

Sale fg-341-2020-w00240-01

District: Forest Grove Date: October 28, 2019

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$2,392,617.10	\$13,463.94	\$2,406,081.04
		Project Work:	\$0.00
		Advertised Value:	\$2,406,081.04

10/28/19

Sale fg-341-2020-w00240-01

District: Forest Grove Date: October 28, 2019

Timber Description

Location: Portions of Sections 13 and 14, T1N, R6W, W.M., Tillamook, Oregon.

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	21	0	98
Western Hemlock / Fir	24	0	98
Alder (Red)	25	0	95

Volume by Grade	2\$	3S & 4S 6"- 11"		Total	
Douglas - Fir	4,030	1,210	0	5,240	
Western Hemlock / Fir	88	27	0	115	
Alder (Red)	0	0	42	42	
Total	4,118	1,237	42	5,397	

Comments: LOCAL POND VALUES USED, AUGUST 2019

> WESTERN REDCEDAR AND OTHER CEDARS: STUMPAGE PRICE = POND VALUE- LOGGING COST

\$765.91/MBF = \$968/MBF - \$202.09/MBF

BRANDING AND PAINTING ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$3.00/GAL

HAULING COST ALLOWANCE = \$950 DAILY TRUCK COST

OTHER COSTS (PROFIT & RISK TO BE ADDED):

NON PROJECT ROAD: 5STA @ \$200/STA = \$1,000 30LF 18" CULVERT @ \$20/LF = \$600 MOVE IN EXCAVATOR = \$600

TOTAL OTHER COSTS (PROFIT & RISK TO BE ADDED) = \$2,200

OTHER COSTS (NO PROFIT & RISK TO BE ADDED):

EQUIPMENT CLEANING: 4 PIECES @ \$1,000/PIECE = \$4,000

MACHINE TIME TO PILE LANDING SLASH: 20HRS @ \$150/HR = \$3,000

SLASH TREATMENT: 50AC @ \$200/AC = \$10,000

HAZARD TREE FELLING: 16 TREES @ \$25/TREE = \$400

TOTAL OTHER COSTS (NO P&R) = \$17,400

MOVE IN: \$3,000

ROAD MAINTENANCE: 7.6 MILES @ \$1,200/MI = \$9,120

TOTAL: \$12,120/5,397MBF = \$2.24/MBF

10/28/19

3

Sale fg-341-2020-w00240-01

District: Forest Grove Date: October 28, 2019

Logging Conditions

Combination#: 1 Douglas - Fir 100.00%

Western Hemlock / Fir 100.00% Alder (Red) 100.00%

Logging System: Shovel **Process:** Feller Buncher

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 10 bd. ft / load: 4800

cost / mbf: \$73.71

machines: Feller Buncher w/ Delimber

Sale fg-341-2020-w00240-01

Date: October 28, 2019 District: Forest Grove

Logging Costs

Operating Seasons: 2.00

Profit Risk: 10%

Project Costs: \$0.00 Slash Disposal: \$0.00 Other Costs (P/R): \$2,200.00

Other Costs: \$17,400.00

Miles of Road

Road Maintenance:

\$2.24

Dirt	Rock (Contractor)	Rock (State)	Paved	
0.0	0.0	0.0	0.0	

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	2.0	4.8
Western Hemlock / Fir	\$0.00	2.0	4.8
Alder (Red)	\$0.00	2.0	4.8

10/28/19 5

Sale fg-341-2020-w00240-01

District: Forest Grove Date: October 28, 2019

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total	
Douglas - Fir										
\$73.71	\$2.28	\$1.63	\$100.94	\$0.41	\$17.90	\$0.00	\$2.00	\$3.22	\$202.09	
Western H	emlock	/ Fir								
\$73.71	\$2.28	\$1.63	\$100.94	\$0.41	\$17.90	\$0.00	\$2.00	\$3.22	\$202.09	
Alder (Red)										
\$73.71	\$2.35	\$1.63	\$103.91	\$0.41	\$18.20	\$0.00	\$2.00	\$3.22	\$205.43	

Specie	Amortization	Pond Value	Stumpage	Amortized	
Douglas - Fir	\$0.00	\$650.76	\$448.67	\$0.00	
Western Hemlock / Fir	\$0.00	\$563.71	\$361.62	\$0.00	
Alder (Red)	\$0.00	\$526.00	\$320.57	\$0.00	

Sale fg-341-2020-w00240-01

District: Forest Grove Date: October 28, 2019

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total	
Douglas - Fir	5,240	\$448.67	\$2,351,030.80	
Western Hemlock / Fir	115	\$361.62	\$41,586.30	
Alder (Red)	42	\$320.57	\$13,463.94	

Gross Timber Sale Value

Recovery: \$2,406,081.04

Prepared By: Nate Hunter Phone: 503-359-7434

TIMBER SALE SUMMARY Six Cedars FG-341-2020-W00240-01

- 1. <u>Location</u>: Portions of Sections 13 & 14, T1N, R6W, W.M., Tillamook County, Oregon.
- 2. <u>Type of Sale</u>: This timber sale is 113 net acres of Modified Clearcut. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. Revenue Distribution: 100% BOF, Tillamook County; Tax Code 9-2.
- **4.** <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS software.
- 5. Cruise: The Timber Sale was cruised by ODF Cruisers in September of 2019.
- **Timber Description:** The Timber Sale Area consists of a well stocked 65-year-old Douglas-fir stand with minor amounts of western hemlock, noble fir and red alder. The stand has an average of 230 ft² of basal area (all species), an average Douglas-fir DBH of 21 inches and an estimated average net Douglas-fir volume of approximately 46.4 MBF per acre.

7. Volume Summary:

SALE TOTAL

SPECIES		2 SAW	3 SAW	4 SAW	CAMPRUN	TOTAL		
Douglas-fir		4,030	926	284	0	5,240		
Western hemlock		61	12	4	0	77		
Noble fir		27	10	1	0	38		
Red alder		0	0	0	49	42		
NET TOTAL								

- **8.** Topography and Logging Method: Slopes within the sale areas range from 0% to 40%, with a western aspect. The timber sale is 100% ground-based. The average horizontal skid trail length is 600'.
- 9. Access: From the Forest Grove District Office, travel north 8.5 miles on Highway 8 to its junction with Highway 6 and turn left. Continue west on Highway 6 for 9.4 miles and turn left on the Beaverdam Road. Proceed south on the Beaverdam Road 6.4 miles to the western boundary of the Timber Sale Area.

CRUISE REPORT Six Cedars FG-341-2020-W00240-01

1. LOCATION:

Portions of sections 13 and 14, T1N, R6W, W.M. Tillamook County, Oregon.

2. CRUISE DESIGN:

The cruise was designed using an estimated coefficient of variation (CV) of 55%, average stand diameter of 20 inches, sampling error (SE) of 10% and a minimum of 100 grade trees.

3. SAMPLING METHOD:

The Timber Sale Area was cruised in September of 2019 with 18 variable radius grade plots and 19 count plots using a 40 BAF prism. Plots were laid out on a 5 chain x 6 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

4. CRUISE RESULTS

101 trees were measured and graded producing a cumulative SE of 5.6% on the Basal Area and 5.9% on the Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following the Official Log Scaling and Grading Rules as adopted by the NW Log Rules Advisory Group. 40 foot segments were favored.

- a) **Height Standards:** Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors: Measured for each grade tree using a form point of 16 feet.

5. DATA PROCESSING:

- a) Volumes and Statistics, Cruise estimates and sampling statistics, were derived from Super Ace 2008 cruise software.
- b) Deductions: For conifers, two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage. For hardwoods, five percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.
- 6. CRUISERS: The sale was cruised by Kenton Burns, Mark Savage, Adrian Torres and Nate Hunter.

