLOTS 5 92 OF PLOTS 5 46 OF PLOTS	10 42 S REO. 10 23 S REO. 10 12 S REO.	15 17 18 18 18 18 18 18 18 18 18 18 18 18 18
CL: SD: DOUG WHE: R ALI TOTA CL: SD: DOUG WHE: R ALI TOTA CL: SD: DOUG WHE R ALI TOTA CL: SD: DOUG WHE R ALI TOTA	68.1 % 1.0 G FIR MLOCK DER AL 68.1 % 1.0 G FIR MLOCK	COE VAR 57. 85. 64. 64.6 COE VAR 49. 138. 283. 48. COE VAR 33. 133. 284. 34. COE VAR 35.	TOF 100 THE EFF R.% S.E.% 1 7.8 5 28.5 9 44.9 6 7.9 EFF R.% S.E.% 3 8.1 8 22.8 2 46.5 0 7.9 EFF R.% S.E.% 4 5.5 3 21.9 6 46.7 0 5.6 EFF R.% S.E.% 9 5.9 3 26.2	LO L	SAMPI DW 592 299 64 538 TREES DW 70 11 5 92 BASAL DW 153 19 6 187 NET BI DW	AVG 642 418 117 585 /ACRE AVG 76 15 9 99 AREA/A AVG 162 25 11 198 F/ACRE AVG	S - BF HIGH 693 537 169 631 HIGH 82 18 13 107 CRE HIGH 171 30 16 209	#	5 167 OF PLOTS 5 92 OF PLOTS 5 46 OF PLOTS	10 42 S REO. 10 23 S REO. 10 12 S REO.	15 INF. POP. 15 INF. POP. 15 INF. POP.

Т	C PSTNDSUM		Stand Table Summary	Page	1
_				Date:	4/16/2019
	T07N R06W S35 Ty00MC	67.00	Project UPPERH	Time:	3:18:41PM
11	T07N R06W S35 Ty00MC T07N R06W S36 Ty00MC	146.00 21.00	Acres 234.00	Grown Year:	

	110011 5	30 TYUUIV		21.0	<u> </u>			,							
				Tot				Averag	e Log		Net	Net			
S		Sample		Av	Trees/		Logs	Net	Net	Tons/	Cu.Ft.	Bd.Ft.	_	Totals	
Spc T	DBH	Trees	16'	Ht	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
D	8	3	89	21	9.146	3.19									
D	9	3	86	81	10.118	4.47	10.12	14.3	58.2		145	588		338	138
D	10	4	87	65	10.700	5.84	14.55	9.3	38.4		135	558		315	131
D	11	3	89	85	7.600	5.02	13.96	10.1	36.8		141	514		330	
D	12	3	87	55	6.386	5.02	9.06	11.8	42.3		107	383		250	
D	13	5	87	81	5.836	5.38	9.89	16.5	54.1		163	535		382	
D	14	2	90	106	2.730	2.92	5.46	22.7	91.6		124	500		290	
D	15	8	87	102	6.095	7.48	13.53	20.4	75.6		275	1,022		644	
D	16	4	86	85	2.483	3.47	4.97	23.9	75.7		119	376		278	
D	17	7		120	4.225	6.66	10.30	29.6	112.8 98.5		305 236	1,162 870		71 ² 551	
D	18	4 7		113	2.994 4.308	5.29 8.48	8.83 10.65	26.7 36.9	140.2		393	1,494		920	
D	19	11		128	3.386	7.39	9.41	39.7	160.9		374	1,514		874	
D	20 21	9		128	2.466	5.93	7.40	39.7	157.3		279	1,164		653	
D	22	5			1.831	4.83	5.49	44.5	184.5		244	1,013		572	
D D	23	12		118	5.311	15.32	13.75	50.8	206.3		699	2,838		1,63:	
D	24	10		132	2.323	7.30	6.62	55.6	236.3		368	1,564		862	
D	25	8		128	2.569	8.76	7.09	61.1	257.8		433	1,829		1,014	
D	26	14		138	3.118	11.50	9.35	62.1	267.7		580	2,504		1,358	
D	27	12		121	2.432	9.67	6.77	63.6	277.1		430	1,876		1,00′	
D	28	9		148	1.642	7.02	4.93	79.3	373.8		391	1,842		914	
D	29	10	85	138	2.943	13.50	8.83	78.6	353.6		694	3,121		1,623	3 730
D	30	10	88	146	2.230	10.94	6.69	89.5	428.5		599	2,866		1,40	671
D	31	7	87	139	2.070	10.85	6.21	89.9	427.0		558	2,652		1,30	621
D	32	11	87	138	3.119	17.42	8.83	100.8	481.8		890			2,08	
D	33	5	89		1.121	6.66	3.01	108.3	541.7		326			762	
D	34	3		148	.998	6.29	2.99	116.4	562.2		349	-		81	
D	36	1		157	.116	.82	.35	136.3	716.7		47			11	
D	37	2		140	.562	4.20	1.69	132.7	666.7		224	-		52:	
D	38	2		147	.533	4.20	1.60	125.8	626.7		201	,		47	
D	39	1		157	.099	.82	.30	160.0	846.7		47			11	
D	40	1		157	.240	2.10	.72	170.3	876.7		123			28	
D	42	1		157	.218	2.10	.65	190.3	1010.0		124			29 25	
D	44 45	1 1		138 103	.199 .190	2.10 2.10	.60 .38	182.3 219.0	993.3 1000.0		109 83			19	
D	46	1		154	.071	.82	.21		1196.7		48			11:	
D	40	1						,							
D	Totals	200	88	97	112.408	225.83	225.18	46.0	202.1		10,363	45,500		24,25	10,647
Α	10	1	87		1.795	.98	1.79	16.0	60.0		29			6	
A	11	1	86		1.483	.98	2.97	13.0	45.0		39			9	
A	12	1	87	61	1.246	.98	1.25	22.0	60.0		27			6	
A	13	2	87	86	2.124	1.96	4.25	17.5	60.0	1	74			17	
A	14	2	87	69	.605	.65	.91	20.7	60.0		19			4	
A	15	2	87	69	2.128	2.61	4.26	19.7	65.0		84			19	
A	16	3	86	66	2.103	2.94	4.21	22.5	78.3		95			22 16	
A	17	2	86	79 76	1.241	1.96	2.48 9.24	29.1 31.3	101.7 99.4		72 289			67	
A	18	7	87 86	76 66	4.618 1.492	8.16 2.94	9.24 2.49	1	99.4 106.0		289 91			21	
A	19 20	3	86 86		1.492	2.94	3.14	1	106.0		111			26	
A	21	1	86		.407	.98		47.5	165.0		39			9	
A	22	1	86		.371	.98		1	135.0		33			7	
A A	24	1	87		.312	.98		1	135.0		25			5	
	Totals	30	87	77	21.272		39.15		86.4		1,026			2,40	
A	Totals	30	8/	//	41.414	30.02	27.13	20.2	00.4		1,020	2,203		2,40	4 192

