

Sale WO-341-2018-110-

District: West Oregon Date: May 21, 2018

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$1,030,687.18	\$36,196.90	\$1,066,884.08
		Project Work:	(\$61,801.00)
		Advertised Value:	\$1,005,083.08

Sale WO-341-2018-110-

District: West Oregon Date: May 21, 2018

Timber Description

Location: Portions of Sections 19 and 20, T11S, R8W, W.M., Lincoln County, Oregon.

Stand Stocking: 60%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	18	0	95
Alder (Red)	14	0	80

Volume by Grade	2\$	3S & 4S 6"- 11"	Camprun	Total
Douglas - Fir	1,048	774	0	1,822
Alder (Red)	0	0	95	95
Total	1,048	774	95	1,917

Comments: Pond Values Used: Local Pond Values, March 2018.

Expected Log Markets: Philomath, Eugene, Springfield, Willamina.

Western Hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost: \$293.85/MBF = \$660/MBF - \$366.15/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$1,053.85/MBF = \$1,420/MBF - \$366.15/MBF- \$100/MBF (additional haul cost)

SCALING COST ALLOWANCE = \$5.00/MBF

BRANDING AND PAINTING COST ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE

Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added): Intermediate Support/Tail Trees: 10 supports @ \$100/support = \$1,000. TOTAL Other Costs (with Profit & Risk to be added) = \$1,000.

Other Costs (No Profit & Risk added):
Equipment Cleaning (Invasive Species): \$2,000
Non-Project Roads and Landings: \$750
Landing Slash Piling: 6 Landings @ \$100/Landing = \$600
Landing Slash Piling and Firewood Sorting:5 Landings @ \$180/Landing = \$900
Water bar and block unsurfaced roads: 23 stations @ \$15.96/sta. = \$367
Remove temp. culvert (Pt. 5 to 6): 3 hr. @ 140/hr. = \$420
Haul culvert to ODF Philomath: 1 hr. @ 100/hr. = \$100
TOTAL Other Costs (No Profit & Risk added) = \$5,137

SLASH DISPOSAL Move-In: \$1,290 Machine Wash: \$300

Project Work: 36 hrs. @ \$150/hr. = \$5,400

TOTAL Slash Disposal = \$6,990

5/21/18

Sale WO-341-2018-110-

District: West Oregon Date: May 21, 2018

Logging Conditions

Combination#: 1 Douglas - Fir 54.00%

Alder (Red) 54.00%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF

loads / day: 8 bd. ft / load: 3800

cost / mbf: \$255.93

machines: Log Loader (A)

Forwarder Harvester

Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 19.00%

Alder (Red) 19.00%

Logging System: Cable: Medium Tower >40 - <70 **Process:** Harvester Head Delimbing

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF

loads / day: 11 bd. ft / load: 3800

cost / mbf: \$186.13

machines: Log Loader (A)

Forwarder Harvester

Tower Yarder (Medium)

Combination#: 3 Douglas - Fir 27.00%

Alder (Red) 27.00%

Logging System: Shovel **Process:** Harvester Head Delimbing

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF

loads / day: 18 bd. ft / load: 3800

cost / mbf: \$78.13
machines: Forwarder

Harvester

Sale WO-341-2018-110-

District: West Oregon Date: May 21, 2018

Logging Costs

Operating Seasons: 2.00

Profit Risk: 10%

Project Costs: \$61,801.00

Other Costs (P/R): \$1,000.00

Slash Disposal: \$6,990.00

Other Costs: \$5,137.00

Miles of Road

Road Maintenance:

\$7.15

Dirt	Rock (Contractor)	Rock (State)	Paved	
0.0	0.0	0.0	0.0	

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	2.0	4.0
Alder (Red)	\$0.00	2.0	3.8

Sale WO-341-2018-110-

District: West Oregon Date: May 21, 2018

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling / Brand & Paint	Other	Total
Douglas -	Fir								
\$194.66	\$7.51	\$4.58	\$102.38	\$0.52	\$30.96	\$3.65	\$2.00	\$2.68	\$348.94
Alder (Red	l)								
\$194.66	\$8.58	\$4.58	\$123.16	\$0.52	\$33.15	\$3.65	\$2.00	\$2.68	\$372.98

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$914.63	\$565.69	\$0.00
Alder (Red)	\$0.00	\$754.00	\$381.02	\$0.00

Sale WO-341-2018-110-

District: West Oregon Date: May 21, 2018

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	1,822	\$565.69	\$1,030,687.18
Alder (Red)	95	\$381.02	\$36,196.90

Gross Timber Sale Value

Recovery: \$1,066,884.08

Prepared By: Matt McBride Phone: 541-929-3266

SUMMARY OF ALL PROJECT COSTS

Sale Name: Ice Hole Date: March 2018

Road Segment		<u>Length</u>	<u>Cost</u>	
1 to 2		144.3 sta	\$13,536	
2 to 3		37.7 sta	\$3,453	
2 to 4		95.5 sta	\$3,446	
5 to 6		16.2 sta	\$3,019	
7 to 8		6.8 sta	\$387	
9 to 10		6.8 sta	\$1,772	
11 to 14		57.9 sta	\$2,740	
12 to 13		14.3 sta	\$4,206	
14 to 15		1.0 sta	\$1,353	
16 to 17		120.5 sta	\$11,661	
18 to 19		9.7 sta	\$178	
20 to 21		14.5 sta	\$266	
22 to 23		10.6 sta	\$195	
24 to 25		7.9 sta	\$2,878	
26 to 27		13.5 sta	\$180	
	TOTALS	557.2 sta	10.6 mi	\$49,270

Project #2 - Roadside Brushing 7.4 mi \$8,129.00

Move in	Cost
Excavator, C325 or equv.	\$1,290
Crawler tractor, D-6 or equiv.	\$778
Road brusher	\$778
Grader, G14 or equiv.	\$778
Vibratory roller	\$778

TOTAL \$4,402

GRAND TOTAL \$61,801

Compiled by J. Long Date 03/21/2018

SALE ROAD	Ice Hole 1 to 2	Cline Creek Road	Project #	1	LENGTH Surfaced,	•		144.3 sta
IMPROVI	EMENT							
Clean cul	verts d outlets)	12	@	\$25.00	/culv.	=	\$300	
	stallation (2) & installation)	80 ft	@	\$19.53	/ft	=	\$1,562	
Grade/co surface ro	mpact ock	144.3 sta	@	\$24.28	/sta	=	\$3,504	
(With Vibra	atory roller)				TOTAL IM	PROVEN	MENT =	\$5,366
SURFAC	ING			Size	Cost/yd			
Culvert be	edding/backfill	40	cy of	1½-0"	\$19.04	=	\$762	
Spot rock	ζ	280	cy of	1½-0"	\$19.04	=	\$5,331	
Fill cover	(4" lift)	20	cy of	1½-0"	\$19.04	=	\$381	
Turnouts	(8)	80	cy of	3-0"	\$18.70	=	\$1,496	
					TOTAL RO	оск соз	ST =	\$7,970
Culvert di (Hauling	isposal and disposal)	2 culverts	@	\$100.00	/culv.	=	\$200.00	\$200.00
Compiled Date:	l by:	J. Long Mar 21, 2018			GRAND T	OTAL ==	===>	\$13,536

