

Timber Sale Appraisal Little Elk Thin Sale WO-341-2019-W00775-01

District: West Oregon Date: April 10, 2019

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$238,548.48	\$0.00	\$238,548.48
		Project Work:	(\$60,695.00)
		Advertised Value:	\$177,853.48

4/11/19

Timber Sale Appraisal Little Elk Thin

Sale WO-341-2019-W00775-01

District: West Oregon Date: April 10, 2019

Timber Description

Location: Portions of Sections 13 and 23, T11S, R9W, W.M., Lincoln County Oregon.

Stand Stocking: 40%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	12	0	96

Volume by Grade	28	3S & 4S 6"- 11"	Total
Douglas - Fir	21	1,026	1,047
Total	21	1,026	1,047

Comments: Pond Values Used: Local Pond Values, October, 2018

Western Hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost:

\$100/MBF = \$530/MBF - \$430/MBF

Red Alder Stumpage Price = Pond Value minus Logging Cost:

\$170/MBF = \$600.00/MBF - \$430/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost, minus additional

haul cost:

440/MBF = 900/MBF - 460/MBF

PULP (Conifer and Hardwood Price) = \$2.50/TON

Other Costs (with Profit & Risk to be added):

Intermediate Support/Tail Trees: 12 supports @ \$100/support = \$1,200.

TOTAL Other Costs (with Profit & Risk to be added) = \$1,200

Other Costs (No Profit & Risk added):

Equipment Cleaning (Invasive Species): \$2,000

Water Bar and Block Dirt Roads: 50 stations @ \$15.96/station = \$798

Landing Slash Piling and sorting out firewood: 16 Landings @ \$180/Landing = \$2,880

TOTAL Other Costs (No Profit & Risk added) = \$5,678

ROAD MAINTENANCE Move-in: (Grader) \$778

Final Road Maintenance: \$7,314

TOTAL Road Maintenance: \$8,092/1,047MBF = \$7.73/MBF

Timber Sale Appraisal Little Elk Thin

Sale WO-341-2019-W00775-01

District: West Oregon Date: April 10, 2019

Logging Conditions

Combination#: 1 Douglas - Fir 65.00%

Logging System: Cable: Small Tower <=40 **Process:** Stroke Delimber

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF

loads / day: 4.5 bd. ft / load: 3700

cost / mbf: \$336.34

machines: Log Loader (A)

Stroke Delimber (A)
Tower Yarder (Small)

Combination#: 2 Douglas - Fir 35.00%

Logging System: Cut To Length Process: Harvester Head Delimbing

yarding distance: Short (400 ft) downhill yarding: No

tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF

loads / day: 10 bd. ft / load: 3700

cost / mbf: \$151.23 machines: Harvester

Forwarder

4/11/19

Timber Sale Appraisal Little Elk Thin

Sale WO-341-2019-W00775-01

District: West Oregon Date: April 10, 2019

Logging Costs

Operating Seasons: 3.00

Profit Risk: 12%

Project Costs: \$60,695.00

Other Costs (P/R): \$1,200.00

Slash Disposal: \$0.00

Other Costs: \$5,678.00

Miles of Road

Road Maintenance:

\$7.73

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load	
Douglas - Fir	\$0.00	3.0	3.9	

Timber Sale Appraisal Little Elk Thin Sale WO-341-2019-W00775-01

District: West Oregon Date: April 10, 2019

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total
Douglas -	Fir								
\$271.55	\$8.04	\$12.58	\$84.45	\$1.15	\$45.33	\$0.00	\$2.00	\$5.42	\$430.52

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$658.36	\$227.84	\$0.00

Timber Sale Appraisal Little Elk Thin

Sale WO-341-2019-W00775-01

District: West Oregon Date: April 10, 2019

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	1,047	\$227.84	\$238,548.48

Gross Timber Sale Value

Recovery: \$238,548.48

Prepared By: Jon Long Phone: 541-929-3266

SUMMARY OF ALL PROJECT COSTS

Sale Name:	Little Elk Thin		Date: Time:	December 2018 14:05	
Project #1 - New Cor	struction				
Road Segment		<u>Length</u>	Cost		
A to B (dirt)		3.8 sta	\$2,010		
C to D (surfaced/dirt)		15.0 sta	\$9,819		
E to F (surfaced)		5.2 sta	\$3,845		
G to H (surfaced)		3.0 sta	\$2,469		
I to J (dirt)		6.5 sta	\$2,927		
K to L (dirt)		5.1 sta	\$2,039		
	TOTALS	38.6 sta	0.7 Miles		\$23,109
Project #2 - Road Im	provement				
Road Segment		<u>Length</u>	<u>Cost</u>		
1 to 2 (Miller Creek Ro	d.)	51.8 sta	\$4,913		
3 to 4		2.0 sta	\$1,177		
5 to 6		2.1 sta	\$1,182		
7 to 8 (Baber Ridge R	d.)	98.6 sta	\$5,788		
8 to 9		23.2 sta	\$7,046		
10 to G		4.1 sta	\$387		
11 to 12 (Salmon Fork	s Rd.)	58.1 sta	\$4,014		
13 to 14		7.3 sta	\$931		
15 to K (dirt)		17.9 sta	\$276		*
	TOTALS	265.1 sta	5.0 Miles		\$25,714
Project #3 - Brushing	3	5.4 Miles			\$6,344
Project #4 - Move in			Cost		
Road brusher			\$778		
Excavator, C325 or ed	IUV.		\$1,290		
Dozer, D-7 or equiv.	1		\$805		
Grader, G14 or equiv.			\$778		
Backhoe			\$321		
Front end loader			\$778		
Vibratory roller			\$778		
	TOTAL				\$5,528

GRAND TOTAL \$60,695

Compiled by J. Long Date 12/06/2018

SALE ROAD	Little Elk 7 A to B (di			Project # Unsurface	•	•	LENGTH	improve		3.8 sta	
CLEARIN	IG AND GR	UBBING									
0.3	3 acres	@		\$1,337.00	/a	cre		=	\$401		
					ТО	TAL CL	EARING A	ND GRUBI	BING =		\$401
EXCAVA ⁻	TION		With D7 dozer	or equivaler	nt						
Construct	road		3.8 sta	@	\$	190.00	/sta	=	\$722		
Landing C	Construction		2 Ldg	@	\$	389.00	/Ldg	=	\$778		
Shape/ou (with road	tslope subg l grader)	rade	3.8 sta	@	\$	15.40	/sta	=	\$59		
Compact (with vibra	subgrade atory roller)		3.8 sta	@	\$	13.20	/sta	=	\$50		
							TOTAL EX	(CAVATIO	N =		\$1,609
Compiled	by:		J.Long				_				
Date:	-		Dec 6, 2018				GRAND T	OTAL ===	==>		\$2,010

SALE ROAD	Little Elk Thin C to D (surfaced/dir	t)	Project #	1(a)	LENGTH	improve		15.0 sta	
CLEARIN	IG AND GRUBBING								
1.0	0 acres @		\$1,337.00	/acre		=	\$1,337		
				TOTAL CL	EARING A	ND GRUBI	BING =		\$1,337
EXCAVA [*]	TION	With D7 dozer of	or equivaler	nt					
Construct	road	15.0 sta		\$122.00	/sta	=	\$1,830		
Landing C	Construction	2 Ldgs	@	\$389.00	/Ldg	=	\$778		
Shape su	bgrade	15.0 sta	@	\$ 15.40	/sta	=	\$231		
(with road	d grader)								
•	subgrade	15.0 sta	@	\$ 13.20	/sta	=	\$198		
(with vibra	atory roller)								
					TOTAL EX	KCAVATIO	N =		\$3,037
SURFAC	ING			Size		KCAVATIO	N =		\$3,037
SURFAC	_	20	cy of	Size	Cost/yd				\$3,037
Junction r	rock		cy of	jaw-run	Cost/yd \$21.68	=	\$434		\$3,037
Junction r Junction r	rock rock	10	cy of	jaw-run 1 1/2" - 0"	Cost/yd \$21.68 \$2.69		\$434 \$27		\$3,037
Junction r Junction r Turnarou	rock rock nd rock (sta. 3+00)	10 20	cy of cy of	jaw-run 1 1/2" - 0" jaw-run	Cost/yd \$21.68 \$2.69 \$21.68	= =	\$434 \$27 \$434		\$3,037
Junction r Junction r Turnarou Base rock	rock rock	10 20 163	cy of	jaw-run 1 1/2" - 0"	Cost/yd \$21.68 \$2.69	= = =	\$434 \$27		\$3,037
Junction r Junction r Turnarous Base rock Landing ro	rock rock nd rock (sta. 3+00) (3.8 Stations)	10 20 163	cy of cy of cy of	jaw-run 1 1/2" - 0" jaw-run jaw-run	Cost/yd \$21.68 \$2.69 \$21.68 \$21.68 \$21.68	= = = =	\$434 \$27 \$434 \$3,534		\$3,037
Junction r Junction r Turnarous Base rock Landing ro	rock rock nd rock (sta. 3+00) (3.8 Stations) ock (sta. 3+80) ompact rock	10 20 163 40	cy of cy of cy of cy of	jaw-run 1 1/2" - 0" jaw-run jaw-run jaw-run	Cost/yd \$21.68 \$2.69 \$21.68 \$21.68 \$21.68 /hr	= = = = =	\$434 \$27 \$434 \$3,534 \$867 \$149		
Junction r Junction r Turnarous Base rock Landing ro Spread/co	rock rock nd rock (sta. 3+00) (3.8 Stations) ock (sta. 3+80) ompact rock	10 20 163 40	cy of cy of cy of cy of	jaw-run 1 1/2" - 0" jaw-run jaw-run jaw-run	Cost/yd \$21.68 \$2.69 \$21.68 \$21.68 \$21.68 /hr	= = = =	\$434 \$27 \$434 \$3,534 \$867 \$149		\$3,037 \$5,445
Junction r Junction r Turnarous Base rock Landing ro Spread/co	rock rock nd rock (sta. 3+00) (3.8 Stations) ock (sta. 3+80) ompact rock	10 20 163 40	cy of cy of cy of cy of	jaw-run 1 1/2" - 0" jaw-run jaw-run jaw-run	Cost/yd \$21.68 \$2.69 \$21.68 \$21.68 \$21.68 /hr	= = = = =	\$434 \$27 \$434 \$3,534 \$867 \$149		
Junction r Junction r Turnarous Base rock Landing ro Spread/co	rock rock nd rock (sta. 3+00) (3.8 Stations) ock (sta. 3+80) ompact rock er)	10 20 163 40	cy of cy of cy of cy of	jaw-run 1 1/2" - 0" jaw-run jaw-run jaw-run	Cost/yd \$21.68 \$2.69 \$21.68 \$21.68 \$21.68 /hr	= = = = =	\$434 \$27 \$434 \$3,534 \$867 \$149		

