

Timber Sale Appraisal Easter Gonner Sale WO-341-2018-34-

District: West Oregon Date: June 30, 2017

Cost Summary

	Conifer	Hardwood	Total	
Gross Timber Sale Value	\$606 AA1 8A		\$611,668.89	
		Project Work:	(\$32,442.00)	
		Advertised Value:	\$579,226.89	

Timber Sale Appraisal Easter Gonner

Sale WO-341-2018-34-

District: West Oregon Date: June 30, 2017

Timber Description

Location: Portions of Section 24, T10S, R7W, W.M., Benton County, Oregon.

Stand Stocking: 60%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)	
Douglas - Fir	19	0	93	
Western Hemlock / Fir	14	0	93	
Alder (Red)	14	0	92	

Volume by Grade	3P	SM	28	3S	48	Camprun	Total
Douglas - Fir	23	115	672	460	62	0	1,332
Western Hemlock / Fir	0	0	14	16	7	0	37
Alder (Red)	0	0	0	0	0	15	15
Total	23	115	686	476	69	15	1,384

Comments: Pond Values Used: Local Pond Values, April 2017.

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost:

1,129.86/MBF = 1,423.88/MBF - 294.02/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

BRANDING AND PAINTING COST ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

Expected Log Markets: Philomath, Eugene, Springfield, Willamina.

HAULING COST ALLOWANCE

Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added):

None.

Other Costs (No Profit & Risk added):
Equipment Cleaning (Invasive Species): \$2,000
Landing Slash Piling: 15 Landings @ \$180/Landing = \$2,700
TOTAL Other Costs (No Profit & Risk added) = \$4,700

SLASH DISPOSAL Move-In = \$1,290 Machine Wash = \$300

Project Work: 46 hrs @ \$150/hr = \$6,900

TOTAL Slash Disposal = \$8,490

Timber Sale Appraisal Easter Gonner

Sale WO-341-2018-34-

District: West Oregon Date: June 30, 2017

Logging Conditions

Combination#: 1 Douglas - Fir 60.82%

Western Hemlock / Fir 66.00% Alder (Red) 63.33%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF

loads / day: 9 bd. ft / load: 4000

cost / mbf: \$216.12

machines: Log Loader (A)

Forwarder Harvester

Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 39.18%

Western Hemlock / Fir 34.00% Alder (Red) 36.67%

Logging System: Shovel Process: Harvester Head Delimbing

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 18 bd. ft / load: 4600

cost / mbf: \$64.54
machines: Forwarder

Harvester

Timber Sale Appraisal Easter Gonner

Sale WO-341-2018-34-

District: West Oregon Date: June 30, 2017

Logging Costs

Operating Seasons: 2.00

Profit Risk: 12%

Project Costs: \$32,442.00

Other Costs (P/R): \$0.00

Slash Disposal: \$8,490.00 **Other Costs:** \$4,700.00

Miles of Road

Road Maintenance:

\$6.81

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	4.5
Western Hemlock / Fir	\$0.00	3.0	4.0
Alder (Red)	\$0.00	3.0	3.5

Timber Sale Appraisal Easter Gonner

Sale WO-341-2018-34-

District: West Oregon Date: June 30, 2017

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling / Brand & Paint	Other	Total
Douglas - Fir									
\$156.73	\$7.29	\$6.34	\$61.82	\$0.00	\$27.86	\$6.13	\$7.00	\$3.40	\$276.57
Western H	emlock	/ Fir		_	_				
\$164.58	\$7.29	\$6.34	\$69.55	\$0.00	\$29.73	\$6.13	\$7.00	\$3.40	\$294.02
Alder (Red)									
\$160.54	\$7.35	\$6.34	\$80.23	\$0.00	\$30.54	\$6.13	\$7.00	\$3.40	\$301.53

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$724.25	\$447.68	\$0.00
Western Hemlock / Fir	\$0.00	\$567.86	\$273.84	\$0.00
Alder (Red)	\$0.00	\$650.00	\$348.47	\$0.00

6/30/17

Timber Sale Appraisal Easter Gonner Sale WO-341-2018-34-

District: West Oregon Date: June 30, 2017

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total	
Douglas - Fir	1,332	\$447.68	\$596,309.76	
Western Hemlock / Fir	37	\$273.84	\$10,132.08	
Alder (Red)	15	\$348.47	\$5,227.05	

Gross Timber Sale Value

Recovery: \$611,668.89

Prepared By: Jon Long Phone: 541-929-9169

SUMMARY OF ALL PROJECT COSTS

Sale Name:	Easter Gonner		Date:	June 2017	
			Time:	15:30	
Project #1 - New	V Construction and In	nprovements			
Road Segment		<u>Length</u>	Cost		
A to B		1.4 sta	\$2,521		
1 to 2		134.7 sta	\$11,571		
3 to 4		46.0 sta	\$7,980		
5 to 6		8.6 sta	\$1,626		
7 to 8		3.9 sta	\$1,075		
9 to 10		8.4 sta	\$1,507		
11 to 12		5.8 sta	\$1,049		
13 to 14		2.1 sta	\$628		
15 to 16		1.1 sta	\$779		
	TOTALS	210.9 sta		·	\$28,736

Move in	Cost	On-site move
Excavator, C325 or equv.	\$1,290	
Dozer, D-7 or equiv.	\$805	\$26
Grader, G14 or equiv.	\$778	\$10
Vibratory roller	\$778	\$19

TOTAL \$3,706

GRAND TOTAL \$32,442

Compiled by M.McBride Date 06/08/2017

SALE ROAD	Easter Gonner A to B		Project # Surfaced, o		LENGTH	const		1.4 sta
	G AND GRUBBING acres @		\$1,337.00	/acre		=	\$134	
				TOTAL CL	EARING A	ND GRUBBI	NG =	\$134
EXCAVAT	TON	With D7 dozer	or equivalen	t				
Construct	road	1.4 sta	@	\$122.00	/sta	=	\$171	
Shape sub (with road	-	1.4 sta	@	\$18.35	/sta	=	\$26	
Compact s (with vibra	subgrade	1.4 sta	@	\$20.19	/sta	=	\$28	
					TOTAL EX	(CAVATION	=	\$225
SURFACI	NG			Size	Cost/yd			
Base rock	(8" lift)	60	cy of	jaw-run	\$16.55	=	\$993	
Surface ro	ock (2"lift)	20	cy of	1½-0"	\$19.25	=	\$385	
Junction re	ock	20	cy of	jaw-run	\$16.55	=	\$331	
Junction re	ock	20	cy of	1½-0"	\$19.25	=	\$385	
					TOTAL RO	OCK COST :	=	\$2,094
Grading								
_	cess base rock torv roller)	1.4 sta	@	\$24.28	/sta	=	\$34	
	cess surface rock	1.4 sta	@	\$24.28	/sta	=	\$34	
					TOTAL Gr	ading =		\$68
Compiled Date:	by:	M. McBride Jun 8, 2017			GRAND T	OTAL ====	=>	\$2,521

SALE ROAD	Easter Gonne 1 to 2	er	Project #	1	LENGTH Surfaced,	•		134.7 sta
IMPROVE	EMENT							
Slough re		30 cy	@	\$4.00	/cy	=	\$120	
(includes	end-haul)	,			•			
	Vaste Area	30 cy	@	\$0.40	•		\$12	
Pull ditch waste ma	and scatter terial	70.0 sta	@	\$12.41	/sta	=	\$869	
Re-open I	anding	0.5 hrs	@	\$100.00	/hr	=	\$50	
(with road	• ,							
Grade/pro		134.7 sta	@	\$24.28	/sta	=	\$3,271	
surface ro								
(WILLI VIDIR	atory roller)							
					TOTAL IM	PROVEMI	ENT =	\$4,322
SURFAC	ING			Size	Cost/yd			
Curve wic	lening rock	20	cy of	1½-0"	\$19.25	=	\$385	
Turnout ro	ock (6)	60	cy of	3-0"	\$17.56	=	\$1,054	
Landing re			cy of	jaw-run	\$16.55	=	\$497	
Spot rock		260	cy of	1½-0"	\$19.25	=	\$5,005	
					TOTAL RO	OCK COST	Γ=	\$6,941
Clean out (inlets and		12	culverts	@	\$25.67	ea =	\$308	
				TOTAL SPE	ECIAL PRO	JECTS CO	OST =	\$308
Compiled	by:	M.McBride						.
Date:		Jun 8, 2017			GRAND T	OTAL ===	:==>	\$11,571

SALE Easter Gonner Project # 1 LENGTH const 46 sta
ROAD 3 to 4 Surfaced, ditched

CLEARING AND GRUBBING (turn-around & station 42+60 to Point 4)

0.14 acres @ \$1,337.00 /acre = \$187 Turnaround

TOTAL CLEARING AND GRUBBING = \$187

EXCAVATION With D7 dozer or equivalent

Construct turnaround 1 hr @ \$144.00 /hr = \$144 Compact subgrade 0.3 sta @ \$20.19 /sta = \$6

(with vibratory roller)

TOTAL EXCAVATION = \$150

IMPROVEMENT

Re-open landing 1 hrs @ \$ 135.80 /hr = \$136

(with dozer)

Remove sod 17.1 sta @ \$18.35 /sta = \$314

(with road grader)

Grade/process 46.0 sta @ \$24.28 /sta = \$1,117

surface rock

(with vibratory roller)

TOTAL IMPROVEMENT = \$1,567

SURFACING Size Cost/yd

Surface rock (4"lift) 80 cy of 3-0" \$17.56 = \$1,405

(Sta. 42+60 to Pt. 4)

Turnout rock (3)

30 cy of 3-0" \$17.56 = \$527

Landing rock 40 cy of jaw-run \$16.55 = \$662

Turnaround rock 20 cy of 3-0" \$17.56 = \$351Spot rock 160 cy of $1\frac{1}{2}$ -0" \$19.25 = \$3,080

TOTAL ROCK COST = \$6,025

SPECIAL PROJECTS

Clean out culverts 2 culverts @ \$25.67 ea = \$51

(inlets and outlets)

