

Timber Sale Appraisal Hawkeye Sale AT-341-2018-45-

District: Astoria Date: March 13, 2018

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$2,509,267.81	\$6,586.44	\$2,515,854.25
		Project Work:	(\$12,447.00)
		Advertised Value:	\$2,503,407.25

Timber Sale Appraisal Hawkeye Sale AT-341-2018-45-

District: Astoria Date: March 13, 2018

Timber Description

Location: Portions of Section 20, and 29, T6N, R7W ,W.M., Clatsop County, Oregon

Stand Stocking: 80%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	25	0	98
Western Hemlock / Fir	19	0	98
Sitka Spruce	22	0	97
Alder (Red)	16	0	99

Volume by Grade	28	3S & 4S 6"- 11"	6" - 7"	Total
Douglas - Fir	3,552	625	0	4,177
Western Hemlock / Fir	467	263	0	730
Sitka Spruce	34	9	0	43
Alder (Red)	0	0	21	21
Total	4,053	897	21	4,971

5/08/18

Comments: Pond Values Used: 1st Quarter Calendar Year 2018 + Local Pond Values, January, 2018.

Expected Log Markets: Mist, Clatskanie, Tillamook, Forest Grove, Banks, Longview (WA), Chehalis (WA), Elma (WA), Warrenton and Garibaldi.

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$1,182.18/MBF = \$1,500/MBF - \$317.82/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

BRANDING AND PAINTING COST ALLOWANCE =\$2.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE
Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added):
Machine Washing for Invasive Weed Compliance = \$2,000

Slash and Landing Piling (Includes move-in and pile materials)= \$4,953 TOTAL Other Costs (with Profit & Risk to be added) = \$6,953

Other Costs (No Profit & Risk added): None.

Timber Sale Appraisal Hawkeye

Sale AT-341-2018-45-

District: Astoria Date: March 13, 2018

Logging Conditions

Combination#: 1 Douglas - Fir 96.00%

 Western Hemlock / Fir
 96.00%

 Sitka Spruce
 96.00%

 Alder (Red)
 96.00%

yarding distance: Long (1,500 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 7.8 bd. ft / load: 4500

cost / mbf: \$193.73

machines: Log Loader (A)

Tower Yarder (Large)

Combination#: 2 Douglas - Fir 4.00%

Western Hemlock / Fir 4.00% Sitka Spruce 4.00% Alder (Red) 4.00%

Logging System: Shovel Process: Stroke Delimber

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 12 bd. ft / load: 4500

cost / mbf: \$58.74

machines: Stroke Delimber (B)

Timber Sale Appraisal Hawkeye

Sale AT-341-2018-45-

District: Astoria Date: March 13, 2018

Logging Costs

Operating Seasons: 3.00

Profit Risk: 10%

Project Costs: \$12,447.00

Other Costs (P/R): \$6,953.00

Slash Disposal: \$0.00 Other Costs: \$0.00

Miles of Road

Road Maintenance:

\$1.75

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	2.0	4.5
Western Hemlock / Fir	\$0.00	3.0	4.0
Sitka Spruce	\$0.00	2.0	5.0
Alder (Red)	\$0.00	2.0	3.5

Timber Sale Appraisal Hawkeye

Sale AT-341-2018-45-

District: Astoria Date: March 13, 2018

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling / Brand & Paint	Other	Total
Douglas -	Fir								
\$188.33	\$1.78	\$2.65	\$88.40	\$1.40	\$28.26	\$0.00	\$7.00	\$0.00	\$317.82
Western H	emlock	/ Fir							
\$188.33	\$1.78	\$2.65	\$66.30	\$1.40	\$26.05	\$0.00	\$7.00	\$0.00	\$293.51
Sitka Spru	се		-				-		
\$188.33	\$1.80	\$2.65	\$80.34	\$1.40	\$27.45	\$0.00	\$7.00	\$0.00	\$308.97
Alder (Red)	-			_				
\$188.33	\$1.77	\$2.65	\$112.54	\$1.40	\$30.67	\$0.00	\$7.00	\$0.00	\$344.36

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$842.20	\$524.38	\$0.00
Western Hemlock / Fir	\$0.00	\$718.52	\$425.01	\$0.00
Sitka Spruce	\$0.00	\$510.72	\$201.75	\$0.00
Alder (Red)	\$0.00	\$658.00	\$313.64	\$0.00

Timber Sale Appraisal Hawkeye

Sale AT-341-2018-45-

District: Astoria Date: March 13, 2018

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00
Sitka Spruce	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	4,177	\$524.38	\$2,190,335.26
Western Hemlock / Fir	730	\$425.01	\$310,257.30
Sitka Spruce	43	\$201.75	\$8,675.25
Alder (Red)	21	\$313.64	\$6,586.44

Gross Timber Sale Value

Recovery: \$2,515,854.25

Prepared By: Matt Dimick Phone: 503-325-5451

Road Maintenance Cost Summary

 Sale:
 Hawkeye
 MBF:
 4,971

 Date:
 23-Feb-18
 \$\$/MBF:
 \$1.75

By: M. Dimick

Туре	Equipment/Rationale	Move In	Times	Hours	Rate	Cost
Progressive Operations 1st Entry	Grader 14G	\$778	1	8	\$100	\$1,578
Final Haul	Grader 14G	\$778	1	16	\$100	\$2,378
Maintenance	Dump Truck 12CY x 1	\$326	1	8	\$79	\$958
Haul Route	Vibratory Roller	\$778	1	16	\$77	\$2,010
	FE Loader C966	\$778	1	8	\$83	\$1,442
	Laborer	\$0	1	8	\$40	\$320
Total						

 Progressive
 Production Rates
 Miles/day
 Distance(miles)
 Days

 Ops. 1st Entry
 Grader
 1.5
 4.3
 2.9

 Vibratory Roller
 1.5
 4.3
 2.9

Production RatesMiles/dayFinal RoadGrader1.5MaintenanceVibratory Roller1.5

It is anticipated that portions of the haul route will not require process and compaction.

