

District: Forest Grove Date: March 22, 2018

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$2,255,733.96	\$2,032.60	\$2,257,766.56
		Project Work:	(\$33,540.00)
		Advertised Value:	\$2,224,226.56

4/24/18

District: Forest Grove Date: March 22, 2018

Timber Description

Location: Portions of Section 30, T2N, R5W, W.M. and Section 25, T2N, R6W, W.M., Washington County, Oregon.

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	20	0	98
Maple	23	0	95

Volume by Grade	28	3S & 4S 6"- 11"	Camprun	Total
Douglas - Fir	2,386	1,418	0	3,804
Maple	0	0	10	10
Total	2,386	1,418	10	3,814

Comments: Pond Values Used: Local Pond Values, January 2018.

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost:

\$1,181/MBF = \$1,430/MBF - \$249/MBF

Western hemlock and Other Conifer Stumpage Price = Pond Value minus Logging Cost:

\$475/MBF = \$724/MBF - \$249/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

BRANDING AND PAINTING COST ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE

Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added): Intermediate Supports: 10 @ \$200 ea. = \$2,000

Other Costs (No Profit & Risk added):

Machine Time to Block/Waterbar Roads, and Skid Trails:

20 hours x \$150/hour = \$3,000

Machine Time to Pile Landing Slash and Sort Firewood:

20 hours x \$150/hour = \$3,000

Recreation Trail Cleaning and Repair: 6750' @ \$1.00/foot = \$6,750

Equipment Cleaning: 3 pieces x \$1,000/Piece = \$3,000

Slash Treatment: 30 acres x \$200/acre = \$6,000

Temporary Gate: \$1,000

TOTAL Other Costs (No Profit & Risk added) = \$22,750

ROAD MAINTENANCE

Move-in: \$4,000

General Road Maintenance: 4.94 miles x \$1,200/mile = \$12,480 TOTAL Road Maintenance: \$16,480/3,814 MBF = \$4.32/MBF

Timber Sale Appraisal Minus Phellinus

Sale FG-341-2018-129-

District: Forest Grove Date: March 22, 2018

Logging Conditions

Combination#: 1 Douglas - Fir 31.62%

Maple 34.00%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 7 bd. ft / load: 4200

cost / mbf: \$204.08

machines: Log Loader (A)

Stroke Delimber (A) Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 68.38%

Maple 66.00%

Logging System: Shovel Process: Stroke Delimber

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 9 bd. ft / load: 4200

cost / mbf: \$83.91

machines: Stroke Delimber (B)

District: Forest Grove Date: March 22, 2018

Logging Costs

Operating Seasons: 1.00

Profit Risk: 10%

Project Costs: \$33,540.00

Other Costs (P/R): \$2,000.00

Slash Disposal: \$0.00 Other Costs: \$22,750.00

Miles of Road

Road Maintenance:

\$4.32

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	2.0	4.5
Maple	\$0.00	2.0	3.5

Timber Sale Appraisal Minus Phellinus

Sale FG-341-2018-129-

District: Forest Grove Date: March 22, 2018

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling / Brand & Paint	Other	Total
Douglas -	Fir								
\$121.91	\$4.41	\$1.15	\$88.40	\$0.52	\$21.64	\$0.00	\$7.00	\$5.96	\$250.99
Maple									
\$124.77	\$4.54	\$1.15	\$117.00	\$0.52	\$24.80	\$0.00	\$7.00	\$5.96	\$285.74

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$843.98	\$592.99	\$0.00
Maple	\$0.00	\$489.00	\$203.26	\$0.00

District: Forest Grove Date: March 22, 2018

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Maple	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	3,804	\$592.99	\$2,255,733.96
Maple	10	\$203.26	\$2,032.60

Gross Timber Sale Value

Recovery: \$2,257,766.56

Prepared By: Eric Foucht Phone: 503-359-7473

PROJECT COST SUMMARY SHEET

Work Order Contract: Minus Phellinus

Contract Number: 341-18-129

PROJECT NO. 1	ROAD	CONSTRUCTION	AND	IMPROVEMENT
---------------	------	--------------	-----	-------------

CONSTRUCTION

Road Segment	Length	Cost
H to I	14+85	\$8,609.46
	14+85	stations
	0.28	miles

SUBTOTAL CONSTRUCTION = \$8,609.46

IMPROVEMENTS

Road Segment	Length	Cost
A to B	53+00	\$4,157.66
B to C	13+25	\$1,004.30
D to E	9+95	\$540.20
F to G	3+85	\$295.60
	80+05	stations
	1 52	miles