9_
-19
ate

TC PS	TATS					OJECT ROJECT		TSTICS EDARWO			PAGE DATE	1 9/5/2019
TWP	RGE	SC	TRACT		TYPE	······································	A	CRES	PLOTS	TREES	CuFt	BdFt
01N 01N	06 06W	13 13	6CEDARS 6CEDARS		0001 00A2			113.00	37	213	S	W
. •					<u> </u>	TREES		ESTIMATED TOTAL		PERCENT SAMPLE	•	-·· <u>,</u>
		F	LOTS	TREES		PER PLC		TREES		TREES		
TOTA	AT.		37	213	·····	5.8						
CRU			19	101		5.3		10,911		.9	10	ATC
DBH	COUNT										` -	
	DREST											
COU			18	110		6.1	-					
BLA1 100 %												
					STA	AND SUM	1MARY					
		SA	MPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
			REES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOU	G FIR		97	94.3	20.8	117	48.9	223.4	47,539	47,326	9,899	9,899
	MLOCK		2	1.0	23.4	122			689		142	142
NOB			1	.6	25.0	121			348		86	86
R AL			1 101	.6 <i>96.6</i>	25.0 20.9	96 117			390 <i>48,966</i>		77 10,204	77
						117	30.4	230.0	40,900	5 48,717	10,204	10,204
CON	FIDENC 68		MITS OF T IMES OUT			JME WILI	L BE WIT	HIN THE SAI	MPLE ERR	.OR		
CL	68.1		COEFF			SAMP	LE TREE	ES - BF		# OF TREES	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	<u> </u>	LOW	AVG	HIGH		5	10	15
DOUG	G FIR MLOCK		54.8 3.2	5.9 3.0		805 635	855 655	905 675				
NOB			3.2	3.0		033	033	0/3				
R ALI												
TOTA	AL		54.6	5.7		796	844	893		119	30	13
CL	68.1		COEFF	, ,,		SAMP	LE TREE	S - CF		# OF TREES :	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	Ι	.ow	AVG	HIGH		5	10	15
DOUG			44.4	4.8		163	172	180				
NOB I	MLOCK		1.0	1.0		134	136	137				
R ALI												
TOTA			44. I	4.6		162	170	178		78	19	9
CL	68.1		COEFF			TREES	/ACRE			# OF PLOTS I	REO.	INF. POP,
SD:			VAR.%	S.E.%	L	.ow	AVG	HIGH	•	5	10	15
DOUG	FIR		47.5	7.8	•	87	94	102				
	ALOCK.		343.3	56.4		0	1	2				
NOB I R ALI			424.1 424.1	69.7 69.7		0	1 1	1 1				
TOTA			45.7	7.5		89	97	104		84	21	9
CL	60 1		COEFF							FOF PLOTS I		
SD:			VAR.%	S.E.%	L	OW OW	AREA/A AVG	HIGH	7	5 OF PLOIS 1	10	INF. POP. 15
DOUG		•	34.1	5.6		211	223	236				
	ILOCK		341.3	56.1		I	3	5				
NOBF			424.1	69.7		1	2	4				
R ALD TOTA			424.1 31.4	69.7 5.2		1 219	2 231	4 243		39	10	4
CL			COEFF	<u>.</u>				213				
	1.0		VAR,%	S.E.%	T.e	NET BE Ow	AVG	HIGH	Ħ	FOF PLOTS F	ŒQ, 1 10	INF. POP. 15
DOUG			33.6	5.5			47,326	49,940		<u> </u>		1.7
WHEN	ILOCK		344.1	56.5		299	689	1,078				
NOB F			424.1	69.7		105	348	590				
R ALD	ER		424.1	69.7		107	354	600				

TC PS	rats .				PROJECT PROJECT		ISTICS EDARWO			PAGE DATE	2 9/5/2019
TWP	RGE	SC	TRACT	TY	PE	A	CRES	PLOTS	TREES	CuFt	BdFt
01N 01N	06 06W	13 13	6CEDARS 6CEDARS	000 00A	_		113.00	37	213	S	W
CL	68.1		COEFF		NET E	BF/ACRE			# OF PLOT	S REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
тот	AL		30.6	5.0	46,269	48,717	51,165		37	9	4
CL	68,1		COEFF		NET C	CUFT FT/	ACRE		# OF PLOTS I	ŒQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR		34.3	5.6	9,341	9,899	10,457				
WHE	MLOCK		343.1	56.4	62	142	222				
NOB	FIR		424.1	69.7	26	86	146				
R AL	DER		424.1	69.7	23	77	130				
TOTA	AL		31.4	5.2	9,677	10,204	10,731		39	10	4

.

.

TC	PSPCSTGR		D)	pouros	SOLT G	rade - Boar	u ru	U6 41	OIUIII	(I	, ojec	·)							
TO	1N R06W SI	3 ፕャበበበ	11	94.00]	Project:	6C	EDA	RWC	,						Page		1	
•	1N R06W S1		-	19.00		Acres		113.6	90							Date Time		5/201 :21:0	.9 2AM
		%				<u> </u>	Per	cent of	Net Bo	oard F	oot Vol	ıme			Ι	Avera	ige Lo	g	Logs
	S So Gr	Net	Bd, F	t, per Acre	e	Total		og Sc	ale Dia.			Log I	ength		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	CU														11	17		0.00	1.
DF	2M	76	.4	36,523	36,390	4,112			47	53		14	19	68	37	16	364	1.92	100.
DF	3M	18	.6	8,416	8,363	945		91	9		1		9	90	38	9	112	0.76	74.
DF	4M	6	1.0	2,600	2,574	291		100			35	20	7	38	22	6	34	0.43	76.
DF	Totals	97	.4	47,539	47,326	5,348		22	38	41	2	12	16	70	33	11 -	188	1.21	252.
WH	2M	79		546	546	62			20	80		30		70	35	16	363	1.95	1.
WH	3M	15		106	106	12		100		50				100	ı	11		1.12	
WH	4M	6		36	36	4		100				100			24	6		0.50	1.
WH	Totals	1		689	689	78		21	16	63		29		71	32	12	219	1.40	3.
RA	R	100	9.4	390	354	40			28	72			100		32	16	290	1.97	1.
RA	Totals	1	9.4	390	354	40			28	72			100		32	16		1.97	1.
			· · · · ·																
NF	2M	70		244	244	28			100					100	40		400	2.40	
NF	3M	26		92	92	10		100			100			100		10	150	0.97	
NF	4M	4		12	12	1	<u> </u>	100			100				16	6	20	0.37	
NF	Totals	I		348	348	39		30	70		4			96	32	11	190	1.47	1.
Total	ls		0.5	48,966	48,717	5,505		21	38	41	2	12	17	70	33	11	189	1.21	258.

<u> </u>							T											
s	So Gr			Def No		%	<u> </u>				1		ieter in l					
Spp Т	rt de	Len	MBF	% MI	\rightarrow	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15		 	24-29	30-39	40+
DF	2M	24	557		557	10.4							42	98	306	84	28	
DF	2M	32	771		768	14.4						71	42	273	103	279		
DF	2M	36	264		262	4.9						135		102	25			
DF	2M	40	2,535		,525	47.2						573	829	901	221			
DF	3М	16	9		9	.2						9						
DF	3M	32	90	4.0	86	1.6			33	18	7		28					,
DF	3M	36	157		157	2.9			48	56	21			32				
DF	3M	40	695		693	13.0			113	188	376	16						
DF	4M	16	68		68	1.3			68									
DF	4M	18	35		35	.7			35									
DF	4M	24	59		59	1.1			59									
DF	4M	32	19		19	.4			19									
DF	4M	36	43	6.9	40	.7			26		14					ĺ		
DF	4M	40	70		70	1.3			28	16	26							
DF	Totals	3	5,372	5	,348	97.1			429	278	444	805	940	1406	655	363	28	
WH	2M	24	19		19	23.9								19		i		
WH	2M	40	43		43	55.4						12		31			-	
WH	3М	40	12		12	15.4					12							
WH	4M	24	4		4	5.2			4									
WH	Totals		78		78	1.4			4		12	12		49				
RA	R	32	44	9.4	40	100.0						11		. 29				
RA	Totals		44	9,4	40	.7						11		29				
NF	2M	40	28		28	70.2								28				
NF	3M	40	10		10	26.3					10							
NF	4M	16	1		1	3.5			1									
NF	Totals		39		39	.7			1		10			28				
Total	All Specie	s	5,533	5,	505	100.0			435	278	466	828	940	1512	655	363	28	

