

District: West Oregon Date: January 23, 2019

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$332,641.53	\$17,266.50	\$349,908.03
		Project Work:	(\$54,001.00)
		Advertised Value:	\$295,907.03

District: West Oregon Date: January 23, 2019

Timber Description

Location: Portions of Section 34, T9S, R8W and Portions of Sections 4 and 5, T10S, R8W, W.M., Polk County, Oregon.

Stand Stocking: 40%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	13	0	97
Western Hemlock / Fir	16	0	96
Alder (Red)	12	0	95

Volume by Grade	28	3S & 4S 6"- 11"	SM & Better	Camprun	Total
Douglas - Fir	229	1,684	19	0	1,932
Western Hemlock / Fir	5	8	0	0	13
Alder (Red)	0	0	0	45	45
Total	234	1,692	19	45	1,990

Comments: Pond Values Used: Local Pond Values, January, 2019.

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost:

\$675.87/MBF = \$1,135.00/MBF - \$459.13/MBF

Pulp Logs (Conifer & Hardwoods) = \$4/Ton

Other Costs (with Profit & Risk to be added):

Intermediate Support/Tail Trees: 15 supports @ \$100/support = \$1,500.

TOTAL Other Costs (with Profit & Risk to be added) = \$1,500.

Other Costs (No Profit & Risk added): Non-Project Roads and Landings: \$750

Invasive Species Equipment Cleaning: \$2,000

Water Bar and Block Dirt Roads: 77 stations @ \$15.96/station = \$1,229 Firewood Sorting & Landing Piling: 14 landings @ \$180/landing = \$2,520 Landing Piling: 10 landings @ \$100/landing = \$1,000

TOTAL Other Costs (No Profit & Risk added) = \$7,499

Slash Disposal: Move-in; \$1,290

Weed wash equipment: \$300 Work: 36 hours @\$150/hr = \$5,400 Total slash disposal = \$6,990

ROAD MAINTENANCE

Move-in: (Grader) \$778

Final Road Mintenance: \$8,166

TOTAL Road maintenance: \$8,944/1,990 MBF = \$4.49/MBF

1/24/19 3

Timber Sale Appraisal Thin Women

Sale WO-341-2019-19-

Date: January 23, 2019 **District: West Oregon**

Logging Conditions

47.47% Douglas - Fir Combination#: 1

Logging System: Cable: Medium Tower >40 - <70 Process: Harvester Head Delimbing

Medium (800 ft) yarding distance: downhill yarding: No

Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF tree size:

loads / day: bd. ft / load: 3700

cost / mbf: \$420.56

machines: Log Loader (A)

Forwarder Harvester

Tower Yarder (Medium)

Douglas - Fir 8.38% Combination#: 2

Logging System: Shovel Process: Harvester Head Delimbing

Short (400 ft) yarding distance: downhill yarding: No

Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF tree size:

7 loads / day: bd. ft / load: 3700

cost / mbf: \$206.33 machines: Forwarder

Harvester

Combination#: 3 Douglas - Fir 13.25%

> Western Hemlock / Fir 30.00% Alder (Red) 30.00%

Cable: Small Tower <=40 Logging System: Process: Harvester Head Delimbing

Short (400 ft) yarding distance: downhill yarding: No

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF

12 loads / day: bd. ft / load: 3800

cost / mbf: \$161.85

machines: Log Loader (A)

Forwarder Harvester

Tower Yarder (Small)

Combination#: 4 Douglas - Fir 30.91%

> 70.00% Western Hemlock / Fir Alder (Red) 70.00%

Process: Harvester Head Delimbing Logging System: Shovel

Short (400 ft) downhill yarding: No yarding distance:

Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF tree size:

loads / day: 15 bd. ft / load: 3800

cost / mbf: \$93.76 machines: Forwarder Harvester

1/24/19 4

District: West Oregon Date: January 23, 2019

Logging Costs

Operating Seasons: 3.00

Profit Risk: 12%

Project Costs: \$54,001.00

Other Costs (P/R): \$1,500.00

Slash Disposal: \$6,990.00

Other Costs: \$7,499.00

Miles of Road

Road Maintenance:

\$4.49

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load		
Douglas - Fir	\$0.00	2.0	4.0		
Western Hemlock / Fir	\$0.00	2.0	3.8		
Alder (Red)	\$0.00	2.0	3.5		

District: West Oregon Date: January 23, 2019

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Brand & Paint	Other	Total			
Douglas -	Douglas - Fir											
\$267.35	\$4.62	\$6.62	\$122.31	\$0.75	\$48.20	\$3.51	\$2.00	\$3.77	\$459.13			
Western H	emlock	/ Fir										
\$114.19	\$4.67	\$6.62	\$130.00	\$0.75	\$30.75	\$3.51	\$2.00	\$3.77	\$296.26			
Alder (Red)											
\$114.19	\$4.71	\$6.62	\$142.50	\$0.75	\$32.25	\$3.51	\$2.00	\$3.77	\$310.30			

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$629.69	\$170.56	\$0.00
Western Hemlock / Fir	\$0.00	\$536.23	\$239.97	\$0.00
Alder (Red)	\$0.00	\$694.00	\$383.70	\$0.00

District: West Oregon Date: January 23, 2019

Summary

Amortized

Specie	MBF	Value	Total		
Douglas - Fir	0	\$0.00	\$0.00		
Western Hemlock / Fir	0	\$0.00	\$0.00		
Alder (Red)	0	\$0.00	\$0.00		

Unamortized

Specie	MBF	Value	Total		
Douglas - Fir	1,932	\$170.56	\$329,521.92		
Western Hemlock / Fir	13	\$239.97	\$3,119.61		
Alder (Red)	45	\$383.70	\$17,266.50		

Gross Timber Sale Value

Recovery: \$349,908.03

Prepared By: Jon Long Phone: 541-929-9169

SUMMARY OF ALL PROJECT COSTS

Sale Name:	Thin Women			Date: Time:	July 2018 14:46	
Project #1 - New (Construction			-		
Road Segment		<u>Length</u>		Cost		
A to B (dirt)		22.2 sta		\$2,828		
C to D (dirt)		19.1 sta		\$2,284		
E to F (dirt)		2.6 sta		\$1,358		
Pt. G		N/A		\$1,951		
H to I (dirt)		5.0 sta		\$2,017		
J to K (dirt)		5.6 sta		\$3,997		
L to M (rocked)		1.0 sta		\$2,036		
	TOTALS	55.5 sta	1.1 Mi			\$16,471
Droinet #2 Dood	l					
Project #2 - Road Road Segment	<u>improvement</u>	Longth		Cost		
1 to 2		<u>Length</u> 223.2 sta		<u>Cost</u> \$12,948		
3 to 4		128.8 sta		\$12,9 4 0		
5 to 6 (dirt)		18.2 sta		\$1,569		
7 to 8 (dirt)		4.3 sta		\$1,172		
9 to 10		5.9 sta		\$3,775		
11 to 12		11.0 sta		\$2,200		
	TOTALS	391.4 sta	7.4 Mi			\$33,879
Move in			<u>Cost</u>			
Excavator, C325 o	-		\$1,290)		
Dozer, D-7 or equi			\$805			
Grader, G14 or equ	uiv.		\$778			
Vibratory roller			\$778	3		
	TOTAL					\$3,651

GRAND TOTAL \$54,001

Compiled by A. Arvin Date 07/05/2018

SALE ROAD	Thin Woman A to B (dirt)		Project # Unsurface		utsloped	LENGTH d	const		22.2 sta	
	G AND GRUBBING	;	0.1.007.00	,				# 4.000		
0.9	9 acres @		\$1,337.00) /ac	cre		=	\$1,203		
				ТО	TAL CL	EARING A	ND GRUI	BBING =		\$1,203
EXCAVA	ΓΙΟΝ									
Shape/out	tslope subgrade grader)	22.2 sta	@	\$	15.40	/sta	=	\$342		
Compact (with vibra	subgrade atory roller)	22.2 sta	@	\$	13.20	/sta	=	\$293		
						TOTAL E	XCAVATI	ON =		\$635
SURFACI	NG				Size	Cost/yd				
Junction r	ock	30	cy of	ja	aw-run	\$30.51	=	\$915		
Spread/co (with doze	ompact rock er)	0.5 sta	@	\$	149.00	/hr	=	\$75		
						TOTAL R	оск соз	ST =		\$990
Compiled	by:	A. Arvin								
Date:		Jul 5, 2018				GRAND 1	TOTAL ==	===>		\$2,828

GRAND TOTAL ====>

\$2,284

SALE ROAD	Thin Woman C to D (dirt)		Project # Consurfaced	-	utsloped	LENGTH	I const		19.1 sta	
	IG AND GRUBBIN 3 acres @	G	\$1,337.00	/ac	cre		=	\$1,738		
			-	TO	TAL CL	EARING A	AND GRUB	BING =		\$1,738
•	tslope subgrade	19.1 sta	@	\$	15.40	/sta	=	\$294		
•	d grader) subgrade atory roller)	19.1 sta	@	\$	13.20	/sta	=	\$252		
						TOTAL E	EXCAVATIO	N =		\$546
Compiled	by:	A. Arvin								

Jul 5, 2018

Date:

SALE Thin Woman Project # 1 LENGTH const 2.6 sta ROAD E to F (dirt) Unsurfaced, outsloped

CLEARING AND GRUBBING

0.3 acres @ \$1,337.00 /acre \$401

> TOTAL CLEARING AND GRUBBING = \$401

EXCAVATION With D7 dozer or equivalent

\$494 Construct road 2.6 sta \$190.00 /sta Landing Construction 1 Ldg @ \$389.00 /Ldg \$389 = Shape/outslope subgrade @ \$ 15.40 /sta \$40 2.6 sta = (with road grader) Compact subgrade 2.6 sta @ 13.20 /sta \$34 = (with vibratory roller)

> TOTAL EXCAVATION = \$957

Compiled by: A. Arvin

GRAND TOTAL ====> \$1,358 Date: Jul 5, 2018

SALE Thin Woman Project # 1 LENGTH const

ROAD Pt. G

CLEARING AND GRUBBING

0.2 acres @ \$1,337.00 /acre = \$267

TOTAL CLEARING AND GRUBBING = \$267

EXCAVATION With D7 dozer or equivalent

Landing Construction 1 Ldg @ \$389.00 /Ldg = \$389

TOTAL EXCAVATION = \$389

Landing rock 40 cy of jaw-run \$30.51 = \$1,220 Spread/compact rock 0.5 hr. @ \$149.00 /hr = \$75

(with dozer)

TOTAL ROCK = \$1,295

Compiled by: A. Arvin

Date: Jul 5, 2018 **GRAND TOTAL =====> \$1,951**

GRAND TOTAL ====>

\$2,017

SALE ROAD	Thin Woman H to I (dirt)		Project # Unsurface	1 d, outsloped	LENGTH	const		5.0 sta	
	G AND GRUBBING	i	4.00	,			4 -0-		
0.4	acres @		\$1,337.00	/acre		=	\$535		
				TOTAL CL	EARING A	ND GRU	BBING =		\$535
EXCAVAT	TION	With D7 dozer	or equivaler	nt					
Construct	road	5 sta	@	\$190.00	/sta	=	\$950		
Landing C	onstruction	1 Ldg	@	\$389.00	/Ldg	=	\$389		
Shape/out (with road	slope subgrade grader)	5.0 sta	@	\$15.40	/sta	=	\$77		
Compact s (with vibra	subgrade tory roller)	5.0 sta	@	\$13.20	/sta	=	\$66		
					TOTAL E	XCAVATI	ON =		\$1,482

Compiled by:

Date:

A. Arvin

Jul 5, 2018

SALE ROAD	Thin Woma				Project # Unsurfaced			TH const		5.6 sta	
CLEARING	G AND GRU	JBBING									
0.5	acres	@			\$1,337.00	/acre		=	\$669		
						TOTAL CL	EARING	AND GRUE	BING =		\$669
EXCAVAT	ION		With D7	dozer	or equivaler	nt					
Construct	road		5.6	sta	@	\$190.00	/sta	=	\$1,064		
End Haul E	Excavation		200	yds	@	\$4.00	/yd	=	\$800		
Landing Co	onstruction		1	Ldg	@	\$389.00	/Ldg	=	\$389		
Shape sub (with road	•		5.6	sta	@	\$15.40	/sta	=	\$86		
Compact s (with vibrat	-		5.6	sta	@	\$13.20	/sta	=	\$74		
							TOTAL	. EXCAVATIO	ON =		\$2,413
SURFACIN	NG					Size	Cost/y	yd .			
Junction ro	ock			30	cy of	jaw-run	\$30.	51 =	\$915		
							TOTAL	ROCK COS	T =		\$915
Compiled b	by:		A. Arvin								
Date:			Jul 5 201	12			GRANI	D TOTAL			¢3 QQ7

GRAND TOTAL ====>

\$3,997

Jul 5, 2018

Date:

SALE ROAD	Thin Woman L to M (rocked)		Project # Surfaced, o		LENGTH	const		1.0 sta	
CLEARIN	G AND GRUBBING	3							
0.1	1 acres @		\$1,337.00	/acre		=	\$134		
				TOTAL CL	EARING A	ND GRU	BBING =		\$134
EXCAVA ⁻	TION	With D7 dozer	or equivaler	nt					
Construct	road	1 sta	@	\$190.00	/sta	=	\$190		
Landing C	Construction	1 Ldgs	@	\$389.00	/Ldg	=	\$389		
Shape sul (with road	_	1.0 sta	@	\$15.40	/sta	=	\$15		
Compact	• ,	1.0 sta	@	\$13.20	/sta	=	\$13		
					TOTAL EX	XCAVATI	ON =		\$607
SURFACI	ING			Size	Cost/yd				
Base rock	(50) cy of	jaw-run	\$30.51	=	\$1,526		
Landing re	ock (sta. 1+00)	40) cy of	jaw-run	\$30.51	=	\$1,220		
Spread/co	ompact rock	0.5 hr.	@	\$149.00	/hr	=	\$75		
(771111 0020	~,				TOTAL R	оск со	ST =		\$1,295
Compiled	by:	A. Arvin							
Date:		Jul 5, 2018			GRAND T	OTAL ==	===>		\$2,036

SALE ROAD	Thin Wom	an (Beaver C	•	ct # tcher		LENGTH Surfaced, cr	improve rowned	223.2 sta	
IMPROVE Remove s	sod	4.0 h	r	@	\$100.00	/hr	=	\$400	
(with road Spot grad surface ro	ling	16.0 h	r	@	\$100.00	/hr	=	\$1,600	
Clean out	culverts		3 cu	lverts	@	\$90.00	ea =	\$270	
(2 0 0 11 0 10 1					TOTAL IMP	ROVEMENT	-=	\$2,270
SURFACI	ING				Size	Cost/yd			
Spot rock			200 cy		1½-0"	\$4.51	=	\$902	
	edding and b	ackfill	100 cy		1½-0"	\$4.51	=	\$451	
Dissipator			10 cy		.24"-6"	\$32.00	=	\$320	
Fill Armor			40 cy	ot of	jaw-run	\$30.51	=	\$1,220	
						TOTAL ROO	CK COST =		\$2,893
SPECIAL	PROJECTS	;							
Culvert R	Replacemen	t							
Sta. 32+9	0								
36"x40' C	MP		40 ft		@	\$39.69	/ft =	\$1,588	
= =	pipe and imp	rove fill	10 hr		@	\$140.00	/hr =	\$1,400	
Armor inle			1 hr		@	\$140.00	/hr =	\$140	
Install dis	sipator		1 hr		@	\$140.00	/hr =	\$140	
Sta. 33+9	0								
Install dito (18" x 30")	ch disconnec)	t	30 ft		@	\$19.53	/ft =	\$586	
Sta. 55+5									
	24"x30' pipe		30 ft		@	\$27.04	/ft =	\$811	
Culvert di	sposal						=	\$150	
Roadside Sta. 82+	Brushing 40 to Pt. 2		2.7 mi		@	\$1,100.00	/mi =	\$2,970	
					TOTAL S	PECIAL PRC	JECTS CO	ST =	\$7,785
Compiled	bv.	A Ando							
Compiled Date:	uy.	A. Arvin Jul 5, 2018	3			GRAND TO	TAL =====>	•	\$12,948

