

Timber Sale Appraisal Boxcar Willie Sale FG-341-2018-28-

District: Forest Grove Date: July 11, 2017

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$1,654,942.01	\$50,453.52	\$1,705,395.53
		Project Work:	(\$241,830.00)
		Advertised Value:	\$1,463,565.53

Timber Sale Appraisal Boxcar Willie

Sale FG-341-2018-28-

District: Forest Grove Date: July 11, 2017

Timber Description

Location: Portions of Sections 9 and 16, T1S, R6W, W.M., Washington County, Oregon, and portions of Section 27, T1N, R6W, W.M., Tillamook County, Oregon.

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	18	0	98
Western Hemlock / Fir	13	0	98
Alder (Red)	11	0	95

Volume by Grade	2\$	3S	4 S	Camprun	Total
Douglas - Fir	2,187	87 1,394 173 0		0	3,754
Western Hemlock / Fir	108	408	37	0	553
Alder (Red)	0	0	0	157	157
Total	2,295	1,802	210	157	4,464

Comments: Pond Values Used: Local Pond Values, May 2017.

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost:

1,160.96/MBF = 1,434.78/MBF - 273.82/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

BRANDING AND PAINTING COST ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$3.00/MBF

HAULING COST ALLOWANCE

Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added):

None.

Other Costs (No Profit & Risk added):

Mechanical Site-Prep: 25 acres @ \$150/acre = \$3,750

Block/Waterbar Roads/Skid Trails: 15 hrs x \$150/hour = \$2,250

Pile Landing Slash: 20 hrs @ \$150/hour = \$3,000 Equipment Cleaning: 3 pieces @ \$1,000/piece = \$3,000

Weyerhaeuser Road Use Fee: \$47,752.23

TOTAL Other Costs (No Profit & Risk added) = \$59,752.23

Road Maintenance Move in: \$2,000

Road Maintenance: 8.9 miles @ \$1,200/mile = \$10,680 TOTAL Road Maintenance: \$12,680/4,464 MBF = \$2.84/MBF

7/11/17

3

Timber Sale Appraisal Boxcar Willie

Sale FG-341-2018-28-

District: Forest Grove Date: July 11, 2017

Logging Conditions

Combination#: 1 Douglas - Fir 56.86%

Western Hemlock / Fir 56.95% Alder (Red) 56.89%

yarding distance: Long (1,500 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 6 bd. ft / load: 4600

cost / mbf: \$217.39

machines: Log Loader (A)

Stroke Delimber (A) Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 43.14% Western Hemlock / Fir 43.05%

Alder (Red) 43.11%

Logging System: Shovel Process: Stroke Delimber

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 10 bd. ft / load: 4600

cost / mbf: \$68.96

machines: Stroke Delimber (B)

Timber Sale Appraisal Boxcar Willie

Sale FG-341-2018-28-

District: Forest Grove Date: July 11, 2017

Logging Costs

Operating Seasons: 1.00

Profit Risk: 15%

Project Costs: \$241,830.00

Other Costs (P/R): \$0.00

Slash Disposal: \$0.00

Other Costs: \$59,752.23

Miles of Road

Road Maintenance:

\$2.84

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	4.2
Western Hemlock / Fir	\$0.00	2.0	3.7
Alder (Red)	\$0.00	2.0	3.7

Timber Sale Appraisal Boxcar Willie Sale FG-341-2018-28-

District: Forest Grove Date: July 11, 2017

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling / Brand & Paint	Other	Total
Douglas - Fir									
\$153.35	\$2.90	\$0.98	\$63.14	\$0.00	\$33.06	\$0.00	\$7.00	\$13.39	\$273.82
Western H	emlock	/ Fir		_	_				
\$153.49	\$2.90	\$0.98	\$107.52	\$0.00	\$39.73	\$0.00	\$7.00	\$13.39	\$325.01
Alder (Red)									
\$153.40	\$2.98	\$0.98	\$110.68	\$0.00	\$40.21	\$0.00	\$7.00	\$13.39	\$328.64

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$679.25	\$405.43	\$0.00
Western Hemlock / Fir	\$0.00	\$565.44	\$240.43	\$0.00
Alder (Red)	\$0.00	\$650.00	\$321.36	\$0.00

Timber Sale Appraisal Boxcar Willie

Sale FG-341-2018-28-

District: Forest Grove Date: July 11, 2017

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total	
Douglas - Fir	3,754	\$405.43	\$1,521,984.22	
Western Hemlock / Fir	553	\$240.43	\$132,957.79	
Alder (Red)	157	\$321.36	\$50,453.52	

Gross Timber Sale Value

Recovery: \$1,705,395.53

Prepared By: Mark Savage Phone: 503-503-2191

TIMBER SALE SUMMARY Boxcar Willie Contract No. 341-18-28

- **1.** <u>Location</u>: Portions of Sections 9 and 16, T1S, R6W, W.M., Washington County, Oregon & portions of Section 27, T1N, R6W, W.M., Tillamook County, Oregon.
- 2. <u>Type of Sale</u>: This timber sale is 114 net acres of Modified Clearcut, 2 acres of Right-of-Way, and 1 acre of tree removal associated with a stockpile site. The timber will be sold on a recovery basis at a sealed bid auction.
- **3.** Revenue Distribution: 100% BOF; 99.8% Washington County, 0.2 % Tillamook County.
- **4.** <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS software.
- **5.** <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in May of 2017. For more information see Cruise Report.
- **6.** <u>Timber Description</u>: The Timber Sale Area consists of an well-stocked 60 year old Douglas-fir stand with minor amounts of western hemlock, western redcedar, and hardwoods. The stand has an average of 236 ft² of basal area (all species), an average Douglas-fir DBH of 18 inches, and an estimated average net Douglas-fir volume of approximately 32.9 MBF per acre.
- 7. <u>Topography and Logging Method</u>: Slopes within the sale areas range from 10% to 80%, and western in aspect. The timber sale is 58% cable yarding and 42% ground-based yarding. The average cable corridor length is 700 feet and the maximum is 1,700 feet. The average horizontal skid trail length is approximately 200 feet and the maximum is approximately 500 feet.
- 8. Access: From Forest Grove, proceed south on Highway 47 for 15 miles. Turn right onto Pike Road and continue for 4.5 miles. Pike Road then becomes Turner Cr. Road. Continue down Turner Cr. Road for 4 miles and there is a Weyerhaeuser gate that requires a key. Continue through this gate on Turner Cr. Road for 4.5 miles. Turn right onto North Fork Trask River Road and continue for 1.5 miles and there is a Weyerhaeuser gate that requires a key. Continue through this gate on North Fork Trask River Road for 4.5 miles. Turn right onto Williams Road and continue for 2 miles and there is a Stimson gate that requires a combination. Continue through this gate on