TOTAL SPECIAL PROJECTS COST = \$51

Compiled by: M.McBride

Date: Jun 8, 2017 **GRAND TOTAL =====> \$7,980**

SALE ROAD	Easter Gor 5 to 6	nner	Project #	1	LENGTH Surfaced, o	-		8.6 sta
IMPROVE	MENT							
Re-open r (with road		8.6 sta	@	\$18.35	/sta	=	\$158	
Re-open la (with road	anding	0.5 hrs	@	\$100.00	/hr	=	\$50	
Grade/pro surface ro	cess ck	8.6 sta	@	\$24.28	/sta	=	\$209	
(with vibra	tory roller)							
					TOTAL IM	PROVEMEN	T =	\$417
SURFACI	NG			Size	Cost/yd			
Landing ro		20	cy of	jaw-run	\$16.55	=	\$331	
Junction re			cy of	3-0"	\$17.56	=	\$351	
Spot rock			cy of	3-0"	\$17.56	=	\$527	
					TOTAL RO	OCK COST =		\$1,209
Compiled Date:	by:	M.McBride Jun 8, 2017			GRAND TO	OTAL ====	÷>	\$1,626
		•						•

SALE ROAD	Easter Gonn 7 to 8	ner	Project #	1		LENGTH Surfaced, o	-		3.9 sta	ł
IMPROVE					•			^		
Re-open r		3.9 sta	@	•	\$18.35		=	\$72		
Re-open la	_	0.5 hrs	@	\$	100.00		=	\$50		
Grade/pro surface ro (with vibra		3.9 sta	@		\$24.28	/sta	=	\$95		
						TOTAL IM	PROVEMEN	T =	\$217	
SURFACI	NG				Size	Cost/yd				
Landing ro		20	cy of	i	aw-run	\$16.55	=	\$331		
Junction re			cy of	,	3-0"	\$17.56	=	\$176		
Spot rock			cy of		3-0"	\$17.56	=	\$351		
						TOTAL RO	OCK COST =		\$858	
Compiled Date:	=	1.McBride un 8, 2017				GRAND TO	OTAL ====	>	\$1,075	

SALE ROAD	Easter Go 9 to 10	onner	Project #	1	LENGTH Surfaced,	•		8.4 sta
IMPROVICE Clear blow (with exca Re-open I (with road Re-open I (with road Grade/pro surface ro (with vibra	wdown avator) road d grader) landing d grader) ocess	0.5 hrs 8.4 sta 0.5 hrs 8.4 sta	@ @ @	\$129.00 \$18.35 \$100.00 \$24.28	/sta) /hr	= = =	\$65 \$154 \$50 \$204	
	, ,				TOTAL IM	PROVE	EMENT =	\$473
SURFAC Landing r Junction r Spot rock	ock rock	10	cy of cy of cy of	Size jaw-run 3-0" 3-0"	Cost/yd \$16.55 \$17.56 \$17.56	= = = DCK CC	\$331 \$176 \$527 OST =	\$1,034
Compiled Date:	by:	M.McBride Jun 8, 2017			GRAND T	OTAL =	====>	\$1,507

SALE ROAD	Easter Gond 11 to 12	ner	Project #	1	LENGTH Surfaced,	-	I	5.8 sta
IMPROVE	MENT							
Re-open la (with road	•	0.5 hrs	@	\$100.00	/hr	=	\$50	
Grade/prod surface rod (with vibrat	cess ck	5.8 sta	@	\$24.28	/sta	=	\$141	
					TOTAL IM	PROVEM	1ENT =	\$191
SURFACII Landing ro Junction ro Spot rock	ck	10	cy of cy of cy of	Size jaw-run 3-0" 3-0"	Cost/yd \$16.55 \$17.56 \$17.56	= = =	\$331 \$176 \$351	
					TOTAL RO	OCK COS	T =	\$858
Compiled I	,	M.McBride Jun 8, 2017			GRAND T	OTAL ==	===>	\$1,049

SALE ROAD	Easter Gonn	ner	Project #	1		LENGTH Surfaced, o			2.1 sta
IMPROVE					•			•	
Re-open I (with road	•	0.5 hrs	@		\$100.00	/hr	=	\$50	
Grade/pro surface ro	ocess	2.1 sta	@		\$24.28	/sta	=	\$51	
						TOTAL IM	PROVEMEN'	Γ=	\$101
SURFACI	ING				Size	Cost/yd			
Landing ro			cy of		3-0"	\$17.56	=	\$351	
Junction r	ock	10	cy of		3-0"	\$17.56	=	\$176	
						TOTAL RO	OCK COST =		\$527
Compiled Date:	-	1.McBride un 8, 2017				GRAND TO	OTAL =====	>	\$628

SALE ROAD	Easter Gonne 15 to 16	er	Project #	1		LENGTH Surfaced, o	-		1.1 sta
IMPROVE	MENT								
Re-open r		1.1 sta	@		\$18.35		=	\$20	
Re-open la	_	0.5 hrs	@	\$	100.00		=	\$50	
Grade/pro surface ro (with vibra		1.1 sta	@		\$24.28	/sta	=	\$27	
						TOTAL IM	PROVEMEN [®]	Τ =	\$97
SURFACI	NG				Size	Cost/yd			
Landing ro	ock	20	cy of	j	aw-run	\$16.55	=	\$331	
Junction ro	ock		cy of		3-0"	\$17.56	=	\$351	
						TOTAL RO	OCK COST =		\$682
Compiled Date:	•	.McBride ın 8, 2017				GPAND T	OTAL =====		\$779
Date.	30	iii 0, 201 <i>1</i>				CIVAIND IV	J AL=		Ψ113

SUMMARY OF MAINTENANCE COST

SALE	Easter Gonner	- Final Maintenance Cost Estimate
		(Costed in appraisal, not in project costs)

Grading/Compaction Move-in \$ 1,556

Road Segment	Length	Cost/Sta	Cost	Mileage
A to B (with compaction)	1.4	\$24.28	\$33.99	0.03
1 to 2 (with compaction)	134.7	\$24.28	\$3,270.52	2.55
3 to 4 (with compaction)	46	\$24.28	\$1,116.88	0.87
5 to 6	8.6	\$18.35	\$157.81	0.16
7 to 8	3.9	\$18.35	\$71.57	0.07
9 to 10	8.4	\$18.35	\$154.14	0.16
11 to 12	5.8	\$18.35	\$106.43	0.11
13 to 14 (with compaction)	2.1	\$24.28	\$50.99	0.04
15 to 16	1.1	\$18.35	\$20.19	0.02
Tatal	040.0		\$4,000,50	4.00
Total	212.0		\$4.982.52	4.02

Maintenance Rock:

	Volume	Cost/CY	Cost
1½-0"	150	\$19.25	\$2,887.50
3-0"			\$0.00
Grand Total			\$ 9,426.02
TS Volume	1,384.00	MBF	
Cost / MBF =			\$6.81

NOTES:

20 CY of $1\frac{1}{2}$ -0" shall be spread and compacted on landing at Point 14 for use as a helispot.

Rock Haul Cost Computation

SALE NAME: Easter Gonner DATE: Jun 8, 2017

ROAD NAME: Fathead Lake Rd. CLASS: Medium ROCK SOURCE: Wild Rose 9 CY truck

Route: Hwy. 223, Luckiamute Rd., Hoskins Rd., Fathead lake Rd.

TIME Computation:

Road s	peed	time	factors:
--------	------	------	----------

1							
	1.	55	MPH		MRT	0.0	minutes
	2.	50	MPH		MRT	0.0	minutes
	3.	45	MPH		MRT	0.0	minutes
	4.	40	MPH	9.2	MRT	13.8	minutes
	5.	35	MPH		MRT	0.0	minutes
	6.	30	MPH	3.5	MRT	7.0	minutes
	7.	25	MPH		MRT	0.0	minutes
	8.	20	MPH	3.0	MRT	9.0	minutes
	9.	15	MPH		MRT	0.0	minutes
	10.	10	MPH	4.0	MRT	24.0	minutes
	11.	05	MPH		MRT	0.0	minutes

Dump or spread time per RT 0.50 minut

54.30 minutes

7.35 min/CY

Total hauling cycle time for this setting (100% efficiency)

Operator efficiency correction Job efficiency correction	0.85	minutes minutes
Truck capacity (CY) Loading time, delay time per CY	10.00	min/CY min/CY

Loading time, delay time per CY
TIME (minutes) per cubic yard

COST per CY computation

Cost of truck	and operator per	hour	\$68.88	/hr.
Cost of truck	and operator per	minute	\$1.15	/min

Cost per CY \$8.45 /CY

Spread and compact Water truck, Grader & Roller \$1.50 /CY

Size	Cost/Yd (Pit)	Cost Delivered w/o processing	Cost Delivered with processing
1½ - 0"	\$ 10.80	\$19.25	\$20.75
3 - 0"	\$ 9.11	\$17.56	\$19.06
Jaw Run	\$ 8.10	\$16.55	\$18.05
Pit-Run	7.43	\$15.88	\$17.38

Easter Gonner (341-18-34) FY 2017

TIMBER CRUISE REPORT

1. Sale Area Location: Portions of Section 24, T10S, R7W, W.M., Benton County, Oregon.

2. Fund Distribution:

a. Fund BOF 100%

b. Tax Code

3. Sale Acreage by Area:

Area	Treatment	Gross Acres	Stream Buffers	Patch Cuts	Existing Roads	GTRA	Net Sale Acres	Acreage Comp. Method
1	Modified Clearcut	91	12.2	8.4	4.0	1.4	65	Ortho photo, GIS, GPS
2	Modified Clearcut	17			1.0		16	Ortho photo, GIS, GPS
Total		108	12.2	8.4	5.0	1.4	81	

- **4. Cruisers and Cruise Dates:** Area 1 was cruised by Jon Long and Carli Morgan in April 2017. Area 2 was cruised by Matt McBride and Eric Brekstad in April 2017.
- 5. Cruise Method and Computation: The timber sale consists of two modified clearcuts. Area 1 was cruised using variable radius plot sampling with a 33.61 BAF. A total of 32 plots were cruised using a 3 by 7 chain grid with a ratio of one count plot for every grade plot. In total, 16 plots were counted, and 16 plots were graded. Area 2 was cruised with a 40 BAF. A total of 16 plots were cruised using a 3 by 3 chain grid with a one to one count to grade plot ratio. In total, 8 plots were counted, and 8 plots were graded in Area 2. Tree count and species were recorded on all count plots. Cruise plots were measured for DBH, height, form factor, grade, and defect. Data was entered into the Atterbury SuperACE cruise program to determine stand statistics and net board foot volume.