SALE ROAD	Thin Wom 3 to 4	nan (Beaver Ridge	Project # Rd.)	2	LENGTH Surfaced, c	•	. 0+00-109+2 Sta. 109+25-	•
Remove s		8.0 hr	@	\$100.00	/hr	=	\$800	,
Grade/pro	ocess	128.8 sta	@	\$ 15.50	/sta	=	\$1,996	
	oank slough	2.0 hr	@	\$140.00	/hr	=	\$280	
Remove b	oank slough	2.0 hr	@	\$83.00	/hr	=	\$166	
(10yd dur	пр шиск)				TOTAL IMP	ROVEMEN	Γ =	\$3,242
SURFAC Spot rock	_	250	cy of	Size 1½-0"	Cost/yd \$25.33	=	\$6,333	
					TOTAL RO	CK COST =		\$6,333
SPECIAL Roadside Pt. 3 to Pt	•	S 2.4	mi	@	\$1,100.00	/mi =	\$2,640	
				TOTAL S	PECIAL PRO	DJECTS CO	ST =	\$2,640
Compiled Date:	by:	A. Arvin Jul 5, 2018			GRAND TO)TAL ====:	>	\$12,215

SALE ROAD	Thin Woman 5 to 6 (dirt)		Project #	2		LENGTH Unurfaced	improve , outsloped		18.2 sta
CLEARIN	G AND GRUB	BING							
0.1	acres @		\$1,337.00	/ac	re		=	\$134	
Shape/out (with road	slope subgrad	e 18.2 sta	@	\$	15.40	/sta	=	\$280	
Compact	•	18.2 sta	@	\$	13.20	/sta	=	\$240	
(WILLI VIDIA	tory roller)					TOTAL IM	PROVEMEN ⁻	Γ=	\$654
SURFACI	NG				Size	Cost/yd			
Junction re	ock	30	cy of	ja	w-run	\$30.51	=	\$915	
						TOTAL RO	OCK COST =		\$915
Compiled	by:	A. Arvin							• • • • •
Date:		Jul 5, 2018				GRAND TO	OTAL =====	>	\$1,569

SALE ROAD	Thin Wom 7 to 8 (dir			Project #	2		LENGTH Unurfaced	improve , outsloped		4.3 sta
	G AND GR	UBBI @	ING	\$1,337.00	/a	cre		=	\$134	
Shape/out (with road	slope subg	r	4.3 sta	@	\$	15.40	/sta	=	\$66	
Compact s (with vibra	subgrade		4.3 sta	@		\$13.20	/sta	=	\$57	
(with vibra	tory roller)						TOTAL IM	PROVEMEN	Τ =	\$257
SURFACII Junction ro			30	cy of	j	Size aw-run	Cost/yd \$30.51	=	\$915	
							TOTAL RO	OCK COST =		\$915
Compiled Date:	by:	A. A Jul s	rvin 5, 2018				GRAND TO	OTAL =====	>	\$1,172

SALE ROAD	Thin Wom 9 to 10	nan	Project #	2		LENGTH Surfaced,	•		5.9 sta
Remove so (with road		1.0 hr	@	Ş	\$100.00	/hr	=	\$100	
Grade/pro	cess	5.9 sta	@	\$	15.50	/sta	=	\$91	
Spread/com		1.0 hr. dozer)	@	(\$149.00	/hr	=	\$149	
SURFACII	NG				Size	Cost/yd			
Landing ro	ck	40	cy of	ja	aw-run	\$30.51	=	\$1,220	
Spot rock		30	cy of	-	1½-0"	\$33.17	=	\$995	
Junction ro	ock	40	cy of	jā	aw-run	\$30.51	=	\$1,220	
Compiled I	by:	A. Arvin							
Date:		Jul 5, 2018				GRAND T	OTAL ===	==>	\$3,775

SALE ROAD	Thin Wom	an	Project #	2		LENGTH Surfaced, o	improve utsloped		11.0 sta
Remove s		1.5 hr	@	9	\$100.00	/hr	=	\$150	
(with road Grade/pro surface ro	cess	11.0 sta	@	\$	15.50	/sta	=	\$171	
						TOTAL IMP	ROVEMEN	IT =	\$321
SURFACI Spot rock		50	cy of		Size 1½-0"	Cost/yd \$33.17	=	\$1,659	
						TOTAL RO	CK COST =	:	\$1,659
Roadside Pt. 3 to Pt	•		mi		@	\$1,100.00	/mi =	\$220	
				ТО	TAL SPI	T =	\$220		
Compiled Date:	by:	A. Arvin Jul 5, 2018				GRAND TO	TAL ====	=>	\$2,200

SUMMARY OF MAINTENANCE COST

SALE Thin Woman - Final Maintenance Cost Estimate
(Costed in appraisal, not in project costs)

Spot Grading Move-in \$ 778

Road Segment	Length (Sta.)	Mileage
1 to Steer Cr Rd.	124.2	2.4
1 to 2	223.2	4.2
3 to 4	128.8	2.4
9 to 10	5.9	0.1
11 to 12	11.0	0.2
Total	493.1	9.3

9.3 Miles @ 3 miles per day = 3.1 days x 10 hr/day = 31 hrs $\frac{31 \text{ hrs } x \$100}{\text{ hr}} = \frac{\$3,100}{\text{ hr}}$

Maintenance Rock:

	Volume	Cost/CY	Cost
1½-0"	200	\$25.33	\$5,066
Grading			\$3,100
Grand Total			\$ 8,944
TS Volume	1,990	MBF	
Cost / MBF =			\$4.49

NOTES:

3"-0" rock may be substituted for 1 1/2"-0" where needed.

Rock Haul Cost Computation

SALE NAME: ROAD NAME: ROCK SOURCE: Route: Points:	Thin Women Hatchery Creek Rickard Rock Qu Hwy. 20, Beaver	arry	Road	DATE: CLASS: 10 CY	Medium	18
1-2, 3-4, 5-6	5 7-8 9-10					
TIME Computat						
Road speed ti						
1		5.0	MRT		5 5	minutes
2.		5.0	MRT			minutes
3		7.0	MRT			minutes
4 .	-	9.0	MRT			minutes
	. 35 MPH	7.5	MRT			minutes
6		11.0	MRT			minutes
7.		10.0	MRT			minutes
8		2.5	MRT		7.5	minutes
9.		1.4	MRT			minutes
10		1.6	MRT			minutes
11.		0.4	MRT		4.8	minutes
		60.40				
Dump or sprea	ad time per RT				0.50	minutes
	ling cycle time f	for this	s setting			
(100% effi			2		121.20	minutes
•	1,					
Operator effi	ciency correction	on	0.85		142.59	minutes
	cy correction		0.90		158.43	minutes
	-					
Truck capacit	cy (CY)		10.00		15.84	min/CY
	delay time per	CY			0.25	min/CY
TIME (minutes	s)J. Long				16.09	min/CY
COST per CY o	computation					
Cost of tr	ruck and operator	r per h	our		\$83.00	/hr.
Cost of tr	ruck and operator	r per m	inute		\$1.38	/min
Cost per CY					\$22.20	/CY
Spread and co	ompact Wate	er trucl	k, Grader	& Roller	\$1.50	/CY
			Cost Deliv	vered	Cost Deliv	ered
Size	Cost/Yd (Pit)		w/o proces		with proce	
1½ - 0"	\$ 10.97		\$33.17	9	\$34.67	· •
3 - 0"	\$ 9.31		\$31.51		\$33.01	
Jaw Run	\$ 8.31		\$30.51		\$32.01	
Pit-Run	7.65		\$29.85		\$31.35	
			,		,	

Note: Pit costs April 2017, Rickard Rock Quarry

Rock Haul Cost Computation SALE NAME: Thin women DATE: Jul 5, 2018 ROAD NAME: Hatchery Creek Road CLASS: Medium ROCK SOURCE: Rickard Rock Quarry 18 CY truck Route: Hwy. 20, Beaver Creek Road Points: 1 to 2 and 3 to 4 TIME Computation: Road speed time factors: 55 MPH 5.0 MRT 1. 5.5 minutes 2. 50 MPH 5.0 MRT 6.0 minutes 45 MPH 3. 7.0 MRT 9.3 minutes 4. 40 MPH 9.0 MRT 13.5 minutes 35 MPH 30 MPH 5. 7.5 MRT 12.9 minutes 11.0 MRT 6. 22.0 minutes 7. 25 MPH 10.0 MRT 24.0 minutes 20 MPH 8. 7.5 minutes 2.5 MRT 9. 15 MPH 10. 10 MPH 1.4 MRT 5.6 minutes 10. 1.6 MRT 9.6 minutes 11. 05 MPH 0.4 MRT 4.8 minutes Total MRT 60.40 Dump or spread time per RT 1.00 minutes Total hauling cycle time for this setting 121.70 minutes (100% efficiency) Operator efficiency correction 0.85 143.18 minutes Job efficiency correction 0.90 159.09 minutes Truck capacity (CY) 18.00 8.84 min/CY Loading time, delay time per CY 0.25 min/CY 9.09 min/CY TIME (minutes) J. Long COST per CY computation \$95.00 /hr.

COSI	ber	. С1	. Compt	ıtatı	LOII		
Со	st	of	truck	and	operator	per	hour

Cost of truck and operator per minute \$1.58 /min

\$14.36 /CY Cost per CY

Spread and compact Water truck, Grader & Roller \$1.50 /CY

		Cost Delivered	Cost Delivered
Size	Cost/Yd (Pit)	w/o processing	with processing
1½ - 0"	\$ 10.97	\$25.33	\$26.83
3 - 0"	\$ 9.31	\$23.67	\$25.17
Jaw Run	\$ 8.31	\$22.67	\$24.17
Pit-Run	7.65	\$22.01	\$23.51

Rock Haul Cost Computation

SALE NAME: Thin Women DATE: Jul 5, 2018 ROAD NAME: Hatchery Creek Rd CLASS: Medium ROCK SOURCE: Stockpile 1 1/2 rock 10 CY truck Route: Beaver Creek Road to Beaver Ridge Rd Points: All roads requiring 1 1/2"-0" TIME Computation: Road speed time factors: 55 MPH 0.0 minutes 1. 0.0 MRT 2. 50 MPH 0.0 MRT 0.0 minutes 3. 45 MPH 40 MPH 0.0 MRT 0.0 MRT 0.0 minutes 4. 0.0 minutes 35 MPH
 30 MPH 0.0 MRT 0.0 minutes 0.0 MRT 0.0 minutes 7. 25 MPH 20 MPH 2.0 MRT 4.8 minutes 8. 9.0 minutes 3.0 MRT 9. 15 MPH 10. 10 MPH 1.0 MRT 4.0 minutes 0.4 MRT 2.4 minutes 05 MPH 11. 0.2 MRT 2.4 minutes 6.60 0.50 minutes Dump or spread time per RT Total hauling cycle time for this setting 23.10 minutes (100% efficiency) Operator efficiency correction 0.85 27.18 minutes Job efficiency correction 0.90 30.20 minutes Truck capacity (CY) 10.00 3.02 min/CY Loading time, delay time per CY 0.25 min/CY 3.27 min/CY TIME (minutes) per cubic yard COST per CY computation \$83.00 /hr. Cost of truck and operator per hour Cost of truck and operator per minute \$1.38 /min \$4.51 /CY Cost per CY Spread and compact Water truck, Grader & Roller \$1.50 /CY Cost Dolivored Cost Dolivered

	Cost Delivered	Cost Delivered
Cost/Yd (Pit)	w/o processing	with processing
\$ -	\$4.51	\$6.01
\$ -	\$4.51	\$6.01
\$ -	\$4.51	\$6.01
0.00	\$4.51	\$6.01
	\$ - \$ - \$ -	Cost/Yd (Pit) w/o processing \$ - \$4.51 \$ - \$4.51 \$ - \$4.51

Note:

Thin Women (341-19-19) FY 2018

TIMBER CRUISE REPORT

1. Sale Area Location: Portions of Sections 4 and 5, T10S, R8W, W.M., and Portions of Section 34, T9S, R8W, W.M., Polk County, Oregon.

2. Fund Distribution:

a. Fund BOF 65%, CSL 35%

b. Tax Code

3. Sale Acreage by Area:

Area	Treatment	Gross Acres	Stream Buffers	Existing Roads	Green Tree Retention Areas	Net Sale Acres	Acreage Comp. Method
1a	Modified Clearcut	53	0	0	0	53	GIS
1b	Thinning	13	0	1	N/A	12	GIS
1c	Modified Clearcut	4	0	0	0	4	GIS
2	Thinning	14	<1	1	N/A	13	GIS
3	Thinning	27	2	<1	N/A	22	GIS
4	Thinning	51	6	1	N/A	43	GIS
5	Thinning	41	1	1	N/A	38	GIS
6	Modified Cleacut	1	0	0	0	1	GIS
Total		199	9	5	0	185	

- **4. Cruisers and Cruise Dates:** Area 1 was cruised by Andrew Arvin and Matt McBride in March of 2018. Area 2 was cruised by Andrew Arvin in April of 2018. Areas 3, 4, and 5 were cruised by Aaron McEwen in October of 2016. Lastly, Area 6 was cruised by Jon Long and Aaron McEwen in March of 2018.
- 5. Cruise Method and Computation: Area's 1 through 5 of the sale were cruised using variable radius plot sampling. Area 1a, a modified clearcut, was cruised using a 33.6 BAF with plots 4 chains by 7 chains in a grid, with 31 cruise plots taken, a third of them being measured. Area 6 is a modified clearcut that was ITS (Individual Tree Sample) cruised measuring every third Douglas fir for DBH, height, form factor, grade, and defect. All western hemlock were measured in Area 6. Data for Area's 1, 2, and 6 were entered into the Atterbury SuperACE 2008 cruise program to determine stand statistics and net board foot volume. Leave trees were taken out to determine volume in the thinning portions of Area 1b. Area 2 was cruised using a 20 BAF, and trees were measured for DBH and height. Area's 3, 4, and 5 of the sale were cruised using a 20 BAF with plots 4 chains apart taken on transects through the units. 46 plots were taken in Area's 3, 4, and 5. The thinning cruise plots were measured for DBH and height. Thinning cruise plot data was entered into a variable plot excel spreadsheet to determine average DBH, TPA, and net volume per acre. A weighted average based on acreage was used to determine the board foot volume for Area 4. Snags were tallied, but were not added to the cruise volume. A Hidden defect and breakage of 5% was applied to the resulting volume. A 4% in-growth was added to the volume in Areas 3, 4, and 5. Grade breakdown was determined by applying the average grade breakdown from several similar thinning sales.

2016 Digital ortho photos, 1991 and 2002 aerial photos, LiDar, and ArcMap GIS were used to map the boundaries for the sale, and ArcMap GIS was used to determine gross and net acreage.