TC PSTNDSUM	Stand Table Summary	Page Date:	2 4/16/2019
T07N R06W S35 Ty00MC 67.00 T07N R06W S35 Ty00MC 146.00	Project UPPERH	Time:	3:18:41PM
T07N R06W S36 Ty00MC 21.00	Acres 234.00	Grown Year	:

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Averag Net Cu.Ft.	ge Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
Н	12	2	87	39	.568	.45	.57	14.0	40.0		8	23		19	5
Н	15	1	86	48	.182	.22	.18	26.0	60.0		5	11		11	3
Н	16	2	87	90	1.212	1.69	2.42	27.2	101.6		66	246		154	58
Н	17	2	82	32	.801	1.26	.80	24.0	45.3		19	36		45	8
Н	22	3	90	107	.254	.67	.68	46.6	193.8		32	131		74	31
Н	24	1	89	99	.071	.22	.14	70.5	275.0		10	39		23	9
Н	27	1	89	111	.056	.22	.17	65.0	273.3		11	46		26	11
H	30	1	86	107	.045	.22	.14	76.0	350.0		10	48		24	11
Н	Totals	13	86	66	3.189	4.96	5.10	31.5	113.8		161	580		376	136
М	11	1	87	53	1.237	.82	2.47	8.0	25.0		20	62		46	14
M	14	1	87	45	.764	.82	.76	21.0	50.0		16	38		38	9
M	17	1	86	65	.518	.82	1.04	25.0	85.0		26	88		61	21
М	22	1	87	60	.309	.82	.62	34.0	130.0		21	80		49	19
М	Totals	4	87	54	2.828	3.27	4.89	16.9	54.9		83	269		194	63
Totals		247	87	92	139.698	264.08	274.32	42.4	181.3		11,633	49,732		27,221	11,637

.

TC PLOGSTVB	Log Stock Table - I	MBF	
T07N R06W S35 Ty00MC T07N R06W S35 Ty00MC T07N R06W S36 Ty00MC	67.00 Project: UPPEI 46.00 Acres 21.00	RH Date 234.00 Time	1 4/16/2019 3:17:51PM