Williams Road for 2.1 miles to the timber sale area. **Keys and lock combination are available at the district office in Forest Grove.**

9. Projects:

Project No. 1: Road Construction and Improvement Project No. 2: Road Surfacing Project No. 3: Grass Seed, Fertilize, and Mulch Project No. 4: Expand Stockpile Site and Crush a 2,500 cy Stockpile	\$56,036.58 \$134,098.15 \$1,140.69 \$44,634.84
Move in and equipment cleaning:	\$5,919.74

Total Credit for all Projects (rounded)

\$241,830.00

PROJECT COST SUMMARY SHEET

·	Timber Sale:	Box	car Willie	
	Sale Number:	34	1-18-28	
PROJECT NO. 1: ROAD CO	NSTRUCTION A	ND IMPROVE	MENT	
CONSTRUCTION			a ;	
	Road Segment		Cost	
	C to D	7+55	\$2,843.90	
	E to F	18+25	\$6,757.60	
			tations niles	
				¢0 c04 50
		SUBTOTAL	CONSTRUCTION =	\$9,601.50
<u>IMPROVEMENTS</u>	D 1 0	[04	
	Road Segment		Cost	
	A to B	85+90	\$45,923.96 \$511.12	
	G to H	3+00 88+90 s	tations	
			ialions illes	
				\$46,435.08
			MPROVEMENTS =	-
	,	TOTAL PROJE	CT NO. 1 COST =	\$56,036.58
PROJECT NO. 2: SURFACIN	IG			
Road Segment	Rock Amount	Rock Type	Cost	
A to B	72	1½" - 0	1223.28	
Alob	5234 cy	3" - 0	\$92,694.14	
	108 cy	36" - 24"	\$288.36	
C to D	24 cy	1½" - 0	\$426.96	
	793 cy	3" - 0	\$14,107.47	
E to F	75 cy	11/2" - 0	\$1,248.00	
	1312 cy	3" - 0	\$22,776.32	
G to H	93 cy	1½" - 0	\$1,333.62	
Tota		1½" - 0		
	7339 cy	3" - 0		
	108 cy	36" - 24"		
		TOTAL PROJE	CT NO. 2 COST =	\$134,098.15
PROJECT NO. 3 GRASS SEE	D, FERTILIZE, 8	R MULCH		
			ECT NO. 3 COST =	\$1,140.69
		701/1211100-		* 1,111111
PROJECT NO. 4 EXPAND ST	OCKPILE SITE	AND CRUSH A	A 2,500cy STOCKPI	LE
		TOTAL PROJE	ECT NO. 4 COST =	\$44,634.84
MOVE-IN, EQUIPMENT CLEA	ANING, & WITHI	N AREA MOVE	Ē	
Grader		(within area		\$818.29
Roller (smooth/grid	l) & Compactor	(within area	move)	\$496.67
Excavator - Equipr		(within area	move)	\$1,841.97
Dozer - Equipment	Cleaning	(within area	move)	\$1,886.70
Dump Trucks				\$730.36
Water Truck			•	\$145.75
<u> тот</u>	AL MOVE-IN & F	QUIPMENT C	LEANING COST =	\$5,919.74

TOTAL CREDITS \$241,830.00

	Timber Sale		Boxcar Will		RUCTION C		2/4	_18_28	
r	ninber Sale Soad Segment		A to B	IC .	-	ale Number		-18-28	
r	oau segment	-	AIUB		. Ir	nprovement	1,63	_stations miles	
					.		1.00	_ mies	
PROJECT NO. 1									
EXCAVATION		_						1 - 1 - 1 - 1 - 1 - 1	
Clearing & grubbing (so	atter)		1.98	ac @		per acre =		\$2,134.44	
Road widening (drift)			42,95	sta @	\$110.00	•		\$4,724.50	
Clean/Construct ditch 8	scatter waste)	85.90	sta @	\$60.00	per sta =		\$5,154.00	
Approach to landing			1.00	sta @	\$110.00	per sta ≕		\$110.00	
Landing			2	ea @	\$314.00	per ea =		\$628.00	
Fill Excavation									
Excavate existing	puncheons		1,852	cy @	\$1.64	per cy =		\$3,037.04	
End-haul unsuitab	le fill material		1,806	cy @	\$1.31	per cy =		\$2,365.29	
Excavate fill mater	ial		1,806	cy @	\$1.64	per cy =		\$2,961.12	
Place Fill			2,407	cy @	\$2.40	per cy =		\$5,777.79	
Compact fill			2,407	cy @	\$0.50	per cy =		\$1,203.71	
Pump culvert insta	llation		3	day @	\$150.00	per day =		\$450.00	
Compact waste ar			1,806	cy @	\$0.30	per cy =		\$541.67	
Balanced road construc			1.40	-	•			-	
	HOH		1.40	sta @	\$110.00	per sta =		\$154.00	
(84+30 to 85+90)					4-1				
Grade, ditch, & roll			86.90	sta @	\$36.00	per sta ≕		\$3,128.40	
						TOTAL	EXCAVATION	<u>ON COSTS =</u>	\$32,369.96
CULVERTS - MATERIA	ALS & INSTAL	LATION							
	Cuiverts	1							
	400	LF of 18"	\$8,000.00						
	50	LF of 24"	\$1,450.00		Bands	,			
	100	LF of 30"	\$3,900.00		1	ea of 30"	\$44.00)	
Cı	lvert Markers	;					,		
		markers	\$160.00						
			4.00.00			TO	TAL CHIVE	RT COSTS =	\$13,554.00
						10	IAL OOLVE	100010-	Ψ10 ₁ 004.00
						PROJEC	T NO. 1 TO	TAL COST =	\$45,923.96
PROJECT NO. 2:									
SURFACING		10	" deep =	53 cy/sta					
A to B				3" - 0		64774		#00 000 00	
		4,553	cy of		@	\$17.71	per cy =	\$80,633.63	
Turnouts		264	cy of	3" - 0	@	\$17.71	per cy =	\$4,675.44	
Turnaround		16	cy of	3" - 0	@	\$17.71	per cy =	\$283.36	
Junctions		48	cy of	3" - 0	@	\$17.71	per cy =	\$850.08	
Landings		300	cy of	3" - 0	@	\$17.71	per cy =	\$5,313.00	
Culvert bedding		72	cy of	1½" - 0	@	\$16.99	per cy =	\$1,223.28	
Approach to landings		53	cy of	3" - 0	@	\$17.71	per cy =	\$938.63	
Energy Dissipator		108	cy of	36" - 24"	@	\$2.67	per cy =	\$288.36	
0, ,	Rock Total =		. ,		•	,	1	,	
	THOUSE FORM	72	cy of	1½" - 0					
		5,234	-	3" - 0					
			cy of						
		108	cy of	36" - 24"					
						PROJEC	T NO. 2 TO	TAL COST =	\$94,205.78
PROJECT NO. 3:							1 10	_	_ _
Grass seed & fertilizer			0.00	DOTOG		\$42E 00	nor coro =	¢440.05	
			0.99		@	\$425.00	per acre =		
Mulch			10	bales	@	\$8.00	per bale =	\$80.00	
						PROJEC	T NO. 3 TO	TAL COST =	\$499.05
								-	
							<u>TO</u>	TAL COST =	\$140,628.79