SUBTOTAL IMPROVEMENTS = \$5,997.76 TOTAL PROJECT NO. 1 COST = \$14,607.22

PROJECT NO. 2: SURFACING

Road Segment	Rock Amount	Rock Type	Cost
A to B	48 cy	1 1/2" - 0	\$192.96
	601 cy	3" - 0	\$2,848.74
B to C	280 cy	3" - 0	\$1,170.40
	40 cy	36" Boulders	\$159.20
D to E	150 cy	3" - 0	\$637.50
F to G	150 cy	3" - 0	\$645.00
H to I	48 cy	1 1/2" - 0	\$211.20
	1207 cy	3" - 0	\$6,179.84
	80 cy	Shot Rock	\$364.80
Tota	al 96 cy	1 1/2" - 0	
	2388 cy	3" - 0	
	80 cy	Shot Rock	
	40 cy	36" Bolders	

TOTAL PROJECT NO. 2 COST = \$12,409.64

PROJECT NO. 3 GRASS SEED, FERTILIZE, & MULCH

TOTAL PROJECT NO. 3 COST = \$375.38

MOVE-IN & EQUIPMENT CLEANING (includes within area move)

Grader	\$741.54
Loader	\$636.53
Roller (smooth/grid) & Compactor	\$481.64
Excavator - Equipment Cleaning	\$1,756.28
Dozer - Equipment Cleaning	\$1,800.86
Dump Trucks	\$586.95
Water Truck	\$143.96

TOTAL MOVE-IN & EQUIPMENT CLEANING COST = \$6,147.76

TOTAL COST \$33,540.00

Work Order Contract:		Minus Phelli	nus	Cont	ract Number	: 341-	18-129	
Road Segment:		A to B		I	mprovement	: 53+00	stations	-
•						1.00	_ _miles	
PROJECT NO. 1								
EXCAVATION								
Clean or construct ditch		7.40	sta @	\$60.00	per sta =		\$444.00	
Haul waste material		53.43	cy @	\$1.43	per cy =	\$76.40		
Shape and compact waste ma	aterial	53.43	cy @	\$0.30	per cy =		\$16.03	
Clean culvert inlet & outlet		8	ea @	\$25.00	per ea =		\$200.00	
Haul waste material		10.40	cy @	\$1.43	per cy =		\$14.87	
Shape and compact waste ma	aterial	10.40	cy @	\$0.30	per cy =		\$3.12	
Construct Settling Ponds		9	ea @	\$25.00	per ea =		\$225.00	
Haul waste material		11.70	cy @	\$1.43	per cy =		\$16.73	
Shape and compact waste ma	aterial	11.70	cy @	\$0.30	per cy =		\$3.51	
Grade, ditch, & roll		53.00	sta @	\$36.00	per sta =		\$1,908.00	
			O	•	•	EXCAVATIO		\$2 907 66
CULVERTS - MATERIALS & INST.	ALL ATIO	NC			TOTALL	27(0)(()(()	11 00010 -	Ψ2,307.00
Culverts								
	LF of 18	" \$1,200.00)					
Culvert Markers		Ψ1,200.00	,					
	markers	\$50.00)					
5 .	markoro	Ψ00.00	,		TOT	AL CHIVED	T COSTS -	¢4 250 00
					101	AL CULVER	1 00515 -	\$1,250.00
					PROJECT	NO. 1 TOT	AL COST =	\$4.157.66
PROJECT NO. 2:								
SURFACING		6 " deep =	31 cy/sta					
Surfacing 0+00 to 15+00	465	cy of	3" - 0	@	\$4.74	per cy =	\$2,204.10	
Spot Rock 15+00 to 53+00	100	cy of	3" - 0	@	\$4.74	per cy =	\$474.00	
Junction	36	cy of	3" - 0	@	\$4.74	per cy =	\$170.64	
Culvert bedding and backfill	48	cy of	1 1/2" - 0	@	\$4.02	per cy =	\$192.96	
Rock Total =	649			Ū	•	, ,		
	48	cy of	1 1/2" - 0		\$4.02	per cy =	\$192.96	
	601	cy of	3" - 0		\$4.74	per cy =	\$2,848.74	
		٠, ٠.			4	po. 0,	Ψ2,010.74	
					PROJECT	NO. 2 TOT	AL COST =	\$3,041.70
PROJECT NO. 3:	<u> </u>							
Grass seed & fertilizer		0.01	acres	@	\$425.00	per acre =	\$4.25	
Mulch		6		@	\$8.00	per bale =	\$48.00	
		O	Daico	w	Ψ5.00	poi baie -	Ψτυ.υυ	
					PROJECT	NO. 3 TOT	AL COST =	\$52.25
					**************************************	TOT	AL COST =	\$7 251 61
						1017	<u> </u>	Ψ1,231.01

