EXHIBIT C – SAWMILL GRADE (WESTSIDE SCALE)

SCALING INSTRUCTIONS -- LOCATION APPROVAL -- BRAND INFORMATION

 (1) (2) (3) (4) 	REVISION NUMBER D CANCELLATION D (2) TO:				451		 (9) SALE NAME: <u>Cougar Looper Sorts Area 3</u> COUNTY: <u>Clatsop</u> (10) STATE CONTRACT NUMBER: <u>341-17-</u> (11) STATE BRAND REGISTRATION NUMBER: (12) STATE BRAND INFORMATION (COMPLETE):
(6)	SPECIES Conifers Hardwoods * Apply minimum vol WESTSIDE	ume test to whole logs over 40 SCALE: taper rule. Logs over 40'.	NET VOLU 10 10)	(13) PAINT REQUIRED: YES ⊠ COLOR: Orange (14) SPECIAL REQUESTS (Check applicable) PEELABLE CULL (all species) NO DEDUCTIONS ALLOWED FOR MECHANICAL DAMAGE ADD-BACK VOLUME - Deductions due to delay
(8 (as	LOCATIO	ED SCALING DNS Droved Locations web-site)	Species	Yard	Truck	Weight	OTHER: (15) REMARKS

Notify the District within one hour when branding or painting is inadequate for quick identification, the receipts are missing, not correctly or completely filled out, and/or when logs presented for scaling are impossible to scale accurately.

Distribution (See specific instructions on pg.2): ORIGINAL: Salem / COPIES: TPSO, Approved Scaling Location, Purchaser, District, Mgmt. Unit

EXHIBIT C – SAWMILL GRADE INSTRUCTIONS FOR FORM 343-307a (rev. 11/11)

- (1) Check appropriate box. REVISION NUMBER requires comments. CANCELLATION requires logging and hauling to be complete, recall branding hammers, date and sign where indicated, write diagonally across page "CANCEL", and send to TPSO.
- (2) Designate Third Party Scaling Organization (TPSO).

Columbia River Log Scaling & Grading Bureau P.O. Box 7002, Eugene, OR 97401 Phone: (541) 342-6007 Fax: (541) 342-2631 Email: <u>services@crls.com</u>

Mountain Western Log Scaling & Grading Bureau P.O. Box 580, Roseburg, OR 97470 Phone: (541) 673-5571 Fax: (541) 672-6381 Email: <u>info@mwlsgb.com</u>

 Northwest Log Scalers, Inc
 .

 5526 NE 122nd Ave, Portland, OR 97230

 Phone: (503) 254-0600
 Fax: (503) 408-0919

 Email: info@nwlogscalers.com

Pacific Rim Log Scaling Bureau, Inc. 8288 28th Court North East, Lacey, WA 98516 Phone: (360) 528-8710 Fax: (360) 528-8718 Email: <u>office@prlsb.com</u>

Yamhill Log Scaling & Grading Bureau P.O. Box 709, Forest Grove, OR 97116 Phone: (503) 359-4474 Fax: (503) 359-4476 Email: yamhill@atglobal.net

Pacific Log Scaling & Grading Bureau, Inc. P.O. Box 23939, Portland, OR 97281 Phone: (503) 684-5599 Fax: (503) 639-4880 Email: PacLogScale@aol.com

- (3) State District office, address and phone.
- (4) Enter Purchaser's business name, address, and phone number as it appears on the Contract.
- (5) Minimum Scaling Specifications.
- (6) Westside Region 6 actual taper segment scale. Check Yes or No. Special Service Rules on file with TPSO. See: Segment Scaling and Grading of Long Logs -- All Species -- State Forestry Department Scaling Practices (Westside).
- (7) Weight Scale Sample Check box if sale is to be a Weight Scale Sample. All specifics for handling, scaling and processing will be attached or explained in the Remarks section Item (15).
- (8) Show scaling locations only applicable to TPSO. Location name should appear as it does on the ODF Approved Scaling Location web site: http://www.odf.state.or.us/DIVISIONS/management/asset_management/ScalingLocation.asp Locations with scaling and processing directions specific to their location should be on a separate form. Species should be identified if not capable of receiving "all" species. Check appropriate box for either: yard, truck scale, or weight. Refer to the web site listed above for the locations approval status.
- (9) Enter sale name and county.
- (10) Enter sale Contract number.
- (11) Enter Oregon's State Brand Registry Number (REQUIRED).
- (12) Show brand assigned to timber sale. One brand only. If more than one brand is assigned to the sale: (1) make a separate form for each brand and (2) on each form, explain and show other brand(s) in the Remarks section Item (15).
- (13) Check yes for Paint Required and designate "Orange" for color. Non required removal volumes may sometimes require blue paint.
- (14) Special Requests. These are requests that will be applied to ODF timber sales. All boxes applicable to the timber sales designated in the Exhibit C form must be "marked". If "Other" is indicated, it must contain a description and any necessary comments.
- (15) Use this space to designate any weight conversion factors, per load volumes, weight scale sample instructions or any other explanations to clarify scaling, processing and/or mailing requirements. If additional scaling locations are approved, revise original or current form showing all (old and new) locations. Check REVISION box at top of form and explain under remarks. Route as indicated.
- (16) Require purchaser to sign and date completed form in addition to State Forester Representative, sign and print name on the form.

Salem Distribution Instructions: Original will be mailed to Salem after it is electronically scanned and placed in the Salem transfer drive <u>\\WPODFFILL01\Transfer\ScalingInstructions</u> or e-mailed directly to <u>scaling@odf.state.or.us</u>. Scaling instructions for each brand should be scanned separately, for each approved TPSO.

Distribution (See specific instructions on pg.2): ORIGINAL: Salem / COPIES: TPSO, Approved Scaling Location, Purchaser, District, Mgmt. Unit

EXHIBIT C – PULP SORT

PROCESSING INSTRUCTIONS -- LOCATION APPROVAL -- BRAND INFORMATION

(1)	ORIGINAL REGISTRATION	Date
	REVISION NUMBER	Date
	CANCELLATION	Date

(2)	TO:	
. ,		(Approved Pulp Processing Facility)

- (3) FROM: <u>Astoria (04)</u> Phone <u>503-325-5451</u> (State Forestry District)
- (4) Scaling Bureau (TPSO) Processing Weight receipts:

Mailing Address:	
Phone Number:	

- (6) STATE Definition of Approved Pulp Sort:
 - Top portion of the tree (tops).
 - All logs with a diameter (Big End) greater than <u>8</u> inches marked with blue paint.

(7) PULP FACILITY PROCESSING INSTRUCTIONS:

- Pulp loads shall be weighed in lieu of scaling.
- One Ton = 2000 lbs (Short Ton).
- Pulp loads shall have a yellow Log Load Receipt attached.
- Gross weight and truck tare weight for each load shall be machine printed on the weight receipt.
- Weigher shall sign the weight receipt.
- Weigher shall record the Log Load Receipt number on the weight receipt.
- Weigher shall attach the Weight receipt to the Log Load Receipt and mail them weekly to the TPSO processing the Weight receipt.
- (8) TPSO PROCESSING INSTRUCTIONS
 - Mail to ODF weekly.
 - Convert to MBF using 10 tons per MBF.

((9)	SALE NAME:	Coudar	Looper	Sorts	Area	3
1	0		Obugai	LOOPCI	0010	AICU .	0

COUNTY: Clatsop

- (10) STATE CONTRACT NUMBER:_____
- (11) STATE BRAND REGISTRATION NUMBER
- (12) STATE BRAND INFORMATION: (COMPLETE BELOW)

(13) REMARKS:

Operator's Name (Optional inclusion by District):

(14) SIGNATURES:

Purchaser or Authorized Representative Date
State Forester Representative Date

State Forester Representative PRINT NAME

Notify the District within one hour when branding is inadequate for quick identification, the logs are marked with orange paint, the receipts are missing, not correctly or completely filled out, and/or logs do not meet the specifications of the STATE definition of Approved Pulp Sort.

Distribution: ORIGINAL: Salem / COPIES: TPSO, Approved Pulp Processing Location, Purchaser, District, Mgmt. Unit

EXHIBIT C – PULP SORT

INSTRUCTIONS FOR FORM 343-307b (rev. 11/11)

- Must Complete. Check appropriate box. REVISION NUMBER requires comments in the Remarks Section (13). CANCELLATION requires logging and hauling to be complete, recall branding hammers, date and sign where indicated, write diagonally across page "CANCEL", and send to TPSO.
- (2) **Must Complete**. Approved Pulp Processing Facility. Write in as written in the Approved Log Delivery Location <u>http://www.odf.state.or.us/DIVISIONS/management/asset_management/ScalingLocation.asp</u>
- (3) Must Complete. State Forestry District and District Phone Number.
- (4) Must Complete. Purchaser's business name as it appears on the Contract.
- (5) **Must Complete.** Third Party Scaling Organization that will be processing the weight tickets, mailing address, and phone number.