- **6. Measurement Standards:** For Area 1, tree heights were taken to a diameter outside bark (DOB) of 7 inches. In Areas 2, 3, 4, and 5 tree heights were measured to a DOB of 6 inches. Lastly, in Area 6, tree heights were measured to a DOB of 7 inches for trees smaller than 24 inches in diameter. Trees larger than 24 inches in diameter had tree heights measured to 40% of DOB at form point. Diameters were measured to the nearest inch, and for Areas 2, 3, 4, and 5, and a standard form factor of 86 was used. Most trees were graded in 40 foot log segments unless breakage, defect, or length to top of grade cruise diameter warranted otherwise.
- 7. **Timber Description:** Timber in sale Areas 1-5 consists primarily of 30 to 40 year-old planted Douglas-fir. In Areas 4 and 6 the timber age ranges from 36-81 year-old Douglas-fir and western hemlock. Trees in Area 1 show reduced growth and vigor due to Swiss Needle Cast disease. The average volume per acre to be harvested (net) is approximately 15 MBF in Area 1 clearcut, and 5 MBF in the Area 1 thinning. Average net volume per acre in Area 2 is approximately 5 MBF, and Area 3 is 11 MBF. Area 4 and Area 5 have an approximate net volume per acre of 9 MBF. Lastly, Area 6 has a net volume per acre of approximately 54 MBF.
- **8.** Total Volume (MBF) by Species and Grade: (See attached volume report "Species, Sort Grade Board Foot Volumes Project").

Area	Species	Gross Cruise Volume	In-Growth (4%)	Cruised D&B	Hidden D&B (3-5%)	Net Sale Volume
	Douglas-fir	796	-	(30)	(24)	742
1.a. (MC)	Red Alder	45	-	-	-	45
	Western Hemlock	13	-	-	(1)	12
1.b. (PC)	Douglas-fir	63	-	(4)	(2)	57
1.c. (MC)	Douglas-fir	60		(2)	(2)	56
2 (PC)	Douglas-fir	67	-	-	(2)	65
3 (PC)	Douglas-fir	249	10	-	(7)	252
4 (PC)	Douglas-fir	365	15	-	(11)	369
5 (PC)	Douglas-fir	346	-	-	(10)	336
	Douglas-fir	60	-	(2)	(3)	55
6 (MC)	Western Hemlock	1	-	-	-	1
*Total		2,065	25	(38)	(62)	1,990

Grade % Breakdown / Volume by Grade

Area	Species	Ave. DBH	Tot. Net Vol.	SM	2-Saw	3-Saw	4-Saw	Camp Run
	Danalas Ga	12	Grade %	-	5%	65%	30%	-
	Douglas-fir	13	798	-	40	519	239	-
	D 1 11	10	Grade %	-	-	-	-	100%
1.a. & 1.c.	Red alder	12	45	-	-	-	-	45
(MC)	XX . 1 1 1	1.6	Grade %	-	42%	42%	16%	-
	Western hemlock	16	12	-	5	5	2	-
	Total Area 1 (MC)		855	-	45	524	241	45
					1	1	1	1
1.b. (PC)	Douglas-fir	12	Grade %	-	-	44%	56%	-
1.6. (1 0)	Douglas III	12	57	-	-	25	32	-
2 (PC)	Douglas-fir	11	Grade %	-	15%	68%	17%	-
2 (1 C)	Douglas III	11	65	-	10	44	11	-
3 (PC)	Douglas-fir	13	Grade %	-	16%	67%	17%	-
3 (1 C)	Douglas-III	13	252	-	40	169	43	-
4 (PC)	Douglas-fir	14	Grade %	-	16%	67%	17%	-
4 (1 C)	Douglas-III	17	369	-	59	247	63	-
5 (PC)	Douglas-fir	12.5	Grade %	-	16%	67%	17%	-
3 (1 C)	_	12.3	336	-	54	225	57	-
	Total Area 2-5 (PC)		1,079	-	163	710	206	
	I T		1 1		1	T	1	ı
	Douglas-fir	23	Grade %	35%	47%	15%	3%	-
	8		55	19	26	8	2	-
6 (MC)	Western hemlock	13	Grade %	-	-	73%	27%	
			1	-	-	1	< 1	
	Total Area 6 (MC)		56	19	26	9	2	
	Total All Areas/ All		Grade %	1%	12%	62%	23%	2%
	Species		1,990	19	234	1,243	449	45

Attachments:

For units 1, 2, and 6 Atterbury SuperACE 2008 outputs:

- Project Statistics
- Stand Table Summary
- Species/Sort/Grade-BF Vol.
- Log Stock Table

For units 3, 4, and 5: Excel Cruise Plot Spreadsheets

Prepared by: <u>Aaron McEwen / Andrew Arvin</u>		Date:	06/01/2018
Unit Forester:Evelyn Hukari	Date:		

TC PS	ΓATS				OJECT :	STATIS THW	TICS OMAN			PAGE DATE	1 4/25/2018
ГWР	RGE	SC TRACT	r :	ГҮРЕ		ACI	RES	PLOTS	TREES	CuFt	BdFt
10S	08	05 1REVISI	ED (CC			57.00	31	184	S	W
					TREES	1	ESTIMATED TOTAL		RCENT AMPLE		
		PLOTS	TREES	!	PER PLOT		TREES	Т	REES		
TOTA	AI.	31	184		5.9						
CRU		12	69		5.8		12,408		.6		
DBH	COUNT						,				
REFO	OREST										
COU	NT	19	115		6.1						
BLA	NKS										
100 %	6										
				STAN	D SUMM	ARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
	G FIR	62	195.7	12.9	40	49.3	176.7	15,021	14,448	3,962	3,912
R AL	DER	4	14.9	12.1	36	3.4	11.9	840	840	256	256
SN	n a con	1	5.5	17.0	28	2.1	8.7	220	220	- 1	- 4
TOT	EMLOCK	2 69	1.6 217.7	15.6 13.0	56 40	0.5 55.4	2.2 199.4	238 16,098	238 15,526	64 4,282	64 4,233
CL SD:	68.1 1.0	COEFF VAR.%		LC	SAMPLE OW	E TREES - AVG	BF HIGH	# (OF TREES R 5	.EQ. 10	INF. POP.
	1.0 G FIR	VAR.% 62.2	S.E.% 7.9	LC	83	AVG 90	HIGH 97		5	10	1
R AL		8.7	5.0		55	58	60				
SN											
WHE	EMLOCK	31.9	29.9		109	155	201				
TOT	AL	63.3	7.6		82	89	95		1.00		
CL	68.1	COEFF	2				93		160	40	1
SD:	1.0	T/ 1 D 0/	•		TREES/A	ACRE	93	# (OF PLOTS R		INF. POP.
DOU	GFIR	VAR.%		LC	TREES/A	ACRE AVG	HIGH	# (INF. POP.
		33.4	S.E.% 6.0	LC	DW 184	AVG 196	HIGH 207	# (OF PLOTS R	EQ.	INF. POP.
R AL		33.4 186.7	6.0 33.5	LC	0W 184 10	AVG 196 15	HIGH 207 20	# (OF PLOTS R	EQ.	INF. POP.
SN	DER	33.4 186.7 299.6	6.0 33.5 53.8	LC	184 10 3	AVG 196 15 6	HIGH 207 20 8	# (OF PLOTS R	EQ.	INF. POP.
SN WHE	DER EMLOCK	33.4 186.7 299.6 399.4	6. S.E.% 6.0 33.5 53.8 71.7	LC	184 10 3 0	AVG 196 15 6 2	HIGH 207 20 8 3	# (OF PLOTS R 5	EQ. 10	INF. POP.
SN WHE TOT	DER EMLOCK AL	33.4 186.7 299.6 399.4 28.0	6. S.E.% 6.0 33.5 53.8 71.7 5.0	LC	184 10 3 0 207	AVG 196 15 6 2 218	HIGH 207 20 8 3 229		DF PLOTS R 5	EQ. 10	INF. POP.
SN WHE TOT	EMLOCK AL 68.1	33.4 186.7 299.6 399.4 28.0	6. S.E.% 6.0 33.5 53.8 71.7 5.0		184 10 3 0 207	AVG 196 15 6 2 218 AREA/ACE	HIGH 207 20 8 3 229		DF PLOTS R 5 31 DF PLOTS R	EQ. 10 8	INF. POP.
SN WHE TOT CL SD:	DER EMLOCK AL	33.4 186.7 299.6 399.4 28.0	6 S.E.% 6.0 33.5 53.8 71.7 5.0		184 10 3 0 207 BASAL A	AVG 196 15 6 2 218	HIGH 207 20 8 3 229		DF PLOTS R 5	EQ. 10	INF. POP.
SN WHE TOT CL SD:	EMLOCK AL 68.1 1.0 G FIR	33.4 186.7 299.6 399.4 28.0 COEFF	6 S.E.% 6.0 33.5 53.8 71.7 5.0		184 10 3 0 207 BASAL A	196 15 6 2 218 AREA/ACE	HIGH 207 20 8 3 229 RE HIGH		DF PLOTS R 5 31 DF PLOTS R	EQ. 10 8	INF. POP.
SN WHE TOT CL SD: DOU	EMLOCK AL 68.1 1.0 G FIR	33.4 186.7 299.6 399.4 28.0 COEFF VAR.% 31.0	6 S.E.% 6.0 33.5 53.8 71.7 5.0 6 S.E.% 5.6		184 10 3 0 207 BASAL A	AVG 196 15 6 2 218 AREA/ACE AVG 177 12 9	HIGH 207 20 8 3 229 RE HIGH 187 16 13		DF PLOTS R 5 31 DF PLOTS R	EQ. 10 8	INF. POP.
SN WHE TOT CL SD: DOU R AL SN WHE	EMLOCK 68.1 1.0 G FIR DER	33.4 186.7 299.6 399.4 28.0 COEFF VAR.% 31.0 171.4 299.6 387.1	5.E.% 6.0 33.5 53.8 71.7 5.0 5.E.% 5.6 30.8 53.8 69.5		184 10 3 0 207 BASAL A DW 167 8 4	AVG 196 15 6 2 218 AREA/ACE AVG 177 12 9 2	HIGH 207 20 8 3 229 RE HIGH 187 16 13 4		OF PLOTS R 5 31 OF PLOTS R 5	8 EQ. 10	INF. POP.
SN WHE TOT CL SD: DOU R AL SN	EMLOCK 68.1 1.0 G FIR DER	33.4 186.7 299.6 399.4 28.0 COEFF VAR.% 31.0 171.4 299.6	6 S.E.% 6.0 33.5 53.8 71.7 5.0 6 S.E.% 5.6 30.8 53.8		184 10 3 0 207 BASAL 4 DW 167 8 4	AVG 196 15 6 2 218 AREA/ACE AVG 177 12 9	HIGH 207 20 8 3 229 RE HIGH 187 16 13		DF PLOTS R 5 31 DF PLOTS R	EQ. 10 8	INF. POP.
SN WHE TOT CL SD: DOU R AL SN WHE	EMLOCK 68.1 1.0 G FIR DER	33.4 186.7 299.6 399.4 28.0 COEFF VAR.% 31.0 171.4 299.6 387.1	5.E.% 6.0 33.5 53.8 71.7 5.0 5.6 30.8 53.8 69.5 3.7		184 10 3 0 207 BASAL A DW 167 8 4	AVG 196 15 6 2 218 AREA/ACE AVG 177 12 9 2 199	HIGH 207 20 8 3 229 RE HIGH 187 16 13 4	#(OF PLOTS R 5 31 OF PLOTS R 5	8 EQ. 10	INF. POP.
SN WHE TOT: CL SD: DOU R AL SN WHE TOT: CL SD:	EMLOCK 68.1 1.0 G FIR DER EMLOCK AL 68.1 1.0	33.4 186.7 299.6 399.4 28.0 COEFF VAR.% 31.0 171.4 299.6 387.1 20.8	5.E.% 6.0 33.5 53.8 71.7 5.0 6. S.E.% 5.6 30.8 53.8 69.5 3.7	LC	184 10 3 0 207 BASAL A DW 167 8 4 1 192 NET BF/	AVG 196 15 6 2 218 AREA/ACE AVG 177 12 9 2 199 ACRE AVG	HIGH 207 20 8 3 229 RE HIGH 187 16 13 4 207	#(DF PLOTS R 5 31 DF PLOTS R 5	8 EQ. 10	INF. POP.
SN WHE TOT CL SD: DOU R AL SN WHE TOT CL SD: DOU	EMLOCK AL 68.1 1.0 G FIR EMLOCK AL 68.1 1.0 G FIR	33.4 186.7 299.6 399.4 28.0 COEFF VAR.% 31.0 171.4 299.6 387.1 20.8 COEFF VAR.%	5.E.% 6.0 33.5 53.8 71.7 5.0 6. S.E.% 5.6 30.8 53.8 69.5 3.7	LC	184 10 3 0 207 BASAL 4 DW 167 8 4 1 192 NET BF/	AVG 196 15 6 2 218 AREA/ACE AVG 177 12 9 2 199 ACRE AVG 14,448	HIGH 207 20 8 3 229 RE HIGH 187 16 13 4 207 HIGH 15,293	#(OF PLOTS R 5 31 OF PLOTS R 5	EQ. 10 8 EQ. 10 4 EQ.	INF. POP. INF. POP.
SN WHE TOT	EMLOCK AL 68.1 1.0 G FIR EMLOCK AL 68.1 1.0 G FIR	33.4 186.7 299.6 399.4 28.0 COEFF VAR.% 31.0 171.4 299.6 387.1 20.8	5.E.% 6.0 33.5 53.8 71.7 5.0 6. S.E.% 5.6 30.8 53.8 69.5 3.7	LC	184 10 3 0 207 BASAL A DW 167 8 4 1 192 NET BF/	AVG 196 15 6 2 218 AREA/ACE AVG 177 12 9 2 199 ACRE AVG	HIGH 207 20 8 3 229 RE HIGH 187 16 13 4 207	#(OF PLOTS R 5 31 OF PLOTS R 5	EQ. 10 8 EQ. 10 4 EQ.	INF. POP. INF. POP.
SN WHE TOT	EMLOCK AL 68.1 1.0 G FIR DER EMLOCK AL 68.1 1.0 G FIR DER	33.4 186.7 299.6 399.4 28.0 COEFF VAR.% 31.0 171.4 299.6 387.1 20.8 COEFF VAR.%	5.E.% 6.0 33.5 53.8 71.7 5.0 6. S.E.% 5.6 30.8 53.8 69.5 3.7 6. S.E.% 5.8 33.1	LC	184 10 3 0 207 BASAL A DW 167 8 4 1 192 NET BF/ DW 3,603 562	AVG 196 15 6 2 218 AREA/ACH AVG 177 12 9 2 199 ACRE AVG 14,448 840	HIGH 207 20 8 3 229 RE HIGH 187 16 13 4 207 HIGH 15,293 1,117	#(OF PLOTS R 5 31 OF PLOTS R 5	EQ. 10 8 EQ. 10 4 EQ.	INF. POP. INF. POP.
SN WHE TOT: CL SD: DOU R ALL SN WHE TOT: CL SD: DOU R ALL SD:	EMLOCK AL 68.1 1.0 G FIR DER EMLOCK AL 68.1 1.0 G FIR EMLOCK	33.4 186.7 299.6 399.4 28.0 COEFF VAR.% 31.0 171.4 299.6 387.1 20.8 COEFF VAR.%	5.E.% 6.0 33.5 53.8 71.7 5.0 6. S.E.% 5.6 30.8 53.8 69.5 3.7	LC	184 10 3 0 207 BASAL A DW 167 8 4 1 192 NET BF/ DW 3,603 562	AVG 196 15 6 2 218 AREA/ACE AVG 177 12 9 2 199 ACRE AVG 14,448	HIGH 207 20 8 3 229 RE HIGH 187 16 13 4 207 HIGH 15,293	#(OF PLOTS R 5 31 OF PLOTS R 5	EQ. 10 8 EQ. 10 4 EQ.	INF. POP.

