

District: Southwest Date: December 05, 2017

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$138,788.05	\$600.00	\$139,388.05
		Project Work:	(\$5,171.00)
		Advertised Value:	\$134,217.05

District: Southwest Date: December 05, 2017

Timber Description

Location: Portions of Section 6 and 7, T32S, R5W, W.M., Douglas County, Oregon. (Near Glendale Oregon.)

Stand Stocking: 80%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	15	0	90
Grand Fir	17	0	90
Chinkapin	12	0	90

Volume by Grade	28	38	4 S	5S	Total
Douglas - Fir	11	172	62	0	245
Grand Fir	16	166	18	0	200
Chinkapin	0	0	0	12	12
Total	27	338	80	12	457

Comments: Local Pond Values Used: September 2017.

This sale is a 2 Area, 125acre commercial thinning of 82 year old Douglas-fir and mixed conifer.

Note: Western Hemlock volumes have been combined with the Grand Fir volumes for appraisal.

Incense Cedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost \$800 - \$200 = \$600

Sugar Pines and Other Pines Stumpage Prices = Pond Value minus Logging Cost \$450 - \$200 = \$250

Chinkapin and Other Hardwoods Sold Lump Sum = Maximum of 5 loads at \$120/load = \$600

SCALING COST ALLOWANCE = \$5.00/MBF

BRAND AND PAINT ALLOWANCE =\$2.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE
Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added): None.

Project Work: \$7,151.00

Project 1: Light blading on some sections of the sale area to open and improve roads.

Project 2: Installation of 2 culverts to help with water drainage.

Winter Haul Option:

This will require the application of 4 inches of rock at desginated locations within in the timber sale.

Aprox. Rock: 339 yds, Cost: \$6,456, Access: 84 acres with a Volume of 268 MBF.

*Note: Additional rocking may be needed to facilitate winter logging depending on weather conditions.

Timber Sale Appraisal Third Rock

Sale GP-341-2018-93-

District: Southwest Date: December 05, 2017

Logging Conditions

Combination#: 1 Douglas - Fir 75.00%

Grand Fir 75.00%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 7 bd. ft / load: 3500

cost / mbf: \$269.39

machines: Log Loader (A)

Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 25.00%

Grand Fir 25.00%

Logging System: Track Skidder Process: Feller Buncher

yarding distance: Short (400 ft) downhill yarding: No

tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF

loads / day: 7 bd. ft / load: 3400

cost / mbf: \$171.82

machines: Log Loader (B)

Stroke Delimber (B) Feller Buncher w/ Delimber

Track Skidder

Timber Sale Appraisal Third Rock

Sale GP-341-2018-93-

District: Southwest Date: December 05, 2017

Logging Costs

Operating Seasons: 1.00

Profit Risk: 12%

Project Costs: \$5,171.00

Other Costs (P/R): \$0.00

Slash Disposal: \$0.00

Other Costs: \$0.00

Miles of Road

Road Maintenance:

\$0.00

Dirt	Rock (Contractor)	Rock (State)	Paved
1.0	0.0	5.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	4.0	3.4
Grand Fir	\$0.00	4.0	3.4
Chinkapin	\$0.00	0.0	0.0

District: Southwest Date: December 05, 2017

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling / Brand & Paint	Other	Total
Douglas -	Fir								
\$245.00	\$5.17	\$9.60	\$63.09	\$0.00	\$38.74	\$0.00	\$7.00	\$0.00	\$368.60
Grand Fir					_				
\$245.00	\$5.17	\$9.60	\$63.09	\$0.00	\$38.74	\$0.00	\$7.00	\$0.00	\$368.60
Chinkapin									
\$0.00	\$5.17	\$0.00	\$0.00	\$0.00	\$5.17	\$0.00	\$0.00	\$0.00	\$10.34

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$756.29	\$387.69	\$0.00
Grand Fir	\$0.00	\$587.62	\$219.02	\$0.00
Chinkapin	\$0.00	\$60.34	\$50.00	\$0.00

District: Southwest Date: December 05, 2017

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Grand Fir	0	\$0.00	\$0.00
Chinkapin	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	245	\$387.69	\$94,984.05
Grand Fir	200	\$219.02	\$43,804.00
Chinkapin	12	\$50.00	\$600.00

Gross Timber Sale Value

Recovery: \$139,388.05

Prepared By: Wyatt Taylor Phone: 541-471-4252

Project Summary

Project 1: Light Road Blading

1.5 miles @ \$300/mile		\$450
Mobilization		\$600
	Total	\$1,050

Description: The majority of the roads throughout the unit need little to no additional work to make them accessible. There will be some light blading/grading in sections of the road that was not utilized for the previous timber sale.

Project 2: Culvert Installation

	Total	\$4,121
Mobilization		\$1,000
Dump Truck @ 12 hr., \$960/day x 1 day		\$960
Backhoe/Excavator @ 12 hr., \$1,020/day x 1 day		\$1,020
Rock @ \$15/yd., 27 yds.		\$405
Delivery @ \$2.90/mile, 118 miles		\$342
Bands @ \$11 each x 2		\$22
Culverts- 20ft sect. @ \$124 x3		\$372
		

Description: Installation of 2, 30 ft. culverts within the sale area to help with water drainage.

TOTAL COMPINED DROTTOTO	Φ <i>E</i> 1 <i>E</i> 1
TOTAL COMBINED PROJECTS	\$5,171

OREGON DEPARTMENT of FORESTRY CRUISE REPORT

SALE NAME: Third Rock SALE NUMBER: 341-18-93

1. Acreage Calculation: There are 125 net cruise acres in the sale area determined by a combination of GPS traverse waypoints and ArcGIS 10.2 software. Net acres do not include the riparian management areas, regeneration areas within the stand, and non-stocked areas which were not cruised.

- 2. Cruise Method: Third Rock timber sale was cruised by ODF during the summer and fall of 2017. A variable plot cruise was conducted on the sale area.
- 3. RIGHT of WAY VOLUMES: There is currently no right of way volume associated with this sale.
- 4. Sampling Intensity:

Plots 60 Total Plots (32 measured, 27 Count, 1 zero plot)

 $\begin{array}{lll} \text{CV (BDFT)} & \underline{63\%} & \text{(combined volume)} \\ \text{SE (BDFT)} & \underline{8.04\%} & \text{(combined volume)} \\ \text{CV (BDFT)} & \underline{147\%} & \text{(take)} \\ \text{SE (BDFT)} & \underline{19\%} & \text{(take)} \end{array}$

As per ODF standards, total harvest volume of conifers and hardwoods ("take" trees) is estimated to be 451 MBF \pm 85 MBF at the 68% confidence level and a sampling error of 18.83%*. 68 times out of 100 the volume estimate will be within range of error specified.

- **5. Computation Procedures:** Volume was computed using the SuperACE cruise program. Volumes reported are based on the Scribner Log Rule (West).
- **6. Form Factors:** Form factors (a ratio of diameter at 4 and 16 feet) were sampled across the diameter distribution in all strata. Those form factors which were not measured were estimated by SuperACE.
- 7. Height Standards: Most conifer trees were measured for total height with a laser rangefinder.
- 8. Diameter standards: Diameters were measured outside bark at breast height to the nearest inch.
- **9. Grading System:** Trees were graded primarily as 34 foot segments lengths and according to the <u>Official Log Scaling and Grading Rules</u> published by the Northwest Log Rules Advisory Group.
- **10. Merchantable top:** Conifer were graded to a merchantable top specified by the official log scaling rules. For all species except pine, 2S segments were graded to a 12" top inside bark, 3S to a 6" top, and 4S to a 5" top (inside bark). Pine 4S logs were graded to a 12" top inside bark, 5S to a 6" top, and 6S to a 5" top (inside bark).
- 11. Deductions for Cull, Defect and Breakage: All visible field cull was removed in the cruise computation. Additional volume was deducted for the anticipated amount of hidden cull and breakage during logging. The estimated volume reduction used for this anticipated loss to volume was 10%.
- **12.** Cruisers: Cruising was performed by Chris Rudd and Wyatt Taylor.

*ODF does not guarantee the volume of this or any other cruise. Prospective purchasers are advised to do their own cruise and sale volume calculations.