Columbia River Log Scaling & Grading Bureau P.O. Box 7002, Eugene, OR 97401 Phone: (541) 342-6007 Fax: (541) 342-2631 Email: <u>services@crls.com</u>

Mountain Western Log Scaling & Grading Bureau P.O. Box 580, Roseburg, OR 97470 Phone: (541) 673-5571 Fax: (541) 672-6381 Email: info@mwlsgb.com

Northwest Log Scalers, Inc . 5526 NE 122nd Ave, Portland, OR 97230 Phone: (503) 254-0600 Fax: (503) 408-0919 Email: <u>info@nwlogscalers.com</u> Pacific Rim Log Scaling Bureau, Inc. 8288 28th Court North East, Lacey, WA 98516 Phone: (360) 528-8710 Fax: (360) 528-8718 Email: <u>office@prlsb.com</u>

Yamhill Log Scaling & Grading Bureau P.O. Box 709, Forest Grove, OR 97116 Phone: (503) 359-4474 Fax: (503) 359-4476 Email: yamhill@attglobal.net

Pacific Log Scaling & Grading Bureau, Inc. P.O. Box 23939, Portland, OR 97281 Phone: (503) 684-5599 Fax: (503) 639-4880 Email: <u>PacLogScale@aol.com</u>

- (6) Must Complete. Big end log not to exceed <u>8</u> inches. Big end of log is not to exceed 2 inches greater than the minimum removal specifications in the contract. Example: Minimum removal specifications 6 inches and 20 board feet, then the Big end of log not to exceed <u>8</u> inches. When conifer and hardwood removal specifications are different, use the smaller removal diameter to determine this specification.
- (9) **Must Complete**. Enter sale name and county. If more than one county write in all the counties that the sale is located in.
- (10) Must Complete. Enter sale Contract number.
- (11) Must Complete. Enter Oregon's State Brand Registry Number (REQUIRED).
- (12) **Must Complete**. Show brand assigned to timber sale. One brand only. If more than one brand is assigned to the sale: (1) make a separate form for each brand and (2) on each form, explain and show other brand(s) in the Remarks section Item (13).
- (13) Use this section to list any special instructions or the reason for any revisions in section item (1).
- (14) **Must Complete.** Purchaser required to sign and date completed form in addition to State Forester Representative, sign <u>and print name on the form.</u>

Salem Distribution Instructions: Original will be mailed to Salem after it is electronically scanned and placed in the Salem transfer drive \\WPODFFILL01\Transfer\ScalingInstructions or e-mailed directly to scaling@odf.state.or.us. Scaling instructions for each brand should be scanned separately, for each approved TPSO.

Cougar Looper Sorts FY 2017 TIMBER CRUISE REPORT – Area 3

1. Sale Area Location: <u>Area 3</u> is located in portions of Section 21, T4N, R8W, W.M., Clatsop County, Oregon.

2.	Fund Distribution: Fund:	BOF	100%	CSL 0%
	Tax Code:	8-01	100%	

3. Sale Acreage by Area:

Area	Harvest Type	Gross Acres	Stream Buffer Acres	New R/W Acres	Existing R/W Acres	Net Acreage
3	MC	97	6	1	4	86
TOTALS		97	6	1	4	86

- **4.** Cruisers and Cruise Dates: <u>Area</u> 3 was cruised by Jake Hatcher with Matt Dimick, Andrew Arvin, John Choate, and Bryce Rodgers. The cruise was performed in October, 2016.
- **5.** Cruise Method and Computation: <u>Area</u> 3 is a modified clear cut unit. A variable plot cruise with a 40 BAF for conifer and a 33.61 BAF was used for hardwoods in all of these Areas.

<u>Area 3</u> is a modified clear cut unit. 55 plots were sampled on a grid of 3 chains by 5 chains, with a count/cruise plot ratio of 1 to 1. There were 28 measured plots and 27 count plots sampled

Cruisers used Allegro data collectors, and were downloaded to the Atterbury <u>Super A.C.E.</u> program at the Astoria District for computing. See the attached <u>Cruise Design</u> for more details on the cruise method. The cruise calculations were processed in the Astoria District office.

AREA	PROJECT	TRACT	CRUISE TYPE
3	COUGARLOOP	A3	CC3
3	COUGARLOOP	A3	TAKE

6. Timber Description: <u>Area 3</u> is approximately 75 year-old timber stand of hemlock, alder, with some Sitka spruce and Douglas-fir. The average take hemlock tree size for harvest is approximately 16 inches DBH, with an average merchantable tree height of 48 feet. The average take Red alder tree size is approximately 14 inches DBH with an average merchantable tree height of 39 feet. The average spruce take tree size is approximately 21 inches DBH, with an average merchantable tree height of 47 feet. The average volume per acre to be harvested (net) is approximately 31 MBF. All trees were cruised to a merchantable top of 6 inch DIB or 40% fp.

Cedar is a reserved species in Area 3.

7. Statistical Analysis: (See also "Statistics Reports," attached.)

Area	Target CV	Target SE%	Actual CV	Actual SE%
3	55	9	56.5	7.6

The statistics are for all areas and Take and Leave trees combined based on Net BF/Acre.

8. Take Volumes by Species and Log Grades for All Sale Areas by MBF: (See "Species, Sort Grade-Board Feet Volumes (Project)", "Statistics (Project)", and the "Stand Table Summary" attached). Volumes do not include "in-growth." The majority of defect and breakage was taken out during the cruise.

Species	DBH	Net Vol.	Special Mill	2 Saw	3Saw	4 Saw	% D & B	% Sale
Douglas-fir	47	155		155			-	6
W. Hemlock & True Fir	16	1,706		1,054	514	138	5	65
Sitka Spruce	21	271		163	71	37	2	10
Net Conifer Volum	е	2,132		1,372	585	175		81

Species	DBH	Net Vol.	12" +	10" - 11"	8" – 9"	6" – 7"	% D & B	% Sale
Alder & Other hardwoods	14	511	135	107	48	221	3	19

TOTAL NET VOLUME = 2,643 MBF

Sort Breakdown:

Sort #	Contract Number	Species and Sort Specifications	Estimated Net MBF	Sale %
1	341-17-76	WH/fir 6"-11"	614	23
2	341-17-77	WH/fir 12" to 20"	751	28
3	341-17-78	WH/fir 21"+	254	10
4	341-17-79	WH/fir High Quality (12"+)	87	3
7	341-17-80	DF 21"+	155	6
9	341-17-81	SS 6"-20"	98	4
10	341-17-82	SS 21"+	173	7
11	341-17-83	RA Camprun 6" to 9"	269	10
12	341-17-84	RA Camprun 10"+	242	9
13	341-17-85	2" Pulp	2,100 Tons	-

High Quality Volume was estimated at 5% of volume over 12 inches for Western Hemlock. Pulp Volume based on approximately 7%-8% of sawlog volume.

9. Prepared by: Edward M. Holloran

Date: <u>12/1/16</u> Date: <u>12/20/16</u>

10. Approved by:

11. Attachments:

Cruise Plans & Maps – (3 pages) Species, Sort, Grade Reports – Take (1 page) Statistics Reports – (3 pages) Stand Table Report – (2 pages) Log Stock Table Report – Take (2 pages)

CRUISE DESIGN ASTORIA DISTRICT

Sale Name: Cougar Looper Area(s) 3

Harvest Type: Modified Clear Cut

Approx. Cruise Acres: 87 Estimated CV% 55 Net BF SE% Objective 9 Net BF

Planned (Unit) Sale Volume: 2871 MBF Estimated Sale Area Value/Acre: \$10,725

A. <u>Cruise Goals</u>: (a) Grade minimum <u>180</u> conifer and <u>20</u> hardwood trees:
 (b) Sample <u>57</u> cruise plots; (c) Other goals (<u></u> Determine "automark" thinning standards; <u>X</u> Determine log grades for sale value; <u>X</u> Determine snag and leave tree species and sizes; <u>Determine LWD</u> (down wood) cubic feet and decay classes; <u>Determine "diameter limit" harvest parameters;</u>

B. Cruise Design:

1.	Plot Cruises:	BAF 40 for Conifer	and 33.61	for Hardwoods	Full point
		Fixed Plot Size	Plot Rac	lius feet	
		Cruise Line Direction(s) <u>0°/18</u>	<u>0°</u>	
		Cruise Line Spacing	5	chains	
		Cruise Plot Spacing	3	chains	
		Grade/Count Ratio	1:1	(29 measure – 28	count)
	Leave X leave	e trees per cruise plot.			

If plot falls clearly inside a buffer drop the plot. Take plots as marked on map. Grade all hardwoods as Camp Run. All Cedar is reserved Timber.

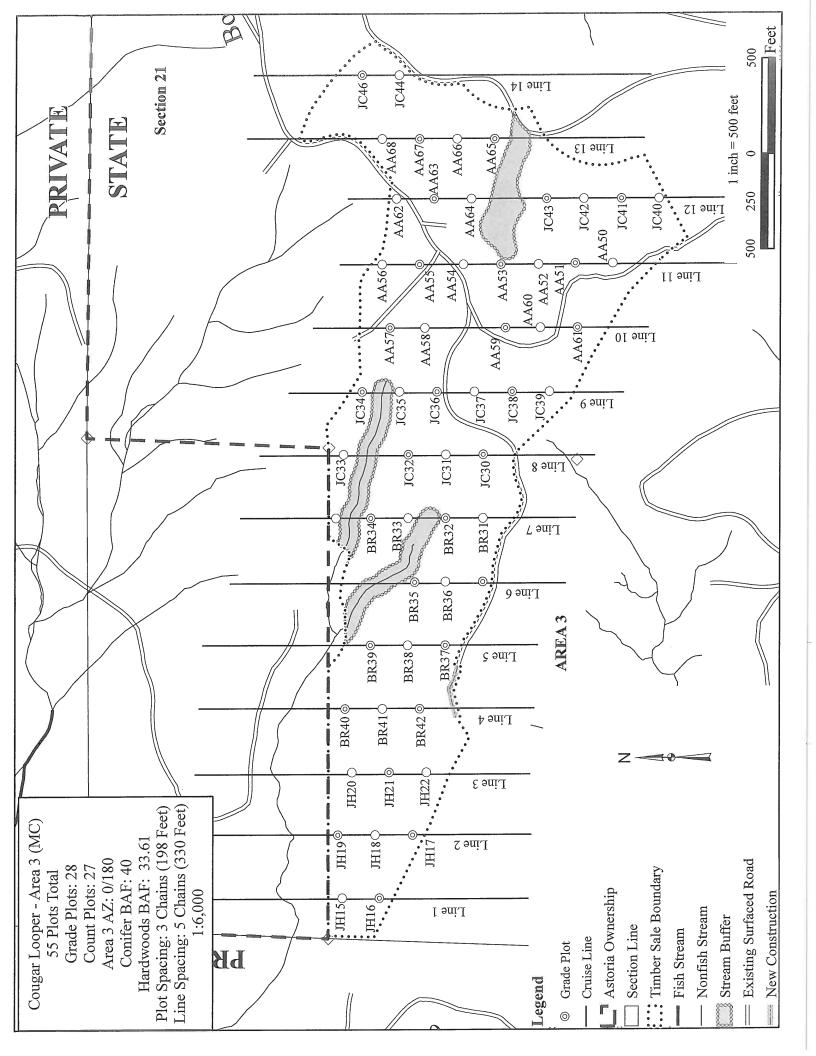
C. Tree Measurements:

- Diameter: Minimum DBH to cruise is <u>8</u>" for conifers and <u>8</u>" for hardwoods. Record DBH to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- **2. Bole Length:** Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- Top Cruise Diameter (TCD): Minimum top outside bark is <u>7</u>" or <u>40</u>% of DOB at 16' form point. Generally, use 7" outside bark for trees < 18" DBH and 40% of DOB @ FP for trees > 18" DBH.
- **4.** Form Factors: (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 16', 32' and 40' lengths, whenever possible. Do not record odd segments just to

maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

6. Species, Sort, and Grade Codes:

A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce);
 C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple).


For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.)

- B. <u>Sort</u>: Use code "1" (Domestic).
- C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull
- D. <u>Alder Grades</u>: 12" + = 1 Sawmill; 10"-12" = 2 Sawmill; 10"-8" = 3 Sawmill; and 8"-6" 4 Sawmill, or R = Camp Run; 0 = Cull.
- **7. Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: <u>Plot Type Cruises</u>: Mark cruise line beginning and end points with <u>blue/yellow</u> flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie <u>yellow</u> flagging above eye level near plot center and another <u>yellow</u> flagging around a sturdy wooden stake marking plot center. On each <u>yellow</u> flagging, write the plot identification number. Between plots, along the cruise line, tie <u>blue</u> flagging at Intervisible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in <u>yellow</u> paint. All trees on the plot may be marked this way, if the cruiser chooses.

<u>ITS and 100% Cruises</u>: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with <u>vellow</u> paint.

- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back), Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design Cruise Map, Yellow Flagging, Blue Flagging
- **10. Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.
 - B. Data Recorder Instructions
 - C. <u>Other</u>

Cruise Design b	y: Ed Holloran	
Approved by: _	a h Thili	
Date:	12/20/2016	

T TSPCSTGR

Species, Sort Grade - Board Foot Volumes (Type) Project: COUGLOOP

																		1.10.2	
T041 Tw 041	-	S21 T ge BW	Sec	Tract A3		Туре 0СС				-	le Tre 176	es	C 1	CuFt	T04 Bdl W		808W	S21 T	°0CC3
			%					Percent	Net E	Board Fo	oot Vo	ume			Av	verag	ge Log	5	Loga
		Gr	Net	Bd.	Ft. per A	cre	Total	Log S	cale D	Dia.	Lo	g Ler	ıgth		Ln 1	Dia	Bd	CF/	Logs Per
Spp	T rt	ad	BdFt	Def%	Gross	Net	Net MBF	4-5 6-1	1 12-1	16 17+	12-20	21-30	31-35	5 36-99	Ft J	ĺn	Ft	Lf	/Acre
Н	DO	CU		00.0	868										13	10		0.00	12.:
Н	DO	2S	61	.7	12,339	12,253	1,054		52	48	1	3	12	85	38	15	366	2.22	33.
Η	DO	3S	30	.5	6,009	5,978	514	93	5	2	2	1	35	63	36			0.76	67.
Η	DO	4S	9	2.1	1,646	1,612	139	99	1		53	31	9	7	22	6	28	0.43	58.
H	Totals		64	4.9	20,862	19,843	1,706	36	34	30	5	4	19	72	30	9	115	1.02	172.0
A	DO	CU		100.0	143										7	10		0.00	7.3
А	DO	1 S	26		1,569	1,569	135		82	18	19	35	8	38	28	13	189	1.69	8.3
А	DO	2S	21		1,248	1,248	107	100			17	44		39	29		114	1.02	10.9
А	DO	3S	9		560	560	48	100			7	48	12	34	30	9	74	0.86	7.0
A	DO	4S	44	2.0	2,614	2,562	220	100			19	17	9	55	30	6	44	0.57	58.
A	Totals		19	3.2	6,133	5,939	511	74	22	5	17	30	7	45	28	8	64	0.74	92.2
S	DO	CU		100.0	55										8 1	1		0.00	1.3
S	DO	2S	59		1,890	1,890	163			100				100	40 2	26	1292	6.51	1.5
S	DO	3S	27		830	830	71	59	8	33		25	7	68	35 1	2	216	1.69	3.8
S	DO	4S	14		430	430	37	33		67	27	22	51		22	8	84	0.94	5.2
S	Totals		10	1.7	3,205	3,150	271	20	2	78	4	10	9	78	27 1	2	267	2.26	11.8
D	DO	2S	100		1,801	1,801	155		10	90				100	40 2	25	1243	5.83	1.4
D	Totals		6		1,801	1,801	155		10	90				100	40 2	2.5	1243	5.83	1.4
CL	DO	CU		00.0	11										82	20		0.00	.1
CL	DO	2S	73		117	117	10			100	26	74			23 2	.6	735	6.11	.2
CL	DO	3S	3		5	5	0	100				100			30	8	60	1.30	.1
CL	DO	4S	24		37	37	3	100			100				18	9	40	0.72	.9
CL	Totals		1	6.6	170	158	14	26		74	42	58			19 1	2	127	1.60	1.2
SL	DO	2S	83		114	114	10			100				100	40 4	3	3490	17.95	.0
SL	DO	4S	17		23	23	2			100				100	40 2	0	700	6.05	.0
SL	Totals		0		136	136	12			100				100	40 3	2 2	2095	12.00	.1
HL	DO	2S	100	7.0	154	143	12		6	94	6		28	66	30 2	0	660	5.08	.2
HL	Totals		0	7.0	154	143	12		6	94	6		28	66	30 2	0	660	5.08	.2
Туре Т	otals			4.0	32,461	31,170.	2,681	39	26	35	7	10	14	69	29	9	112	1.02	278.9

