

Timber Sale Appraisal Doe Over

Sale WO-341-2017-049-

District: West Oregon Date: October 10, 2016

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$858,218.19	\$19,527.32	\$877,745.51
		Project Work:	(\$92,794.00)
		Advertised Value:	\$784,951.51

10/10/16

Timber Sale Appraisal Doe Over

Sale WO-341-2017-049-

District: West Oregon Date: October 10, 2016

Timber Description

Location: Portions of Section 35, T11S, R9W and portions of Section 2, T12S, R9W, W.M., Lincoln County, Oregon.

Stand Stocking: 80%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)	
Douglas - Fir	19	0	90	
Alder (Red)	16	0	90	

Volume by Grade	2\$	3S	3S 12"+	4S	CR 6" - 8"	CR 8" - 14"	CR 12"+	Total
Douglas - Fir	1,359	425	368	115	0	0	0	2,267
Alder (Red)	0	0	0	0	30	11	20	61
Total	1,359	425	368	115	30	11	20	2,328

Comments: Pond Values Used: 3rd Quarter Calender Year 2016.

Local Pond Values Used for Douglas-fir (August 2016).

Western Hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost: \$223/MBF = \$450/MBF - \$227/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$923/MBF = \$1,150/MBF - \$227/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

BRANDING AND PAINTING COST ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

LOG HAUL:

Conifer costed to Eugene. Hardwood costed to Eugene.

HAULING COST ALLOWANCE

Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added):

Flaggers for Harlan County Road: 2 flaggers x 6 days @ \$320/day = \$3,840 Loader Cleanup Harlan County Road: 4 hrs @ \$150/hr = \$600 Dump Truck Harlan County Road Cleanup: 4 hrs @ \$80/Hr = \$320 Directional Felling Harlan County Road: 3 acres @ \$200/acre = \$600 TOTAL Other Costs (with Profit & Risk to be added) = \$5,360

Other Costs (No Profit & Risk added):

Equipment Cleaning (Invasive Species Prevention) = \$2,000 Move Tower from Top to Bottom of Sale = \$1,000 Move Loader from Top to Bottom of Sale = \$200 Lincoln County Road Permit = \$150 Down Wood: (10 trees~2 fallers) @ \$450/day x 1 day = \$450 Firewood Sorting: 10 landings x \$100 per landing = \$1,000 TOTAL Other Costs (No Profit & Risk added) = \$4,800

SLASH DISPOSAL Move-in = \$750 On Site Move = \$750 Project Work: 18 hrs @ \$150/hr = \$2,700 TOTAL Slash Disposal = \$4,200

10/10/16

Timber Sale Appraisal Doe Over

Sale WO-341-2017-049-

District: West Oregon Date: October 10, 2016

Logging Conditions

Combination#: 1 Douglas - Fir 75.47%

Alder (Red) 77.00%

yarding distance: Medium (800 ft) downhill yarding: No tree size: Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 9 bd. ft / load: 5000

cost / mbf: \$133.33

machines: Log Loader (A)

Stroke Delimber (A) Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 24.53%

Alder (Red) 23.00%

Logging System: Shovel **Process:** Manual Falling/Delimbing

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 9 bd. ft / load: 5000

cost / mbf: \$87.50

machines: Shovel Logger

Timber Sale Appraisal Doe Over

Sale WO-341-2017-049-

District: West Oregon Date: October 10, 2016

Logging Costs

Operating Seasons: 1.00

Profit Risk: 12%

Project Costs: \$92,794.00

Other Costs (P/R): \$5,360.00

Slash Disposal: \$4,200.00

Other Costs: \$4,800.00

Miles of Road

Road Maintenance:

\$9.02

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load	
Douglas - Fir	\$0.00	3.0	5.0	
Alder (Red)	\$0.00	3.0	3.5	

Timber Sale Appraisal Doe Over

Sale WO-341-2017-049-

District: West Oregon Date: October 10, 2016

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling / Brand & Paint	Other	Total
Douglas -	Fir								
\$122.09	\$9.92	\$1.88	\$57.20	\$2.30	\$23.21	\$1.80	\$7.00	\$2.06	\$227.46
Alder (Red	l)								
\$122.79	\$9.92	\$1.88	\$81.72	\$2.30	\$26.23	\$1.80	\$7.00	\$2.06	\$255.70

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$606.03	\$378.57	\$0.00
Alder (Red)	\$0.00	\$575.82	\$320.12	\$0.00

Timber Sale Appraisal Doe Over

Sale WO-341-2017-049-

District: West Oregon Date: October 10, 2016

Summary

Amortized

Specie	MBF	Value	Total	
Douglas - Fir	0	\$0.00	\$0.00	
Alder (Red)	0	\$0.00	\$0.00	

Unamortized

Specie	MBF	Value	Total	
Douglas - Fir	2,267	\$378.57	\$858,218.19	
Alder (Red)	61	\$320.12	\$19,527.32	

Gross Timber Sale Value

Recovery: \$877,745.51

Prepared By: Dave Wiger Phone: 541-929-3266

SUMMARY OF ALL PROJECT COSTS

Sale Name:	Doe Over					Date: Time:	Au	igust 12, 2016 12:04
Project #1 - Const	ruct					Time.		12.04
Road Segment 1A to 1B 1C to 1D		Length 32.5 sta 3.5 sta		\$ \$	Cost 28,716 1,099			
	TOTALS	36.0 sta				-	\$	29,815
Project #2 - Impro	<u>ve</u>							
Road Segment 11 to 12 12 to 110 12 to 13 13 to 14 13 to 15 15 to 16 17 to 18 18 to 19		Length 149.8 sta 14.5 sta 7.9 sta 6.3 sta 8.1 sta 6.4 sta 17.6 sta 22.4 sta		\$ \$ \$ \$ \$ \$ \$ \$	Cost 10,287 2,536 4,916 13,438 149 560 6,778 16,465			
	TOTALS	233.0 sta				-	\$	55,129
Project #3 - Post H Post harvest rock a							\$	1,854
Move in			Cost	On	-site move	-		
Crawler tractor, D-7 Grader, Cat 14-G o Excavator, Cat 325 Vibratory Roller Backhoe x 2 Dump truck (off Hig Water Truck	r equiv. or equiv, hway)		\$ 805 \$ 778 \$ 1,290 \$ 778 \$ 680 \$ 774 \$ 190	\$ \$ \$ \$ \$	144 100 150 77 77 64 89	_		
	TOTAL						\$	5,996
				GR	AND TOT	AL	\$	92,794
Compiled by	D. Wiger					Date:		08/12/2016

SALE Doe Over - Project #1 LENGTH improve 32.5 sta

ROAD 1A to 1B

CLEARING AND GRUBBING

3.20 acres @ \$1,337.00 /acre = \$4,278 road 0.50 acres @ \$1,337.00 /acre = \$669 landing

TOTAL CLEARING AND GRUBBING = \$4,947

EXCAVATION	With D7 dozer o	r equiva	lent				
Construct road	32.5 sta.	@	\$190.00	/sta.	=	\$6,175	
Additional Drift	3 sta.	@	\$190.00	/sta.	=	\$570	
Endhaul ¹	1200 cy.	@	\$4.00	/cy.	=	\$4,800	
(8+30 to W1)	-			-			
Endhaul ²	2000 cy.	@	\$4.00	/cy.	=	\$8,000	
(Forward 1000')	•						
Construct 5 landings	7 hr.	@	\$144.00	/hr.	=	\$1,008	
(Sta. 15+60, 19+00, 22	2+70, 26+60, 1B)						
Compact fills	2230 cy.	@	\$0.70	/cy.	=	\$1,561	
Compact waste area	1200 cy.	@	\$0.40	/cy.	=	\$480	
Shape subgrade	32.5 sta.	@	\$15.96	/sta	=	\$519	
(with road grader)							
Compact subgrade	32.5 sta.	@	\$20.19	/sta	=	\$656	
(with vibratory roller)							

TOTAL EXCAVATION = \$23,769

GRAND TOTAL =====> \$28,716

¹⁾ Some endhaul may be required to construct landings.