SALE ROAD	Ice Hole 2 to 3	Pro Burnt Woods R	oject # idge Ro		LENGTH Surfaced,			37.7 sta
IMPROV	EMENT							
Clean cu	lverts id outlets)	2 culvs	@	\$25.00	/culv.	=	\$50	
`	t roadside	3 ldgs	@	\$165.00	/ldg	=	\$495	
Grade/co	mpact	37.7 sta	@	\$24.28	/sta	=	\$915	
(with vibr	atory roller)				TOTAL IM	IPROV	EMENT =	\$1,460
SURFAC	ING			Size	Cost/yd			
Spot rock	<	50	cy of	1½-0"	\$19.04	=	\$952	
Landing	rock	60	cy of	jaw-run	\$17.35	=	\$1,041	
					TOTAL RO	OCK C	OST =	\$1,993
Compiled	d by:	J. Long Mar 21, 2018			GRAND T	OTAL :		\$3,453
Date.		IVIAI 21, 2010			CIVAIND I	OIAL:		Ψυ,τυυ

SALE ROAD	Ice Hole 2 to 4	P Burnt Woods Rid	roject # ge Road	1		LENGTH Surfaced,	•		95.5 sta
IMPROVE		7 culvs	@		\$25.00	/culv	=	\$175	
(inlets and		7 Culv3	•		Ψ20.00	/cuiv.	_	Ψ173	
Grade/co	mpact	95.5 sta	@		\$24.28	/sta	=	\$2,319	
						TOTAL IM	IPROVEME	NT =	\$2,494
SURFAC	ING				Size	Cost/yd			
Spot rock		50 c	y of		1½-0"	\$19.04	=	\$952	
						TOTAL RO	OCK COST	=	\$952
Compiled Date:	by:	J. Long Mar 21, 2018				GRAND T	OTAL ====	=>	\$3,446

SALE Ice Hole ROAD 5 to 6		Project #	1	LENGTH Dirt, outsl	•		16.2 sta
EXCAVATION Re-open road and landing (with dozer)	g 16.2 sta	@	\$24.76	/sta	=	\$401	
Install 24"x40' culvert and construct temporary f (see fill cost sheet)		ill # 1 work	sheet		=	\$1,069	
Grade/shape surface (with road grader)	16.2 sta	@	\$15.40	/sta	=	\$249	
Compact subgrade (with vibratory roller)	16.2 sta	@	\$16.80	/sta	=	\$272	
Spread and compact junction rock (0+00 to 0+75)	0.3 hr	@	\$140.00	/hr	=	\$42	
(0100 10 0175)				TOTAL IM	1PROVEI	MENT =	\$2,033
SURFACING Junction rock	50	cy of	Size jaw-run	Cost/yd \$19.72	=	\$986	
				TOTAL R	OCK CO	ST =	\$986
Compiled by: Date:	J. Long Mar 21, 2018			GRAND T	TOTAL ==	===>	\$3,019

SALE ROAD	Ice Hole 7 to 8	Proje	ect#	1	LENGTH Dirt, outslo	improve ped	6.8 sta
EXCAVA	TION						
Re-open (with doz	road and landing er)	6.8 sta	@	\$24.76	/sta	=	\$168
Grade/sh (with road	ape surface d grader)	6.8 sta	@	\$15.40	/sta	=	\$105
•	subgrade atory roller)	6.8 sta	@	\$16.80	/sta	=	\$114
				TOTAL I	IMPROVEN	IENT =	\$387

Compiled by: J. Long
Date: Mar 21, 2018

SALE ROAD	Ice Hole 9 to 10		Project #	1		LENGTH Surfaced,	-		6.8 sta
IMPROVE Remove s		6.8 sta	@		\$18.35	/sta	=	\$125	
and clear (with road	landing	0.0 0.0			Ψ10.00	7 0 ta	_	Ψ120	
Grade/cor	mpact	6.8 sta	@		\$24.28	/sta	=	\$165	
						TOTAL IM	PROVEMEN	T =	\$290
SURFACI	NG				Size	Cost/yd			
Junction		10	cy of		1½-0"	\$21.46	=	\$215	
Spot rock		40	cy of		3-0"	\$21.12	=	\$845	
Landing re	ock	20	cy of		3-0"	\$21.12	=	\$422	
						TOTAL RO	OCK COST =		\$1,482
Compiled Date:	by:	J. Long Mar 21, 2018				GRAND TO	OTAL ====	:>	\$1,772

SALE Ice Hole		Project #		LENGTH	•		57.9 sta
ROAD 11 to 14	Burnt vv	oods Fore	est Road	Surfaced,	aitcn		
IMPROVEMENT							
Slough/stump removal & cutslope rounding	2.0 hr	@	\$140.00	/hr	=	\$280	
End-haul excavation (endhaul to W1)	30 cy	@	\$3.00	/cy	=	\$90	
Compact waste area	30 cy	@	\$0.40	/cy	=	\$12	
Grade/compact surface rock	57.9 sta	@	\$24.28	/sta	=	\$1,406	
				TOTAL IM	PROVEM	ENT =	\$1,788
SURFACING			Size	Cost/yd			
Spot rock (Pt. 11 to 12)	50 c	y of	1½-0"	\$19.04	=	\$952	
,				TOTAL RO	OCK COS	T =	\$952
Compiled by:	J. Long						
Date:	Mar 21, 2018			GRAND T	OTAL ===	===>	\$2,740

SALE Ice Hole ROAD 12 to 13	Project #	1	LENGTH im Surfaced, ou	-	I	14.3 sta
IMPROVEMENT Remove sod and clear landing (with road grader)	14.3 sta @	\$18.35	/sta	=	\$262	
Grade/compact surface rock	14.3 sta @	\$24.28	/sta	=	\$347	
			TOTAL IMP	ROVEM	IENT =	\$609
SURFACING		Size	Cost/yd			
Junction	20 cy of	1½-0"	\$21.46	=	\$429	
Spot rock	100 cy of	3-0"	\$21.12	=	\$2,112	
Turnaround	10 cy of	3-0"	\$21.12	=	\$211	
Landing rock	40 cy of	3-0"	\$21.12	=	\$845	
			TOTAL ROO	CK COS	T =	\$3,597
Compiled by: Date:	J. Long Mar 21, 2018		GRAND TO	TAL ==:	===>	\$4,206