Distance(miles)

4.3

4.3

Days

2.9

2.9

Site Prep Appraisal

 Sale Number:
 341-18-45

 Sale Name:
 Hawkeye

 Date:
 03/19/2018

Vegetation Type/Zone	Vegetation Type/Zone Code	Production Rate (hr/ac)	Estimated Piles/Acre
Doug-fir	Α	1.0	0.5
Hemlock/Fir	В	1.5	0.8
Hemlock/Spruce	С	2.0	1.0
Hemlock	D	2.0	1.0
Conifer/Hardwood	Е	1.0	0.5

e Yardii	ng Acres	Hours/Area	Cost/Hour	Cost/Area
	5	5	\$145.00	\$725.00
		5	5 5	

Sub Total = \$725.00

		Number of						
	Number of	acres to	\$ per 20 acres		Number of In-	Material	Material	Total
Sale Area	cable Landings	landing	yarded	Cost/Area	Unit Piles	Cost/Pile	Cost/Area	Cost/Area
1	3	71	\$1,160.00	\$4,118.00	2.5	\$20.00	\$110.00	\$4,228.00

*Cost includes separating firewood

Sub Total =

\$4,228.00

Grand Total = \$4,953.00

SUMMARY OF ALL PROJECT COSTS

SALE NAME:	Hawkeye				
ROAD CONSTI	RUCTION:				
Project No. 1	Road segment 1A-1B, 1C-1D, 1E-1F	<u>Length/Sta</u> 11.40	<u>Cost</u> \$ 4,309		
	TOTALS	11.40		\$	4,309
ROAD IMPROV	/EMENT:				
Project No. 2	Road segment	<u>Length/Sta</u> 200+60 24+80	<u>Cost</u> \$ 1,120 \$ 987		
Project No. 3	Stream Enchancement		\$ 1,500		
MOVE IN:	TOTALS	225,40		\$	3,607
	Dozer D8 Grader 14G Dump Trucks 12cy x 1 Front End Loader C966 Excavator C330	nt	\$\frac{\text{Cost}}{\\$ 1,406}\$ \$\frac{778}{\\$ 163}\$ \$\frac{778}{\\$ 1,406}\$		
	TOTAL			\$	4,531
GRAND TOTAL	-	÷		\$	12,447
Compiled By:	Ma	utt Dimick	Date:	02/	23/2018

SUMMARY OF CONSTRUCTION COSTS

SALE NAME	: Hawkeye			······································	NEW CO	NSTRUCTION:	11.40	STATIONS	0,22	MILES
ROAD:	1A to 1B, 1C to 1D, 1E to 1	F			IN	MPROVEMENT:	225,40	STATIONS	4.30	MILES
POINTS:	11 to 12, 12 to 13									
CLEARING 8	& GRUBBING Metho			Acres/amount		Rate		Cost		
1A-1B	Scatter outside of right-of-w	/ay		0.31	X	\$ 1,337	=	\$414.47		
1C-1D	Scatter outside of right-of-v	<i>i</i> ay		0.20	Х	\$ 1,337	=	\$267.40		
1E-1F	Scatter outside of right-of-v	ay ay		08,0	х	\$ 1,337	=	\$1,069.60		
SUB TOTAL	FOR CLEARING & GRUBB	NG							\$1,751	
EXCAVATIO	ixI		-							
EXCAVATIO	in Materia	al		[Cy/amount		Rate		Cost		
	1A to 1B			1 1						
	Balanced Construction			2.70	x	\$122,00	=	\$329,40		
	Landing Construction			1	x	\$389,00	=	\$389,00	\$718.40	
	1C to 1D									
	Balanced Construction			7.00	x	\$122.00	=	\$854.00		
	Landing Construction			1	x	\$389.00	=	\$389,00	\$1,243.00	
										ì
	1E-1F					4400.00	_	\$207.40		
	Balanced Construction			1,70	X	\$122.00 \$389.00	=	\$389.00	\$596.40	
	Landing Construction			1	x	\$389.00	=	\$305.00	\$030,40	ı
				 		-				l
SUB TOTAL	FOR EXCAVATION							\$	2,557.80	
										l
	MATERIALS AND INSTALLA	TION Lineal ft.	Rate	Cost	Location	Dia/type	Lineal ft.	Rate	Cost	
Location	Dia/type	Eliteatit.	Nate	Cost	Location	Diarype	ERIOGI (C	,,,2,0		Ì
		_		+						
				1						
						1		1		
										1
		 								
		 								
		 								
										i
				 						
		1								
				Description		Quantity	Rate	Cost		
	Other/miscellaneous:			Describing		Quantity	1.00			
	O a lotalitacolice locale.	•				1				
	Culvert stakes & markers:	,								
CHE TOTAL	FOR CULVERT MATERIAL	C & INICTAL I A	HOM						\$0	
JAIOI RUG	- FOR COLVERT MATERIAL	O IL ING IALLA	11011			Subtotal of Clea	ring Exc. Culv.	(new construction)	\$4,309	