Chris Rudd, Unit Forester: /s Chris Rudd Date: 10/24/2017

PROJECT STATISTICS

	Plots	Trees	Trees Per Plot
Cruise	32	135	4.2
Count	27	109	4
Blank	1	-	-
Total	60	244	4.1

		mmary Volume				
		l Net Volume (l				
	2 Saw	3 Saw	4 Saw	5 Saw	6 Saw	Totals
Douglas-fir	10,575	171,675	62,325	0	0	244,575
Grand-Fir	15,638	155,475	16,537	0	0	187,650
Western Hemlock	0	11,025	2,137	0	0	13,162
Chinquapin	0	0	0	5,625	0	5,625
Totals	26,213	338,175	80,999	5,625	0	451,012

,		mary Volume	, ,		·	
	Total	Net Volume (%	%) Sale Are	a		
	2 Saw	3 Saw	4 Saw	5 Saw	6 Saw	Totals
Douglas-fir	2%	38%	14%	0%	0%	54%
Grand-Fir	3%	34%	4%	0%	0%	42%
Western Hemlock	0%	2%	0%	0%	0%	3%
Chinquapin	0%	0%	0%	1%	0%	1%
Totals	6%	75%	18%	1%	0%	100%

			Board Foo	t Volume	Summar	y by Strata									
Area	Area Acres Plots Net BF/ac CV SE SE units Low (BF) Average Total (BF)														
1	125	60	3,610	147%	19%	84,943	366,070	451,013	535,956						
Total Sale Area	125	60	3,610	147%	19%	84,943	366,070	451,013	535,956						

^{*}ODF does not guarantee the volume of this or any other cruise. Prospective purchasers are advised to do their own cruise and sale volume calculations.