SALE ROAD	Ice Hole 14 to 15	Pump Chance Im	Project # provement	1	LENGTH im Surfaced, or	-	1.0 st	a
IMPROV	EMENT							
Remove (with gra		1.0 sta	@	\$18.35	/sta	=	\$18	
	t removal	1.5 hr	@	\$140.00	/hr	=	\$210	
De-water		2.0 hr	@	\$10.00	/hr	=	\$20	
End-hau (endhaul	l excavation to W1)	20 cy	@	\$3.00	/cy	=	\$60	
Grade/co surface r	mpact	1.0 sta	@	\$24.28	/sta	=	\$24	
					TOTAL IMP	ROVEMEN	IT =	\$332
SURFAC	ING			Size	Cost/yd			
Junction			20 cy of	1½-0"	\$21. 4 6	=	\$429	
Surface	rock		20 cy of	3-0"	\$21.12	=	\$422	
Boulders	i		5 cy of	36"-24"	\$33.93	=	\$170	
					TOTAL ROO	CK COST =	=	\$1,021
Compiled Date:	d by:	J. Long Mar 21, 2018			GRAND TO	TAL ====	=>	\$1,353

SALE ROAD	Ice Hole 16 to 17	Proj Miller Creek	ect # Road	1	LENGTH Surfaced, c	•	120.5	sta
IMPROV	/EMENT							
Clean cu		9	@	\$25.00	/culv.	=	\$225	
(inlets ar	nd outlets)							
Improve	Waste Area 2	0.5 hr	@	\$140.00	/hr	=	\$70	
Slough r	emoval	3.0 hr	@	\$140.00	/hr	=	\$420	
	I excavation	50 cy	@	\$3.00	/cy	=	\$150	
(endhaul	•	0.5.1	6	0.4.40.00	/1		#70	
	maple tree ris (sta. 104+30)	0.5 hr	@	\$140.00	/hr	=	\$70	
and debi	115 (Sta. 104+30)							
Re-cons	truct fill and	See Fill	# 2 wo	rksheet		=	\$4,393	
Install 24	1"x40' culvert							
(see fill c	cost sheet)							
Grade/co	ampoot	120.5 sta	@	\$24.28	loto	_	\$2,926	
surface r	•	120.5 Sta	w	φ24.20	/51a	=	φ Ζ ,9 Ζ 0	
ourrage .	oon				TOTAL IMF	PROVEM	ENT =	\$8,254
SURFAC	_			Size	Cost/yd			
Turnarou			cy of	3-0"	\$18.70	=	\$374	
Turnouts	` '		cy of	3-0"	\$18.70	=	\$748	
Spot roc	k	120	cy of	1½-0"	\$19.04	=	\$2,285	
					TOTAL RO	CK COS	Γ=	\$3,407
Compile	d by:	J. Long	_					
Date:		Mar 21, 201	8		GRAND TO)TAL ===	==>	\$11,661

SALE Ice Hole Project # 1 LENGTH improve 9.7 sta ROAD 18 to 19 Surfaced, outsloped

Remove sod 9.7 sta @ \$18.35 /sta = \$178

and brushing debris (with road grader)

TOTAL IMPROVEMENT COST = \$178

Compiled by: J. Long

\$18.35 /sta

SALE Ice Hole Project # 1 LENGTH improve 14.5 sta

@

ROAD 20 to 21 Surfaced, outsloped

14.5 sta

Remove sod and brushing debris (with road grader)

TOTAL IMPROVEMENT COST = \$266

\$266

Compiled by: J. Long

SALE Ice Hole Project # 1 LENGTH improve 10.6 sta

ROAD 22 to 23 Surfaced, outsloped

Remove sod 10.6 sta @ \$18.35 /sta = \$195 and brushing debris

(with road grader)

TOTAL IMPROVEMENT COST = \$195

Compiled by: J. Long

SALE Ice Hole ROAD 24 to 25		Project #	1	LENGTH in Surfaced, or	•	7.9 9	sta
Remove sod and brushing debris (with road grader)	7.9 sta	@	\$18.35	/sta	=	\$145	
Grade/compact surface rock	7.9 sta	@	\$24.28	/sta	=	\$192	
				TOTAL IMP	ROVEME	NT =	\$337
SURFACING			Size	Cost/yd			
Junction rock	2	0 cy of	1½-0"	\$21.46	=	\$429	
Landing rock (Point 25)	2	0 cy of	3-0"	\$21.12	=	\$422	
Spot rock	8	0 cy of	3-0"	\$21.12	=	\$1,690	
				TOTAL ROO	CK COST	=	\$2,541
Compiled by:	J. Long						
Date:	Mar 21, 2018			GRAND TO	TAL ====	:=>	\$2,878

SALE Ice Hole
ROAD 26 to 27

Project # 1

LENGTH improve
Surfaced, outsloped

Remove sod
9.8 sta
@ \$18.35 /sta = \$180

and brushing debris (with road grader)

TOTAL IMPROVEMENT COST = \$180

Compiled by: J. Long

Ice Hole Timber Sale No. 341-18-110

Project No. 2

Mechanical Brushing Costs

Road Segment/ Point	Road Name	Length (Feet)	Miles	Brush Density	Cost / Mile	Segment Cost
11 to 2	Cline Creek Rd.	7,600	1.44	Medium	\$1,100.00	\$1,584
2 to 3	Burnt Woods Ridge Rd.	3,800	0.72	Medium	\$1,100.00	\$792
2 to 4	Burnt Woods Ridge Rd.	9,600	1.82	Medium	\$1,100.00	\$2,002
14 to 15	Pump chance	100	0.02	Medium	\$1,100.00	\$22
16 to 17	Miller Creek Rd.	12,100	2.29	Medium	\$1,100.00	\$2,519
18 to 19		1,000	0.19	Medium	\$1,100.00	\$209
20 to 21		1,500	0.28	Medium	\$1,100.00	\$308
22 to 23		1,100	0.21	Medium	\$1,100.00	\$231
24 to 25		800	0.15	Medium	\$1,100.00	\$165
26 to 27		1,400	0.27	Medium	\$1,100.00	\$297
Totals		39,000	7.39			\$8,129

Fill Reconstruction Cost Estimate

 Segment:
 5 to 6
 Station:
 2+70

 Fill:
 1
 Height:
 6'

Materials	Quantity		\$	Total
24"x 40', CPP	1		\$0.00	\$0.00
(From ODF culvert stockpile)				
Haul culvert from ODF office to site				\$100.00
1 1/2"-0" Crushed Rock for	20	су	\$21.46	\$429.20
Bedding/Backfill				
4"-0" Crushed Rock for Road		су		\$0.00
Erosion Control		ac		\$0.00
Mulch and seed				