²⁾ Endhaul required to balance construction of subgrade

SALE ROAD	Doe Over 1C to 1D		- Proje	ect #1		LENGTH	improve		3.5 sta			
CLEARING AND GRUBBING												
0.20	acres	@		\$1,337.00	/acre		=	\$267 road				
0.10	acres	@		\$1,337.00	/acre		=	\$134 landing				
					TOTAL C	LEARING .	AND GRUBB	ING =	\$401			
EXCAVAT	ION	With D7	dozer (or equivaler	nt							
Construct	road	3.5	sta.	@	\$122.00	/sta.	=	\$427				
Construct	landing	1	hr.	@	\$144.00	/hr.	=	\$144				
Shape sub (with road	•	3.5	sta.	@	\$15.96	/sta	=	\$56				
Compact s (with vibra	subgrade	3.5	sta.	@	\$20.19	/sta	=	\$71				

TOTAL EXCAVATION =

\$698

GRAND TOTAL =====> \$1,099

SALE Doe Over - Project #2 LENGTH improve 149.8 sta
ROAD I1 to I2 Surfaced, ditched Wolf Creek, Baber Ridge, & Deer Creek Ridge roads

IMPROVEMENT

Shape surface 149.8 sta. @ \$24.83 /sta = \$3,720

(with road grader)

TOTAL IMPROVEMENT \$3,720

SURFACING Size Cost/yd

Spot Rock 280 cy of $1\frac{1}{2}$ -0" \$23.09 = \$6,465

TOTAL ROCK COST = \$6,516

SPECIAL PROJECTS

Culvert cleaning 2 @ \$25.67 /culvert = \$51

(Clean inlet and outlet)

TOTAL OTHER \$51

Note: Culverts are from Deer Swing road to I2.

Note: King Wolf sale will add a 2" lift of rock to the Salmon Creek Road. This grading may be held for an interim grading if both sales are hauling concurrently.

GRAND TOTAL ====> \$10,287

SALE ROAD	Doe Over I2 to I10	- Projec Surface		Deer Crk R	LENGTH Ridge rd	improve		14.5 sta
IMPROVE	MENT							
	2 landings 20, 155+80)	4 hr.	@	\$144.00	/hr.	=	\$576	
Shape sur (with road	face	14.5 sta.	@	\$24.83	/sta	=	\$360	
					TOTAL IM	IPROVEMEN	IT	\$936
SURFACII Spot Rock Landings (,		cy of cy of	Size 1½-0" Jaw run	Cost/yd \$23.09 \$21.40 TOTAL R	= = OCK COST =	\$693 \$856	\$1,549
Culvert cle	PROJECTS eaning et and outlet)	2	@	\$25.67	/culvert	=	\$51	
					TOTAL O	THER		\$51

GRAND TOTAL =====> \$2,536

- Project #2 SALE Doe Over LENGTH improve 6.3 sta Surfaced, Ditched **ROAD** 12 to 13 **IMPROVEMENT** 2 hr. \$144.00 /hr. \$288 Construct landing @ (Sta. 3+60) Shape surface 6.4 sta. @ \$24.83 /sta \$159 TOTAL IMPROVEMENT \$447 **SURFACING** Size Cost/yd Surface rock, 4"lift (I2-I3) 140 cy of 1½-0" \$23.09 \$3,233 Landing rock \$428 20 cy of jaw-run \$21.40 Process Surface rock 14.3 sta. \$56.48 /sta \$808

TOTAL ROCK COST =

\$4,469

(Grader, vibratory roller, water truck)

GRAND TOTAL =====> \$4,916

SALE ROAD	Doe Over I3 to I4	- Proje Unsur	ect #2 faced, Outs	sloped	LENGTH	improve		7.9 sta
IMPROVE	EMENT							
	3 to I4 with 7 or equiv.)	3 hr.	@	\$144.00	/hr.	=	\$432	
Re-open I	• • • • • • • • • • • • • • • • • • • •	1 hr.	@	\$144.00	/hr.	=	\$144	
Construct (Sta. 10+2	landing	2 hr.	@	\$144.00	/hr.	=	\$288	
Shape dir	t surface	7.9 sta.	@	\$15.96	/sta	=	\$126	
(9.440.7				TOTAL IM	IPROVEMENT	Γ	\$990
SURFACI	NG							
				Size	Cost/yd			
Base rock	x, 6" lift (I3-I4)	260	cy of	3-0"	\$22.75	=	\$5,915	
	ock, 4"lift (I2-I4)		cy of	1½-0"	\$23.09	=	\$3,694	
Turnout ro	ock (2)	20	cy of	3-0"	\$22.75	=	\$455	
Landing ro	ock (Marked)	20	cy of	jaw-run	\$21.40	=	\$428	
Landing ro	ock (I4)	40	cy of	jaw-run	\$21.40	=	\$856	
Junction r	ock (2 way)	20	cy of	1½-0"	\$23.09	=	\$462	
Process b		7.9 sta.	@	\$24.28	/sta	=	\$192	
	urface rock	7.9 sta.	@	\$56.48	/sta	=	\$446	
(Grader, r	oller, water truck)							
					TOTAL RO	OCK COST =		\$12,448

GRAND TOTAL =====> \$13,438

SALE Doe Over - Project #2 LENGTH Improve 8.1 sta

ROAD 13 to 15 Surfaced, Ditched

IMPROVEMENT

Shape rock surface 8.1 sta. @ \$18.35 /sta = \$149

(with road grader)

TOTAL IMPROVEMENT \$149

GRAND TOTAL ====> \$149

SALE ROAD	Doe Over - Project #2 I5 to I6 Unsurfaced, Ditched		LENGTH Improve			6.4 sta		
IMPROVE	MENT							
-	5 to I6 with or equiv.)	2 hr.	@	\$144.00	/hr.	=	\$288	
Re-open la	. ,	1 hr.	@	\$144.00	/hr.	=	\$144	
Shape dirt (with road		6.4 sta.	@	\$15.96	/sta	=	\$102	
					TOTAL IM	IPROVEME	NT	\$534
SPECIAL	PROJECTS							
Culvert cle (Clean inle	eaning et and outlet)	1	@	\$25.67	/culvert	=	\$26	
•	,				TOTAL O	THER		\$26

GRAND TOTAL ====> \$560

SALE ROAD	Doe Over 17 to 18	- Projec	t #2		LENGTH	improve		17.6 sta
IMPROVE	MENT							
Load & ha	ul ditch	15.0 sta.	@	\$22.92	/sta	=	\$344	
Shape sur (with road		17.6 sta.	@	\$24.83	/sta	=	\$437	
(with road	grader)			TOTAL IM	1PROVEME	ENT COST	-=	\$781
Turnout ro	ock (2"lift) ening rock	190 c 10 c 10 c 17.6	cy of	Size 1½-0" 1½-0" 3-0" \$24.48	Cost/yd \$26.03 \$26.03 \$25.69 /sta	= = = = =	\$4,946 \$260 \$257 \$431	\$5,894
					TOTAL K	JCK COST	· =	\$ 3,094
SPECIAL	PROJECTS							
Culvert cle	-	4 c	ulverts	@	\$25.67	ea. =	\$103	
(,			TOTAL SI	PECIAL PR	OJECTS	COST =	\$103