IC PSTATS					OJECT S OJECT		TICS ROCK			DATE	1 9/26/2017
WP RGE	SC	TRACT	1	YPE		ACI	RES	PLOTS	TREES	CuFt	BdFt
032 005	07	WINDY	0	0001			125.00	60	255	s	w
						1	ESTIMATED	_	PERCENT		
					TREES		TOTAL		SAMPLE		
		PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL		60	255		4.3						
CRUISE		32	135		4.2		11,962		1.1		
DBH COUNT REFOREST											
COUNT		27	109		4.0						
BLANKS		1	109		7.0						
100 %		•									
				STA	ND SUMM	ARY					
		AMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOUG FIR-L		74	61.7	16.4	92	22.4	90.7	13,573	13,548	3,125	3.125
DOUG FIR-T		21	13.8	14.7	87	4.2	16.2	2,174	2.174	510	510
GR FIR-L		15	5.6	20.1	108	2.7	12.3	2,289	2,289	513	513
GR FIR-T		8	6.4	17.1	107	2.4	10.1	1,668	1,668	397	397
INC CED-L		10	2.3	23.8	81	1.5	7.3	706	706	209	209
WHEMLOCK-	L	1	1.8	15.0	85	0.6	2.2	292	292	75	75
WHEMLOCK-	T	1	1.0	14.5	83	0.3	1.1	117	117	33	33
SUG.PINE-L		3	.8	19.8	78	0.4	1.7	153	153	42	42
			1.6	8.0	60	0.2	.6	64	64	11	11
CHINQUAP-L		1					_		50	13	13
CHINQUAP-L CHINQUAP-T		1	.7	12.0	60	0.2	.6	50	30		
-			.7 95.7	12.0 16.5	60 92	0.2 35.1	.6 142.8	21,086	21,061	4,928	4,928
CHINQUAP-T TOTAL CONFIDENCE	E LIN	1 135 MITS OF THE	95.7 SAMPLE	16.5	92	35.1		21,086			
CHINQUAP-T TOTAL CONFIDENCE	ELIN	1 135 MITS OF THE TIMES OUT	95.7 E SAMPLE OF 100 THE	16.5	92 WILL BE W	35.1	142.8 E SAMPLE E	21,086 RROR	21,061	4,928 EQ.	4,928 INF. POP.
CHINQUAP-T TOTAL CONFIDENCE CL 68.1 SD: 1.0	ELIN	1 135 MITS OF THE TIMES OUT COEFF VAR.%	95.7 E SAMPLE OF 100 THE S.E.%	16.5 VOLUME	92 WILL BE W	35.1 VITHIN TH TREES - AVG	142.8 E SAMPLE E BF HIGH	21,086 RROR	21,061	4,928	4,928 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR-L	ELIN	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6	95.7 E SAMPLE OF 100 THE S.E.% 7.7	16.5 VOLUME	92 WILL BE W SAMPLE OW 281	JITHIN THE TREES - AVG	142.8 E SAMPLE E BF HIGH 328	21,086 RROR	21,061	4,928 EQ.	4,928 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T	ELIN	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5	95.7 E SAMPLE OF 100 THE S.E.% 7.7 12.0	16.5 VOLUME	92 WILL BE W SAMPLE OW 281 161	35.1 /ITHIN TH / TREES - AVG 304 183	I 42.8 E SAMPLE E BF HIGH 328 205	21,086 RROR	21,061	4,928 EQ.	4,928 INF. POP.
CHINQUAP-T TOTAL CONFIDENCE CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T GR FIR-L	ELIN	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4	95.7 E SAMPLE F OF 100 THE S.E.% 7.7 12.0 14.5	16.5 VOLUME	92 WILL BE W SAMPLE OW 281 161 448	35.1 /ITHIN TH /I TREES - AVG 304 183 524	142.8 E SAMPLE E BF HIGH 328 205 600	21,086 RROR	21,061	4,928 EQ.	4,928 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR-T GR FIR-T GR FIR-T	ELIN	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2	95.7 E SAMPLE F OF 100 THE S.E.% 7.7 12.0 14.5 11.8	16.5 VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246	35.1 /ITHIN TH TREES - AVG 304 183 524 279	142.8 E SAMPLE E BF HIGH 328 205 600 312	21,086 RROR	21,061	4,928 EQ.	4,928 INF. POP.
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L GR FIR-L GR FIR-T INC CED-L	58.1	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4	95.7 E SAMPLE F OF 100 THE S.E.% 7.7 12.0 14.5	16.5 VOLUME	92 WILL BE W SAMPLE OW 281 161 448	35.1 /ITHIN TH /I TREES - AVG 304 183 524	142.8 E SAMPLE E BF HIGH 328 205 600	21,086 RROR	21,061	4,928 EQ.	4,928 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR-T GR FIR-T GR FIR-T	CE LIN 58.1	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2	95.7 E SAMPLE F OF 100 THE S.E.% 7.7 12.0 14.5 11.8	16.5 VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246	35.1 /ITHIN TH TREES - AVG 304 183 524 279	142.8 E SAMPLE E BF HIGH 328 205 600 312	21,086 RROR	21,061	4,928 EQ.	4,928 INF. POP.
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK-	CE LIN 58.1	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2	95.7 E SAMPLE F OF 100 THE S.E.% 7.7 12.0 14.5 11.8	16.5 VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246	35.1 /ITHIN TH TREES - AVG 304 183 524 279	142.8 E SAMPLE E BF HIGH 328 205 600 312	21,086 RROR	21,061	4,928 EQ.	4,928 INF. POP.
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK- WHEMLOCK- SUG PINE-L	E LIN 58.1 L	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7	95.7 E SAMPLE TOF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9	16.5 VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297	35.1 /ITHIN TH /I TREES - AVG 304 183 524 279 395	142.8 E SAMPLE E BF HIGH 328 205 600 312 493	21,086 RROR	21,061	4,928 EQ.	4,928 INF. POP.
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L GR FIR-L GR FIR-T INC CED-L WHEMLOCK- WHEMLOCK-	E LIN 58.1 L	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7	95.7 E SAMPLE TOF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9	16.5 VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297	35.1 /ITHIN TH /I TREES - AVG 304 183 524 279 395	142.8 E SAMPLE E BF HIGH 328 205 600 312 493	21,086 RROR	21,061	4,928 EQ.	4,928 INF. POP.
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK- WHEMLOCK- SUG PINE-L CHINQUAP-L	E LIN 58.1 L	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7	95.7 E SAMPLE TOF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9	16.5 VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297	35.1 /ITHIN TH /I TREES - AVG 304 183 524 279 395	142.8 E SAMPLE E BF HIGH 328 205 600 312 493	21,086 RROR	21,061	4,928 EQ.	4,928 INF. POP.
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK- WHEMLOCK- WHEMLOCK- SUG PINE-L CHINQUAP-L CHINQUAP-T TOTAL	E LIN 58.1 L	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7	95.7 E SAMPLE T OF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9	16.5 VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297 156	35.1 /ITHIN TH 2 TREES - AVG 304 183 524 279 395 203	142.8 E SAMPLE E BF HIGH 328 205 600 312 493 250	21,086 RROR	21,061 # OF TREES R 5	4,928 EQ. 10	4,928 INF. POP. 1
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK- WHEMLOCK- WHEMLOCK- SUG PINE-L CHINQUAP-L CHINQUAP-T TOTAL CL 68.1	CE LIN 58.1	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7 33.5	95.7 E SAMPLE T OF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9	VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297 156	35.1 /ITHIN TH TREES - AVG 304 183 524 279 395	142.8 E SAMPLE E BF HIGH 328 205 600 312 493 250	21,086 RROR	21,061 FOF TREES R 5	4,928 EQ. 10	4,928 INF. POP. 1
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK- WHEMLOCK- WHEMLOCK- SUG PINE-L CHINQUAP-L CHINQUAP-T TOTAL	CE LIN 58.1	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7 33.5	95.7 E SAMPLE TOF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9 23.2	VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297 156 288 SAMPLE	35.1 /ITHIN TH /ITREES - AVG 304 183 524 279 395 203 307	142.8 E SAMPLE E BF HIGH 328 205 600 312 493 250 326 CF	21,086 RROR	21,061 FOF TREES R 5	4,928 EQ. 10	4,928 INF. POP. 1
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T INC CED-L WHEMLOCK- WHEMLOCK- WHEMLOCK- SUG-PINE-L CHINQUAP-L CHINQUAP-T TOTAL CL 68.1 SD: 1.0	CE LIN 58.1	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7 33.5	95.7 E SAMPLE TOF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9 23.2 6.2 S.E.%	VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297 156 288 SAMPLE OW	35.1 /ITHIN TH /ITREES - AVG 304 183 524 279 395 203 307 /ITREES - AVG	142.8 E SAMPLE E BF HIGH 328 205 600 312 493 250 326 CF HIGH	21,086 RROR	21,061 FOF TREES R 5	4,928 EQ. 10	4,928 INF. POP. 1
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L GR FIR-T INC CED-L WHEMLOCK- WHEMLOCK- WHEMLOCK- SUG-PINE-L CHINQUAP-T TOTAL CL 68.1 SD: 1.0 DOUG FIR-L	CE LIN 58.1	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7 33.5 71.8 COEFF VAR.% 59.9	95.7 E SAMPLE TOF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9 23.2 6.2 S.E.% 7.0	VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297 156 288 SAMPLE OW 64	35.1 /ITHIN TH /ITREES - AVG 304 183 524 279 395 203 307 /ITREES - AVG 69	142.8 E SAMPLE E BF HIGH 328 205 600 312 493 250 326 CF HIGH 74	21,086 RROR	21,061 FOF TREES R 5	4,928 EQ. 10	4,928 INF. POP. 1
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK-WHEMLOCK-WHEMLOCK-SUG-PINE-L CHINQUAP-T TOTAL CL 68.1 SD: 1.0 DOUG FIR-T GR FIR-T GR FIR-T GR FIR-T GR FIR-T	CE LIN 58.1	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7 33.5 71.8 COEFF VAR.% 59.9 48.5 47.8 27.7	95.7 E SAMPLE TOF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9 23.2 6.2 S.E.% 7.0 10.8 12.8 10.5	VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297 156 288 SAMPLE OW 64 38 100 59	35.1 /ITHIN TH C TREES - AVG 304 183 524 279 395 203 307 C TREES - AVG 69 43 114 66	142.8 E SAMPLE E BF HIGH 328 205 600 312 493 250 CF HIGH 74 47 129 73	21,086 RROR	21,061 FOF TREES R 5	4,928 EQ. 10	4,928 INF. POP. 1
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK-WHEMLOCK- WHEMLOCK-SUG-PINE-L CHINQUAP-T TOTAL CL 68.1 SD: 1.0 DOUG FIR-T GR FIR-T INC CED-L UNDUG FIR-T GR FIR-T INC CED-L	CE LIN 58.1	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7 33.5 71.8 COEFF VAR.% 59.9 48.5 47.8	95.7 E SAMPLE TOF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9 23.2 6.2 S.E.% 7.0 10.8 12.8	VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297 156 288 SAMPLE OW 64 38 100	35.1 /ITHIN TH C TREES - AVG 304 183 524 279 395 203 307 C TREES - AVG 69 43 114	142.8 E SAMPLE E BF HIGH 328 205 600 312 493 250 326 CF HIGH 74 47 129	21,086 RROR	21,061 FOF TREES R 5	4,928 EQ. 10	4,928 INF. POP. 1
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK- WHEMLOCK- WHEMLOCK- SUG PINE-L CHINQUAP-T TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK- UNIQUAP-T TOTAL CL 68.1 SD: 1.0 DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK-	CE LIN 58.1	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7 33.5 71.8 COEFF VAR.% 59.9 48.5 47.8 27.7	95.7 E SAMPLE TOF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9 23.2 6.2 S.E.% 7.0 10.8 12.8 10.5	VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297 156 288 SAMPLE OW 64 38 100 59	35.1 /ITHIN TH C TREES - AVG 304 183 524 279 395 203 307 C TREES - AVG 69 43 114 66	142.8 E SAMPLE E BF HIGH 328 205 600 312 493 250 CF HIGH 74 47 129 73	21,086 RROR	21,061 FOF TREES R 5	4,928 EQ. 10	4,928 INF. POP. 1
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK- WHEMLOCK- SUG PINE-L CHINQUAP-T TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L DOUG FIR-L GR FIR-T INC CED-L WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK-	CE LIN 58.1	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7 33.5 COEFF VAR.% 59.9 48.5 47.8 27.7 54.6	95.7 E SAMPLE T OF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9 23.2 6.2 S.E.% 7.0 10.8 12.8 10.5 18.2	VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297 156 288 SAMPLE OW 64 38 100 59 92	35.1 /ITHIN TH I TREES - AVG 304 183 524 279 395 203 307 I TREES - AVG 69 43 114 66 112	142.8 E SAMPLE E BF HIGH 328 205 600 312 493 250 CF HIGH 74 47 129 73 133	21,086 RROR	21,061 FOF TREES R 5	4,928 EQ. 10	4,928 INF. POP. 1
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T INC CED-L WHEMLOCK- WHEMLOCK- WHEMLOCK- SUG PINE-L CHINQUAP-T TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T INC CED-L WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK- SUG PINE-L	CE LIN 58.1	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7 33.5 71.8 COEFF VAR.% 59.9 48.5 47.8 27.7	95.7 E SAMPLE TOF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9 23.2 6.2 S.E.% 7.0 10.8 12.8 10.5	VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297 156 288 SAMPLE OW 64 38 100 59	35.1 /ITHIN TH C TREES - AVG 304 183 524 279 395 203 307 C TREES - AVG 69 43 114 66	142.8 E SAMPLE E BF HIGH 328 205 600 312 493 250 CF HIGH 74 47 129 73	21,086 RROR	21,061 FOF TREES R 5	4,928 EQ. 10	4,928 INF. POP. 1
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L GR FIR-L GR FIR-L WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK- TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L DOUG FIR-L CHINQUAP-T TOTAL CL 68.1 SD: 1.0 DOUG FIR-L CHINQUAP-T CR FIR-L GR FIR-L GR FIR-L GR FIR-L CHINQUAP-L CHINQUAP-L CHINQUAP-L CHINQUAP-L CHINQUAP-L CHINQUAP-L CHINQUAP-L	L T	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7 33.5 COEFF VAR.% 59.9 48.5 47.8 27.7 54.6	95.7 E SAMPLE T OF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9 23.2 6.2 S.E.% 7.0 10.8 12.8 10.5 18.2	VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297 156 288 SAMPLE OW 64 38 100 59 92	35.1 /ITHIN TH I TREES - AVG 304 183 524 279 395 203 307 I TREES - AVG 69 43 114 66 112	142.8 E SAMPLE E BF HIGH 328 205 600 312 493 250 CF HIGH 74 47 129 73 133	21,086 RROR	21,061 FOF TREES R 5	4,928 EQ. 10	4,928 INF. POP. 1
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L GR FIR-L GR FIR-T INC CED-L WHEMLOCK-WHEMLOCK- WHEMLOCK- WHEMLOCK- TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L DOUG FIR-L GR FIR-L GR FIR-L GR FIR-L GR FIR-L GR FIR-L CHINQUAP-T TOTAL CL 68.1 SD: 1.0 CHINQUAP-T CHINQUAP-T CHINQUAP-T CHINQUAP-L CHINQUAP-L CHINQUAP-L CHINQUAP-L CHINQUAP-L CHINQUAP-L	L T	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7 33.5 71.8 COEFF VAR.% 59.9 48.5 47.8 27.7 54.6 34.9	95.7 E SAMPLE TOF 100 THE SE.% 7.7 12.0 14.5 11.8 24.9 23.2 6.2 SE.% 7.0 10.8 12.8 10.5 18.2	VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297 156 288 SAMPLE OW 64 38 100 59 92 42	35.1 /ITHIN TH /ITREES - AVG 304 183 524 279 395 203 307 /ITREES - AVG 69 43 114 66 112	142.8 E SAMPLE E BF HIGH 328 205 600 312 493 250 CF HIGH 74 47 129 73 133	21,086 RROR	21,061 FOF TREES R 5	4,928 EQ. 10	4,928 INF. POP. 1 INF. POP. 1
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK- WHEMLOCK- WHEMLOCK- SUG PINE-L CHINQUAP-T TOTAL CL 68.1 SD: 1.0 DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK- WHEMLOCK- SUG PINE-L CHINQUAP-T CR FIR-T INC CED-L WHEMLOCK- WHEMLOCK- WHEMLOCK- SUG PINE-L CHINQUAP-L CHINQUAP-L CHINQUAP-T TOTAL	L T	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7 33.5 71.8 COEFF VAR.% 59.9 48.5 47.8 27.7 54.6 34.9 64.6	95.7 E SAMPLE T OF 100 THE S.E.% 7.7 12.0 14.5 11.8 24.9 23.2 6.2 S.E.% 7.0 10.8 12.8 10.5 18.2	VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297 156 288 SAMPLE OW 64 38 100 59 92 42 67	35.1 /ITHIN TH I TREES - AVG 304 183 524 279 395 203 307 I TREES - AVG 69 43 114 66 112 55	142.8 E SAMPLE E BF HIGH 328 205 600 312 493 250 CF HIGH 74 47 129 73 133	21,086 RROR	21,061 # OF TREES R 5 206 # OF TREES R 5	4,928 EQ. 10	4,928 INF. POP. 1. INF. POP. 1.
CHINQUAP-T TOTAL CONFIDENC CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T INC CED-L WHEMLOCK- WHEMLOCK- WHEMLOCK- SUG PINE-L CHINQUAP-T TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L DOUG FIR-T GR FIR-T INC CED-L WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK- WHEMLOCK- SUG PINE-L CHINQUAP-L CHINQUAP-L CHINQUAP-L CHINQUAP-L	L LT	1 135 MITS OF THE TIMES OUT COEFF VAR.% 66.6 53.5 54.4 31.2 74.7 33.5 71.8 COEFF VAR.% 59.9 48.5 47.8 27.7 54.6 34.9	95.7 E SAMPLE TOF 100 THE SE.% 7.7 12.0 14.5 11.8 24.9 23.2 6.2 SE.% 7.0 10.8 12.8 10.5 18.2	VOLUME	92 WILL BE W SAMPLE OW 281 161 448 246 297 156 288 SAMPLE OW 64 38 100 59 92 42	35.1 /ITHIN TH I TREES - AVG 304 183 524 279 395 203 307 I TREES - AVG 69 43 114 66 112 55	142.8 E SAMPLE E BF HIGH 328 205 600 312 493 250 CF HIGH 74 47 129 73 133	21,086 RROR	21,061 FOF TREES R 5	4,928 EQ. 10	4,928 INF. POP. 1