\$529.20

Excavation	Rate		CY/amount	Total
End-Haul excavation \$/cy	\$3.00		0	\$0.00
Backfill from barrow site				\$0.00
Culvert placement and fill const.	\$140.00	hr	3	\$420.00
Compaction				
Backfill (barrow & crushed rock)	\$0.50	су	80	\$40.00
Waste material compaction				\$0.00
Fill armor placement w/C325, \$/hr				\$0.00
Laborer \$/hr	\$40.00	hr	2	\$80.00
(hand held compactor)				

\$540.00

Project Total \$1,069

Fill Reconstruction Cost Estimate

 Segment:
 16 to 17
 Station:
 109+50

 Fill:
 2
 Height:
 6'

Materials	Quantity		\$	Total
24"x 40', CPP	40		\$18.24	\$729.60
Haul away old culvert				\$100.00
1 1/2"-0" Crushed Rock for	20	су	\$21.46	\$429.20
Bedding/Backfill				
6"-0" Jaw-run base rock for Road	30	су	\$19.72	\$591.60
6"-0" Jaw-run fill armor rock	30	су	\$19.72	\$591.60
12"-6" pit run disapater rock	10	су	\$18.76	\$187.60
1 1/2"-0" Surfacing Rock	30	су	\$21.46	\$643.80
Erosion Control		ac		\$0.00
Mulch and seed				

\$3,273.40

Excavation	Rate		CY/amount	Total
End-Haul excavation \$/cy	\$3.00	су	40	\$120.00
Backfill from barrow site				\$0.00
Culvert placement and fill const.	\$140.00	hr	4	\$560.00
Volume pump for de-watering stream	\$10.00		4	\$40.00
Compaction				
Backfill (barrow & crushed rock)	\$0.50	су	80	\$40.00
Waste material compaction				\$0.00
Fill armor and disapater placement				
w/C325, \$/hr	\$140.00	hr	2	\$280.00
Laborer \$/hr	\$40.00	hr	2	\$80.00
(hand held compactor)				

\$1,120.00

Project Total \$4,393

SUMMARY OF MAINTENANCE COST

SALE - Final Maintenance Cost Estimate Ice Hole

(Costed in appraisal, not in project costs)

Grading/Compaction Move-in \$ Grader 778 Roller 778

Road Segment	Length	Cost/Sta	Cost	Mileage
1 to 2	144.3	\$24.28	\$3,503.60	2.73
2 to 3	37.7	\$24.28	\$915.36	0.71
9 to 10	6.8	\$24.28	\$165.10	0.13
Total	188.8		\$4,584.06	3.57

Maintenance Rock:

	Volume	Cost/CY	Cost
1½-0"	200	\$21.46	\$4,292.00

Grand Total \$10,432.06

TS Volume 1,459 MBF

Cost / MBF = \$7.15

NOTES:

Rock Haul Cost Computation

SALE NAME: Ice hole DATE: Mar 21, 2018

ROAD NAME: Cline Ck Rd CLASS: Medium ROCK SOURCE: Wild Rose Rock Quarry 10 CY truck

Route: Hwy 223, Hwy. 20, Cline Creek Road

Points:

5-6, 9-10,12-13, & 24-25.

TIME Computation:					
Road speed time f					
1.	55 MPH	17.5	MRT		minutes
2.	50 MPH	10.0	MRT		minutes
3.	45 MPH	5.0	MRT	6.7	minutes
4.	40 MPH		MRT	0.0	minutes
5.	35 MPH		MRT	0.0	minutes
6.	30 MPH		MRT	0.0	minutes
7.	25 MPH	2.6	MRT	6.2	minutes
8.	20 MPH		MRT	0.0	minutes
9.	15 MPH	2.0	MRT	8.0	minutes
10.	10 MPH	1.0	MRT	6.0	minutes
11.	05 MPH	0.5	MRT	6.0	minutes
		38.60			
Dump or spread ti	me per RT			0.50	minutes
Total hauling	cycle time	e for this	s setting		
(100% efficien	cy)			64.50	minutes
0			0.05	75.00	
Operator efficien	=	cion	0.85		minutes
Job efficiency co	rrection		0.90	84.31	minutes
Truck capacity (C	Y)		10.00	8.43	min/CY
Loading time, del	ay time pe	er CY		0.25	min/CY
TIME (minutes) pe	r cubic ya	ard		8.68	min/CY
COST per CY compu	tation				
Cost of truck	and operat	tor per h	our	\$68.88	/hr.
Cost of truck	and operat	or per m	inute	\$1.15	/min
Cost per CY				\$9.98	/CY
Spread and compac	t Wa	iter truc	k, Grader & Roller	\$1.50	/CY

	Cost Delivered	Cost Delivered
Cost/Yd (Pit)	w/o processing	with processing
\$ 11.48	\$21.46	\$22.96
\$ 11.14	\$21.12	\$22.62
\$ 9.74	\$19.72	\$21.22
8.78	\$18.76	\$20.26
23.95	\$33.93	
	\$ 11.48 \$ 11.14 \$ 9.74 8.78	Cost/Yd (Pit) w/o processing \$ 11.48 \$21.46 \$ 11.14 \$21.12 \$ 9.74 \$19.72 8.78 \$18.76

Rock Haul Cost Computation

SALE NAME: Ice hole DATE: Mar 21, 2018

ROAD NAME: Cline Creek Road
ROCK SOURCE: Wild Rose Rock Quarry CLASS: Medium 18 CY truck

Route: Hwy 223, Hwy 20, Cline Creek Road, Burnt Woods Ridge Rd.

Points: 1-2, 2-3, 2-4, 11-14, 16-17

TIME Computation:					
Road speed time facto	rs:				
-	MPH 17.	5	MRT	19.1	minutes
2. 50	MPH 10.	0	MRT	12.0	minutes
3. 45	MPH 5.	0	MRT	6.7	minutes
4. 40	MPH		MRT	0.0	minutes
5. 35	MPH		MRT	0.0	minutes
6. 30	MPH		MRT	0.0	minutes
7. 25	MPH 2.	0	MRT	4.8	minutes
8. 20	MPH		MRT	0.0	minutes
9. 15	MPH 2.	6	MRT	10.4	minutes
10. 10	MPH 1.	0	MRT	6.0	minutes
11. 05	MPH 0.	5	MRT	6.0	minutes
Total M	RT 38.6	0			
Dump or spread time p	er RT			1.00	minutes
Total hauling cycl	e time for t	his	setting		
(100% efficiency)				66.00	minutes
Operator efficiency c			0.85		minutes
Job efficiency correc	tion		0.90	86.28	minutes
Truck capacity (CY)			18.00	4.79	min/CY
Loading time, delay t	ime ner CV		10.00	0.25	, -
TIME (minutes) per cu	-			5.04	•
TIME (MINUtes) per cu	DIC YAIG			3.04	IIIII/CI
COST per CY computati	on				
Cost of truck and		ho	ur	\$90.22	/hr.
Cost of truck and	= =			\$1.50	/min
	-				
Cost per CY				\$7.56	/CY
Spread and compact	Water tr	uck	, Grader & Roller	\$1.50	/CY