Timber Sale: _		Boxcar Will	ie	Sal	e Number:	341-1	8-28	
Road Segment:		C to D		Co	nstruction:	7+55	_stations	
				•		0.14	_miles	
PROJECT NO. 1								
EXCAVATION								
Clearing & grubbing (scatter)	0.70	ac @	\$1,078.00	per acre =		\$754.60		
Balanced road construction	5.55	sta @	\$110.00	per sta ≃		\$610.50		
Drift	2.00	sta @	\$180.00	per sta =		\$360.00		
Approach to landing	1.50	sta @	\$110.00	per sta =		\$165.00		
Landing	2	ea @	\$314.00	per ea =		\$628.00		
Grade, ditch, & roll	9.05	sta @	\$36.00	per sta =		\$325.80		
					PROJEC	T NO. 1 TOT	AL COST =	\$2,843.90
PROJECT NO. 2:								
SURFACING	1	10 " deep =	53 cy/sta	_				
C to D	401	cy of	3" - 0	@	\$17.79	per cy =	\$7,133.79	
Junction	12	cy of	3" - 0	@	\$17.79	per cy ≃	\$213.48	
Landing	300	cy of	3" - 0	@	\$17.79	per cy =	\$5,337.00	
Approach to landing	80	cy of	3" - 0	@	\$17.79	per cy =	\$1,423.20	
Traction rock	24	cy of	1½" - 0	@	\$17.79	per cy =	\$426.96	
Rock Total =	817			-				
	24	cy of	1½" - 0					
	793	cy of	3" - 0					
		•			PROJEC	T NO. 2 TOT	AL COST =	\$14,534.43
PROJECT NO. 3:								
Grass seed & fertilizer		0.35	acres	@	\$425.00	per acre =	\$148.75	
					PROJEC	T NO. 3 TOT	AL COST =	\$148.75
			4.99	····		ТОТ	AL COST =	\$17.527.08

- 1				OCTION CC				
Timber Sal		Boxcar Wil	lie	_	le Number:		-18-28	
Road Segmen	ıt:	E to F		_ C	onstruction:	PATE AND ADDRESS OF THE PATE A	_ stations	
- WARRANGE AND A STATE OF THE S		***************************************				0.35	_ miles	
PROJECT NO. 1								
EXCAVATION				***			V1F10-V111-1-1-1	
Clearing & grubbing (scatter)	2.10	ac @	\$1,078.00	per acre =		\$2,263.80		
Balanced road construction	12.00	sta @	\$110.00	per sta =		\$1,320.00		
Drift	6.25	sta @	\$180.00	per sta =		\$1,125.00		
"Y" Junction	1	sta @	\$110.00	per sta =		\$110.00		
Turnouts	2	ea @	\$66.00	per ea =		\$132.00		
Approach to landing	1.30	sta @	\$110.00	per sta =		\$143.00		
Landing	1	ea @	\$314.00			\$314.00		
Grade, ditch, & roll	20.55	sta @	\$36.00	per sta =		\$739.80		
		_		•	TOTAL	EXCAVATI	ON COSTS =	\$6,147.60
CULVERTS - MATERIALS & INSTALL	ATION					2 2,10,11,111		Ψο, τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ
Culvert	ts			· · · · · · · · · · · · · · · · · · ·				
3	0 LF of 18"	\$600.00						
Culvert Marker	's							
	1 markers	\$10,00						
					TC	TAL CULVE	RT COSTS =	\$610.00
					<u></u>	00212		
					<u>PROJE</u>	CT NO. 1 TO	TAL COST =	\$6,757.60
PROJECT NO. 2:								
SURFACING		" deep =	53 cy/sta					
E to F	968	cy of	3" - 0	@	\$17.36	per cy =	\$16,804.48	
Turnouts	48	cy of	3" - 0	@	\$17.36	per cy =	\$833.28	
Junction	24	cy of	3" - 0	@	\$17.36	per cy =	\$416.64	
Y Junction	53	cy of	3" - 0	@	\$17.36	per cy =	\$920.08	
Landing	150	cy of	3" - 0	@	\$17.36	per cy =	\$2,604.00	
Approach to landing	69	cy of	3" - 0	@	\$17.36	per cy ≔	\$1,197.84	
Traction rock	75	cy of	1½" - 0	_ @	\$16.64	per cy =	\$1,248.00	
Rock Total								
	75	cy of	1½" - 0					
	1,312	cy of	3" - 0					
					DDO IE	CT NO 0 TO	TAL COST -	#04.004.00
					PROJE	C1 NO. 2 10	TAL COST =	\$24,024.32
PROJECT NO. 3:								
Grass seed & fertilizer	•	1.05	acres	@	\$425.00	per acre =	\$446.25	MW4.1
Mulch		4		@	\$8.00	per bale =	\$32.00	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7	Daios .	<u>w</u>	ψ0.00	por bare -	Ψ02.00	
					PROJE	CT NO. 3 TO	TAL COST =	\$478.25
							-	
						TO	TAL COST =	\$31.260.1

<u>TOTAL COST = \$31,260.17</u>

	Timber Sale:		Boxcar Wil	lie	S	ale Number:	341	-18-28	
	Road Segment:		G to H		Ir	nprovement:	3+00	stations	
	_				•		0.06	miles	
PROJECT NO. 1									
EXCAVATION									
Clearing & grubbing (s	scatter)		0.04	ac @	\$1,078.00	per acre =		\$43.12	
Clean/Construct ditch	both sides		3.00	sta @	\$120.00	per sta =		\$360.00	
Grade, ditch, & roll			3.00	sta @	\$36.00	per sta =		\$108.00	
						PROJEC	T NO. 1 TO	TAL COST =	\$511.12
PROJECT NO. 2:						•			
SURFACING			6 " deep =	31 cy/sta	_				
G to H		93	cy of	1½" - 0	. @	\$14.34	per cy =	\$1,333.62	
	Rock Total =	93		•					
		93	cy of	11/2" - 0					
						PROJEC	T NO. 2 TO	TAL COST =	\$1,333.62
PROJECT NO. 3:									
Grass seed & fertilizer	-		0.03	3 acres	@	\$425.00	per acre =	\$14.64	
						PROJEC	T NO. 3 TO	TAL COST =	\$14.64
			-m-10				<u>TO</u>	TAL COST =	\$1,859.38