SURFACING						1	n manumit	Stations/ X	sta/amt	Rate/ Cost		
Subgrade prep:		Description					amount 8,00	×	\$100.00	\$800,00		
	Grader time to grad	de pat holes-\$/hr for	11 to 12				8,00	x	\$40.00	\$320,00		
	Labor time for debr	ris removeal in ditchi	ne- \$/hr tor I	1 to 12			2.00	x	\$158.00	\$316.00		
	D8 time for Pit Run	s conpaction- \$/hr for	12 to 13				2.00	1 ^	Ψ100,00			
								1 1				
	Total							, ,		· · · · · · · · · · · · · · · · · · ·	\$1,436.00	
	total										!	
ROAD SEGMENT	I2 to I3			POINT TO		Sta. to						
			Depth of	12 to 1		0±00 to		TOTAL	Rate/	Cost		
	Rock Size		Rock	Volume		Num		VOLUME	Sta./			
Application	and Type	Location	(inches)	per		. 01		(CY)	amt.	\$671		
Subgrade Leveling	6"-0" pit-run	N/A	N/A	load	11	loads	5	55 55	\$12.20	\$0/1	\$671	
otal Rock for Road Se	egment:		12 to 13					- 55		L	Ψ3/1	
				Danadattaa					No.sta	Rate/sta	Cost	
		Processing:		Description					1,0,0,0		\$0	
										_		
			1	24" 6" rr	6"-0"pr	6"-0"	1 1/2"-0"	3/4"-0"	Total			
	SUB TOTAL FOR	SURFACING			55				55	1	,	\$2,10
	000,000,000											
	SPECIAL PROJE	OTO										
	SPECIAL PROJE	CIO										
	SUB TOTAL FOR	SPECIAL PROJEC	TS								0	\$0.40
										of Surfacing &		\$2,10 \$
									Subt	otal of Clearing	g, Exc.,Carv.	*
												\$2,10
	GRAND TOTAL											\$2,10
	GRAND TOTAL								Date:	03/16/2018		\$2,10

Compiled By: Matt Dimick

PIT RUN ROCK COST

SALE NAME:		Hawkeye						DATE:	03/16 M. D	/2018
PROJECT: QUARRY:	West	2 Tidewater (Ouarn/	MA	TERIAL:	6"-0	-	BY:	M. D.	imick
QUAINT.	VVCSL	Huewater v	Qually							
Road	Stations	Cubic				WAY HAUL IN				Total
Segment	l 1	Yards	50 MPH	30 MF	PH 25 MF	H 20 MPH	15 MPH	10 MPH		
12-13	208+57	55				1.50	1.00	1.00	0,50	4.00
				<u></u>						
		110								
			ļ							
			:							
			-							
	<u> </u>									
				40-01						
										İ
						VARIAGE				1
		******		 .				١		•
		w				-				
	•									
TOTAL		55								AVERAGE
	STA./NO.					4	4.0	1.0	0.5	HAUL 4.00
CUBIC YARD	WEIGHTEL	HAUL				Average Rou			8.00	4.00
	<u> </u>	•				/worage /we	atta Trip Blott	ando (miloo)	0.00	
ROCK HAUL:										
	Truck type:		No. trucks:	0E0/	_	۸	haul: \$5.	95 /cy		
	Delay min.	8	Efficiency:	85%			haul: \$5. oad: \$4.			
	Truck type:	D12	No. trucks:	1			read: \$1.			
	Delay min.		Efficiency:	85%	 →	•	•	•		

Production: cy/day =

106

55 cy @ \$12.20 /cy

Truck type: D10
Delay min.: 5

D10 No. trucks:

Efficiency:

85%

PIT RUN ROCK HAUL COSTS

Hawkeye Stream Enhancement Project No. 3

			CONTROLL NO. O	2.5	
Location	Site	No. Tops	Number of Logs	\$/Tree*	Cost per Site
SE1-SE2	~	4	4	\$125.00	\$500.00
SE1-SE2	2	4	4	\$125.00	00'00\$\$
SE1-SE2	3	4	4	\$125.00	00'005\$
	THE PROPERTY OF THE PROPERTY O	Andreas de la company de la co		Subtotal	\$1,500.00
		,		Project Total	\$1,500.00

Hawkeye TIMBER CRUISE REPORT FY 2018

1. Sale Area Location: Area 1 is located in portions of Sections 20 and 29, T6N, R7W, W.M., Clatsop County, OR.

2. Fund Distribution:

BOF 100%

Tax Code

8-01 (100%)

3. Sale Acreage by Area:

Area	Treatment	Gross Acres	Stream Buffer	Existing Surface Roads	New Road Construction	Net Acres	Survey Method
1	Modified Clearcut	94	17	-	1	76	GIS
2	R/W	1	-	-	-	1	GIS
TOTALS		95	17	=	1	77	

4. Cruisers and Cruise Dates:

The area was cruised by Ella Salkeld, John Choate, Bryce Rodgers, Cody Valencia, Kevin Berry, and Matt Dimick during Febuary 2018.

5. Cruise Method and Computation:

Area 1 is a modified clearcut unit and was variable plot cruised using a 40 BAF. These plots are located on a 3 chain by 5 chain grid, with 2 to 1 grade and measure plots to count plots. A total of 47 plots were sampled, with 31 graded plots, and 16 count plots.

Data was collected on Allegro 2 data collectors, and downloaded to the Atterbury <u>Super A.C.E.</u> program for computing. See the attached <u>Cruise Design</u> for more details on the cruise method. The cruise calculations were processed in the Astoria district office.