	Cost Delivered	Cost Delivered
Cost/Yd (Pit)	w/o processing	with processing
\$ 11.48	\$19.04	\$20.54
\$ 11.14	\$18.70	\$20.20
\$ 9.79	\$17.35	\$18.85
8.78	\$16.34	\$17.84
	\$ 11.48 \$ 11.14 \$ 9.79	Cost/Yd (Pit)w/o processing\$ 11.48\$19.04\$ 11.14\$18.70\$ 9.79\$17.35

Ice Hole (341-18-110) FY 2018

TIMBER CRUISE REPORT

1. Sale Area Location: Portions of Sections 19 & 20, T11S, R8W, W.M., Lincoln County, Oregon.

2. Fund Distribution:

a. Fund

BOF 100%

b. Tax Code

3. Sale Acreage by Area:

Area	Treatment	Gross Acres	Stream Buffers	Reforestation Areas	Green Tree Retention Areas	Existing Roads	Net Sale Acres	Acreage Comp. Method
1	Modified Clearcut	102	5	5	1	5	86	Ortho photo, GIS, GPS

- 4. Cruisers and Cruise Dates: This sale was cruised by Matt McBride and Andrew Arvin in February 2018. Plots No. 29 (measured) and 30 (count) were added by Jon long and Matt McBride in March 2018.
- 5. Cruise Method and Computation: The sale consists of one modified clearcut area that was cruised using variable radius plot sampling. The sale area was cruised using a 33.6 BAF with plots spaced 4 chains apart on plot lines spaced 8 chains apart. A total of 31 plots were taken with 21 measure plots and 10 count plots. One of the count plots had a minor species cruised and shows as a measure plot on the project Statistics report. Measure plots were measured for DBH, height, form factor, grade, and defect. Data was entered into the Atterbury SuperACE cruise program to determine stand statistics and net board foot volume.

Digital ortho photos, Lidar data, and GPS data were used to map the boundaries for the sale, and ArcMap GIS was used to determine gross and net acreage.

- 6. Measurement Standards: Tree heights were measured to the nearest foot, to a top diameter of 7 inches outside bark or to 40% of form factor. Diameters were measured to the nearest inch, and a form point of 16 feet was used to calculate form factor. Form factors were measured or estimated on every tree. Most trees were graded in 40 foot log segments unless breakage, defect, or length to top of grade cruise diameter warranted otherwise.
- 7. **Timber Description:** Timber in the sale area includes 59 acres of 45 year-old Douglas-fir with scattered red alder that was thinned approximately 15 years ago, 11 acres of 98 year-old Douglas-fir with scattered red alder, 6 acres of 59 year-old Douglas-fir with scattered red alder and 12 acres of 47 year-old Douglas-fir and mature red alder. The average Douglas-fir tree size to be harvested is approximately 18 inches DBH, with an average height of 72 feet to a merchantable top. The average red alder tree size to be harvested is approximately 15 inches DBH, with an average height of 39 feet to a merchantable top. The average volume per acre to be harvested (net) is approximately 22.5 MBF. Conifer trees other than Douglas-fir are reserved from cutting but were not observed during cruising or other field work.
- 8. Statistical Analysis and Stand Summary: (See attached "Statistics").

Target CV	Target SE	Actual CV	Actual SE
35%	9%	32%	6%

Note: Percentages are for net board foot volume.

9. Total Volume (MBF) by Species and Grade: (See attached volume report "Species, Sort Grade – Board Foot Volumes - Project").

Species	Gross Cruise Volume	Cruised D & B	Cruised D & B	Hidden D & B	Hidden D & B	Net Sale Volume
Douglas-fir	1,867	1.4%	26	1%	19	1,822
Red alder	97	1.7%	1	1%	1	95
Total	1,964	1.4%	27	1%	20	1,917

Species	Ave. DBH	Net Vol.	2- Saw	3- Saw	4- Saw	Camp Run	% by Species		
Douglas-fir	18	Grade %	57%	37%	6%		95%		
		1,822	1,048	681	93		3570		
Red alder	15	Grade %		w=		100%	5%		
		95				95			
Total		1,917	1,048	681	93	95	100%		

Cruise Maps

Species, Sort Grade - Board Foot Volumes

Statistics

Stand Table Summary Log Stock Table – MBF

Prepared by:	Jon Long	Date:	5/16/2018
Unit Forester:	Evelyn L. Hukari Digitally signed by Evolyn L. Hukari Data: 2018.05.17 1793293-07007	Date:	
	Evelyn Hukari		