SALE ROAD	Little Elk T E to F (sur				Project a	•	•	LENGTH	improve		5.2 sta	
CLEARIN	G AND GRU	JBBING										
0.4	4 acres	@			\$1,337.0	00 /a	cre		=	\$535		
						TC	OTAL CL	EARING A	ND GRU	BBING =		\$535
EXCAVA	ΓΙΟΝ		With D7	dozer d	or equiva	lent						
Construct	road		5.2	sta	@	9	\$190.00	/sta	=	\$988		
Landing C	Construction		1	Ldg	@	5	\$389.00	/Ldg	=	\$389		
Shape/out	tslope subgr grader)	ade	5.2	sta	@	\$	15.40	/sta	=	\$80		
Compact			5.2	sta	@	\$	13.20	/sta	=	\$69		
(WIGH VIOLE	atory roller)							TOTAL EX	XCAVATI	ON =		\$1,526
SURFACI	NG						Size	Cost/yd				
Base rock	(5.2 Stations	s)		224	cy of		3"-0"	\$5.37	=	\$1,203		
Turnout	•	,			cy of		3"-0"	\$5.37	=	\$107		
Turnarour	nd				cy of		3"-0"	\$5.37	=	\$107		
Landing ro	ock (Pt. F)			40	cy of		3"-0"	\$5.37	=	\$215		
•	ompact rock		5.2	sta	@	\$	29.20	/sta	=	\$152		
(WILLI VIDE	atory roller)							TOTAL R	оск со	ST =		\$1,784
Compiled	by:		J.Long									
Date:			Dec 6, 20	18				GRAND T	OTAL ==	===>		\$3,845

SALE ROAD	Little Elk Thin G to H (surfaced)		Project # surfaced,	,	,	LENGTH	improve		3.0 sta
CLEARIN	G AND GRUBBING								
0.2	acres @		\$1,337.00) /a	cre		=	\$267	
				TO	TAL CL	EARING AI	ND GRUBBI	NG =	\$267
EXCAVAT	ION	With D7 dozer	or equivale	nt					
Construct	road	3.0 sta			190.00	/sta	=	\$570	
Landing C	onstruction	1 Ldgs	@	\$	389.00	/Ldg	=	\$389	
Shape sub	ograde	3.0 sta	@	\$	15.40	/sta	=	\$46	
(with road	· '								
Compact	_	3.0 sta	@	\$	13.20	/sta	=	\$40	
(with vibra	tory roller)								
						TOTAL EX	(CAVATION	=	\$1,045
SURFACI	NG				Size	Cost/yd			
Base rock	(5.2 Stations)	129	cy of		3"-0"	\$5.37	=	\$693	
Turnout/Tu			cy of		3"-0"	\$5.37	=	\$161	
Landing ro	ck (Pt. G)	40	cy of		3"-0"	\$5.37	=	\$215	
•	mpact rock	3.0 sta	@	\$	29.20	/sta	=	\$88	
(with vibra	tory roller)								.
						TOTAL RO	OCK COST	=	\$1,157
Compiled	hv [.]	J. Long							
Date:	~ , .	Dec 6, 2018				GRAND T	OTAL ====	=>	\$2,469
		,							. ,

SALE Little Elk Thin LENGTH improve 6.5 sta Project # 1(b) Unsurfaced, outsloped

ROAD I to J (dirt)

CLEARING AND GRUBBING

0.5 acres @ \$1,337.00 /acre \$669

> TOTAL CLEARING AND GRUBBING = \$669

EXCAVATION With D7 dozer or equivalent

Construct road 6.5 sta \$190.00 /sta \$1,235 = Import fill material 80 cy. @ \$5.00 /cy. \$400 = (Sta. 0+00 to 1+00) Fill compation @ \$48 80 cy. \$0.60 /cy. Landing construction 1 Ldg @ \$389.00 /Ldg \$389 = Shape/outslope subgrade 6.5 sta @ \$ 15.40 /sta \$100 = (with road grader) Compact subgrade 6.5 sta @ 13.20 /sta \$86 (with vibratory roller)

> TOTAL EXCAVATION = \$2,258

Compiled by: J.Long

Date: Dec 6, 2018 **GRAND TOTAL ====>** \$2,927

GRAND TOTAL ====>

\$2,039

SALE ROAD	Little Elk T K to L (dir			Project # Unsurface	•	,		H improve		5.1 sta	
CLEARIN	G AND GRU	JBBING									
0.4	acres	@		\$1,337.00	/ad	cre		=	\$535		
					то	TAL CL	EARING.	AND GRUBI	BING =		\$535
EXCAVAT	ION		With D7 doze	er or equivale	nt						
Construct	road		5.1 sta	@	\$	190.00	/sta	=	\$969		
Landing C	onstruction		1 Ldg	@	\$	389.00	/Ldg	=	\$389		
Shape/out (with road	slope subgr grader)	ade	5.1 sta	@	\$	15.40	/sta	=	\$79		
Compact s (with vibra	•		5.1 sta	@	\$	13.20	/sta	=	\$67		
							TOTAL	EXCAVATIO	N =		\$1,504

J.Long Dec 6, 2018

Compiled by:

Date:

SALE ROAD	Little Elk Thin 1 to 2 (Miller C	Creek Rd.)	Project #	2		LENGTH Surfaced,	•		51.8 sta
IMPROVE	EMENT								
Remove s	sod	51.8 sta	@	\$	15.40	/sta	=	\$798	
(with road	•								
Slough re		2.0 hr	@	;	\$140.00	/hr	=	\$280	
(0+00 to 4	•								
	a. 44+30 (W2)	40 cy	@		\$4.00	•	=	\$160	
Construct	_	1 Ldg	@	,	\$324.00	/Ldg	=	\$324	
(Sta. 44+3	30)								
						TOTAL IM	PROVEME	ENT =	\$1,562
SURFACI	ING				Size	Cost/yd			
Turnout ro		30	cy of		1½-0"	\$2.69	=	\$81	
Spot rock	` '		cy of		1½-0"	\$2.69	=	\$673	
Landings			cy of		aw-Run	\$21.68	=	\$1,084	
Grade/pro	` '	51.8 sta	@	\$	16.00	/sta	=	\$829	
Compact	surface rock	51.8 sta	@	\$	13.20	/sta	=	\$684	
(with vibra	atory roller)								
						TOTAL RO	OCK COST	=	\$3,351
Compiled	bv:	J. Long							
Date:) -	Dec 6, 2018				GRAND T	OTAL ===:	==>	\$4,913

SALE ROAD	Little Elk Th 3 to 4	in	Project #	2		LENGTH Surfaced,	•		2.0 sta
IMPROVE	MENT								
Remove s (with road		2.0 sta	@	\$	15.40	/sta	=	\$31	
Clear Lan (with exca	ding	1.0 hr	@	\$	\$140.00	/hr	=	\$140	
(,					TOTAL IM	PROVEME	ENT =	\$171
SURFACI	NG				Size	Cost/yd			
Spot rock		20	cy of		1 1/2"	\$2.69	=	\$54	
Junction r	ock	10	cy of		1 1/2"	\$2.69	=	\$27	
Landing ro	ock	40	cy of	Ja	aw Run	\$21.68	=	\$867	
Grade/pro	cess	2.0 sta	@	\$	16.00	/sta	=	\$32	
•	surface rock itory roller)	2.0 sta	@	\$	13.20	/sta	=	\$26	
						TOTAL RO	OCK COST	Γ=	\$1,006
Compiled Date:	by:	J. Long Dec 6, 2018				GRAND T	OTAL ===	==>	\$1,177

SALE ROAD	Little Elk Th 5 to 6	in	Project #	2		LENGTH Surfaced,	=		2.1 sta
IMPROVE	EMENT								
Remove		2.1 sta	@	\$	15.40	/sta	=	\$32	
(with road Clear Lan	•	1.0 hr	@	9	\$140.00	/hr	=	\$140	
(with exca	•		O	•	71 10100	,		Ψ	
						TOTAL IM	PROVEME	NT =	\$172
SURFAC	ING				Size	Cost/yd			
Spot rock		20	cy of		1 1/2"	\$2.69	=	\$54	
Junction r			cy of		1 1/2"	\$2.69	=	\$27	
Landing r	ock	40	cy of	Ja	aw Run	\$21.68	=	\$867	
Grade/pro	ocess	2.1 sta	@	\$	16.00	/sta	=	\$34	
•	surface rock	2.1 sta	@	\$	13.20	/sta	=	\$28	
(with vibra	atory roller)								
						TOTAL RO	OCK COST	=	\$1,010
Compiled	by:	J. Long							
Date:	[Dec 6, 2018				GRAND T	OTAL ====	=>	\$1,182