AREA	CRUISE	TRACT	TYPE	ACRES
1	Hawkeye	A1	MC	76
2 (R/W)	Hawkeye	A1	R/W	1

6. Timber Description:

Area 1 is a modified clearcut unit, approximately 79 to 81 years-old, consisting of Douglas-fir, western hemlock, red alder, and spruce. The average Douglas-fir tree size is 25.7 inches DBH, with an average bole height of 97 feet. The average western hemlock is 18.9 inches DBH with an average height of 69 feet to a merchantable top (7 inch d.o.b). The average red alder tree size 15.8 inches DBH with an average height of 41 feet to a merchantable top (7 inch d.o.b). The average spruce tree size 21.7 inches DBH with an average bole height of 54 feet. The net volume per acre to be harvested is 64.5 MBF/acre.

Area 2 R/W is similar to the timber description mentioned above in Area 1. The average volume per acre to be harvested is 64.5 MBF/acre.

7. Statistical Analysis and Stand Summary

Statistics for Stand B.F. volumes

Area	Estimated CV	Target SE%	Actual CV	Actual SE%
1	45.0	8%	44.3	6.5%

8. Volumes by Species and Log Grade:

Volumes by Species and Grade for All Sale Areas: (MBF) Volumes do not include "in-growth."

Conifer

				77			
Species	DBH	Net Vol. MBF	2 Saw	3 Saw	4 Saw	% D & B	% Sale
Douglas-fir	25.7"	4,177	3,552	575	50	2%	84%
Hemlock / True Fir	18.9"	730	467	232	31	2%	15%
Spruce	21.7"	43	34	4	5	3%	1%

Hardwoods

Species	DBH	Net Vol. MBF	12"+	10-12"	8-10"	6-8"	% D & B	% Sale
Red Alder	15.8"	21	-	-	-	21	<1%	<1%

Species	Net Vol. MBF
Douglas-fir	4,177
Western hemlock	730
Red alder	21
Sitka spruce	43
Total	4,971

9. Approvals:

Prepared by:

Matt Dimick

Date: 2/23/2018

Unit Forester Approval:

Date: 2/23/18

10. Attachments:

Cruise Designs and Maps - 2 pages

Volume Reports - 3 pages Statistics Report -1 page Stand Table Summary - 2 page Log Stock Tables - 2 pages

X:\STATE_FORESTS\UNIT_JEWELL\Timber Sales\2018\Hawkeye\SalePrep\ Hawkeye _CruiseReport.docx

CRUISE DESIGN ASTORIA DISTRICT

Sa	le Name: Hawkeye Area(s) 1
На	rvest Type: Modified Clearcut Net BF or
Ар	prox. Cruise Acres: 80 Estimated CV% 45 BA/Acre SE% Objective 8
Pla	nned Sale Volume: 4,050 MBF Estimated Sale Area Value/Acre: \$ 22,680
Α.	<u>Cruise Goals</u> : (a) Grade minimum <u>80</u> trees: Determine log grades for sale value; Determine snag and leave tree species and sizes; Determine "diameter limit" harvest parameters;
B.	Cruise Design: 1. Plot Cruises: BAF 40 Full point Cruise Line Direction(s) E, W Cruise Line Spacing 5 chains (330 Feet) Cruise Plot Spacing 3 chains (198 Feet) Grade/Count Ratio 2:1
	Record all cedar as leave. Record all snags as SN and record diameter & total height. If plot lands in buffer then offset at least ½ chain outside the buffer.

C. Tree Measurements:

- 1. Diameter: Minimum DBH to cruise is 8" for conifers and 10" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- **2. Bole Length:** Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- 3. Top Cruise Diameter (TCD): Minimum top outside bark is _7_" or _40% of dob at 16' form point. Generally, use 7" outside bark for trees less than 18" dbh and 40% of dob @ FP for trees greater than 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" 32" and 40' log lengths whenever possible. Do not record odd segments just to maximize grade. The maximum segment length is 40'. The minimum segment length is 12' for conifer and 8' for hardwoods. Minimum merchantable diameter for conifer is 8" dbh and 10" dbh for hardwoods. One foot of trim is assumed for each merchantable segment.

- **6. Species, Sort, and Grade Codes Species, Sort, and Grade Codes:** A. <u>Species</u>: Record as D (Douglas-fir);
 - H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple); DL(Douglas-fir over 30"dbh); HL(Western hemlock over 30"dbh); SL(Sitka spruce over 30"dbh); CL (Western red cedar over 30"dbh); NFL (Noble fir over 30"dbh); SFL (Silver fir over 30"dbh) B. Sort: Use code "1" (Domestic).
 - B. <u>Sort</u>: Use code "1" (Domestic).

 C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2

 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; 0 = Cull

 Hardwoods: 12" + = 1 Sawmill; 10"-12" = 2 Sawmill; 10"-8" = 3 Sawmill; and 8"-6" 4

 Sawmill; 0 = Cull.
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with <u>blue/yellow</u> flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie <u>yellow</u> flagging above eye level near plot center and another <u>yellow</u> flagging around a sturdy wooden stake marking plot center. On each <u>yellow</u> flagging, write the plot identification number. Between plots, along the cruise line, tie <u>blue</u> flagging at intervisible points. On "measure/grade" plots paint the tree diameter on each tree starting with the first tree right of the cruise line direction and continuing clockwise.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Biltmore Stick, Compass, Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, cruise lines and plot locations, BAF or plot size, measure/count plot ratio, north arrow, and scale bar.