TC PS	ΓATS					OJECT S OJECT		TICS HOLE			PAGE DATE	1 5/16/2018
TWP	RGE	SC	TRACT		ТҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt
11S	08	19 AREA 1			00CC			86.00	31	155	S	W
						TREES]	ESTIMATED TOTAL		PERCENT SAMPLE		
]	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA	AL		31	155		5.0						
CRU	ISE		21	91		4.3		8,435		1.1		
DBH	COUNT											
REFO	DREST											
COU	NT		10	57		5.7						
BLA	NKS											
100 %	6											
					STA	ND SUMM	ARY					
		SA	AMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
			TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOU	G FIR		83	85.4	18.1	72	35.9	152.8	21,709	21,406	5,374	5,352
DOUG FIR R ALDER	DFR		8	12.7	14.8	39	3.9	15.2	1,133	1,114	367	367
KAL	DLIC											
тот	AL IFIDENC		91 IITS OF THE TIMES OUT		17.7 E VOLUME	68 WILL BE W	39.9 /ITHIN TH	168.0 IE SAMPLE E	22,842 RROR	22,520	5,740	5,719
тот	AL IFIDENC		IITS OF THI	E SAMPLE		WILL BE W		IE SAMPLE E	RROR	22,520 # OF TREES R	,	5,719 INF. POP.
CON	AL IFIDENC 6		IITS OF THE	E SAMPLE	E VOLUME	WILL BE W	/ITHIN TH	IE SAMPLE E	RROR		,	INF. POP.
CCL SD:	AL IFIDENC 68.1		TIMES OUT	E SAMPLE F OF 100 THE	E VOLUME	WILL BE W	TREES -	IE SAMPLE E BF	RROR	# OF TREES R	EQ.	INF. POP.
CON CL SD:	AL IFIDENC 68.1 1.0 G FIR		TITS OF THE TIMES OUT COEFF VAR.%	E SAMPLE C OF 100 THE S.E.%	E VOLUME	WILL BE W SAMPLE	TREES -	IE SAMPLE E BF HIGH	RROR	# OF TREES R	EQ.	INF. POP.
CL SD:	AL IFIDENC 69 68.1 1.0 G FIR DER		COEFF VAR.%	E SAMPLE TOF 100 THE S.E.% 5.2	E VOLUME	SAMPLE OW 294	TREES - AVG 310	IE SAMPLE E BF HIGH 327	RROR	# OF TREES R	EQ.	INF. POP.
CCL SD: DOU R AL	AL IFIDENC 69 68.1 1.0 G FIR DER		COEFF VAR.% 47.6 69.4	S.E.% 5.2 26.2	E VOLUME	SAMPLE OW 294 82	7TREES - AVG 310 111 293	IE SAMPLE E BF HIGH 327 140	RROR	# OF TREES R 5	EQ. 10	INF. POP.
CON CL SD: DOU R AL TOT	AL IFIDENC 68.1 1.0 G FIR DER AL		COEFF VAR.% 47.6 69.4 52.5	S.E.% 5.2 26.2	E VOLUME	WILL BE W SAMPLE OW 294 82 277 TREES/A	7TREES - AVG 310 111 293	IE SAMPLE E BF HIGH 327 140	RROR	# OF TREES R 5	EQ. 10	INF. POP.
CL SD: CL SD: DOU	68.1 1.0 G FIR DER AL 68.1 1.0 G FIR		COEFF VAR.% 47.6 69.4 52.5 COEFF VAR.% 41.7	S.E.% 5.2 26.2 5.5 S.E.% 7.5	E VOLUME	WILL BE W SAMPLE OW 294 82 277 TREES/A OW 79	7THIN THE AVG 310 111 293 ACRE AVG 85	BF HIGH 327 140 309 HIGH 92	RROR	# OF TREES R. 5 110 # OF PLOTS R	EQ. 10 27 EQ.	INF. POP.
CL SD: DOU R AL TOT CL SD: DOU R AL	68.1 1.0 G FIR .DER AL 68.1 1.0 G FIR .DER		COEFF VAR.% 47.6 69.4 52.5 COEFF VAR.% 41.7 287.9	S.E.% S.E.% S.E.% S.E.% 7.5 51.7	E VOLUME	WILL BE W SAMPLE OW 294 82 277 TREES/A OW 79 6	7THIN TH. 2 TREES - AVG 310 111 293 ACRE AVG 85 13	BF HIGH 327 140 309 HIGH 92 19	RROR	# OF TREES R 5 110 # OF PLOTS R 5	EQ. 10 27 EQ. 10	INF. POP. 1. INF. POP. 1.
CL SD: CL SD: DOU	68.1 1.0 G FIR .DER AL 68.1 1.0 G FIR .DER		COEFF VAR.% 47.6 69.4 52.5 COEFF VAR.% 41.7	S.E.% 5.2 26.2 5.5 S.E.% 7.5	E VOLUME	WILL BE W SAMPLE OW 294 82 277 TREES/A OW 79	7THIN THE AVG 310 111 293 ACRE AVG 85	BF HIGH 327 140 309 HIGH 92	RROR	# OF TREES R. 5 110 # OF PLOTS R	EQ. 10 27 EQ.	INF. POP. 1:
CL SD: DOU R ALL TOT	68.1 1.0 G FIR .DER AL 68.1 1.0 G FIR .DER		COEFF VAR.% 47.6 69.4 52.5 COEFF VAR.% 41.7 287.9	S.E.% S.E.% S.E.% S.E.% 7.5 51.7	E VOLUME	SAMPLE .OW 294 82 277 TREES/A .OW 79 6 92	7THIN TH. 2 TREES - AVG 310 111 293 ACRE AVG 85 13	BF HIGH 327 140 309 HIGH 92 19 104	RROR	# OF TREES R 5 110 # OF PLOTS R 5	EQ. 10 27 EQ. 10	INF. POP. 1 INF. POP. 1
CCL SD: DOU R AL TOT CL SD: CCL CCL CCL	68.1 1.0 G FIR DER AL 68.1 1.0 G FIR DER		COEFF VAR.% 47.6 69.4 52.5 COEFF VAR.% 41.7 287.9 33.9	S.E.% S.E.% S.E.% S.E.% 7.5 51.7	E VOLUME	SAMPLE .OW 294 82 277 TREES/A .OW 79 6 92	TREES - AVG 310 111 293 ACRE AVG 85 13 98	BF HIGH 327 140 309 HIGH 92 19 104	RROR	# OF TREES R. 5 110 # OF PLOTS R 5	EQ. 10 27 EQ. 10	INF. POP. 1 INF. POP. 1 INF. POP.