TC PSTNDSUM	Stand Table Summary	Page 1 Date: 9/5/2019
T01N R06W S13 Ty0001 94.00	Project 6CEDARWO	Time: 7:07:08AM
T01N R06W S13 Ty00A2 19.00	Acres 113.00	Grown Year:

Spc T	1	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre		Logs Acre	Averag Net Cu.Ft.	c Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF	8	1	89	42	6.026		6.03	3.7	20.0	.64	22	121	72	25	14
DF	11	2	88		6.375	4.21	12.75	8.8	37.5	3.18	112	478	360	126	54
DF	12	1	84		2.678		2.68	15.4	60.0	1.18	41	161	133	47	18
DF	13	2	89		4.564		9.13	13.7	60.0	3.56	125	548	402	141	62
DF	15	1	88		1.714		3.43	18.9	75.0	1.85	65	257	209	73	29
DF	17	6	90		12.910		25.82	31.8	132,9	23,42	822	3,432	2,647	929	388
DF	18	2	89		2.381		5.95	28.0	116.0	4.74	166	690	536	188	78
DF	19	5	88		5.342		16.03	26.0	114.7	11.88	417	1,838	1,343	471	208
DF	20	8	89		7.714		23.14	31.5	141.7	20.79	729	3,278	2,349	824	370
DF	21	8	87		6.996		20.99	35.1	159.2	21.02	737	3,341	2,375	833	378
DF	22	10	89		9.432		29.09	38.3	179.2	31.73	1,113	5,214	3,586	1,258	589
DF	23	3	86		2.857		8.57	41.3	184.0	10.08	354	1,577	1,139	400	178
DF	24	10	88		7.311		22.60	48.0	225.3	30.90	1,084	5,092	3,492	1,225	575
DF	25	4	87		2.468		8.02	51.4	248.5	11.75	412	1,993	1,327	466	225
DF	26	4	87		2.282		7.42	55.7	270.8	11.77	413	2,008	1,330	467	227
DF	27	5	89		2.645	10.52	8.46	60.5	288.7	14.59	512	2,444	1,648	578	276
DF	28	3	88		1.476		5.90	53.2	284.2	8.95	314	1,678	1,012	355	190
DF	29	3	87		1.797	8.24	6.73	55.2	279.9	10.58	371	1,883	1,195	419	213
DF	30	5	89		2.143	10.52	7.71	67.8	357.2	14.91	523	2,755	1,685	591	311
DF	31	2	87		.803	4.21	3.21	62.4	327.5	5.71	200	1,051	645	226	119
DF	32	4	87		1.852	10.35	7.41	68.7	373.5	14.52	509	2,768	1,640	576	313
DF	33	4	89		1.417	8.41	5.31	82.3	452.0	12.47	437	2,401	1,409	494	271
DF	34	1			.334	2.10	1,33	84.0	475.0	3.19	112	634	361	127	72
DF	36	1	83		.298	2.10	1,19	80.9	432.5	2.74	96	515	310	109	58
DF	38	1	89	150	.267	2.10	1.07	104.7	557.5	3.19	112	596	360	126	67
DF	43	1		138	.209	2.10	.83	116.7	687.5	2.77	97	574	314	110	65
DF	Totals	97	88	117	94.289	223,36	250.81	39.5	188.7	282.12	9,899	47,326	31,879	11,186	5,348
WH	22	1	94	129	.591	1,56	1.77	44.9	223.3	2.55	80	396	288	90	45
WH	25	1	85	112	.458	1.56	1.37	45.5	213.3	2,00	63	293	226	71	33
WH	Totals	2	90	122	1.048	3.12	3.15	45.2	219.0	4.55	142	689	514	161	78
RA	25	1	93	96	.610	2.08	1.22	62.9	290.0	2.11	77	354	239	87	40
RA	Totals	1	93	96	.610	2.08	1.22	62.9	290.0	2.11	77	354	239	87	40
NF	25	1	84	121	.610	2.08	1.83	47.0	190.0	2.06	86	348	233	97	39
NF	Totals	1	84	121	.610	2.08	1,83	47.0	190.0	2.06	86	348	233	97	39
Totals		101	88	117	96.558	230.64	257.01	39.7	189.6	290.84	10,204	48,717	32,865	11,530	5,505