Cruise Design by	: Matt Dimick	
Approved by:	01 77.	
Date:	1-12-18	

	T T	×	

TC	PSPCSTGR		S_{I}	pecies,	Sort G	rade - Boar	d Fo	ot Vo	olume	es (P	roject	:)							
TO	6N R07W S20) TyR/V	V	1.00		Project:	H	AWK	EYE							Page Date		1 23/20	
TO	6N R07W S20) ТуТА	KE '	76.00		Acres		77.0	00							Time			5AM
_		%					Per	cent of	Net Bo	oard Fo	oot Volu	me				Avera	ige Lo	g	Logs
	S So Gr	Net	Bd. F	t. per Acre	•	Total		Log Sca	ale Dia.			Log L	ength			Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
D D	DOCU DO2S	85	2.1	47,119	46,129	3,552			30	70	0	0	4	96	7 39	22 17	490	0.00 2.68	1.8 94.2
D	DO2S DO3S	13	1.0	7,534	7,462	575		93	4	2	6	10	27	58	33	9	106		70.4
D	DO3S DO4S	2	1.0	659	659	50 51-		97	3	_	73	27			20	7		0.57	19.3
D	Totals	84	1.9	55,312	54,250	4,177		14	26	60	2	2	7	90	35	13	292	1.92	185.7
S	DO2S	79	3.8	458	441	34			27	73	3		36	60	33	20	598	3.83	.7
S	DO3S	11	5.0	57	57	4		100						100	40	7	79	1.05	.7
S	DO4S	10		55	55	5 4		100						100	39	6	64	0.89	.9
S	Totals	1	3.1	570	552	: , 43.		20	21	58	3		29	68	37	11	239	1.78	2.3
Н	DOCU														10	15		0.00	2.4
Н	DO2S	63	2.4	6,215	6,063	467			59	41		2	9	89	38	15	332	2.08	18.2
Н	DO3S	32	.9	3,037	3,011	232		98	2		5	2	21	72	36	8	95		31.7
H	DO4S	5		408	408	31	_	100			29	53	18		23	7	40	0.62	10.1
Н	Totals	15	1.8	9,660	9,481	730		35	38	26	3	<u>'</u> 4	14	80	33	10	152	1.22	62.4
A	DO4S	100		269	269	21		100						100	40	6	61	0.80	4.4
A	Totals	0		269	269	21		100						100	40	6	61	0.80	4.4
Tot	als		1.9	65,810	64,553	4,971		18	28	55	2	2	8	88	34	12	253	1.73	254.7

Т 7	TSPCSTG	R			Species,	Sort G Projec	rade - Boar t: HAV	d Foo WKEY		olun	nes (T	Гуре))	Page Date Fime	2	1 /23/20 /:13:5	
T06N Twj 06N		ge		Tract		Туре ТАІ		00	Plots 47		2	le Tree: 272		C 1	uFt	BdI W	Ft			TAKE
Spp	S So	Gr ad	% Net BdFt	Bd. Def%	Ft. per Ac	ere Net	Total Net MBF	Log	g Sca	ıle Di		Log	g Len		36-99	Ln I	Dia		CF/ Lf	Logs Per /Acre
D D D D	DO DO DO DO	CU 2S 3S 4S	85 13 2	2.1	47,119 7,534 659	46,129 7,462 659	3,506 567 50		93 97	30 4 3	· 70 2	0 6 73	0 10 27	4 27	96 58	7 39 33 20	17 9	106	0.00 2.68 0.95 0.57	1.8 94.2 70.4 19.3
D H	Totals DO	CU	84	1.9	55,312	54,250	4,123		14	26	60	2	2	7	90	35 10		292	1.92 0.00	185.7
H H H	DO DO DO	2S 3S 4S	63 32 5	2.4	6,215 3,037 408	6,063 3,011 408	461 229 31		98 100	59 2	41	5 29	2 2 53	9 21 18	89 72	38 36 23	15 8	95	2.08 0.83 0.62	18.2 31.7 10.1
Н	Totals		15	1.8	9,660	9,481	721		35	38	26	3	4	14	80	33	10	152	1.22	62.4
A	DO	4S	100		269	269	20		100						100	40			0.80	4.4
A S	Totals	2S	79	3.8	269 458	269	33	1	100	27	73	3		36	100 60	33	-	598	3.83	.7
S S	DO DO	3S 4S	11 10		57 55	57 55	4 4		100 100						100 100	40 39	7	79	1.05 0.89	.7
S	Totals		1	3.1	570	552	42		20	21	58	. 3		29	68	37	11	239	1.78	2.3
Туре Т	Totals			1.9	65,810	64,553	4,906		18	28	55	2	2	8	88	34	12	253	1.73	254.7