	Timber Sale:	Во	xcar V	/illie	-	Sale	e Number:	341-18-28
PROJECT NO. 4	1 1 497001							
Clearing & grubbing (scatter)	0	.16		acres	@	\$1,078.00	per ac =	\$172.48
Expand and construct site	10	00.0		hr	@	\$160.00	per hr =	\$1,600.00
Grade, shape and roll site	C	0.6		acres	@	\$435.60	per ac =	\$261,36
Crush 2,500cy (Stockpile Measu	rement) 2,5	900	cy of	1½"-0	@	\$13.59	per cy =	\$39,411.00
Build & shape stockpile	2,9	900	cy of	1½"-0	@	\$1.10	per cy =	\$3,190.00

<u>PROJECT NO. 4 TOTAL COST = \$44,634.84</u>

ROCK PIT DEVELOPMENT & CRUSHING COST SUMMARY

RUCI	Timber Sale:		oxcar Willie	MAKI
			341-18-28	_
	Sale Number:			
	Pit Name:	Seve	en Cedars Pit	_
	1ሌ'	' - 0: 264 cy	(truck measur	۵)
		' - 0: 7,339 c	`	•
	Stock		y (stockpile mea	•
	Total truck yard	• -		asui <i>e)</i>
	Total in place yard			
	rotar in place yaru	age: <u>8,079 c</u>	<u>y</u>	
	S	well: <u>130%</u>		
	Shrink	age: <u>116%</u>		
	Screening L	oss: 15%		
Pit development, including		of waste area	, place	
overburden in waste area,	•			\$1,577.33
Drill & shoot	\$2.80 / cy	x <u>9,505</u>	cy =	\$26,613.94
Load crusher	\$0.80 / cy	x <u>12,356</u>	cy =	\$9,885.18
Screen rock	\$2.90 / cy	x <u>12,356</u>	cy =	\$35,833.76
Waste reject	\$0.80 / cy	x <u>1,853</u>	cy =	\$1,482.78
Crush (1 ½"- 0)	\$3.30 / cy	x 264	cy =	\$871.20
Crush (3" - 0)	\$3.30 / cy:	x 7,339	cy =	\$24,218.70
Crush (1½"-0 Stockpile)	\$3.30 / cy	x 2,900	cy =	\$9,570.00
Load dump truck	\$0.80 / cy	x 10,503	cy =	\$8,402.40
·			Subtotal	\$118,455.29
			•	
Move in & setup drill				\$674.81
Equipment cleaning & mo	ve in excavator			\$2,096.20
Move in & setup screening				\$1,843.00
Move in loader	•			\$957.49
Move in crusher				\$3,286.00
Setup crusher				\$3,327.00
Gradation tests	\$275.00 /2,000c	y x 6	tests	\$1,650.00
Change gradation				\$71.50
Clean up pit				\$500.00
			Subtotal	\$14,406.00
	-	LUZAI BBUL	UCTION COST =	: \$132 861 20
	•	O IAL FILOD	-	Ψ102,001.23
	R	OCK DEVELO	PMENT COST =	\$12.65/cy

CRUISE REPORT Boxcar Willie 341-18-28

1. LOCATION: Portions of Sections 9 & 16, T1S, R6W, Washington County, Oregon. Portions of Section 27, T1N, R6W, W.M., Tillamook County, Oregon.

2. CRUISE DESIGN:

Pre-cruise evaluation indicated that the stand's average DBH is approximately 18 inches and its Coefficient of Variation is about 50%. For sales of this size and approximate value, ODF cruise standards require a Sampling Error of 9% at a 68% confidence level, and a minimum sample size of 100 graded trees. The cruise design chosen for this sale is a variable radius sample plot using a 40 BAF prism.

3. SAMPLING METHOD:

The Timber Sale Area was cruised in 05/2017. The Timber Sale Area was sampled with 26 variable radius grade plots using a 40 BAF prism, as well as 6 variable radius grade plots using a 54.45 BAF prism. Originally this cruise was designed to use a 40 BAF prism, but due to encountering high tree densities areas a 54.45 BAF prism was used to maximize efficiency in the field. Plots were laid out on a 5 chain x 5 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

4. CRUISE RESULTS

180 trees were measured and graded producing a cumulative Sampling Error of 9.3% on the Basal Area and 9.8% on the Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following Columbia River Log Scale grade rules and favored 40 foot segments.

- a) Height Standards:
 - Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors were measured for each grade tree using a form point of 16 feet.

5. DATA PROCESSING

- Volumes and Statistics, Cruise estimates and sampling statistics, were derived from Super Ace 2008 cruise software
- b) **Deductions:** Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.
- 6. Cruisers: The sale was cruised by ODF cruisers Mark Savage and Kenton Burns.

Prepared by:		
CONTROL CONTRO	Mark Savage	Date
Reviewed by:	Ein Marin	6-30-17
	Erik Marcy	Date