Digital ortho photos, Lidar data, and GPS data were used to map the boundaries for the sale, and ArcMap GIS was used to determine gross and net acreage.

- **6. Measurement Standards:** Tree heights were measured to the nearest foot, to a top diameter of 7 inches outside bark or to 40% of form factor. Diameters were measured to the nearest inch, and a form point of 16 feet was used to calculate form factor. Form factors were measured or estimated on every graded tree. Most trees were graded in 40 foot log segments unless breakage, defect, or length to top of grade cruise diameter warranted otherwise.
- 7. **Timber Description:** Timber in Area 1 consists of approximately 50 to 60 year-old Douglas-fir with scattered western hemlock and red alder. Area 1 had recently been thinned in 2012. The ice storm of 2014 caused considerable damage in Area 1. The average Douglas-fir tree size to be harvested in Area 1 is approximately 16 inches DBH, with an average height of 59 feet to a merchantable top. Timber in Area 2 consists of approximately 80 year-old Douglas-fir with minor amounts of western hemlock, western redcedar, and red alder. All cedar are reserved from cutting. The average Douglas-fir in Area 2 is approximately 28 inches DBH, with an average height of 103 feet to a merchantable top. The average red alder in Area 2 is approximately 21 inches DBH, with an average height of 43 feet to a merchantable top. The average volume per acre to be harvested (net) is approximately 11 MBF in Area 1, and 45 MBF in the Area 2.

Page 1 of 3 June 8, 2017

8. Statistical Analysis and Stand Summary: (See attached "Statistics").

	Target CV	Target SE	Actual CV	Actual SE
Area 1	45%	11%	47%	8.3%
Area 2	40%	10%	35%	9.0%

Note: Percentages are for net board foot volume.

9. Total Volume (MBF) by Species and Grade: (See attached volume report "Species, Sort Grade – Board Foot Volumes - Project").

Areas 1 and 2 combined

Species	Gross Cruise Volume	Cruised D & B	Cruised D & B (MBF)	Hidden D & B	Hidden D & B (MBF)	Net Sale Volume
Douglas-fir	1,430	1.9%	27	5%	71	1,332
Western hemlock	40	1.4%	1	5%	2	37
Red alder	20	19.1%	4	5%	1	15
Total	1,490	3.7%	32	5%	74	1,384

Area 1

Species	Ave. DBH	Net Vol.	2- Saw	3- Saw	4- Saw	Camp Run	% by Species	
Douglas-fir		Grade %	37%	55%	8%		93%	
	16	642	241	350	51		70,0	
Western		Grade %	38%	43%	19%		5%	
hemlock	14	37	14	16	7			
Red alder		Grade %				100%	2%	
rted urder	14	11				11	, ,	
Total		690	255	366	58	11	100%	

Area 2

Species	Ave. DBH	Net Vol.	3P	SM	2- Saw	3- Saw	4- Saw	Camp Run	% by Species
Douglas-fir		Grade %	3%	17%	62%	16%	2%		99%
Douglus III	28	690	23	115	431	110	11		7770
Red alder		Grade %	- 1					100%	1%
	20	4	-					4	
Total		694	23	115	431	110	11	4	100%

Page 2 of 3 June 8, 2017

Areas 1 and 2 Combined

Species	Ave. DBH	Net Vol.	3P	SM	2- Saw	3- Saw	4- Saw	Camp Run	% by Species
Douglas-fir		Grade %	2%	9%	50%	34%	5%		96%
	19	1,332	23	115	672	460	62		7 0 7 0
Western		Grade %			39%	42%	19%		3%
hemlock	14	37			14	16	7		2,0
Red alder		Grade %						100%	1%
	14	15						15	
Total		1,384	23	115	686	476	69	15	100%

Attachments:	Cruise Design
	Cruise Maps

Species, Sort Grade – Board Foot Volumes

Statistics

Stand Table Summary Log Stock Table – MBF

Prepared by: <u>Jon Long</u>	Date: <u>5/18/2017</u>	
Unit Forester:	Date:	
Evelyn Hukari		

Page 3 of 3 June 8, 2017

T10S Twp 10S	F	W S Rge 7W	S		Tract REA1		Type 00CC		Acres		Plots 32	Sam	ple Tre 56	es)]	OS R07 Page Date Fime	1 5/18/	T00C 2017 :35PM	
S	So	Gr	Log	Gross	s %	Net	%			Net Vo	lume b	v Scali	ng Dia	meter i					
Spp T			Len	MBI		MBF	Spc	2-3	4-5	6-7	8-9		12-13	-		1	24-29	30-39	40
DF	D		J 7				 	†				<u> </u>							
DF -	D	2	32		7 5.3	6	.9	<u> </u>					6				•		
DF	D	2	36		5	5	.8	l					5						
DF	D	2	40	24	1.0	242	35.8						46	61	81	54			
DF _	D	3	16		1	4	.6			4									
DF	D	3	17		2	2	3			2									
DF	D	3	25		2	2	.3			, a	2								
DF DF	D D	3 3	32 34	11: 1:		104 11	15.4			7	44 2	53 9							
DF	D	3	38		5	5	.8			5	_								
DF	D	3	40	2.4	7 2.4	241	35.6			48	94	98							
DF _	D	4	16	1	1	14	2.1		3	9	2								
DF	D	4	18	1:		15	2.2		2	13									
DF DF	D D	4	20 24	•		9	1.3			9									
DF DF	D	4 4	26		•	4 4	.6		2	4 2	i								
DF	D	4	28	;		8	1.2		2	6									
DF		Tot	als	69:	2.7	676	93.0		10	109	145	159	57	61	81	54			
RA	D	CR	24	12	33,3	8	66.5			8									
RA	D		30	4		4	33.5		4										
RA		Tot	als	1:	25.0	12	1.6		4	8									
WH	D	2	32	15		15	39.0							15					
WH —	D	3	32	3	20.0	2	5.6			2									
WH	D	3	40	14		14	36.0					14							
wh —	D	4	16	4		5	12.3			5									
WH	D	4	20	3		3	7.2			3			,						
WH		Tota	els	40	1.4	39	5.4			10		14		15					
SN	D	CU	35																
SN	D		40																
SN	D	CU	55																
SN		Tota	ıls								÷								
ВМ	D	CU	24	26	100.0													;	
ВМ		Tota	ıls	26	100.0														
Fotal All	Speci	ies		776	6.3	727	100.0		13	127	145	173	57	76	18	54			

TC T	LOGS	TVB					og Sto oject:	ck T	able - EG	MBF ONNI									
T10S Twp 10S	F	W S Rge	S	COOCC ec Tr 24 AR	act E A2		Type 00CC	7	Acres 16.		Plots 16	Sam	ple Tre 43	es]	OS R07 Page Date Fime	7W S24 1 5/12/2 10:37		
s	So	Gr	Log	Gross	%	Net	%	<u> </u>		Net V	olume l	y Scal	ing Dia	meter i	n Inche	s			
Ѕрр Т	rt	de	Len	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40÷
DF DF	D D		10 16	6	100.0														
DF DF	D D	2 2	20 32	3		3	.5 .4								3				
DF	D	2	40	448	.1	447	61.6						25	40	110	110	125	36	
DF DF	D D	3	20 26	1		1 1	.1				1		1						
DF DF DF	D D D	3 3 3	27 29 32	5 1 16		5 1 16	.6 .1 2.1				2 1 1 3				3				
DF DF	D D	3	34 36	5 2		5 2	.7				1				_				
DF DF DF	D D D	3 3 3	37 40 41	. 7 79 3	1.6	7 77 3	.9 10.6 .4			{	3 5	1	27	5	12		8		
DF _	D	4	15	1		1	.1			1		-							
DF DF	D	4	16 17	3 1		3 1	.4]	. 1			2			:		
DF DF	D D	4	19 22	1		1	.1				1		1	. 1					
DF DF DF	D D D	4 4 4	25 31 33	1 2 2		1 2 2	.1 .3 .3			2			1						
DF —	D	3P	40	24		24	3.3											24	
DF	D	S	40	121		121	16.6									47	62	12	
DF		Tota	ıls	735	1.1	727	99.4			15	18	34	56	48	131	157	196	72	
RA	D	CR	40	5		5	100.0			2		3							
RA		Tota	ıls	5		5	.6			2		3							
Total All	Spec	ies		739	1.1	731	100.0	-		17	18	36	56	48	131	157	196	72	

.

TC	PSPCSTGR		S	pecies,	Sort G	rade - Boar	d Fo	ot V	olum	es (P	rojec	t)							
!!	0S R07W S24 0S R07W S24	•		65.00 16.00		Project: Acres	EG	GONN 81.0								Page Date Time	5/	18/20 :52:3	17
		%					Per	cent of	Net Bo	oard F	oot Volu	ıme				Aver	age Lo	g	Logs
	S So Gr	Net	Bd, F	t. per Acre	e	Total	I	og Sca	ale Dia.			Log L	ength		I.n		Bd		Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF			12-16		12-20			36-99		In		Lf	/Acre
DF	D CU		100.0	75											-10	22.		0.00	.6
DF	D 2	50	.5	8,774	8,733	707			31	69	0	٠	1	98	40		494		17.7
DF	D 3	35	3.5	6,207	5,991	485		88	7	5	1	2	28	69	36	9	104	0.88	57.8
DF	D 4	4		805	805	65	15	79	6		66	27	6		20	6	25	0.43	32,5
DF	D 3P	2		297	297	24				100				100	40	32	1897	8.66	.2
DF	D S	9		1,491	1,491	121				100				100	40	24	1079	4.86	1.4
DF	Totals	96	1.9	17,650	17,318	1,403	1	34	18	47	4	2	11	84	32	10	157	1.22	110.1
WH WH WH	D 2 D 3 D 4	38 42 20	3.2	189 209 95	189 202 95	15 16 8		100 100	100		100		100 13	87	32 37 17	15 9 6	110	0.90	.7 1.8 4.1
WH	Totals	3	1.4	493	486	39		61	39		19		45	36	24	8	73	0.82	6.7
RA	D CR	100	19.2	248	200	16	24	76				71		29	27	6	29	0.65	6.9
RA	Totals	1	19.2	248	200	16	24	76				71		29	27	6	29	0.65	6.9
ВМ	D CU		100.0	315											24	23		0.00	.6
ВМ	Totals		100.0	315											24	23		0.00	.6
SN	D CU														43 2	:52		0.00	2.6
SN	Totals														43 2	52		0.00	2.6
Tota	ls		3.7	18,705	18,004	1,458	1	35	19	45	4	3	11	82	31	14	142	1.14	126.8