TC PSTA	ATS					OJECT OJECT		TICS OMAN			PAGE DATE	1 4/25/2018
WP	RGE	SC	TRACT	<u></u>	ГҮРЕ		ACI	RES	PLOTS	TREES	CuFt	BdFt
10S	08	05	A2NORA	,	THIN			13.00	10	96	S	W
						TREES]	ESTIMATED TOTAL		ERCENT AMPLE		
		PL	OTS	TREES		PER PLOT		TREES		TREES		
TOTA	L		10	96		9.6						
CRUIS DBH C	COUNT		7	51		7.3		2,752		1.9		
COUN BLAN 100 %	IKS		3	29		9.7						
					STA	ND SUMM	ARY					
		SAN	1PLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TR	REES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOUG	G FIR-L		27	93.6	15.1	54	29.9	116.0	12,238	12,238	3,245	3,245
DOUG	G FIR-T		20	107.0	10.6	30	20.2	66.0	5,117	5,117	1,292	1,292
R ALD	DER-L		2	7.4	12.2	37	1.7	6.0	273	273	67	67
WHEN TOTA	MLOCK-L		2	3.7	14.0	50	1.1	4.0	374	374	119	119
CONF			TS OF THE MES OUT		VOLUME '	WILL BE V	VITHIN TH	IE SAMPLE E	RROR			
CL					VOLUME '		VITHIN THE TREES -			OF TREES R	EQ.	INF. POP.
CL SD:	68.1 1.0		MES OUT							OF TREES R	EQ. 10	
CL SD: DOUG	68.1 1.0 G FIR-L		COEFF VAR.%	S.E.% 7.1		SAMPLI OW 128	E TREES - AVG 138	BF HIGH 148			=	INF. POP.
CL SD: DOUG	68.1 1.0 G FIR-L G FIR-T		COEFF VAR.% 36.4 73.5	S.E.% 7.1 16.9		SAMPLI OW	E TREES - AVG 138 62	BF HIGH 148 72			=	
CL SD: DOUG DOUG R ALD	68.1 1.0 G FIR-L G FIR-T DER-L	3.1 TI	COEFF VAR.%	S.E.% 7.1		SAMPLI OW 128	E TREES - AVG 138	BF HIGH 148			=	
CL SD: DOUG DOUG R ALD WHEM	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L	3.1 TI	COEFF VAR.% 36.4 73.5 141.4	S.E.% 7.1 16.9 132.4		SAMPLE OW 128 51	E TREES - AVG 138 62 30	BF HIGH 148 72 70		5	10	1
CL SD: DOUG DOUG R ALD WHEN TOTA	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0	S.E.% 7.1 16.9		SAMPLI OW 128 51	E TREES - AVG 138 62 30 104	BF HIGH 148 72	# (130	32	1
CL SD: DOUG R ALD WHEN TOTA	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L ML	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF	S.E.% 7.1 16.9 132.4 8.1	L	SAMPLE OW 128 51 96 TREES/A	E TREES - AVG 138 62 30 104	BF HIGH 148 72 70 113	# (5 130 OF PLOTS R	32 EQ.	INF. POP.
CL SD: DOUG R ALD WHEN TOTA	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.%	S.E.% 7.1 16.9 132.4 8.1 S.E.%	L	SAMPLE OW 128 51 96 TREES/2	E TREES - AVG 138 62 30 104 ACRE AVG	BF HIGH 148 72 70 113	# (130	32	INF. POP.
CL SD: DOUG R ALD WHEN TOTA CL SD: DOUG	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.%	S.E.% 7.1 16.9 132.4 8.1 S.E.%	L	SAMPLI OW 128 51 96 TREES/A	E TREES - AVG 138 62 30 104 ACRE AVG 94	BF HIGH 148 72 70 113 HIGH	# (5 130 OF PLOTS R	32 EQ.	1
CL SD: DOUG R ALE WHEN TOTA CL SD: DOUG DOUG	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L ML 68.1 1.0 G FIR-L G FIR-L	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.% 17.7 45.9	S.E.% 7.1 16.9 132.4 8.1 S.E.% 5.9 15.3	L	SAMPLE OW 128 51 96 TREES/2	E TREES - AVG 138 62 30 104 ACRE AVG	BF HIGH 148 72 70 113 HIGH 99 123	# (5 130 OF PLOTS R	32 EQ.	INF. POP.
CL SD: DOUG R ALD WHEN TOTA CL SD: DOUG R ALD	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L ML 68.1 1.0 G FIR-L G FIR-L	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.%	S.E.% 7.1 16.9 132.4 8.1 S.E.%	L	SAMPLI OW 128 51 96 TREES/A OW 88 91	E TREES - AVG 138 62 30 104 ACRE AVG 94 107	BF HIGH 148 72 70 113 HIGH	# (5 130 OF PLOTS R	32 EQ.	INF. POP.
CL SD: DOUG R ALD WHEN TOTA CL SD: DOUG R ALD	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L 1.0 G FIR-L G FIR-T DER-L MLOCK-L MLOCK-L	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.% 17.7 45.9 165.3	S.E.% 7.1 16.9 132.4 8.1 S.E.% 5.9 15.3 55.0	L	SAMPLI OW 128 51 96 TREES/A OW 88 91	E TREES - AVG 138 62 30 104 ACRE AVG 94 107 7	BF HIGH 148 72 70 113 HIGH 99 123 11	# (5 130 OF PLOTS R	32 EQ.	I INF. POP.
CL SD: DOUG R ALD DOUG R ALD DOUG R ALD WHEN TOTA	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L 1.0 G FIR-L G FIR-T DER-L MLOCK-L MLOCK-L	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.% 17.7 45.9 165.3 316.2	S.E.% 7.1 16.9 132.4 8.1 S.E.% 5.9 15.3 55.0 105.2	L	SAMPLE OW 128 51 96 TREES/A OW 88 91 3 203	E TREES - AVG 138 62 30 104 ACRE AVG 94 107 7 4	BF HIGH 148 72 70 113 HIGH 99 123 11 8 221	# (5 130 OF PLOTS R 5	32 EQ. 10	INF. POP.
CL SD: DOUG R ALE WHEN TOTA CL SD: DOUG R ALE WHEN TOTA CL SD: CL SD: CL SD:	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L MLOCK-L MLOCK-L MLOCK-L	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.% 17.7 45.9 165.3 316.2 12.6 COEFF VAR.%	S.E.% 7.1 16.9 132.4 8.1 S.E.% 5.9 15.3 55.0 105.2 4.2 S.E.%	L	SAMPLE OW 128 51 96 TREES/A OW 88 91 3 203 BASAL A OW	E TREES - AVG 138 62 30 104 ACRE AVG 94 107 7 4 212	BF HIGH 148 72 70 113 HIGH 99 123 11 8 221	# (5 130 OF PLOTS R 5	32 EQ. 10	INF. POP.
CL SD: DOUG R ALD WHEN TOTA CL SD: DOUG R ALD WHEN TOTA CL SD: DOUG R ALD WHEN TOTA	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L ML 68.1 1.0 G FIR-T DER-L MLOCK-L ML 68.1 1.0 G FIR-T DER-L MLOCK-	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.% 17.7 45.9 165.3 316.2 12.6 COEFF VAR.%	S.E.% 7.1 16.9 132.4 8.1 S.E.% 5.9 15.3 55.0 105.2 4.2 S.E.% 5.9	L	SAMPLE OW 128 51 96 TREES/A OW 88 91 3 203 BASAL A OW 109	E TREES - AVG 138 62 30 104 ACRE AVG 94 107 7 4 212 AREA/ACI AVG 116	BF HIGH 148 72 70 113 HIGH 99 123 11 8 221 RE HIGH 123	# (5 130 OF PLOTS R 5 7 OF PLOTS R	32 EQ. 10	INF. POP.
CL SD: DOUG R ALD DOUG R ALD WHEN TOTA CL SD: DOUG R ALD WHEN TOTA CL SD: DOUG DOUG DOUG DOUG DOUG DOUG DOUG DOUG	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L L 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L L 68.1 1.0 G FIR-L G FIR-T G FIR-T G FIR-T G FIR-T	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.% 17.7 45.9 165.3 316.2 12.6 COEFF VAR.%	S.E.% 7.1 16.9 132.4 8.1 S.E.% 5.9 15.3 55.0 105.2 4.2 S.E.% 5.9 12.6	L	SAMPLE OW 128 51 96 TREES/A OW 88 91 3 203 BASAL A OW 109 58	E TREES - AVG 138 62 30 104 ACRE AVG 94 107 7 4 212 AREA/ACI AVG 116 66	BF HIGH 148 72 70 113 HIGH 99 123 11 8 221 RE HIGH 123 74	# (5 130 OF PLOTS R 5 7 OF PLOTS R	32 EQ. 10	INF. POP.
CL SD: DOUG R ALD WHEN TOTA CL SD: DOUG R ALD WHEN TOTA CL SD: DOUG R ALD	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L L 68.1 1.0 G FIR-L G FIR-T DER-L	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.% 17.7 45.9 165.3 316.2 12.6 COEFF VAR.% 17.8 37.9 161.0	S.E.% 7.1 16.9 132.4 8.1 S.E.% 5.9 15.3 55.0 105.2 4.2 S.E.% 5.9 12.6 53.6	L	SAMPLE OW 128 51 96 TREES/A OW 88 91 3 203 BASAL A OW 109	E TREES - AVG 138 62 30 104 ACRE AVG 94 107 7 4 212 AREA/ACI AVG 116 66 6	BF HIGH 148 72 70 113 HIGH 99 123 11 8 221 RE HIGH 123 74 9	# (5 130 OF PLOTS R 5 7 OF PLOTS R	32 EQ. 10	INF. POP.
CL SD: DOUG R ALD WHEN TOTA CL SD: DOUG R ALD WHEN TOTA	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L L G FIR-T DER-L MLOCK-L L G FIR-T DER-L MLOCK-L L G FIR-T DER-L MLOCK-L ML G FIR-L G FIR-L G FIR-L G FIR-L G FIR-L G FIR-L MLOCK-L ML MLOCK-L MLOCK-L MLOCK-L	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.% 17.7 45.9 165.3 316.2 12.6 COEFF VAR.%	S.E.% 7.1 16.9 132.4 8.1 S.E.% 5.9 15.3 55.0 105.2 4.2 S.E.% 5.9 12.6	L	SAMPLE OW 128 51 96 TREES/A OW 88 91 3 203 BASAL A OW 109 58 3	E TREES - AVG 138 62 30 104 ACRE AVG 94 107 7 4 212 AREA/ACI AVG 116 66 6 4	BF HIGH 148 72 70 113 HIGH 99 123 11 8 221 RE HIGH 123 74 9 8	# (5 130 OF PLOTS R 5 7 OF PLOTS R	32 EQ. 10	INF. POP.
CL SD: DOUG R ALE WHEN TOTA CL SD: DOUG R ALE WHEN TOTA CL SD: DOUG R ALE WHEN TOTA	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL L MLOCK-L AL L MLOCK-L AL L MLOCK-L AL L MLOCK-L ML MLOCK-L ML MLOCK-L ML MLOCK-L ML MLOCK-L ML	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.% 17.7 45.9 165.3 316.2 12.6 COEFF VAR.% 17.8 37.9 161.0 316.2	S.E.% 7.1 16.9 132.4 8.1 S.E.% 5.9 15.3 55.0 105.2 4.2 S.E.% 5.9 12.6 53.6	L	SAMPLE OW 128 51 96 TREES/E OW 88 91 3 203 BASAL E OW 109 58 3	E TREES - AVG 138 62 30 104 ACRE AVG 94 107 7 4 212 AREA/ACI AVG 116 66 6 4 192	BF HIGH 148 72 70 113 HIGH 99 123 11 8 221 RE HIGH 123 74 9	# (5 130 OF PLOTS R 5 7 OF PLOTS R 5	32 EQ. 10	INF. POP.
CL SD: DOUG R ALD WHEN TOTA CL SD: DOUG R ALD WHEN TOTA CL SD: DOUG R ALD WHEN TOTA CL SC.	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L MLOCK-L	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.% 17.7 45.9 165.3 316.2 12.6 COEFF VAR.% 17.8 37.9 161.0 316.2 COEFF	S.E.% 7.1 16.9 132.4 8.1 S.E.% 5.9 15.3 55.0 105.2 4.2 S.E.% 5.9 12.6 53.6 105.2	L	SAMPLE OW 128 51 96 TREES/A OW 88 91 3 203 BASAL A OW 109 58 3 192 NET BF/	E TREES - AVG 138 62 30 104 ACRE AVG 94 107 7 4 212 AREA/ACI AVG 116 66 6 4 192 ACRE	BF HIGH 148 72 70 113 HIGH 99 123 11 8 221 RE HIGH 123 74 9 8 192	# (5 130 OF PLOTS R 5 7 OF PLOTS R 5	32 EQ. 10 EQ. 10	INF. POP. INF. POP.
CL SD: DOUG R ALD WHEN TOTA CL SD: DOUG R ALD WHEN TOTA CL SD: CL	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L MLOCK-L	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.% 17.7 45.9 165.3 316.2 12.6 COEFF VAR.% 17.8 37.9 161.0 316.2 COEFF	S.E.% 7.1 16.9 132.4 8.1 S.E.% 5.9 15.3 55.0 105.2 4.2 S.E.% 5.9 12.6 53.6 105.2 S.E.%	L.	SAMPLE OW 128 51 96 TREES/A OW 88 91 3 203 BASAL A OW 109 58 3 192 NET BF/OW	E TREES - AVG 138 62 30 104 ACRE AVG 94 107 7 4 212 AREA/ACI AVG 116 66 6 4 192 ACRE AVG	BF HIGH 148 72 70 113 HIGH 99 123 11 8 221 RE HIGH 123 74 9 8 192	# (5 130 OF PLOTS R 5 7 OF PLOTS R 5	32 EQ. 10	INF. POP. INF. POP.
CL SD: DOUG R ALD WHEN TOTA	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L L G FIR-T DER-L G FIR-T DER-L MLOCK-L L 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L L 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L ML 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L ML 68.1 1.0 G FIR-L	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.% 17.7 45.9 165.3 316.2 12.6 COEFF VAR.% 17.8 37.9 161.0 316.2 COEFF VAR.% 17.8 37.9 161.0 316.2	S.E.% 7.1 16.9 132.4 8.1 S.E.% 5.9 15.3 55.0 105.2 4.2 S.E.% 5.9 12.6 53.6 105.2 S.E.% 5.8	L.	SAMPLE OW 128 51 96 TREES/A OW 88 91 3 203 BASAL A OW 109 58 3 192 NET BF/OW 11,526	E TREES - AVG 138 62 30 104 ACRE AVG 94 107 7 4 212 AREA/ACI AVG 116 66 6 4 192 ACRE AVG 12,238	BF HIGH 148 72 70 113 HIGH 99 123 11 8 221 RE HIGH 123 74 9 8 192 HIGH 12,949	# (5 130 OF PLOTS R 5 7 OF PLOTS R 5	32 EQ. 10 EQ. 10	INF. POP.
CL SD: DOUG R ALD WHEN TOTA	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L ML 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L ML 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L ML 68.1	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.% 17.7 45.9 165.3 316.2 12.6 COEFF VAR.% 17.8 37.9 161.0 316.2 COEFF VAR.% 17.5 43.5	S.E.% 7.1 16.9 132.4 8.1 S.E.% 5.9 15.3 55.0 105.2 4.2 S.E.% 5.9 12.6 53.6 105.2 S.E.% 5.8 14.5	L.	SAMPLE OW 128 51 96 TREES/E OW 88 91 3 203 BASAL E OW 109 58 3 192 NET BF/OW 11,526 4,376	E TREES - AVG 138 62 30 104 ACRE AVG 94 107 7 4 212 AREA/ACI AVG 116 66 6 4 192 ACRE AVG 12,238 5,117	BF HIGH 148 72 70 113 HIGH 99 123 11 8 221 RE HIGH 123 74 9 8 192 HIGH 12,949 5,858	# (5 130 OF PLOTS R 5 7 OF PLOTS R 5	32 EQ. 10 EQ. 10	INF. POP.
CL SD: DOUG R ALD WHEN TOTA CL SD: DOUG R ALD CL SD: D	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L ML 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L ML 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L ML 68.1	3.1 TI	COEFF VAR.% 36.4 73.5 141.4 57.0 COEFF VAR.% 17.7 45.9 165.3 316.2 12.6 COEFF VAR.% 17.8 37.9 161.0 316.2 COEFF VAR.% 17.8 37.9 161.0 316.2	S.E.% 7.1 16.9 132.4 8.1 S.E.% 5.9 15.3 55.0 105.2 4.2 S.E.% 5.9 12.6 53.6 105.2 S.E.% 5.8	L.	SAMPLE OW 128 51 96 TREES/A OW 88 91 3 203 BASAL A OW 109 58 3 192 NET BF/OW 11,526	E TREES - AVG 138 62 30 104 ACRE AVG 94 107 7 4 212 AREA/ACI AVG 116 66 6 4 192 ACRE AVG 12,238	BF HIGH 148 72 70 113 HIGH 99 123 11 8 221 RE HIGH 123 74 9 8 192 HIGH 12,949	# (5 130 OF PLOTS R 5 7 OF PLOTS R 5	32 EQ. 10 EQ. 10	INF. POP.