STAND STA	TC PSTATS				OJECT ROJECT		ISTICS XCARA			PAGE DATE	1 6/12/201
PRINCES PRI	WP RGE	SC TRACT	,	TYPE		A	CRES	PLOTS	TREES	CuFt	BdFt
PIOTS	05N 03	09 00A1		00MC			114.00	32	180	S	W
TOTAL					TREES						
CRUINS STATE ST	4	PLOTS	TREES		PER PLO	т	TREES		TREES		
DBH COUNT REFOREST COUNT BLANKS INSTALL SAMPLE TREES AVG DBH DEN ARBA BASAL GROSS NET GROSS NET	TOTAL	32	180		5,6						
Note	CRUISE DBH COUNT REFOREST COUNT BLANKS	32	180		5.6		18,156		1.0		
TREES				STA	AND SUM	IMARY				<u>.</u>	
Note		SAMPLE	TREES	AVG	BOLE	REL	BASAL.	GROSS	NFT	GROSS	NET
Note											CF/AC
WHEMLOCK 21 29.2 13.3 10.8 7.7 28.1 4.880 4.855 1.097 10 11.0 87 3.4 11.3 1.448 1.419 300 70 70 70 70 70 70 7	DOUG FIR										
R ALDER 9								-	•	-	
CONFIDENCE LIMITS OF THE SAMPLE	R ALDER	9	17.0	11.0	87	3.4	11.3			· ·	·=
CL 68.1 COEFF SAMPLE TREES - BF # OF TREES REQ. INF. SD. I,0 VAR.% S.E.% LOW AVG HIGH 5 10	TOTAL	180	159.3	16.5	105	58. 1	235,8	39,74 ₁	39,219	9,245	9,245
SD: 1,0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 68.0 5.5 449 475 501 Fraction of the control of the	68.	.1 TIMES OU								DEO.	D.D. D.C.
DOUG FIR 68.0 5.5 449 475 501 WHEMLOCK 92.9 20.8 197 249 301 R AUDER 50.3 17.7 78 94 111 TOTAL 75.1 5.6 406 430 454 225 56			O T A/	,				i			INF. POP.
WHEMLOCK R ALDER 92.9 50.3 20.8 17.7 197 78 249 94 301 111 RALDER 50.3 56 17.7 78 94 111 111 111 225 56 CL 68.1 COEFF SAMPLE TREES - CF # OF TREES REO. INF. DOUG FIR 63.8 5.2 106 112 118 WHEMLOCK 92.0 20.6 45 57 68 RALDER 51.2 18.1 16 20 24 20 20.4 51 10 106 204 51 50 10 106 204 51 50 10 106 204 51 50 10 106 204 51 50 10 106 204 51 50 10 106 204 51 50 10 106 204 51 50 10 106 204 51 50 10 11 106 204 51 10 10 10 60 204 51				L					5	10	1
R ALDER TOTAL 75.1 5.6 406 430 430 454 225 56 CL 68.1 COEFF SAMPLE TREES - CF SAMPLE TREES - CF SD: 1,0 VAR.% S.E.% LOW AVG HIGH S TOTAL 71.6 5.3 96 101 106 204 51 CL 68.1 COEFF TREES/ACRE HOF PLOTS REO. INF. SD: 1,0 VAR.% S.E.% LOW AVG HIGH S TOTAL 71.6 5.3 96 101 106 204 51 CL 68.1 COEFF BASAL AREA/ACRE HOF PLOTS REO. INF. SD: 1,0 VAR.% S.E.% LOW AVG HIGH S TOTAL 95.6 16.9 132 159 186 365 91 CL 68.1 COEFF BASAL AREA/ACRE HOF PLOTS REO. INF. SD: 1,0 VAR.% S.E.% LOW AVG HIGH S TOTAL 95.6 16.9 132 159 186 365 91 CL 68.1 COEFF BASAL AREA/ACRE HOF PLOTS REO. INF. SD: 1,0 VAR.% S.E.% LOW AVG HIGH S TOTAL 95.6 16.9 132 159 186 365 91 CL 68.1 COEFF BASAL AREA/ACRE HOF PLOTS REO. INF. SD: 1,0 VAR.% S.E.% LOW AVG HIGH S TOTAL 95.6 16.9 178 178 197 215 WHEMLOCK 297.4 52.5 13 28 43 R ALDER 75.5 10.2 212 2236 260 132 33 CL 68.1 COEFF NET BF/A CRE HOF PLOTS REO. INF. SD: 1,0 VAR.% S.E.% LOW AVG HIGH S TOTAL 95.6 10 10 11 21 2											
TOTAL 75.1 5.6 406 430 454 225 56 CL 68.1 COEFF SAMPLE TREES - CF # OF TREES REO. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 63.8 5.2 106 112 118 HIGH 5 10 WHEMLOCK 92.0 20.6 45 5.7 68 R R AVG HIGH 5 20 10 40 204 51 51 10 5 30 96 101 106 204 51 51 10 10 204 51 51 10 10 40 5 10 10 10 204 51 50 10 10 204 51 50 10 10 10 204 51 50 10 11 10 10 10 20 20 10 10											
SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 63.8 5.2 106 112 118 HEMBLOCK 92.0 20.6 45 57 68 RALDER 51.2 18.1 16 20 24 24 24 71.6 5.3 96 101 106 204 51 52 10 52 10 51 51 51 52 10 52 10 51 51 51 51 52 10 52 10 52 10 52 10 52 10 52 10 52 10 52 10 52 10 52 10 52 10 52 10 52									225	56	2
SD: 1,0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 63.8 5.2 106 112 118 HEMBLOCK 92.0 20.6 45 57 68 RALDER 51.2 18.1 16 20 24 24 24 24 24 24 204 51 25 206 45 57 68 8 8 4 20 24 24 24 24 24 24 24 24 26 26 48 26 204 51 26 48 52 10 204 51 24 51 24 51 24 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 91 24 36 365 91 36 365 91 36 365 91 36 365 91 <	CI 69.1	CORRE			CAMD	I F TDFF	S CF		4 OF TREEPS	DEO	INF. POP.
DOUG FIR 63.8 5.2 106 112 118			S E %	ī				1			INF. POP.
WHEMLOCK 92.0 20.6 45 57 68 R ALDER 51.2 18.1 16 20 24 TOTAL 71.6 5.3 96 101 106 204 51 CL 68.1 COEFF TREES/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 82.8 14.6 97 113 130 130 130 130 14 1	1.40								J	10	<u></u>
R ALDER 51.2 18.1 16 20 24 TOTAL 71.6 5.3 96 101 106 204 51 CL 68.1 COEFF TREES/ACRE # OF PLOTS REO. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 82.8 14.6 97 113 130 <											
TOTAL 71.6 5.3 96 101 106 204 51 CL 68.1 COEFF SD: 1.0 VAR.% S.E.% LOW AVG HIGH S S 10 INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH S S 10 INF. DOUG FIR WHEMLOCK SIDE STATE STAT											
SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 82.8 14.6 97 113 130 WHEMLOCK 305.5 54.0 13 29 45 RALDER 478.0 84.4 3 17 31 TOTAL 95.6 16.9 132 159 186 365 91 CL 68.1 COEFF BASAL AREA/ACRE # OF PLOTS REO. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 52.9 9.3 178 197 215 10 10 VAR.% 52.5 13 28 43 43 43 43 43 43 44 <					96	101	106		204	51	2