TC PST	ATS				PROJECT PROJECT		STICS DROCK			PAGE DATE	2 9/26/2017
TWP	RGE	SC	TRACT	TY	E	A	CRES	PLOTS	TREES	CuFt	BdFt
032	005	07	WINDY	0001	ı		125.00	60	255	s	w
CL	68.1		COEFF		TREES	ACRE			# OF PLOT	S REO.	INF. POP.
	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
DOUG	FIR-T		181.4	23.4	11	14	17				
GR FI			269.6	34.8	4	6	8				
GR FI			225.9	29.1	5	6	8				
INC C	ED-L		217.6	28.1	2	2	3				
WHEN	MLOCK-L		609.3	78.6	0	2	3				
WHE	MLOCK-T	Г	543.1	70.0	0	1	2				
SUG.P	PINE-L		774.6	99.9	0	1	2				
	QUAP-L		774.6	99.9	0	2	3				
CHIN	QUAP-T		774.6	99.9	0	1	1				
TOTA	IL		62.7	8.1	88	96	103		157	39	17
CL	68.1		COEFF		BASAI	AREA/A	CRE		# OF PLOTS R	EQ.	INF. POP.
			VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
	FIR-L		72.6	9.4	82	91	99		-		
DOUG	FIR-T		188.5	24.3	12	16	20				
GR FI	R-L		229.9	29.7	9	12	16				
GR FI			223.8	28.9	7	10	13				
INC C	ED-L		209.7	27.1	5	7	9				
WHEN	MLOCK-L		609.3	78.6	0	2	4				
WHEN	MLOCK-T	Г	543.1	70.0	0	1	2				
SUG.P	PINE-L		774.6	99.9	0	2	3				
CHIN	QUAP-L		774.6	99.9	0	1	1				
CHING	QUAP-T		774.6	99.9	0	1	1				
TOTA	L		46.0	5.9	134	143	151		84	21	9
	68.1		COEFF			F/ACRE			# OF PLOTS R	•	INF. POP.
	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
	FIR-L		76.4	9.9	12,213	13,548	14,883				
	FIR-T		203.9	26.3	1,602	2,174	2,746				
GR FI			223.5	28.8	1,629	2,289	2,949				
GR FI			224.5	29.0	1,185	1,668	2,151				
INC C			246.9	31.8	481	706	931				
	MLOCK-L		609.3 543.1	78.6 70.0	63 35	292 117	522 199				
	MLOCK-T PINE-L		774.6	99.9	0	153	306				
	QUAP-L		774.6	99.9	0	64	128				
	QUAP-L QUAP-T		774.6	99.9	0	50	100				
TOTA			52.6	6.8	19,631	21,061	22,492		111	28	12
	68.1		COEFF			UFT FT/A			# OF PLOTS R	•	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
	FIR-L		75.0	9.7	2,823	3,125	3,428				
	FIR-T		200.5	25.9	378	510	642				
GR FI			225.0 224.3	29.0 28.9	364 282	513	661				
			222.9	28.8	149	397 209	512 269				
GR FI	EU-L		609.3	78.6	149	75	134				
GR FII	moon -		009.3		10	33	56				
GR FI INC C WHEN	MLOCK-I		542.1			33					
GR FII INC C WHEN WHEN	MLOCK-T		543.1	70.0							
GR FII INC C WHEN WHEN SUG.P	MLOCK-T PINE-L		774.6	99.9	0	42	83				
GR FII INC C WHEN WHEN SUG.P CHING	MLOCK-T										

TC	PLO	GSTVB	ı					Log S	tock Ta	ıble - l	MBF									
Т0:	32 R.0	005 S07	Ty0	001	12:	5.00		Proje Acre		3RD	ROCK 125	.00					Page Date Time		1 6/2017 45:34A	м
	s	Soc	èr	Log	Gross	Def	Net	96		N	et Volu	ne by S	caling I	iamete	r in Inche	5				
Spp	T	rt d	e	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	L	DO	2M	34	418		418	24.7						142	123	113	40			
DF	L	DO	3M	26	13		13	.7				13								
DF	L	DO	3M	32	7		7	.4			7									
DF	L	DO	3M	34	1,002		999	59.0			46	222	313	237	34	148				
DF	L	DO	3M	42	20		20	1.2					20							
DF	L	DO	4M	12	1		1	.0		1										
DF	L	DO	4M	13	1		1	.1		1										
DF	L	DO	4M	14	2		2	.1		2										
DF	L	DO	4M	15	13		13	.8		13										
DF	L	DO	4M	16	1		1	.1		1										
DF	L	DO	4M		7		7	.4		7										
DF	L	l	4M				4	.3		4										
DF	L	l	4M				8	.5		8										
DF	L	l	4M 4M		11		11	.7		11										
DF	L	l	4M				3	.2		,		3								
DF	L	l	4M		9		9	.5		9										
DF	L	l	4M				25	1.5		19		6								
DF	L	l	4M	25	7		7	.4		7										
DF	L	DO	4M	26	14		14	.8.		4	10									
DF	L	DO	4M	27	10		10	.6		10										
DF	L	DO	4M	28	16		16	.9		8		8								
DF	L	DO	4M	30	16		16	1.0		16										
DF	L	DO	4M		18		18	1.0		18										
DF	L		4M				3	.2		3										
DF	L	l	4M				3	.2		3	14									
DF	L		4M 4M				21 16	1.2 .9		7 16	14									
DF	L	l	4M				2	.1		2										
DF	L	l					2	.1		2										
DF	L	l	4M				3	.2		3										
DF	L	DO	4M	41	9		9	.5		9										
DF	L	DO	4M	42	7		7	.4		7										
DF		1	Totals		1,697		1,693	64.3		197	77	250	332	379	157	261	40			
DF	T	DO	2M	34	12		12	4.3							12					
DF	T	DO	3M	26	9		9	3.4		3		6								