SALE ROAD	Little Elk Th 7 to 8 (Babe	iin er Ridge Rd.)		Project #	2		LENGTH Surfaced,	-		98.6 sta
Remove s (with road		98.6 sta		@	\$	15.40	/sta	=	\$1,518	
							TOTAL IM	PROVEME	ENT =	\$1,518
SURFACI	NG					Size	Cost/yd			
Spot rock			180 c	y of		1½-0"	\$4.53	=	\$815	
Turnouts ((4)		40 c	y of		1½-0"	\$4.53	=	\$181	
Grade/pro	cess	98.6 sta		@		\$20.00	/sta	=	\$1,972	
•	surface rock tory roller)	98.6 sta		@	\$	13.20	/sta	=	\$1,302	
`	,						TOTAL RO	OCK COST	=	\$4,270
Date:		Dec 6, 2018					GRAND T	OTAL ===:	==>	\$5,788

SALE ROAD	Little Elk Thi 8 to 9	'n	Project #	2	LENGTH Surfaced,	improve outsloped		23.2 sta
Remove s		23.2 sta	@	\$ 15.40	/sta	=	\$357	
(with road	grader)			SUBGRAD	E PREP C	OST =		\$357
Culvert R	eplacement							
Sta. 16+1								
24"x50' C		50		@	\$18.73		\$937	
	ipe and recor) excavator	struct 7	hr	@	\$140.00	/hr =	\$980	
Haul away	/ waste mater	ial (W1) 3	hr	@	\$79.00	/hr =	\$237	
Import fill	material	60	су	@	\$5.00	/cy=	\$300	
	et and outlet		hr	@	\$140.00		\$280	
Install dis	•	1	hr	@	\$140.00	/hr =	\$140	
Old culve	t disposal					=	\$150	
				TOTAL FIL	L REPLAC	EMENT COS	ST =	\$3,024
					TOTAL IN	1PROVEMEI	NT =	\$3,381
ROCK				Size	Cost/yd			
2" lift		255	cy of	1½-0"	\$4.53	=	\$1,155	
Turnout (1	1)		cy of	1½-0"	\$4.53	=	\$45	
Junctions	(2)	20	cy of	1½-0"	\$4.53	=	\$91	
Culvert be	edding and ba	ckfill 30	cy of	1½-0"	\$4.53	=	\$136	
Dissipator	•	10	cy of	24"-6"	\$26.01	=	\$260	
Fill Armor			cy of	jaw-run	\$21.68	=	\$867	
	e/Base Rock		cy of	jaw-run	\$21.68	=	\$434	
Grade sur		23.2 sta	@	\$ 16.00		=	\$371	
-	surface rock atory roller)	23.2 sta	@	\$ 13.20	/sta	=	\$306	
					TOTAL R	OCK COST	=	\$3,665
Compiled	by:	J. Long						
Date:		Dec 6, 2018			GRAND 1	OTAL ====	=>	\$7,046

_	_ittle Elk Thi 10 to G	n	Project #	2		LENGTH Surfaced,	-	d	4.1 sta
Remove soo (with road g		4.1 sta	@	\$	15.40	/sta SUBGRAD	= DE PREP	\$63 COST =	\$63
SURFACING 2" lift Grade surfa Compact su (with vibrato	ce rock Irface rock	4.1 sta 4.1 sta 4.1 sta	5 cy of @ @	\$ \$	Size 1½-0" 16.00 13.20	Cost/yd \$4.53 /sta /sta	= = =	\$204 \$66 \$54	
						TOTAL RO	OCK COS	ST =	\$324
Compiled by Date:	y:	J. Long Dec 6, 2018				GRAND T	OTAL ==	===>	\$387

	ALE OAD	Little Elk Th 11 to 12 (Sa	nin almon Forks Rd.	Project #	2		LENGTH Surfaced,	•		58.1 sta
	emove s		58.1 sta	@	\$	15.40	/sta	=	\$895	
Ċ	vith road lear Land vith exca	ding	1.5 hr	@		\$140.00	/hr	=	\$210	
(**	mii oxoa	vaioi					TOTAL IM	PROVEM	ENT =	\$1,105
S	URFACII	NG				Size	Cost/yd			
Τι	urnouts (3)	30	cy of		1½-0"	\$4.53	=	\$136	
Jι	unctions	(3)	30	cy of		1½-0"	\$4.53	=	\$136	
S	oot rock		160	cy of		1½-0"	\$4.53	=	\$725	
La	anding ro	ock	40	cy of		3"-0"	\$5.37	=	\$215	
G	rade surf	face rock	58.1 sta	@	\$	16.00	/sta	=	\$930	
	-	surface rock tory roller)	58.1 sta	@	\$	13.20	/sta	=	\$767	
							TOTAL RO	OCK COS	T =	\$2,909
	ompiled l	by:	J. Long				0D4NE =	OT41		
D	ate:		Dec 6, 2018				GRAND T	U I AL ==:	===>	\$4,014

	Little Elk Thin 13 to 14		Project #	2		LENGTH Surfaced,	•		7.3 sta
Remove so		7.3 sta	@	\$	15.40	/sta	=	\$112	
Clear Land (with excav	ing	1.5 hr	@	;	\$140.00	/hr	=	\$210	
(**************************************	,					TOTAL IM	PROVEMEN	IT =	\$322
SURFACIN	IG				Size	Cost/yd			
Spot rock		40	cy of		1½-0"	\$4.53	=	\$181	
Landing roo	ck	40	cy of		3"-0"	\$5.37	=	\$215	
Grade surfa	ace rock	7.3 sta	@	\$	16.00	/sta	=	\$117	
Compact so (with vibrate	urface rock ory roller)	7.3 sta	@	\$	13.20	/sta	=	\$96	
`	,					TOTAL RO	OCK COST =	=	\$609
Compiled b	py:	J. Long							
Date:		Dec 6, 2018				GRAND T	OTAL =====	:>	\$931

Project # 2 LENGTH improve SALE Little Elk Thin 17.9 sta ROAD Unsurfaced, outsloped 15 to K (dirt) Grade/outslope road 17.9 sta @ \$ 15.40 /sta \$276 (with road grader) TOTAL IMPROVEMENT = \$276

Compiled by: J. Long

Date: Dec 6, 2018 **GRAND TOTAL =====> \$276**

Little Elk Thin Timber Sale No. WO-341-2019-W00775-01

Project No. 3

Mechanical Brushing Costs

Date: 10/25/18

Road Segment/ Point	Road Name	Length (feet)	Miles	Brush Density	Cost / Mile	Segment Cost
1 to 2	Miller Creek	5,180	0.98	Light	\$850.00	\$833
3 to 4		200	0.04	Light	\$850.00	\$34
5 to 6		210	0.04	Light	\$850.00	\$34
7 to 8	Baber Ridge	9,860	1.87	Medium	\$1,100.00	\$2,057
8 to 9		2,320	0.44	Medium	\$1,100.00	\$484
10 to G		410	0.08	Light	\$850.00	\$68
11 to 12	Salmon Forks	5,810	1.10	Heavy	\$1,550.00	\$1,705
13 to 14		730	0.14	Light	\$850.00	\$119
15 to K		1,790	0.34	Medium	\$1,100.00	\$374
16 to 17	-	1,120	0.21	Heavy	\$1,550.00	\$326
18 to 19		1,030	0.20	Heavy	\$1,550.00	\$310
Totals		28,660	5.44			\$6,344

SUMMARY OF MAINTENANCE COST

SALE Little Elk Thin - Final Maintenance Cost Estimate
(Costed in appraisal, not in project costs)

Grading Move-in \$ 778

Road Segment	Length	Cost/Sta	Cost	Mileage
Deer Creek Rd	114.0	\$15.40	\$1,755.60	2.16
Baber Ridge Rd	83.0	\$15.40	\$1,278.20	1.57
Salmon Creek Rd	23.0	\$15.40	\$354.20	0.44
1 to 2	51.8	\$15.40	\$797.72	0.98
3 to 4	2.0	\$15.40	\$30.80	0.04
5 to 6	2.1	\$15.40	\$32.34	0.04
11 to 8	24.6	\$15.40	\$378.84	0.47
8 to 9	23.2	\$15.40	\$357.28	0.44
E to F	5.2	\$15.40	\$80.08	0.10
10 to G	4.1	\$15.40	\$63.14	0.08
G to H	3.0	\$15.40	\$46.20	0.06
11 to 12	58.1	\$15.40	\$894.74	1.10
13 to 14	7.3	\$15.40	\$112.42	0.14
Total	401.4		\$6,181.56	7.62

Maintenance Rock:

	Volume	Cost/CY	Cost
1½-0"	250	\$4.53	\$1,132.50
Grand Total			\$ 8,092.06
MBF	1,047		
Cost / MBF =			\$7.73

NOTES:

Rock source: State owned stockpiles - S1, S2 and S3 shown on Exhibit A 3"-0" rock may be substituted for 1 1/2"-0" where needed.

A minimum of 40 CY spot rock required for wear replacement on Weyco roads as a provision of road use permit (Section 2130 - Road Maintenance).