т т	SPCSTG	R			Species	, Sort G Projec	rade - Boai et: EGO	rd Fo ONNI		⁷ olu1	nes (T	Гуре)					Page Date Time	5	1 5/18/20 3:51:3	
T10S Twp 10S	R07W 8 Rg 07	ge	Sec	Tract AREA1		Type 00C		00	Plot	!		le Tree 56		C 1	laFt	Bd W	Ft		S24 T	00CC
Spp		Gr ad	% Net BdFt		. Ft. per A Gross	cre Net	Total Net MBF		og Sc	ale D	ia.	Log 12-20	g Ler	_	36-99		Dia	ge Log Bd Ft	CF/ Lf	Logs Per /Acre
DF DF DF DF	D D D D	CU 2 3 4	37 55 8	1.0	3,941 5,921 828	3,900 5,672 828	254 369 54	18	100 82	53	47	2.	0 30	2 31	98 67	7 39 36 20	8	93	0.00 2.17 0.82 0.41	.4 10.8 60.9 36.5
DF RA	Totals D	CR	93 100	2.7	10,691 237	10,400 178	676	33	61 67	20	18	6	3 100	18	73	31 26		96 23	0.91	108.6 7.9
RA WH WH	Totals D D	2 3	2 38 42	3.2	237 236 260	178 236 252	12 15 16	33	100	100			100	100 13	87	26 32 37	15		0.60 1.87 0.90	7.9 .8 2.3
WH WH	D Totals	4	20 5	1.4	614	606	39		100 61	39		100 19		45	36	17 24		73	0.42	5.2 8.3
SN SN	D Totals	CU														43 ! 43 !			0.00	3.2
ВМ ВМ	D Totals	CU		100.0	393 393											24			0.00	.7
Туре То	tals			6.3	11,935	11,184	727	2	61	21	16	7	4	19	70	30	14	87	0.85	128.7

т т	SPCSTG	R			Species	, Sort G Projec	rade - Boai t: EGO	d Foot V	⁷ olu:	mes (T	Гуре)				Pa Da Ti	te :	1 5/12/20 [0:37:3	
T10S Twp 10S	R07W : Rg 07	ge	Sec	Tract AREA2		Туре 00С					le Tree: 43	s	C 1	uFt	T10S BdFt W	R07W	S24 T	00CC
			%					Percent	Net B	oard Fo	ot Vol	ıme			Aveı	age Log	5	Logs
	s so	Gr ad	Net BdFt	Bd. Def%	Ft. per Ac Gross	ere Net	Total Net MBF	Log Sc 4-5 6-1		ia. 6 17+	Log	g Ler 21-30	_	36-99	Ln Di Ft In	a Bd Ft	CF/ Lf	Per /Acre
DF	D	CU		00.0	382										13 27		0.00	1.2
DF	D	2	62	.1	28,407	28,367	454		18	82	1		1	99	40 19	621	3.04	45.6
DF	D	3	16	1.1	7,367	7,289	117	51	30	20	1	6	17	76	36 10	160	1.19	45.5
DF	D	4	2		712	712	11	66	34		47	16	37		23 7	44	0.61	16.3
DF	D	3P	3		1,505	1,505	24	-		100				100	40 32	1897	8.66	.8
DF	D	S	17		7,548	7,548	121			100				100	40 24	1079	4.86	7.0
DF	Totals		99	1.1	45,921	45,422	727	9	17	74	1	1	4	94	36 14	390	2.25	116.4
RA	D	CR	100		289	289	5	100						100	40 8	102	1.01	2.8
RA	Totals		1		289	289	5	100						100	40 8	102	1.01	2.8
Туре То	otals			1.1	46,210	45,711	731	10	17	74	1	1	4	94	36 14	383	2.21	119.2

							Proj	ECI	EGON	VEK					
T10S Twp 10S	R07W Rge 07W	S24 T0 Sec 24	00CC Trac ARE	t			r _{ype} 00 CC		cres 55.00	Plots 32	Sample 7		T10S R(Page: Date: Time:	07W S24 7 1 05/18/20 3:51:34) :
S	1	Sample		Av Ht	Trees/		Logs	Net	age Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.		tals	
Spc 7		Trees	16'	Tot	Acre	Acre	Acre		Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	11	1	83	50	2.949	1.95	2.95	12.0	30.0		35	88		23	6
DF DF	12 14	4	89	77	9.911 11.059	7.78	12.39	17.8	58.0	•	221	719		143	47
DF	15	6 4	88 86	78 74	6.343	7.78	18.48 12.69	18.9 18.3	60.7 58.8		350 232	1,121 745		227 150	73 48
DF	16	5	88	84	6.968	9.73	13.94	23.4	82.0		326	1,143		212	74
DF	17	5	86	77	6.173	9.73	12.35	24.7	77.0		305	951		198	62
DF	18	5	87	72	5,506	9.73	9.91	28.6	80.0		283	793		184	52
DF	19	1	84	87	.988	1.95	1.98	33.0	95.0		65	188		42	12
DF	20	2	88	104	1.784	3.89	4.46	35.2	126.0		157	562		102	37
DF	21	3	89	105	2.427	5.84	6.47	36.8	133.8		238	866		155	56
DF	22	2	89	101	1.474	3.89	3.69	41.4	156.0		153	575		99	37
DF	24	1	90	98	.619	1.95	1.24	62.0	230.0		77	285		50	19
DF	26	2	88	116	1.056	3.89	2.64	64.6	262.0		170	691		111	45
DF	28	2	86	101	.910	3.89	1.82	82.0	312.5		149	569		97	37
DF	29	1	89	127	.424	1.95	1.27	72.7	323.3		92	412		60	27
DF DF	30	1 1	86 83	119 122	.396	1.95	.79 1.11	98.5	425.0		78 85	337		51 50	22
Dr	31	1	6.5	122	.371	1.95	1,11	76.7	320.0		83	356		56	23
DF	Totals	46	87	81	59.359	89.51	108.16	27.9	96.2		3,016	10,400		1,961	676
WH	10	1	89	18	3.718	2.03	3.72	6.0	20.0		22	74		14	5
WH	16	1	89	85	1.452	2.03	2.90	24.5	90.0		71	261		46	17
WH	21	1	92	79	.843	2.03	1.69	42.0	160.0		71	270		46	18
WH	Totals	3	89	43	6.013	6.08	8.31	19.8	72.9		164	606		107	39
RA	11	1	86	36	5.926	3.91	5;93	11.0	20.0		65	119		42	8
RA	19	1	86	34	1.986	3.91	1.99	28.0	30.0		56	60		36	4
RA	Totals	2	86	35	7.912	7.82	7.91	15.3	22.5		121	178		79	12
BM	30	1	87	100	.354	1.74									
BM	Totals	1	87	100	.354	1.74									
SN	14	1	86	80	1,219	1.30									
SN	15	1	86	67	1.062	1.30									
SN	16	2	86	66	1.867	2.61									
SN	Totals	4	86	70	4.149	5.21									
Totals	•	56	87	73	77.787 1	10.37	124.39	26.5	89.9		3302	11,184		2,146	727

Stand Table Summary

TC TSTNDSUM

TC T	STNDSU	М			•		Stan	d Table	Summa	ıry					
							Proj	ect	EGON	NER					
T10S Twp 10S	R07W Rge 07W	Sec Sec 24	00CC Trac ARE	t			Type 00CC		cres 6.00	Plots 16	Sample 7		T10S Ro Page: Date: Time:	07W S24 ¹ 1 05/12/20 10:37:3	0:
	s	Sample			Trees/		Logs	Net	nge Log Net	Tons/		Net Bd.Ft.		otals	1.00
	T DBH		16'	Tot	Acre	Acre		1	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	16	1	91	85	3.133	4.38	6.27	24.5	90.0		154	564		25	9
DF	17	1	90	97	2.776		5.55	31.0	115.0		172	638		28	10
DF DF	18 19	1 1	90	112 116	2,476 2,222		4.95 6.67	38.0	135.0		188	668	1	30	11
DF	20	3	90 90	114	1	14.03	14.87	30.0 39.1	116.7 150.3		200 582	778 2,235		32 93	12 36
DF	22	1	90	112	1.657	4.38	4.97	40.0	170.0		199	845		32	14
DF	25	1	90	132	1.283	4.38	3.85	59.0	256.7		227	988		36	16
DF	26	3	89	136		13.13	10.68	64.1	280.0		685	2,990		110	48
DF	28	2	88	138	2.046	8.75	6.14	75.3	353.3		462	2,169		74	35
DF	30	2	86	140	1.783	8.75	5.35	86.0	395.0		460	2,112		74	34
DF	31	2	86	146	1.669	8.75	5.01	94.3	440.0		472	2,204		76	35
DF	32	2	88	152	1.567	8.75	4.70	104.5	505.0		491	2,374		79	38
DF	33	2	85	154	1.780	10.58	5.34	94.9	483.0		507	2,580		81	41
DF	34	2	87	155	1.388	8.75	4.16	101.2	530.0		421	2,207		67	35
DF	35	2	87	145	1.310	8.75	3.93	120.8	618.3		475	2,429		76	39
DF	36	2	87	158	1.418	10.02	4.25	123.7	674.7		526	2,871		84	46
DF	38	2	86	155	1.111	8.75	3.33	148.2	766.7		494	2,555		79	41
DF	39	1	87	165	.527	4.38	1.58	161.0	863.3		255	1,366		41	22
DF	40	3	85	159	1.504		4.51	159.4	823.3		719	3,715		115	59
DF	44	3	86	174	1.243		4.56	181.3	1011.8		826	4,611		132	74
DF	46	3	85	174	1.137	13.13	4.55	179.0	994.2		814	4,522		130	72
DF	Totals	40	88	130	42.023	179.01	115.22	81.0	394.2		9,330	45,422		1,493	727
RA	19	1	86	56	1.678	3.30	1.68	32.0	70.0		54	117		9	2
RA	23	1	87	62	1.145	3.30	1.14	53.0	150.0		. 61	172		10	3
RA	Totals	2	86	58	2.822	6.61	2.82	40.5	102.4		114	289		18	5
SN	35	1	98	35	.382	2.55									
SN	Totals	1	98	35	.382	2,55						_			
Totals		43	88	125	45.227	88.16	118.05	80.0	387.2		9444	45,711		1,511	731