TC	PLO	GSTVE	3					Log	Stock ?	Table -	MBF									
T0:	32 R	005 S07	Ty00	001	12	5.00		Proje Acre		3RD	ROCK 12	5.00					Page Date Time		2 6/2017 45:34A	M
	s	Soc	àr	Log	Gross	Def	Net	96		1	et Volt	me by S	caling Di	amete	r in Inche	s				
Spp	T	rt d	le	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11 1	2-13	14-15	16-19	20-23	24-29	30-39	40+
DF	T	DO	3M	32	4		4	1.4			4									
DF	T	DO	3M	34	178		178	65.4			9	58	69	29	12					
DF	T	DO	4M	12	1		1	.2		1										
DF	T	DO	4M	13	1		1	.4		1										
DF	T	DO	4M	16	2		2	.7		2										
DF	T	DO	4M	17	5		5	1.7		5										
DF	T	DO	4M	18	2		2	.9		2										
DF	T	DO	4M	19	2		2	.6		2										
DF	T	DO	4M	20	2		2	.6		2										
DF	T	DO	4M	22	1		1	.4		1										
DF	T	l	4M	23	3		3	1.0		3										
DF	T	l	4M	24	2		2	.8		2										
DF	T	l	4M	26			4	1.6		1		3								
DF	T		4M	28			3	1.2		3										
DF	T	l	4M	29			3	1.0		3										
DF	T	l	4M	31			2	.9		2		10								
DF	T	l	4M 4M	34 35			26 3	9.6		3	16	10								
DF	T	l	4M	36			5	1.7		5										
DF	Т			40			4	1.3		4										
-			Totals		272		272	103		43	20	70		20	24					
DF IC	L			20	272		272	10.3		43	29	78 3	69	29	24					
IC	L	l	3M	21			1			1		,								
IC	L	l		34			55			•			13		14	9	19			
	_	_																		
IC	L	l			0		0			0					_					
IC	L	l			1		2			1					2					
IC	L	l					1 2	.8 1.8		2										
IC	L	l		32			0	.6		0										
IC	L	l					18	20.9					6		4	8				
IC	L	l					3	3.1		3						•				
IC	L	l					1	1.4		1										
IC	L	DO	4M	40	2		2	2.7				2								
IC		,	Totals		88		88	3.4		8		5	19		20	17	19			
GF	L	_	2M	_			75	26.3						11	24	41				
GF	L	DO.	3M	34	183		183	63.9				26	27	27	38	35	30			
GF	L	טע	5301	34	163		163	03.9					-		36	33	30			

TC	PLO	GSTVB				Log S	otock Table -	MBF								
T03	32 R0	005 S07 Ty	0001	125	.00	Proje Acre		PROCK 125	5.00				Page Date Time		3 6/2017 45:34A1	м
	s	So Gr	Log	Gross	Def Net	96		Net Volu	me by S	caling Diame	er in Inche	s				
Spp	T	rt de	Len	MBF	% MBF	Spc	2-3 4-5	6-7	8-9	10-11 12-13	14-15	16-19	20-23 2	4-29	30-39	40+
GF	L	DO 43	M 14	1	1	.2	1									
GF	L	DO 42	M 16	1	1	.4	1									
GF	L	DO 43	M 17	1	1	.3	1									
GF	L	DO 43	M 19	1	1	.4	1									
GF	L	DO 42	M 21	2	2	.6	2									
GF	L	DO 43	M 23	1	1	.3	1									
GF	L	DO 43	M 24	2	2	.8			2							
GF	L	DO 43			4	1.5	1			3						
GF	L				1	.3	1	1		_						
GF	L				8	2.6	4			3						
GF	L				2	.8.	2	1								
GF	L	DO 43	M 41	4	4	1.5	4									
GF		Tota		286	286	10.9	19		28	33 3	+	75	30			
GF	T	DO 21	M 34	17	17	8.3					17					
GF	T	DO 33	M 34	173	173	82.8		7	37	59 5	19					
GF	Т	DO 42	M 12	1	1	.5	1									
GF	T	DO 43	M 15	4	4	2.0	4									
GF	T	DO 43	M 21	. 3	3	1.3	3									
GF	T	DO 42	M 22	2	2	1.0	2									
GF	T	DO 43	M 25	3	3	1.6	3									
GF	T	DO 43	M 37	5	5	2.5	5									
GF		Total	ls	209	209	7.9	18	7	37	59 5	36					
SP	L	DO 33	M 34	16	16	85.2				10	6					
SP	L	DO 43	M 20	1	1	3.9	1									
SP	L	DO 43	M 28	1	1	5.6	1									
SP	L	DO 43	M 36	1	1	5.3	1									
SP		Tota	ls	19	19	.7	3			10	6					
cQ	L	DO 43	M 33	8	8	100.0	8									
cQ		Tota	ls	8	8	3	8									
cQ	T	DO 43	M 22	6	6	100.0	2		4							
cQ		Tota	ls	6	6	.2	2		4							
WH	L	DO 33	M 34	30	30	81.2				30						
WH	L	DO 43	M 32	7	7	18.8	7									
								1			1					

TC	PLO	GST	/В						Log	tock	Table -	MBF									
T03:	2 R.0	05 S	07 Ty	0001		125.0	0		Proje Acre		3RD	ROCK 125	.00					Page Date Time	9/2	4 6/2017 45:34A	м
	s	So	Gr	Log	Gross	I	ef Net		96		N	et Volu	ne by S	caling l	Diamete	r in Inche	es				
Spp	T	rt	de	Len	MBE		% MB	F	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
WH			Total	s		37		37	1.4		7			30							
WH	T	DO	31	1 34		12		12	83.3				12								
WH	Т	DO	43	1 30		2		2	16.7		2										
WH			Total	s		15		15	.6		2		12								
Total		Al	Speci	os	2	,636	2	,633	100.0		308	112	415	552	498	305	354	89			

TC PL	OTTREELIS	Т						t Tree ! roject	List - Vo 3RI	olumes OROCK				Page Date	1 9/26/20	017
TWP	RGE	SC	TRA	CT		TY	PE		A	CRES	PLOTS	TB	EES	CRUISE	D DATE	
032	005	07	WIN	DY		000	01			125.00	60		135	1	7/1/2017	
Plot	Tree				Tree	s		16'	Tot	BA	Trees	Logs	Net	Net	Total	
No.	No.	Age	SI	Spp St	Me.	α.	DBH	FF	HL	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
0100	0001	60	100	ICL	1		25.0	80	82	33.6	9.86	19.7	959	2,761	20	
	0002	60	100	DF T	1		14.0	87	85	33.6	31.44	62.9	992	4,087	21	
	0003	60	100	DF T	1		16.0	88	89	33.6	24.07	48.1	1,117	4,574	23	
	0004	60	100	DF L	1		13.0	87	80	33.6	36.46	72.9	916	3,646	19	
	0005	60	100	DF L	1		13.5	88	83	33.6	33.81	67.6	1,048	4,396	22	
	0006	60	100	DF L	1		20.0	88	101	33.6	15.41	46.2	1,223	5,084	25	
0100			100		6		15.6	87	85	201.7	151.05	317.5	6,255	24,547	130	
0102	0001	60	100	DFL	1		13.5	89	88	33.6	33.81	67.6	1,087	4,396	23	
	0002	60	100	DF L	1		20.0	89	96	33.6	15.41	46.2	1,183	4,930	25	1
	0003	60	100	DF L	1		22.5	89	101	33.6	12.17	36.5	1,259	5,964	26	1
	0004	60	100	DF L	1		14.5	89	90	33.6	29.31	29.3	804	3,810	17	
0102			100		4		16.5	89	92	134.4	90.70	179.7	4,333	19,100	90	-
0104	0001	60		DF L	1		19.0	89	84	33.6	17.07	17.1	780	3,585	16	
0104			100		1		19.0	89	84	33.6	17.07	17.1	780	3,585	16	
0104	0001	60	100	DF L	1		14.0	86	66	33.6	31.44	62.9	794	2,830	17	
	0002	60	100	DFT	1		15.0	86	66	33.6	27.39	54.8	838	3,287	17	
	0003	60	100	DFL	1		17.5	88	86	33.6	20.12	40.2	1,132	4,226	24	
	0004	60	100	DF L	1		18.5	88	90	33.6	18.01	36.0	1,105	3,781	23	
	0005	60	100	DF L	1		16.5	88	88	33.6	22.63	45.3	1,107	4,301	23	
0106			100		5		16.1	87	77	168.1	119.59	239.2	4,976	18,423	104	
0108	0001	60	100	DFL	1		12.5	88	90	33.6	39.44	78.9	1.048	3,944	22	
	0002	60	100	DF L	1		17.5	89	108	33.6	20.12	60.4	1,284	5,232	27	1
	0003	60	100	DF L	1		20.0	89	111	33.6	15.41	46.2	1,339	6,008	28	1
	0004	60	100	DF L	1		18.5	89	110	33.6	18.01	54.0	1,350	5,942	28	1
	0005	60	100	DF L	1		15.0	89	100	33.6	27.39	54.8	1,144	5,204	24	1
0108			100		5		16.0	89	101	168.1	120.36	294.3	6.164	26,329	128	
0109	0001	60		IC L		1	23.0	77	81	33.6	10.84	23.6	965	3,258	20	
						_										
0109	0001	-60	100	DFL	1	1	23.8	77	81	33.6	9.12	23.6	965	3,258	20 29	
0110	0001	60 60	100	DFL	1		18.5	87 88	121 93	33.6 33.6	18.01	54.0	1,397 1,112	6,381 4,321	29	
	0002	60		DFL	1		30.0	87	125	33.6	6.85	20.5	1,472	7,463	31	1
								-					-,	1,102		
0110	2001		100		3		23.3	88	107	100.8	33.97	101.9	3,981	18,166	83	
0112	0001	60		ICL	1		27.0	83	105	33.6	8.45	25.4	1,148	4,734	24	1
	0002	60 60		ICL	1		32.0 20.0	82 89	115 112	33.6 33.6	6.02 15.41	18.1 46.2	1,289 1,344	5,536 6,162	27 28	1
	0003 0004	60		DFL	1		22.5	89	110	33.6	12.17	36.5	1,328	6,330	28	
	0004	60		DFL	1		23.5	89	112	33.6	11.16	33.5	1,344	6,360	28	
	0005	60		DFT	1		13.0	89	85	33.6	36.46	72.9	1,056	4,740	22	
0112	0000		100		- 6		20.3	88	100	201.7	89.67	232.5	7,510	33,863	156	
0114	0001	60		DFL	1		18.0	87	87	33.6	19.02	38.0	1,062	3,994	22	
	0002	60 60		DF L DF L	1		17.5 23.5	88 87	86 95	33.6 33.6	20.12 11.16	40.2 33.5	1,123 1,200	4,226 5,021	23 25	1
	0003		100	DrL				0/	93			23.3	1,200		23	
0114			100		3		19.2	87	88	100.8	50.30	111.8	3,384	13,241	71	
0116	0001	60		DF L	1		20.0	87	113	33.6	15.41	46.2	1,344	6,162	28	
	0002	60		DF L	1		13.0	86	81	33.6	36.46	72.9	916	3,646	19	
	0003	60		DF L	1		15.0	86	115	33.6	27.39	82.2	1,230	5,751	26	
	0004	60	100	DF L	1		22.0	85	110	33.6	12.73	38.2	1,320	5,729	28	