					- 6 00	1.0
SALE NAME:	Little Elk Thin			DATE:	•	18
ROAD NAME:	Stromboulder Rd			CLASS:		
ROCK SOURCE:	Richard Rock Qua	_	D.J	10CY tr	ruck	
Route:	Hwy. 20 to Salmo	on Crk.	. ка.			
Jaw-Run rock	1.1					
C to D and La	=					
TIME Computat						
Road speed ti		100) (D. III		10.0	
1.		10.0	MRT			minutes
2.		10.0	MRT		12.0	
3.		9.0	MRT		12.0	
4.		0 0	MRT		0.0	
5.		8.0	MRT			minutes
6.		1 0	MRT			minutes
7.	-	1.0	MRT			minutes
8.		0.0	MRT		0.0	
9.	-	2.0	MRT		8.0	
10.		1.0	MRT			minutes
11.	. 05 MPH	0.4	MRT		4.8	minutes
Dump or coros	ıd time per RT				0.50	minutes
	ing cycle time for	or this	a sotting		0.50	minuces
(100% effi	ž -	OI CIII:	s secting		70.30	minutes
(100% EIII	.crency)				70.30	minuces
Operator effi	ciency correction	n	0.85		82.71	minutes
Job efficienc	=		0.90			minutes
Truck capacit	cy (CY)		10.00		9.19	min/CY
Loading time,	delay time per	CY			0.50	min/CY
	s) per cubic yard				9.69	min/CY
COST per CY o	computation					
Cost of tr	ruck and operator	per ho	our		\$83.00	/hr.
Cost of tr	cuck and operator	per mi	inute		\$1.38	/min
Cost per CY					\$13.37	/CY
Spread and co	ompact Wate:	r truck	k, Grader & Roll	ler	\$1.50	/CY
			Cost Delivered		Cost Deliv	ered
Size	Cost/Yd (Pit)		w/o processing		with proce	
1½ - 0"	\$ 10.97		\$24.34		\$25.84	
3 - 0"	\$ 9.31		\$22.68		\$24.18	
Jaw Run	\$ 8.31		\$21.68		\$23.18	
Pit-Run	7.65		\$21.02		\$22.52	
6-8 open	12.64		\$26.01		\$27.51	
T	. • -				,	

Note: Rock costs from Rickard Rock Quarry - 4/1/17.

SALE NAME: ROAD NAME: ROCK SOURCE: Route:	Little Ell Miller Cre Salmon Cre Salmon Cre	eek Road eek Stockpile	e	DATE: Dec 6, 20 CLASS: Medium 10 CY truck	018
C to D E to F					
TIME Computat					
Road speed ti					_
1.			MRT		minutes
2.			MRT		minutes
3.			MRT		minutes
4.			MRT		minutes
5.			MRT		minutes
6.			MRT	0.0	
7.	_		MRT	0.0	
8.			MRT		minutes
9.			MRT		minutes
10.			MRT		minutes
11.	05 MP	н 0.3	MRT	3.6	minutes
Dump or sprea Total haul (100% effi	ing cycle	RT time for thi	s setting	0.50	
Operator effi	ciency cor:	rection	0.85	13.06	minutes
Job efficienc			0.90	14.51	minutes
	2				
Truck capacit	v (CY)		10.00	1.45	min/CY
Loading time,		e per CY		0.50	
TIME (minutes				1.95	
	uck and ope	erator per h		\$83.00 \$1.38	/hr. /min
Cost per CY				\$2.69	/CY
Spread and co	mpact	Water truck	k, Grader & Roll	er \$1.50	/CY
			Cost Delivered	Cost Deliv	vered
Size	Cost/Yd (I	Pit)	w/o processing	with proce	
1½ - 0"	\$ -	•	\$2.69	\$4.19	,
3 - 0"	\$ 9.31		\$12.00	\$13.50	
Jaw Run	\$ 8.31		\$11.00	\$12.50	

\$11.84

Pit-Run 7.65 \$10.34

SALE NAME: ROAD NAME: ROCK SOURCE: Route:		11-12, 13-14 kpile 1 1/2" rock		
TIME Computat	ion•			
Road speed ti				
1.		MRT	0.0 minute	S
2.		MRT	0.0 minute	-
3.		MRT	0.0 minute	
	40 MPH	MRT	0.0 minute	s
5.	. 35 MPH	MRT	0.0 minute	
	. 30 MPH	MRT	0.0 minute	s
7.	. 25 MPH 1	.0 MRT	2.4 minute	s
8.	. 20 MPH 2	.0 MRT	6.0 minute	s
9.	. 15 MPH 1	.0 MRT	4.0 minute	s
10.	. 10 MPH 0	.6 MRT	3.6 minute	s
11.	. 05 MPH 0	.4 MRT	4.8 minute	s
Dump or sprea	ad time per RT		0.50 minute	s
= =	ling cycle time 1	for this setting		
(100% effi	= =	j	21.30 minute	s
Operator effi	ciency correction	on 0.85	25.06 minute	s
Job efficiend	cy correction	0.90	27.84 minute	s
Truck capacit	-y (CY)	10.00	2.78 min/C	Υ
-	delay time per		0.50 min/C	
	s) per cubic yard		3.28 min/C	
•	, 1			
COST per CY o	computation			
Cost of tr	ruck and operator	r per hour	\$83.00 /hr.	
Cost of ti	ruck and operator	r per minute	\$1.38 /min	
Cost per CY			\$4.53 /CY	
Spread and co	ompact Water	truck, Grader & Ro	\$1.50 /CY	
		Cost Delivered	Cost Delivered	
Size	Cost/Yd (Pit)	w/o processing	with processing	
1½ - 0"	\$ -	\$4.53	\$6.03	
3 - 0"	\$ -	\$4.53	\$6.03	
Jaw Run	\$ -	\$4.53	\$6.03	
Pit-Run	\$ -	\$4.53	\$6.03	

Note: 1 1/2"-0" stockiple

ROAD NAME: Maintenance Rock CLASS: Medium

ROCK SOURCE: Salmon Class: CLASS: Medium ROCK SOURCE: Salmon Ck 3" Stockpile (100 cy) 10 CY truck

Route: Salmon Creek Road

TIME Computation	on:				
Road speed time					
1.	55 MPH		MRT	0.0	minutes
2.	50 MPH		MRT	0.0	minutes
3.	45 MPH		MRT	0.0	minutes
4.	40 MPH		MRT	0.0	minutes
5.	35 MPH		MRT	0.0	minutes
6.	30 MPH		MRT	0.0	minutes
7.	25 MPH	0.0	MRT	0.0	minutes
8.	20 MPH	2.0	MRT	6.0	minutes
9.	15 MPH	1.0	MRT	4.0	minutes
10.	10 MPH	0.5	MRT	3.0	minutes
11.	05 MPH	0.3	MRT	3.6	minutes
Dump or spread Total haulir	-		this setting	0.50	minutes
(100% effici				17.10	minutes
Operator effici	iency corre	ction	0.85	20.12	minutes
Job efficiency	correction	Į.	0.90	22.36	minutes
Truck capacity	(CY)		10.00	2.24	min/CY
Loading time, o	delay time	per CY		0.50	min/CY
TIME (minutes)	per cubic	yard		2.74	min/CY
COST per CY com	nputation				
Cost of truc	ck and oper	ator pe	er hour	\$83.00	/hr.
Cost of truc	ck and oper	ator pe	er minute	\$1.38	/min
Cost per CY				\$3.78	/CY
Spread and comp	pact Wa	ater tr	uck, Grader & Roller	\$1.50	/CY

		Cost Delivered	Cost Delivered
Size	Cost/Yd (Pit)	w/o processing	with processing
1½ - 0"	\$ -	\$3.78	\$5.28
3 - 0"	\$ -	\$3.78	\$5.28
Jaw Run	\$ -	\$3.78	\$5.28
Pit-Run	\$ -	\$3.78	\$5.28

Note: 1,000 cy stockiple 3"-0"

SALE NAME: ROAD NAME: ROCK SOURCE: Route:	Little Elk Thin New Construction Deer Camp Stockp Baber Ridge Road	oile 3"		DATE: Dec CLASS: Mediu 10 CY truck	ım	18
C to D E to F	ion					
TIME Computat Road speed ti						
noad speed ti			MRT		0 0	minutes
2.			MRT			minutes
3.			MRT			minutes
4.			MRT			minutes
5.			MRT			minutes
6.			MRT		0.0	
7.		2.0	MRT		4.8	
8.	-	2.0	MRT		6.0	
9.		2.0	MRT			minutes
10.		0.5	MRT			minutes
11.		0.3	MRT		3.6	
	d time per RT ing cycle time for ciency)	or this	s setting		0.50	minutes minutes
Operator effi	ciency correction	n .	0.85		30 47	minutes
Job efficienc	=		0.90		33.86	
Truck capacit			10.00		3.39	
	delay time per (CY			0.50	
TIME (minutes) per cubic yard				3.89	min/CY
	computation ruck and operator ruck and operator	_				/hr. /min
Cost per CY				\$	5.37	/CY
Spread and co	mpact Water	r truck	., Grader & Roll	er \$	1.50	/CY
			Cost Delivered	Cost	Deliv	ered
Size	Cost/Yd (Pit)		w/o processing	with	proce	ssing
1½ - 0"	\$ -		\$5.37	\$	6.87	
3 - 0"	\$ -		\$5.37	\$	6.87	
Jaw Run	\$ -		\$5.37	\$	6.87	

\$5.37

Pit-Run \$ -

\$6.87

Little Elk Thin (WO-341-2019-W00775-01) FY 2019

TIMBER CRUISE REPORT

1. Sale Area Location: Portions of Sections 13 and 23, T11S, R9W, W.M., Lincoln County, Oregon.

2. Fund Distribution:

a. Fund BOF 77%, CSL 23%

b. Tax Code

3. Sale Acreage by Area:

Area	Treatment	Gross Acres	Stream Buffers	Existing Roads	Non- Thinnable Acres	Net Sale Acres	Acreage Comp. Method
1	Thinning	67	7	2	4	54	Ortho photo, GIS, GPS
2	Thinning	74	6	3	2	63	Ortho photo, GIS, GPS
3	Thinning	44	5			39	Ortho photo, GIS, GPS
Total		185	18	5	6	156	