TC PS	TATS					OJECT ROJECT		ISTICS ONNER			PAGE DATE	1 5/18/2017
ГWР	RGE	SC	TRACT		TYPE		A	CRES	PLOTS	TREES	CuFt	BdFt
10S 10S	07 07W	24 24	AREA1 AREA2		00CC 00CC			81.00	48	200	1	W
						TREES		ESTIMATED TOTAL		ERCENT SAMPLE		
		P	LOTS	TREES		PER PLO	Т	TREES		TREES		
TOTA	AL		48	200		4.2						
	ISE COUNT DREST		27	99		3.7		5,780		1.7		
COUI BLAN 100 %	NKS		21	95		4.5						
					STA	AND SUM	MARY					
			MPLE REES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DF			86	55.9	18.7	65	24,8	107.2	17,650	17,318	4,275	4,264
R AL			4	6.9	14.2	28	2.0	7.6	248	200	120	120
SNAC			5	3.4	15.9	41	1.2	4.7	100	100	100	100
	MLOC		3	4.8	13.6	35	1.3	4.9	493	486	132	132
TOTA	IAPLE		99	.3 71.4	30.0 18.0	50 59	0.3 29.7	1.4 125.7	315 <i>18,705</i>	18.004	53 4,580	4,515
CL SD:	68.1 1.0		COEFF VAR.%	S.E.%	I	LOW	AVG	HIGH	#	OF TREES 1	10	INF. POP.
DF			115.8	12.5		812	928	1,044				
R ALI SNAC	3		87.5	50.0		34	68	101				
BL M	MLOC APLE		86.6	59.9		69	173	277				
TOTA			128.3	12.9		709	814	919		657	164	73
	68.1		COEFF	0.07		TREES		men	#	OF PLOTS I	•	INF. POP.
SD: DF	1.0		77.1	S.E.% 11,1		.OW 50	AVG 56	HIGH 62		5	10	1:
R ALI	DER		334.1	48.2		4	7	10				
SNAC			262.3	37.8		2	3	5				
WHE	MLOC		489.8	70.6		1	5	8				
	APLE		484.7	69.9		0	0	0				
TOTA	A L		72.4	10.4		64	71	79		210	52	2.
CL	68.1		COEFF	· <u> </u>		BASAL	AREA/A	ACRE	#	OF PLOTS I	REQ.	INF. POP.
SD:	1.0		VAR,%	S.E.%	I	OW	AVG	HIGH		5	10	1:
DF			46.1	6.7		100	107	114		<u> </u>		
R ALI			304.1	43.8		4	8	11				
SNAG			246.0	35.5		3	5	6				
WHEN BL M.	MLOC		489.8 484.7	70.6 69.9		1	5 1	8 2				
TOTA			484.7 38.0	5,5		119	1 126	133		58	14	(
	68.1		COEFF	J.J		NET BE		1.00	# :	OF PLOTS I		INF, POP.
SD:	1.0		VAR.%	S.E.%	Т	OW.	AVG	HIGH	77	5	10	15
DF	1.0		59.9	8.6			17,318	18,814			10	1.
R ALI SNAG			286.7	41.3	•	117	200	283			•	
	MLOC		489.8	70.6		143	486	829				
TOTA			54.7	7.9	1	6,583	18,004	19,426		120	30	13