Work Order Contract:	N	∕linus Phe	llinus	Cont	ract Number:	341-	18-129	
Road Segment:		B to C		Ir	mprovement:	13+25	stations	-
						0.25	miles	
PROJECT NO. 1								
EXCAVATION								
Improve Landing		1	ea @	\$157.00	per ea =		\$157.00	
Un-Block road and rebuild road prism	(0+00)							
Move and reposition boulders		1	ea @	\$175.00	per ea =		\$175.00	
Place fill		7	cy @	\$2.40	per cy =		\$16.80	
Compact fill		7	cy @	\$0.50	per cy =		\$3.50	
Place Boulders (1+55, 13+25)		1	hr @	\$175.00	per day =		\$175.00	
Grade, ditch, & roll		13.25	sta @	\$36.00	per sta =		\$477.00	
					PROJECT	NO. 1 TOT	TAL COST =	\$1,004.30
PROJECT NO. 2:								
SURFACING	12	" deep						
Spot rock	100	cy of	3" - 0	@	\$4.18	per cy =	\$418.00	
Landing	180	cy of	3" - 0	@	\$4.18	per cy =	\$752.40	
Trail Boulders	40	cy of	36" Boulders	@	\$3.98	per cy =	\$159.20	
Rock Total =	320	-				, ,		•
	280	cy of	3" - 0		\$4.18	per cy =	\$1,170.40	
	40	cy of	36" Boulders		\$3.98	per cy =	\$159.20	
					PROJECT	NO. 2 TOT	AL COST =	\$1,329.60
						TOT	AL COST =	¢2 222 00

TOTAL COST = \$2,333.90

		001	VIIVI) (1 (1 O I	00110111		501			
Work	k Order Contract: _	М	inus Phellir	nus	Contr	ract Number:	341-	18-129	
	Road Segment: _		D to E		_ Ir	mprovement:	9+95	stations	
							0.19	miles	
PROJECT NO. 1									
EXCAVATION									
Clean culvert inlet &	outlet		1	ea @	\$25.00	per ea =		\$25.00	
Improve Landing			1	ea @	\$157.00	per ea =		\$157.00	
Grade, ditch, & roll			9.95	sta @	\$36.00	per sta =		\$358.20	
						PROJECT	NO. 1 TOT	AL COST =	\$540.20
PROJECT NO. 2:									
SURFACING		12	" deep						
Landing		150	cy of	3" - 0	- @	\$4.25	per cy =	\$637.50	
	Rock Total =	150							
		150	cy of	3" - 0		\$4.25	per cy =	\$637.50	
						PROJECT	NO. 2 TOT	AL COST =	\$637.50
									

<u>TOTAL COST = \$1,177.70</u>

,	Work Order Contract: _	Mir	nus Phell	inus	Contr	act Number:	341-1	18-129	
	Road Segment: _		F to G		_ Ir	mprovement:	3+85	stations	
							0.07	miles	
PROJECT NO.	1								
EXCAVATION									
Improve Landing	g		1	ea @	\$157.00	per ea =		\$157.00	
Grade, ditch, & r	roll		3.85	sta @	\$36.00	per sta =		\$138.60	
						PROJECT	NO. 1 TOT	AL COST =	\$295.60
PROJECT NO.	2:								
SURFACING		12 '	' deep						
Landing		150	cy of	3" - 0	<u> </u>	\$4.30	per cy =	\$645.00	
	Rock Total =	150							
		150	cy of	3" - 0		\$4.30	per cy =	\$645.00	
						PROJECT	NO. 2 TOT	AL COST =	\$645.00
							TOT	AL COST =	\$940.60