- **4. Cruisers and Cruise Dates:** The sale areas were cruised by Matt McBride, Jon Long, and Evelyn Hukari in September of 2018.
- 5. Cruise Method and Computation: Areas 1 through 3 of the sale were cruised using variable radius plot sampling using a 20 BAF and 3 to 1 count to grade ratio. A total of 51 plots were taken two chains apart on transects through the units. Two plots were dropped in low stocked areas within Area 1 and several acres taken out and mapped as non-thinnable. Trees on the graded plots were measured for DBH, height, form factor, grades, and defect. Data for Areas 1, 2, and 3 were entered into the Atterbury SuperACE 2008 cruise program to determine stand statistics and net board foot volume. Leave trees were taken out to determine volumes. Three acres of right-of-way volume was calculated using the total stand (take and leave) volume per acre. Digital ortho photos, 1991 aerial photos, LiDar, and ArcMap 10.4.1 were used to map the boundaries for the sale, and ArcMap 10.4.1 was used to determine gross and net acreage.
- **6. Measurement Standards:** Tree heights were measured to the nearest foot to merchantable height at 7 inches (outside bark). Diameters were measured to the nearest inch, and form factors were measured or estimated. Most trees were graded in 40 foot log segments unless breakage, defect, or length to top of grade cruise diameter warranted otherwise.
- **7. Timber Description:** Timber in the sale area consists of 32 to 34 year-old planted Douglas-fir, and minor amounts of red alder and big-leaf maple. The average DBH for the take trees is approximately 12 inches. The average volume per acre to be harvested (net) is approximately 6.4 MBF. The right-of-way volume for the new road construction in Areas 1 and 2 (3 acres) is approximately 20.5 MBF per acre.

8. Total Volume (MBF) by Species and Grade:

Areas 1-3 Combined	Species	Gross Cruise Volume	D&B (2%)	Net Sale Volume
Take Volume	Douglas-fir	989	4	985
R/W Volume	Douglas-fir	63	1	62
Total Volume	Douglas-fir	1,052	5	1,047

	Species	DBH	Net Vol.	2-Saw	3-Saw	4-Saw
			Grade entages	2%	82%	16%
Areas 1-3	Douglas -fir	12	985	14	810	161
R/W	Douglas -fir	14	62	7	46	9
Total Volume	Douglas -fir	12	1,047	21	856	170

Attachments:

- Cruise Maps

- Cruise Design Species/Sort/Grade-BF Vol. Project Statistics Project Statistics
- Stand Table SummaryLog Stock Table

Prepared by:	Jon Long	Date:	10/25/2	2018	
Unit Forester:	Evelvn Hukari		Date:	11/05/2018	