TC PST	TATS				OJECT OJECT		STICS VOMAN			PAGE DATE	1 4/25/2018
rwp	RGE	SC TRAC	T	TYPE		AC	RES	PLOTS	TREES	CuFt	BdFt
10S	08	04 THWO!	M6	CC			1.00	1	44	S	W
					TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA	AL.	1	44		44.0						
	COUNT DREST NT NKS	1	44		44.0		106		41.5		
				STA	ND SUMM	ARY					
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOU	G FIR	31	93.0	22.9	96	55.7	266.5	59,130	57,480	12,425	12,290
	MLOCK	13	13.0	12.8	30	3.2	11.6	560	560	215	215
TOT	AL	44	106.0	21.9	88	59.4	278.1	59,690	58,040	12,639	12,505
CON		E LIMITS OF T B.1 TIMES C	THE SAMPLE OUT OF 100 THE	E VOLUME	WILL BE V	VITHIN TI	HE SAMPLE E	ERROR			
CL	68.1	COEF	F		SAMPLI	E TREES -	BF		# OF TREES I	REQ.	INF. POP.
SD:	1.0	VAR.9	% S.E.%	L	OW	AVG	HIGH		5	10	1
	G FIR	68.6			542	618	694				
WHE TOT.	MLOCK	60.2			36	43	51		200	0.7	
101	AL	98.8	14.9		381	448	515		390	97	4

TC PST	ΓATS					<u>OJECT :</u> OJECT	STATIS THW	TICS OMAN			PAGE DATE	1 4/25/2018
TWP	RGE	SC	TRACT	ŗ	ГҮРЕ		ACI	RES	PLOTS	TREES	CuFt	BdFt
10S	08	05	1THINREV	,	THIN			12.00	31	184	S	W
						TREES	I	ESTIMATED TOTAL		ERCENT AMPLE		
		P	LOTS	TREES		PER PLOT		TREES	,	TREES		
TOTA	AL		31	184		5.9						
CRUI	ISE		12	69		5.8		2,606		2.6		
DBH	COUNT											
	DREST											
COU			19	115		6.1						
BLAN												
100 %	6											
						ND SUMM.						
			MPLE REES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
	G FIR-L		35	91.2	14.2	50	26.7	100.8	9,775	9,529	2,587	2,571
	G FIR-T		27	104.0	11.6	32	22.3	75.9	5,274	4,950	1,382	1,350
	DER-L		4	14.9	12.1	36	3.4	11.9	840	840	256	256
SN-L	MLOCK-L		1 2	5.5 1.6	17.0 15.6	28 56	2.1 0.5	8.7 2.2	238	238	64	64
TOTA		•	69	217.2	13.0	40	55.4	199.4	16,128	15,557	4,290	
	68	3.1 1	TIMES OUT									
CL SD:	68.1	3.1 1	COEFF	S F %	T		TREES -		# (OF TREES R	-	INF. POP.
SD:	68.1 1.0	3.1		S.E.% 8.1	D	SAMPLE OW 108	AVG	BF HIGH 127	# (OF TREES R	EQ. 10	
SD:	68.1	3.1 1	COEFF VAR.%		Ъ	OW	AVG	HIGH	# (-	INF. POP.
DOUG DOUG R ALI	68.1 1.0 G FIR-L G FIR-T	3.1 1	COEFF VAR.% 47.9	8.1	Þ	OW 108	AVG 117	HIGH 127	# (-	
DOUG DOUG R ALL SN-L	68.1 1.0 G FIR-L G FIR-T .DER-L		COEFF VAR.% 47.9 56.7 8.7	8.1 11.1 5.0	D	0W 108 49 55	AVG 117 55 58	HIGH 127 61 60	# (-	
DOUG DOUG R ALL SN-L WHE	68.1 1.0 G FIR-L G FIR-T DER-L		COEFF VAR.% 47.9 56.7 8.7 31.9	8.1 11.1 5.0 29.9	L	0W 108 49 55	AVG 117 55 58 155	HIGH 127 61 60 201	# (5	10	15
SD: DOUG R ALL SN-L WHE	68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L		COEFF VAR.% 47.9 56.7 8.7 31.9 63.3	8.1 11.1 5.0	Ь	0W 108 49 55 109 82	AVG 117 55 58 155 89	HIGH 127 61 60		5	10	15 18
SD: DOUG R ALL SN-L WHE TOTA	68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL		COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF	8.1 11.1 5.0 29.9 7.6		0W 108 49 55 109 82 TREES/A	AVG 117 55 58 155 89	HIGH 127 61 60 201 95		5 160 OF PLOTS R	10 40 EQ.	15 18 INF. POP.
SD: DOUG R ALL SN-L WHEI TOTA CL SD:	68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L		COEFF VAR.% 47.9 56.7 8.7 31.9 63.3	8.1 11.1 5.0 29.9		0W 108 49 55 109 82	AVG 117 55 58 155 89	HIGH 127 61 60 201		5	10	15 18 INF. POP.
SD: DOUG R ALL SN-L WHE TOTA CL SD: DOUG	68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL 68.1 1.0		COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.%	8.1 11.1 5.0 29.9 7.6 S.E.%		0W 108 49 55 109 82 TREES/A	AVG 117 55 58 155 89 ACRE AVG	HIGH 127 61 60 201 95		5 160 OF PLOTS R	10 40 EQ.	1: 18 INF. POP.
SD: DOUG R ALL SN-L WHEI TOTA CL SD: DOUG R ALL	68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL 68.1 1.0 G FIR-L G FIR-L DER-L		COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5		0W 108 49 55 109 82 TREES/A OW 87 94 10	AVG 117 55 58 155 89 ACRE AVG 91 104 15	HIGH 127 61 60 201 95 HIGH 96 114 20		5 160 OF PLOTS R	10 40 EQ.	15 18 INF. POP.
SD: DOUG R ALL SN-L WHEI TOTA CL SD: DOUG R ALL SN-L SN-L	68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-T		COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8		0W 108 49 55 109 82 TREES/A OW 87 94 10 3	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6	HIGH 127 61 60 201 95 HIGH 96 114 20 8		5 160 OF PLOTS R	10 40 EQ.	1: 18 INF. POP.
SD: DOUG R ALL SN-L WHEI TOTA CL SD: DOUG R ALL SN-L WHEI SN-L WHEI	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-L DER-L		COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8 71.7		0W 108 49 55 109 82 TREES/A OW 87 94 10 3 0	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3		5 160 OF PLOTS R 5	10 40 EQ.	15 18 INF. POP.
SD: DOUG R ALL SN-L WHEI TOTA CL DOUG R ALL SD: DOUG R ALL SN-L WHEI TOTA	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L		COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4 29.6	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8		108 49 55 109 82 TREES/A OW 87 94 10 3 0 206	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2 217	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3 229	# (5 160 OF PLOTS R 5	10 40 EQ. 10	15 INF. POP. 15
SD: DOUG R ALL SN-L WHEL TOTA CL DOUG R ALL SN-L WHEL TOTA	68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL 68.1		COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4 29.6 COEFF	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8 71.7 5.3	L	108 49 55 109 82 TREES/A OW 87 94 10 3 0 206	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2 217 AREA/ACE	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3 229	# (5 160 OF PLOTS R 5 35 OF PLOTS R	10 40 EQ. 10	INF. POP.
SD: DOUG R ALL SN-L WHEL TOTA CL SD: DOUG R ALL SN-L WHEL TOTA CL SD: CL SD:	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L		COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4 29.6	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8 71.7	L	108 49 55 109 82 TREES/A OW 87 94 10 3 0 206	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2 217	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3 229	# (5 160 OF PLOTS R 5	10 40 EQ. 10	INF. POP.
SD: DOUG R ALL SN-L WHEI TOTA CL SN-L WHEI TOTA CL SN-L WHEI TOTA CL SD: DOUG DOUG R ALL SN-L WHEI TOTA	68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL 68.1 1.0		COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4 29.6 COEFF VAR.%	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8 71.7 5.3	L	OW 108 49 55 109 82 TREES/A OW 87 94 10 3 0 206 BASAL A	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2 217 AREA/ACE AVG	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3 229 RE HIGH	# (5 160 OF PLOTS R 5 35 OF PLOTS R	10 40 EQ. 10	INF. POP. INF. POP.
SD: DOUG R ALL SN-L SD: DOUG R ALL SD: DOUG R ALL SN-L WHEI TOTA CL SD: DOUG R ALL SD: DOUG R ALL	68.1 1,0 G FIR-L G FIR-T DER-L 68.1 1.0 G FIR-L G FIR-T DER-L 68.1 1.0 G FIR-L G FIR-L		COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4 29.6 COEFF VAR.% 28.5 47.1	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8 71.7 5.3 S.E.% 5.1 8.5 30.8	L	OW 108 49 55 109 82 TREES/A OW 87 94 10 3 0 206 BASAL A OW 96 69 8	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2 217 AREA/ACE AVG 101 76 12	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3 229 RE HIGH 106 82 16	# (5 160 OF PLOTS R 5 35 OF PLOTS R	10 40 EQ. 10	INF. POP.
SD: DOUG R ALL SN-L SD: DOUG R ALL SD: DOUG R ALL SN-L WHEI TOTA CL SD: DOUG R ALL SD: DOUG R ALL SD:	68.1 1,0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-L G FIR-L G FIR-L	,	COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4 29.6 COEFF VAR.% 28.5 47.1 171.4 299.6	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8 71.7 5.3 S.E.% 5.1 8.5 30.8 53.8	L	OW 108 49 55 109 82 TREES/A OW 87 94 10 3 0 206 BASAL A OW 96 69 8 4	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2 217 AREA/ACE AVG 101 76 12 9	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3 229 RE HIGH 106 82 16 13	# (5 160 OF PLOTS R 5 35 OF PLOTS R	10 40 EQ. 10	INF. POP.
SD: DOUG R ALL SN-L SD: DOUG R ALL SD: DOUG R ALL SN-L WHEE TOTA CL SD: DOUG R ALL SD: DOUG R ALL SD: WHEE SD: WHEE SD: WHEE WHEE SD: WHEE SN-L WHEE WHEE SD: WHEE SN-L WHEE SN-L WHEE SN-L WHEE SN-L WHEE SN-L WHEE SN-L WHEE	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L CMLOCK-L AL 68.1 1.0 G FIR-L CMLOCK-L AL	,	COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4 29.6 COEFF VAR.% 28.5 47.1 171.4 299.6 387.1	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8 71.7 5.3 S.E.% 5.1 8.5 30.8 53.8 69.5	L	OW 108 49 55 109 82 TREES/A OW 87 94 10 3 0 206 BASAL A OW 96 69 8 4 1	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2 217 AREA/ACR AVG 101 76 12 9 2	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3 229 RE HIGH 106 82 16 13 4	# (5 160 OF PLOTS R 5 OF PLOTS R 5	40 EQ. 10 9 EQ. 10	15 INF. POP. 15 INF. POP. 15
SD: DOUG R ALL SN-L SD: DOUG R ALL SD: DOUG R ALL SN-L WHE TOTA CL SD: DOUG R ALL SD: TOTA	68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L 68.1 1.0 G FIR-L G FIR-T DER-L 68.1 1.0 G FIR-L 68.1 1.0 G FIR-L G FIR-L G FIR-L G FIR-L G FIR-L G FIR-L EMLOCK-L AL	,	COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4 29.6 COEFF VAR.% 28.5 47.1 171.4 299.6 387.1 20.8	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8 71.7 5.3 S.E.% 5.1 8.5 30.8 53.8	L	OW 108 49 55 109 82 TREES/A OW 87 94 10 3 0 206 BASAL A OW 96 69 8 4 1 192	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2 217 AREA/ACE AVG 101 76 12 9 2 199	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3 229 RE HIGH 106 82 16 13	# (5 160 OF PLOTS R 5 35 OF PLOTS R 5	40 EQ. 10 9 EQ. 10	15 INF. POP. 15 INF. POP. 15
SD: DOUG R ALI SN-L SD: DOUG R ALI SD: DOUG R ALI SN-L WHEI TOTA CL SD: DOUG R ALI SD: CL CL SN-L CL	68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL 68.1 1.0 G FIR-L 68.1 1.0 G FIR-L 68.1 1.0 G FIR-L 68.1	,	COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4 29.6 COEFF VAR.% 28.5 47.1 171.4 299.6 387.1 20.8 COEFF	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8 71.7 5.3 S.E.% 5.1 8.5 30.8 53.8 69.5 3.7	L D	OW 108 49 55 109 82 TREES/A OW 87 94 10 3 0 206 BASAL A OW 96 69 8 4 1 192 NET BF/A	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2 217 AREA/ACE AVG 101 76 12 9 2 199 ACRE	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3 229 RE HIGH 106 82 16 13 4 207	# (5 160 OF PLOTS R 5 35 OF PLOTS R 5	40 EQ. 10 EQ. 10	15 INF. POP. 15 INF. POP. 15
SD: DOUG R ALI SN-L WHEI TOTA CL SD: DOUG R ALI SN-L WHEI TOTA CL SD: CL SD: CL SN-L CL SD: CL SN-L CL SD: CL SN-L CL SD: CL SN-L	68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L 68.1 1.0 G FIR-L EMLOCK-L AL 68.1 1.0 68.1 1.0	,	COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4 29.6 COEFF VAR.% 28.5 47.1 171.4 299.6 387.1 20.8 COEFF VAR.%	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8 71.7 5.3 S.E.% 5.1 8.5 30.8 53.8 69.5 3.7	L D	OW 108 49 55 109 82 TREES/A OW 87 94 10 3 0 206 BASAL A OW 96 69 8 4 1 192 NET BF/OW	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2 217 AREA/ACE AVG 101 76 12 9 2 199 ACRE AVG	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3 229 RE HIGH 106 82 16 13 4 207	# (5 160 OF PLOTS R 5 35 OF PLOTS R 5	40 EQ. 10 9 EQ. 10	15 INF. POP. 15 INF. POP. 15
SD: DOUG R ALL SN-L SD: DOUG R ALL SD: DOUG R ALL SD: DOUG R ALL SD: CL SN-L CL SD: DOUG R ALL SD: DOUG R DOUG R ALL SD: DOUG R DOUG R ALL SD: DOUG R DOUG R DOUG R ALL SD:	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L G FIR-T	,	COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4 29.6 COEFF VAR.% 28.5 47.1 171.4 299.6 387.1 20.8 COEFF VAR.%	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8 71.7 5.3 S.E.% 5.1 8.5 30.8 53.8 69.5 3.7	L D	OW 108 49 55 109 82 TREES/A OW 87 94 10 3 0 206 BASAL A OW 96 69 8 4 1 192 NET BF/OW 9,004	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2 217 AREA/ACE AVG 101 76 12 9 2 199 ACRE AVG 9,529	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3 229 RE HIGH 106 82 16 13 4 207 HIGH 10,055	# (5 160 OF PLOTS R 5 35 OF PLOTS R 5	40 EQ. 10 EQ. 10	15 INF. POP. 15 INF. POP. 15
SD: DOUG R ALL SN-L SD: DOUG R ALL SD: DOUG R ALL SD: DOUG R ALL SD: DOUG CL SN-L WHE! TOTA CL SD: DOUG CR ALL SD: DOUG CD DO	68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L EMLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L 68.1 1.0 G FIR-L EMLOCK-L AL 68.1 1.0 68.1 1.0	,	COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4 29.6 COEFF VAR.% 28.5 47.1 171.4 299.6 387.1 20.8 COEFF VAR.%	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8 71.7 5.3 S.E.% 5.1 8.5 30.8 53.8 69.5 3.7	L D	OW 108 49 55 109 82 TREES/A OW 87 94 10 3 0 206 BASAL A OW 96 69 8 4 1 192 NET BF/OW	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2 217 AREA/ACE AVG 101 76 12 9 2 199 ACRE AVG	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3 229 RE HIGH 106 82 16 13 4 207	# (5 160 OF PLOTS R 5 35 OF PLOTS R 5	40 EQ. 10 EQ. 10	15 INF. POP. 15 INF. POP. 15
SD: DOUG R ALL SN-L SD: DOUG R ALL SD: DOUG R ALL SN-L WHE! TOTA CL SD: DOUG R ALL SD: DOUG CR ALL SD: DOUG CR ALL SD: DOUG DOUG R ALL SN-L WHE! TOTA	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L CMLOCK-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-L DER-L DER-L G FIR-L G FIR-L DER-L DER-L G FIR-L DER-L G FIR-L DER-L	,	COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4 29.6 COEFF VAR.% 28.5 47.1 171.4 299.6 387.1 20.8 COEFF VAR.%	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8 71.7 5.3 S.E.% 5.1 8.5 30.8 53.8 69.5 3.7	L D	OW 108 49 55 109 82 TREES/A OW 87 94 10 3 0 206 BASAL A OW 96 69 8 4 1 192 NET BF/OW 9,004 4,530	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2 217 AREA/ACE AVG 101 76 12 9 2 199 ACRE AVG 9,529 4,950	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3 229 RE HIGH 106 82 16 13 4 207 HIGH 10,055 5,371	# (5 160 OF PLOTS R 5 35 OF PLOTS R 5	40 EQ. 10 EQ. 10	15 INF. POP. 15 INF. POP. 15
SD: DOUG R ALI SN-L WHEI TOTA CL SD: DOUG R ALI SN-L WHEI TOTA CL SD: DOUG R ALI SN-L WHEI TOTA CL SN-L WHEI TOTA CL SN-L WHEI TOTA	68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L MLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L G FIR-T DER-L G FIR-T DER-L CMLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L CMLOCK-L AL 68.1 1.0 G FIR-L G FIR-T DER-L CMLOCK-L CMLOCK-L CMLOCK-L CMLOCK-L		COEFF VAR.% 47.9 56.7 8.7 31.9 63.3 COEFF VAR.% 27.9 53.3 186.7 299.6 399.4 29.6 COEFF VAR.% 28.5 47.1 171.4 299.6 387.1 20.8 COEFF VAR.%	8.1 11.1 5.0 29.9 7.6 S.E.% 5.0 9.6 33.5 53.8 71.7 5.3 S.E.% 5.1 8.5 30.8 53.8 69.5 3.7	L D	OW 108 49 55 109 82 TREES/A OW 87 94 10 3 0 206 BASAL A OW 96 69 8 4 1 192 NET BF/OW 9,004 4,530	AVG 117 55 58 155 89 ACRE AVG 91 104 15 6 2 217 AREA/ACE AVG 101 76 12 9 2 199 ACRE AVG 9,529 4,950	HIGH 127 61 60 201 95 HIGH 96 114 20 8 3 229 RE HIGH 106 82 16 13 4 207 HIGH 10,055 5,371	# (5 160 OF PLOTS R 5 35 OF PLOTS R 5	40 EQ. 10 EQ. 10	15 INF. POP. 15 INF. POP. 15