Work Order Contrac		//inus Phelli	DE CONSTR		act Number:	2/1	18-129	
Road Segmer		H to I	iius	_				
Road Segmen	П.	пют		_	Construction:	14+85 0.28	_stations miles	
PROJECT NO. 1								
EXCAVATION		_	4.000			.		
Clearing & grubbing (scatter)	1.37	ac @		per acre =	=	\$1,476.86		
Balanced road construction Turnouts	14.85	sta @	\$110.00	per sta =		\$1,633.50		
	1	ea @	\$66.00	per ea =		\$66.00		
Turnarounds	1	ea@	\$82.50	per ea =		\$82.50		
Landing	1	ea @	\$314.00	per ea =		\$314.00		
Grade, ditch, & roll	14.85	sta @	\$36.00	per sta =		\$534.60		
CULVERTS - MATERIALS & INS	TALLATION				TOTAL E	EXCAVATIO	N COSTS =	\$4,107.46
Culver							T-P17-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
	20 LF of 18"	\$2,400.00	1	Band	9			
	10 LF of 36"	\$2,000.00			1 ea of 36"	\$52.00	1	
Culvert Marker		Ψ2,000.00			1 64 01 00	Ψ02.00	•	
	5 markers	\$50.00	1					
	o markoro	Ψ00.00			TOTA		T COSTS =	\$4.502.00
					1017	AL OULVEIN	1 00010 =	Ψ4,302.00
					PROJECT	NO. 1 TOT	AL COST =	\$8,609.46
PROJECT NO. 2:								
SURFACING	12	" deep =	65 cy/sta					
H to I	966	cy of	3" - 0	- @	\$5.12	per cy =	\$4,945.92	
Turnout	29	cy of	3" - 0	@	\$5.12	per cy =	\$148.48	
Turnaround	20	cy of	3" - 0	@	\$5.12	per cy =	\$102.40	
Junction	12	cy of	3" - 0	@	\$5.12	per cy =	\$61.44	
Landing	180	cy of	3" - 0	@	\$5.12	per cy =	\$921.60	
Culvert bedding and backfill	48	cy of	1 1/2" - 0	@	\$4.40	per cy =	\$211.20	
Subgrade reinforcement	80	cy of	Jaw-Run	@	\$4.56	per cy =	\$364.80	
Rock Total			ouw rum	w	Ψ4.00	per cy –	Ψ504.00	
, to six i otal	48	cy of	1 1/2" - 0		\$4.40	per cy =	\$211.20	
	1,207	cy of	3" - 0		\$5.12	per cy =	\$6,179.84	
	80	cy of	Jaw-Run		\$4.56	per cy =	\$364.80	
	00	Oy Oi	oaw ran		Ψ4.00	per cy –	ψ304.00	
					PROJECT	NO. 2 TOT	AL COST =	\$6,755.84
PROJECT NO. 3:								
Grass seed & fertilizer		0.69	acres	@	\$425.00	per acre =	\$291.13	
Mulch		4		@	\$8.00	per bale =		
				•	40.00	P 31 D 010	402.00	
					PROJECT	NO. 3 TOT	AL COST =	\$323.13
						TOT	AL COST -	Φ4 <i>E</i> 000 40
						101	AL COST =	\$15,688.4 <u>3</u>

CRUISE REPORT Minus Phellinus 341-18-129

1. LOCATION: Portions of Section 30, T2N, R5W, W.M., and Section 25, T2N, R6W, Washington County, Oregon.

2. CRUISE DESIGN:

Pre-cruise evaluation indicated that the stand's average DBH is approximately 20 inches with a Coefficient of Variation of about 55%. For sales of this size and approximate value, ODF cruise standards require a Sampling Error of 9% at a 68% confidence level, and a minimum sample size of 100 graded trees. Statistical analysis indicated that 37 variable radius plots utilizing a 40 BAF prism would produce an adequate sample size.

3. SAMPLING METHOD:

The Timber Sale Area was sampled in March, 2018 with 39 variable radius grade plots laid out on a 5 chain x 5 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain

4. CRUISE RESULTS

204 trees were measured and graded producing a cumulative Sampling Error of 8% on the Basal Area and 8.2% on the Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following Columbia River Log Scale grade rules and favored 40 foot segments.

- a) Height Standards:
 - Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.
- b) Diameter Standards: Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors were measured for each grade tree using a form point of 16 feet.

5. DATA PROCESSING

- a) Volumes and Statistics, Cruise estimates and sampling statistics, were derived from Super Ace 2008 cruise software
- b) **Deductions:** Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.

6. Cruisers:

The sale was cruised by ODF cruisers Kenton Burns, Mark Savage, and Adrian Torres.