TC TSTATS					S'. PROJE	FATIST ECT	FICS ELKTHIN			PAGE DATE	1 10/25/2018
TWP RGE	SECT	TRA	CT		TYPE		CRES	PLOTS	TREES	CuFt	BdFt
11S 09V	V 23	ALI	L		THIN		153.00	49	462	1	W
-					TREES		ESTIMATED TOTAL		ERCENT AMPLE		
	PLOT	S	TREES		PER PLO	Γ	TREES	T	REES		
TOTAL	4	9	462		9.4			20		·	
CRUISE		.0	138		6.9		28,283		.5		
DBH COUN	Γ					•					
REFOREST	_	_									
COUNT	2	.9	267		9.2		•				
BLANKS 100 %											
				STA	ND SUM	MARY					
	SAMPL	E	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
	TREE		/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DF-L		80	112.3	14.5	56	33,7	128,2	14,220	14,087	4,131	4,131
DF-T		55	71.0	12.3	49	16.7	58.8	6,461	6,438	1,793	1,793
R ALDER-L		3	1.6	13.7	38	0.4	1.6	92	92	34	34
											5,958
	ICE LIMITS	OT OF			WILL BE	51.0 E WITHIN	188.6 THE SAMPI	20,774 E ERROR	20,617	5,958	<i></i>
CONFIDEN 68.	ICE LIMITS	S OF TH	TE SAMPL	Æ	WILL BE	E WITHIN	THE SAMPI	E ERROR		,	
CONFIDEN	ICE LIMITS I TIMES C	OF TH	TE SAMPL	E VOLUME	WILL BE		THE SAMPI	E ERROR	OF TREES 5	,	INF. POP.
CL: 68.1 %	ICE LIMITS TIMES (OF THOUT OF	HE SAMPL	E VOLUME	WILL BE	E WITHIN	I THE SAMPI S - BF	E ERROR	OF TREES	REO.	INF. POP.
CONFIDEN 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T	ICE LIMITS TIMES C VA 4	S OF TH OUT OF DEFF AR.% 5.7 4.7	HE SAMPL F 100 THE S.E.% 5.1 6.0	E VOLUME	WILL BE SAMPI	E WITHIN E TREES AVG	THE SAMPI S - BF HIGH 151 109	E ERROR	OF TREES	REO.	INF. POP.
CONFIDEN 68.7 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L	ICE LIMITS TIMES C VA 4 4	OF THOUT OF DEFF AR.% 5.7 4.7	S.E.% 5.1 6.0 11.5	E VOLUME	WILL BE SAMPI OW 137 97 53	E WITHIN LE TREES AVG 144 103 60	THE SAMPI S - BF HIGH 151 109 67	E ERROR	OF TREES 5	REO.	INF. POP.
CONFIDEN 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T	ICE LIMITS TIMES C VA 4 4	S OF TH OUT OF DEFF AR.% 5.7 4.7	HE SAMPL F 100 THE S.E.% 5.1 6.0	E VOLUME	SAMPI OW 137 97	E WITHIN LE TREES AVG 144 103	THE SAMPI S - BF HIGH 151 109	E ERROR	OF TREES	REO.	INF. POP.
CONFIDEN 68.7 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 %	CE LIMITS COLUMN A VA 4 4 1 49 CCC	S OF TH DEFF AR.% 5.7 4.7 6.7 0.2	S.E.% 5.1 6.0 11.5 4.2	E VOLUME LO	WILL BE SAMPI OW 137 97 53 120 TREES	E WITHIN E TREES AVG 144 103 60 126	THE SAMPI S - BF HIGH 151 109 67 131	E ERROR #	OF TREES 5	REO. 10	INF. POP.
CONFIDEN 68.1 CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0	CE LIMITS COLUMN A VA 4 4 1 49 CCC VA	OF THE OUT OF OUT OF OUT OF OUT OF OUT OF OUT OF OUT	S.E.% S.E.% 5.1 6.0 11.5 4.2 S.E.%	E VOLUME LO	WILL BE SAMPI OW 137 97 53 120 TREES	E WITHIN LE TREES AVG 144 103 60 126 /ACRE AVG	THE SAMPI S - BF HIGH 151 109 67 131 HIGH	E ERROR #	OF TREES 5 97	REO. 10	INF. POP.
CONFIDEN 68. CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L	CE LIMITS COLUMN A VA 4 4 4 CCC VA VA VA VA I	G OF TH DUT OF DEFF 18.% 5.7 4.7 6.7 0.2 DEFF 18.% 2.2	S.E.% 5.1 6.0 11.5 4.2 S.E.% 1.7	E VOLUME LO	WILL BE SAMPI OW 137 97 53 120 TREES OW 110	E WITHIN LE TREES AVG 144 103 60 126 /ACRE AVG 112	THE SAMPI S - BF HIGH 151 109 67 131 HIGH 114	E ERROR #	OF TREES 5 97 OF PLOTS	REO. 10 24 REQ.	INF. POP.
CONFIDEN 68. CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T	ICE LIMITS I TIMES C VA 4 1 49 CCC VA II 5	G OF TH DUT OF DEFF 1R.% 5.7 4.7 6.7 0.2 DEFF 1R.% 2.2 8.3	S.E.% 5.1 6.0 11.5 4.2 S.E.% 1.7 8.3	E VOLUME LO	WILL BE SAMPI OW 137 97 53 120 TREES OW 110 65	E WITHIN LE TREES AVG 144 103 60 126 /ACRE AVG 112 71	THE SAMPI S - BF HIGH 151 109 67 131 HIGH 114 77	E ERROR #	OF TREES 5 97 OF PLOTS	REO. 10 24 REQ.	INF. POP.
CONFIDEN 68. CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L	ICE LIMITS I TIMES C VA 4 1 49 CCC VA 1: 5 34	G OF TH DUT OF DEFF 18.% 5.7 4.7 6.7 0.2 DEFF 18.% 2.2	S.E.% 5.1 6.0 11.5 4.2 S.E.% 1.7	E VOLUME LO	WILL BE SAMPI OW 137 97 53 120 TREES OW 110	E WITHIN LE TREES AVG 144 103 60 126 /ACRE AVG 112	THE SAMPI S - BF HIGH 151 109 67 131 HIGH 114	E ERROR #	OF TREES 5 97 OF PLOTS	REO. 10 24 REQ.	INF. POP. 1 INF. POP. 1
CONFIDEN 68. CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L	CE LIMITS TIMES C VA 4 4 1 49 CC VA 1 49 1 1 49 1 1 1 1 1 1 1 1 1 1 1 1 1	G OF TH DUT OF DEFF AR.% 5.7 4.7 6.7 0.2 DEFF AR.% 2.2 8.3 6.4	S.E.% 5.1 6.0 11.5 4.2 S.E.% 1.7 8.3 49.4	E VOLUME LO	WILL BE SAMPI OW 137 97 53 120 TREES OW 110 65 1 181	E WITHIN LE TREES AVG 144 103 60 126 /ACRE AVG 112 71 2 185	HIGH 114 77 2 189	E ERROR	OF TREES 5 97 OF PLOTS 5	REO. 10 24 REO. 10	INF. POP. 1 INF. POP. 1
CONFIDEN 68. CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL TOTAL	CE LIMITS COLUMN TIMES COLUMN TIMES COLUMN TERM TERM TERM TERM TERM TERM TERM TERM	S OF THOUT OF DEFF AR.% 5.7 4.7 6.7 0.2 DEFF AR.% 2.2 8.3 6.4 4.8	S.E.% 5.1 6.0 11.5 4.2 S.E.% 1.7 8.3 49.4	E VOLUME LO	WILL BE SAMPI OW 137 97 53 120 TREES OW 110 65 1 181	E WITHIN LE TREES AVG 144 103 60 126 /ACRE AVG 112 71 2	HIGH 114 77 2 189	E ERROR	OF TREES 5 97 OF PLOTS 5	REO. 10 24 REO. 10	INF. POP. INF. POP. INF. POP.
CONFIDEN 68. CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L	ICE LIMITS I TIMES C VA 4 4 1 49 6 CC VA 1: 5 34 14 CC VA	G OF TH DUT OF DEFF AR.% 5.7 4.7 6.7 0.2 DEFF AR.% 2.2 8.3 6.4 4.8 DEFF R.%	S.E.% 5.1 6.0 11.5 4.2 S.E.% 1.7 8.3 49.4 2.1 S.E.% 1.3	E VOLUME LO	WILL BE SAMPI OW 137 97 53 120 TREES OW 110 65 1 181 BASAL OW 127	E WITHIN LE TREES AVG 144 103 60 126 /ACRE AVG 112 71 2 185 AREA/A AVG 128	THE SAMPI S - BF HIGH 151 109 67 131 HIGH 114 77 2 189 CRE HIGH 130	E ERROR	OF TREES 5 97 OF PLOTS 5 9 OF PLOTS	REO. 10 24 REQ. 10 2 REQ. 10	INF. POP. INF. POP. INF. POP.
CONFIDEN 68. CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T	ICE LIMITS I TIMES C VA 4 4 1 4 5 CC VA 1 5 34 14 CC VA	G OF TH OUT OF DEFF IR.% 5.7 4.7 6.7 0.2 DEFF IR.% 2.2 8.3 6.4 (.8 DEFF IR.% 2.9 0.0 6.2	S.E.% 5.1 6.0 11.5 4.2 S.E.% 1.7 8.3 49.4 2.1 S.E.% 1.3 8.0	E VOLUME LO	WILL BE SAMPI OW 137 97 53 120 TREES OW 110 65 1 181 BASAL OW 127 54	E WITHIN JE TREES AVG 144 103 60 126 /ACRE AVG 112 71 2 185 AREA/A AVG 128 59	THE SAMPI S - BF HIGH 151 109 67 131 HIGH 114 77 2 189 CRE HIGH 130 63	E ERROR	OF TREES 5 97 OF PLOTS 5 9 OF PLOTS	REO. 10 24 REQ. 10 2 REQ. 10	INF. POP. INF. POP. INF. POP.
CONFIDEN 68. CL: 68.1 % SD: 1.0 DF-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 %	ICE LIMITS I TIMES C VA 4 4 1 4 5 CC VA 1 5 34 14 CC VA	G OF TH DUT OF DEFF AR.% 5.7 4.7 6.7 0.2 DEFF AR.% 2.2 8.3 6.4 4.8 DEFF R.%	S.E.% 5.1 6.0 11.5 4.2 S.E.% 1.7 8.3 49.4 2.1 S.E.% 1.3	E VOLUME LO	WILL BE SAMPI OW 137 97 53 120 TREES OW 110 65 1 181 BASAL OW 127 54 1	E WITHIN LE TREES AVG 144 103 60 126 /ACRE AVG 112 71 2 185 AREA/A AVG 128 59 2	THE SAMPI S - BF HIGH 151 109 67 131 HIGH 114 77 2 189 CRE HIGH 130 63 2	E ERROR	OF TREES 5 97 OF PLOTS 5 9 OF PLOTS	REO. 10 24 REQ. 10 2 REQ. 10	INF. POP. INF. POP. INF. POP.
CONFIDEN 68. CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L TOTAL	CE LIMITS TIMES C VA 4 1 49 CC VA 11 5 344 14 CC VA 5 336	S OF THOUT OF DEFF AR.% 5.7 4.7 6.7 0.2 DEFF AR.% 2.2 8.3 6.4 6.8 DEFF AR.% 9.0 6.2 8.9	S.E.% 5.1 6.0 11.5 4.2 S.E.% 1.7 8.3 49.4 2.1 S.E.% 1.3 8.0	E VOLUME LO	WILL BE SAMPI OW 137 97 53 120 TREES OW 110 65 1 181 BASAL OW 127 54	E WITHIN JE TREES AVG 144 103 60 126 /ACRE AVG 112 71 2 185 AREA/A AVG 128 59	THE SAMPI S - BF HIGH 151 109 67 131 HIGH 114 77 2 189 CRE HIGH 130 63	E ERROR	OF TREES 5 97 OF PLOTS 5 9 OF PLOTS	REO. 10 24 REO. 10 2 REO. 10	INF. POP. 1 INF. POP. 1
CONFIDEN 68.1 CL: 68.1 SD: 1.0 DF-L DF-T R ALDER-L DF-T R ALDER-L TOTAL CL: 68.1 SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1	CC VA 1 TIMES CC VA 4 4 4 4 4 6 6 CC VA 1 5 34 6 CC VA 1 6 CC VA 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	S OF THOUT OF DEFF AR.% 5.7 4.7 6.7 2.2 8.3 6.4 4.8 DEFF R.% DEF	S.E.% 5.1 6.0 11.5 4.2 S.E.% 1.7 8.3 49.4 2.1 S.E.% 1.3 8.0 48.4	E VOLUME LO LO	SAMPLOW 137 97 53 120 TREES OW 110 65 1 181 BASAL OW 127 54 1 189 NET BE	E WITHIN LE TREES AVG 144 103 60 126 /ACRE AVG 112 71 2 185 AREA/A AVG 128 59 2 189 F/ACRE	HIGH 114 77 2 189 CRE HIGH 130 63 2 189	EERROR #	OF TREES 5 97 OF PLOTS 5 OF PLOTS 5	REO. 10 24 REO. 10 2 REO. 10	INF. POP. 1 INF. POP. 1
CONFIDEN 68. CL: 68.1 % SD: 1.0 DF-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0	CC LIMITS CO VA 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	G OF THOUT OF DEFF AR.% 5.7 4.7 6.7 2.2 EFF AR.% 2.2 8.3 6.4 4.8 EFF AR.% 2.0 6.2 8.9 EFF AR.% 2.0 6.2 8.9	S.E.% S.E.% 5.1 6.0 11.5 4.2 S.E.% 1.7 8.3 49.4 2.1 S.E.% 1.3 8.0 48.4 S.E.%	E VOLUME LO LO	WILL BE SAMPI OW 137 97 53 120 TREES OW 110 65 1 181 BASAL OW 127 54 1 189 NET BE	E WITHIN LE TREES AVG 144 103 60 126 /ACRE AVG 112 71 2 185 AREA/A AVG 128 59 2 189 E/ACRE AVG	THE SAMPI S - BF HIGH 151 109 67 131 HIGH 114 77 2 189 CRE HIGH 130 63 2 189 HIGH	EERROR #	OF TREES 5 97 OF PLOTS 5 OF PLOTS 5	REO. 10 24 REO. 10 2 REO. 10	INF. POP. INF. POP. INF. POP.
CONFIDEN 68. CL: 68.1 % SD: 1.0 DF-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL	ICE LIMITS I TIMES C VA 4 4 1 49 6 CC VA 11 5 344 14 6 CC VA	G OF TH OUT OF DEFF IR.% 5.7 4.7 6.7 0.2 DEFF IR.% 2.2 8.3 6.4 (.8 DEFF IR.% 2.0 6.2 3.9	S.E.% 5.1 6.0 11.5 4.2 S.E.% 1.7 8.3 49.4 2.1 S.E.% 1.3 8.0 48.4 S.E.% 1.6	E VOLUME LO LO	WILL BE SAMPI OW 137 97 53 120 TREES OW 110 65 1 181 BASAL OW 127 54 1 189 NET BE OW 3,868	E WITHIN LE TREES AVG 144 103 60 126 /ACRE AVG 112 71 2 185 AREA/A AVG 128 59 2 189 E/ACRE AVG 144 AVG 128 59 149 E/ACRE AVG 149 14,087	THE SAMPI S - BF HIGH 151 109 67 131 HIGH 114 77 2 189 CRE HIGH 130 63 2 189 HIGH 14,305	EERROR #	OF TREES 5 97 OF PLOTS 5 OF PLOTS 5	REO. 10 24 REO. 10 2 REO. 10	INF. POP. INF. POP. 1 INF. POP.
CONFIDEN 68. CL: 68.1 % SD: 1.0 DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0 DF-L DF-T R ALDER-L TOTAL CL: 68.1 % SD: 1.0	ICE LIMITS I TIMES C VA 4 4 1 49 6 CC VA 11 5 344 14 6 CC VA	S OF THOUT OF OPER 1. C. M.	S.E.% S.E.% 5.1 6.0 11.5 4.2 S.E.% 1.7 8.3 49.4 2.1 S.E.% 1.3 8.0 48.4 S.E.%	E VOLUME LO LO	WILL BE SAMPI OW 137 97 53 120 TREES OW 110 65 1 181 BASAL OW 127 54 1 189 NET BE	E WITHIN LE TREES AVG 144 103 60 126 /ACRE AVG 112 71 2 185 AREA/A AVG 128 59 2 189 E/ACRE AVG	THE SAMPI S - BF HIGH 151 109 67 131 HIGH 114 77 2 189 CRE HIGH 130 63 2 189 HIGH	EERROR #	OF TREES 5 97 OF PLOTS 5 OF PLOTS 5	REO. 10 24 REO. 10 2 REO. 10	INF. POP. INF. POP. INF. POP. 1:

TC	TC TSTNDSUM Stand Table Summary															
								Proj	ect	ELKTE	IIN					
T11 Twp 11S	,	R09W Rge 09W	S23 T7 Sec 23	THIN Traci ALL	t			Гуре ГНІN		cres 3.00	Plots 49	Sample T		T11S R(Page: Date: Time:	09W S23 ¹ 1 10/25/2 9:28:50	01
	s		Sample	FF	Av Ht	Trees/	BA/	Logs	Aver:	age Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	Т	tals	
Spc	T	DBH	Trees	. 161	Tot	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	L	1	3	87	63	7.283	4.81	7.28	15.3	53.3		112	388		171	59
DF	L	1	. 10	87	71	20.579		28.74	14.7	50.8		423	1,459		648	223
DF	L	4	14	87	79	24,333		45.19	14.5	49.6		657	2,242		1,005	343
DF	L	1	9	86	87	13.488		26.98	17.7	60.6		478	1,633		731	250
DF	L		11	87	82	14.360		28,72	20.0	66.4		573	1,906		877	292
DF	L	i	11	86	90	12.621		25.24	24.1	83.2		609	2,100		932	321
DF	L	1	8	86	91	1	12.82	16.26	28.4	101.2		462	1,647	ĺ	708 524	252
DF	L L	ł .	6 5	85 86	93 94	5.439 4.068	9.61 8.01	10.88 8.14	31.5 35.8	105.0 118.0		343 291	1,142 960		524 446	175 147
DF DF	L	1	1	86	97	.734	1.60	1.47	40.0	130.0		59	191		90	29
DF	L	1	1	86	105	.666	1.60	1.33	45.5	150.0		61	200		93	31
DF	L	1	1	85	106	.607	1.60	1.21	52.0	180.0		63	218		97	33
DF		Totals	80	87	82	112.309	128.16	201.44	20.5	69.9		4,131	14,087		6,321	2,155
DF	Т	9	2	88	60	4.838	2.14	4.84	10.5	45.0		51	218		78	33
DF	T	10	5	86	66	10.008	5.34	10.01	12.6	51.7		126	518		192	79
DF	T	11	6	88	89	9.716	6.41	16.19	11.9	46.0		193	745		295	114
DF	T	12	13	86	77	17.809	13,89	24.61	15.6	53.9		383	1,327		586	203
DF	T	13	13	87	85	15.072	13.89	27.82	15.9	52.9		442	1,472		676	225
DF	T	,	3	87	95	2.999	3.21	6.00	18.8	68.3		113	410		173	63
DF	T	ı	7	86	88	6.096	7.48	12.19	20.8	74.3		253	906		388	139
DF DF	T T	ı	4 2	87 85	89 99	3.061 1.356	4.27 2.14	6.12 2.71	24.8 29.8	90.0 107.5		152 81	551 292		232 123	84 45
DF .	-	Totals	55	87	80	70.955	58.78	110.50	16.2	58.3		1,793	6,438		2,743	985
RA	L	12	. 1	87	53	.693	.54	.69	16.0	50.0		11	35		17	5
RA	L	l	1	87	62	.509	.54	.51	21.0	60.0		11	31		16	5
RA	L	- 16	1	86	53	.390	.54	.39	32.0	70.0		12	27		19	4
RA		Totals	3	. 87	56	1.592	1.63	1.59	21.5	58.1		34	92		52	14
Totals		•	138	87	81	184.855	188.57	313.53	19.0	65.8		5958	20,617		9,116	3,154

т т	SPC	STG	R			Species,	Sort G Projec	rade - Boai et: ELI	rd F «THI		olumes ('	Гуре)					Page Date Time	, 1	1 .0/25/2 9:28:4	
T11S Twp 11S		W S Rg 09	e	Sec	Tract ALL		Type THI			Plot 49	-	le Tree	es	1	CuFt	T1 Bd W		09W	S23 T	THIN
				%					Per	rcent N	let Board Fo	oot Vol	ume			A	verag	ge Log	•	Logs
Spp	S T		Gr ad	Net BdFt	Bd. Def%	Ft. per Ac Gross	re · Net	Total Net MBF	L 4-5		ile Dia. 12-16 17+	Lo 12-20	g Le	_	36-99	Ln Ft	Dia In	Bd Ft	CF/ Lf	Per /Acre
DF	L :	DO	2M	16		2,340	2,340	358		39	61		•	32	68	37	12	185	1.36	12.6
DF	L	DO	3M	71	1.1	10,154	10,043	1,537		100				24	76	37	8	89	0.71	113.3
DF	L	DO	4M	13	1.3	1,726	1,703	261	3	97		80	15	4		18	6	23	0.38	75.5
DF L	, Т	otals	;	68	.9	14,220	14,087	2,155	0	90	10	10	2	23	65	30	7	70	0.68	201.4
DF	Т	DO	CÚ													7	8		0.00	2,2
DF	T	DO	2M	1		95	95	15		100				100		32	11	140	1.16	.7
DF	T	DO	3M	82	.4	5,316	5,293	810		100		0	4	25	70	36	7	76	0.59	69.5
DF	T	DO	4M	17		1,050	1,050	161	2	98		47	45		8	20	6	26	0.35	40.3
DF T	Ϋ́	otals		31	.4	6,461	6,438	985	0	100		-8	11	22	59	30	7	57	0.53	112.7
RA	L	DO	CU													6	12		0.00	.5
	L	DO	CR	100		92	92	14		100	-		37		63	35	7	58	0.61	1.6
RA L	, Т	otals	3	0		92	92	14		100			37		63	28	8	44	0.58	2.1
Type To	otals				.8	20,774	20,617	3,154	0	93	7	9	5	23	63	30	7	65	0.63	316.3

ТТ	SPCSTG	R			Species	, Sort G Projec	rade - Boar et: ELF	rd Fo		olumes (T	Гуре)					Page Date Time	1	1 0/25/2):44:1	
T11S Twp 11S	R09W S Rg 09	ge	Sec	Tract LL		Type R/W	JW 3.00 49 173 ₁									IFt	.09W S	S23 T	R/W
Spp	m.	Gr ad	% Net BdFt	Bd. Def%	Ft. per A	ore Net	Total Net MBF		og Sca	let Board Fo ale Dia. 12-16 17+	Lo	ume g Ler 21-30		36-99	-	Dia	ge Log Bd Ft	CF/ Lf	Logs Per /Acre
DF DF DF DF	DO DO DO	CU 2M 3M 4M	11 75 14	.9 .8	2,435 15,470 2,776	2,435 15,336 2,753	7 46 8	2	41 100 98	59	0 68	1 27	35 25 3	65 74 3	7 37 37 19	12	84	0.00 1.35 0.66 0.37	2.2 13.3 182.8 115.8
DF RA	Totals DO	CU	100	.8	20,682	20,525	62	0	93	7	9	5	23	63	30	7	65	0.63	314.2
RA RA	DO Totals	CR	100		92 92	92 92	0	-	100			37		63 63	35	7	58 44		1.6
Туре Т	otals			.8	20,774	20,617	62	0	93	7	9	5	23	63	30	7	65	0.63	316.3

ſ

TC TI	.OGST	VB				g Sto	ck Ta	able - ELI	MBF KTHIN								
T11S Twp 11S					Type THIN	Ĭ	Acres		lots 49	Sample 1	e Tre	es	P	S R09 Page Pate Time	1 10/25	TTHIN /2018 :47AM	
		Gr Log	Gross	%	Net	%			Net Vo	lume b	y Scaling	g Dia	meter in l	Inche	S		1
Spp T	rt d	e Len	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11 1	2-13	14-15 1	6-19	20-23	24-29	30-39 40+
DF L		2M 32 2M 34	47 68		47 68	1.5 2.2					44	47 24					
		2M 40	243		243	7.7					95	122	27				
l –		3M 32	308	3.0	299	9.5	<u> </u>		73	226							
DF L	DO	3M 34	74	2.7	72	2.3			48		24						
I		3M 36	117		117	3.7			35	82							
DF L		3M 38 3M 40	1,047	.5	7 1,041	.2 33.2			7 175	479	387						
_		4M 16	141		141	4.5			136	. 5							
DF L		4M 18	34		34	1.1			34	, •							
DF L		4M 20	34		34	1.1		_	22	12							
DF L		4M 24 4M 28	30		30 4	.9 .1		7	23 4								
DF L		4M 30	6		6	.2			6					İ			
DF L	DO	4M 34	15	23.4	11	.4			11								
1		CU 6															
DF T	DO	CU 8															
DF T	DO	2M 32	15		15	.5					15						
1		3M 16	4		4	.1			4								
DF T		3M 22 3M 28	10 13		10 13	.3 .4				10	13			Ì			
DF T		3M 30	11	16.7	9	.3				9	15						
DF T		3M 32	165	1.1	163	5.2			107	40	16						
DF T		3M 34 3M 36	42 77		42 77	1.3 2.5			12 62	12 15	17						
i		3M 38	27		27	.8			12	14							
E		3M 40	465		465	14.8			151	243	71						*,
		4M 14	12		12	.4			12								
1		4M 16	47		47	1.5			47								
		4M 18 4M 20	4 14		4 14	.1 .4		4	4 10								
DF T	DO	4M 21	4		4	.I			4								
		4M 22	19		19	.6			19								
		4M 24 4M 26	18 4		18 4	.6 .1			18 4								
DF T	DO	4M 30	28		28	.9			28								
DF T	DO	4M 40	12		12	.4			12								
DF		Totals	3,164		3,140	99.6		10	1079	1148	683	192	27				
RA L	DO	CU 6															
RA L			5		5	37.5			5								
RA L			5		5 4	33.0 29.5			5 4								
RA L			4				<u> </u>					-					
RA		Totals	14		14	.4			14	1110		100	05				
Total All	Specie	5	3,178		3,154	100.0		10	1093	1148	683	192	27				

FPA Written Plan for Timber Harvest in a MMMA

Little Elk Creek Timber Sale (Area 3)

Portions of Section 23, T11S, R9W, W.M., Lincoln County, Oregon.