GRAND TOTAL =====> \$6,778

SALE ROAD	Doe Over 18 to 19	- Proje	ct #2		LENGTH	improve		22.4 sta
IMPROVE Re-open in Shape sur (with road	oad rface	5 hrs. 22.4 sta.	@ @	\$144.00 \$24.83		= = PROVEM	\$720 \$556 MENT	\$1,276
SURFACI	NG			Size	Cost/yd			
Turnout ro	lening rock ock (2) nd rock (1A)	20	cy of cy of cy of cy of sta @	3-0" 3-0" 3-0" 3-0" \$56.48	\$25.69 \$25.69 \$25.69 \$25.69 /sta	= = = = =	\$12,588 \$514 \$514 \$257 \$1,265	\$45.400
SPECIAL	PROJECTS				TOTAL RO	JCK COS	51 =	\$15,138
Culvert cle	eaning	2 (culvert	@	\$25.67	ea. =	\$51	
				TOTAL SI	PECIAL PR	OJECTS	COST =	\$51

GRAND TOTAL =====> \$16,465

SALE ROAD	Doe Over	- Project #4 Post H	Harvest			
SURFACI	NG		Size	Cost/yd		
Landing p		40 over	1½-0"	\$23.09 =	\$924	
4 landings		40 cy of $(4)^2$	1 /2-0	φ23.09 =	\$924	
turnaroun	(2), I2 to I3(1), I	30 cy of	3-0"	\$28.43 =	\$853	
turnaround	u at r t. 14	30 Cy 01	3-0	Ψ20.43 –	ψΟΟΟ	
				TOTAL ROCK COST =		\$1,777
MISCELL	ANEOUS PRO	JECTS				
Tank trap	(1) at Pt.I5 ¹	1 hr.	@	\$77.00 /hr. =	\$77	

- 1) May be acomplished with loader, backhoe, cat, or excavator.
- 2) This is to patch anticipated landings. If landings are not built or used rock should be added to final maintenance rock and placed as needed.

GRAND TOTAL ====>

TOTAL MISCELLANEOUS PROJECTS =

\$1,854

\$77

SUMMARY OF MAINTENANCE COST

SALE Doe Over - Final Maintenance Cost Estimate
ROAD (Costed in appraisal, not in project costs)

Grading Move-in \$ 778.00

Road Segment	Length	Cost/Sta	Cost	Mileage
I1 to I2	149.8	\$24.83	\$3,719.53	2.8
I2 to I10	14.5	\$24.83	\$360.04	0.3
13 to 14	7.9	\$24.83	\$196.16	0.1
15 to 16	6.4	\$24.83	\$158.91	0.1
17 to 18	17.6	\$24.83	\$437.01	0.3
18 to 19	22.4	\$24.83	\$556.19	0.4
1A to 1B	32.5	\$15.96	\$518.70	0.6
1C to 1D	3.5	\$15.96	\$55.86	0.1
Totals	254.6		\$6,002.40	4.8
Interim grading:	139.3	\$24.83	\$3,458.82	2.6

Compaction: 304 sta @ \$20.19/sta = \$6,137.76

(Hwy 20 to I1 to I2 to I10 only)

Maintenance Rock: 1½-0"

Grand Total \$ 20,994.98

TS Volume 2,328 MBF

Cost / MBF = \$9.02

NOTES:

Compaction of primary collectors on haul route is required with final maintenance. Compact I1 to I2 to I11 with final maintenance.

Portion of haul route is shared with King Wolf Sale, with approximately 2.5 MBF to be hauled over Salmon Creek Road. Grading for Salmon Creek Road should be reserved for an interim grading on the shared part of the haul route.

TIMBER CRUISE SUMMARY

Sale Name: Doe Over 341-17-49

Sale Type: The Sale Area is a modified clearcut.

Fund Distribution: CSL 79% BOF 21%

Sale Area: Portions of Section 35, T11S, R9W and Section 2, T12S, R9W, W.M., Lincoln County, Oregon.

Area	Treatment	Gross Acres	Acreage Adjustment	Net Sale Acres	Acreage Comp. Method
1	Modified Clearcut	71	Buffer, road, & GTR's	56	Ortho photo, GIS, GPS
2 R/W	Right-of- way	1	Measured	1	RoadEng, GIS

<u>Timber Description</u>: Timber on the sale area consists of a natural stand of 75 year old timber with some 150± year old trees scattered throughout the stand. Conifer trees other that Douglas-fir are reserved from cutting. There were some small hemlock seen during reconnaissance of the sale but none were encountered during the cruise.

Cruise Summary:

Total Volume (MBF) by Species and Grade: (See attached "Stand Table Summary" and "Species, Sort Grade").

Species	Gross Cruise Volume	Cruised D & B ¹	Cruised D & B (MBF) ¹	Hidden D & B	Hidden D & B (MBF)	GTR (MBF)²	Net Sale Volume
Douglas-fir	2,770	7%	203	10%	257	43	2,267
Red alder	69	1%	< 1	10%	7		61
Total	2,839		203		263	43	2,328

¹Includes volume graded as Utility.

Species	DBH	Net Vol.	2-Saw	3-Saw	3-Saw 12"+	4-Saw	Camp Run	Percent by Species
	Grade P	ercentages	60%	19%	16%	5%		
Douglas-fir	19	2,267	1,359	425	368	115		97%
	Grade P	ercentages					100%	
Red alder	16	61					61	3%
Total		2,328	1,359	441	368	115	61	

² Trees marked within the posted sale boundary.

<u>Cruise Methods</u>: The sale was cruised using 40 BAF variable radius plots. All species were sampled at D+4 to determine basal area per acre. All trees on every third plot were measured and graded, trees on other plots were counted, by species, for basal area calculation. A total of 19 plots were measured and graded with 36 count plots. Plots were 132 feet apart on lines that were 264 feet apart. Volumes are based on a net acres (approximately 57 acres, this includes 1 acre for the road right-of-way outside the sale area.)

The Green Tree Retention Area, existing roads, and posted stream RMA's were not cruised (approximately 17 acres).

<u>Tree Form</u>: A form point of 16' was used for all species. Form factors were measured or estimated on all measure trees.

<u>Measurement Standards</u>: Heights were measured to the nearest foot to a top cruise diameter of 7 inches outside bark or 40% of Form Point diameter for Douglas-fir. Red alder and big leaf maple were measured to a top cruise diameter of 7 inches outside bark or to the point where the shape of the top would not contain a merchantable log segment.

<u>Grading System</u>: Most trees were graded in 40 foot segments unless breakage, defect, or length to top of grade cruise diameter warranted otherwise.

<u>Utilization Standards</u>: The minimum small end log diameter used for Douglas-fir is 6 inches and for hardwoods is 7 inches (inside bark). The minimum segment length was 13 feet (12 feet plus 1 foot of trim).

<u>Hidden Defect and Breakage</u>: A hidden D&B of 10% was applied to the Douglas-fir and hardwood volumes.

<u>Computation Procedures</u>: The cruise volumes were computed using Atterbury SuperAce 2008. The net acreage for the cruise is 57 acres (including right-of-way outside the sale area.) Hidden defect and breakage were applied to the cruised volumes. Most reserve trees are in GTRA's, RMA's, or posted out of the unit. There are approximately 34 marked wildlife trees within the posted sale area with an estimated volume of 43 MBF which was removed from the net sale volume. No ingrowth was added to the volumes.

<u>Statistics</u>: Target coefficient of variation for the sale was estimated at 55% with a desired sampling error not to exceed 9%. For Net board-foot per acre Douglas-fir the calculated coefficient of variation is 52% and the sampling error is 7.0%.

<u>Cruisers/Dates</u>: Long, McBride, Morgan, and Wiger in June of 2016.