TC	TC PSPCSTGR Species, Sort Grade - Board Foot Volumes (Project)																		
T10S R08W S05 TyCC 57.00					Project: Acres			TH	WON 57.					Page Date Time		1 4/25/2018 10:27:25A		.8	
	%					Percent of Net Board Foot Volume										Aver	age Log	ŗ	Logs
Spp	S So Gr T rt ad	Net BdFt	Bd. Ft. Def%	per Acre Gross	Net	Total Net MBF		Log Scale Dia. 4-5 6-11 12-16 17+			12-20		Length 31-35	26.00	Ln Ft	Dia In	Bd Ft	CF/ Lf	Per /Acre
RA	DO K	100		840	840	NCt WIDI	48	4-5	100	12-10 17+	12-20	21-30	33	67	36	6	56		14.9
	Totals	5		840	840		48		100				33	67	36	6	56		14.9
DF DF DF DF	CU CU DO 2M DO 3M DO 4M	4 65 31	100.0 8.5 1.1 4.0	220 759 9,459 4,583	694 9,353 4,401		40 533 251	19	97 81	100	36	60 2 31	40 49 23	49 10	8 31 36 24	8 12 8 6	149 81 33	0.00 1.23 0.61 0.39	15.0 4.7 115.8 131.7
DF	Totals	93	3.8	15,021	14,448		824	6	88	7	11	14	41	34	28	7	54	0.52	267.2
WH WH WH	DO 2M DO 3M DO 4M	41 38 21		98 91 49	98 91 49		6 5 3	38	100 62	100		100	100 100		32 32 24	12 9 6	160 90 30	1.28 0.76 0.37	.6 1.0 1.6
WH	Totals	2		238	238		14	8	51	41		20	80		28	8	73	0.70	3.3
Total	ls		3.6	16,098	15,526		885	6	88	7	10	13	41	36	29	7	54	0.52	285.3

T10S R08W S05 TyTHIN 13.00			Project: Acres			TH	IWON 13.								Page Date Time		1 25/201 :08:4	18
	Percent of Net Board Foo						rd Foot	Volume					Avera	ige Log	Logs			
S So Gr	Net	Bd. Ft. per Acre		Total			Log Sc	ale Dia.			Log	Length		Ln	Dia	Bd	CF/	Per
Spp T rt ad	BdFt	Def% Gross	Net	Net MBF		4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF L DO 2M	29	3,655	3,655		48			100			52	48		29	12	145	1.07	25
DF L DO 3M	56	6,837	6,837		89		100					21	79	38	8	89	0.65	70
DF L DO 4M	15	1,745	1,745		23	81	19			24	34	24	19	23	5	26	0.35	6
DF Totals	68	12,238	12,238		159	12	59	30		3	20	29	47	31	7	72	0.62	17
DF T DO 3M	62	3,182	3,182		41		100					28	72	38	7	69	0.49	40
DF T DO 4M	38	1,934	1,934		25	100				20	56	12	13	25	5	28	0.26	68
DF Totals	28	5,117	5,117		67	38	62			7	21	21	50	30	6	45	0.38	114
RA L DOK	100	273	273		4		100						100	40	6	60	0.37	4
RA Totals	2	273	273		4		100						100	40	6	60	0.37	,
WH L DO 3M	90	337	337		4	100	100			100			100	40	8	90	0.71	:
WH L DO 4M	10	37	37		0	100				100				14	5	10	0.24	
WH Totals	2	374	374		5	10	90			10			90	27	7	50	0.59	
Totals		18,001	18,001		234	19	61	20		5	20	26	49	30	7	<i>c</i> :	0.52	29

TC	TC PSPCSTGR Species, Sort Grade - Board Foot Volumes (Project)																			
T10	T10S R08W S04 TyCC 1.00			Project: Acres			THWOMAN6 1.00									Page Date Time		1 25/201 31:42	18	
	%							Perc	ent of N	Net Boar	rd Foot	Volume					Avera	ige Lo	g	Logs
	S So Gr Net Bd. Ft. per Acre				Total		Log Scale Dia.				Log Length				Ln	Dia	Bd	CF/	Per	
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	DO CU		100.0	960												24	18		0.00	3.0
DF	DO SM	35	.7	20,460	20,310		20			18	82			5	95	39	18	564	2.67	36.0
DF	DO 2M	47	1.3	27,390	27,030		27			57	43		6	5	89	38	15	334	1.84	81.0
DF	DO 3M	15	2.0	8,820	8,640		9		80	20			2	33	65	36	9	99	0.76	87.0
DF	DO 4M	3		1,500	1,500		2	26	74			28	40	24	8	24	6	33	0.45	45.0
DF	Totals	99	2.8	59,130	57,480		57	1	14	36	49	1	4	10	85	35	12	228	1.40	252.0
WH	CU CU															6	11		0.00	1.0
WH	DO 3M	73		410	410		0		100					71	29	34	6	59	0.67	7.0
WH	DO 4M	27		150	150		0		100			80	20			19	6	21	0.40	7.0
WH	Totals	1		560	560		1		100			21	5	52	21	25	7	37	0.56	15.0
Tota	ls		2.8	59,690	58,040		58	1	15	36	49	1	4	10	85	34	11	217	1.36	267.0

TC PSPCSTGR		S_l	pecies, So	ort Gra	de - Boa	rd F	oot V	olum	es (Pr	oject	:)								
T10S R08W S05 T	YTHIN		12.00		Project:		TH	WON	IAN							Page		1	
					Acres			12.	00							Date Time		25/201 :56:5	
	%						Perc	ent of l	Net Boa	rd Foot	Volume					Avera	ige Log	7	Logs
S So Gr	Net	Bd. Ft	. per Acre		Total			Log Sc	ale Dia.			Log l	Length		Ln	Dia	Bd	CF/	Per
Spp T rt ad	BdFt	Def%	Gross	Net	Net MBF		4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
RA L DOK	100		840	840		10		100					33	67	36	6	56	0.48	14.9
RA Totals	5		840	840		10		100					33	67	36	6	56	0.48	14.9
DF L CU CU		100.0	73												6	7		0.00	8.0
DF L DO 2M	7	8.5	767	702		8			100			60	40			12	149	1.23	4.7
DF L DO 3M	76	1.5	7,368	7,260		87		96	4				48	52	36	8	86	0.65	84.7
DF L DO 4M	17		1,568	1,568		19	32	68			42	29	15	14	22	6	30	0.36	51.5
DF Totals	61	2.5	9,775	9,529		114	5	85	10		7	9	42	42	29	7	64	0.59	149.0
DF T CU CU		100.0	145												10	9		0.00	6.9
DF T DO 3M	43		2,140	2,140		26		100				10	54	36	35	7	68	0.51	31.5
DF T DO 4M	57	6.0	2,989	2,811		34	12	88			33	32	28	8	25	6	35	0.41	79.7
DF Totals	32	6.1	5,274	4,950		59	7	93			19	22	39	20	26	7	42	0.43	118.1
WH L DO 2M	41		98	98		1			100				100			12	160	1.28	.6
WH L DO 3M	38		91	91		1		100				405	100		32	9	90	0.76	1.0
WH L DO 4M	21		49	49		1	38	62				100			24	6	30	0.37	1.6
WH Totals	2		238	238		3	8	51	41			20	80		28	8	73	0.70	3.3
Totals		3.5	16,128	15,557		187	6	88	7		10	13	41	36	29	7	55	0.52	285.2

TC PSTNDSUM		Stand Table	e Summary	Page Date:	1 4/25/2018
T10S R08W S05 TyCC	57.00	Project	THWOMAN	Time:	10:27:27AM
		Acres	57.00	Grown Year:	

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF	8	1	88	17	8.163	2.85	8.16	3.2	20.0	.76	26	163	43	15	9
DF	9	1	86	26	7.231	2.85	7.23	4.4	20.0	.90	32	145	51	18	8
DF	10	4	86	49	20.898	11.40	20.90	7.9	32.5	4.68	164	679	267	94	39
DF	11	4	86	62	17.271	11.40	17.27	12.8	55.0	6.32	222	950	360	126	54
DF	12	14	86	58	50.794	39.89	50.79	14.6	48.6	21.59	741	2,467	1,231	423	141
DF	13	6	85	66	18.549	17.10	24.73	14.5	50.0	10.25	360	1,237	584	205	70
DF	14	13	85	68	34.652	37.04	53.31	16.3	56.0	25.30	868	2,985	1,442	495	170
DF	15	7	86	75	16.254	19.95	30.19	17.3	70.0	14.92	523	2,113	850	298	120
DF	16	6	86	81	12.245	17.10	20.41	22.8	93.0	13.66	465	1,898	778	265	108
DF	17	2	86	90	3.616	5.70	7.23	23.5	87.5	4.84	170	633	276	97	36
DF	18	2	85	76	3.225	5.70	6.45	24.4	80.0	4.48	157	516	256	90	29
DF	19	1	88	91	1.447	2.85	2.89	32.1	125.0	2.65	93	362	151	53	21
DF	20	1	85	91	1.306	2.85	2.61	34.4	115.0	2.56	90	300	146	51	17
DF	Totals	62	86	61	195.652	176.67	252.18	15.5	57.3	112.90	3,912	14,448	6,436	2,230	824
RA	10	1	87	64	5.465	2.98	5.46	11.9	50.0	1.78	65	273	102	37	16
RA	11	1	87	65	4.516	2.98	4.52	17.1	60.0	2.13	77	271	121	44	15
RA	14	1	86	53	2.788	2.98	2.79	21.2	60.0	1.63	59	167	93	34	10
RA	16	1	86	45	2.135	2.98	2.13	25.6	60.0	1.50	55	128	86	31	7
RA	Totals	4	87	60	14.904	11.92	14.90	17.2	56.3	7.04	256	840	402	146	48
WH	14	1	87	81	1.014	1.08	2.03	15.9	60.0	1.03	32	122	59	18	7
WH	18	1	86	70	.613	1.08	1.23	26.0	95.0	1.02	32	117	58	18	7
WH	Totals	2	87	77	1.627	2.17	3.25	19.7	73.2	2.05	64	238	117	37	14
SN	17	1	86	40	5.501	8.67									
SN	Totals	1	86	40	5.501	8.67									
Totals		69	86	61	217.684	199.43	270.34	15.7	57.4	122.00	4,233	15,526	6,954	2,413	885

TC PSTNDSUM		Stand Table Summary	Page Date:	1 4/25/2018
T10S R08W S05 TyTHIN	13.00	Project THWOMAN	Time:	10:30:30AM
		Acres 13.00	Grown Year:	