	ATS				ST PROJE	'ATIS' CT	FICS EGONNER			PAGE DATE	1 5/18/2017
TWP	RGE	SECT	TRACT		TYPE	A(CRES	PLOTS	TREES	CuFt	BdFt
10S	07W	24	AREA1		00CC		65.00	32	127	1	W
	,	DV CONG	mp rivo		TREES		ESTIMATED TOTAL	S	ERCENT AMPLE		
		PLOTS			PER PLOT		TREES	1	REES		·
CRUIS DBH C REFOR	SE COUNT REST	32 17 15	56		4.0 3.3		5,056		1.1		
BLAN 100 %	KS	10			1.0						
				STA	ND SUM	MARY					
		SAMPLE TREES		AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DF		4	6 59.4	16.6	59	22.0	89.5	10,691	10,400	3,016	3,016
R ALD			2 7.9	13.5	26	2.1	7.8	237	178	121	121
WHEN			3 6.0	13.6	35	1.6	6.1	614	606	164	164
SNAG			4 4.1	15.2	41	1.3	5.2	222			
BL MA		50	1 .4 6 77.8	30.0 16.1	50 53	0.3 27.5	1.7 110.4	393 11,935	11,184	66 3,367	3,302
CL:	68.1 %	COE	I		SAMPL			- #	· 111 1111/0	RHO	INF. POP
SD:	1.0	VAR	2% SF%	т				r	OF TREES	-	
SD:	1.0	VAR 92.			OW 229	AVG 265	301	#	5	10	
DF R ALD	ER	92. 28.	.3 13.6 .3 26.5		OW 229 18	AVG 265 25	HIGH 301 32	<i>it</i>		-	
DF R ALD WHEM SNAG	ER ALOC	92.	.3 13.6 .3 26.5		OW 229	AVG 265	HIGH 301			-	
DF R ALD WHEM	ER ALOC	92. 28.	.3 13.6 .3 26.5 .6 59.9		OW 229 18	AVG 265 25	HIGH 301 32			-	1
DF R ALD WHEM SNAG BL MA	ER ALOC APLE L	92. 28. 86.	3 13.6 .3 26.5 .6 59.9 0 14.0		229 18 69	265 25 173 228	HIGH 301 32 277		5 441	110	1
DF R ALD WHEM SNAG BL MA TOTA CL:	ER ALOC APLE L	92. 28. 86. 105. COE VAR	3 13.6 3 26.5 .6 59.9 0 14.0 EFF		229 18 69 196 TREES/A	265 25 173 228 ACRE AVG	HIGH 301 32 277 260 HIGH		5	110	1 4 INF. POP.
DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF	DER MLOC APLE L 68.1 % 1.0	92. 28. 86. 105.0 COE VAR	3 13.6 3 26.5 .6 59.9 0 14.0 EFF 2.% S.E.% 8 10.9		229 18 69 196 TREES/A OW	265 25 173 228 ACRE AVG 59	HIGH 301 32 277 260 HIGH 66		5 441 OF PLOTS	110 110 REQ.	1 4 INF. POP.
DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD	DER MLOC APLE L 68.1 % 1.0	92. 28. 86. 105.0 COE VAR 61. 292.	3 13.6 3 26.5 .6 59.9 0 14.0 EFF 8.% S.E.% 8 10.9 4 51.6		229 18 69 196 TREES/A OW	265 25 173 228 ACRE AVG 59 8	HIGH 301 32 277 260 HIGH 66 12		5 441 OF PLOTS	110 110 REQ.	1 4 INF. POP.
DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM	DER MLOC APLE L 68.1 % 1.0	92. 28. 86. 105.0 COE VAR 61. 292. 397.	3 13.6 3 26.5 .6 59.9 0 14.0 EFF R.% S.E.% 8 10.9 4 51.6 8 70.3		229 18 69 196 TREES/A OW 53 4 2	265 25 173 228 ACRE AVG 59 8 6	HIGH 301 32 277 260 HIGH 66 12 10		5 441 OF PLOTS	110 110 REQ.	1 4 INF. POP.
DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG	DER MLOC APLE L 68.1 % 1.0 ER ILOC	92. 28. 86. 105.0 COE VAR 61. 292.	3 13.6 3 26.5 .6 59.9 0 14.0 EFF R.% S.E.% 8 10.9 4 51.6 8 70.3 6 37.6		229 18 69 196 TREES/A OW	265 25 173 228 ACRE AVG 59 8	HIGH 301 32 277 260 HIGH 66 12		5 441 OF PLOTS	110 110 REQ.	1 4 INF. POP.
DF R ALD WHEM SNAG BL MA TOTA CL: SD: DF R ALD WHEM SNAG BL MA	DER MLOC APLE L 68.1 % 1.0 DER MLOC APLE	92. 28. 86. 105.0 COE VAR 61. 292. 397. 212.	3 13.6 3 26.5 .6 59.9 0 14.0 EFF R.% S.E.% 8 10.9 4 51.6 8 70.3 6 37.6 5 69.5		229 18 69 196 TREES/6 OW 53 4 2 3	265 25 173 228 ACRE AVG 59 8 6 4	HIGH 301 32 277 260 HIGH 66 12 10 6		5 441 OF PLOTS	110 110 REQ.	1 4 INF. POP. 1
DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG BL MA TOTA	DER MLOC APLE L 68.1 % 1.0 ER MLOC APLE L	92. 28. 86. 105.4 COE VAR 61. 292. 397. 212. 393.	3 13.6 .3 26.5 .6 59.9 0 14.0 EFF 8.% S.E.% 8 10.9 4 51.6 8 70.3 6 37.6 5 69.5 5 9.3		229 18 69 196 TREES/A OW 53 4 2 3 0	265 25 173 228 ACRE AVG 59 8 6 4 0 78	HIGH 301 32 277 260 HIGH 66 12 10 6 1 85	#	5 441 OF PLOTS 5	110 REQ. 10	1 4 INF. POP. 1
DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG BL MA TOTA CL: (SD:	DER MLOC APLE L 68.1 % 1.0 ER MLOC APLE L	92. 28. 86. 105.0 COE VAR 61. 292. 397. 212. 393. 52.:	3 13.6 3 26.5 .6 59.9 0 14.0 EFF R.% S.E.% 8 10.9 4 51.6 8 70.3 6 37.6 5 69.5 5 9.3 EFF R.% S.E.%	L	229 18 69 196 TREES/A OW 53 4 2 3 0 71 BASAL A	265 25 173 228 ACRE AVG 59 8 6 4 0 78 AREA/A	HIGH 301 32 277 260 HIGH 66 12 10 6 1 85 CRE HIGH	#	5 441 OF PLOTS 5	110 REQ. 10	1 INF. POP. 1 INF. POP.
DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG BL MA TOTA: CL: (SD: DF	DER MLOC APLE L 68.1 % 1.0 DER MLOC APLE L 68.1 %	92. 28. 86. 105.4 COE VAR 61. 292. 397. 212. 393. 52 COE VAR	3 13.6 3 26.5 .6 59.9 0 14.0 EFF R.% S.E.% 8 10.9 4 51.6 8 70.3 6 37.6 5 69.5 5 9.3 EFF R.% S.E.% 4 8.9	L	229 18 69 196 TREES/A OW 53 4 2 3 0 71 BASAL A OW 82	265 25 173 228 ACRE AVG 59 8 6 4 0 78 AREA/A AVG 90	HIGH 301 32 277 260 HIGH 66 12 10 6 1 85 CRE HIGH 97	#	5 441 OF PLOTS 5 110 OF PLOTS	110 REQ. 10 28 REQ.	1 INF. POP. 1
DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG BL MA TOTA: CL: (SD: DF R ALD	DER MLOC APLE L 68.1 % 1.0 APLE L 68.1 % 1.0 APLE L 68.1 % 1.0	92. 28. 86. 105.6 COE VAR 61. 292. 397. 212. 393. 52. COE VAR	3 13.6 3 26.5 .6 59.9 0 14.0 EFF R.% S.E.% 8 10.9 4 51.6 8 70.3 .6 37.6 .5 69.5 .5 9.3 EFF R.% S.E.% 4 8.9 9 51.0	L	229 18 69 196 TREES/A OW 53 4 2 3 0 71 BASAL A OW 82 4	265 25 173 228 ACRE AVG 59 8 6 4 0 78 AREA/A AVG 90 8	HIGH 301 32 277 260 HIGH 66 12 10 6 1 85 CRE HIGH 97 12	#	5 441 OF PLOTS 5 110 OF PLOTS	110 REQ. 10 28 REQ.	1 INF. POP. 1 INF. POP.
DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG BL MA TOTA: CL: (SD: DF R ALD WHEM	DER MLOC APLE L 68.1 % 1.0 APLE L 68.1 % 1.0 APLE L 68.1 % 1.0	92. 28. 86. 105.4 COE VAR 61. 292. 397. 212. 393. 52. COE VAR 50. 288. 397.	3 13.6 3 26.5 .6 59.9 0 14.0 EFF R.% S.E.% 8 10.9 4 51.6 8 70.3 .6 37.6 .5 69.5 .5 9.3 EFF R.% S.E.% 4 8.9 9 51.0 8 70.3	L	229 18 69 196 TREES/ OW 53 4 2 3 0 71 BASAL 4 OW 82 4 2	AVG 265 25 173 228 ACRE AVG 59 8 6 4 0 78 AREA/A AVG 90 8 6	HIGH 301 32 277 260 HIGH 66 12 10 6 1 85 CRE HIGH 97 12 10	#	5 441 OF PLOTS 5 110 OF PLOTS	110 REQ. 10 28 REQ.	1 INF. POP. 1
DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG	DER MLOC APLE L 68.1 % 1.0 ER MLOC APLE L 1.0 ER MLOC	92. 28. 86. 105.6 COE VAR 61. 292. 397. 212. 393. 52. COE VAR	3 13.6 3 26.5 .6 59.9 0 14.0 EFF 2.% S.E.% 8 10.9 4 51.6 8 70.3 .6 37.6 .5 69.5 .5 9.3 EFF 2.% S.E.% 4 8.9 9 51.0 8 70.3 5 37.4	L	229 18 69 196 TREES/A OW 53 4 2 3 0 71 BASAL A OW 82 4	265 25 173 228 ACRE AVG 59 8 6 4 0 78 AREA/A AVG 90 8	HIGH 301 32 277 260 HIGH 66 12 10 6 1 85 CRE HIGH 97 12	#	5 441 OF PLOTS 5 110 OF PLOTS	110 REQ. 10 28 REQ.	1 4 INF. POP. 1
DF R ALD WHEM SNAG BL MA TOTA CL: (6 SD: DF R ALD WHEM SNAG BL MA TOTA CL: (6 SD: DF R ALD WHEM SNAG BL MA TOTA	DER MLOC APLE L 68.1 % 1.0 ER MLOC APLE L 68.1 % 1.0 ER MLOC	92. 28. 86. 105.1 COE VAR 61. 292. 397. 212. 393. 52. COE VAR 50. 288. 397. 211.	3 13.6 3 26.5 6 59.9 0 14.0 EFF 8.% S.E.% 8 10.9 4 51.6 8 70.3 6 37.6 5 69.5 5 9.3 EFF 8.% S.E.% 4 8.9 9 51.0 8 70.3 5 37.4 5 69.5	L	229 18 69 196 TREES/A OW 53 4 2 3 0 71 BASAL A OW 82 4 2 3	AVG 265 25 173 228 ACRE AVG 59 8 6 4 0 78 AREA/A AVG 90 8 6 5	HIGH 301 32 277 260 HIGH 66 12 10 6 1 85 CRE HIGH 97 12 10 7	#	5 441 OF PLOTS 5 110 OF PLOTS	110 REQ. 10 28 REQ.	1 INF. POP. 1
DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG BL MA TOTA	DER MLOC APLE L 68.1 % 1.0 ER MLOC APLE L 68.1 % 1.0 ER MLOC APLE L L 68.1 %	92. 28. 86. 105.1 COE VAR 61. 292. 397. 212. 393. 52.: COE VAR 50. 288. 397. 211. 393.	3 13.6 3 26.5 .6 59.9 0 14.0 GFF R.% S.E.% 8 10.9 4 51.6 8 70.3 6 37.6 5 69.5 5 9.3 GFF R.% S.E.% 4 8.9 9 51.0 8 70.3 5 37.4 5 69.5 7 7.2	L	229 18 69 196 TREES/A OW 53 4 2 3 0 71 BASAL A OW 82 4 2 3 1 102	AVG 265 25 173 228 ACRE AVG 59 8 6 4 0 78 AREA/A AVG 90 8 6 5 2 110	HIGH 301 32 277 260 HIGH 66 12 10 6 1 85 CRE HIGH 97 12 10 7 3	#	5 441 OF PLOTS 5 110 OF PLOTS 5	110 REQ. 10 28 REQ. 10	1 INF. POP. 1 INF. POP. 1
DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG BL MA TOTA CL: (CL:	DER ALOC APLE L 68.1 % 1.0 ER APLE L 68.1 % 1.0 ER APLE L 68.1 %	92. 28. 86. 105.6 COE VAR 61. 292. 397. 212. 393. 52. COE VAR 50. 288. 397. 211. 393. 40.7 COE	3 13.6 3 26.5 6 59.9 0 14.0 EFF R.% S.E.% 8 10.9 4 51.6 8 70.3 6 37.6 5 69.5 5 9.3 EFF R.% S.E.% 4 8.9 9 51.0 8 70.3 5 37.4 5 69.5 7 7.2	L	229 18 69 196 TREES/ OW 53 4 2 3 0 71 BASAL 4 OW 82 4 2 3 1 102 NET BF/	AVG 265 25 173 228 ACRE AVG 59 8 6 4 0 78 AREA/A AVG 90 8 6 5 2 110 ACRE	HIGH 301 32 277 260 HIGH 66 12 10 6 1 85 CRE HIGH 97 12 10 7 3 118	#	5 441 OF PLOTS 5 110 OF PLOTS 5	110 REQ. 10 28 REQ. 10	INF. POP. 1 INF. POP.
DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG BL MA TOTA CL: (SD: CL: (DER MLOC APLE L 68.1 % 1.0 ER MLOC APLE L 68.1 % 1.0 ER MLOC APLE L L 68.1 %	92. 28. 86. 105.0 COE VAR 61. 292. 397. 212. 393. 52.: COE VAR 50. 288. 397. 211. 393. 40.7	3 13.6 3 26.5 6 59.9 0 14.0 EFF R.% S.E.% 8 10.9 4 51.6 5 69.5 5 9.3 EFF R.% S.E.% 4 8.9 9 51.0 8 70.3 5 37.4 5 69.5 7 7.2 EFF R.% S.E.%	L	229 18 69 196 TREES/ OW 53 4 2 3 0 71 BASAL A OW 82 4 2 3 1 102 NET BF/ OW	AVG 265 25 173 228 ACRE AVG 59 8 6 4 0 78 AREA/A AVG 90 8 6 5 2 110	HIGH 301 32 277 260 HIGH 66 12 10 6 1 85 CRE HIGH 97 12 10 7 3	#	5 441 OF PLOTS 5 110 OF PLOTS 5	110 REQ. 10 28 REQ. 10	INF. POP. 1 INF. POP.
DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG BL MA TOTA CL: (SD: DF R ALD WHEM SNAG BL MA TOTA CL: (CL:	DER MLOC APLE L 68.1 % 1.0 ER ILOC 1.0 ER ILOC APLE L 58.1 % 1.0	92. 28. 86. 105.4 COE VAR 61. 292. 397. 212. 393. 52.: COE VAR 50. 288. 397. 211. 393. 40.7 COE VAR	3 13.6 3 26.5 6 59.9 0 14.0 EFF 8.% S.E.% 8 10.9 4 51.6 5 69.5 5 9.3 EFF 8.% S.E.% 4 8.9 9 51.0 8 70.3 5 37.4 5 69.5 7 7.2 EFF 8.% S.E.% 7 9.3 5 51.3	L	229 18 69 196 TREES/ OW 53 4 2 3 0 71 BASAL A OW 82 4 2 3 1 102 NET BF/ OW	AVG 265 25 173 228 ACRE AVG 59 8 6 4 0 78 AREA/A AVG 90 8 6 5 2 110 ACRE AVG	HIGH 301 32 277 260 HIGH 66 12 10 6 1 85 CRE HIGH 97 12 10 7 3 118 HIGH	#	5 441 OF PLOTS 5 110 OF PLOTS 5	110 REQ. 10 28 REQ. 10	1 INF. POP. 1 INF. POP. 1