Prepared by:

Reviewed by:

Name Jay/2018

Name Date

Cik Marcy 3/29/18

Name Date

TC PS	TATS					OJECT ROJECT		ISTICS NUSP3			PAGE DATE	1 3/14/2018
TWP	RGE	SC	TRACT		TYPE		A	CRES	PLOTS	TREES	CuFt	BdFt
T2N	R5	30	00MC		00A1			99.00	39	204	S	W
The same security of the same						TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PL	OTS	TREES		PER PLOT	-	TREES		TREES		
TOTA	AL.		39	204		5.2						
	COUNT DREST NT NKS		39	204		5.2		9,513		2.1		
					STA	ND SUM	MARY					
			MPLE EES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOU	G FIR		201	94.9	20.0	125	46.1	206.2	39,597	39,199	9,034	9,034
	FIR-L		2	.9	20.9	123	0.4	2.1	355	355	86	86
	IAPLE		1	.4	23.0	97 125	0.2	1.0	103	103	30	30
TOT	AL		204	96.1	20.0	125	46.8	209.2	40,055	39,658	9,149	9,149
CON	FIDENC 68			THE SAMPI ΓOF 100 T		ME WILL	BE WIT	HIN THE SAN	1PLE ERRO	OR .		
CL	68.1	COEFF				SAMPL	E TREE	S - BF	#	OF TREES	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	15
DOU	G FIR FIR-L		57.0 48.1	4.0 45.1		523 258	545 470	567 682				
	APLE		40.1	43.1		236	470	082				
TOT			57.0	4.0		521	543	564		130	32	14
CL	68.1		COEFF			SAMPL	ETREE	S - CF	#	OF TREES	REO	INF. POP.
SD:	1.0		VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	15
DOU	G FIR		53.1	3.7		120	125	129				
	FIR-L		49.7	46.5		61	114	167				
BL M TOTA	APLE		53.0	3.7		120	124	129		112	28	12
				J./	····			129				
	68.1		COEFF VAR.%	S.E.%	т.	TREES/ OW	ACRE AVG	HIGH	#	OF PLOTS I	REQ. 10	INF. POP.
DOUG	1.0		67.5	10.8	L	85	95	105		5	10	15
NOB			463.3	74.1		0	1	1				
BL M			624.5	99.9		0	0	1				
TOT	A L		67.0	10.7		86	96	106		179	45	20
CL	68.1		COEFF			BASAL	AREA/A	CRE	#	OF PLOTS I	REQ.	INF. POP.
	1.0		VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	15
DOUG			49.9	8.0		190	206	223				
NOB BL M			435.7 624.5	69.7 99.9		1 0	2 1	3 2				
TOTA			48.7	7.8		193	209	226		95	24	11
			COEFF						н	OF PLOTS I		
CL SD:	1.0		VAR.%	S.E.%	T.	NET BF OW	ACRE AVG	HIGH	#	5 5	REQ. 10	INF. POP.
DOUG			51.1	8.2			39,199	42,407		J	10	1.0
NOB :			435.8	69.7	,	108	355	603				
BL M	APLE		624.5	99.9		0	103	206				
TOTA	AL		50.2	8.0	30	5,475 3	9,658	42,840		100	25	11
CL	68.1		COEFF			NET CU	FT FT/A	CRE	#	OF PLOTS I	REQ.	INF. POP.
SD:			VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	15
DOUG		-	50.2	8.0		8,309	9,034	9,759				
NOB 1	FIR-L		435.7	69.7		26	86	145				

TC PS	TATS				PROJECT		ISTICS NUSP3			PAGE DATE	2 3/14/2018
TWP	RGE	SC	TRACT	TY	PE	A	CRES	PLOTS	TREES	CuFt	BdFt
T2N	R5	30	00MC	002	A1		99.00	39	204	S	W
CL	68.1		COEFF		NET	CUFT FT/.	ACRE		# OF PLOT	S REQ.	INF. POP.
SD:	00.1		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
BL M	IAPLE AL		624.5 49.1	99.9 7.9	0 8,431	30 <i>9,149</i>	60 <i>9,868</i>		96	24	11