CCL SD: DOU R ALL TOT CL SD: CCL SD: CCD SD: C	68.1 1.0 G FIR DER AL 68.1 1.0 G FIR DER AL		COEFF VAR.% 47.6 69.4 52.5 COEFF VAR.% 41.7 287.9 33.9 COEFF VAR.% 36.7	S.E.% S.E.% S.E.% 7.5 S.E.% 7.5 51.7 6.1 S.E.% 6.6	E VOLUME	SAMPLE .OW 294 82 277 TREES/A .OW 79 6 92 BASAL A .OW 143	7ITHIN THE CTREES - AVG 310 111 293 ACRE AVG 85 13 98 AREA/ACI AVG 153	BF HIGH 327 140 309 HIGH 92 19 104 RE HIGH 163	RROR	# OF TREES R 5 110 # OF PLOTS R 5 46 # OF PLOTS R	EQ. 10 27 EQ. 10 11 EQ.	INF. POP. 1 INF. POP. 1 INF. POP.
CL SD: DOU R ALL TOT CL SD: DOU R ALL TOT CL SD: DOU R ALL TOT CL SD: DOU R ALL SD: DO	68.1 1.0 G FIR DER AL 1.0 G FIR DER		COEFF VAR.% 47.6 69.4 52.5 COEFF VAR.% 41.7 287.9 33.9 COEFF VAR.% 36.7 267.2	S.E.% S.E.% 5.2 26.2 5.5 S.E.% 7.5 51.7 6.1 S.E.% 6.6 47.9	E VOLUME	WILL BE W SAMPLE OW 294 82 277 TREES/A OW 79 6 92 BASAL A OW 143 8	7ITHIN TH. 2 TREES - AVG 310 111 293 ACRE AVG 85 13 98 AREA/ACI AVG 153 15	BF HIGH 327 140 309 HIGH 92 19 104 RE HIGH 163 22	RROR	# OF TREES R 5 110 # OF PLOTS R 5 46 # OF PLOTS R 5	EQ. 10 27 EQ. 10 11 EQ. 11	INF. POP. INF. POP. INF. POP. 1
CL SD: DOU R ALL TOT CL SD: DOU B ALL TOT CL SD: DOU DOU B ALL TOT CL SD: DOU DOU	68.1 1.0 G FIR DER AL 1.0 G FIR DER		COEFF VAR.% 47.6 69.4 52.5 COEFF VAR.% 41.7 287.9 33.9 COEFF VAR.% 36.7	S.E.% S.E.% S.E.% 7.5 S.E.% 7.5 51.7 6.1 S.E.% 6.6	E VOLUME	SAMPLE .OW 294 82 277 TREES/A .OW 79 6 92 BASAL A .OW 143	7ITHIN THE CTREES - AVG 310 111 293 ACRE AVG 85 13 98 AREA/ACI AVG 153	BF HIGH 327 140 309 HIGH 92 19 104 RE HIGH 163	RROR	# OF TREES R 5 110 # OF PLOTS R 5 46 # OF PLOTS R	EQ. 10 27 EQ. 10 11 EQ.	INF. POP. INF. POP. INF. POP. 1
CCL SD: DOU R AL TOT CL SD: DOU R AL TOT CL SD: R AL TOT CL R AL R AL	68.1 1.0 G FIR DER AL 1.0 G FIR DER		COEFF VAR.% 47.6 69.4 52.5 COEFF VAR.% 41.7 287.9 33.9 COEFF VAR.% 36.7 267.2	S.E.% S.E.% 5.2 26.2 5.5 S.E.% 7.5 51.7 6.1 S.E.% 6.6 47.9	E VOLUME	WILL BE W SAMPLE OW 294 82 277 TREES/A OW 79 6 92 BASAL A OW 143 8	TREES - AVG 310 111 293 ACRE AVG 85 13 98 AREA/ACI AVG 153 15 168	BF HIGH 327 140 309 HIGH 92 19 104 RE HIGH 163 22	RROR	# OF TREES R 5 110 # OF PLOTS R 5 46 # OF PLOTS R 5	EQ. 10 27 EQ. 10 11 EQ. 10 7	INF. POP. INF. POP. INF. POP. 1
CL SD: DOU R AL TOT CT	68.1 1.0 G FIR DER AL 68.1 68.1		COEFF VAR.% 47.6 69.4 52.5 COEFF VAR.% 41.7 287.9 33.9 COEFF VAR.% 36.7 267.2 25.8	S.E.% S.E.% 5.2 26.2 5.5 S.E.% 7.5 51.7 6.1 S.E.% 6.6 47.9	E VOLUME	SAMPLE OW 294 82 277 TREES/A OW 79 6 92 BASAL A OW 143 8 160	TREES - AVG 310 111 293 ACRE AVG 85 13 98 AREA/ACI AVG 153 15 168	BF HIGH 327 140 309 HIGH 92 19 104 RE HIGH 163 22	RROR	# OF TREES R 5 110 # OF PLOTS R 5 46 # OF PLOTS R 5	EQ. 10 27 EQ. 10 11 EQ. 10 7	INF. POP. 1 INF. POP. 1 INF. POP.
CCL SD: DOU R AL TOT CL SD: DOU R AL TOT CL SD: DOU CL SD: DOU R AL TOT CL SD: DOU R AL TOT CL DOU R AL TOT	68.1 1.0 G FIR DER AL 68.1 1.0 G FIR		COEFF VAR.% 47.6 69.4 52.5 COEFF VAR.% 41.7 287.9 33.9 COEFF VAR.% 36.7 267.2 25.8 COEFF	S.E.% S.E.% 5.2 26.2 5.5 S.E.% 7.5 51.7 6.1 S.E.% 6.6 47.9 4.6	E VOLUME I	SAMPLE .OW 294 82 277 TREES/A .OW 79 6 92 BASAL A .OW 143 8 160 NET BF/A	7ITHIN THE 2 TREES - AVG 310 111 293 ACRE AVG 85 13 98 AREA/ACI AVG 153 15 168 ACRE	BF HIGH 327 140 309 HIGH 92 19 104 RE HIGH 163 22 176	RROR	# OF TREES R 5 110 # OF PLOTS R 5 46 # OF PLOTS R 5	EQ. 10 27 EQ. 10 11 EQ. 10 7 EQ. 7	INF. POP. 1 INF. POP. 1 INF. POP.
CCL SD: DOU R AL TOT CL SD: DOU R AL TOT CL SD: CCL SD: CCL SD: CCL SD: CCL SD: CCL SD: CCL SD:	68.1 1.0 G FIR DER AL 68.1 1.0 G FIR DER		COEFF VAR.% 47.6 69.4 52.5 COEFF VAR.% 41.7 287.9 33.9 COEFF VAR.% 36.7 267.2 25.8 COEFF VAR.%	S.E.% S.E.% S.E.% 7.5 S.E.% 6.6 47.9 4.6 S.E.%	E VOLUME I	WILL BE W SAMPLE OW 294 82 277 TREES/A OW 79 6 92 BASAL A OW 143 8 160 NET BF/	7ITHIN THE 2 TREES - AVG 310 111 293 ACRE AVG 85 13 98 AREA/ACI AVG 153 15 168 ACRE AVG	BF HIGH 327 140 309 HIGH 92 19 104 RE HIGH 163 22 176 HIGH	RROR	# OF TREES R 5 110 # OF PLOTS R 5 46 # OF PLOTS R 5	EQ. 10 27 EQ. 10 11 EQ. 10 7 EQ. 7	INF. POP. INF. POP. INF. POP. INF. POP.