SD: 1,0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 82.8 14.6 97 113 130	CL 68.1	COEFF			TREES	S/ACRE			F PLOTS	REO	INF. POP.
DOUG FIR 82.8 14.6 97 113 130 WHEMLOCK 305.5 54.0 13 29 45 R ALDER 478.0 84.4 3 17 31 TOTAL 95.6 16.9 132 159 186 365 91 CL 68.1 COEFF BASAL AREA/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 52.9 9.3 178 197 215 19 19 11 21 19 10 10 10 10 10 10 10 10 10 10 10 10 11 11 21 11 21 10 10 10 10 132 33 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10			S.E.%	L			HIGH	•			1
WHEMLOCK 305.5 54.0 13 29 45 R ALDER 478.0 84.4 3 17 31 TOTAL 95.6 16.9 132 159 186 365 91 CL 68.1 COEFF BASAL AREA/ACRE # OF PLOTS REQ. INF. SD: 1,0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 52.9 9.3 178 197 215 WHEMLOCK 297.4 52.5 13 28 43 43 R ALDER 504.7 89.1 1 11 21 21 21 33 TOTAL 57.5 10.2 2/2 2/36 260 132 33 CL 68.1 COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 55.8 9.8 29,699 32,944 36,189 36 1,419 2,753 <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td></t<>				_							•
TOTAL 95.6 16.9 132 159 186 365 91 CL 68.1 COEFF BASAL AREA/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 52.9 9.3 178 197 215 9 19 215 10 10 11 215 11 21 215 12 28 43 43 43 43 43 43 43 44	WHEMLOCK	305.5	54.0		13	29	45				
CL 68.1 COEFF BASAL AREA/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 52.9 9.3 178 197 215 19 215 10 11 21 11 22 22 22						17	31				
SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 52.9 9.3 178 197 215 WHEMLOCK 297.4 52.5 13 28 43 R ALDER 504.7 89.1 1 11 21 TOTAL 57.5 10.2 212 236 260 132 33 CL 68.1 COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 55.8 9.8 29,699 32,944 36,189 94 36,189 94 94,855 7,425 94 7,425 94 146 37 146 37 TOTAL 60.5 10.7 35,026 39,219 43,412 146 37 CL 68.1 COEFF NET CUFT FT/ACRE # OF PLOTS REQ. INF. SD:	TOTAL	95.6	16.9		132	159	186		365	91	4
SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 52.9 9.3 178 197 215 WHEMLOCK 297.4 52.5 13 28 43 R ALDER 504.7 89.1 1 11 21 TOTAL 57.5 10.2 212 236 260 132 33 CL 68.1 COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 55.8 9.8 29,699 32,944 36,189 94 34,818 94	CL 68.1	COEFF			BASAI	AREA/A	ACRE		OF PLOTS	REQ.	INF, POP.
WHEMLOCK 297.4 52.5 13 28 43 R ALDER 504.7 89.1 1 11 21 TOTAL 57.5 10.2 212 236 260 132 33 CL 68.1 COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 55.8 9.8 29,699 32,944 36,189 36,189 36 1,419 2,753 7,425<	SD: 1.0	VAR.%		L		AVG	HIGH		5	10	1
R ALDER 504.7 89.1 1 11 21 TOTAL 57.5 10.2 212 236 260 132 33 CL 68.1 COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 55.8 9.8 29,699 32,944 36,189 94 36,189 94 43,415 42,58 4,855 7,425 7,									· · · · · · · · · · · · · · · · · · ·		
TOTAL 57.5 10.2 212 236 260 132 33 CL 68.1 COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 55.8 9.8 29,699 32,944 36,189 WHEMLOCK 299.6 52.9 2,286 4,855 7,425 R ALDER 531.8 93.9 86 1,419 2,753 TOTAL 60.5 10.7 35,026 39,219 43,412 146 37 CL 68.1 COEFF NET CUFT FT/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10											
CL 68.1 COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 55.8 9.8 29,699 32,944 36,189 WHEMLOCK 299.6 52.9 2,286 4,855 7,425 R ALDER 531.8 93.9 86 1,419 2,753 TOTAL 60.5 10.7 35,026 39,219 43,412 146 37 CL 68.1 COEFF NET CUFT FT/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10									122	2.2	
SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10 DOUG FIR 55.8 9.8 29,699 32,944 36,189 WHEMLOCK 299.6 52.9 2,286 4,855 7,425 R ALDER 531.8 93.9 86 1,419 2,753 TOTAL 60.5 10.7 35,026 39,219 43,412 146 37 CL 68.1 COEFF NET CUFT FT/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10	TUTAL	37.5	10.2		212	236	260		132	33	1.
DOUG FIR 55.8 9.8 29,699 32,944 36,189 WHEMLOCK 299.6 52.9 2,286 4,855 7,425 R ALDER 531.8 93.9 86 1,419 2,753 TOTAL 60.5 10.7 35,026 39,219 43,412 146 37 CL 68.1 COEFF NET CUFT FT/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10	CL 68.1	COEFF			NET B	F/ACRE		#	OF PLOTS	REQ.	INF. POP.
WHEMLOCK 299.6 52.9 2,286 4,855 7,425 R ALDER 531.8 93.9 86 1,419 2,753 TOTAL 60.5 10.7 35,026 39,219 43,412 146 37 CL 68.1 COEFF NET CUFT FT/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10	1.0								5	10	1
R ALDER 531.8 93.9 86 1,419 2,753 TOTAL 60.5 10.7 35,026 39,219 43,412 146 37 CL 68.1 COEFF NET CUFT FT/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10					•	-	-				
TOTAL 60.5 10.7 35,026 39,219 43,412 146 37 CL 68.1 COEFF NET CUFT FT/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10											
CL 68.1 COEFF NET CUFT FT/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10				9.					1.46	27	1
SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 10			10.7								10
								#			INF. POP.
DOUG FIR 54.0 9.5 7.099 7.848 8.597									5	10	1;
WHEMLOCK 299.4 52.9 517 1,097 1,678							•				