TC PSTATS					DJECT S ROJECT		STICS DARWO			PAGE DATE	1 9/30/2019
TWP RGE	SC	TRACT	r	ГҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt
01N 06	13	6CEDARS	(0001			94.00	32	183	S	W
					TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL		32	183		5.7					Λ	DT.
CRUISE DBH COUNT REFOREST		17	91		5.4		8,924		1.0	A	REA
COUNT BLANKS 100 %		15	90	,	6.0						
				STA	ND SUMN	IARY					· · · · · · · · · · · · · · · · · · ·
		AMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG FIR		87	92.2	20.9	115	48.1	220,0	47,582	47,327	9,786	9,786
WHEMLOCK		2	1.3	23.4	122	0.8	3.8	828		171	171
NOB FIR		1	.7	25.0	121	0.5	2.5	418		103	
R ALDER TOTAL		1 91	.7 94.9	25.0 21.0	96 115	0.5 49.9	2.5 228.8	469 49,298		92 10,153	
CONFIDEN					\\						
6	3.1	TIMES OUT	Γ OF 100 TI	HE VOLU	ME WILL	BE WITI	HIN THE SAM	MPLE ERR	OR		
CL 68.1		COEFF			SAMPL				# OF TREES		INF. POP.
SD: 1.0		VAR.%	S.E.%	I	.OW	AVG	HIGH		5	10	15
DOUG FIR WHEMLOCK		58.8 3.2	6.5 3.0		792 635	847 655	902 675				
NOB FIR R ALDER											
		58.4	6.3		783	836	889		136	34	15
R ALDER	·····	58.4 COEFF			SAMPL	E TREE:	889 S - CF	,,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	# OF TREES	REQ.	INF. POP.
R ALDER TOTAL CL 68.1 SD: 1.0		COEFF VAR.%	S.E.%	<u> </u>	SAMPL OW	E TREE:	889 S - CF HIGH				
R ALDER TOTAL CL 68.1		COEFF		1	SAMPL	E TREE:	889 S - CF		# OF TREES	REQ.	INF. POP.
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR		COEFF VAR.% 49.2	S.E.% 5.5	I	SAMPLE LOW 160	E TREE AVG 169	889 S - CF HIGH 178		# OF TREES	REQ.	INF. POP.
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL		COEFF VAR.% 49.2 1.0	S.E.% 5.5 1.0	I	SAMPL OW 160 134	E TREE: AVG 169 136	889 S - CF HIGH 178 137		# OF TREES 5	REQ. 10	INF. POP.
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER		COEFF VAR.% 49.2 1.0	S.E.% 5.5 1.0		SAMPL: OW 160 134	E TREE: AVG 169 136	889 S - CF HIGH 178 137		# OF TREES 5	REQ. 10	INF. POP. 15
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1		COEFF VAR.% 49.2 1.0 48.7 COEFF	S.E.% 5.5 1.0 5.3 S.E.% 8.4		SAMPLE .OW 160 134 159 TREES/.	E TREE: AVG 169 136 167 ACRE	889 S - CF HIGH 178 137		# OF TREES 5 95 # OF PLOTS	REQ. 10 24 REQ.	INF. POP.
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK		COEFF VAR.% 49.2 1.0 48.7 COEFF VAR.% 47.4 317.8	S.E.% 5.5 1.0 5.3 S.E.% 8.4 56.1		SAMPLI .OW 160 134 159 TREES/.OW 84 1	E TREE: AVG 169 136 167 ACRE AVG 92 1	889 S - CF HIGH 178 137 176 HIGH 100 2		# OF TREES 5 95 # OF PLOTS	REQ. 10 24 REQ.	INF. POP.
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK		COEFF VAR.% 49.2 1.0 48.7 COEFF VAR.% 47.4 317.8 393.5	S.E.% 5.5 1.0 5.3 S.E.% 8.4 56.1 69.5		SAMPLI .OW	E TREE: AVG 169 136 167 ACRE AVG 92 1 1	889 S - CF HIGH 178 137 176 HIGH 100 2 1		# OF TREES 5 95 # OF PLOTS	REQ. 10 24 REQ.	INF. POP.
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER		COEFF VAR.% 49.2 1.0 48.7 COEFF VAR.% 47.4 317.8 393.5 393.5	S.E.% 5.5 1.0 5.3 S.E.% 8.4 56.1 69.5 69.5		SAMPLI .OW	E TREE: AVG 169 136 167 ACRE AVG 92 1 1 1	889 S - CF HIGH 178 137 176 HIGH 100 2 1 1		# OF TREES 5 95 # OF PLOTS 5	REQ. 10 24 REQ. 10	INF. POP. 15 11 INF. POP. 15
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL TOTAL CL 68.1 SD: 1.0 TOTAL CL 68.1 SD: 1.0 TOTAL		COEFF VAR.% 49.2 1.0 48.7 COEFF VAR.% 47.4 317.8 393.5 393.5 45.6	S.E.% 5.5 1.0 5.3 S.E.% 8.4 56.1 69.5		SAMPLE .OW	E TREE: AVG 169 136 167 ACRE AVG 92 1 1 1 95	889 S - CF HIGH 178 137 176 HIGH 100 2 1 1 103		# OF TREES 5 95 # OF PLOTS 5	REQ. 10 24 REQ. 10	INF. POP. 15 11 INF. POP. 15
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 CL 68.1		COEFF VAR.% 49.2 1.0 48.7 COEFF VAR.% 47.4 317.8 393.5 393.5 45.6 COEFF	S.E.% 5.5 1.0 5.3 S.E.% 8.4 56.1 69.5 69.5 8.1	L	SAMPLE .OW	E TREE: AVG 169 136 167 ACRE AVG 92 1 1 1 95 AREA/A	889 S - CF HIGH 178 137 176 HIGH 100 2 1 1 103 CRE		# OF TREES 5 95 # OF PLOTS 5	REQ. 10 24 REQ. 10	INF. POP. 11 INF. POP. 15
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 CK OB FIR CK ALDER TOTAL CL 68.1 SD: 1.0		COEFF VAR.% 49.2 1.0 48.7 COEFF VAR.% 47.4 317.8 393.5 393.5 45.6 COEFF VAR.%	S.E.% 5.5 1.0 5.3 S.E.% 8.4 56.1 69.5 69.5 8.1 S.E.%	L	SAMPLE .OW	E TREE: AVG 169 136 167 ACRE AVG 92 1 1 1 95 AREA/A AVG	889 S - CF HIGH 178 137 176 HIGH 100 2 1 1 103 CRE HIGH		# OF TREES 5 95 # OF PLOTS 5	REQ. 10 24 REQ. 10	INF. POP. 15 11 INF. POP. 15
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR CL 68.1 SD: 1.0 DOUG FIR		COEFF VAR.% 49.2 1.0 48.7 COEFF VAR.% 47.4 317.8 393.5 393.5 45.6 COEFF	S.E.% 5.5 1.0 5.3 S.E.% 8.4 56.1 69.5 69.5 8.1	L	SAMPLE .OW	E TREE: AVG 169 136 167 ACRE AVG 92 1 1 1 95 AREA/A	889 S - CF HIGH 178 137 176 HIGH 100 2 1 1 103 CRE		# OF TREES 5 95 # OF PLOTS 5	REQ. 10 24 REQ. 10	INF. POP. 11 INF. POP. 15
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 CK OB FIR CK ALDER TOTAL CL 68.1 SD: 1.0		COEFF VAR.% 49.2 1.0 48.7 COEFF VAR.% 47.4 317.8 393.5 393.5 45.6 COEFF VAR.% 33.0	S.E.% 5.5 1.0 5.3 S.E.% 8.4 56.1 69.5 69.5 8.1 S.E.% 5.8	L	SAMPLE .OW	E TREE: AVG 169 136 167 ACRE AVG 92 1 1 1 95 AREA/A AVG 220	889 S - CF HIGH 178 137 176 HIGH 100 2 1 1 103 CRE HIGH 233		# OF TREES 5 95 # OF PLOTS 5	REQ. 10 24 REQ. 10	INF. POP. 11 INF. POP. 15
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL		COEFF VAR.% 49.2 1.0 48.7 COEFF VAR.% 47.4 317.8 393.5 45.6 COEFF VAR.% 33.0 315.9	S.E.% 5.5 1.0 5.3 S.E.% 8.4 56.1 69.5 69.5 8.1 S.E.% 5.8	L	SAMPLE .OW	E TREE: AVG 169 136 167 ACRE AVG 92 1 1 95 AREA/A AVG 220 4	889 S - CF HIGH 178 137 176 HIGH 100 2 1 1 103 CRE HIGH 233 6		# OF TREES 5 95 # OF PLOTS 5	REQ. 10 24 REQ. 10	INF. POP. 11 INF. POP. 15
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL		COEFF VAR.% 49.2 1.0 48.7 COEFF VAR.% 47.4 317.8 393.5 393.5 45.6 COEFF VAR.% 33.0 315.9 393.5	S.E.% 5.5 1.0 5.3 S.E.% 8.4 56.1 69.5 69.5 8.1 S.E.% 5.8 69.5	L	SAMPLE .OW 160 134 159 TREES/.OW 84 1 0 0 87 BASAL .OW 207 2 1	E TREE: AVG 169 136 167 ACRE AVG 92 1 1 95 AREA/A AVG 220 4 3	889 S - CF HIGH 178 137 176 HIGH 100 2 1 1 103 CRE HIGH 233 6 4		# OF TREES 5 95 # OF PLOTS 5	REQ. 10 24 REQ. 10	INF. POP. 11 INF. POP. 15
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL		COEFF VAR.% 49.2 1.0 48.7 COEFF VAR.% 47.4 317.8 393.5 393.5 45.6 COEFF VAR.% 33.0 315.9 393.5 393.5 393.5	S.E.% 5.5 1.0 5.3 S.E.% 8.4 56.1 69.5 69.5 8.1 S.E.% 5.8 69.5 69.5 69.5 5.3	I	SAMPLE .OW	E TREE: AVG 169 136 167 ACRE AVG 92 1 1 95 AREA/A AVG 220 4 3 3 229	889 S - CF HIGH 178 137 176 HIGH 100 2 1 1 103 CRE HIGH 233 6 4 4 241		# OF TREES 5 95 # OF PLOTS 5 83 # OF PLOTS 5	REQ. 10 24 REQ. 10 21 REQ. 10	INF. POP. 15 17 INF. POP. 15 44 INF. POP.
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 CK NOB FIR CK ALDER TOTAL CL 68.1 SD: 1.0		COEFF VAR.% 49.2 1.0 48.7 COEFF VAR.% 47.4 317.8 393.5 45.6 COEFF VAR.% 33.0 315.9 393.5 393.5 393.5 393.5	S.E.% 5.5 1.0 5.3 S.E.% 8.4 56.1 69.5 69.5 8.1 S.E.% 5.8 69.5 69.5 5.3 S.E.%	I	SAMPLE .OW 160 134 159 TREES/.OW 84 1 0 0 87 BASAL .OW 207 2 1 1 217 NET BE.OW	E TREE: AVG 169 136 167 ACRE AVG 92 1 1 95 AREA/A AVG 220 4 3 3 229 ACRE AVG	889 S - CF HIGH 178 137 176 HIGH 100 2 1 1 103 CRE HIGH 233 6 4 4 241 HIGH		# OF TREES 5 95 # OF PLOTS 5 83 # OF PLOTS 5	REQ. 10 24 REQ. 10 21 REQ. 10	INF. POP. 15 17 INF. POP. 15 15 4
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR DOUG FIR DOUG FIR R ALDER TOTAL		COEFF VAR.% 49.2 1.0 48.7 COEFF VAR.% 47.4 317.8 393.5 45.6 COEFF VAR.% 33.0 315.9 393.5 393.5 393.5 30.2 COEFF VAR.%	S.E.% 5.5 1.0 5.3 S.E.% 8.4 56.1 69.5 69.5 8.1 S.E.% 5.8 69.5 69.5 5.3 S.E.% 6.0	I	SAMPLE .OW 160 134 159 TREES/.OW 84 1 0 0 87 BASAL .OW 207 2 1 1 217 NET BE.OW 14,467	E TREE: AVG 169 136 167 ACRE AVG 92 1 1 1 95 AREA/A AVG 220 4 3 3 229 ACRE AVG 4 3 3 7 229	889 S - CF HIGH 178 137 176 HIGH 100 2 1 1 103 CRE HIGH 233 6 4 4 241 HIGH 50,187		# OF TREES 5 95 # OF PLOTS 5 83 # OF PLOTS 5	REQ. 10 24 REQ. 10 21 REQ. 10	INF. POP. 15 17 INF. POP. 15 44 INF. POP.
R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK NOB FIR R ALDER TOTAL CL 68.1 SD: 1.0		COEFF VAR.% 49.2 1.0 48.7 COEFF VAR.% 47.4 317.8 393.5 45.6 COEFF VAR.% 33.0 315.9 393.5 393.5 393.5 393.5	S.E.% 5.5 1.0 5.3 S.E.% 8.4 56.1 69.5 69.5 8.1 S.E.% 5.8 69.5 69.5 5.3 S.E.%	I	SAMPLE .OW 160 134 159 TREES/.OW 84 1 0 0 87 BASAL .OW 207 2 1 1 217 NET BE.OW	E TREE: AVG 169 136 167 ACRE AVG 92 1 1 95 AREA/A AVG 220 4 3 3 229 ACRE AVG	889 S - CF HIGH 178 137 176 HIGH 100 2 1 1 103 CRE HIGH 233 6 4 4 241 HIGH		# OF TREES 5 95 # OF PLOTS 5 83 # OF PLOTS 5	REQ. 10 24 REQ. 10 21 REQ. 10	INF. POP. 15 17 INF. POP. 15 44 INF. POP.