S	So Gr	Log	Gross	Def	Net	%]	Net Volu	me by	Scalin							
Spp Т	rt de		MBF	%	MBF	Spc	2-3	4-5		8-9	10-11		14-15		20-23	24-29	30-39	40+
)	DO CL	J 4	9	100.0														
D	DO CL	5	7	100.0														
D	DO CL	J 8	82	100.0														
D	DO CU	J 10	3	100.0														
D	DO CI	12	14	100.0														
D	DO CI	J 14	12	100.0														
D	DO CI	J 16	11	100.0														
D	DO CI	J 18	4	100.0														
D	DO CI	J 20	13	100.0														
D	DO 2S	16	5		5	.0						5						
D	DO 2S	20	36		36	.3								19	17			
D	DO 2S	24	87		87	.8								49		38		
D	DO 2S	26	9		9	.1						9						
D	DO 2S	30	28		28	.3									28			
D	DO 2S	32	72		72	.7						6	66					
D	DO 2S	36	47		47	.4							47					
D	DO 2S	38	173		173	1.6						56	46	71				
D	DO 2S	40	7,855		7,793	73.2						755	1243	2393	2127	992	282	
D	DO 3S	18	7		7	.1					7	,						
D	DO 3S	20	32		32	.3			2	8	22							
D	DO 3S	24	27		27	.3				4	23							
D	DO 3S	26	19		19	.2			18	1								
D	DO 3S	28	37		37	.4				19	9	9						
D	DO 38	30	75	1.1	74	.7			49	18	8	}						
D	DO 3S	32	282		280	2.6			38	120	122	!						
D	DO 38	34	104		104	1.0			77	21	6	5						
D	DO 38	36	98		98	.9			48	38	12	2						
D	DO 38	38	80)	80	.7			67	2	6	5	6					
D	DO 38	40	1,288	1	1,284	12.1			220	392	650)				21		
D	DO 45	3 12	26		26	.2			4	22								
D	DO 45	S 14	63	1	63	.6			57	6								
D	DO 45	S 16	93	,	93	.9			83	10								
D	DO 45	S 18	27	,	27	.3			9	18								
D	DO 48	S 20	33	3	33	.3			30	4								
D	DO 45	S 24	42	2	42	.4			24	19								
D	DO 45	5 26	5 9)	9	.1			7	2								

TC PLC	OGSTVB					Log	Stock	Table	- MB	F							
T07N F	R06W S35 R06W S35 R06W S36	Ty00N	ИС 146	7.00 5.00 00		Proj Acre		UPI	PERH 234	.00					Page Date Time	4/1	2 6/2019 17:51PM
S	1 ~ ~ ~ .			Def	Net	%			,		Scaling				1		
Spp T			MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
D	DO 4S		6		6	.1			6								
D D	DO 4S DO 4S		31 7		31	.3			31		_						
D	DO 45				7 15	.1			3 15		5						
D	DO 45				2	.0			2								
		-							ļ								
D	Total		10,871	2.1	10,647	91.5			789	703	871	840	1407		2172	1051	282
H H	DO 2S		3	8.3	2	1.7								2			
H H	DO 2S DO 2S		3 47	2.3	3 46	2.2 33.5							3	20			
	20 23	40	4/	4.3	40								7	30	8		
Н	DO 3S	20	1		1	.5					1						
Н	DO 3S	32	12		12	8.9			7		6						
Н	DO 3S	40	51		51	37.6			4	1	46						
Н	DO 4S	16	2		2	1.3			1	1							
Н	DO 4S	20	5		5	3.8			5								
Н	DO 4S	24	8		8	6.0			8								
Н	DO 4S	32	3		3	2.4			3						}		
Н	DO 4S	36	3		3	1.9			3								
Н	Total	s	137		136	1.2			31	2	52		10	33	8		
A	DO CL	J 3	1	100.0													
A	DO CU	J 12	15	100.0													
A	DO 1S	36	27		27	3.4							27				
A	DO 1S				163	20.6						136	28				
											0	-					
A	DO 2S		8		8	1.1					8						
A A	DO 2S DO 2S		7 76	2.5	7	.9					7						
A	DO 2S		21	۷.3	74 21	9.4 2.7					74 21						
A	DO 2S		23		23	2.7					23						
A	DO 2S				244	30.8					244						
															ļ		
A .	DO 3S		21		21	2.7			4	17							
A	DO 3S	40	38		38	4.8				38							
A	DO 4S	14	3		3	.4			3								
A	DO 4S	16	11		11	1.4			11								
A	DO 4S	18	20		20	2.5			20								
A	DO 4S	20	49		49	6.2			49								

TC 3	PLO	GSTVB					Log	Stock	Table	- MBI	₹								
Т07	'N R	.06W S35 .06W S35 .06W S36	Ty001	MC 146	.00 .00 .00		Proje Acre		UPI	PERH 234	.00					Page Date Time	4/1	3 6/201 17:51]	
	S	So Gr		Gross	Def	Net	%		1	Net Volu	me by	Scalin	g Diam	eter in l	nches				
Spp	Т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
A		DO 4S	28	4		4	.5			4		:							
A		DO 4S	30	10	22.2	8	1.0			8									
A		DO 4S	38	25		25	3.2			25									
A		DO 4S	40	42		42	5.3			42									
A		Tota	ls	814	2.7	792	6.8			167	56	378	136	55					***************************************
M		DO CI	J 4	4	100.0														
M		DO 1S	16	15		15	24.2								15				
M		DO 1S	30	18		18	28.9						18						
M		DO 4S	16	17	16.7	14	23.0			6	9								
M		DO 48	20	2		2	3.9			2									
M		DO 48	30	4		4	5.8			4									
M		DO 48	34	9		9	14.2			9									
M		Tota	ls	69	9.4	63	.5			21	9		18		15				
Total		All Spec	ies	11,891	2.1	11,637	100.0			1007	769	1301	994	1472	2580	2180	1051	282	!

.