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF L	13	1	89	59	4.661	4.30	4.66	19.6	60.0	2.61	92	280	34	12	4
DF L	14	9	88	70	36.170	38.67	60.28	16.2	57.3	27.76	974	3,456	361	127	45
DF L	15	7	88	76	24.507	30.07	49.01	17.3	64.3	24.23	850	3,151	315	111	41
DF L	16	3	89	78	9.231	12.89	18.46	20.4	81.7	10.76	378	1,508	140	49	20
DF L	17	7	89	85	19.080	30.07	38.16	24.9	100.7	27.12	952	3,843	353	124	50
DF L	Totals	27	88	75	93.649	116.00	170.58	19.0	71.7	92.48	3,245	12,238	1,202	422	159
DF T	8	3	85	30	28.361	9.90	28.36	3.9	23.3	3.15	111	662	41	14	9
DF T	9	3	82	43	22.409	9.90	22.41	6.8	30.0	4.34	152	672	56	20	9
DF T	10	3	88	67	18.151	9.90	18.15	11.1	50.0	5.76	202	908	75	26	12
DF T	11	1	89	54	5.000	3.30	5.00	12.6	50.0	1.80	63	250	23	8	3
DF T	12	2	87	52	8.403	6.60	8.40	14.5	45.0	3.48	122	378	45	16	5
DF T	13	3	88	57	10.740	9.90	10.74	19.3	60.0	5.91	207	644	77	27	8
DF T	14	2	88	58	6.174	6.60	6.17	22.4	60.0	3.93	138	370	51	18	5
DF T	15	2	89	79	5.378	6.60	10.76	17.8	75.0	5.45	191	807	71	25	10
DF T	16	1	89	85	2.363	3.30	4.73	22.2	90.0	2.98	105	425	39	14	6
DF T	Totals	20	86	50	106.981	66.00	114.72	11.3	44.6	36.81	1,292	5,117	479	168	67
WHL	14	2	86	72	3.742	4.00	7.48	15.9	50.0	3.80	119	374	49	15	5
WHL	Totals	2	86	72	3.742	4.00	7.48	15.9	50.0	3.80	119	374	49	15	5
RA L	11	1	88	69	4.546	3.00	4.55	14.8	60.0	1.85	67	273	24	9	4
RA L	14	1	88	39	2.806	3.00									
RA L	Totals	2	88	58	7.352	6.00	4.55	14.8	60.0	1.85	67	273	24	9	4
Totals		51	87	62	211.724	192.00	297.33	15.9	60.5	134.95	4,723	18,001	1,754	614	234

TC PSTNDSUM		Stand Table	Summary	Page	1
				Date:	4/25/2018
T10S R08W S04 TyCC	1.00	Project	THWOMAN6	Time:	10:31:41AM
		Acres	1.00	Grown Year:	

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF	11	2	85	63	6.000	3.96	6.00	13.0	50.0	2.22	78	300	2	1	0
DF	14	1	86	80	3.000	3.21	6.00	14.1	55.0	2.41	85	330	2	1	0
DF	15	2	86	85	6.000	7.36	12.00	18.6	72.5	6.34	223	870	6	2	1
DF	16	2	86	103	6.000	8.38	12.00	24.5	100.0	8.36	293	1,200	8	3	1
DF	17	2	85	118	6.000	9.46	18.00	20.4	88.3	10.44	366	1,590	10	4	2
DF	18	1	86	113	3.000	5.30	6.00	34.1	135.0	5.84	205	810	6	2	1
DF	20	2	88	119	6.000	13.09	15.00	36.6	154.0	15.63	548	2,310	16	5	2
DF	21	1	89	110	3.000	7.22	9.00	31.3	126.7	8.03	282	1,140	8	3	1
DF	23	4	88	145	12.000	34.62	36.00	48.3	224.2	49.52	1,737	8,070	50	17	8
DF	24	2	87	125	6.000	18.85	18.00	46.9	206.7	24.07	845	3,720	24	8	4
DF	25	2	87	132	6.000	20.45	18.00	53.0	255.0	27.19	954	4,590	27	10	5
DF	26	3	85	145	9.000	33.18	27.00	54.9	235.6	46.04	1,481	6,360	46	15	6
DF	28	2	87	152	6.000	25.66	21.00	65.7	338.6	39.34	1,380	7,110	39	14	7
DF	29	2	88	140	6.000	27.52	18.00	75.4	373.3	38.66	1,357	6,720	39	14	7
DF	30	1	86	141	3.000	14.73	9.00	80.8	390.0	20.72	727	3,510	21	7	4
DF	32	2	86	151	6.000	33.51	18.00	96.1	491.7	49.29	1,729	8,850	49	17	9
DF	Totals	31	87	124	93.000	266.50	249.00	49.4	230.8	354.11	12,290	57,480	354	123	57
WH	9	1	80	20	1.000	.44	1.00	5.1	20.0	.16	5	20	0	0	0
WH	10	1	83	19	1.000	.55	1.00	5.1	20.0	.16	5	20	0	0	0
WH	11	2	81	38	2.000	1.32	2.00	10.3	35.0	.66	21	70	1	0	0
WH	12	3	81	40	3.000	2.36	3.00	12.5	33.3	1.20	38	100	1	0	0
WH	13	3	82	42	3.000	2.77	3.00	14.8	40.0	1.42	44	120	1	0	0
WH	15	1	80	56	1.000	1.23	1.00	28.5	60.0	.91	28	60	1	0	0
WH	16	1	79	71	1.000	1.40	2.00	19.0	55.0	1.22	38	110	1	0	0
WH	17	1	83	51	1.000	1.58	1.00	35.5	60.0	1.13	35	60	1	0	0
WH	Totals	13	81	42	13.000	11.63	14.00	15.3	40.0	6.87	215	560	7	2	1
Totals		44	86	113	106.000	278.12	263.00	47.5	220.7	360.98	12,505	58,040	361	125	58

TC PSTNDSUM		Stand Table Summary	Page Date:	1 4/25/2018
T10S R08W S05 TyTHIN	12.00	Project THWOMAN	Time:	10:56:55AM
		Acres 12.00	Grown Year:	

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF L	11	1	86	72	4.364	2.88	4.36	13.8	60.0	1.72	60	262	21	7	3
DF L	12	5	86	62	18.335	14.40	18.33	15.2	54.0	8.39	278	990	101	33	12
DF L	13	4	85	76	12.498	11.52	18.75	14.4	50.0	7.69	270	937	92	32	11
DF L	14	9	85	71	24.247	25.92	40.41	16.1	56.7	18.56	651	2,290	223	78	27
DF L	15	5	86	77	11.734	14.40	21.12	18.2	73.3	10.95	384	1,549	131	46	19
DF L	16	5	86	82	10.313	14.40	18.56	22.2	90.0	11.74	412	1,671	141	49	20
DF L	17	2	86	90	3.654	5.76	7.31	23.5	87.5	4.89	172	639	59	21	8
DF L	18	2	85	76	3.259	5.76	6.52	24.4	80.0	4.53	159	522	54	19	6
DF L	19	1	89	91	1.463	2.88	2.93	32.1	125.0	2.68	94	366	32	11	4
DF L	20	1	86	91	1.320	2.88	2.64	34.4	115.0	2.59	91	304	31	11	4
DF L	Totals	35	86	74	91.187	100.80	140.94	18.2	67.6	73.73	2,571	9,529	885	308	114
DF T	8	1	88	17	8.050	2.81	8.05	3.2	20.0	.74	26	161	9	3	2
DF T	9	1	87	26	7.131	2.81	7.13	4.4	20.0	.89	31	143	11	4	2
DF T	10	4	86	49	20.608	11.24	20.61	7.9	32.5	4.61	162	670	55	19	8
DF T	11	3	87	58	12.774	8.43	12.77	12.5	53.3	4.56	160	681	55	19	8
DF T	12	9	86	56	32.201	25.29	32.20	14.3	45.6	13.11	460	1,467	157	55	18
DF T	13	2	86	45	6.097	5.62	6.10	15.0	50.0	2.61	91	305	31	11	4
DF T	14	4	83	62	10.515	11.24	13.14	16.8	54.0	6.83	221	710	82	26	
DF T	15	2	86	71	4.580	5.62	9.16	15.4	62.5	4.03	141	572	48	17	
DF T	16	1	85	79	2.013	2.81	2.01	28.4	120.0	2.01	57	242	24	7	3
DF T	Totals	27	86	51	103.968	75.87	111.18	12.1	44.5	39.40	1,350	4,950	473	162	59
RA L	10	1	87	64	5.465	2.98	5.46	11.9	50.0	1.78	65	273	21	8	3
RA L	11	1	87	65	4.516	2.98	4.52	17.1	60.0	2.13	77	271	26	9	3
RA L	14	1	86	53	2.788	2.98	2.79	21.2	60.0	1.63	59	167	20	7	2
RA L	16	1	86	45	2.135	2.98	2.13	25.6	60.0	1.50	55	128	18	7	2
RA L	Totals	4	87	60	14.904	11.92	14.90	17.2	56.3	7.04	256	840	85	31	10
WHL	14	1	87	81	1.014	1.08	2.03	15.9	60.0	1.03	32	122	12	4	1
WHL	18	1	86	70	.613	1.08	1.23	26.0	95.0	1.02	32	117	12	4	1
WHL	Totals	2	87	77	1.627	2.17	3.25	19.7	73.2	2.05	64	238	25	8	3
SNL	17	1	86	40	5.501	8.67							-		
SNL	Totals	1	86	40	5.501	8.67									
Totals		69	86	61	217.188	199.43	270.27	15.7	57.6	122.23	4,241	15,557	1,467	509	187

 TC
 PLOGSTVB
 Log Stock Table - MBF

 T10S R08W S05 TyCC
 57.00
 Project: THWOMAN Acres
 THWOMAN Date 4/25/2018 Time 10:27:24AM

s	So Gr	Log	Gross	Def	Net	%		N	let Volu	ne by S	caling I	<u> Diamete</u>	r in Inch	es				
Spp T	1	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
RA	DO K	32	16		16	32.5			16									
RA	DO K	36	7		7	15.3			7									
RA	DO K	38	10		10	19.9			10									
RA	DO K	40	15		15	32.3			15									
RA	Tota	ls	48		48	5.4			48									
DF	DO 2N	и 30	28	13.3	24	2.9						24						
DF	DO 2N	М 32	16		16	1.9						16						
DF	DO 3N	И 26	12		12	1.4					12							
DF	DO 3N	И 32	228	2.2	223	27.0			24	91	108							
DF	DO 3N	И 34	40		40	4.8			40									
DF	DO 3N	М 36	32		32	3.9			32									
DF	DO 3N	M 38	28		28	3.4			28									
DF	DO 3N	M 40	200		199	24.1			77	60	47	15						
DF	DO 4N	и 13	8		8	.9					8							
DF	DO 4N	И 14	17		17	2.0		1	9	6								
DF	DO 4N	И 16	26	16.0	22	2.6		9	11	2								
DF	DO 4N	И 18	8		8	1.0		8										
DF	DO 4N	M 20	36		36	4.4		5	24	7								
DF	DO 4N	M 24	29		29	3.6		5	25									
DF	DO 4N	И 26	3		3	.3		3										
DF	DO 4N	M 28	2		2	.3			2									
DF	DO 4N	M 30	43		43	5.2			43									
DF	DO 4N	И 32	47	13.1	41	5.0		11	30									
DF	DO 4N	И 34	17		17	2.0		6		11								
DF	DO 4N	M 40	25		25	3.0			25									
DF	Tota	ls	856	3.8	824	93.1		48	369	176	175	54						
WH	DO 2N	М 32	6		6	41.2						6						
WH	DO 3N	И 32	5		5	38.3				5								
WH	DO 4N	И 24	3		3	20.5		1	2									
WH	Tota	ls	14	_	14	1.5	_	1	2	5		6		_		_		
Total	All Speci	ies	918	3.6	885	100.0		49	419	181	175	60						

<u> </u>	\neg					I	1								1 ime	10.	308:42A	
Com	S T	So Gr rt de	Log Len	Gross MBF	Def Net % MBF	%	2.2						r in Inch		1	24.20	20.20	40
Spp	\dashv					Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF DF	L				10 10							10						
DF	L L				5							5						
DF	L				23							23						
Di	٦	DO 2N	1 32	23		14.3												
DF	L	DO 3N	1 32	17	17	10.4			4	13								
DF	L	DO 3N	1 34	2	2	1.3			2									
DF	L	DO 3N	1 38	4	4	2.3				4								
DF	L	DO 3N	4 0	67	67	41.9			14	47	6	i						
DF	L	DO 4N	1 12	1	1	.9		1										
DF	L	DO 4N	1 16	1	1	.7		1										
DF	L	DO 4N	1 18	2	2	1.2		2										
DF	L	DO 4N	1 20	1	1	.6		1										
DF	L	DO 4N	1 22	5	5	3.0		5										
DF	L	DO 4N	1 24	1	1	.9		1										
DF	L	DO 4N	1 28	2	2	1.0		2										
DF	L	DO 4N	A 32	1	1	.8		1										
DF	L	DO 4N	1 34	4	4	2.7		4										
DF	L	DO 4N	1 38	4	4	2.7			4									
DF		Total	s	159	159	68.0		18	23	64	ć	48						
DF	Т	DO 3N	1 32	4	4	6.3					4							
DF	Т	DO 3N	1 34	7	7	10.8			7									
DF	Т	DO 3N	1 38	8	8	11.3			8									
DF	T	DO 3N	4 0	22	22	33.8			14	4	5							
DF	Т	DO 4N	1 16	2	2	3.7		2										
DF	Т	DO 4N	1 18	2	2	3.7		2										
DF	Т	DO 4N	1 24	9	9	13.1		9										
DF	Т	DO 4N	A 26	1	1	1.4		1										
DF	Т	DO 4N	1 28	3	3	4.4		3										
DF	Т	DO 4N	1 30	2	2	2.5		2										
DF	Т	DO 4N	A 32	3	3	4.4		3										
DF	T	DO 4N	A 36	3	3	4.7		3										
DF	7	Total	s	67	67	28.4		25	28	4	ç)						
RA	L	DO K	40	4	4	100.0			4									
RA	\dashv	Total	s	4	4	1.5			4									
WH	L	DO 3N	1 40	4	4	90.0				4								

T10S R	:08V	V S05 TyTHIN		13.00		Proje Acres		WOMA	N 3.00					Page Date Time		2 5/2018 08:42A	
s		So Gr Log	Gross	Def	Net	%		Net Volu	ıme by S	caling Di	amete	r in Inch	es				
Spp T	1	t de Len	MBF	%	MBF	Spc	2-3 4-5	6-7	8-9	10-11 1	2-13	14-15	16-19	20-23	24-29	30-39	4
WH L	.	OO 4M 14		0	0	10.0	0										_
WH		Totals		5	5	2.1	0		4								
Total		All Species	23	34	234	100.0	44	55	72	15	48						

	-														1 mie 10:	:31:44AM
s		_		Def	Net	%			let Volu		caling	Diamete	r in Inch	nes	T	1
Spp T	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23 24-29	30-39 40+
DF	DO C	U 24	1	100.0												
DF	DO SI	м 32	1		1	1.9								1		
DF	DO SI	M 40	19		19	33.4								8	11	
DF	DO 21	M 24	1	12.5	1	2.2						0		1		
DF	DO 21	м 28	0		0	.7						0				
DF	DO 21	м 32	1		1	2.3						0	1			
DF	DO 21	М 36	1		1	.9						1				
DF	DO 21	M 40	24		23	40.9						5	5	9	5	
DF	DO 31	м 28	0	ı	0	.4				0						
DF	DO 31	м 32	3	6.5	3	4.5			0	1	:	1 0				
DF	DO 31	м 34	0		0	.4				0						
DF	DO 31	M 36	0		0	.4				0						
DF	DO 31	M 40	5		5	9.3			1	1	:	1 1				
DF	DO 41	м 15	0	ı	0	.1			0							
DF	DO 41	M 16	0		0	.4			0							
DF	DO 41	M 18	0		0	.1			0							
DF	DO 41	M 20	0		0	.1			0							
DF	DO 41	M 24	0		0	.3		0	0							
DF	DO 41	M 26	0		0	.2			0							
DF	DO 41	M 28	0		0	.2			0							
DF	DO 41	M 30	0		0	.4		0	0							
DF	DO 41	м 32	0		0	.6		0		0						
DF	DO 41	М 38	0		0	.2		0								
DF	Tota	ls	59	2.8	57	99.0		0	3	3	:	2 8	6	19	16	
WH	DO 31	М 32	0		0	51.8			0	0						
WH	DO 31	M 40	0		0	21.4			0							
WH	DO 41	M 16	0		0	10.7			0							
WH	DO 41	M 18	0		0	3.6			0							
WH	DO 41	M 20	0		0	7.1			0							
WH	DO 41	M 28	0		0	5.4			0							
WH	Tota	ls	1		1	1.0			0	0						
Total	All Spec	ies	60	2.8	58	100.0		0	3	3		2 8	6	19	16	
															-	