TC PS	FATS				PROJECT		ISTICS EDARWO			PAGE DATE	2 9/30/2019
TWP	RGE	SC	TRACT	TY	PE	A	CRES	PLOTS	TREES	CuFt	BdFt
01N	06	13	6CEDARS	000	1		94.00	32	183	S	W
CL	68.1		COEFF		NET	BF/ACRE			# OF PLOT	rs req.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
тот	AL		30.9	5.5	46,324	48,998	51,673		3 8	10	4
CL	68.1		COEFF		NET -	CUFT FT/	ACRE		# OF PLOTS I	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR		33.9	6.0	9,200	9,786	10,373				
WHE	MLOCK		317.6	56.1	75	171	267				
NOB	FIR		393.5	69,5	32	103	175				
R AL	DER		393.5	69.5	28	92	156				
тот	AL		30.9	5.5	9,599	10,153	10,706		<i>3</i> 8	10	4

Т	TSPCST	GR GR			Species,	, Sort G Projec	rade - Boar	d Foo		olun	nes ('	Гуре)					Page Date		1 /5/201	19
						210,00										•	Tim		7:37:1	
T011 Tw 011	-	S13 T ge SW	0001 Sec 13	Tract 6CEDA	RS	Туре 0001			Plots 32	ł	Samp	le Trec 91	es	S	uFt	T0 Bd W		R06W	S13 T	0001
			%					Perce	nt N	et Bo	oard F	oot Vol	ume			A·	veraį	ge Log		Logs
Spp	S So T rt	Gr ad	Net BdFt	1	. Ft. per Ac Gross	ore Net	Total Net MBF			le Di 12-1	a. 6 17+	Log	g Lei 21-30	_	36-99	Ln Ft		Bd Ft	CF/ Lf	Per /Acre
DF	you.	CU	+									 				11	17		0.00	1.5
DF		2M	76	.4	36,372	36,211	3,404			40	60		14	21	65	36	16	386	2.03	93.9
DF		3M	18	.7	8,548	8,484	797		89	11		1		11	88	37	9	116	0.78	73.0
DF		4M	6	1.2	2,663	2,632	247	1	00			37	24	8	31	22	6	32	0.42	81.6
DF	Totals		97	.5	47,582	47,327	4,449		22	33	46	2	12	18	67	32	11	189	1.23	250.0
WH		2M	79	i	657	657	62			20	80		30		70	35	16	363	1.95	1.8
WH		3M	15		128	128	12	1.	00						100	40	11	180	1.12	.7
WH		4M	6		43	43	4	1,	00				100			24	6	34	0.50	1.3
WH	Total	s ·	2		828	828	78		21	16	63		29		71	32	12	219	1,40	3.8
RA		R	100	9.4	469	425	40			28	72		•	100		32	16	290	1.97	1.5
RA	Totals		1	9.4	469	425	40			28	72			100		32	16	290	1.97	1.5
NF		2M	70		293	293	28			100					100	40	16	400	2.40	.7
NF		3M	26		110	110	10	10	00						100	40	10	150	0.97	.7
NF		4M	4		15	15	1	10	00			100				16	6	20	0.37	.7
NF	Totals		1		418	418	39	:	30	70		4			96	32	11	190	1.47	2.2
Туре	Cotals			.6	49,298	48,998	4,606		21	33	46	2	12	19	67	32	11	190	1.24	257.5

TC T	LOGSTVB					g Sto	ck T	able - 6CI	MBF EDARV	wo							, ,,,,,,,,	
T01N Twp 01N	R06W Rge 06W	S	Sec Ti	ract EDARS		Туре 0001		Acres		Plots 32	Samp	ole Tre 91	es]	N R00 Page Date Fime	6W S13 1 9/5/20 7:37:		
•	So Gr	Log	Gross	%	Net	%			Net Vo	lume b	y Scali	ng Dia	meter ir	1 Inche	s			
Spp Т	rt de	Len	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF DF		J 6 J 12																
DF		1 24	466		466	10.5							42			84	1	
DF DF		1 32	720 232	.3	718 230	16.1 5.2						71 103	42	223 102		279		
DF		1 36 1 40	2,001	1.1 ,5	1,990	3.Z 44.7						310	705	755			ĺ	
DF _	31	A 16	9		9	.2				-		9						
DF		4 32	90	4.0	86	1.9			33	18	7		28					
DF DF		1 36 1 40	157 548	.4	157 546	3.5 12.3			48 32	56 188	21 309	16		32				
_			<u> </u>	.7		 				100	307	10						
DF DF		4 16 4 18	66 26		66 26	1.5			66 26		İ							
DF		1 24	59		59	1.3			59									
DF	4N	4 32	19		19	.4			19									
DF		1 36	20	15.1	17	.4			17	1.0								
DF		4 40	61		61	1.4			19	16	26							
DF		tals	4,473		4,449	96.6			319	278	363	510	816	1209	563	363	28	
WH WH		4 24 4 40	19 43		19 43	23.9 55.4						12		19 31				
WH -		1 40	12		12	15,4					1:			51				
WH		1 24	4		4	5.2			4									
WH		tals	78		78	1.7			4		12	12		49				
RA	R	32	44	9.4	40	100.0						11		29				
RA	To	als	44	9.4	40	.9						11		29				
NF	2N	1 40	28		28	70.2								28				
NF _	3M	[40	10		10	26.3					10	0 ,						
NF _	4N	[16	1		1	3,5			1									
NF	Tot	als	39		39	.9			1		10			28				
Total All	Species		4,634		4,606	100.0			324	278	386	533	816	1315	563	363	28	