Attachments: Cruise plan, Cruise Map, Statistics, Stand, Species-Sort-Grade, and Log Stock Tables.

Prepared by: <u>Dave Wiger</u> Date: <u>August 9, 2016</u>

Approved: Melyn Hul Date: 8/15/16

TC TSTAT	TS .			P	STATI: ROJECT	STICS DOE OVER			PAGE DATE 8,	1 /3/2016
TWP	RGE	SECT	ΓRACT	Т	YPE .	ACRES	PLOTS	TREES	CuFt	BdFt
12S	09W	02	AREA1	0	0МС	56.00	55	385	1	W
				TRI	EES	ESTIMATED TOTAL		ERCENT AMPLE		
		PLOTS	TREES	PEF	R PLOT	TREES	TI	REES		
TOTAL		55	385		7.0					
CRUISE		19	137		7.2	7,925		1.7		
DBH CC										
REFORE	EST									
COUNT	,	36	247		6.9					
BLANK										
100 %										
				STAND	SUMMARY					
		SAMPLE	TREES	AVG B	OLE REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE		LEN DEN		BF/AC	BF/AC	CF/AC	CF/AC
DF		115	127.4	18.5		5.2 237.1	41,712	40,882	10,268	10,196
DF TAK	Œ	10	1.8	52.3		3.6 26.2	6,893	4,536	1,220	932
R ALDE		12	12.4	15.7		1.2	1,204	1,191	416	416
TOTAL		137	141.5	19.0		4.2 280.0	49.809	46,609	11,904	11,543
	68.1		OF 100 THE VC	DLUME WILL I	BE WITHIN TH	IE SAMPLE ERR				
	68.1	TIMES OUT	OF 100 THE VC	DLUME WILL I	BE WITHIN TH	IE SAMPLE ERR				
CL:	68.1 %	TIMES OUT	OF 100 THE VC	DLUME WILL F	BE WITHIN TH	IE SAMPLE ERR		OF TREES R	=	INF. POP.
	68.1	TIMES OUT	OF 100 THE VC	OLUME WILL F S. LOW	BE WITHIN TH	IE SAMPLE ERR E S - BF HIGH		OF TREES R 5	EQ. 10	
CL: o	68.1 % 1.0	TIMES OUT COEF	OF 100 THE VC F 6 S.E.% 8.3	OLUME WILL F S. LOW	BE WITHIN THE AMPLE TREE AVG 30 578	IE SAMPLE ERR E S - BF HIGH			=	
CL: of SD:	68.1 % 1.0	COEF VAR.9	OF 100 THE VC F 6 S.E.% 8.3 16.2	S. LOW 5 2,4	BE WITHIN THE AMPLE TREE AVG 30 578	IE SAMPLE ERRO ES - BF HIGH 626 3,432			=	
CL: (SD: DF DF TAK	68.1 % 1.0 XE ER	COEF VAR.9 89.0 48.6	OF 100 THE VC 6 S.E.% 8.3 16.2 24.5	S LOW 5 2,4	AMPLE TREE AVG 30 578 76 2,954	IE SAMPLE ERRO ES - BF HIGH 626 3,432			=	1:
CL: OF DF TAK R ALDE TOTAL	68.1 % 1.0 XE ER	COEF VAR.9 89.0 48.6 81.5	OF 100 THE VC F 6 S.E.% 8.3 16.2 24.5 10.6	S. LOW 5 2,4	AMPLE TREE AVG 30 578 76 2,954 87 116	ES - BF HIGH 626 3,432 144	#	5	10	1:
CL: OF SD: DF TAK R ALDE TOTAL	68.1 % 1.0 XE ER	COEF. VAR.9 89.0 48.6 81.5 123.8	OF 100 THE VC	S. LOW 5 2,4	AMPLE TREE AVG 30 578 76 2,954 87 116 36 711	ES - BF HIGH 626 3,432 144	#	5 612	10	1: 68 INF. POP.
CL: OF SD: DF TAK R ALDE TOTAL CL: OF SD: DF	68.1 % 1.0 KE EBR 68.1 % 1.0	COEF. VAR.9 89.0 48.6 81.5 123.8 COEF.	OF 100 THE VC S.E.% 8.3 16.2 24.5 10.6 F	S LOW 5 2,4 6. T LOW	AMPLE TREE AVG 30 578 76 2,954 87 116 36 711 REES/ACRE AVG 17 127	ES - BF HIGH 626 3,432 144 786 HIGH 137	#	5 612 OF PLOTS R	10 153 EQ.	1: 68 INF. POP.
CL: OF SD: DF TAK R ALDE TOTAL CL: OF SD: DF TAK	68.1 % 1.0 KE GR 68.1 % 1.0 68.1 % 1.0	COEF VAR.9 89.0 48.6 81.5 123.8 COEF VAR.9 58.0 219.0	OF 100 THE VC S.E.% 8.3 16.2 24.5 10.6 F 6 S.E.% 7.8 29.5	S LOW 5 2,4 6. T LOW	AMPLE TREE AVG 30 578 76 2,954 87 116 36 711 REES/ACRE AVG 17 127 1 2	E SAMPLE ERRO ES - BF HIGH 626 3,432 144 786 HIGH 137 2	#	5 612 OF PLOTS R	10 153 EQ.	1: 68 INF. POP.
CL: OF TAK R ALDE TOTAL CL: OF TAK R ALDE DF TAK R ALDE DF TAK R ALDE	68.1 % 1.0 KE GR 4.0 68.1 % 1.0 68.1 % 1.0 GE	COEF VAR.9 89.0 48.6 81.5 123.8 COEF VAR.9 58.0 219.0 223.1	OF 100 THE VC S.E.% 8.3 16.2 24.5 10.6 F 6 S.E.% 7.8 29.5 30.1	DLUME WILL B S LOW 5 2,4 6. T LOW 1	AMPLE TREE AVG 30 578 76 2,954 87 116 36 711 REES/ACRE AVG 17 127 1 2 9 12	E SAMPLE ERRO ES - BF HIGH 626 3,432 144 786 HIGH 137 2 16	#	5 612 OF PLOTS R 5	10 153 EQ.	1: 68 INF. POP. 1:
CL: OF CL	68.1 % 1.0 GE GR 1.0 68.1 % 1.0 68.1 % 1.0	COEF VAR.9 89.0 48.6 81.5 123.8 COEF VAR.9 58.0 219.0	OF 100 THE VC S.E.% 8.3 16.2 24.5 10.6 F 6 S.E.% 7.8 29.5 30.1	DLUME WILL B S LOW 5 2,4 6. T LOW 1	AMPLE TREE AVG 30 578 76 2,954 87 116 36 711 REES/ACRE AVG 17 127 1 2	E SAMPLE ERRO ES - BF HIGH 626 3,432 144 786 HIGH 137 2 16	#	5 612 OF PLOTS R	10 153 EQ.	1: 68 INF. POP. 1:
CL: OF TAK R ALDE TOTAL CL: OF TAK R ALDE TOTAL CL: OF TOTAL CL: OTTAL	68.1 % 1.0 KE GR 1.0 68.1 % 1.0 68.1 % 68.1 % 1.0 GE GR 4.6 68.1 %	COEF VAR.9 89.0 48.6 81.5 123.8 COEF VAR.9 58.0 219.0 223.1 49.6 COEF	OF 100 THE VC S.E.% 8.3 16.2 24.5 10.6 F S.E.% 7.8 29.5 30.1 6.7	DLUME WILL B S LOW 5 2,4 6. T LOW 1	AMPLE TREE AVG 30 578 76 2,954 87 116 36 711 REES/ACRE AVG 17 127 1 2 9 12 32 142 ASAL AREA/A	ES - BF HIGH 626 3,432 144 786 HIGH 137 2 16 151	#	5 612 OF PLOTS R 5 98 OF PLOTS R	10 153 EQ. 10 25 EQ.	1: 68 INF. POP. 1: 1. INF. POP.
CL: OF TAKE REALDER TOTAL CL: OF TAKE REALDER TOTAL CL: OF TAKE REALDER TOTAL CL: OF TOTAL CL: OF TAKE REALDER TOTAL CL: OT TAKE REALDE	68.1 % 1.0 GE GR 1.0 68.1 % 1.0 68.1 % 1.0	TIMES OUT COEF VAR.9 89.0 48.6 81.5 123.8 COEF VAR.9 58.0 219.0 223.1 49.6 COEF VAR.9	OF 100 THE VC S.E.% 8.3 16.2 24.5 10.6 F S.E.% 7.8 29.5 30.1 6.7 F 6 S.E.%	S LOW 5 2,4 6. T LOW 1 B LOW	AMPLE TREE AVG 30 578 76 2,954 87 116 36 711 REES/ACRE AVG 17 127 1 2 9 12 32 142 ASAL AREA/A	E SAMPLE ERRO ES - BF HIGH 626 3,432 144 786 HIGH 137 2 16 151 ACRE HIGH	#	5 612 OF PLOTS R 5	10 153 EQ. 10	1: 68 INF. POP. 1: 1. INF. POP.