TC PLOGSTVB Log Stock Table - MBF Page 12.00 T10S R08W S05 TyTHIN Project: **THWOMAN** Date 4/25/2018 Acres Time 10:56:52AM % So Gr Log Def Net Volume by Scaling Diameter in Inches Gross Net Spp rt de Len **MBF** % **MBF** Spc 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-19 20-23 24-29 30-39 40+ DO K 3 32.5 3 RA32 DO K 2 15.3 2 RA36 RA DO 38 2 19.9 2 32.3 RA DO K 40 3 3 Totals 10 RA10 5.4 10 4.4 DF DO 2M 30 6 13.3 DF DO 2M 32 3 2.9 DF DO 3M 32 39 2.7 38 33.6 2 19 17 DF DO 3M 34 3 2.7 3 DF L DO 3M 36 5 4.3 DF DO 3M 38 40 13 10 DF DO 3M 40 40 34.6 14 3 1.2 DF DO 4M 14 DF DO 4M 3.7 2 16 DF DO 4M 20 2 2.1 DF DO 4M24 3.8 3 DF DO 4M 26 DF DO 4M28 0 0 DF 3 2 DO 4M 32 2.4 1 DF DO 4M 40 3 2.3 3 DF Totals 117 2.5 114 61.3 6 37 33 27 4.2 2 DO 3M 26 2 2 DF 9 14.7 DF Т DO 3M 32 6 3 DF Т DO 3M 34 5 8.8 5 DF DO 3M 36 3.2 2 DF Т DO 3M 38 5 8.0 5 DF DO 3M 40 3 3 4.3 3 Т 2 2.7 2 13 DF DO 4M DF Т DO 4M14 2 3.7 0 2 0 DF DO 4M66.7 Т 16 1 DF DO 4M 2 2.9 2 18 DF DO 4M20 8.7 4 DF DO 4M 24 2 3.1 2 15.0 DF T DO 4M 30 7 9.8 DF DO 18.1 5

TC	PLO	GSTVE	3						Log S	Stock Tal	ble -	MBF									
T10	S R)8W S()5 Ty	THIN		12.00			Proje Acre		THV	VOMAI	N 2.00					Page Date Time	4/2	2 5/2018 56:52A	M
	s	So (3r	Log	Gross	De	f	Net	%		N	let Volu	me by S	caling Diar	nete	r in Inch	es				
Spp	T	rt d	le	Len	MBF	%	N	ИВF	Spc	2-3	1-5	6-7	8-9	10-11 12-	13	14-15	16-19	20-23	24-29	30-39	40+
DF	T	DO	4M	34		3		3	5.8		1		2								
DF	T	DO	4M	40		3		3	4.3			3									
DF		ŗ	Γotals		6	3	6.1	59	31.8		4	41	4	10							
WH	L	DO	2M	32		1		1	41.2						1						
WH	L	DO	3M	32		1		1	38.3				1								
WH	L	DO	4M	24		1		1	20.5		0	0									
WH		·	Γotals			3		3	1.5		0	0	1		1						
Total		All S	pecie	s	19	4	3.5	187	100.0		10	88	39	37	13						

FPA Written Plan for Timber Harvest

Thin Women Timber Sale

Portions of Sections 4 and 5, T10S, R8W, W.M., and Portions of Section 34, T9S, R8W, W.M., Polk County, Oregon.

Protected Resource: Marbled Murrelet Management Area (Endangered species nesting site).

<u>Situation</u>: Sale Area 1B is partially located within the buffer portion of the Beavers Rock and Thin Woman Marbled Murrelet Management Areas (MMMA). Sale Area 3 is partially located within the buffer portion of the Upper Steere MMMA. Sale Areas 4 and 5 are partially located within the buffer portion of the Cedar Beaver MMMA. Thinning operations will occur within the non-habitat buffer of the MMMA's. No harvesting will occur within the occupied habitat of MMMA's, although use of guylines and tailholds may be allowed in the MMMA's. Replacement of two culverts will occur on the Hatchery Fall Creek Road within the Thin Women MMMA non-habitat buffer.

Resource Protection Measures:

- 1. Felling Operations within seasonally restricted buffers shall not be allowed from April 1 through August 5 and from August 6 through September 15 between two hours before sunset and two hours after sunrise, unless otherwise approved in writing by STATE.
- 2. Cable Yarding Operations within seasonally restricted buffers shall not be allowed from April 1 through August 5 and from August 6 through September 15 between two hours before sunset and two hours after sunrise, unless otherwise approved in writing by STATE.
- 3. Ground-Based Operations within seasonally restricted buffers shall not be allowed from October 1 through August 5 and from August 6 through September 15 between two hours before sunset and two hours after sunrise, unless otherwise approved in writing by STATE.
- 4. The use of mechanized equipment, including chainsaws within seasonally restricted buffers shall not be allowed from April 1 through August 5 and from August 6 through September 15 between two hours before sunset and two hours after sunrise, unless otherwise approved in writing by STATE.
- 5. Non-Project Road and Landing Operations within seasonally restricted buffers shall not be allowed from October 1 through August 5 and from August 6 through September 15 between two hours before sunset and two hours after sunrise, unless otherwise approved in writing by STATE.
- 6. Some activities associated with Project Nos. 1 and 2 (Road Construction and Improvement) within seasonally restricted buffers shall not be allowed from October 1 through August 5 and from August 6 through September 15 between two hours before sunset and two hours after sunrise, unless otherwise approved in writing by STATE. Seasonal restrictions do not apply to road improvement on commonly used roads.
- 7. Human food trash will be policed and removed from all project areas, landings, and roadways on a daily basis. Food items and food waste will be stored inside appropriate containers or vehicles.
- 8. Use of Guylines in the Marbled Murrelet Management Areas (MMMA's) shown on Exhibit A will have the following restrictions:

- (1) Consultation with STATE and approval of each Guyline and cable line placement is required before Guylining is allowed in these areas. A lead time of two weeks is required to schedule a field consultation between STATE, PURCHASER, the Operator, and the person responsible for Guyline selection and cable rigging. Consultation will include identification of nesting platforms and cover trees.
- (2) The following trees within the MMMA will not be selected for Guyline anchors:
 - (A) Trees with potential nest platforms or immediately surrounding trees that provide cover to the potential nest platforms, as determined by STATE.
 - (B) If feasible, the largest trees in the areas where the number of large trees is limited.
 - (C) If feasible, minor conifer species not commonly found in the stand.
 - (D) Trees in a group of two or more.
- (3) Cables located within the MMMA will be located so that raising, lowering or use of the line will not damage trees considered to have suitable nesting platforms or associated cover trees.
- (4) Lines that may damage, in the opinion of the ODF Area Biologist or authorized representative, potential or existing nesting platforms or associated cover trees must be removed and relocated.
- (5) The use of chainsaws within the MMMA shall not be allowed from April 1 through August 5 and from August 6 through September 15 between 2 hours before sunset to 2 hours after sunrise.
- (6) Any plans to Guyline in the MMMA must be addressed in the Operations Plan and at the Pre-Operations meeting.

I, the undersigned, submit this written plan in compliance with the requirements of the Forest Practices Act, regarding operations conducted within 300 feet of an endangered species nesting site.

PURCHASER REPRESENTATIVE	DATE	
STATE REPRESENTATIVE	DATE	

FPA Written Plan for Timber Harvest

Thin Women Timber Sale Portions of Section 34, T9S, R8W, W.M., Polk County, Oregon

Protected Resources: Blodgett Creek, a small Type F stream.

Situation: Approximately 900 feet of a small, Type F stream is adjacent to the timber sale boundary in Area 3. Thinning harvest operations will occur within 100 feet of the stream and skylines may pass over the stream buffer, although no yarding will occur over the stream or buffer.

Resource Protection Measures:

- 1. An average 75 foot horizontal distance no-harvest stream buffer has been posted along all portions of the Type F stream.
- 2. Trees adjacent to the stream buffer shall be felled so that they do not enter into the buffer.
- 3. Skyline cables will not be lowered into streamside vegetation during the yarding cycle.
- 4. Skyline corridors passing over the stream will be spaced a minimum of 100 feet apart.
- 5. Where the logging system requires the skyline to pass over the stream, cables will be pulled out of the streamside vegetation prior to rigging the next yarding road.

I, the undersigned, submit this written plan in compliance with the requirements of	the	Forest
Practices Act, regarding operations conducted within 100 feet of Type F streams.		

PURCHASER REPRESENTATIVE	DATE	
STATE REPRESENTATIVE	DATE	

Thin Women - Seasonal Operational Periods

					Pro	Project Work								
	Jan	Feb	Mar	Apr	May	June	July	At 5th	Aug 6th	Sep 15th	p 16th	Oct	Nov	Dec
Project No. 1 - Road Construction			-	1	*									
Pts. A to B, C to D, E to F, G, J to K, L to M													1	
Pts. H to I					T	T&E Restriction	uc						1	
Project No. 2 - Road Improvement	L													
Pts. 1 to 2 (except culvert replacement), 3 to 4, 9 to 10, 11 to 12													1	
Pts. 1 to 2 (culvert replacement)		In-S	tream Work	In-stream Work Period Restriction	riction		T&E Restrict.	estrict.			2; In-stream	2; In-stream Work Period Restriction	d Restriction	ı
Pts. 5 to 6 (first 250 feet), 7 to 8					T	T&E Restriction	uc							
Area 1.A	Area 1.A. & 1.C. ³ , Area 2 ⁵ , Ar	Area 2 ⁵ ,	Area 6 ⁴ aı	ea 6 ⁴ and the portions of Area 3, Area 4 ⁴ & Area 5 outside of the MMMA (see Exhibit "A")	ions of Ar	ea 3, Area	4 ⁴ & Area	1 5 outside	of the M	IMMA (se	e Exhibit	"A")		
	Jan	Feb	Mar	Apr	May	June	July	At Sth	Aug 6th	Sep 15th	p 16th	Oct	Nov	Dec
Felling														
Ground Yarding												1		
Cable Yarding														
Log Hauling on Unsurfaced Roads												1		
Slash Piling												1		
	Are	Area 1.B. and 1		he portions of Area 3, Area 4^4 & Area 5 inside the MMMA (see Exhibit "A")	a 3, Area	4 ⁴ & Area	5 inside tl	e MMM	A (see Ex	hibit "A"				
	Jan	Feb	Mar	Apr	May	June	July	1	Aug	Sep		Oct	Nov	Dec
								5th	6th	15th	16th			
Felling					T	T&E Restriction	uc							
Ground Yarding					Te	T&E Restriction	uc					1		
Cable Yarding					T	T&E Restriction	uc							
Chainsaw use for tailholds/guylines					T	T&E Restriction	uc							
Log Hauling on Unsurfaced Roads					T	T&E Restriction	uc					1		
Log Hauling on Surfaced Roads														
		Activity Prohibited	_		Activity Allowed			Activity allowed 2 hrs after sunrise to 2 hrs. before sunset	wed 2 hrs a	fter sunrise				

1. If weather conditions are dry, ODF may allow work to continue.

2. Work may start on the culvert at sta 55+50 after July 1, ODF will contact ODF&W & request permission to work outside of the in-stream work period.

3. Felling activities in Area 1.C. shall not begin until after Aug. 5, 2019 or when surveys are done. 4. Felling activities in Area 4 (west 1/2 only) & Area 6 shall be completed by March 15, 2020. 5. Felling activities in Area 2 shall be completed by April 1, 2021.

Disclaimer: This matrix does not supercede the timing restrictions defined in the Timber Sale Contract.

Boundaries

• • • • • Timber Sale Boundary

- + -- Area Boundary (Posted)

☐☐ Right of Way (Posted)

Roads

Surfaced Road

=== Unsurfaced Road

New Construction

Streams

· — · Type F Stream

··· — · · Type N Stream

Unposted Stream Buffer

Stream Buffer

Marbled Murrelet Management Area

Occupied Habitat

Non-Habitat Buffer

— Cable Corridors

O Landings

Land Survey Monument
Partial Cut Not Required

LOGGING PLAN

OF TIMBER SALE CONTRACT NO. 341-19-019 THIN WOMEN PORTIONS OF SECTION 34, T09S, R08W,

& SECTIONS 4 & 5, T10S, R08W, W.M.,
POLK COUNTY, OREGON

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

Scale 1:12 000

1:12,000 1,000 0 1,000 2,000

	NET ACRES TRACTOR	NET ACRES CABLE
1A (MC) 1B (PC) 1C (MC) 2 (PC) 3 (PC) 4 (PC) 5 (PC)	9 0 9 0 1 1	16 3 4 4 22 42 37
6 (MC) TOTAL	58	128
	N	

Created By: Blake McKinley blake.mckinley@oregon.gov Date: 06/01/2018

Legend LOGGING PLAN Boundaries • • • Timber Sale Boundary $\equiv : \equiv$ Right of Way (Posted) OF TIMBER SALE CONTRACT NO. 341-19-019 Roads THIN WOMEN Surfaced Road PORTIONS OF SECTION 34, T09S, R08W, & SECTIONS 4 & 5, T10S, R08W, W.M., Unsurfaced Road POLK COUNTY, OREGON **New Construction** Streams Type F Stream This product is for informational use and may not have Type N Stream been prepared for or be suitable for legal, engineering or Unposted Stream Buffer survey purposes. Users of this information should Stream Buffer review or consult the primary data and information sources to ascertain the usability of this information. Marbled Murrelet Management Area Occupied Habitat Scale Non-Habitat Buffer 1:12,000 Cable Corridors

1,000

2.000

1.000

0

Landings

Partial Cut Not Required

Land Survey Monument

	NET ACRES TRACTOR	NET ACRES CABLE						
1A (MC)	37	16						
1B (PC)	9	3						
1C (MC)	0	4						
2 (PC)	9	4						
3 (PC)	0	22						
4 (PC)	1	42						
5 (PC)	1	37						
6 (MC)	1	0						
TOTAL	58	128						
	N A							
Cr	eated By: Blake I	McKinley						

blake.mckinley@oregon.gov

Date: 06/01/2018

Legend Boundaries

• • • • • Timber Sale Boundary

Right of Way (Posted)

Roads

Surfaced Road

=== Unsurfaced Road

New Construction

Streams

· — · Type F Stream

··· — · Type N Stream

Unposted Stream Buffer

Stream Buffer

Marbled Murrelet Management Area

Occupied Habitat

Non-Habitat Buffer
Cable Corridors

O Landings

Land Survey Monument
Partial Cut Not Required

LOGGING PLAN

OF TIMBER SALE CONTRACT NO. 341-19-019 THIN WOMEN PORTIONS OF SECTION 34, T09S, R08W, & SECTIONS 4 & 5, T10S, R08W, W.M., POLK COUNTY, OREGON

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

Scale 1:12,000

1,000 0 1,000 2,000

	NET ACRES TRACTOR	NET ACRES CABLE						
1A (MC) 1B (PC) 1C (MC) 2 (PC) 3 (PC) 4 (PC) 5 (PC)	9 0 9 0 1 1	16 3 4 4 22 42 37						
6 (MC)	58	128						
	N N							
Cr	eated By: Blake I	vickiniey						

blake.mckinley@oregon.gov

Date: 06/05/2018