TC TS	TNDSUM	м					Stand	l Table	Summa	ry	1				
		·					Proj	ect	6CEDA	RWO					
T01N Twp 01N	R06W Rge 06W	S13 TO Sec 13	Tract	t DAR	s		Гуре)001		cres 4.00	Plots 32	Sample T		T01N R Page: Date: Time:	06W S13 1 09/05/20 7:37:14	0:
s	3	Sample	FF	Av Ht	Trees/	BA/	Logs	Avera Net	age Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	T	otals	. "
Spc 7	г рвн	Trees	161	Tot	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	8	1	89	42	7.244	2.53	7.24	3.7	20.0	.77	7 27	145	72	25	14
DF	11	2	88	91	7.663	5,06	15.33	8.8	37.5	3.83	134	575	360	126	54
DF	12	1	84	62	3.220	2.53	3.22	15.4	60.0	1.41	50	193	133	47	18
DF	13	2	89	92	5.487	5.06	10.97	13.7	60.0	4,28	3 150	658	402	141	62
DF	15	1	88	91	2.061	2.53	4.12	18.9	75.0	2,22	78	309	209	73	29
DF	17	2	89	109	3.209	5.06	6.42	29.9	125.0	5.46	5 192	802	514	180	75
DF	18	2	89	113	2.862	5.06	7.15	28.0	116.0	5.70	200	830	536	188	78
DF	19	5	88	126	6.422	12.64	19.26	26.0	114.7	14.29	501	2,209	1,343	471	208
DF	20	8	89	124	9.273	20.23	27.82	31.5	141.7	24.99	877	3,941	2,349	824	370
DF	21	8	87	128	8.411	20.23	25.23	35.1	159.2	25.27	887	4,016	2,375	833	378
DF	22	8	89	130	7.663	20.23	23.95	38.3	180.4	26.13	917	4,320	2,456	862	406
DF	23	2	86	126	1.753	5.06	5.26	39.3	175.0	5.89	207	920	554	194	87
DF	24	9	89	136	7.244	22.76	22.54	47.2	225.0	30.33	1,064	5,071	2,851	1,001	477
DF	25	4	87	142	2.967	10.11	9.64	51.4	248.5	14.12	495	2,396	1,327	466	225
DF	26	4	87	140	2.743	10.11	8.92	55.7	270.8	14.15	496	2,414	1,330	467	227
DF	27	5	89	141	3.180	12.64	10.18	60.5	288.7	17.54	615	2,938	1,648	578	276
DF	28	3	88	146	1.774	7.59	7.10	53.2	284.2	10.76	378	2,017	1,012	355	190
DF	29	2	90	130	1.103	5.06	3,86	60.6	307.1	6.66	234	1,185	626	220	111
DF	30	5	89	141	2.576	12.64	9.27	67.8	357.2	17.93	629	3,312	1,685	591	311
DF	31	2	87	142	.965	5.06	3.86	62.4	327.5	6.87	241	1,264	645	226	119
DF	32	3	89	148	1.358	7.59	5.43	71.2	393.3	11.02	387	2,137	1,036	364	201
DF	33	4	89	150	1.703	10.11	6.39	82.3	452.0	14.99	526	2,887	1,409	494	271
DF	34	1	90	151	.401	2.53	1.60	84.0	475.0	3.84		762	361	127	72
DF	36	1	83	143	.358	2.53	1.43	80.9	432.5	3.30		619	310	109	58
DF	38	1	89	150	.321	2.53	1.28	104.7	557.5	3.83		716	360	126	67
DF	43	1	90	138	.251	2.53	1.00	116.7	687.5	3.34		690	314	110	65
DF	Totals	87	88	115	92.2112	220.00	248.48	39.4	190.5	278.91	9,786	47,327	26,217	9,199	4,449
WH	22	1	94	129	.710	1.88	2.13	44.9	223.3	3.06		476	288	90	45
WH '	25	1		112	.550	1.88	1.65	45.5	213.3	2.40	75	352	226	71	33
WH	Totals	2	90	122	1.260	3.75	3.78	45.2	219.0	5.46	171	828	514	161	78
RA	25	1	93	96	.733	2.50	1.47	62.9	290.0	2.54	92	425	239	87	40
RA	Totals	1	93	96	.733	2.50	1.47	62.9	290.0	2.54	92	425	239	87	40
NF	25	1	84	121	.733	2.50	2,20	47.0	190.0	2.48	103	418	233	97	39
NF	Totals	1	84	121	.733	2.50	2.20	47.0	190.0	2.48	103	418	233	97	39
Totals	•	91	88	115	94.9382	28.75	255.93	39.7	191.5	289.39	10153	48,998	27,203	9,543	4,606