	ATS				ST proje	ATIST	TCS COUGLOO)D		PAGE DATE 1	1 2/16/2016
ГWР	RGE	SECT T	RACT		TYPE		RES	PLOTS	TREES	CuFt	BdFt
04N	08W		13		TAKE	AC	86.00	55	361	1	W
	0011										
					TREES		ESTIMATED TOTAL		PERCENT		
		PLOTS	TREES		PER PLOT		TREES		REES		
TOTA	T		361		6.6						
TOTA		55 28	361 169		6.0		16,198		1.0		
	SE COUNT	28	109		0.0		10,198		1.0		
REFO											
COUN		27	192		7.1						
BLAN											
100 %											
				STA	ND SUM	MARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
WHEN	MLOCK	94	111.0	15.7	48	37.5	148.4	19,994	19,843	5,219	5,219
R ALI		67	69.8	14.2	39	20.4	76.8	5,990	5,939	1,907	1,907
S SPR		7	7.1	21.2	47	3.8	17.5	3,150	3,150	716	716
DOUC		1	.5	47.0	123	0.8	5.8	1,801	1,801	338	338
TOTA		169	188.4	15.5	45	63.0	248.4	30,936	30,733	8,180	8,180
CL	60 1 %	COFFE	7		C A MODE					DEO	DIE DOD
	68.1 %	COEFF		I		E TREES		#	OF TREES		
SD:	1.0	COEFF VAR.% 117.8		LC	SAMPL OW 379	E TREES	5 - BF HIGH 484	#	OF TREES 5	REO. 10	
SD:	1.0 MLOCK	VAR.%	6 S.E.%	LC	WC	AVG	HIGH	#			INF. POP. 1
SD: WHEN	1.0 MLOCK DER	VAR.%	6 S.E.% 12.1		OW 379	AVG 432	HIGH 484	#			
SD: WHEN R ALL S SPR DOUC	1.0 MLOCK DER UCE 3 FIR	VAR.% 117.8 129.4 116.3	6 S.E.% 12.1 15.8 47.3		OW 379 101 1,008	AVG 432 120 1,913	HIGH 484 139 2,818		5	10	1
SD: WHEN R ALL S SPR DOUC TOTA	1.0 MLOCK DER UCE 3 FIR AL	VAR.% 117.8 129.4 116.3 <i>185.8</i>	6 S.E.% 12.1 15.8 47.3 14.3		OW 379 101	AVG 432 120	HIGH 484 139				1
SD: WHEN R ALL S SPR DOUC TOTA	1.0 MLOCK DER UCE 3 FIR	VAR.% 117.8 129.4 116.3	6 S.E.% 12.1 15.8 47.3 14.3		OW 379 101 1,008	AVG 432 120 1,913 389	HIGH 484 139 2,818		5	10 345	1
SD: WHEN R ALL S SPR DOUC TOTA CL: SD:	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0	VAR.% 117.8 129.4 116.3 <i>185.8</i> COEFF VAR.%	% S.E.% 12.1 15.8 47.3 14.3 7 5 6 S.E.%]	DW 379 101 1,008 333 TREES/ DW	AVG 432 120 1,913 389 ACRE AVG	HIGH 484 139 2,818 <i>445</i> HIGH		5	10 345	1 15. INF. POP.
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN	1.0 MLOCK DER UUCE 3 FIR AL 68.1 % 1.0 MLOCK	VAR.% 117.8 129.4 116.3 <i>185.8</i> COEFF VAR.% 110.7	% S.E.% 12.1 15.8 47.3 14.3 5 5 6 S.E.% 14.9 14.9]	DW 379 101 1,008 333 TREES/ DW 94	AVG 432 120 1,913 389 ACRE AVG 111	HIGH 484 139 2,818 445 HIGH 128		5 1,378 OF PLOTS	10 345 REQ.	1 15. INF. POP.
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER	VAR.% 117.8 129.4 116.3 <i>185.8</i> COEFF VAR.% 110.7 106.6	% S.E.% 12.1 15.8 17.3 14.3 7 5 6 S.E.% 14.9 14.4]	DW 379 101 1,008 333 TREES/ DW 94 60	AVG 432 120 1,913 389 ACRE AVG 111 70	HIGH 484 139 2,818 445 HIGH 128 80		5 1,378 OF PLOTS	10 345 REQ.	1 15. INF. POP.
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE	VAR.% 117.8 129.4 116.3 <i>185.8</i> COEFF VAR.% 110.7 106.6 218.2	% S.E.% 12.1 15.8 17.3 14.3 6 S.E.% 14.9 14.4 29.4 29.4]	DW 379 101 1,008 333 TREES/ DW 94 60 5	AVG 432 120 1,913 389 ACRE AVG 111	HIGH 484 139 2,818 445 HIGH 128		5 1,378 OF PLOTS	10 345 REQ.	1 15. INF. POP.
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR	VAR.% 117.8 129.4 116.3 <i>185.8</i> COEFF VAR.% 110.7 106.6 218.2 406.0	% S.E.% 12.1 15.8 17.3 14.3 7 5 6 S.E.% 14.9 14.4]	DW 379 101 1,008 333 TREES/ DW 94 60	AVG 432 120 1,913 389 ACRE AVG 111 70 7	HIGH 484 139 2,818 445 HIGH 128 80 9		5 1,378 OF PLOTS	10 345 REQ.	15. INF. POP. 1
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL	VAR.% 117.8 129.4 116.3 <i>185.8</i> COEFF VAR.% 110.7 106.6 218.2 406.0 <i>58.0</i>	% S.E.% 12.1 15.8 17.3 14.3 7 5 6 S.E.% 14.9 14.4 29.4 54.7 7.8 7]	DW 379 101 1,008 333 TREES/ DW 94 60 5 0 174	AVG 432 120 1,913 389 ACRE AVG 111 70 7 0 188	HIGH 484 139 2,818 445 HIGH 128 80 9 1 203	#	5 <i>1,378</i> OF PLOTS 5 <i>134</i>	10 345 REQ. 10 34	15. INF. POP. 1
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 %	VAR.% 117.8 129.4 116.3 185.8 COEFF VAR.% 110.7 106.6 218.2 406.0 58.0 COEFF	% S.E.% 12.1 15.8 17.3 14.3 6 S.E.% 14.9 14.4 29.4 54.7 7.8 7	LC	DW 379 101 1,008 333 TREES/ DW 94 60 5 0 174 BASAL	AVG 432 120 1,913 389 ACRE AVG 111 70 7 0 188 AREA/A	HIGH 484 139 2,818 445 HIGH 128 80 9 1 203 CRE	#	5 <i>1,378</i> OF PLOTS 5 <i>134</i> OF PLOTS	10 345 REO. 10 34 REO.	15. INF. POP. 1 <i>I</i> . INF. POP.
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA CL: SD:	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0	VAR.% 117.8 129.4 116.3 185.8 COEFF VAR.% 110.7 106.6 218.2 406.0 58.0 COEFF VAR.%	% S.E.% 12.1 15.8 17.3 14.3 6 S.E.% 14.9 14.4 29.4 54.7 7.8 7	LC	DW 379 101 1,008 333 TREES/ DW 94 60 5 0 174	AVG 432 120 1,913 389 ACRE AVG 111 70 7 0 188	HIGH 484 139 2,818 445 HIGH 128 80 9 1 203	#	5 <i>1,378</i> OF PLOTS 5 <i>134</i>	10 345 REQ. 10 34	15. INF. POP. 1 <i>I</i> . INF. POP.
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA CL: SD:	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK	VAR.% 117.8 129.4 116.3 185.8 COEFF VAR.% 110.7 106.6 218.2 406.0 58.0 COEFF	6 S.E.% 12.1 15.8 15.8 47.3 14.3 14.3 5 14.9 14.4 29.4 54.7 7.8 5 S.E.%	LC	DW 379 101 1,008 333 TREES/ DW 94 60 5 0 174 BASAL DW	AVG 432 120 1,913 389 ACRE AVG 111 70 7 0 188 AREA/A AVG	HIGH 484 139 2,818 445 HIGH 128 80 9 1 203 CRE HIGH	#	5 <i>1,378</i> OF PLOTS 5 <i>134</i> OF PLOTS	10 345 REO. 10 34 REO.	15. INF. POP. 1 <i>I</i> . INF. POP.
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER	VAR.% 117.8 129.4 116.3 185.8 COEFF VAR.% 110.7 106.6 218.2 406.0 58.0 COEFF VAR.% 86.3	6 S.E.% 12.1 15.8 15.8 47.3 14.3 14.3 5 14.9 14.4 29.4 54.7 7.8 5 11.6 14.2 27.1	LC	DW 379 101 1,008 333 TREES/ DW 94 60 5 0 174 BASAL DW 131	AVG 432 120 1,913 389 ACRE AVG 111 70 7 0 188 AREA/A AVG 148	HIGH 484 139 2,818 445 HIGH 128 80 9 1 203 CRE HIGH 166	#	5 <i>1,378</i> OF PLOTS 5 <i>134</i> OF PLOTS	10 345 REO. 10 34 REO.	15. INF. POP. 1 <i>I</i> . INF. POP.
SD: WHEN R ALI S SPR DOUC TOTA CL: SD: WHEN R ALI S SPR DOUC TOTA CL: SD: WHEN R ALI S SPR DOUC	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR	VAR.% 117.8 129.4 116.3 185.8 COEFF VAR.% 110.7 106.6 218.2 406.0 58.0 COEFF VAR.% 86.3 105.6 201.0 406.0	6 S.E.% 12.1 15.8 15.8 47.3 14.3 14.3 5 14.9 14.4 29.4 54.7 7.8 5 11.6 14.2 27.1 54.7 154.7	LC	DW 379 101 1,008 333 TREES/ DW 94 60 5 0 174 BASAL DW 131 66 13 3	AVG 432 120 1,913 389 ACRE AVG 111 70 7 0 188 AREA/A AVG 148 77 17 6	HIGH 484 139 2,818 445 HIGH 128 80 9 1 203 CRE HIGH 166 88 22 9	#	5 <i>1,378</i> OF PLOTS 5 <i>134</i> OF PLOTS 5	10 345 REO. 10 34 REO. 10	15. INF. POP. 1
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL SD: R ALL	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR	VAR.% 117.8 129.4 116.3 185.8 COEFF VAR.% 110.7 106.6 218.2 406.0 58.0 COEFF VAR.% 86.3 105.6 201.0	6 S.E.% 12.1 15.8 15.8 47.3 14.3 14.3 5 14.9 14.4 29.4 54.7 7.8 5 11.6 14.2 27.1	LC	DW 379 101 1,008 333 TREES/ DW 94 60 5 0 174 BASAL DW 131 66 13	AVG 432 120 1,913 389 ACRE AVG 111 70 7 0 188 AREA/A AVG 148 77 17	HIGH 484 139 2,818 445 HIGH 128 80 9 1 203 CRE HIGH 166 88 22	#	5 <i>1,378</i> OF PLOTS 5 <i>134</i> OF PLOTS	10 345 REO. 10 34 REO.	15. INF. POP. 1
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA S SPR CL: SD: WHEN R ALL S SPR DOUC TOTA	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR	VAR.% 117.8 129.4 116.3 185.8 COEFF VAR.% 110.7 106.6 218.2 406.0 58.0 COEFF VAR.% 86.3 105.6 201.0 406.0	6 S.E.% 12.1 15.8 15.8 47.3 14.3 7 6 S.E.% 14.4 29.4 54.7 7.8 6 S.E.% 11.6 14.2 27.1 54.7 5.9 1.0	LC	DW 379 101 1,008 333 TREES/ DW 94 60 5 0 174 BASAL DW 131 66 13 3	AVG 432 120 1,913 389 ACRE AVG 111 70 7 0 188 AREA/A AVG 148 77 17 6 248	HIGH 484 139 2,818 445 HIGH 128 80 9 1 203 CRE HIGH 166 88 22 9	#	5 <i>1,378</i> OF PLOTS 5 <i>134</i> OF PLOTS 5	10 345 REQ. 10 34 REQ. 10 19	15. INF. POP. 1 INF. POP. 1
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR CL: SD: WHEN R ALL S SPR DOUC TOTA	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 %	VAR.% 117.8 129.4 116.3 185.8 COEFF VAR.% 110.7 106.6 218.2 406.0 58.0 COEFF VAR.% 86.3 105.6 201.0 406.0 44.1	6 S.E.% 12.1 15.8 15.8 47.3 14.3 14.3 5 14.9 14.4 29.4 54.7 7.8 5 S.E.% 11.6 14.2 27.1 54.7 5.9 7		DW 379 379 101 1,008 333 TREES/ DW 94 60 5 0 174 BASAL DW 131 66 13 3 234	AVG 432 120 1,913 389 ACRE AVG 111 70 7 0 188 AREA/A AVG 148 77 17 6 248	HIGH 484 139 2,818 445 HIGH 128 80 9 1 203 CRE HIGH 166 88 22 9	#	5 <i>1,378</i> OF PLOTS 5 <i>134</i> OF PLOTS 5 <i>78</i>	10 345 REQ. 10 34 REQ. 10 19	15. INF. POP. 1 INF. POP. 1 INF. POP.
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK	VAR.% 117.8 129.4 116.3 185.8 COEFF VAR.% 110.7 106.6 218.2 406.0 58.0 COEFF VAR.% 86.3 105.6 201.0 406.0 44.1 COEFF VAR.% 83.4	6 S.E.% 12.1 15.8 15.8 47.3 14.3 14.3 5 5 6 S.E.% 11.6 14.2 27.1 54.7 54.7 7.8 7 5.9 5 S.E.% 11.2 11.2		DW 379 101 1,008 333 TREES/ DW 94 60 5 0 174 BASAL DW 131 66 13 3 234 NET BF DW 7,613	AVG 432 120 1,913 389 ACRE AVG 111 70 7 0 188 AREA/A AVG 148 77 17 6 248 /ACRE AVG 19,843	HIGH 484 139 2,818 445 HIGH 128 80 9 1 203 CRE HIGH 166 88 22 9 263 HIGH 22,072	#	5 <i>1,378</i> OF PLOTS 5 <i>134</i> OF PLOTS 5 <i>78</i> OF PLOTS	10 345 REO. 10 34 REO. 10 19 REO.	15. INF. POP. 1 INF. POP. 1 INF. POP.
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA R ALL S SPR CL: SD: WHEN R ALL S SPR R ALL R ALL S SPR R ALL R ALL S SPR R ALL R ALL S SPR R ALL R ALL R ALL S SPR R ALL R ALL R ALL R ALL R ALL S SPR R ALL R ALL S SPR R ALL R ALL S SPR R ALL S SPR	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL	VAR.% 117.8 129.4 116.3 185.8 COEFF VAR.% 110.7 106.6 218.2 406.0 58.0 COEFF VAR.% 86.3 105.6 201.0 406.0 44.1 COEFF VAR.% 83.4 111.2	6 S.E.% 12.1 15.8 15.8 47.3 14.3 14.3 5 5 6 S.E.% 14.4 29.4 54.7 7.8 5 5 6 S.E.% 11.6 14.2 27.1 54.7 54.7 5.9 5 S.E.% 11.2 15.0		DW 379 101 1,008 333 TREES/ DW 94 60 5 0 174 BASAL DW 131 66 13 3 234 NET BF DW 7,613 5,049	AVG 432 120 1,913 389 ACRE AVG 111 70 7 0 188 AREA/A AVG 148 77 17 6 248 /ACRE AVG 19,843 5,939	HIGH 484 139 2,818 445 HIGH 128 80 9 1 203 CRE HIGH 166 88 22 9 263 HIGH 22,072 6,828	#	5 <i>1,378</i> OF PLOTS 5 <i>134</i> OF PLOTS 5 <i>78</i> OF PLOTS	10 345 REO. 10 34 REO. 10 19 REO.	15. INF. POP. 1 INF. POP. 1 INF. POP.
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR CL: SD:	1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE 3 FIR AL 68.1 % 1.0 MLOCK DER UCE	VAR.% 117.8 129.4 116.3 185.8 COEFF VAR.% 110.7 106.6 218.2 406.0 58.0 COEFF VAR.% 86.3 105.6 201.0 406.0 44.1 COEFF VAR.% 83.4 111.2 201.7	6 S.E.% 12.1 15.8 15.8 47.3 14.3 14.3 5 5 6 S.E.% 14.4 29.4 54.7 7.8 5 5 6 S.E.% 11.6 14.2 27.1 54.7 54.7 5.9 5 S.E.% 11.2 15.0 27.2 15.0		DW 379 101 1,008 333 TREES/ DW 94 60 5 0 174 BASAL DW 131 66 13 234 NET BF DW 7,613 5,049 2,294	AVG 432 120 1,913 389 ACRE AVG 111 70 7 0 188 AREA/A AVG 148 77 17 6 248 /ACRE AVG 19,843 5,939 3,150	HIGH 484 139 2,818 445 HIGH 128 80 9 1 203 CRE HIGH 166 88 22 9 263 HIGH 22,072 6,828 4,006	#	5 <i>1,378</i> OF PLOTS 5 <i>134</i> OF PLOTS 5 <i>78</i> OF PLOTS	10 345 REO. 10 34 REO. 10 19 REO.	15. INF. POP. 1 INF. POP. 1 INF. POP.
SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA CL: SD: WHEN R ALL S SPR DOUC TOTA R ALL S SPR CL: SD: WHEN R ALL S SPR R ALL S S SPR R ALL S S SPR R ALL S S SPR R ALL S S SPR	1.0 MLOCK DER UCE 3 FIR 4L 68.1 % 1.0 MLOCK DER UCE 3 FIR UCE 3 FIR	VAR.% 117.8 129.4 116.3 185.8 COEFF VAR.% 110.7 106.6 218.2 406.0 58.0 COEFF VAR.% 86.3 105.6 201.0 406.0 44.1 COEFF VAR.% 83.4 111.2	6 S.E.% 12.1 15.8 15.8 47.3 14.3 14.3 5 5 6 S.E.% 14.4 29.4 54.7 7.8 5 5 6 S.E.% 11.6 14.2 27.1 54.7 54.7 5.9 5 S.E.% 11.2 15.0		DW 379 101 1,008 333 TREES/ DW 94 60 5 0 174 BASAL DW 131 66 13 3 234 NET BF DW 7,613 5,049 2,294 816	AVG 432 120 1,913 389 ACRE AVG 111 70 7 0 188 AREA/A AVG 148 77 17 6 248 /ACRE AVG 19,843 5,939	HIGH 484 139 2,818 445 HIGH 128 80 9 1 203 CRE HIGH 166 88 22 9 263 HIGH 22,072 6,828	#	5 <i>1,378</i> OF PLOTS 5 <i>134</i> OF PLOTS 5 <i>78</i> OF PLOTS	10 345 REO. 10 34 REO. 10 19 REO.	1: 15:

								4	COTTO	OOF					
							Proj	ect	COUGI	LOOP					
T04N Twp 04N	R08W Rge 08W	/ S21 T Sec 21	TAK Trac A3				Гуре ГАКЕ		cres 6.00	Plots 55	Sample T 169		T04N R Page: Date: Time:	08W S21 1 12/16/2(10:18:0	0:
				Av					age Log		Net	Net		tals	
S Spc T	DBH	Sample Trees	FF 16'	Ht Tot	Trees/ Acre	BA/ Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Cunits	MBF
H	8	3	86	20	13.565	4.74	9.04	5.0	20.0		45	181		39]
Н	9	4	86	45	14.291	6.31	14.29	8.2	27.5		118	393		101	3
Н	10	5	86	36	14.469	7.89	14.47	8.8	28.0		127	405		110	3
Η	11	1	89	70	2.392	1.58	2.39	17.0	60.0		41	143		35	
Н	12	3	87	50	6.029	4.74	6.03	17.7	56.7		107	342		92	
Η	13	4	86	55	6.849	6.31	8.56	17.0	46.0		146	394		125	
Н	14	8	87	85	11.812		20.67	21.7	79.3		449	1,639		386	14
Н	15	5	89	97	6.431	7.89	12.86	26.0	98.0		334	1,260		288	10
H	16	2	85	76	2.261	3.16	4.52	22.0	77.5		99	350		86	
H	17	5	88	97 86	5.007	7.89	10.01	33.9	121.0		339	1,212		292	1
H	18	8	87	86		12.63	12.50	39.0	130.7		488	1,634		419	14
H	19	2	87	76	1.603	3.16	3.21	34.0	115.0		109	369		94	1
H	20	5	88	97	3.617	7.89	7.96	42.6	154.5		339	1,230		292	10
H	21	2	89	90	1.312	3.16	2.62	49.0	175.0		129	459		111	4
H	22 23	3	84 86	89 87	1.794 2.188	4.74 6.31	3.59 4.38	46.8 56.8	165.0 203.8		168 248	592 892		144 214	:
H		4 5	86		2.188	6.31 7.89		63.9	203.8		248 321	1,156		214 276	(
H	24 25	5 2	87 86	95 100	.926	3.16	5.02 2.32	57.0	250.0		132	579		113	
H	25	2	86 88	99	1.284	4.74	2.52	81.0	230.0 320.0		208	822		113	· ,
H H	20	3	85	100	1.284	4.74 4.74	2.37	74.3	320.0		208	822		179	
н Н	28	1	85	111	.369	1.58	1.11	66.7	290.0		200 74	321		63	
п Н	29	1	89	99	.309	1.58	.69	100.5	425.0		69	292		59	
п Н	30	2	89	102	.643	3.16	.09 1.29	100.5	402.5		134	518		116	4
H	31	1	85	92	.301	1.58	.90	62.3	313.3		56	283		48	
H	32	2	83	107	.565	3.16	.85	94.3	453.3		80	384		69	
H	33	1	92	129	.266	1.58	.80	110.7	593.3		88	473		76	-
H	34	2	84	115	.501	3.16	1.00	101.5	430.0		102	431		87	
H	35	- 1	78	136	.236	1.58	.71	69.0	366.7		49	260		42	2
H	36	1		101		1.58	.45	153.0	675.0		68	301		59	2
H	39	2	85	123	.381	3.16	.95	167.8	830.0		160	790		137	(
H	41	1	89	115	.172	1.58	.52	153.7	813.3		79	420		68	2
H	43	1	83	104	.157	1.58	.16	323.0	1520.0		51	238		43	2
H	44	1	86	78	.149	1.58	.30	183.0	825.0		55	247		47	4
H	Totals	94	87	64	110.984 1	48.36	159.50	32.7	124.4		5,219	19,843		4,488	1,70
A	9	2	86	62	5.161	2.28	5.16	11.0	30.0		57	155		49	
A	10	3	86	44	6.271	3.42	6.27	10.7	36.7		67	230		58	2
A	11	6	87	64	10.365	6.84	10.37	16.2	55.0		168	570		144	4
A	12	4	87	45	5.806	4.56	5.81	17.0	50.0		99	290		85	4
A	13	5	86	53	6.184	5.70	7.42	18.2	55.0		135	408		116	2
A	14	8	85	61	8.532	9.12	11.73	21.3	64.5		250	757		215	(
A	15	7	86	39	6.503	7.98	7.43	18.2	61.2		136	455		117	
A	16	11	86 87	55 60	8.982		11.43	27.1	71.4		310	817		267	2
A	17	4	87 86	69 64	2.893	4.56	4.34	29.8	101.7		129	441		111	3
A	18	5	86 86	64 74	3.433	6.07	5.58	29.5 34.0	93.1		164 79	519		141 68	4
A A	19	2	86 86	74 57	1.158	2.28	2.32	34.0	107.5 106.7		79 120	249 334		68 103	2
A A	20	4	86 86	57 54	2.090 1.896	4.56 4.56	3.14	38.2 39.3	106.7		120	334 379		103 96	2
A A	21 25	4	86 86		.334	4.56 1.14	2.84 .67	39.3 50.0	133.3		33	127		96 29	2 1
A A	35	1 1	80 87	60 101	.334	1.14 1.14	.07 .34	143.5	605.0		33 49	206		29 42	1
A	Totals	67	86	56	69.781		84.84	22.5	70.0		1,907	5,939	<u> </u>	1,640	5
5	12	1	83	33	3.175		3.17	13.0	30.0		41	95		35	5,
2	12	1	03	55	3.1/3	4.49	5.17	13.0	50.0		+1	93		55	