TC PL	OTTREELIS	π						t Tree l Project	List - Vo 3RE	lumes ROCK				Page Date	2 9/26/20)17
TWP	RGE	SC	TRA	ст		TY	DF.		Δ	CRES	PLOTS	TR	FES	CRUISE	DDATE	
032	005	07	WIN			000				125.00	60		135		7/1/2017	
Plot	Tree				Tre	es		16'	Tot	BA	Trees	Logs	Net	Net	Total	
No.	No.	Age	SI	Spp St	Me.	α. 1	DBH	FF	Ht.	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
0116	0005	60	100	DF L	1		19.0	86	113	33.6	17.07	51.2	1,289	5,633	27	12
	0006	60	100	GF L	1		24.0	85	116	33.6	10.70	32.1	1,435	6,312	30	13
0116			100		6		17.6	86	104	201.7	119.76	322.8	7,535	33,235	157	69
0117	0001	60	100	DF T		4	14.0	88	88	134.4	114.31	256.9	4,224	17,990	88	37
0117			100			4	14.7	88	88	134.4	114.31	256.9	4,224	17,990	88	37
0118	0001	60	100	ICL	1		18.0	82	80	33.6	19.02	38.0	874	3,043	18	6
	0002	60	100	DF L	1		16.0	87	120	33.6	24.07	72.2	1,352	6,018	28	13
	0003	60	100	DF L	1		21.0	87	115	33.6	13.97	41.9	1,359	6,428	28	13
	0004	60	100	DF L	1		29.0	86	108	33.6	7.33	22.0	1,292	6,082	27	13
	0005	60	100	DF L	1		18.0	86	111	33.6	19.02	38.0	1,130	4,565	24	10
0118			100		5		19.2	86	107	168.1	83.41	212.2	6,008	26,135	125	54
0126	0001	60 60	100	DFL	1		13.5	81 89	75 94	33.6 33.6	33.81 24.07	67.6 24.1	908 772	2,367 3,611	19 16	5
	0002			DF L												
0126		60	100		2		14.6	84 87	83	67.2	57.88	91.7 38.0	1,680	5,978	35 20	12
0128	0001	- 00	100	DF L	1		18.0	8/	80	33.6	19.02	38.0	958	3,423	20	
0128			100		1		18.0	87	80	33.6	19.02	38.0	958	3,423	20	7
0129	0001	60	100	DF L		3	16.0	88	92	100.8	68.54	156.9	3,473	15,053	72	31
0129			100			3	16.4	88	92	100.8	68.54	156.9	3,473	15,053	72	31
0130	0001	60	100	DF L	1		15.0	86	77	33.6	27.39	54.8	901	3,560	19	7
	0002	60	100	DF L	1		13.5	86	73	33.6	33.81	67.6	895	3,043	19	6
	0003	- 60	100	DF L	1		16.0	86	80	33.6	24.07	48.1	955	3,851	20	8
0130			100		3	5	14.7	86	76	100.8	85.27	170.5	2,751	10,455	57	22
0131	0001	60	100	DF L			16.0	88	92	168.1	114.23	261.5	5,788	25,089	121	52
0131	****		100			5	16.4	88	92	168.1	114.23	261.5	5,788	25,089	121	52
0132	0001	60 60	100	GF L GF L	1		19.0	89 89	101 104	33.6 33.6	17.07 15.41	51.2 46.2	1,207 1,267	4,950 5,546	25 26	10 12
	0002	60	100	DFL	1		11.0	86	73	33.6	50.93	101.9	847	3,565	18	7
	0004	60	100	DFL	1		16.5	86	84	33.6	22.63	45.3	1,080	4,074	22	8
0132			100		4		15.2	87	84	134.4	106.04	244.6	4.401	18,136	92	38
0136	0001	60		DF T	1		15.0	88	116	33.6	27.39	82.2	1,235	5,751	26	12
	0002	60	100	DF L	1		17.0	88	112	33.6	21.32	64.0	1,306	5,544	27	12
	0003	60	100	DF L	1		18.0	88	112	33.6	19.02	57.1	1,364	6,276	28	13
	0004	60	100	DF L	1		18.0	88	123	33.6	19.02	57.1	1,413	6,467	29	13
	0005	60		DF L	1		19.0	88	118	33.6	17.07	51.2	1,363	6,316	28	13
	0006	60	100	DF L	1		19.0	88	116	33.6	17.07	17.1	780	3,585	16	7
0136			100		6		17.5	88	116	201.7	120.89	328.5	7,462	33,939	155	71
0138	0001	60		DF L	1		19.0	90	114	33.6	17.07	51.2	1,385	6,316	29	13
	0002	60 60		DF L DF L	1		22.0	90 90	117 126	33.6 33.6	12.73 12.73	38.2 38.2	1,420 1,518	6,621 7,003	30 32	14 15
	0003	60		DFT	1		16.0	90	119	33.6	24.07	72.2	1,325	6,018	28	13
	0005	60		DFT	1		15.0	90	116	33.6	27.39	82.2	1,347	6,299	28	13
	0006	60		DF T	1		17.0	90	99	33.6	21.32	64.0	1,202	5,117	25	11
	0007	60		GF L	1		27.0	85	148	33.6	8.45	33.8	1,725	8,453	36	18
	8000	60	100	DF L	1		17.0	90	112	33.6	21.32	64.0	1,306	5,544	27	12
	0009	60		DF T	1		19.0	90	111	33.6	17.07	51.2	1,370	6,145	29	13
	0010	60		IC L	1		29.0	82	50	33.6	7.33	7.3	691	879	14	2
	0011	60		DF L	1		16.0	88	110	33.6	24.07	72.2	1,234	5,536	26	12
	0012	60	100	DF L	1		16.0	88	103	33.6	24.07	72.2	1,193	5,296	25	11