TC TST	ATS				ST PROJE	ATIST	TCS EGONNER			PAGE DATE :	1 5/12/2017
TWP	RGE	SECT	TRACT		TYPE	AC	RES	PLOTS	TREES	CuFt	BdFt
10S	07W	24	AREA2		00CC		16.00	16	73	. 1	W
				r	REES		ESTIMATED TOTAL		ERCENT AMPLE		
		PLOTS	TREES	F	ER PLOT		TREES	Tì	REES		
TOTA	L	16	73	•	4.6						
CRUIS	SE	10	43		4.3		724		5.9		
DBH (COUNT										
REFO	REST										
COUN		6	27		4.5		•				-
BLAN 100 %				•							
100 70				STAN	D SUMN	AADV					
		SAMPLE	TREES			REL	DAGAT	CDOGG	NIDO	CDCGG	NET
				AVG	BOLE		BASAL	GROSS	NET	GROSS	
DE		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DF	NED.	40		27.9	103	33.9	179.0	45,921	45,422	9,390	-
RALE		. 2		20.7	43	1.5	6.6	289	289	114	114
SNAG		1		35,0	35	0.4	2.6				
TOTA	L	43	45.2	27.6	99	35.8	188.2	70.210	43,/11	9,504	
	FIDENCI	E LIMITS (5 45.2 OF THE SAMPI TT OF 100 THE	Æ				46,210 E ERROR	45,711	9,304	2,444
CONE	FIDENCI 68.1 68.1 %	E LIMITS (TIMES OU COE	OF THE SAMPI IT OF 100 THE FF	LE VOLUME V	WILL BE	WITHIN E TREES	THE SAMPL	E ERROR	OF TREES		
CONE	FIDENCI 68.1	E LIMITS (TIMES OU COE VAR	OF THE SAMPI IT OF 100 THE FF .% S.E.%	LO VOLUME V	WILL BE SAMPLI W	WITHIN E TREES AVG	THE SAMPI S - BF HIGH	E ERROR			INF. POP.
CCL: SD: DF	68.1 % 61.0	E LIMITS (TIMES OU COE VAR 68.3	OF THE SAMPI OF 100 THE FF .% S.E.% 3 10.8	LO VOLUME V	WILL BE SAMPLE W 508	WITHIN E TREES AVG 1,691	THE SAMPI S - BF HIGH 1,873	E ERROR	OF TREES	REQ.	INF. POP.
CL: SD: DF R ALD	FIDENCI 68.1 68.1 % 1.0 DER	E LIMITS (TIMES OU COE VAR	OF THE SAMPI OF 100 THE FF .% S.E.% 3 10.8	LO VOLUME V	WILL BE SAMPLI W	WITHIN E TREES AVG	THE SAMPI S - BF HIGH	E ERROR	OF TREES	REQ.	INF. POP
CL: SD: DF R ALC SNAG	FIDENCI 68.1 68.1 % 1.0 DER	E LIMITS OUTOMES OUTOMES.	OF THE SAMPI TOF 100 THE FF .% S.E.% 3 10.8 4 48.2	LE VOLUME \ LO I,	WILL BE SAMPLE W 508 57	WITHIN E TREES AVG 1,691 110	THE SAMPI 5 - BF HIGH 1,873 163	E ERROR	OF TREES 5	REQ. 10	INF. POP.
CCL: SD: DF R ALD: SNAG TOTA	68.1 % 1.0 DER	E LIMITS OU COE VAR 68.: 51.4	DF THE SAMPI TT OF 100 THE FF .% S.E.% 3 10.8 4 48.2	LE VOLUME V LO I,	WILL BE SAMPLE W 508 57	WITHIN E TREES AVG 1,691 110	THE SAMPI S - BF HIGH 1,873	E ERROR # (OF TREES 5	REQ. 10	INF. POP. 1
CL: SD: DF R ALC SNAG TOTA	FIDENCI 68.1 % 1.0 DER L 68.1 %	E LIMITS OF COE	OF THE SAMPI T OF 100 THE FF .% S.E.% 3 10.8 4 48.2 6 11.5	LE VOLUME \ LO I,	WILL BE SAMPLI W 508 57 397 TREES/	WITHIN E TREES AVG 1,691 110 1,578 ACRE	THE SAMPI 5 - BF HIGH 1,873 163 1,759	E ERROR # (OF TREES 5 227 OF PLOTS	REQ. 10 57 REQ.	INF. POP.
CL: SD: DF R ALD SNAG TOTA CL: SD:	68.1 % 1.0 DER	E LIMITS OF COE VAR 68.3 51.4 COE VAR	DF THE SAMPI T OF 100 THE FF .% S.E.% 3 10.8 4 48.2 6 11.5 FF .% S.E.%	LE VOLUME V LO I,	WILL BE SAMPL W 508 57 397 TREES/A	WITHIN E TREES AVG 1,691 110 1,578 ACRE AVG	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH	E ERROR # (OF TREES 5	REQ. 10	INF. POP.
CL: SD: DF R ALD SNAG TOTA CL: SD:	FIDENCI 68.1 % 1.0 DER L 68.1 % 1.0	E LIMITS OF COE. VAR. 68.3 51.4 COE. VAR. 65.2	DF THE SAMPI TT OF 100 THE S.E.% S.E.% 4 48.2 4 11.5 FF S.E.% 2 16.8	LE VOLUME \ LO I,	WILL BE SAMPLI W 508 57 397 TREES/A W 35	WITHIN E TREES AVG 1,691 110 1,578 ACRE AVG 42	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH 49	E ERROR # (OF TREES 5 227 OF PLOTS	REQ. 10 57 REQ.	INF. POP.
CL: SD: DF R ALD SNAG TOTA CL: SD: DF R ALD	FIDENCI 68.1 % 1.0 DER L 68.1 % 1.0	E LIMITS OF TIMES OF COE VAR 68.3 51.4 COE VAR 65.2 278.8	DF THE SAMPI TT OF 100 THE FF .% S.E.% 3 10.8 4 48.2 6 11.5 FF .% S.E.% 2 16.8 3 71.9	LE VOLUME \ LO I,	WILL BE SAMPL W 508 57 397 TREES/A	WITHIN E TREES AVG 1,691 110 1,578 ACRE AVG	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH	E ERROR # (OF TREES 5 227 OF PLOTS	REQ. 10 57 REQ.	INF. POP.
CL: SD: DF R ALD SNAG TOTA CL: SD:	FIDENCI 68.1 % 1.0 DER L 68.1 % 1.0	E LIMITS OF COE. VAR. 68.3 51.4 COE. VAR. 65.2	DF THE SAMPI TOF 100 THE S.E.% S.E.% 10.8 4 48.2 6 11.5 FF -% S.E.% 2 16.8 3 71.9 0 103.2	LE VOLUME \ LO I,	WILL BE SAMPLI W 508 57 397 TREES/A W 35	WITHIN E TREES AVG 1,691 110 1,578 ACRE AVG 42 3	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH 49 5	E ERROR # (OF TREES 5 227 OF PLOTS	REQ. 10 57 REQ.	INF. POP. 2 INF. POP. 1
CCL: SD: DF R ALE: SNAG TOTA CL: SD: DF R ALD: SNAG TOTA	FIDENCI 68.1 % 1.0 DER L 68.1 % 1.0	COE VAR 68.3 51.4 COE VAR 65.2 278.8 400.0	DF THE SAMPI TT OF 100 THE FF .% S.E.% 3 10.8 4 48.2 6 11.5 FF .% S.E.% 2 16.8 3 71.9 0 103.2 13.5	LE VOLUME V LO I,	WILL BE SAMPL W 508 57 397 TREES/ W 35 1	WITHIN E TREES AVG 1,691 110 1,578 ACRE AVG 42 3 0	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH 49 5 1 51	E ERROR # (OF TREES 5 227 OF PLOTS 5	REQ. 10 57 REQ. 10	INF. POP. 2 INF. POP. 1
CL: SD: DF R ALE SNAG TOTA CL: SD: DF R ALE SNAG TOTA	FIDENCI 68.1 % 1.0 DER L 68.1 % 1.0 DER	COE VAR 68.3 51.4 COE VAR 65.2 278.8 400.0 52.2	DF THE SAMPI TT OF 100 THE FF .% S.E.% 3 10.8 4 48.2 6 11.5 FF .% S.E.% 2 16.8 3 71.9 1 103.2 1 13.5	LE VOLUME V LO I,	SAMPLI W 508 57 397 TREES/A W 35 1 39 BASAL	WITHIN E TREES AVG 1,691 110 1,578 ACRE AVG 42 3 0 45	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH 49 5 1 51	E ERROR # (OF TREES 5 227 OF PLOTS 5	REQ. 10 57 REQ. 10	INF. POP. 2 INF. POP. 1 INF. POP.
CL: SD: DF R ALD SNAG TOTA CL: SD: DF R ALD SNAG TOTA	FIDENCI 68.1 % 1.0 DER L 68.1 % 1.0 DER L	COE VAR 68.3 51.4 COE VAR 65.2 278.8 400.6 52.2 COE	DF THE SAMPI TT OF 100 THE FF .% S.E.% 1 10.8 4 48.2 7 11.5 FF .% S.E.% 2 16.8 3 71.9 1 103.2 7 13.5 FF .% S.E.%	LE VOLUME V LO I, LO	SAMPLI W 508 57 397 TREES/A W 35 1 39 BASAL	WITHIN E TREES AVG 1,691 110 1,578 ACRE AVG 42 3 0 45 AREA/AG	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH 49 5 1 51	E ERROR # (OF TREES 5 227 OF PLOTS 5 116 OF PLOTS	REQ. 10 57 REQ. 10	INF. POP. 2 INF. POP. 1 INF. POP.
CL: SD: DF R ALD SNAG TOTA CL: SD: DF R ALD SNAG TOTA CL: SD: DF R ALD SD: DF R ALD	FIDENCI 68.1 % 1.0 DER L 68.1 % 1.0 DER L 68.1 % 1.0	E LIMITS OF TIMES OF TIMES OF TIMES OF TIMES OF The State of Times	DF THE SAMPI TT OF 100 THE FF .% S.E.% 3 10.8 4 48.2 6 11.5 FF .% S.E.% 2 16.8 3 71.9 0 103.2 7 13.5 FF .% S.E.% 4 9.6 6 70.5	LE VOLUME V LO I, LO	SAMPLI W 508 57 397 TREES/A W 35 1 39 BASAL A	WITHIN E TREES AVG 1,691 110 1,578 ACRE AVG 42 3 0 45 AREA/AG	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH 49 5 1 51 CRE HIGH	E ERROR # (OF TREES 5 227 OF PLOTS 5 116 OF PLOTS	REQ. 10 57 REQ. 10	INF. POP. 2 INF. POP. 1 INF. POP.