TC	TSI	NDSUN	M					Stand	l Table	Summa	iry					
								Proj	ect	COUGI	LOOP					
T04 Twp 04N)	R08W Rge 08W	S21 T Sec 21	ГАК Trac A3				Гуре ГАКЕ		cres 6.00	Plots 55	Sample T 169		T04N R Page: Date: Time:	08W S21 2 12/16/20 10:18:0	0:
	s		Sample	FF	Av Ht	Trees/	BA/	Logs	Avera Net	nge Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	Т	otals	
Spc	Т	DBH	Trees	16'	Tot	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
S		17	1	83	60	1.582	2.49	3.16	23.0	80.0		73	253		63	22
S		20	1	85	60	1.143	2.49	1.14	60.0	180.0		69	206		59	18
S		27	1	83	101	.627	2.49	1.25	87.0	325.0		109	408		94	35
S		42	1	85	146	.259	2.49	.78	196.0	1016.7		152	790		131	68
S		48	1	86	131	.198	2.49	.60	224.0	1213.3		133	722		115	62
S		62	1	77	141	.119	2.49	.36	388.7	1893.3		139	676		119	58
S		Totals	7	83	58	7.103	17.45	10.47	68.4	301.0		716	3,150		616	271
D		47	1	88	157	.483	5.82	1.45	233.3	1243.3		338	1,801		291	155
D		Totals	1	88	157	.483	5.82	1.45	233.3	1243.3		338	1,801		291	155
Totals	3		169	86	61	188.352	248.39	256.26	31.9	119.9		8180	30,733		7,035	2,643

TC TI	OGSTVB					og Sto oject:	ck Ta		MBF UGLO	OP			,				
T04N Twp 04N	R08W S Rge 08W	521 TT Se 21	e Tra	nct		Туре ТАК	E	Acres 86.		lots 55	Sample 1	e Tre 69	es	I I	IN R08 Page Date Fime	1 12/16	TTAK /2016 :03AM
S Spp T	So Gr	-	Gross MBF	% Def	Net	%		4.5			y Scaling					26.20	20.20 401
B B	rt de DO CU DO CU	5 6 8 10 12 16 18 21 22 37	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11 1	2-13	14-15	16-20	21-25	26-29	30-39 40+
н Н Н Н Н	DO 2S DO 2S DO 2S DO 2S DO 2S DO 2S	16 24 30 32 40	6 13 16 126 900	.8	6 13 16 126 892	.4 .7 1.0 7.4 52.3						67 194	27 146	6 13 14 320	16	67	18 24
н Н Н Н Н Н Н	 DO 3S DO 3S DO 3S DO 3S DO 3S DO 3S 	16 18 20 26 32 34 36 40	5 1 2 3 173 6 12 314	.9	5 1 2 3 173 6 12 312	.3 .1 .1 .2 10.1 .4 .7 18.3			89 6 10 85	9 3 70	5 1 65 135	2 3 9	6	7	10		
— Н Н Н Н Н Н Н Н Н Н Н Н Н Н	DO 4S DO 4S	18 20 23 24 26 30 32	38 2 33 2 12 13 17 15 10	19.7	38 2 33 2 12 13 17 12 10	2.2 .1 1.9 .1 .7 .7 1.0 .7 .6			36 33 2 12 11 17 12 10	3			2				
H A A A A A A A	Tota DO CU DO CU DO CU DO CU DO CU DO CU DO CU	ls 2 6 8 9 10	1,719		1,706	64.6			322	86	206	275 27Ø	181	360	167	67	43 42
A A A A A A	DO 1S	16 20 30 32	5 6 15 47 11 51		5 6 15 47 11 51	.9 1.3 2.9 9.2 2.1 10.0						5 6 7 8 11 36	7 29	10	15		
A A A	DO 2S DO 2S DO 2S	20	6 12 47		6 12 47	1.2 2.4 9.2					6 12 47						

TC TL	OGSTVB				g Sto oject:	ck T	able - CO	MBF UGLO	OP								
Twp 04N	08W 2	ec Tra 21 A3			Type TAK	E	Acres 86.	00	Plots 55		ole Trea 169]] 	Page Date Fime	8W S21 2 12/16 10:18		
S Spp T	So Gr Log rt de Len	Gross MBF	% Def	Net MBF	% Spc	2-3	4-5	Net Vo 6-7	olume by 8-9	y Scali 10-11		meter i 14 - 15		21-25	26-29	30-39	40+
A	DO 2S 40	42	Dei	42	8.2	2-3	4-3	0-7	0-9	42	12-13	14-13	10-20	21-23	20-29	30-39	
A A A A	DO 3S 20 DO 3S 26 DO 3S 30 DO 3S 32	3 6 17 6		3 6 17 6	.6 1.2 3.2 1.1				3 6 17 6								
A	DO 3S 32 DO 3S 40	16		16	3.2				16								
A A A A A A A A A A S S S	DO 4S 16 DO 4S 20 DO 4S 22 DO 4S 24 DO 4S 26 DO 4S 30 DO 4S 32 DO 4S 34 DO 4S 36 DO 4S 40 DO 4S 40 DO 4S 40	19 1 21 1 2 9 29 18 3 2 120 515	15.3	19 1 21 1 2 9 25 18 3 2 120 511	3.7 .2 4.1 .3 .4 1.7 4.8 3.5 .5 .5 23.4 19.3			19 1 21 1 2 5 18 3 2 120 220	48	107	74	36					
s	DO 2S 40	163		163	60.0								29	23		77	34
S S S	DO3S30DO3S32DO3S36DO3S40	18 5 6 43		18 5 6 43	6.5 1.8 2.1 15.9				6	1	8	6	5			19	
S S S S	DO4S16DO4S20DO4S24DO4S32	4 6 8 19		4 6 8 19	1.5 2.2 3.0 6.9			4					6		19	_	
S	Totals	271		271	10.2			12	6	35		6	39	23	19	96	34
D	DO 2S 40	155		155	100.0							15			57	83	
D	Totals	155		155	5.9							15			57	83	
Total All	Species	2,660		2,643	100.0			555	141	348	349	238	409	204	142	221	34