TC PS	TATS			P	ROJECT PROJECT		ISTICS XCARA			PAGE DATE	2 6/12/2017
TWP	RGE	SC	TRACT	TYPE		A	CRES	PLOTS	TREES	CuFt	BdFt
05N	03	09	00A1	00MC			114.00	32	180	S	W
CL	68.1		COEFF	·	NET (CUFT FT/	ACRE		# OF PLOT	S REQ.	INF. POP
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
R AL	DER		529.6	93.5	19	300	580				
TOT	AL		<i>57.2</i>	10.1	8,311	9,245	10,179		131	33	15

TC	PSPCSTGR		$\mathbf{S}_{ extsf{J}}$	pecies,	Sort G	rade - Boar	d Foot \	/olum	es (P	roject	:)							
T05	5N R03W S09	9 Ty00N	MC I	14.00		Project: Acres	BOXO		W						Page Date Time	6/	1 12/20 1:12:3	17 80AM
		%					Percent	of Net E	oard F	oot Volu	me				Avera	ige Lo	g	Logs
	S So Gr	Net	Bd. F	t. per Acre	;	Total	Log S	cale Di	ì.		Log L	ength		Las	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF		12-10		12-20	21-30		36-99	Ft	In	Ft	Lf	/Acre
DF DF DF DF	CU 2M 3M 4M	58 37 5	1.9 .7 .4	19,575 12,320 1,518	19,201 12,232 1,512	2,189 1,394 172	9: 10		36 3	1 35	1 1 65	0 4	98 95	10 39 39 21	11 15 8 6	336 102 25	0.00 1.93 0.66 0.33	7.5 57.2 119.5 61.0
DF	Totals	84	1.4	33,413	32,944	3,756	3:	39	22	2	4	2	93	34	9	134	0.95	246.
RA RA	CU CR	100	2.0	1,448	1,419	162	9:			21	24	19	37	5 28	10 8	57	0.00	5 25
RA	Totals	4	2.0	1,448	1,419	162	9:	3 7	_	21	24	19	37	24	8	47	0.42	30.
WH WH WH WH	CU 2M 3M 4M	19 74 7	.7	943 3,609 327	943 3,585 327	108 409 37	100 100		38	32	68	3	100 97	8 40 39 21	20 14 8 6	324 89 25	0.00 1.78 0.51 0.28	2.9 40.4 13.2
WH	Totals	12	.5	4,880	4,855	554	8	1 12	7	2	5	2	91	35	8	85	0.55	56.
Total	s		1.3	39,741	39,219	4,471	46	34	19	3	5	2	90	33	9	118	0.84	333

<u> </u>	_																······································	
	s	So Gr			Def	Net	%	ļ		1	_	1	_	<u>ieter in l</u>				
Spp	Т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
DF		2M	16	9	22.2	7	.2								7			
DF		2М	18	10		10	.3								10			
DF		2M	23	7	9.1	6	.2						6					
DF		2M	27	7	6.2	6	.2						6					
DF		2М	34	10		10	.3						10					
DF		2M	36	18	9.5	16	.4								16			
DF	ĺ	2M	40	2,171	1.8	2,133	56.8						470	566	911	169	17	
DF		3M	22	8	8.0	7	.2								7			
DF		3M	28	3		3	.1			3								
DF		3М	30	5		5	.1			5								
DF		3M	32	20		20	.5			18	2							
DF		3M	34	32		32	.8			32								
DF		3M	36	40		40	1.1			40								
DF		3M	38	6		6	.2			6								
DF		3М	40	1,291		1,282	34.1			302	371	518	56		14	22		
DF		4M	12	13		13	.3			13								
DF		4M	14	10		10	.3			10								
DF		4M	16	10		10	.3			10								
DF		4M	18	16		16	.4			13	3							
DF		4M	20	12		12	.3			12								
DF		4M	22	10		10	.3			10						1		
DF		4M	24	22		22	.6			20	1							
DF		4M	26	10		10	.3			10								
DF		4M	28	29		29	.8			29								
DF		4M	30	42	1.7	41	1.1			41								
DF		Totals		3,809	1.4	3,756			_	574	376	518	548	566	966	191	17	
RA		CR		6		6	4.0				6							
RA		CR		19		19					9		11					
RA		CR	1			9					9							
RA		CR	1	13	25.0	10				10								
RA		CR		9		9			:	9								
RA		CR		13		13	8.1			13								
RA		CR	30	7		7	4.1			7								
RA		CR	34	30		30	18.7			13		17						
RA		CR	38	15		15	9.3			15								
RA		CR	40	44		44	27.2		,	28	16							

TC P	LO	GSTVB					Log	Stock	Table	- MB	F								
T05N	l R	03W S09	Ty00N	MC 114	.00	***************************************	Proj Acre		ВО	XCAR 114		Alle				Page Date Time	6/1	2 2/2017 :12:30	
	s	So Gr	Log	Gross	Def	Net	%]	Net Vol	ume by	Scalin	g Dian	eter in I	nches	.			
Spp	T	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
RA		Total	s	165	2.0	162	3.6			94	40	17	11						
WH		2M	1 40	108		108	19.4		•				49	18	19	22			
WH	Ī	3M	1 32	12		12	2.2			12									
WH		3M	38	48		48	8.6			48									
WH		3M	40	352		349	63.0			70	212	66						:	
WH		4M	12	4		4	.7			4									
WH		4M	18	3		3	.5			3									
WH		4M	20	6		6:	1.0			6									
WH		4M	1 22	6		6	1.2			6									
WH		4M	1 26	5		5	1.0			5									
WH		4M	I 30	13		13	2.4			13									
WH		Total:	s	556		554	12.4			167	212	66	49	18	19	22			
Total		All Speci	es	4,530	1.3	4,471	100.0			835	629	601	607	584	985	213	17		

TC	PSTNDSUM	Stand Ta	ble Summary	Page	1
				Date:	6/12/2017
T0:	5N R03W S09 Ty00MC 114.0	Project	BOXCARAW	Time:	11:12:29AM
		Acres	114.00	Grown Year:	