CL: SD: DF R ALD SNAG TOTA CL: SD: DF R ALD SNAG TOTA CL: SD: DF R ALD SNAG SD: DF R ALD	FIDENCI 68.1 % 1.0 DER L 68.1 % 1.0 DER L 68.1 % 1.0	E LIMITS OF TIMES OF COE. VAR. 68.3 51.4 COE. VAR. 65.2 278.8 400.0 VAR. 37.4 273.3 400.0	DF THE SAMPI TT OF 100 THE FF .% S.E.% 3 10.8 4 48.2 6 11.5 FF .% S.E.% 2 16.8 3 71.9 0 103.2 7 13.5 FF .% S.E.% 4 9.6 6 70.5 0 103.2	LE VOLUME V LO I, LO	WILL BE SAMPL W 508 57 397 TREES/AW 35 1 39 BASAL AW 162 2	WITHIN E TREES AVG 1,691 110 1,578 ACRE AVG 42 3 0 45 AREA/AG AVG 179 7 3	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH 49 5 1 51 CRE HIGH 196 11 5	E ERROR # (OF TREES 5 227 OF PLOTS 5 116 OF PLOTS 5	FEQ. 10 57 REQ. 10 REQ. 10	INF. POP. 2 INF. POP. 1 INF. POP. 1
CL: SD: DF R ALD SNAG TOTA CL: SD: DF R ALD SNAG TOTA CL: SD: DF R ALD SD: DF R ALD	FIDENCI 68.1 % 1.0 DER L 68.1 % 1.0 DER L 68.1 % 1.0	E LIMITS OF TIMES OF TIMES OF TIMES OF TIMES OF The State of Times	DF THE SAMPI TT OF 100 THE FF .% S.E.% 3 10.8 4 48.2 6 11.5 FF .% S.E.% 2 16.8 3 71.9 103.2 6 13.5 FF .% S.E.% 4 9.6 6 70.5 103.2	LE VOLUME V LO I, LO	WILL BE SAMPL) W 508 57 397 TREES/A W 35 1 39 BASAL A W 162	WITHIN E TREES AVG 1,691 110 1,578 ACRE AVG 42 3 0 45 AREA/AG AVG 179 7	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH 49 5 1 51 CRE HIGH 196 11	E ERROR # (OF TREES 5 227 OF PLOTS 5 116 OF PLOTS	REQ. 10 57 REQ. 10	INF. POP. 2 INF. POP. 1 INF. POP. 1
CL: SD: DF R ALD: SNAG TOTA CL: SD: DF R ALD: SD: DF R ALD: SD: TOTA	FIDENCI 68.1 % 1.0 DER L 68.1 % 1.0 DER L 68.1 % 1.0	E LIMITS OF TIMES OF COE. VAR. 68.3 51.4 COE. VAR. 65.2 278.8 400.0 VAR. 37.4 273.3 400.0	DF THE SAMPI TOF 100 THE FF .% S.E.% 3 10.8 4 48.2 6 11.5 FF .% S.E.% 2 16.8 3 71.9 1 103.2 1 13.5 FF .% S.E.% 9.6 1 70.5 1 03.2 6.5	LE VOLUME V LO I, LO	WILL BE SAMPL W 508 57 397 TREES/AW 35 1 39 BASAL AW 162 2	WITHIN E TREES AVG 1,691 110 1,578 ACRE AVG 42 3 0 45 AREA/AC AVG 179 7 3 188	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH 49 5 1 51 CRE HIGH 196 11 5	E ERROR # (OF TREES 5 227 OF PLOTS 5 116 OF PLOTS 5	REQ. 10 57 REQ. 10 29 REQ. 10	INF. POP. 2 INF. POP. 1 INF. POP. 1
CL: SD: DF R ALD SNAG TOTA CL: SD: DF R ALD SNAG TOTA CL: SD: DF R ALD SNAG TOTA CL: SD: SNAG TOTA	FIDENCI 68.1 68.1 % 1.0 DER L 68.1 % 1.0 DER L 68.1 % 1.0	COE VAR 68.3 51.4 COE VAR 65.2 278.8 400.6 52.2 COE VAR 37.4 273.3 400.6 25.1 COE VAR	DF THE SAMPI TOF 100 THE FF .% S.E.% 10.8 4 48.2 6 11.5 FF .% S.E.% 2 16.8 3 71.9 103.2 6 13.5 FF .% S.E.% 103.2 6 70.5 103.2 6.5 FF % S.E.%	LO LO LO	WILL BE SAMPLE W 508 57 397 TREES/AW 35 1 39 BASAL AW 162 2 176 NET BF/W	WITHIN E TREES AVG 1,691 110 I,578 ACRE AVG 42 3 0 45 AREA/AC AVG 179 7 3 188 ACRE AVG	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH 49 5 1 51 CRE HIGH 196 11 5 200 HIGH	E ERROR # (OF TREES 5 227 OF PLOTS 5 116 OF PLOTS 5	REQ. 10 57 REQ. 10 29 REQ. 10	INF. POP. 1 INF. POP. 1 INF. POP.
CL: SD: DF R ALD SNAG TOTA	FIDENCI 68.1 % 1.0 DER L 68.1 % 1.0 DER L 68.1 % 1.0 DER L	E LIMITS OF TIMES OF COE. VAR. 68.3 65.2 278.8 400.0 52.2 COE. VAR. 37.4 273.3 400.0 25.1 COE. VAR. 37.1 COE. VAR. 37.1 COE. VAR. 37.1	DF THE SAMPI TOF 100 THE FF .% S.E.% 3 10.8 4 48.2 6 11.5 FF .% S.E.% 2 16.8 3 71.9 0 103.2 6 13.5 FF .% S.E.% 4 9.6 6 70.5 0 103.2 6.5 FF .% S.E.% 9.6 9.6	LO LO LO	WILL BE SAMPL) W 508 57 397 TREES/A W 35 1 39 BASAL A W 162 2 176 NET BE/W 075 4	WITHIN E TREES AVG 1,691 110 1,578 ACRE AVG 42 3 0 45 AREA/AG AVG 179 7 3 188 ACRE AVG 5,422	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH 49 5 1 51 CRE HIGH 196 11 5 200 HIGH 49,768	E ERROR # (OF TREES 5 227 OF PLOTS 5 116 OF PLOTS 5 27 OF PLOTS	REQ. 10 57 REQ. 10 29 REQ. 10 7 REQ.	INF. POP. 1 INF. POP. 1 INF. POP.
CL: SD: DF R ALD SNAG TOTA	FIDENCI 68.1 % 1.0 DER L 68.1 % 1.0 DER L 68.1 % 1.0 DER L	COE VAR 68.3 51.4 COE VAR 65.2 278.8 400.6 52.2 COE VAR 37.4 273.3 400.6 25.1 COE VAR	DF THE SAMPI TOF 100 THE FF .% S.E.% 3 10.8 4 48.2 6 11.5 FF .% S.E.% 2 16.8 3 71.9 0 103.2 6 13.5 FF .% S.E.% 4 9.6 6 70.5 0 103.2 6.5 FF .% S.E.% 9.6 9.6	LO LO LO	WILL BE SAMPLE W 508 57 397 TREES/AW 35 1 39 BASAL AW 162 2 176 NET BF/W	WITHIN E TREES AVG 1,691 110 I,578 ACRE AVG 42 3 0 45 AREA/AC AVG 179 7 3 188 ACRE AVG	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH 49 5 1 51 CRE HIGH 196 11 5 200 HIGH	E ERROR # (OF TREES 5 227 OF PLOTS 5 116 OF PLOTS 5 27 OF PLOTS	REQ. 10 57 REQ. 10 29 REQ. 10 7 REQ.	9,444 INF. POP. 1 INF. POP. 1 INF. POP. 1
CL: SD: DF R ALD SNAG TOTA	FIDENCI 68.1 % 1.0 DER L 68.1 % 1.0 DER L 68.1 % 1.0 DER L	E LIMITS OF TIMES OF COE. VAR. 68.3 65.2 278.8 400.0 52.2 COE. VAR. 37.4 273.3 400.0 25.1 COE. VAR. 37.1 COE. VAR. 37.1 COE. VAR. 37.1	DF THE SAMPIT OF 100 THE FF .% S.E.% 3 10.8 4 48.2 6 11.5 FF .% S.E.% 2 16.8 3 71.9 103.2 6 13.5 FF .% S.E.% 4 9.6 6 70.5 103.2 6.5 FF .% S.E.% 9.6 71.9	LO LO LO LO 41,	WILL BE SAMPLI W 508 57 397 TREES/A W 35 1 39 BASAL A W 162 2 176 NET BF/W 075 4 81	WITHIN E TREES AVG 1,691 110 1,578 ACRE AVG 42 3 0 45 AREA/AG 179 7 3 188 ACRE AVG 179 2 289	THE SAMPI 5 - BF HIGH 1,873 163 1,759 HIGH 49 5 1 51 CRE HIGH 196 11 5 200 HIGH 49,768	E ERROR # (OF TREES 5 227 OF PLOTS 5 116 OF PLOTS 5 27 OF PLOTS	REQ. 10 57 REQ. 10 29 REQ. 10 7 REQ.	INF. POP. 1 INF. POP. 1 INF. POP.

Legend

Boundaries

• • • • • Timber Sale Boundary

State Forest Property Boundary

= : = Right of Way (Posted)

Roads

Paved

Surfaced Road

= = = Unsurfaced Road

— New Construction

Streams

· — · Type F Stream

Type N Stream

-- Posted Stream Buffer

Reforestation Area

Stream Buffer

— Cable Corridors

Land Survey MonumentGates

Green Tree Retention Area

LOGGING PLAN

OF TIMBER SALE CONTRACT NO. 341-18-034 EASTER GONNER PORTIONS OF SECTION 24, T10S, R7W, W.M., BENTON COUNTY, OREGON

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

Scale 1:12,000 1,000 0 1,000 2,000

	NET ACRES TRACTOR	NET ACRES CABLE
1 (MC) 2 (MC)	7 22	9 43
TOTAL	29	52

Created By: Blake McKinley blake.mckinley@oregon.gov Date: 06/07/2017

Feet