CL: OF TAK R ALDE TOTAL CL: OF TAK R ALDE TOTAL CL: OF TAK R ALDE TOTAL CL: OF TOTA	68.1 % 1.0 KE GR 68.1 % 1.0 KE GR 68.1 % 1.0 KE GR 1.0	COEF VAR.9 89.0 48.6 81.5 123.8 COEF VAR.9 58.0 219.0 223.1 49.6 COEF VAR.9	OF 100 THE VC S.E.% 8.3 16.2 24.5 10.6 F 6 S.E.% 7.8 29.5 30.1 6.7 F 6 S.E.% 6 S.E.%	DLUME WILL B S LOW 5 2,4 6. T LOW 1 B LOW 2	AMPLE TREE AVG 30 578 76 2,954 87 116 36 711 REES/ACRE AVG 17 127 1 2 9 12 32 142 ASAL AREA/A AVG 21 237	E SAMPLE ERRO ES - BF HIGH 626 3,432 144 786 HIGH 137 2 16 151 ACRE HIGH 253	#	5 612 OF PLOTS R 5 98 OF PLOTS R	10 153 EQ. 10 25 EQ.	1: 68 INF. POP. 1: 1. INF. POP.
CL: OF TAK R ALDE TOTAL CL: OF TAK R ALDE TOTAL CL: OF TAK R ALDE TOTAL CL: OF TOTAL CL: OF TOTAL CL: OF TAK SD: OF TAK S	68.1 % 1.0 KE GR 68.1 % 1.0 KE GR 68.1 % 1.0 KE GR 1.0 KE GR 1.0	COEF VAR.9 50.8 COEF VAR.9 89.0 48.6 81.5 123.8 COEF VAR.9 58.0 219.0 223.1 49.6 COEF VAR.9 50.8 218.5	S.E.% 8.3 16.2 24.5 10.6 F 6 S.E.% 7.8 29.5 30.1 6.7 F 6 S.E.% 6.8 29.4	S LOW 5 2,4 6. T LOW 1 1. B LOW 2	AMPLE TREE AVG 30 578 76 2,954 87 116 36 711 REES/ACRE AVG 17 127 1 2 9 12 32 142 ASAL AREA/A AVG 21 237 18 26	E SAMPLE ERRO ES - BF HIGH 626 3,432 144 786 HIGH 137 2 16 151 ACRE HIGH 253 34	#	5 612 OF PLOTS R 5 98 OF PLOTS R	10 153 EQ. 10 25 EQ.	1: 68 INF. POP. 1: 1. INF. POP.
CL: OF TAK R ALDE TOTAL CL: OF TAK R ALDE TOTAL CL: OF TAK R ALDE TOTAL CL: OF TAK R ALDE CL: OF TAK R	68.1 % 1.0 KE GR 68.1 % 1.0 KE 68.1 % 1.0 KE GR 1.0 KE GR L GR	TIMES OUT COEF VAR.9 89.0 48.6 81.5 123.8 COEF VAR.9 58.0 219.0 223.1 49.6 COEF VAR.9 50.8 218.5 209.3	OF 100 THE VC S.E.% 8.3 16.2 24.5 10.6 F 6 S.E.% 7.8 29.5 30.1 6.7 F 6 S.E.% 6.8 29.4 28.2	S LOW 5 2.4 6. T LOW 1 LOW 2	AMPLE TREE AVG 30 578 76 2,954 87 116 36 711 REES/ACRE AVG 17 127 1 2 9 12 32 142 ASAL AREA/A AVG 21 237 18 26 17 17	E SAMPLE ERRO ES - BF HIGH 626 3,432 144 786 HIGH 137 2 16 151 ACRE HIGH 253 34 21	#	5 612 OF PLOTS R 5 98 OF PLOTS R 5	10 153 EQ. 10 25 EQ. 10	1: 66 INF. POP. 1: 1. INF. POP.
CL: OF CL	68.1 % 1.0 GE GR 1.0 GE GR 1.0 GE GR 1.0 GE GR	TIMES OUT COEF. VAR.9 89.0 48.6 81.5 123.8 COEF. VAR.9 58.0 219.0 223.1 49.6 COEF. VAR.9 50.8 218.5 209.3 36.3	OF 100 THE VC 8.3 16.2 24.5 10.6 F. 6 S.E.% 7.8 29.5 30.1 6.7 F. 6 S.E.% 6.8 29.4 28.2 4.9	DLUME WILL E S LOW 5 2,4 6. T LOW 1 LOW 2	BE WITHIN THE AVG 30 578 76 2,954 87 116 36 711 REES/ACRE AVG 17 127 1 2 9 12 32 142 ASAL AREA/A AVG 21 237 18 26 12 17 66 280	E SAMPLE ERRO ES - BF HIGH 626 3,432 144 786 HIGH 137 2 16 151 ACRE HIGH 253 34 21	#	5 612 OF PLOTS R 5 98 OF PLOTS R 5	10 153 EQ. 10 25 EQ. 10	1. 66 INF. POP. 1. INF. POP. 1.
CL: OBSD: DF TAK R ALDE TOTAL CL: OB	68.1 % 1.0 KE GR 1.0 68.1 % 1.0 KE GR 1.0	COEF VAR.9 89.0 48.6 81.5 123.8 COEF VAR.9 58.0 219.0 223.1 49.6 COEF VAR.9 50.8 218.5 209.3 36.3 COEF	OF 100 THE VC S.E.% 8.3 16.2 24.5 10.6 F 6 S.E.% 7.8 29.5 30.1 6.7 F 6 S.E.% 6.8 29.4 28.2 4.9	DLUME WILL I S LOW 5 2,4 6. T LOW 1 1. B LOW 2	AMPLE TREE AVG 30 578 76 2,954 87 116 36 711 REES/ACRE AVG 17 127 1 2 9 12 32 142 ASAL AREA/A AVG 21 237 18 26 12 17 66 280 RET BF/ACRE	E SAMPLE ERRO ES - BF HIGH 626 3,432 144 786 HIGH 137 2 16 151 ACRE HIGH 253 34 21 294	#	5 612 OF PLOTS R 5 98 OF PLOTS R 5	10 153 EQ. 10 25 EQ. 10 13	1: 66 INF. POP. 1: INF. POP. 1: INF. POP.
CL: OF TAK R ALDE TOTAL CL: OF TOTAL CL: OF TOTAL CL: OF TAK R ALDE TOTAL CL: OF TO	68.1 % 1.0 GE GR 1.0 GE GR 1.0 GE GR 1.0 GE GR	COEF VAR.9 89.0 48.6 81.5 123.8 COEF VAR.9 58.0 219.0 223.1 49.6 COEF VAR.9 50.8 218.5 209.3 36.3 COEF	OF 100 THE VC S.E.% 8.3 16.2 24.5 10.6 F 6 S.E.% 7.8 29.5 30.1 6.7 F 6 S.E.% 6.8 29.4 28.2 4.9 F	S LOW 5 2,4 6. T LOW 1 1 LOW 2	AMPLE TREE AVG 30 578 76 2,954 87 116 36 711 REES/ACRE AVG 17 127 1 2 9 12 32 142 ASAL AREA/A AVG 21 237 18 26 12 17 66 280 ET BF/ACRE AVG	E SAMPLE ERRO ES - BF HIGH 626 3,432 144 786 HIGH 137 2 16 151 ACRE HIGH 253 34 21 294	#	5 612 OF PLOTS R 5 98 OF PLOTS R 5	10 153 EQ. 10 25 EQ. 10	1: 68 INF. POP. 1: INF. POP. 1: INF. POP.
CL: OF TAKE RALDE TOTAL CL: OF	68.1 % 1.0 KE GR 68.1 % 1.0 KE GR 1.0	TIMES OUT COEF VAR.9 89.0 48.6 81.5 123.8 COEF VAR.9 58.0 219.0 223.1 49.6 COEF VAR.9 50.8 218.5 209.3 36.3 COEF VAR.9	OF 100 THE VC S.E.% 8.3 16.2 24.5 10.6 F 6 S.E.% 7.8 29.5 30.1 6.7 F 6 S.E.% 6.8 29.4 28.2 4.9 F 6 S.E.% 6.9	DLUME WILL E S LOW 5 2,4 6. T LOW 1 1. B LOW 2 N LOW 38,0	AMPLE TREE AVG 30 578 76 2,954 87 116 36 711 REES/ACRE AVG 17 127 1 2 9 12 32 142 ASAL AREA/A AVG 21 237 18 26 12 17 66 280 ET BF/ACRE AVG 51 40,882	E SAMPLE ERRO ES - BF HIGH 626 3,432 144 786 HIGH 137 2 16 151 ACRE HIGH 253 34 21 294 HIGH 43,713	#	5 612 OF PLOTS R 5 98 OF PLOTS R 5	10 153 EQ. 10 25 EQ. 10 13	1: 66 INF. POP. 1: INF. POP. 1: INF. POP.
CL: OF TAK R ALDE TOTAL CL: OF	68.1 % 1.0 KE GR 68.1 % 1.0 KE GR 1.0	COEF VAR.9 89.0 48.6 81.5 123.8 COEF VAR.9 58.0 219.0 223.1 49.6 COEF VAR.9 50.8 218.5 209.3 36.3 COEF	OF 100 THE VC S.E.% 8.3 16.2 24.5 10.6 F 6 S.E.% 7.8 29.5 30.1 6.7 F 6 S.E.% 6.8 29.4 28.2 4.9 F 6 S.E.% 6.9 29.5	DLUME WILL E S LOW 5 2,4 6. T LOW 1 1. B LOW 2 N LOW 38,0 3,1	BE WITHIN THE AVG 30 578 76 2,954 87 116 36 711 REES/ACRE AVG 17 127 1 2 9 12 32 142 ASAL AREA/A AVG 21 237 18 26 12 17 66 280 ET BF/ACRE AVG 51 40,882	E SAMPLE ERRO 626 3,432 144 786 HIGH 137 2 16 151 ACRE HIGH 253 34 21 294 HIGH 43,713 5,872	#	5 612 OF PLOTS R 5 98 OF PLOTS R 5	10 153 EQ. 10 25 EQ. 10 13	15 68 INF. POP. 15 INF. POP. 15