ļ															
S Spc T		Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Averag Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft, Acre	Tons	Totals Cunits	MBF
DF	9	4	89	75	12.340	5.45	12.34	9.2	48.5	3.23	113	599	369	129	68
DF	10	2	88	79	4.584	2.50	4.58	11.8	55.0	1.54	54	252	176	62	29
DF	11	4	87	90	8.261	5.45	12.05	11.9	49.0	4.08	143	590	465	163	67
DF	12	4	87	87	7.516	5.90	12.87	11.5	45.8	4.21	148	590	480	168	67
DF	13	7	88	96	9.983	9.20	19.97	14.7	59.0	8.36	293	1,178	954	335	134
DF	14	4	87	94	5.100	5.45	10.20	16.9	69.5	4.92	173	709	561	197	81
DF	15	5	87	100	5.093	6.25	10.19	20.6	84.0	5.98	210	856	681	239	98
DF	16	7	86	114	6.590	9.20	13.18	26.4	111.1	9.92	348	1,464	1,131	397	167
DF	17	5	86	106	4.538	7.15	9.08	28.1	110.7	7.28	255	1,005	830	291	115
DF	18	9	87	119	6.877	12.15	15.88	30.9	124.4	13.96	490	1,975	1,591	558	225
DF	19	7	86	112	4,444	8.75	10.79	30.7	120.0	9.43	331	1,295	1,075	377	148
DF	20	9	86	122	5.571	12.15	14.01	36.2	143.9	14.47	508	2,015	1,650	579	230
DF	21	11	86	127	5.904	14.20	15.97	38.6	159.1	17.55	616	2,540	2,001	702	290
DF	22	5	87	130	2.539	6.70	7.14	42.6	189.6	8.68	305	1,355	990	347	154
DF	23	13	85	125	5.945	17.15	16.54	41.9	175.8	19.76	693	2,906	2,253	791	331
DF	24	12	85	130	4,918	15.45	14.76	46.7	193.9	19.62	688	2,861	2,237	785	326
DF	25	7	85	130	2.567	8.75	7.70	51.4	219.0	11.29	396	1,687	1,287	452	192
DF	26	8	84	137	2.957	10.90	8.87	57.6	250.7	14.56	511	2,224	1,660	582	254
DF	27	6	83	136	1.886	7.50	5.66	61.1	258.9	9.86	346	1,465	1,124	394	167
DF	28	6	87	138	1.754	7.50	4.97	71.8	331.8	10.17	357	1,649	1,159	407	188
DF	29	8	82	138	2.180	10.00	6.81	66.9	276.8	12.98	455	1,886	1,480	519	215
DF	30	2	83	143	.509	2.50	1.53	78.9	361.7	3.44	121	553	392	137	63
DF	31	1	80	135	.238	1,25	.72	79.7	333.3	1.62	57	238	185	65	27
DF	32	1	84	130	.224	1.25	.67	82.1	363.3	1.57	55	244	179	63	28
DF	34	1	79	150	.198	1.25	.59	97.5	436.7	1.65	58	260	188	66	30
DF	35	1	79	153	.187	1.25	.56	109,6	473.3	1.75	61	266	200	70	30
DF	39	1	80	160	.151	1.25	.45	137.1	630.0	1.77	62	285	201	71	32
DF	Totals	150	87	107	113.054	196,53	238.06	33.0	138.4	223,67	7,848	32,944	25,498	8,947	3,756
WH	9	1	92	86	2.829	1.25	2.83	10.9	60.0	.99	31	170	113	35	19
WH	10	1	92	90	2.292	1.25	2.29	14.2	70.0	1.04	33	160	119	37	18
WH	11	2	90	96	3.788	2.50	7.58	11.3	50.0	2.74	86	379	312	98	43
WH	12	4	88	108	6.941	5.45	13.88	14.8	62.0	6.57	205	860	749	234	98
WH	13	3	87	118	4.558	4.20	9.12	19.4	87.0	5.66	177	793	646	202	90
WH	14	4		113	5.100	5.45	10.20	21.4	96.9	6.99	218	988	797	249	113
WH	15	1	91		1.019	1.25	3.06		86.7		57	265	208	65	30
WH	17	1		131	.793	1.25	2.38	24.9	103.3	1.90	59	246	216	68	28
WH	19	1		131	.864	1.70	2.59	30.5	123.3	2.53	79 42	320	288	90	36
WH	23	1		116	.433	1.25	.87	49.9	225.0	1.38	43	195	158	49	22
WH	27	1		110	.314	1.25	.94	55.2	230.0	1.67	52	217	190	59	25
WH	30	1	87	118	.255	1.25	.76	74.5	343.3	1.82	57	262	208	65	30
WH	Totals	21	89	108	29,186	28,06	56,50	19.4	85.9	35.12	1,097	4,855	4,003	1,251	554
RA	9	1	89	64	2.829	1.25	2.83	6.8	30.0	.53	19	85	60	22	10
RA	10	2	92	89	4.584	2.50	4.58	12,1	60.0	1,52	55	275	173	63	31
RA	11	3	92	95	5.682	3.75	11.36	9.6	46.7	3.01	109	530	343	125	60
RA	12	1	91	79	1.592	1.25	1.59	20.2	90.0	.88.	32	143	101	37	16
RA	14	2	93	96	2.339	2.50	4.68	18.0	82.5	2.31	84	386	263	96	44
RA	Totals	9	92	87	17.025	11.25	25.05	12.0	56.7	8.25	300	1,419	940	342	162
Totals		180	88	105	159.266	235.84	319.60	28.9	122.7	267.03	9,245	39,219	30,442	10,540	4,471

VOLUME SUMMARY

(Shown in MBF) Boxcar Willie 341-18-28 June, 2017

AREA 1: MC (114 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	Camp Run	TOTAL
	Cruise Volume	2,189	1,394	172		3,755
Douglas-fir	Hidden D&B (2%)	(44)	(28)	(3)		(75)
Douglas-III	NET TOTAL	2,145	1,366	169		3,680
	% of Total	58	37	5		
	Cruise Volume	108	409	37		554
Western Hemlock	Hidden D&B (2%)	(2)	(8)	(1)		(11)
Western Herniock	NET TOTAL	106	401	36		543
	% of Total	20	74	7		
	Cruise Volume				162	162
Red Alder	Hidden D&B (5%)				(8)	(8)
Red Aldel	NET TOTAL				154	154
	% of Total	_			100	

AREA 2: R/W (2 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	Camp Run	TOTAL
	Cruise Volume	38	25	3		66
Douglas fir	Hidden D&B (2%)	(1)	(1)	()		(2)
Douglas-fir	NET TOTAL	37	24	3		64
	% of Total	58	38	5		
	Cruise Volume	2	7	1		10
Western Hemlock	Hidden D&B (2%)	()	()	()		()
Western Herniock	NET TOTAL	2	7	1		10
	% of Total	20	70	10		
	Cruise Volume				3	3
Red Alder	Hidden D&B (5%)				()	()
Neu Aluei	NET TOTAL				3	3
	% of Total				100	

AREA 3: MC (1 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	Camp Run	TOTAL
	Cruise Volume	5	4	1		10
Douglas fir	Hidden D&B (2%)	()	()	()		()
Douglas-fir	NET TOTAL	5	4	1		10
	% of Total	50	40	10		

SALE TOTAL

SPECIES	2 SAW	3 SAW	4 SAW	Camp Run	TOTAL
Douglas-fir	2,187	1,394	173		3,754
Western hemlock	108	408	37		553
Red Alder				157	157
Total	2,295	1,802	210	157	4,464

Enter Sale name/number, date, harvest type, acres and cruise volume

Print Page 1 only

LEGEND

- • Timber Sale Boundary
- Surfaced Road
- = = = Unsurfaced Road
- - New Road Construction
- **=**∶ Right-of-Way Boundary
- Type F Stream
- Type N Stream
- Stream Buffer Boundary
- Stream Buffer
- /// Reforestation Area
- O Cable Landing
- ☐ Tractor Landing
- Cable Yarding Area
- ::::: Tractor Yarding Area
- ---- 200 Foot Contour Band
- 40 Foot Contour Band
- ** Road Blockage
- CODF Ownership Boundary
- Sections

LOGGING PLAN

FOR TIMBER SALE CONTRACT # 341-18-28
BOXCAR WILLIE
PORTIONS OF SECTIONS 9 &16, T1S, R6W, W.M.,
WASHINGTON COUNTY, OREGON
AND PORTIONS OF SECTION 27, T1N, R6W, W.M.,
TILLAMOOK COUNTY, OREGON.

Forest Grove District GIS June, 2017

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

APPROXIMA	ATE NET	ACRES
TR	ACTOR	CABLE

AREA 1	48	66
AREA 2	2	0
AREA 3	1	0
TOTAL	51	66