TC	PSPC	CSTGR		$\mathbf{S}_{]}$	pecies,	Sort G	rade - Boar	d Fo	ot V	olum	es (P	rojec	t)							
TT	'2N R	R5W S3	0 Ty00.	A1	99.00		Project: Acres	M	INUS 99.0								Page Date Time	3/	1 14/20 :58:4	918 9PM
Spp		So Gr rt ad	% Net BdFt	Bd. Fi	t. per Acro	e Net							Log Lo		36-99		Avera Dia In		g CF/ Lf	Logs Per /Acre
DF DF DF DF		CU 2M 3M 4M	62 35 3	1.2 .7 .6	24,887 13,528 1,181	24,586 13,440 1,174	2,434 1,331 116		98 100	66 1	34	1 0 34	0 64	7 3	99 92	15 40 39 21	11 15 8 6	340 108 25	0.00 1.86 0.69 0.35	3.9 72.3 124.4 47.7
DF	Tota	ıls	99	1.0	39,597	39,199	3,881		37	42	22	1	2	3	94	35	10	158	1.03	248.4
BM BM	Tot	CU CR	100		103	103	10		17 17	83			17 17		83	5 35 25			0.00 1.21 1.13	.4 .7
NF NF NF	F L 2M 68 244 244 24 F L 3M 27 94 94 9 F L 4M 5 17 17 2						100 100 31	48	52	100	17		100 100		14 9 6	284 109 20	1.65 0.73 0.31	.9 .9 .9		
Tota			•	1.0	40,055		3,926		37	42	22	1	2	3	94	35		157		252.0

<u></u>																	
S	So Gr	Log	Gross	Def	Net	%							eter in I		1		Г
Spp T	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	l	24-29	30-39 40+
DF	2M	16	5		5	.1									5		
DF	2M	20	8		8	.2										8	
DF	2M	40	2,451	1.2	2,422	62.4						562	744	876	196	44	
DF	3M	18	1		1	.0					1						
DF	3M	20	1		1	.0				1							
DF	3M	26	6	15.7	5	.1				1	4						
DF	3M	28	1		1	.0			1								
DF	3M	32	35		35	.9			35								
DF	3М	34	61		61	1.6			40	20							
DF	3M	36	36		36	.9			32	4							
DF	3M	38	50		50	1.3			44	5							
DF	3M	40	1,149		1,141	29.4			151	224	744	11		11			
DF	4M	12	8		8	.2			8								
DF	4M	14	10		10	.3			9	0							
DF	4M	16	10		10	.3			10								
DF	4M	18	7		7	.2			6	1							
DF	4M	20	5		5	.1			5								
DF	4M	22	15		15	.4			15								
DF	4M	24	7		7	.2			7								
DF	4M	26	11		11	.3			11								
DF	4M	28	21		21	.6			21								
DF	4M	30	19		19	.5			19								
DF	4M	32	4	20.0	3	.1			3								
DF	Totals		3,920	1.0	3,881	98.8			420	256	748	574	744	886	201	52	
BM	CR				2	17.2			2								
BM	CR	40	8		8	82.8						8					
BM	Totals	3	10		10				2			8					
NF L	2M	40	24		24	68.7						11		13			
NF L	3M	40	9		9	26.5				5	4						
NF L	4M	14	1		1	3.3			1								
NF L	4M	16	1		1	1.6			1								
NF	Totals	3	35		35	.9			2	5	4	11		13			
Total	All Specie	es	3,965		3,926	100.0			423	261	753	594	744	899	201	52	

 TC
 PSTNDSUM
 Stand Table Summary
 Page Date:
 1 Date:
 3/14/2018

 TT2N RR5W S30 Ty00A1
 99.00
 Project MINUSP3
 Time:
 3:58:50PM

Acres 99.00 Grown Year:

S				Tot				Averag	, ,		Net	Net		TD 4 1	
Spc T	DBH	Sample Trees	FF 16'	Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF	10	3	85	84	5.641	3.08	7.52	9.3	40.0	1.99	70	301	197	69	30
DF	12	4	84	104	5.224	4.10	9.14	13.3	58.6	3.46	121	535	342	120	53
DF	14	3	88	105	2.878	3.08	5.76	18.0	78.3	2.96	104	451	293	103	45
DF	15	5	85	115	4.179	5.13	8.36	23.2	96.0	5.53	194	802	548	192	79
DF	16	10	86	122	7.346	10.26	17.63	23.3	99.6	11.69	410	1,756	1,158	406	174
DF	17	17	86	121	11.062	17.44	26.68	25.6	106.1	19.45	683	2,830	1,926	676	280
DF	18	16	87	130	9.286	16.41	24.96	28.0	115.8	19.93	699	2,890	1,973	692	286
DF	19	10	88	126	5.209	10.26	13.02	33.6	141.6	12.47	438	1,844	1,235	433	183
DF	20	17	87	132	7.992	17.44	23.04	34.0	145.9	22.35	784	3,361	2,213	776	333
DF	21	12		137	5.117	12.31	15.35	37.4	163.1	16.35	574	2,503	1,619	568	248
DF	22	16	87	137	6.216	16.41	18.26	41.8	191.1	21.78	764	3,489	2,156	756	345
DF	23	20	86		7.110	20.51	20.97	44.2	193.2	26.43	927	4,052	2,616	918	401
DF	24	12	86	136	3.918	12.31	11.75	48.5	211.9	16.24	570	2,491	1,607	564	247
DF	25	11	85		3.310	11.28	10.23	52.1	228.8	15.18	533	2,341	1,503	527	232
DF	26	13	85	139	3.616	13.33	11.13	57.0	250.0	18.09	635	2,782	1,791	628	275
DF	27	7	84	134	1.806	7.18	5.42	60.8	259.5	9.39	330	1,406	930	326	139
DF	28	8	85	137	1.919	8.21	5.76	67.8	297.5	11.12	390	1,713	1,101	386	170
DF	29	3	85	147	.671	3.08	2.24	68.3	317.0	4.35	153	709	431	151	70
DF	30	3	84	142	.627	3.08	1.88	79.4	366.7	4.25	149	690	421	148	68
DF	31	1	84		.196	1.03	.59	84.2	316.7	1.41	49	186	139	49	18
DF	32	1	81	122	.184	1.03	.55	76.3	290.0	1.20	42	160	119	42	16
DF	33	2	86	142	.345	2.05	1.04	97.6	476.7	2.88	101	494	285	100	49
DF	34	2	84		.325	2.05	1.14	81.4	361.4	2.64	93	412	262	92	41
DF	35	2		140	.307	2.05	.92	91.8	423.3	2.41	85	390	238	84	39
DF	36	1		125	.145	1.03	.44	99.3	450.0	1.23	43	196	122	43	19
DF	38	1		147	.130	1.03	.39	129.3	613.3	1.44	51	240	143	50	24
DF	39	1	77	125	.124	1.03	.37	116.5	476.7	1.23	43	177	122	43	18
DF	Totals	201	86	125	94.882	206.15	244.52	36.9	160.3	257.46	9,034	39,199	25,489	8,943	3,881
NF L	18	1		126	.580	1.03	1.74	24.6	103.3	1.03	43	180	102	42	18
NF L	26	1	85	117	.278	1.03	.83	51.2	210.0	1.03	43	175	102	42	17
NF L	Totals	2	86	123	.859	2.05	2.58	33.2	137.9	2.05	86	355	203	85	35
BM	23	1	80	97	.355	1.03	.71	42.2	145.0	.79	30	103	79	30	10
BM	Totals	1	80	97	.355	1.03	.71	42.2	145.0	.79	30	103	79	30	10
Totals		204	86	125	96.096	209.23	247.80	36.9	160.0	260.31	9,149	39,658	25,771	9,058	3,926

VOLUME SUMMARY

(Shown in MBF) Minus Phellinus 341-18-129 March 2018

AREA 1: MC (92 ACRES)

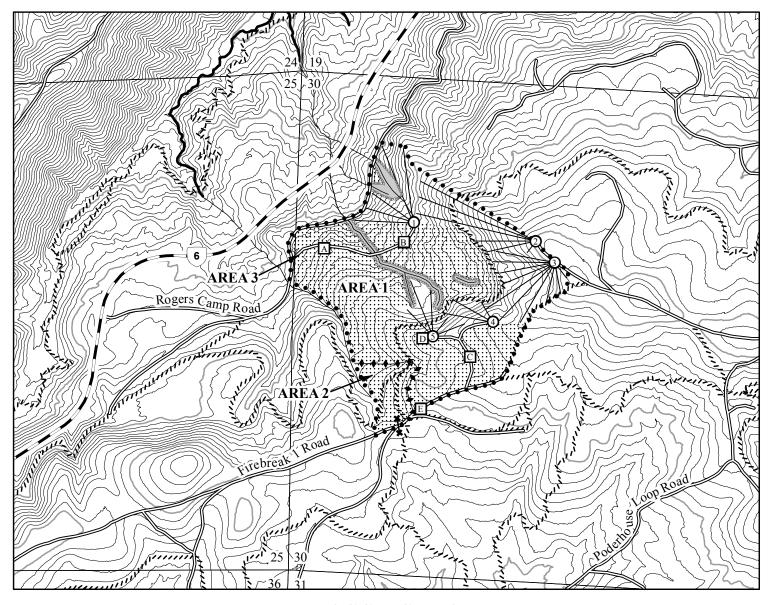
SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
Douglas-fir	Cruise Volume	2,264	1,238	108		3,610
	Hidden D&B (2%)	(45)	(25)	(2)		(72)
	NET TOTAL	2,219	1,213	106		3,538
	% of Total	63	34	3		
Bigleaf maple	Cruise Volume				10	10
	Hidden D&B (2%)				()	()
	NET TOTAL				10	10
	% of Total				100	