C PSTA	ATS					DJECT ROJECT		STICS EDARWO			PAGE DATE	1 9/30/2019
WP	RGE	SC	TRACT	r	ГҮРЕ	OUECI		CRES	PLOTS	TREES	CuFt	BdFt
	06	13	6CEDARS	(00A2			19.00	5	30	S	W
								ESTIMATED		PERCENT		
				40D 10D 0		TREES		TOTAL		SAMPLE		
		1	PLOTS	TREES		PER PLOT		TREES		TREES	-	
TOTAL			5 2	30 10		6.0 5.0		1,987		.5	٨	7) T- A
	COUNT		2	10		5.0		1,207			A	KEA
REFOR											1 (1101
COUN			3	20		6.7						
BLANI												
100 %)											
						ND SUM		D. G. 4.7	00.000) IDM	CD CGG	.
			AMPLE FREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG	S EID		10	104.6	20.5	125	53.0	240.0	47,325	47,325	10,456	10,456
TOTA			10	104.6	20.5	125	53.0	240.0	47,325	47,325	10,456	10,456
CONF	68	.1 7		Γ OF 100 T	HE VOLU			HIN THE SAI				
		.1 7	COEFF	Γ OF 100 TI	HE VOLU		BE WIT				REQ.	INF. POP.
CL	68.1 1.0	.1 7		Г ОГ 100 Т S.E.%		SAMPI OW	Æ TREE AVG	S - BF HIGH		OR # OF TREES 5	S REQ. 10	
CL SD:	68.1 1.0 G FIR	.1 1	COEFF			SAMPI OW 965	E TREE AVG 965	S - BF HIGH 965		F OF TREES		
CL SD: DOUG TOTA	68.1 1.0 G FIR	.1 7	COEFF VAR.%			SAMPI OW 965 <i>965</i>	E TREE AVG 965 965	S - BF HIGH 965 965	3	# OF TREES 5	10	15
CL SD: DOUG TOTA CL	68.1 1.0 G FIR AL 68.1	.1 7	COEFF VAR.%	S.E.%	L	SAMPI OW 965 965 SAMPI	E TREE AVG 965 965	S - BF HIGH 965 965 S - CF	3	FOF TREES 5 FOF TREES	10 S REQ.	INF. POP.
CL SD: DOUG TOTA	68.1 1.0 G FIR AL 68.1 1.0	.1 7	COEFF VAR.%		L	SAMPI OW 965 <i>965</i>	E TREE AVG 965 965	S - BF HIGH 965 965	3	# OF TREES 5	10	INF. POP.
CL SD: DOUG TOTA CL SD:	68.1 1.0 3 FIR AL 68.1 1.0	.1 3	COEFF VAR.%	S.E.%	L	SAMPI OW 965 965 SAMPI OW	E TREE AVG 965 965 E TREE AVG	S - BF HIGH 965 965 S - CF HIGH	3	FOF TREES 5 FOF TREES	10 S REQ.	15
CL SD: DOUG TOTA CL SD: DOUG TOTA	68.1 1.0 G FIR AL 68.1 1.0 G FIR	.1 7	COEFF VAR.%	S.E.%	L	SAMPI OW 965 965 SAMPI OW 206	E TREE AVG 965 965 265 E TREE AVG 206 206	S - BF HIGH 965 965 S - CF HIGH 206	3	FOF TREES 5 FOF TREES	10 S REQ. 10	INF. POP.
CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD:	68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0	.1 7	COEFF VAR.%	S.E.%	L L	SAMPI OW 965 965 SAMPI OW 206 206 TREES OW	### AVG 965 965 ### TREE AVG 206 206 ### AVG ACRE AVG	S - BF HIGH 965 965 S - CF HIGH 206 206	3	# OF TREES 5 # OF TREES 5	10 S REQ. 10	15 INF, POP, 15
CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: DOUG TOTA	68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR	.1 3	COEFF VAR.% COEFF VAR.% COEFF VAR.% 38.3	S.E.% S.E.% 19.0	L L	SAMPI OW 965 965 SAMPI OW 206 206 TREES OW 85	### AVG 965 965 ### AVG 206 206 ### AVG 4 AVG 105	S - BF HIGH 965 965 S - CF HIGH 206 206 HIGH 124	3	# OF TREES 5 # OF TREES 5	10 3 REQ. 10 3 REQ. 10	INF. POP. 15 INF. POP.
CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: DOUG TOTA	68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR	.1 7	COEFF VAR.% COEFF VAR.% COEFF VAR.% 38.3 38.3	S.E.%	L L	SAMPI OW 965 965 SAMPI OW 206 206 TREES OW 85 85	### AVG 965 965 ### AVG 206 206 ### AVG 105 105	S - BF HIGH 965 965 S - CF HIGH 206 206 HIGH 124 124	3	# OF TREES 5 # OF TREES 5 # OF PLOTS 5 72	10 3 REQ. 10 3 REQ. 10	INF. POP. 15 INF. POP. 15
CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: CL SD:	68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR AL		COEFF VAR.% COEFF VAR.% COEFF VAR.% 38.3 38.3 COEFF	S.E.% S.E.% 19.0 19.0	L L	SAMPI OW 965 965 SAMPI OW 206 206 TREES OW 85 85 85	### AVG 965 965 ### TREE AVG 206 206 /ACRE AVG 105 105 105 AREA/A	S - BF HIGH 965 965 S - CF HIGH 206 206 HIGH 124 124	3	# OF TREES 5 # OF PLOTS 72 # OF PLOTS	10 3 REQ. 10 3 REQ. 10 18 3 REQ.	INF. POP. 15 INF. POP. 15 8 INF. POP.
CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: CL SD: CL SD: DOUG TOTA	68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR AL		COEFF VAR.% COEFF VAR.% 38.3 38.3 COEFF VAR.%	S.E.% S.E.% 19.0 19.0 S.E.%	L L	SAMPI OW 965 965 SAMPI OW 206 206 TREES OW 85 85 BASAL OW	### AVG 965 965 965 206 206 206 205 4ACRE AVG 105 105 4ACRE AVG S - BF HIGH 965 965 S - CF HIGH 206 206 HIGH 124 124	3	# OF TREES 5 # OF TREES 5 # OF PLOTS 5 72	10 3 REQ. 10 3 REQ. 10	INF. POP. 15 INF. POP. 15	
CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: CL SD:	68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR AL		COEFF VAR.% COEFF VAR.% COEFF VAR.% 38.3 38.3 COEFF	S.E.% S.E.% 19.0 19.0	L L	SAMPI OW 965 965 SAMPI OW 206 206 TREES OW 85 85 85	### AVG 965 965 ### TREE AVG 206 206 /ACRE AVG 105 105 105 AREA/A	S - BF HIGH 965 965 S - CF HIGH 206 206 HIGH 124 124	3	# OF TREES 5 # OF PLOTS 72 # OF PLOTS	10 3 REQ. 10 3 REQ. 10 18 3 REQ.	INF. POP. 15 INF. POP. 15 8 INF. POP.
CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: DOUG TOTA	68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR AL		COEFF VAR.% COEFF VAR.% 38.3 38.3 COEFF VAR.% 26.4 26.4	S.E.% S.E.% 19.0 19.0 S.E.% 13.1	L L	SAMPI OW 965 965 SAMPI OW 206 206 TREES OW 85 85 BASAL OW 209 209	AVG 206 206 AVG 105 105 AREA/A AVG 240	S - BF HIGH 965 965 S - CF HIGH 206 206 HIGH 124 124 124 ACRE HIGH 271	3	# OF TREES 5 # OF TREES 5 # OF PLOTS 5 72 # OF PLOTS 5	10 3 REQ. 10 3 REQ. 10 18 3 REQ. 10	INF. POP. 15 INF. POP. 15 8 INF. POP. 15
CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: CL SD: CL SD:	68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR AL	.1 7	COEFF VAR.% COEFF VAR.% 38.3 38.3 COEFF VAR.% 26.4	S.E.% S.E.% 19.0 19.0 S.E.% 13.1	L L	SAMPI OW 965 965 SAMPI OW 206 206 TREES OW 85 85 BASAL OW 209	AVG 206 206 AVG 105 105 AREA/A AVG 240	S - BF HIGH 965 965 S - CF HIGH 206 206 HIGH 124 124 124 ACRE HIGH 271	3	# OF TREES 5 # OF PLOTS 5 72 # OF PLOTS 5	10 3 REQ. 10 3 REQ. 10 18 3 REQ. 10	INF. POP. 15 INF. POP. 15 8 INF. POP.
CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: DOUG TOTA	68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR AL	.1 7	COEFF VAR.% COEFF VAR.% COEFF VAR.% 38.3 COEFF VAR.% 26.4 COEFF VAR.% 24.3	S.E.% S.E.% 19.0 19.0 S.E.% 13.1 13.1	L L	SAMPI OW 965 965 SAMPI OW 206 206 TREES OW 85 85 BASAL OW 209 209 NET BI OW 1,603	AVG 206 206 AVG 105 105 AREA/A AVG 240 240 E/ACRE AVG 47,325	S - BF HIGH 965 965 S - CF HIGH 206 206 HIGH 124 124 ACRE HIGH 271 271	3	# OF TREES 5 # OF PLOTS 5 # OF PLOTS 5 34 # OF PLOTS 5	10 3 REO. 10 18 3 REQ. 10 9 3 REQ. 10	INF. POP. 15 INF. POP. 15 4 INF. POP.
CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: DOUG TOTA CL SD: CL SD: CL SD: DOUG TOTA	68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR AL	.[].	COEFF VAR.% COEFF VAR.% COEFF VAR.% 38.3 38.3 COEFF VAR.% 26.4 26.4 COEFF VAR.%	S.E.% S.E.% 19.0 19.0 S.E.% 13.1 13.1 S.E.%	L L L	SAMPI OW 965 965 SAMPI OW 206 206 TREES OW 85 85 BASAL OW 209 209 NET BI OW 1,603	### AVG 206 206 ### AVG 206 206 ### AVG 105 105 105 ### AVG 240 240 240 ### E/ACRE AVG 240 ### AVG 240 ### AVG 240 ### E/ACRE AVG 240 ### AVG 240 ### E/ACRE AUG 240 ### E/ACRE AVG 240 ###	S - BF HIGH 965 965 S - CF HIGH 206 206 HIGH 124 124 124 1271 271 HIGH	3	# OF TREES 5 # OF TREES 5 # OF PLOTS 5 34 # OF PLOTS	10 3 REQ. 10 18 3 REQ. 10 9 3 REQ.	INF. POP. 15 INF. POP. 15 4 INF. POP.
CL SD: DOUG TOTA	68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR AL	.1 7	COEFF VAR.% COEFF VAR.% COEFF VAR.% 38.3 COEFF VAR.% 26.4 COEFF VAR.% 24.3	S.E.% S.E.% 19.0 19.0 S.E.% 13.1 13.1 S.E.% 12.1	L L L	SAMPI OW 965 965 SAMPI OW 206 206 TREES OW 85 85 BASAL OW 209 209 NET BI OW 1,603	AVG 206 206 AVG 105 105 AREA/A AVG 240 240 E/ACRE AVG 47,325	S - BF HIGH 965 965 S - CF HIGH 206 206 HIGH 124 124 124 127 127 HIGH 53,046 53,046	3	# OF TREES 5 # OF PLOTS 5 # OF PLOTS 5 34 # OF PLOTS 5	10 REO. 10 REO. 10 18 REO. 10 9 REO. 10 7	INF. POP. 15 INF. POP. 15 4 INF. POP. 15
CL SD: DOUG TOTA	68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 G FIR AL 68.1 G FIR AL 68.1 G FIR AL 68.1 G FIR AL 68.1 G FIR AL 68.1 G FIR AL C FIR AL AL C FIR AL C FIR A C	.1 7	COEFF VAR.% COEFF VAR.% COEFF VAR.% 38.3 COEFF VAR.% 26.4 26.4 COEFF VAR.% 24.3	S.E.% S.E.% 19.0 19.0 S.E.% 13.1 13.1 S.E.% 12.1	L L L L L L L L L L L L L L L L L L L	SAMPI OW 965 965 SAMPI OW 206 206 TREES OW 85 85 BASAL OW 209 209 NET BI OW 1,603	### TREE AVG 965 965 ### Property	S - BF HIGH 965 965 S - CF HIGH 206 206 HIGH 124 124 124 127 127 HIGH 53,046 53,046	3	# OF TREES 5 # OF TREES 5 # OF PLOTS 5 72 # OF PLOTS 5 34 # OF PLOTS 5	10 REO. 10 REO. 10 18 REO. 10 9 REO. 10 7	INF. POP. 15 INF. POP. 15 8 INF. POP. 15 4 INF. POP. 15