TC TSTNDSUM Stand Table Summary

Project DOE_OVER

T12S R09W S02 T00MC T12S R09W S02 T00MC

Page: Twp Rge Sec Tract Type Acres Plots Sample Trees Date: 08/03/2016 **12S** 09W 02 AREA1 **00MC** 56.00 55 138 Time: 10:30:18AM

	1			_	i						NT 4	N T 4	Time:	10:30:18	
a		g ,	EE	Av	m ,	D.4./			age Log	m ,	Net	Net	T	Totals	
S		Sample	FF	Ht	Trees/	BA/	Logs	Net	Net	Tons/	Cu.Ft.	Bd.Ft.		a	
Spc T	+	Trees	16'	Tot	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	9	1	82	21	4.667	2.06	4.67	5.0	20.0		23	93		13	5
DF	10	2	83	21	7.560	4.12	7.56	6.0	20.0		45	151		25	8
DF	11	4	89	64	12.496	8.25	15.62	12.6	42.0		197	656		110	37
DF	12	4	88	62	10.500	8.25	7.87	19.7	63.3		155	499		87	28
DF	13	5	87	55	11.183	10.31	11.18	21.0	56.0		235	626		132	35
DF	14	2 2	87	101	3.857	4.12	7.71 6.72	19.8	67.5		152	521 722		85	29
DF DF	15 16	7	91 86	113 88	3.360	4.12		26.8	107.5 87.7		180 499			101 279	40 94
DF	17	5	83	126	10.336 6.540	14.43 10.31	19.20 15.70	26.0 30.1	102.5		499	1,683 1,609		264	90
DF	18	6	89	110	7.000	12.37	15.17	34.2	102.3		518	1,902		290	106
DF	19	9	88	122	9.424	18.55	24.08	35.9	137.0		864	3,298		484	185
DF	20	5	88	129	4.725	10.31	12.28	41.6	166.9		511	2,051		286	115
DF	21	6	88	123	5.143	12.37	13.71	43.7	174.4		599	2,391		336	134
DF	22	7	88	126	5.467	14.43	15.62	45.5	185.0		711	2,890		398	162
DF	23	5	88	129	3.573	10.31	10.72	48.7	199.3		522	2,137		293	120
DF	24	7	86	140	4.594	14.43	13.78	55.4	234.3		764	3,229		428	181
DF	25	3	85	110	1.814	6.18	4.23	61.3	224.3		259	950		145	53
DF	26	7	85	129	3.914	14.43	11.74	60.0	248.1		705	2,913		395	163
DF	27	4	86	118	2.074	8.25	5.70	65.8	270.0		375	1,540		210	86
DF	28	6	84	135	2.893	12.37	8.68	71.7	307.2		622	2,666		349	149
DF	29	1	78	135	.449	2.06	1.35	72.3	266.7		98	360		55	20
DF	30	5	87	122	2.100	10.31	5.88	82.7	375.7		486	2,209		272	124
DF	31	1	80	123	.393	2.06	1.18	79.7	330.0		94	389		53	22
DF	32	2	89	138	.738	4.12	2.21	99.8	446.7		221	989		124	55
DF	33	2	89	129	.694	4.12	1.39	116.3	587.5		161	816		90	46
DF	34	2	85	124	.654	4.12	1.63	117.2	528.0		192	863		107	48
DF	35	1	80	165	.309	2.06	1.23	94.0	457.5		116	565		65	32
DF	36	1	87	152	.292	2.06	.87	134.0	700.0		117	612		66	34
DF	40	1	95	149	.236	2.06	.71	174.3	990.0		124	702		69	39
DF	44	1	89	152	.195	2.06	.59	202.7	913.3		119	535		66	30
DF	45	1	75	145	.187	2.06	.56	104.0	563.3		58	315		33	18
DF	Totals	115	87	94	127.367	237.09	249.57	40.9	163.8		10,196	40,882		5,710	2,289
DFT	38	1	87	151	.332	2.62									
DFT	48	1	88	138	.208	2.62	.42	174.0	795.0	.00	73	331	0	41	19
DFT	51	1	90	136	.185	2.62	.37	339.0	1755.0	.00	125	648	0	70	36
DFT	52	2	89	158	.355	5.24	1.07	257.7	1323.3	.01	274	1,410	0	154	79
DFT	54	1	88	151	.165	2.62	.49	170.7	850.0	.00	84	420	0	47	24
DFT	58	1	83	138	.143	2.62	.43	176.7	890.0	.00	76	381	0	42	21
DFT	60	1	89	138	.133	2.62	.27	270.0	1175.0	.00	72	313	0	40	18
DFT	63	1	72	151	.121	2.62	.36	321.0	1510.0	.00		548	0	65	31
DFT	66	1	86	112	.110	2.62	.22	504.0	2200.0	.00	111	485	0	62	27
DFT	Totals	10	87	145	1.752	26.18	3.62	257.1	1251.9	0.03	932	4,536	2	522	254
RA	12	1	86	40	1.775	1.39	1.77	14.0	40.0		25	71		14	4
RA	14	2	87	45	2.608	2.79	2.61	21.5	50.0		56	130		31	7
RA	16	6	86	52	5.990	8.36	6.99	27.9	70.0		195	489		109	27
RA	18	1	87	94	.789	1.39	1.58	36.5	125.0		58	197		32	11
RA	19	1	85	61	.708	1.39	1.42	26.5	95.0		38	135		21	8
RA	22	1	87	68	.528	1.39	1.06	42.5	160.0		45	169		25	9
RA	Totals	12	86	53	12.398	16.73	15.42	26.9	77.3		416	1,191		233	67
Totals	1	137	87	91	141.516	280.00	268.61	43.0	173.5	.03	11543	46,609	2	6,464	2,610
					l			<u> </u>		1		,		-, -	