AREA 2: PC-M (7 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
Douglas-fir	Cruise Volume	170	93	8	271
	Hidden D&B (2%)	(3)	(2)	()	(5)
	NET TOTAL	167	91	8	266
	% of Total	63	34	3	

SALE TOTAL

SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
Douglas-fir		2,386	1,304	114		3,804
Bigleaf maple					10	10
TOTAL				3,814		


TIMBER SALE SUMMARY Minus Phellinus Contract No. 341-18-129

- **1.** <u>Location</u>: Portions of Section 30, T2N, R5W, W.M., and Section 25, T2N, R6W, Washington County, Oregon.
- **2.** <u>Type of Sale</u>: This timber sale is 99 net acres of Modified Clearcut on two sale areas. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. Revenue Distribution: 100% BOF, Washington County.
- **4.** <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS software.
- **5.** <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in March of 2018. For more information see Cruise Report.
- **6.** <u>Timber Description</u>: The Timber Sale Area consists of a well-stocked 70 year old Douglas-fir stand with minor amounts of noble fir and hardwoods. The stand has an average of 209 ft² of basal area (all species), an average Douglas-fir DBH of 20 inches, and an estimated average net Douglas-fir volume of approximately 38.4 MBF per acre.
- 7. <u>Topography and Logging Method</u>: Slopes within the sale areas range from 15% to 60%. The aspect is generally northwest. 66% of the sale area may yarded with ground-based equipment. The remainder must be yarded with cable systems. Intermediate supports may be necessary to get sufficient lift to effectively yard some portions of the Timber Sale Area. The maximum cable corridor length is 1350' and the average length is 664 feet. Tractor skidding distances are generally less than 800'.
- 8. Access: All access to the Timber Sale Area is on surfaced all-weather roads. From Forest Grove travel northwest 7 miles on Highway 8 to its junction with Highway 6 and turn left. Continue west on Highway 6 for 9.5 miles to Beaverdam Road and turn left. Proceed approximately 1 mile to the Cedar road. Turn left and continue .7 miles to the Firebreak 1 Road. Turn right and continue .4 miles to the southwest corner of the Timber Sale Area. State Forest keys will be needed to gain access through gates on Rogers Road and Powderhouse Loop Road.

9. Projects:

Project No. 1: Road Construction & Improvement	\$14,607.22
Project No. 2: Surfacing	\$12,409.64
Project No. 3: Grass Seeding, Fertilize, Mulch	\$375.38
Move in and equipment cleaning:	\$6,147.78
Total Credit for all Projects	\$33,540

10. Recreation Trails: Recreation trails on each Sale Area shall be closed during harvest operations. The trail system in Area 2 shall not be closed longer than 21 days. At the conclusion of harvest operations on each Sale Area, all affected trails shall be cleared and restored to pre-sale condition.

Legend

- • • Timber Sale Boundary
- ◆ ◆ ◆ Area Boundary
- —— Highway
- Surfaced Road
- Recreation Trail
- Type F Stream
- Type N Stream
- Stream Buffer Boundary
- Stream Buffer
 - Tractor Yarding Area
- Cable Yarding Area
- O Cable Landing
- ☐ Tractor Landing
- Section Line
- —— 20 Foot Contour
- —— 200 Foot Contour
- *** ★**Blockage

LOGGING PLAN

FOR TIMBER SALE CONTRACT 341-18 -129 MINUS PHELLINUS PORTIONS OF SECTION 30,T2N, R5W, W.M., AND SECTION 25, T2N, R6W., W.M. WASHINGTON COUNTY, OREGON

Forest Grove District GIS March, 2018

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1:12,000 1 inch = 1,000 feet 500 1,000 2,000 Feet

APPROXIMATE NET ACRES				
T	RACTOR	CABLE		
AREA 1 AREA 2	58 7	34 0		
TOTAL	65	34		