Т	SPCSTGR		Species	, Sort G Projec	rade - Boar t: 6CE	d Foot V DARWO	/olui	mes (7	Гуре)				Page Date Time	9	1 /5/201 7:38:0	
T01N Twp 01N	-	Sec	Tract CEDARS	Type 00A			ts 5	Sampl	le Trees	Cu S	ıFt	T0: Bd		106W	S13 T	00A2
		%				Percent	Net B	oard Fo	oot Volume			A	verag	ge Log		Loss
	S So Gr	Net BdFt	Bd. Ft. per A Def% Gross	cre Net	Total Net MBF	Log Sc 4-5 6-1		ia. 6 17+	Log Leng	-	36-99	Ln Ft		Bđ Ft	CF/ Lf	Logs Per /Acre
DF	2M	78	37,273	37,273	708		80	20	13	7	80	38			1.54	130.1
DF	3M	17	7,764	7,764	148	100					100	40	8	93	0.65	83.4
DF	4M	5	2,287	2,287	43	100			26		74	26	7	47	0.54	48.9
DF	Totals	100	47,325	47,325	899	21	63	16	1 10	6	83	36	11	180	1.09	262.3
Туре Т	otals		47,325	47,325	899	21	63	16	1 10	6	83	36	11	180	1.09	262.3

į

.

TC	TST	NDSUN	⁄I					Stand	l Table	Summa	ary					
								Proj	ect	6CEDA	RWO					
T01) Twp 01N]	R06W Rge 06W	S13 T Sec 13	00A2 Tract 6CE	t	S		Гуре 10 A2		cres 9.00	Plots 5	Sample T		T01N R Page: Date: Time:	06W S13 1 09/05/20 7:38:02	0:
	s		Sample	FF	Av Ht	Trees/	BA/	Logs	Avera Net	ige Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	T	otals	
Spc	T	DBH	Trees	16'	Tot	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF		17	4	90	117	60.904	96.00	121.81	32,3	135.0	112.28	3,940	16,444	2,133	749	31:
DF	Ì	22	2	89	126	18.183	48.00	54.55	38.3	176.7	59.48	2,087	9,637	1,130	397	18
DF		23	1	86	136	8.318	24,00	24.95	43.3	193.3	30.77	1,080	4,825	585	205	92
DF		24	1	85	146	7.639	24.00	22.92	51.6	226.7	33.71	1,183	5,195	641	225	99
DF		29	1	84	140	5.232	24.00	20.93	50.2	255.0	29.95	1,051	5,337	569	200	10
DF		32	1	83	149	4.297	24.00	17.19	64.9	342.5	31.80	1,116	5,887	604	212	113
DF		Totals	10	89	125	104.574	240.00	262.35	39.9	180.4	297.99	10,456	47,325	5,662	1,987	899
Totals			10	89	125	104.574	240.00	262.35	39.9	180.4	297.99	10456	47,325	5,662	1,987	899

TC TI	.OGSTVB					$\mathbf{L}\mathbf{c}$	g Sto	ck Ta	able -	MBF	1								
·						Pr	oject:		6CE	DAR	wo								
T01N Twp 01N	R06W S Rge 06W	S	Г00А ес 13	Tra	et DARS		Type 00A2		Acres		Plots 5	Samp	le Tre	es]	N R00 Page Date Cime	6W S13 1 9/5/20 7:38		
S	So Gr	Log	G	ross	%	Net	%			Net V	olume b	y Scalii	ıg Diai	meter ii	n Inche	s			
Spp T	rt de	Len	M	1BF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	2M	[24		91		91	10,2									91			
DF	2M	[32		51		51	5.6								51			ļ	
DF	2M	1 36	ĺ	32		32	3.6						32						
DF	2M	40		534		534	59.4						263	124	147	İ			
DF	3M	40		148		148	16.4			81		6'	7						
DF _	4M	16		2		2	.2			2	2								
DF	4M	18		9		9	1.0			g)								
DF	4M	36		23		23	2.6			9)	14							
DF	4M	40		9		9	1.0			ç)								
DF	Tota	als		899		899	100.0			111	-	80	295	124	197	91			
Total All	Species			899		899	100.0			111		80	295	124	197	91			

VOLUME SUMMARY

(Shown in MBF)

Six Cedars

FG-341-2020-W00240-01 September 2019

AREA 1: MC (94 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	CAMPRUN	TOTAL
Douglas-fir	Cruise Volume	3,404	797	247	0	4,448
	Hidden D&B (2%)	(68)	(16)	(5)	(0)	(89)
	NET TOTAL	3,336	781	242	0	4,359
	% of Total	77	18	6	0	
Western hemlock	Cruise Volume	62	12	4	0	78
	Hidden D&B (2%)	(1)	()	()	(0)	(1)
	NET TOTAL	61	12	4	0	77
	% of Total	79	16	5	0	
Noble fir	Cruise Volume	28	10	1	0	39
	Hidden D&B (2%)	(1)	(0)	(0)	(0)	(1)
	NET TOTAL	27	10	1	0	38
	% of Total	71	26	3	0	
Red alder	Cruise Volume	0	0	0	44	44
	Hidden D&B (5%)	(0)	(0)	(0)	(2)	(2)
	NET TOTAL	0	0	0	42	42
	% of Total	0	0	0	111	

AREA 2: MC (19 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	CAMPRUN	TOTAL
Douglas-fir	Cruise Volume	708	148	43	0	899
	Hidden D&B (2%)	(14)	(3)	(1)	(0)	(18)
	NET TOTAL	694	145	42	0	881
	% of Total	79	16	5	0	·

SALE TOTAL: 113 ACRES

SPECIES		2 SAW	3 SAW	4 SAW	CAMPRUN	TOTAL	
Douglas-fir		4,030	926	284	0	5,240	
Western hemlock		61	12	4	0	77	
Noble fir		27	10	1	0	38	
Red alder		0	0	0	42	42	
NET TOTAL							

LEGEND

• • Timber Sale Boundary

♦ ♦ ♦ Area Boundary

Stream Buffer Boundary

ODF Ownership Boundary

..... Tractor Yarding Area

Tractor Landing

Surfaced Road

Non-Project Road Construction

Recreation Trail

♣ Road Blockage

Stockpile

Type-F Stream

- Type-N Stream

Stream Buffer

Hazard Tree Felling

/ Reforested Area Green Tree Retention Area

Sections

LOGGING PLAN

FOR TIMBER SALE CONTRACT #FG-341-2020-W00240-01 SIX CEDARS PORTIONS OF SECTIONS 13 & 14, T1N, R6W, W.M. TILLAMOOK COUNTY, OREGON

> Forest Grove District GIS September, 2019

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

0 250 500

APPROXIMATE NET ACRES

1:12,000		TRACTOR	CABLE
1 inch = 1,000 feet 00 1,000 1,500 2,000	AREA 1 AREA 2	94 19	0
Feet	TOTAL	113	0