1011	OTTREELIS	T					Plo	Page Date	3 9/26/20	017						
TWP	RGE	sc	TRA	CT		TYF	PE		A	CRES	PLOTS	TR	FES	CRUISE	D DATE	
032	005	07	WIN			000			125.00		60	135			7/1/2017	
Plot	Tree				Tre	es		16'	Tot	BA	Trees	Logs	Net	Net	Total	
No.	No.	Age	SI	Spp St	Me.	α. ι	DBH	FF	Ht.	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
0138			100		12		18.4	89	111	403.3	217.63	646.7	15,716	69,227	327	144
0139	0001	60	100	DFL	12	3	16.0	88	92	100.8	68.54	156.9	3,473	15,053	72	31
	0002	60	100	GF L	1		26.0	87	143	33.6	9.12	36.5	1,697	8,660	35	18
	0003	60	100	GF L	1		22.0	85	143	33.6	12.73	50.9	1,629	7,639	34	16
	0004	60	100	GF T	1		17.0	85	116	33.6	21.32	64.0	1,381	5,544	29	12
0139			100		3	3	18.2	87	107	201.7	111.71	308.3	8,180	36,896	170	77
1101	0001	60	100	DF L		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	21
	0002	60	100	DF L		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	21
1101			100			4	16.4	88	92	134.4	91.39	209.2	4.630	20,071	96	42
1103	0001	60	100	DFL		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	21
	0002	60	100	DF L		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	21
1103			100			4	16.4	88	92	134.4	91.39	209.2	4,630	20,071	96	42
1105	0001	60	100	DF L		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	21
	0002	60	100	DF L		1	16.0	88	92	33.6	22.85	52.3	1,158	5,018	24	10
1105			100			3	16.4	88	92	100.8	68.54	156.9	3,473	15,053	72	31
1107	0001	60	100	DFL		4	16.0	88	92	134.4	91.39	209.2	4,630	20,071	96	42
	0002	60	100	DFL		4	16.0	88	92	134.4	91.39	209.2	4,630	20,071	96	42
1107			100			8	16.4	88	92	268.9	182.78	418.4	9,261	40,142	193	84
1111	0001	60	100	DF L		3	16.0	88	92	100.8	68.54	156.9	3,473	15,053	72	31
	0002	60	100	DFL		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	21
1111			100			5	16.4	88	92	168.1	114.23	261.5	5,788	25,089	121	52
1113	0001	60	100	DF L		4	16.0	88	92	134.4	91.39	209.2	4,630	20,071	96	42
	0002	60	100	DF L		3	16.0	88	92	100.8	68.54	156.9	3,473	15,053	72	31
1113			100			7	16.4	88	92	235.3	159.93	366.1	8,103	35,124	169	73
1115	0001	60	100	DF L		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	21
	0002	60	100	DF L		1	16.0	88	92	33.6	22.85	52.3	1,158	5,018	24	10
	0003	60	100	ICL		1	23.0	77	81	33.6	10.84	23.6	965	3,258	20	7
1115			100			4	17.6	86	90	134.4	79.38	180.5	4,437	18,311	92	38
1119	0001	60		DF L		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	21
	0002	60	100	DFL		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	21
1119			100			4	16.4	88	92	134.4	91.39	209.2	4,630	20,071	96	42
1120	0001	60		DF L	1		14.0	86	76	33.6	31.44	62.9	938		20	8
	0002	60		DFL	1		12.0	86	73	33.6	42.79	85.6			17	7
	0003	60 60		DF T IC L	1		14.0 34.0	86 81	77 86	33.6 33.6	31.44 5.33	62.9 16.0	938 1,010	3,773 3,998	20 21	8
	0001		100	102				•••	90				1,010			
1120	0001		100		4	_	14.9	86	76	134.4	111.00	227.3	3,707		77	31
1121	0001	60 60		DF L DF L			16.0	88 88	92 92	100.8 67.2	68.54 45.69	156.9 104.6	3,473 2,315		72 48	31
	0002													10,035		21
1121	0001		100				16.4	88	92	168.1	114.23	261.5	5,788	25,089	121	52
1122	0001	60 60		SP L DF T	1		22.5 19.0	89 91	86 85	33.6 33.6	12.17 17.07	24.3 34.1	937 1,105		20 23	7
	0002	60		DFT	1		14.0	87	67	33.6	31.44	62.9	801		17	6
	0003	60		SPL	1		19.0	86	80	33.6	17.07	34.1	839		17	6
	0005	60		SPL	1		18.5	87	70	33.6	18.01	36.0	717		15	6
1122			100		5		17.9	88	76	168.1	95.76	191.5	4,400	16,279	92	34
			100		-		41.7	00	10	108.1	93.10	191.3	7,700	10,277	74	34

TC PLOTTREELIST							Plo	Page Date	4 9/26/20	017						
TWP	RGE	sc	TRA	CT		TY	PE .		A	CRES	PLOTS	TR	EES	CRUISE	DDATE	
032	005	07	WIN			000				125.00	60		135		7/1/2017	
Plot	Tree				Tre	ees		16'	Tot	BA	Trees	Logs	Net	Net	Total	
No.	No.	Age	SI	Spp St	Me.	α.	DBH	FF	Ht.	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
1123			100			2	14.7		88	67.2	57.15	128.4	2,112	8,995	44	1
1124	0001	60	100	DFT	1	- 4	12.0	88 86	63	33.6	42.79	85.6	748	2,996	16	
	0002	60		DFL	1		18.0	89	93	33.6	19.02	38.0	1,143	5,135	24	1
			100								<i></i>	102.6				
1124 1125	0001	60	100	DF L	2	1	14.1	87 88	72 92	67.2 33.6	61.81 22.85	123.6 52.3	1,891 1,158	8,131 5,018	39 24	1
	0002	60	100	DFL		1	16.0	88	92	33.6	22.85	52.3	1,158	5,018	24	i
1125	0001	60	100	DF L		1	16.4	88	92 92	67.2 33.6	45.69 22.85	104.6 52.3	2,315 1,158	10,035 5,018	48 24	1
1127	0001	60	100	DFL		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	2
	0002															
1127			100			3	16.4	88	92	100.8	68.54	156.9	3,473	15,053	72	3
1133	0001	60	100	DF L		3	16.0	88	92	100.8	68.54	156.9	3,473	15,053	72	3
1133			100			3	16.4	88	92	100.8	68.54	156.9	3,473	15,053	72	3
1134	0001	60	100	DF L												
1134											0.00					
1135	0001	60	100	DF L		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	2
	0002	60	100	DF L		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	2
	0003	60	100	ICL	1		30.0	80	102	33.6	6.85	20.5	1,111	4,245	23	
1135			100		1	4	17.7	87	93	168.1	98.23	229.8	5,742	24,316	120	5
1137	0001	60	100	DF L		3	16.0	88	92	100.8	68.54	156.9	3,473	15,053	72	3
	0002	60	100	DF L		3	16.0	88	92	100.8	68.54	156.9	3,473	15,053	72	3
1137			100			6	16.4	88	92	201.7	137.08	313.8	6,945	30,106	145	6
1140	0001	60	100	DFL	1		10.0	87	80	33.6	61.62	123.2	822	4,314	17	
	0002	60	100	DF T	1		14.0	87	100	33.6	31.44	62.9	1,092	4,402	23	
	0003	60	100	GF T	1		16.0	88	120	33.6	24.07	72.2	1,400	6,018	29	1
	0004	60	100	DF L	1		17.0	88	104	33.6	21.32	64.0	1,253	5,544	26	1
	0005	60	100	DF L	1		9.0	88	80	33.6	76.08	152.2	780	3,804	16	
	0006	60	100	DFL	1		12.0	87	100 60	33.6 33.6	42.79 42.79	85.6 85.6	1,098	4,707	23 16	1
	0007 0008	60 60		CQI	1		12.0	87 87	60	33.6	96.29	96.3	791 641	2,996 3,851	13	
	0009	60	100	DFL	1		23.0	86	136	33.6	11.65	46.6	1,559	7,222	32	1
	0010	60		DFT	1		19.0	86	120	33.6	17.07	51.2	985	4,438	21	
	0011	60	100	DF L	1		26.0	85	109	33.6	9.12	27.3	1,346	5,925	28	1
1140			100		11		12.5	87	84	369.7	434.24	867.1	11,767	53,221	245	11
1141	0001	60		GF L		1	20.0	87	108	33.6	15.22	43.4	1,398	6,243	29	1
	0002	60		DF L		1	16.0	88	92	33.6	22.85	52.3	1,158	5,018	24	1
			100			_	10.0				30.00	06.7	2.000	11.00		
1141 1142	0001	60	100	DF L	1	2	18.0 9.0	88 90	98 47	67.2 33.6	38.06 76.08	95.7 76.1	2,556 572	11,261 2,282	53 12	2
	0002	60		DFL	1		18.0	86	119	33.6	19.02	57.1	1,365	5,706	28	1
	0003	60		DFT	1		13.0	86	83	33.6	36.46	72.9	933	3,646	19	
	0004	60		DF L	1		17.0	86	106	33.6	21.32	64.0	1,146	4,904	24	1
	0005	60	100	DF T	1		15.0	86	86	33.6	27.39	54.8	1,041	4,382	22	
1142			100		5		13.1	88	75	168.1	180.27	324.8	5,058	20.921	105	4
1143	0001	60		DF L		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	2
	0002	60		DFL		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	2
	0003	60		ICL	1		18.0	61	58	33.6	19.02	38.0	614	1,331	13	
1142			100		1	4	16.7	63	9.6	168.1	110.41	247.3	5,245	21,402	109	4
1143			100		1	*	10./	83	86	108.1	110.71	247.5	3,243	21,402	109	-