TC TSTATS				ST. PROJEC	ATIST	TICS COUGLOC	P		PAGE DATE	1 12/16/201
TWP RGE	SECT	ГКАСТ		TYPE		RES	PLOTS	TREES	CuFt	BdFt
04N 08W		A3		0CC3		86.00	55	370	1	W
0411 0011	<u> </u>				6	ESTIMATED		PERCENT		
				TREES		TOTAL		SAMPLE		
	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL	55	370		6.7						
CRUISE	28	176		6.3		16,360		1.1		
DBH COUNT										
REFOREST COUNT	27	194		7.2						
BLANKS	27	171								
100 %										
			STA	ND SUMN	IARY					
	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	
	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
WHEMLOCK	94	111.0	15.7	48	37.5	148.4	19,994	19,843	5,219	
R ALDER	67	69.8	14.2	39	20.4	76.8	5,990 2,150	5,939 3 150	1,907 716	1,907 716
S SPRUCE	7	7.1	21.2 47.0	47	3.8 0.8	17.5 5.8	3,150 1,801	3,150 1,801	338	338
DOUG FIR	1	.5 .8	47.0 29.3	123 49	0.8 0.7	5.8 3.6	1,801	1,001	338	550
SNAG CEDLEAV	3	.8 1.0	29.3 16.3	49 80	0.7	3.6 1.5	158	158	37	37
HEMLEAV	1	.1	43.0	93	0.4	.7	154	130	33	33
	1		64.0	81	0.1	.7	131	136	31	31
	1									
SPRUCELV TOTAL CONFIDENC 68.1		.0 <u>190.2</u> F THE SAMPI Γ OF 100 THE F	15.7 LE	45 E WILL BE	64.4 WITHIN				8,281	
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0	176 CE LIMITS O TIMES OU COEF VAR.	<u>190.2</u> F THE SAMPI Г OF 100 THE F % S.E.%	15.7 LE VOLUME	45 E WILL BE SAMPLH OW	64.4 WITHIN E TREES AVG	THE SAMPI 5 - BF HIGH	E ERROR			INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK	176 CE LIMITS O TIMES OU COEF VAR. 117.8	<u>190.2</u> F THE SAMPI Г OF 100 THE F % <u>S.E.%</u> 12.1	15.7 LE VOLUME	45 C WILL BE SAMPLE OW 379	64.4 WITHIN E TREES AVG 432	THE SAMPI 5 - BF High 484	E ERROR	# OF TREES	S REQ.	INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4	<u>190.2</u> F THE SAMPI F OF 100 THE F <u>% S.E.%</u> 12.1 15.8	15.7 LE VOLUME	45 C WILL BE SAMPLH OW 379 101	64.4 WITHIN E TREES AVG 432 120	THE SAMPI 5 - BF HIGH 484 139	E ERROR	# OF TREES	S REQ.	INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE	176 CE LIMITS O TIMES OU COEF VAR. 117.8	<u>190.2</u> F THE SAMPI Г OF 100 THE F % <u>S.E.%</u> 12.1	15.7 LE VOLUME	45 C WILL BE SAMPLH OW 379 101	64.4 WITHIN E TREES AVG 432	THE SAMPI 5 - BF High 484	E ERROR	# OF TREES	S REQ.	INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4	<u>190.2</u> F THE SAMPI F OF 100 THE F <u>% S.E.%</u> 12.1 15.8	15.7 LE VOLUME	45 C WILL BE SAMPLH OW 379 101	64.4 WITHIN E TREES AVG 432 120	THE SAMPI 5 - BF HIGH 484 139	E ERROR	# OF TREES	S REQ.	INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4	<u>190.2</u> F THE SAMPI F OF 100 THE F % <u>S.E.%</u> 12.1 15.8 47.3	15.7 LE VOLUME	45 C WILL BE SAMPLH OW 379 101	64.4 WITHIN E TREES AVG 432 120	THE SAMPI 5 - BF HIGH 484 139	E ERROR	# OF TREES	S REQ.	INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4 116.3	<u>190.2</u> F THE SAMPI F OF 100 THE F % <u>S.E.%</u> 12.1 15.8 47.3	15.7 LE VOLUME	45 C WILL BE SAMPLH OW 379 101	64.4 WITHIN E TREES AVG 432 120 1,913	THE SAMPI 5 - BF HIGH 484 139 2,818	E ERROR	# OF TREES	S REQ.	INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4 116.3 134.2	<u>190.2</u> F THE SAMPI Γ OF 100 THE F <u>% S.E.%</u> 12.1 15.8 47.3 125.7	15.7 LE VOLUME	45 C WILL BE SAMPLH OW 379 101 1,008	64.4 WITHIN E TREES AVG 432 120 1,913 785	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772	E ERROR	¢ OF TREES 5	3 REO. 10	INF. POP 1
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 <i>186.8</i>	<u>190.2</u> F THE SAMPI F OF 100 THE <u>F</u> <u>% S.E.%</u> 12.1 15.8 47.3 125.7 <i>14.1</i>	15.7 LE VOLUME	45 C WILL BE SAMPLI OW 379 101 1,008	64.4 WITHIN E TREES AVG 432 120 1,913 785 418	THE SAMPI 5 - BF HIGH 484 139 2,818	E ERROR	# OF TREES 5 1,394	348 SREQ.	INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1 %	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 <i>186.8</i> COEF	<u>190.2</u> F THE SAMPI Г OF 100 THE F % <u>S.E.%</u> 12.1 15.8 47.3 125.7 14.1 F	15.7 LE VOLUME	45 C WILL BE SAMPLH OW 379 101 1,008 359 TREES/A	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772 476	E ERROR	[∉] OF TREES 5 <i>1,394</i> [∉] OF PLOTS	3 REQ. 10 348 3 REQ.	INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1 % SD: 1.0	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 <i>186.8</i>	<u>190.2</u> F THE SAMPI Г OF 100 THE F % S.E.% 12.1 15.8 47.3 125.7 14.1 F	15.7 LE VOLUME	45 C WILL BE SAMPLH OW 379 101 1,008 359 TREES/A	64.4 WITHIN E TREES AVG 432 120 1,913 785 418	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772	E ERROR	# OF TREES 5 1,394	348 SREQ.	INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1% SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1% SD: 1.0 WHEMLOCK	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 186.8 COEF VAR. 110.7 106.6	<u>190.2</u> F THE SAMPI Г OF 100 THE F <u>% S.E.%</u> 12.1 15.8 47.3 125.7 14.1 F % S.E.% 14.9 14.4	15.7 LE VOLUME	45 WILL BE SAMPLH OW 379 101 1,008 359 TREES/A OW 94 60	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE AVG 111 70	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772 476 HIGH 128 80	E ERROR	[∉] OF TREES 5 <i>1,394</i> [∉] OF PLOTS	3 REQ. 10 348 3 REQ.	INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 186.8 COEF VAR. 110.7 106.6 218.2	<u>190.2</u> F THE SAMPI Γ OF 100 THE F <u>% S.E.%</u> 12.1 15.8 47.3 125.7 <u>14.1</u> F <u>% S.E.%</u> 14.9 14.4 29.4	15.7 LE VOLUME	45 WILL BE SAMPLI OW 379 101 1,008 359 TREES/A OW 94 60 5	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE AVG 1111 70 7	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772 476 HIGH 128 80 9	E ERROR	[∉] OF TREES 5 <i>1,394</i> [∉] OF PLOTS	3 REQ. 10 348 3 REQ.	INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 186.8 COEF VAR. 110.7 106.6 218.2 406.0	<u>190.2</u> F THE SAMPI Γ OF 100 THE F <u>% S.E.%</u> 125.7 14.1 F % <u>S.E.%</u> 14.9 14.4 29.4 54.7	15.7 LE VOLUME	45 C WILL BE SAMPLI OW 379 101 1,008 359 TREES/A OW 94 60 5 0	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE AVG 111 70 7 0	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772 476 <u>HIGH</u> 128 80 9 1	E ERROR	[∉] OF TREES 5 <i>1,394</i> [∉] OF PLOTS	3 REQ. 10 348 3 REQ.	INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1% SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1% SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 186.8 COEF VAR. 110.7 106.6 218.2 406.0 446.5	<u>190.2</u> F THE SAMPI Г OF 100 THE F % S.E.% 12.1 15.8 47.3 125.7 <u>14.1</u> F % S.E.% 14.9 14.4 29.4 54.7 60.2	15.7 LE VOLUME	45 C WILL BE SAMPLE OW 379 101 1,008 359 TREES/A OW 94 60 5 0 0 0	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE AVG 111 70 7 0 1	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772 476 HIGH 128 80 9 1 1	E ERROR	[∉] OF TREES 5 <i>1,394</i> [∉] OF PLOTS	3 REQ. 10 348 3 REQ.	INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1% SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1% SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 186.8 COEF VAR. 110.7 106.6 218.2 406.0 446.5 684.5	<u>190.2</u> F THE SAMPI Г OF 100 THE F % S.E.% 12.1 15.8 47.3 125.7 <u>14.1</u> F % S.E.% 14.9 14.4 29.4 54.7 60.2 92.2	15.7 LE VOLUME	45 C WILL BE SAMPLI OW 379 101 1,008 359 TREES/A OW 94 60 5 0	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE AVG 111 70 7 0	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772 476 <u>HIGH</u> 128 80 9 1	E ERROR	[∉] OF TREES 5 <i>1,394</i> [∉] OF PLOTS	3 REQ. 10 348 3 REQ.	INF. POP 1 15 INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 186.8 COEF VAR. 110.7 106.6 218.2 406.0 446.5	<u>190.2</u> F THE SAMPI Г OF 100 THE F % S.E.% 12.1 15.8 47.3 125.7 14.1 F % S.E.% 14.9 14.4 29.4 54.7 60.2 92.2 99.9	15.7 LE VOLUME	45 C WILL BE SAMPLE OW 379 101 1,008 359 TREES/A OW 94 60 5 0 0 0 0 0	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE AVG 111 70 7 0 1 1	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772 476 HIGH 128 80 9 1 1 2	E ERROR	[∉] OF TREES 5 <i>1,394</i> [∉] OF PLOTS	3 REQ. 10 348 3 REQ.	INF. POP 1 15 INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV	176 CE LIMITS O TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 186.8 COEF VAR. 110.7 106.6 218.2 406.0 446.5 684.5 741.6	<i>190.2</i> F THE SAMPI T OF 100 THE F % S.E.% 12.1 15.8 47.3 125.7 <i>14.1</i> F % S.E.% 14.9 14.4 29.4 54.7 60.2 92.2 99.9 99.9	15.7 LE VOLUME	45 C WILL BE SAMPLE OW 379 101 1,008 359 TREES/2 OW 94 60 5 0 0 0 0 0 0 0 0	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE AVG 111 70 7 0 1 0 1 0	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772 476 HIGH 128 80 9 1 1 2 0	E ERROR	[∉] OF TREES 5 <i>1,394</i> [∉] OF PLOTS	3 REQ. 10 348 3 REQ.	INF. POP 1 15 INF. POP 1
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCELV DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 186.8 COEF VAR. 110.7 106.6 218.2 406.0 446.5 684.5 741.6 741.6	<i>190.2</i> F THE SAMPI F OF 100 THE F % S.E.% 12.1 15.8 47.3 125.7 <i>14.1</i> F % S.E.% 14.9 14.4 29.4 54.7 60.2 92.2 99.9 99.9 99.9 7.7	15.7 LE VOLUME	45 WILL BE SAMPLE OW 379 101 1,008 359 TREES/2 OW 94 60 5 0 0 0 0 0 0 0 0 0 0	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE AVG 111 70 7 0 1 1 1 0 0 1 1 1 0 0 1 90	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772 476 HIGH 128 80 9 1 1 2 0 0 205	E ERROR	# OF TREES 5 1,394 # OF PLOTS 5	348 348 3 REQ. 10 32	INF. POP 1 15 INF. POP 1
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1 % SPRUCE DOUG FIR SNAG CEDLEAV HEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1 %	176 CE LIMITS OU TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 186.8 COEF VAR. 110.7 106.6 218.2 406.0 446.5 684.5 741.6 741.6 57.0	<u>190.2</u> F THE SAMPI Г OF 100 THE F % S.E.% 12.1 15.8 47.3 125.7 <i>14.1</i> F % S.E.% 14.9 14.4 29.4 54.7 60.2 92.2 99.9 99.9 99.9 7.7	15.7 LE VOLUME	45 WILL BE SAMPLI OW 379 101 1,008 359 TREES/A OW 94 60 5 0 0 0 0 0 0 176 BASAL A	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE AVG 111 70 7 0 1 1 1 0 0 1 1 1 0 0 1 90	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772 476 HIGH 128 80 9 1 1 2 0 0 205	E ERROR	# OF TREES 5 1,394 # OF PLOTS 5 130	348 348 3 REQ. 10 32	INF. POP 15 INF. POP 1 INF. POP
SPRUCELV TOTAL CONFIDENC 68.1 CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1 % SDRUCE DOUG FIR SNAG CEDLEAV HEMLOCK R ALDER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1 %	176 CE LIMITS O TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 186.8 COEF VAR. 110.7 106.6 218.2 406.0 446.5 684.5 741.6 741.6 57.0 COEF VAR. 86.3	<u>190.2</u> F THE SAMPI Г OF 100 THE F % S.E.% 12.1 15.8 47.3 125.7 <i>14.1</i> F % S.E.% 14.9 14.4 29.4 54.7 60.2 92.2 99.9 99.9 99.9 7.7 F % S.E.% 11.6	15.7 LE VOLUME	45 WILL BE SAMPLE OW 379 101 1,008 359 TREES/A OW 94 60 5 0 0 0 0 0 0 0 0 0 0 0 0 0	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE AVG 111 70 7 0 1 0 190 AREA/A AVG 148	THE SAMPI S - BF HIGH 484 139 2,818 1,772 476 HIGH 128 80 9 1 1 2 0 0 205 CRE HIGH 166	E ERROR	# OF TREES 5 1,394 # OF PLOTS 5 130 # OF PLOTS	348 348 3 REQ. 10 32 32 3 REQ.	INF. POP 15 INF. POP 1 INF. POP
SPRUCELV $TOTAL$ $CONFIDENC 68.1 CL: 68.1% SD: 1.0 WHEMLOCK R AL DER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLEAV SPRUCELV TOTAL CL: 68.1% SDRUCE DOUG FIR SNAG CEDLEAV HEMLOCK R AL DER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLOCK R AL DER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLOCK R AL DER S SPRUCE DOUG FIR SNAG CEDLEAV HEMLOCK R AL DER S SPRUCE SNAG CEDLEAV SPRUCELV SPRUCELV SPRUCELV TOTAL CL: 68.1% SD: 1.0 WHEMLOCK R AL DER$	176 CE LIMITS O TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 186.8 COEF VAR. 110.7 106.6 218.2 406.0 446.5 684.5 741.6 741.6 57.0 COEF VAR. 86.3 105.6	<u>190.2</u> F THE SAMPI Г OF 100 THE F % S.E.% 12.1 15.8 47.3 125.7 <i>14.1</i> F % S.E.% 14.9 14.4 29.4 54.7 60.2 92.2 99.9 99.9 7.7 F % S.E.% 11.6 14.2	15.7 LE VOLUME	45 WILL BE SAMPLE OW 379 101 1,008 359 TREES/A OW 94 60 5 0 0 0 0 0 0 0 0 0 0 0 0 0	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE AVG 111 70 7 0 1 0 190 AREA/A AVG 148 77	THE SAMPI S - BF HIGH 484 139 2,818 1,772 476 HIGH 128 80 9 1 1 2 0 0 205 CRE HIGH 166 88	E ERROR	# OF TREES 5 1,394 # OF PLOTS 5 130 # OF PLOTS	348 348 3 REQ. 10 32 32 3 REQ.	INF. POP 15 INF. POP 1 INF. POP
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	176 CE LIMITS O TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 186.8 COEF VAR. 110.7 106.6 218.2 406.0 446.5 684.5 741.6 57.0 COEF VAR. 86.3 105.6 201.0	190.2 F THE SAMPI F OF 100 THE F % S.E.% 12.1 15.8 47.3 125.7 14.1 F % S.E.% 14.9 14.4 29.4 54.7 60.2 92.2 99.9 7.7 F % S.E.% 11.6 14.2 27.1	15.7 LE VOLUME	45 WILL BE SAMPLE OW 379 101 1,008 359 TREES/2 OW 94 60 5 0 0 0 0 0 0 0 0 0 0 0 0 0	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE AVG 111 70 7 0 111 70 7 0 190 AREA/A AVG 148 77 17	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772 476 HIGH 128 80 9 1 1 2 0 0 205 CRE HIGH 166 88 22	E ERROR	# OF TREES 5 1,394 # OF PLOTS 5 130 # OF PLOTS	348 348 3 REQ. 10 32 32 3 REQ.	INF. POP 1 15 INF. POP 1 INF. POP
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	176 EE LIMITS O TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 186.8 COEF VAR. 110.7 106.6 218.2 406.0 446.5 684.5 741.6 57.0 COEF VAR. 86.3 105.6 201.0 406.0	190.2 F THE SAMPI F OF 100 THE F % S.E.% 12.1 15.8 47.3 125.7 14.1 F % S.E.% 14.9 14.4 29.4 54.7 60.2 92.2 99.9 7.7 F % S.E.% 11.6 14.2 27.1 54.7	15.7 LE VOLUME	45 WILL BE SAMPLI OW 379 101 1,008 359 TREES/A OW 94 60 5 0 0 0 0 0 0 0 0 0 176 BASAL A OW 131 66 13 3	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE AVG 111 70 7 0 111 70 7 0 190 AREA/A AVG 148 77 17 6	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772 476 HIGH 128 80 9 1 1 2 0 0 205 CRE HIGH 166 88 22 9	E ERROR	# OF TREES 5 1,394 # OF PLOTS 5 130 # OF PLOTS	348 348 3 REQ. 10 32 32 3 REQ.	INF. POP 1 15 INF. POP 1 INF. POP
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	176 CE LIMITS O TIMES OU COEF VAR. 117.8 129.4 116.3 134.2 186.8 COEF VAR. 110.7 106.6 218.2 406.0 446.5 684.5 741.6 57.0 COEF VAR. 86.3 105.6 201.0	190.2 F THE SAMPI F OF 100 THE F % S.E.% 12.1 15.8 47.3 125.7 14.1 F % S.E.% 14.9 14.4 29.4 54.7 60.2 92.2 99.9 7.7 F % S.E.% 11.6 14.2 27.1 54.7 59.0	15.7 LE VOLUME	45 WILL BE SAMPLE OW 379 101 1,008 359 TREES/2 OW 94 60 5 0 0 0 0 0 0 0 0 0 0 0 0 0	64.4 WITHIN E TREES AVG 432 120 1,913 785 418 ACRE AVG 111 70 7 0 111 70 7 0 190 AREA/A AVG 148 77 17	THE SAMPI 5 - BF HIGH 484 139 2,818 1,772 476 HIGH 128 80 9 1 1 2 0 0 205 CRE HIGH 166 88 22	E ERROR	# OF TREES 5 1,394 # OF PLOTS 5 130 # OF PLOTS	348 348 3 REQ. 10 32 32 3 REQ.	8,281 INF. POP. 15 INF. POP. 1 INF. POP. 1