T '	TSPCSTGR				Specie	es, Sort (Project	Grade - Boar : DOF	d Foo E_OVI		lume	s (Тур	e)					Pag Date Fim	e 8	1 /3/2010 0:30:1	
T12S Twj 12S		OMC Sec 02		ract EA1		Type 00M	Acre C 56.		Plots		Sample	e Trees		C 1	uFt	T12 BdI W	-	.09W S0	2 T00	МC
		%						Per	cent No	et Boa	rd Foot	Volum	e			Av	eraș	ge Log		,
Spp	S So Gr T rt ad	N Bd		Bd. Def%	Ft. per Acre Gross	Net	Total Net MBF	I 4-5	Log Sca	ale Dia		1	g Leng 21-30		36-99	Ln l		Bd Ft	CF/ Lf	/ <i>A</i>
DF	C	J														2	16		0.00	
DF	21	Л 6	3	1.1	26,190	25,914	1,451			54	46			6	94	39	15	360	2.08	
DF	31	A 3	0	2.3	12,559	12,268	687		75	16	9	1	2	8	88	38	9	117	0.88	
DF	41	Л	6		2,313	2,313	130	10	89	1		28	31	13	28	24	6	32	0.44	
DF	M	I			22	22	1		100					100		32	6	50	0.59	
DF	CU C	J	10	0.00	264											34	8		0.00	
DF	PU		1		364	364	20			16	84	16			84	23	18	431	3.52	
DF	Totals	8	8	2.0	41,712	40,882	2,289	1	27	40	32	2	2	7	89	34	10	162	1.18	
DFT	C	IJ	10	0.00	1,447											28	41		0.00	
DFT	21	л 1	6	11.8	844	745	42				100		34		66	37	34	1776	10.53	
DFT	31	л 8	4 1	12.1	4,315	3,791	212			2	98		8	7	84	36	27	1183	6.73	
DFT	CU C	IJ	10	0.00	287											24	42		0.00	
DFT	Totals	1	0 3	34.2	6,893	4,536	254			2	98		13	6	81	34	30	1019	6.12	
RA	C	R 10	0	1.1	1,204	1,191	67		66	34		11	18	34	38	31	8	77	0.87	
RA	Totals		3	1.1	1,204	1,191	67		66	34		11	18	34	38	31	8	77	0.87	
Туре Т	otals			6.4	49,809	46,609	2,610	1	26	36	38	2	4	7	87	34	10	171	1.25	

TC TLOGSTVB Log Stock Table - MBF Project: DOE_OVER T12S R09W S02 T00MC T12S R09W S02 T00M Page Twp Tract Type Acres Plots Sample Trees Rge Sec Date 8/3/2016 **12S** 09W02 AREA1 00MC56.00 55 138 Time 10:30:17AM S So Gr Log Gross % Net % Net Volume by Scaling Diameter in Inches Spp T rt de MBF MBF Len Def Spc 2-3 4-5 10-11 12-13 14-15 16-19 20-23 24-29 30-39 CU2 DF 54 23 20 2.4 DF 2M 32 54 12 DF 2M 34 28 2.7 27 1.2 27 DF 2M 36 13 3.1 12 .5 12 19 DF 2M 38 35 35 1.5 250 DF 2M 40 1,337 1.1 1,323 57.8 504 234 45 24 266 1 .1 1 DF 3M 19 7 7 DF 3M 20 7 .3 DF 3M 22 3 .2 3 DF 3M 23 1 .1 2 DF 3M 24 .1 2 DF 3M 25 1 .1 4 DF 3M 27 .2 2 2 2 2 DF 3M 28 .1 2 2 DF 3M 30 .1 2 DF 3M 31 2 2 2 .1 39 17 2 10 DF 3M 32 40 1.7 10 .6 DF 2 3M 2 2 34 .1 DF 3M 13 13 11 35 .6 21 DF 3M 36 11.9 19 .8 19 DF 3M 37 11 11 .5 6 2 3 DF 3M 38 11 11 .5 11 DF 3M 40 579 2.3 565 24.7 80 121 209 57 34 11 30 18 .0 1 1 4M 12 DF 1 2 2 DF 4M 13 .1 1 1 DF 4M 14 4 .2 3 DF 4M 15 2 2 .1 2 1 DF 14 13 4M 16 14 .6 DF 4M 17 1 1 .1 DF 4M18 5 5 .2 1 DF 4M6 .3 20 6 6 DF 4M21 3 .1 3 DF 4M 22 12 12 .5 10 DF 23 2 2 2 4M .1 DF 4M 11 11 .5 9 24 DF 4M 25 2 2 2 .1 3 DF 4M 27 3 3 .1 DF 4M 28 .3 DF 4M 30 .1 4M 31 7 .3 DF DF 4M 32 6 .3 2 3 DF 4M 33 .1 2 DF 3 3 3 4M 36 .1 DF 4M39 6 .2 6 DF 4M 40 21 21 .9 21 DF 4M 41 7 7 .3 7 1 .1 DF MI 32 1 1 7 100.0 DF CU CU 16 7 100.0 DF CU CU 35 DF PU 12 3 3