<u>Protected Resource</u>: Salmon Creek Marbled Murrelet Management Area (Endangered species nesting site).

<u>Situation</u>: The southeast portion of Area 3 is within the non-habitat buffer of the Salmon Creek Marbled Murrelet Management Area (MMMA). Commercial thinning operations will occur within the non-habitat buffer of the MMMA.

Resource Protection Measures:

- 1. Felling, Cable Yarding and Ground Yarding Operations within the MMMA shall not be allowed from April 1 through August 5, or from August 6 through September 15 between two hours before sunset and two hours after sunrise.
- 2. The use of chainsaws within the MMMA shall not be allowed from April 1 through August 5, or from August 6 through September 15 between two hours before sunset to two hours after sunrise.
- 3. Cable Landing locations in the MMMA will require pre-marking by operator and review and approval by an ODF representative.
- 4. Human food trash will be policed and removed from all project areas, landings, and roadways on a daily basis. Food items and food waste will be stored inside appropriate containers or vehicles.
- 5. Tailholds and guylines in the Occupied Habitat of the MMMA will have the following additional restrictions:
 - a. Consultation with STATE and approval of tailholds, guylines, and cable line placement is required before tailholding or guylining is allowed in this area. (A lead time of two weeks is required to schedule a field consultation between ODF, PURCHASER, the Operator, and the person responsible for line placement.)
 - b. The following trees within the MMMA will not be selected for tailhold or guyline anchors:
 - i. Trees with potential nest platforms or immediately surrounding trees that provide cover to the potential nest platforms, as determined by STATE.
 - ii. The largest trees in the areas where the number of large trees is limited.
 - iii. Minor conifer species not commonly found in the stand.
 - c. Cables located within the MMMA will be located so that raising, lowering or use of the line will not damage trees considered to have suitable nesting platforms or associated cover trees.
 - d. Any plans to tailhold in the MMMA must be addressed in the Operations Plan and at the Pre-Operations meeting.

I, the undersigned, submit this written plan Practices Act, regarding operations conducted	-	-
PURCHASER REPRESENTATIVE	DATE	
STATE REPRESENTATIVE	DATE	_

FPA Written Plan for Timber Harvest within 100' of a Type F stream

Little Elk Thin Timber Sale (Areas 1 and 3)

Portions of Sections 13 and 23, T11S, R09W, W.M., Lincoln County, Oregon.

<u>Protected Resources</u>: Area 1- A small Type F tributary to Little Elk Creek. Area 3 - Salmon Creek, a medium Type F stream, and a small Type F tributary to Salmon Creek.

<u>Situation</u>: Approximately 1,500 feet of a small, Type F stream (Little Elk Creek tributary) is adjacent to the east boundary of Area 1. Approximately 1,200 feet of a medium, Type F stream (Salmon Creek) is adjacent to the east boundary of Area 3, and approximately 1,800 feet of a small, Type F stream (Salmon Creek tributary) is adjacent to the north boundary of Area 3.

Harvest operations may occur within 100 feet of these streams, and skylines may pass over these streams. This is a commercial thinning sale, an average of 130 square feet of basal area will be left in the harvest areas after logging is completed.

Resource Protection Measures:

- 1. An average 50 foot (minimum of at least 25 foot) horizontal distance no-harvest stream buffer has been established along all portions of the Type F streams bordering the sale areas.
- 2. Trees adjacent to the stream buffers shall be felled so that they do not enter into the buffer.
- 3. Logs will not be yarded over the stream buffers, but tailholds for skyline cable yarding will likely be needed on the other side of these streams.
- 4. Where the logging system requires the skyline to pass over the stream, cables will be pulled out of the streamside vegetation prior to rigging the next yarding road.
- 5. Skyline corridors passing over the stream will be spaced a minimum of 100 feet apart.
- 6. Skyline cables will not be lowered into streamside vegetation during the yarding cycle.

I, the	e undersigned,	submit thi	s written	plan in	compliance	with t	the r	equirements	of th	e Forest
Pract	tices Act, regar	ding operat	ions cond	lucted wi	ithin 100 feet	of Typ	pe F s	streams.		

PURCHASER REPRESENTATIVE	DATE	
STATE REPRESENTATIVE	DATE	

Oregon Department of Forestry OPERATIONAL PERIODS and SEASONAL RESTRICTIONS

ODF/State Forests Operational Periods and Seasonal Restriction WALT Sys Gen Report 2014 Page 1 of 1

West Oregon, NWOA 24533 ALSEA HWY, PHILOMATH, OR 97370 (541) 929-3266

Sale Number	
WO-341- <none>-W00775-01</none>	٦

Sale Name	
Little Elk Thin	

Expiration Date

December 31, 2021

WO-341- <nor< th=""><th>ne>-W00775-01</th><th></th><th></th><th colspan="7">Little Elk Thin</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>De</th><th>cen</th><th>nbe</th><th>r 31</th><th>, 202</th><th>21</th><th></th><th></th><th></th></nor<>	ne>-W00775-01			Little Elk Thin																De	cen	nbe	r 31	, 202	21					
				Jai	n	Fe	b	Ма	ar	Ар	r	Ma	ay	Ju	ın	Ju	ıl	Αι	ıg	S	ер	T	Oct		No	v	De	ec	Dat	te
Harvesting	Comments	Units	Project	1	15	1	15	1	15	1	15	1	15	1	15	1	15	1	15	1	1	5 1		15	1	15	1	15		
Ground yarding																														
Felling in seasonal restricted area	Portions of Area 3 located within the MMMA																													
Cable yarding in seasonally restricted area	Portions of Area 3 located within the MMMA																													
Ground yarding in seasonally restricted area	Portions of Area 3 located within the MMMA, in addition to above ground yarding restriction																													
Chainsaw use in seasonally restricted area	Creating Tailholds in any portion of MMMA in/adjacent to Area 3																													
Other	Complete all Harvest Operations on Areas 2 and 3																												4/1/2	.021
				Jai	n	Fe	b	Ма	ar	Аp	r	Ma	ay	Ju	ın	Ju	ıl	Αι	ıg	s	ер	1	Oct	:	No	٧	De	ec	Dat	te
Hauling	Comments	Units	Project	1	15	1	15	1	15	1	15	1	15	1	15	1	15	1	15	1	15	5 1		15	1	15	1	15		
Log Hauling on Unsurfaced Roads																														
	Г			1		T = -					_			Ι		T		T a.		Τ.		Т.	0 - 1		NI-					
				Ja		Fe		Ма		Ар		Ма		Ju		Ju		Αι			ер		Oct		No		De		Dat	te
Project Work	Comments	Units	Project	1	15	1	15	1	15	1	15	1	15	1	15	1	15	1	15	1	1	5 1		15	1	15	1	15		
Activity in Live Streams	Culvert replacement																													
Landing and Road Construction or Improvement Operations																														
Non-project roads and																														

	Operation Allowed		Operation Restricted		Activity Restricted 2 hours before sunset and 2 hours after sunris
--	-------------------	--	----------------------	--	--

Roads

Highway

County Road

Surfaced Road

=== Unsurfaced Road

New ConstructionSeasonal Road Restriction

Streams

· — · Type F Stream

· Type N Stream

Unposted Stream Buffer

Stream Buffer

Marbled Murrelet Management Area

Occupied Habitat

Non-Habitat Buffer

Cable Corridors

O Landings

Land Survey Monument

P - P - Buried Fiber Optic Line
Partial Cut Not Required

LOGGING PLAN

OF TIMBER SALE CONTRACT NO. WO-341-2019-W00775-01 LITTLE ELK THIN PORTIONS OF SECTIONS 13, 23 & 24 T11S, R09W, W.M.,

LINCOLN COUNTY, OREGON

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

Scale 1:12,000

1,000 0 1,000 2,000

AREA	NET ACRES TRACTOR	NET ACRES CABLE
1 (PC) 2 (PC) 3 (PC)	12 38 4	42 25 35
тотат	5.1	102

Created By: Blake McKinley blake.mckinley@oregon.gov Date: 10/29/2018

Boundaries

• • • • • Timber Sale Boundary

Right of Way (Posted)

Roads

Surfaced Road

Unsurfaced Road

New Construction

Seasonal Road Restriction

Streams

Type F Stream

Type N Stream

Unposted Stream Buffer

Stream Buffer

Marbled Murrelet Management Area

Occupied Habitat Non-Habitat Buffer

Reforestation Area

Cable Corridors

0 Landings

Land Survey Monument Partial Cut Not Required

LOGGING PLAN

OF TIMBER SALE CONTRACT NO. WO-341-2019-W00775-01 LITTLE ELK THIN PORTIONS OF SECTIONS 13, 23 & 24 T11S, R09W, W.M., LINCOLN COUNTY, OREGON

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

> Scale 1:12,000

1.000 1,000 2.000

	NET ACRES TRACTOR	NET ACRES CABLE
1 (PC) 2 (PC) 3 (PC)	12 38 4	42 25 35
TOTAL	54	102

Created By: Blake McKinley blake.mckinley@oregon.gov Date: 10/29/2018