TC PD	OTTREELIS	Т						t Tree ! roject	List - Vo 3RD	lumes ROCK				Page Date	5 9/26/20)17
TWP	RGE	sc	TRA	ст		TY	DE .		A	CRES	PLOTS	TR	EES	CRUISE	D DATE	
032	005	07	WIN			000				125.00	60		135		7/1/2017	
Plot	Tree				Tre	os.		16'	Tot	BA	Trees	Logs	Net	Net	Total	
No.	No.	Age	SI	Spp St	Me.	α. ι	DBH	FF	Ht.	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
1144	0002	60	100	DFL	1		22.0	87	106	33.6	12.73	38.2	1,257	5,729	26	1
	0003	60	100	GF T	1		16.0	87	104	33.6	24.07	72.2	1,279	5,296	27	
	0004	60		ICL	1		20.0	79	86	33.6	15.41	30.8	959	2,927	20	
1144			100		4		19.6	85	102	134.4	63.86	176.2	4,840	20,010	101	-
1145	0001	60	100	GF L		2	20.0	87	102	67.2	30.43	86.9	2,796	12,486	58	
	0002	60	100	DFT		1	14.0	88	88	33.6	28.58	64.2	1,056	4,498	22	
	0003	60	100	GFT		1	17.0	88	107	33.6	21.19	60.2	1,324	5,561	28	
1146			100			4	17.5	88	101	134.4	80.20	211.2	5,177	22,544	108	
1145 1146	0001	60		DFT	1	_	16.0	88	88	33.6	24.07	48.1	1,108	4,574	23	
	0001	60	100	DFL	1		15.5	88	80	33.6	25.65	51.3	1,018	4,104	21	
	0003	60		DFL	1		19.0	88	92	33.6	17.07	34.1	1,151	4,780	24	1
			100		3		16.6	88	86	100.8	66.79	133.6	3,276	13,457	68	-
1146 1147	0001	60	100	DF L	-	2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	
,	0002	60		DFT		1	14.0	88	88	33.6	28.58	64.2	1.056	4,498	22	
1147 1148	0001	60	100	DF L	1	3	23.0	88 92	90 108	100.8 33.6	74.27 11.65	168.8 34.9	3,371 1,338	14,533 6,523	70 28	
1170	0001	60	100	GFT	1		16.5	92	105	33.6	22.63	67.9	1,358	5,885	28	
	0002	60	100	DFL	1		25.0	89	112	33.6	9.86	29.6	1,378	6,409	29	
	0004	60	100	GFT	1		17.0	89	106	33.6	21.32	64.0	1,345	5,544	28	
												1044				
1148 1149	0001	60	100	GF T	4	1	19.4	91 88	107	134.4 33.6	65.47 21.19	196.4	5,419 1,324	24,361 5,561	113 28	
	0002	60	100	ICL		1	23.0	77	81	33.6	10.84	23.6	965	3,258	20	
	0003	60		DFL		1	16.0	88	92	33.6	22.85	52.3	1,158	5,018	24	1
1149			100			3	18.4	86	96	100.8	54.88	136.1	3,447	13,837	72	
1150	0001	60	100	GF L	1		22.0	89	107	33.6	12.73	38.2	1,385	6,239	29	
	0002	60	100	DF T	1		21.0	89	110	33.6	13.97	41.9	1,340	6,288	28	
	0003	60	100	ICL	1		23.5	79	85	33.6	11.16	22.3	992	3,124	21	
	0004	60	100	DFL	1		24.0	92	115	33.6	10.70	32.1	1,414	6,954	29	1
1150			100		4		22.5	87	105	134.4	48.56	134.5	5,131	22,605	107	-
1151	0001	60		DF L		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	
	0002	60		DFL		1	16.0	88	92	33.6	22.85	52.3	1,158	5,018	24	
	0003	60		GF T		1	17.0	88	107	33.6	21.19	60.2	1,324	5,561	28	
	0004	60		GF L		2	20.0	87	108	67.2	30.43	86.9	2,796	12,486	58	
1151			100			6	17.5	88	99	201.7	120.17	303.9	7,593	33,100	158	
1152	0001	60		GF L	1	_	12.5	83	90	33.6	39.44	78.9	1,120	3,944	23	
	0002	60		GF T	1		15.0	86	94	33.6	27.39	54.8		4,656	24	1
	0003	60		GF L	1		16.0	86	96	33.6	24.07	48.1	1,234		26	
	0004	60	100	GF L	1		18.0	86	106	33.6	19.02	57.1	1,266	4,945	26	
	0005	60	100	GF L	1		21.5	86	110	33.6	13.33	40.0	1,383	5,999	29	1
1152			100		5		15.8	85	97	168.1	123.25	278.8	6,174	24,599	129	
1153	0001	60		GF T		3	17.0	88	107	100.8	63.58	180.5	3,973	16,683	83	
	0002	60	100	DF L		1	16.0	88	92	33.6	22.85	52.3	1,158	5,018	24	1
1153			100			4	16.9	88	103	134.4	86.43	232.8	5,131	21,700	107	-
1154	0001	60		DF T	1		11.0	86	77	33.6	50.93	101.9	878	4,074	18	
	0002	60		WHT	1		14.5	86	83	33.6	29.31	58.6			21	
	0003	60	100	WHL	1		15.0	86	85	33.6	27.39	54.8	1,124	4,382	23	
	0004	60	100	GF L	1		19.0	89	108	33.6	17.07	51.2	1,414	6,145	29	1
	0005	60	100	GF T	1		20.0	89	109	33.6	15.41	46.2	1,341	5,546	28	

TC PL	TC PLOTTREELIST Plot Tree List - Volumes													Page	6	
							F	roject	3RD	ROCK				Date	9/26/20	17
TWP	RGE	SC	TRA	CT		TY	PE		Ac	CRES	PLOTS	TR	EES	CRUISE	D DATE	
032	005	07	WIN	DY		0001				125.00	60		135		7/1/2017	
Plot	Tree				Te	cos		16'	Tot	BA	Trees	Logs	Net	Net	Total	
No.	No.	Age	SI	Spp St	Me.	α	DBH	FF	HL	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
1154			100		5		14.8	87	87	168.1	140.10	312.7	5,742	23,665	120	49
1155	0001	60	100	DF L		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	21
	0002	60	100	WHT		1	14.0	86	83	33.6	29.31	58.6	985	3,517	21	7
	0003	60	100	GF T		1	17.0	88	107	33.6	21.19	60.2	1,324	5,561	28	12
1155			100			4	16.0	87	93	134.4	96.20	223.4	4,625	19,114	96	40
1156	0001	60	100	DF L	1		20.0	86	93	33.6	15.41	46.2	1,101	4,468	23	9
1156			100		1		20.0	86	93	33.6	15.41	46.2	1,101	4,468	23	9
1157	0001	60	100	GF L		2	20.0	87	108	67.2	30.43	86.9	2,796	12,486	58	26
	0002	60	100	WHL		3	14.0	86	85	100.8	82.16	164.3	3,372	13,146	70	27
1157			100			5	16.5	86	91	168.1	112.60	251.2	6,168	25,632	129	53
1158	0001	60	100	DF T	1		12.5	89	71	33.6	39.44	78.9	725	2,761	15	6
	0002	60	100	GF L	1		29.0	89	112	33.6	7.33	22.0	1,436	6,741	30	14
	0003	60	100	GF T	1		21.5	89	107	33.6	13.33	40.0	1,320	5,999	28	12
	0004	60	100	GF L	1		21.5	89	107	33.6	13.33	40.0	1,320	5,999	28	12
	0005	60	100	GF L	1		27.0	89	110	33.6	8.45	25.4	1,452	7,016	30	15
1158			100		5		19.4	89	90	168.1	81.88	206.2	6,254	28,516	130	59
1159	0001	60	100	DF L		2	16.0	88	92	67.2	45.69	104.6	2,315	10,035	48	21
	0002	60	100	GF T		3	17.0	88	107	100.8	63.58	180.5	3,973	16,683	83	35
1159			100			5	16.8	88	101	168.1	109.27	285.1	6,289	26,718	131	56
TYPE			100		135	120	16.5		92	142.8	95.69	221.6	4,928	21,061	6,160	2,633