TC PSTNDSUM		Stand Table Summary	Page	1
			Date:	5/16/2018
T11S R08W S19 Ty00CC	86.00	Project ICEHOLE	Time:	2:16:06PM
		Acres 86.00	Grown Year:	

S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Average Net Cu.Ft.	Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF	9	1	86	21	4.168	1.84	4.17	4.4	20.0	.52	18	83	45	16	7
DF	12	2	87	80	4.689	3.68	7.03	13.1	50.0	2.63	92	352	226	79	30
DF	13	3	86	75	5.993	5.52	9.99	13.3	50.0	3.78	133	499	325	114	43
DF	14	4	85	88	6.890	7.37	13.78	14.9	58.7	5.87	206	810	505	177	70
DF	15	2	85	88	3.001	3.68	6.00	17.7	67.5	3.02	106	405	260	91	35
DF	16	7	86	95	9.231	12.89	17.14	23.0	92.3	11.83	394	1,582	1,017	339	136
DF	17	4	86	113	4.673	7.37	10.51	26.2	110.0	7.84	275	1,156	674	237	99
DF	18	9	86	101	9.378	16.57	19.80	29.8	114.7	16.79	589	2,271	1,444	507	195
DF	19	5	86	101	4.676	9.21	10.29	31.5	119.1	9.22	324	1,225	793	278	105
DF	20	10	87	97	8.440	18.41	16.88	38.1	140.0	18.33	643	2,363	1,576	553	203
DF	21	10	86	113	7.655	18.41	20.67	35.3	141.9	20.81	730	2,932	1,790	628	252
DF	22	14	86	109	9.765	25.78	27.20	36.5	152.6	28.32	994	4,150	2,436	855	357
DF	23	5	85	113	3.191	9.21	8.93	41.3	175.7	10.52	369	1,570	905	318	135
DF	24	3	86	105	1.758	5.52	4.69	44.4	185.0	5.94	208	867	511	179	75
DF	26	2	85	107	.999	3.68	2.50	57.2	238.0	4.07	143	594	350	123	51
DF	27	1	86	105	.463	1.84	.93	65.5	300.0	1.73	61	278	149	52	24
DF	28	1	85	103	.431	1.84	.86	78.6	310.0	1.93	68	267	166	58	23
DF	Totals	83	86	95	85.398	152.83	181.37	29.5	118.0	153.14	5,352	21,406	13,170	4,603	1,841
RA	11	1	87	40	2.874	1.90	2.87	9.6	30.0	.76	28	86	66	24	7
RA	13	1	87	33	2.058	1.90	2.06	12.6	40.0	.71	26	82	61	22	7
RA	14	2	87	55	3.549	3.79	3.55	23.8	60.0	2.33	85	213	200	73	18
RA	15	1	86	75	1.546	1.90	3.09	19.0	70.0	1.62	59	216	139	51	19
RA	18	1	87	88	1.073	1.90	2.15	31.2	115.0	1.84	67	247	158	58	21
RA	20	1	87	71	.869	1.90	1.74	33.6	105.0	1.61	58	183	138	50	16
RA	22	1	85	52	.719	1.90	.72	61.6	120.0	1.22	44	86	105	38	7
RA	Totals	8	87	54	12.687	15.17	16.18	22.7	68.8	10.08	367	1,114	867	315	96
Totals		91	86	90	98.086	168.00	197.54	29.0	114.0	163.23	5,719	22,520	14,038	4,918	1,937

TC	PSPCSTGR		Sı	pecies, S	ort Gra	de - Board	Foo	t V	olum	es (Pr	oject)								
T1	1S R08W S19 T	y00CC		86.00		Project: Acres		ICE	EHOL 86.0								Page Date Time		16/201 :14:01	18
		%						Perce	ent of N	Vet Boar	rd Foot	Volume					Avera	ige Log	3	Logs
	S So Gr	Net	Bd. Ft.	. per Acre		Total	Γ	I	Log Sca	ale Dia.			Log l	Length		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4	-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
RA	DO K	100	1.7	1,133	1,114	9	6	3	64	33		8	15		77	31	7	69	0.74	16.2
RA	Totals	5	1.7	1,133	1,114	9	96	3	64	33		8	15		77	31	7	69	0.74	16.2
DF	CU CU															6	18		0.00	.5
DF	DO CU		100.0	105												11	12		0.00	2.5
DF	DO 2M	57	1.3	12,471	12,314	1,03	9		1	93	6		2	8	90	39	13	263	1.59	46.9
DF	DO 3M	37	.5	8,042	8,002	68	8		97	3				42	58	36	8	90	0.67	88.5
DF	DO 4M	6		1,091	1,091	9	4	4	96			69	24		7	19	6	24	0.35	46.0
DF	Totals	95	1.4	21,709	21,406	1,84	1	0	42	54	3	4	2	20	74	32	9	116	0.90	184.4
Tota	ls		1.4	22,842	22,520	1,93	7	0	43	53	3	4	3	19	74	32	9	112	0.89	200.6

 TC
 PLOGSTVB
 Log Stock Table - MBF

 T11S R08W S19 Ty00CC
 86.00
 Project: ICEHOLE Acres
 Page 1 Date 5/16/2018 Time 2:10:14PM

s	So Gr	L	og	Gross	Def	Net	%		N	let Volu	me by S	caling l	Diamete	r in Inche	s		
Spp T	rt de	L	en .	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23 24-29	30-39 40+
RA	DO I	ζ.	16	4		4	4.3		3	1							
RA	DO F	ζ.	20	4		4	3.9				4						
RA	DO F	ζ.	24	7		7	7.4			7							
RA	DO F	ζ.	26	7		7	7.7			7							
RA	DO F	ζ.	40	75	2.2	73	76.7			18	23		32				
RA	Tot	als		97	1.7	96	4.9		3	34	27		32				
DF	DO C	CU	16	9	100.0												
DF	DO 2	M	30	18		18	1.0								18		
DF	DO 2	M	32	72		72	3.9					14	24	15	19		
DF	DO 2	M	34	12	5.9	12	.6						12				
DF	DO 2	M	36	16		16	.9						16				
DF	DO 2	M	40	954	1.3	941	51.1						352	468	121		
DF	DO 3	М	32	236	1.1	233	12.7			11	118	104					
DF	DO 3	M	34	59		59	3.2			25		34					
DF	DO 3	M	36	26		26	1.4			26							
DF	DO 3	M	37	10		10	.5			10							
DF	DO 3	M	38	13		13	.7			13							
DF	DO 3	М	40	348		347	18.9			124	76	131	17				
DF	DO 4	М	15	2		2	.1			2							
DF	DO 4	M	16	39		39	2.1		4	35							
DF	DO 4	M	17	3		3	.2			3							
DF	DO 4	М	18	9		9	.5			9							
DF	DO 4	М	20	11		11	.6			11							
DF	DO 4	М	21	2		2	.1			2							
DF	DO 4	М	23	9		9	.5			3		6	i				
DF	DO 4	М	24	6		6	.3			6							
DF	DO 4	М	26	2		2	.1			2							
DF	DO 4	М	28	4		4	.2			4							
DF	DO 4	М	38	7		7	.4			7							
DF	Tot	als		1,867	1.4	1,841	95.1		4	293	194	288	421	483	158		
Total	All Spe	cies		1,964	1.4	1,937	100.0		6	327	221	288	453	483	158		

Legend

Boundaries

• • • • • Timber Sale Boundary

State Forest Property Boundary

Roads

Surfaced Road

=== Unsurfaced Road

Streams

— · Type F Stream

Type N Stream

Posted Stream Buffer

Stream Buffer

Reforestation Area

— Cable Corridors

Green Tree Retention Area

Marbled Murrelet Management Area

Occupied Habitat

Non-Habitat Buffer

1.000

Permanent Inventory Plots

Buried Fiber Optic Line

LOGGING PLAN

OF TIMBER SALE CONTRACT NO. 341-18-110 ICE HOLE

PORTIONS OF SECTIONS 19 & 20, T11S, R8W, W.M., LINCOLN COUNTY, OREGON

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

Scale

1:12,000

0 1,000 2,000

NET ACRES Cable = 63 NET ACRES Tractor = 23

Created By: Blake McKinley blake.mckinley@oregon.gov Date: 05/17/2018