TC TI	OGSTVB					g Stocl oject:	k Tab	ole - Mi DOE	BF E_OVE	R								
T12S I Twp 12S	R09W S0 Rge 09W	S	oMC ec Tra 02 ARE			Type 00MC	!	Acres		Plots 55	Samp	ole Trees 138	5]]	S R09V Page Date Fime	V S02 T0 2 8/3/20 10:30:		
	So Gr	Log	Gross	%	Net	% .			Net Vo	lume by	Scaling	Diamet	er in Inc	hes	,			
Spp T	rt de	Len	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF	PU	40	17		17	.8									17			
DF	То	tals	2,336	2.0	2,289	87.7		13	260	135	235	392	340	536	263	74	41	
DFT DFT		J 16 J 32	13 68	100.0 100.0														
DFT DFT		1 28 1 40	14 33	16.9	14 27	5.6 10.8									5		22	14
DFT DFT DFT	3N 3N	1 32	6 12 15		6 12 15	2.4 4.6 6.0								5	5 4	6 7 12		
DFT DFT		1 38 1 40	8 200	14.6	8 171	3.2 67.4							4	4	5	32	112	21
DFT	CU CI	J 24	16	100.0														
DFT	То	tals	386	34.2	254	9.7							4	13	10	57	135	35
RA RA		R 16	7 1		7 1	10.8 1.8			2				6					
RA RA	CF CF CF		2 4 2		2 4 2	2.5 6.0 3.3			2 4 2									
RA RA RA		R 30	4 18	20.0	3 18	3.3 4.4 27.1			3 2		8		8					
RA RA	CF	R 35	4 7		4 7	6.6			4 7									
RA		tals	18	1.1	18	26.7			4		8	9	1.4					
RA Total All		uais	2,789	6.4	2,610	2.6		13	291	140	242	401	358	548	273	131	176	35

Rock Haul Cost Computation

SALE NAME:	Doe Over	DATE:	Aug 12,	2016

CLASS: Medium ROAD NAME: ROCK SOURCE: Commercial Quarry 10-12 CY truck

Route: Hwy 20 to Salmon Creek to Sale Area (North end)

TIME Computation	n•				
Road speed time					
1.	55 MPH	36.6	MRT	39.9	minutes
2.	50 MPH		MRT	0.0	minutes
3.	45 MPH		MRT	0.0	minutes
4.	40 MPH		MRT	0.0	minutes
5.	35 MPH		MRT	0.0	minutes
6.	30 MPH		MRT	0.0	minutes
7.	25 MPH		MRT	0.0	minutes
8.	20 MPH		MRT	0.0	minutes
9.	15 MPH	12.8	MRT	51.2	minutes
10.	10 MPH	0.2	MRT	1.2	minutes
11.	05 MPH		MRT	0.0	minutes
Dump or spread Total hauling	g cycle time	e for the	is setting	0.50	minutes minutes
(100% ellici	ency)			92.00	minuces
Operator effici	ency correct	ion	0.85	109.18	minutes
Job efficiency	correction		0.85	128.45	minutes
Truck capacity Loading time, de		er CY	10.00	12.85 0.25	
TIME (minutes)	per cubic ya	ırd		13.10	min/CY
COST per CY com	outation				
Cost of truc	-	or ner h	hour	\$79.00	/hr.
Cost of truc	=	-			/min
CODE OF CIUC	. and operat	or per i		71.52	, <u>.</u>

CODC	\circ	CLUCIL	arra	operacor	PCT	nour	473.00	/ 111 •
Cost	of	truck	and	operator	per	minute	\$1.32	/min

Cost per CY \$17.29 /CY

		Cost Delivered
Size	Cost/Yd (Pit)	w/o processing
1½ - 0"	\$ 11.48	\$28.77
3 - 0"	\$ 11.14	\$28.43
Jaw Run	\$ 9.79	\$27.08

Note: Pit costs May 2016 Wild Rose - Conversion 1.35 ton/CY

Rock Haul Cost Computation

SALE NAME: Doe Over DATE: Aug 12, 2016 ROAD NAME: CLASS: Medium ROCK SOURCE: Commercial quarry 18-20 CY truck-trailer Route: Hwy 20 to Salmon Creek to Sale Area (North end) TIME Computation: Road speed time factors: 1. 55 MPH MRT 0.0 minutes 50 MPH 36.6 MRT 45 MPH MRT 2. 43.9 minutes 3. 0.0 minutes 4. 40 MPH 5. 35 MPH 6. 30 MPH 7. 25 MPH MRT 0.0 minutes 0.0 minutes MRT 0.0 minutes MRT 0.0 minutes MRT 8. 20 MPH MRT 9. 15 MPH 12.8 MRT 10. 10 MPH 0.2 MRT 11. 05 MPH MRT 0.0 minutes 51.2 minutes 1.2 minutes 0.0 minutes 0.50 minutes Dump or spread time per RT Total hauling cycle time for this setting (100% efficiency) 96.80 minutes 0.85 Operator efficiency correction 113.88 minutes Job efficiency correction 0.85 133.98 minutes Truck capacity (CY) 20.00 6.70 min/CY Loading time, delay time per CY 0.25 min/CY TIME (minutes) per cubic yard 6.95 min/CY COST per CY computation \$100.00 /hr. Cost of truck and operator per hour \$1.67 /min Cost of truck and operator per minute Cost per CY \$11.61 /CY

		Cost Delivered
Size	Cost/Yd (Pit)	w/o processing
1½ - 0"	\$ 11.48	\$23.09
3 - 0"	\$ 11.14	\$22.75
Jaw Run	\$ 9.79	\$21.40

Note: Pit costs May 2016 Wild Rose - Conversion 1.35 ton/CY

Rock Haul Cost Computation

SALE NAME: ROAD NAME: ROCK SOURCE: Route: Hwy	Com		quarry o Harlan t	10-12	Aug 12, 2 : Medium CY truck (South end)	016
TIME Computation	n:					
Road speed time						
1.	55 MPH	24.6	MRT		26.8	minutes
2.	50 MPH		MRT		0.0	minutes
3.	45 MPH		MRT		0.0	minutes
4.	40 MPH		MRT		0.0	minutes
5.	35 MPH	15.6	MRT		26.7	minutes
6.	30 MPH	7.6	MRT		15.2	minutes
7.	25 MPH		MRT		0.0	minutes
8.	20 MPH		MRT		0.0	minutes
9.	15 MPH	1.8	MRT		7.2	minutes
10.	10 MPH	1.0	MRT			minutes
11.	05 MPH		MRT		0.0	minutes
Dump or spread to	=	for thi	is setting		0.50	minutes
(100% efficie	ency)		_		82.40	minutes
Operator efficie	ency correct	ion	0.85		96.94	minutes
Job efficiency	correction		0.90		107.71	minutes
Truck capacity Loading time, de	elay time pe		10.00		10.77 0.25 11.02	min/CY
COST per CY comp Cost of truck	k and operat	-			\$79.00 \$1.32	/hr. /min
Cost per CY					\$14.55	/CY

	Cost Delivered
Cost/Yd (Pit)	w/o processing
\$ 11.48	\$26.03
\$ 11.14	\$25.69
\$ 9.79	\$24.34
	\$ 11.48 \$ 11.14

Note: Pit costs May 2016 Wild Rose - Conversion 1.35 ton/CY

Legend

Boundaries

• • • • • Timber Sale Boundary Right of Way (Posted)

Roads

Surfaced Road

Unsurfaced Road

New Construction

Streams

Type F Stream

Type N Stream

Posted Stream Buffer Stream Buffer

> Reforestation Area Cable Corridors

Landings

Land Survey Monument

Gates

Controlled Felling Area

Logging Restricted Area Green Tree Retention Area

High Landslide Hazard Buffer (HLHB)

1.000

LOGGING PLAN

OF TIMBER SALE CONTRACT NO. 341-17-49 DOE OVER PORTIONS OF SECTION 35, T11S, R9W, & SECTION 2, T12S, R9W, W.M., LINCOLN COUNTY, OREGON

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or survey purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

Scale 1:12,000 0 1,000 2,000

	NET ACRES TRACTOR	NET ACRES CABLE
1 (MC) 2 (R/W)	11 1	45 0
TOTAL	12	45

Created By: Blake McKinley blake.mckinley@oregon.gov Date: 08/11/2016