TC TST	TATS				STATIS JECT	TICS COUGLO	OOP		PAGE DATE	2 12/16/2016
TWP	RGE	SECT TRA	АСТ	TYPI	E A	CRES	PLOTS	TREES	CuFt	BdFt
04N	08W	21 A3		0CC	3	86.00	55	370	1	W
CL:	68.1%	COEFF		BASA	AL AREA/	ACRE		# OF PL	OTS REQ.	INF. POP.
SD:	1.0	VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
SPRU	JCELV	741.6	99.9	0	1	1				
TOTA	AL	43.2	5.8	240	255	270		74	19	8
CL:	68.1 %	COEFF		NET	BF/ACRE			# OF PLOTS	S REQ.	INF. POP.
SD:	1.0	VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
WHE	MLOCK	83.4	11.2	17,613	19,843	22,072				
R ALI	DER	111.2	15.0	5,049	5,939	6,828				
S SPR	RUCE	201.7	27.2	2,294	3,150	4,006				
DOUG	G FIR	406.0	54.7	816	1,801	2,787				
SNAC	3									
CEDL	LEAV	591.0	79.6	32	158	285				
HEMI	LEAV	741.6	99.9	0	143	285				
SPRU	ICELV	741.6	99.9	0	136	273				
TOTA	AL	56.5	7.6	28,798	31,170	33,543		127	32	14