*

Т	TSPCSTG	R			Species,	Sort G Projec	rade - Boar t: HAV	d Foot VKEYE		lun	ies (T	'ype)				Pag Dat Tim	e 2	1 /23/20 7:14:13	
T061 Tw 061		ge	Sec	Tract		Type R/W			lots 47		-	e Trees 72		C:	uFt	T06N I BdFt W	R07W	S20 T	R/W
	G.		%						50111000000			ot Volu					ge Log		Logs
Spp	S So T rt	Gr ad	Net BdFt	Bd. Def%	Ft. per Ac Gross	re Net	Total Net MBF	Log 4-5 6-			a. 5 17+	Log 12-20	Len 21-30		36-99	Ln Dia Ft In	Bd Ft	CF/ Lf	Per /Acre
D	DO	CU			-											7 22		0.00	1.8
D	DO	2S	85	2.1	47,119	46,129	46			30	70	0	0	4	96	39 17		2.68	94.2
D	DO	3S	13	1.0	7,534	7,462	7		93	4	2	6	10	27	58	33 9		0.95	70.4
D	DO	4S	2		659	659	1	9	97	3		73	27			20 7	34	0.57	19.3
D	Totals		84	1.9	55,312	54,250	54	1	14	26	60	2	2	7	90	35 13	292	1.92	185.7
Н	DO	CU				,										10 15		0.00	2.4
Н	DO	2S	63	2.4	6,215	6,063	6			59	41		2	9	89	38 15	332	2.08	18.2
Н	DO	3S	32	.9	3,037	3,011	3	و	98	2		5	2	21	72	36 8	95	0.83	31.7
Н	DO	4S	5		408	408	0	10	00			29	53	18		23 7	40	0.62	10.1
н	Totals		15	1.8	9,660	9,481	9	3	35	38	26	3	4	14	80	33 10	152	1.22	62.4
A	DO	4S	100		269	269	0	10	00						100	40 6	61	0.80	4.4
A	Totals		0		269	269	0	10	00						100	40 6	61	0.80	4.4
s	DO	2S	79	3.8	458	441	0			27	73	3		36	60	33 20	598	3.83	.7
S	DO	3S	11		57	57	0	10	00						100	40 7	79	1.05	.7
S	DO	4S	10		55	55	0	10	00						100	39 6	64	0.89	.9
S	Totals		1	3.1	570	552	1		20	21	58	3		29	68	37 11	239	1.78	2.3
Туре	Totals			1.9	65,810	64,553	65		18	28	55	2	2	8	88	34 12	253	1.73	254.7

ř.

TC TSTATS				ST PROJE	TATIST	TICS HAWKEYI	 3		PAGE DATE 2	1
TWP RGE	SECT TH	RACT		TYPE		CRES	PLOTS	TREES	CuFt	BdFt
25000 - 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 A1			TAKE	AC	76.00	47	404	1	W
06N 07W	20 A)			IAKE		70.00	47	404	т	VV
				TREES		ESTIMATED TOTAL		ERCENT AMPLE		
	PLOTS	TREES		PER PLOT	Γ	TREES	Γ	REES		
TOTAL	47	404		8.6						
CRUISE	31	272		8.8		8,876		3.1		
DBH COUNT										
REFOREST	16	120		0.2						
COUNT	16	132		8.3						
BLANKS 100 %										
100 78										
			STA	ND SUM	MARY					
	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOUG FIR	191	70.0	25.7	97	49.7	251.9	55,312	54,250	12,341	12,341
WHEMLOCK	55	32.8	18.9	69	14.7	63.8	9,660	9,481	2,541	2,541
SNAG	17	7.9	20.3	68	4.0	17.9	//L/1991	-	121.25	
R ALDER	4	4.4	15.8	41	1.5	6.0	269	269	140	140
S SPRUCE	5	1.7	21.7	54	0.9	4.3	570	552	154	154
TOTAL	272	116.8	23.2	84	71.3	343.8	65,810	64,553	15,175	15,175
CONFIDENCI 68.1	E LIMITS OF TIMES OUT			E WILL BE	E WITHIN	THE SAMP	LE ERROR			
CL: 68.1 %	COEFF			SAMPI	E TREE	S - BF	#	OF TREES	REQ.	INF. POP.
SD: 1.0	VAR.%	S.E.%	L	.OW	AVG	HIGH		5	10	15
DOUG FIR	58.7	4.2		985	1,028	1,072				
WHEMLOCK	82.3	11.1		372	418	465				
SNAG R ALDER	8.0	4.6		60	63	65				
S SPRUCE	134.5	66.8		266	802	1,338				
TOTAL	77.9	4.7		784	822	861		242	61	27
CL: 68.1 %	COEFF			TREES	ACDE		4	OF PLOTS	DEO	INF. POP.
SD: 1.0	VAR.%	S.E.%	ī	OW	AVG	HIGH	71	5	10	15
DOUG FIR	50.8	7.4		65	70	75			10	13
WHEMLOCK	144.7	21.1		26	33	40				
SNAG	178.1	26.0		6	8	10				
R ALDER	446.8	65.1		2	4	7				
S SPRUCE	348.3	50.8		1	2 117	2		89	22	10
TOTAL	47.1	6.9		109	117	125			22	W15000
CL: 68.1 %	COEFF				AREA/A		#	OF PLOTS		INF. POP.
SD: 1.0	VAR.%		L	OW	AVG	HIGH		5	10	15
DOUG FIR WHEMLOCK	46.9 135.6	6.8 19.8		235 51	252 64	269 76				
SNAG	167.0	24.3		14	18	22				
R ALDER	419.5	61.1		2	6	10				
S SPRUCE	352.5	51.4		2	4	6				
TOTAL	32.9	4.8		327	344	360		43	11	5
CL: 68.1 %	COEFF			NET BI	F/ACRE		#	OF PLOTS	REQ.	INF. POP.
SD: 1.0	VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	15
DOUG FIR	52.6	7.7		50,089	54,250	58,412				
WHEMLOCK	147.4	21.5		7,444	9,481	11,518				
SNAG	442.1	CA A		96	269	442				
R ALDER S SPRUCE	442.1 473.3	64.4 69.0		96 171	552	933				
TOTAL	44.3	6.5	6		64,553	68,719		78	20	9
		J.5			.,	,		1800 T-0.0		****

TC PSTNDSUM	Stand Table Summary	Page 1 Date: 2/23/2018
T06N R07W S20 TyR/W 1.00 T06N R07W S20 TyTAKE 76.00	Project HAWKEYE Acres 77.00	Time: 7:23:05AM Grown Year:
	77.00	5.5 m 2 m. v

S				Tot	m /	D	•	Averag Net	e Log Net	m /	Net	Net		Totals	
Spc T	DBH	Sample Trees		Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Cu.Ft.	Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Acre	Tons	Cunits	MBF
D	14	6	86	79	3.701	3.96	4.94	24.0	75.0		118	370		91	29
D	16	4	86		1.889	2.64	3.78	24.5	90.0		93	340		71	26
D	17	8	85	110	3.347	5.28	7.53	28.9	106.7		218	803		168	62
D	18	12	87	112	4.478	7.91	11.20	30.7	112.0		343	1,254		264	97
D	19	6	85	97	2.010	3.96	4.02	37.2	125.0		149	502		115	
D	20	6	83		1.814	3.96	3.63	40.2	126.7		146	459		112	
D	21	18	86		4.935	11.87	12.06	40.4	151.4		487	1,826		375	
D	22	14	87	200000000000	3.497	9.23	9.99	44.5	183.5		444	1,834		342	
D	23	22	86	000000000	5.028	14.51	13.26	49.7	197.9		658	2,624		507	
D	24	22	86	150,00000	4.618	14.51	12.59	52.5	207.0		661	2,607		509	
D	25	16	87		3.095	10.55	9.29	57.4	239.6		533	2,225		410	
D	26	20	86		3.577	13.19	9.66	65.2	264.4		630	2,554		485	
D	27	20	85 87		3.317	13.19 15.83	8.96 10.80	70.8 76.2	288.1 342.9		634 822	2,581 3,701		633	
D	28	24 28	88	233300000	3.701 4.026	18.46	11.50	83.8	387.5		964	4,457		742	
D	29 30	22	87		2.956	14.51	8.87	90.7	430.9		804	3,821		619	
D	31	22	86	50 5000	2.768	14.51	8.05	91.2	422.2		734	3,400		565	
D	32	26	86	100	3.070	17.15	9.45	96.4	456.8		911	4,315		70	
D D	33	10	85		1.110	6.59	3.11	108.4	493.6		337	1,534		259	
D	34	24	86		2.510	15.83	7.53	114.1	546.9		859	4,119		66	
D	35	12	88		1.184	7.91	3.36	120.7	595.9		405	2,000		312	2 154
D	36	8	84	200 20020	.746	5.28	2.24	123.5	580.0		277	1,299		213	3 100
D	37	10	86		.883	6.59	2.65	127.4	636.7		338	1,687		260	130
D	38	6	85	10.000.000.000	.502	3.96	1.67	129.7	662.0		217	1,109		16′	7 85
D	39	8	88	148	.636	5.28	1.91	152.9	792.5		292	1,512		22:	5 116
D	40	6	83	148	.453	3.96	1.51	136.0	689.0		206	1,041		15	
D	44	2	82	133	.125	1.32	.37	167.7	740.0		63	277		4	3 21
D	Totals	382	86	123	69.979	251.91	183.91	67.1	295.0		12,341	54,250		9,503	
Н	11	2	85		1.759	1.16	1.76	19.0	60.0		33			20	
Н	12	4	87		2.955	2.32	2.96	23.5	80.0		69			5.	
Н	14	6	85		3.257	3.48	4.34	20.2	65.0		88			6	
Н	15	4	87		1.891	2.32	3.78	23.5	85.0		89			65	
Н	16	8	86		3.325	4.64	5.82	31.7	107.1		185 88			14:	
Н	17	6	84		2.209	3.48 6.96	2.95 8.54	30.0 35.2	85.0 124.6		300			23	
Н	18	12	86 86		3.940 4.126	8.12	9.43	39.5	145.6		373			28	
H	19 20	14 6	85		1.596	3.48	2.66		150.0		115			89	
Н	21	4	87		.965	2.32	1.93	43.8	157.5		84			6	
Н	22	4	85		.879	2.32	1.76		215.0		102			7:	
Н	23	4	87		.804	2.32	2.01	53.0	216.0		107			8:	
H H	24	6	86		1.108	3.48	2.22	66.8	250.0		148		e.	11-	
н Н	25	2	86		.340	1.16	1.02	58.3	256.7		60			4	
H	26	6	82		.944	3.48	1.89	64.2	246.7	1	121			9	
H	27	6	86		.876	3.48	2.04		292.9		154			11	
Н	28	4	86		.543	2.32	1.63	73.5	335.0		120	546		9	2 42
Н	30	6	85		.709	3.48	1.89	86.6	376.2		164	712		12	
Н	31	2	86		.221	1.16	.44	65.5	280.0		29			2	
Н	32	2	78	93	.208	1.16	.42	000000000000000000000000000000000000000	320.0		45			3	
Н	35	2	82	. 144	.174	1.16	.52	128.0	603.3		67	314		5	
Н	Totals	110	86	90	32.830	63.83	60.00	42.3	158.0		2,541	9,481		1,95	
S	17	4	84		1.080	1.70	1.08	P ASSESSED NAMED IN	60.0		38			2	
S	22	2	85	91	.322	.85	.64	52.5	195.0		34	126		2	6 10

TC PSTNDSUM	Stand Table Summary	Page Date:	2 2/23/2018
T06N R07W S20 TyR/W 1.00	Project HAWKEYE	Time:	7:23:05AM
T06N R07W S20 TyTAKE 76.00	Acres 77.00	Grown Year:	:

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre		Logs Acre	Averag Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
S	30	2	86	97	.173	.85	.35	109.5	430.0		38	149		29	11
S	44	2	85	116	.081	.85	.24	181.7	880.0		44	213		34	16
S	Totals	10	84	65	1.656	4.26	2.31	66.4	238.8		154	552		118	43
Α	14	2	87	54	1.393	1.49	1.39	27.0	60.0	=======================================	38	84		29	6
Α	15	4	87	52	2.427	2.98	2.43	30.0	60.0		73	146		56	11
Α	22	2	86	46	.564	1.49	.56	52.0	70.0		29	39		23	3
A	Totals	8	87	52	4.385	5.96	4.38	31.9	61.3		140	269		108	21
SN	13	2	89	86	1.141	1.05									
SN	15	4	88	55	1.713	2.10									
SN	16	2	88	75	.753	1.05									
SN	18	2	86	89	.595	1.05									
SN	21	6	88	35	1.311	3.15									
SN	22	2	89	85	.398	1.05									
SN	23	2	89	86	.364	1.05									
SN	24	4	89	99	.669	2.10									
SN	26	2	86	89	.285	1.05									
SN	28	2	89	70	.246	1.05									
SN	29	2	77	52	.229	1.05									
SN	40	2	88	54	.120	1.05									
SN	42	2	88	40	.109	1.05									
SN	Totals	34	88	69	7.935	17.87									
Totals		544	86	107	116.785	343.83	250.61	60.6	257.6		15,175	64,553		11,685	4,971

TC PLOGSTVB Log Stock Table - MBF Page T06N R07W S20 TyR/W 1.00 Project: HAWKEYE Date 2/23/2018 T06N R07W S20 TyTAKE 76.00 Acres 77.00 Time 7:23:26AM So Gr Log Gross Def % Net Volume by Scaling Diameter in Inches Net MBF 10-11 12-13 Len **MBF** % Spc 4-5 8-9 14-15 16-19 20-23 24-29 30-39 40+ Spp rt de 2-3 D DO 2S 12 .0 9 D DO 2S 16 9 .2 .0 1 20 D DO 2S 1 30 2 .1 2 D DO 2S 127 3.0 58 25 11 D DO 2S 32 136 6.6 33 7 .2 D DO 2S 38 7 3,404 81.5 225 480 1120 1010 569 DO 2S 40 3,472 1.9 D 1 .0 1 12 2 2 D DO 3S 3 .2 D DO 3S 16 8 1 4 2 18 2 D DO 3S .1 D DO 3S 20 20 20 .5 2 6 12 9 22 .5 9 3 D DO 3S 24 22 9 .2 7 9 2 D DO 3S 26 1 15 2 28 .4 14 D DO 3S 15 D DO 3S 30 9 .2 3 3 2 19 14 147 3.5 59 10 32 148 46 D DO 3S 10 .2 2 5 2 DO 3S 34 10 D 4 .1 4 D DO 3S 36 15 2 D DO 3S 38 15 .4 6 7 40 311 7.5 33 56 217 5 315 1.3 D DO 3S 17 .4 8 8 D DO 4S 16 17 2 1 D DO 4S 18 3 .1 18 20 10 D DO 4S 18 .4 6 24 10 .3 6 4 D DO 4S 10 D DO 4S 26 1 .0 1 .0 2 D DO 4S 30 2 4,177 96 154 336 311 515 1152 1010 594 9 Totals 84.0 D 4,259 1.9 S 2.6 1 DO 2S 20 1 32 13 12 29.0 4 S DO 2S 2.0 10 11 40 22 20 48.1 S DO 2S 5.1 2 2 38 2 4.4 DO 3S S 2 2 40 2 5.9 S DO 3S 2 2 5.9 2 S DO 4S 38 S DO 4S 40 2 4.1 2 43 .9 7 2 1 8 14 11 Totals 44 3.1 S

 TC PLOGSTVB
 Log Stock Table - MBF

 T06N R07W S20 TyR/W T06N R07W S20 TyTAKE
 1.00 Acres
 Project: HAWKEYE Acres
 Page 2 Date 2/23/2018 Date 2/23/2018 Time 7:23:26AM

	\mathbf{s}	So G	r	Log	Gross	Def	Net	%		ľ	let Volu	ıme by	Scalin	g Dian	eter in l	Inches				
Spp	T	rt de	,	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
Н		DO 2	2S	30	11	20.6	9	1.2									9			
Н		DO 2	2S	32	44		44	6.1						39	6					
Н		DO 2	2S	40	423	2.2	413	56.6						104	79	160	56	15		
Н		DO :	3S	16	2		2	.3				1	1							
Н		DO :	3S	20	9		9	1.2			4	4	1							
Н		DO :	3S	24	2		2	.2					2							
Н		DO :	3S	28	3		3	.4					3							
H		DO :	3S	32	42		42	5.7			8	4	31							
H		DO :	3S	34	7		7	1.0			3		4							
Н		DO 3	3S	36	2		2	.3				2								
Н		DO :	3S	38	3		3	.4			3									
Н		DO :	3S	40	164	1.2	162	22.2			39	47	71	5						
Н		DO 4	4S	12	3		3	.4				3								
H		DO 4	4S	16	1		1	.2			1									
H		DO 4	4S	20	5		5	.6			3	1								
H		DO 4	4S	24	11		11	1.5			6	5								
Н		DO 4	4S	28	4		4	.5				4								
H		DO 4	4S	30	2		2	.3			2									
Н		DO 4	4S	32	6		6	.8			1	4								
Н			tals		744	1.8	730				70	75	113	147	84	160	65	15		
A		DO 4	4S	40	21		21	100.0			21									
A		Тс	tals	3	21		21	.4			21									
Total		All Sp	eci	es	5,067	1.9	4,971	100.0			194	229	451	458	601	1319	1089	610	20	

