

Timber Sale Appraisal Shining C

Sale FG-341-2017-38-

District: Forest Grove Date: September 02, 2016

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$1,382,008.50	\$137,603.70	\$1,519,612.20
		Project Work:	(\$271,000.00)
		Advertised Value:	\$1,248,612.20

9/02/16

Timber Sale Appraisal Shining C

Sale FG-341-2017-38-

District: Forest Grove Date: September 02, 2016

Timber Description

Location: Portions of Sections 16 and 17, T1N, R6W, W.M., Tillamook County, Oregon.

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	19	0	98
Alder (Red)	15	0	95

Volume by Grade	2\$	3S	4 S	CR 14" - 22"	Total
Douglas - Fir	2,717	1,272	186	0	4,175
Alder (Red)	0	0	0	390	390
Total	2,717	1,272	186	390	4,565

Comments: Pond Values Used: 2nd Quarter Calendar Year 2016.

Western Hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost:

\$161.55/MBF = \$435/MBF - \$273.45/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost:

\$901.55/MBF = \$1,175/MBF - 273.45/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

BRANDING AND PAINTING COST ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE

Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added):

Extra Logging Cost: 4,565 MBF x \$10 MBF = \$45,650

TOTAL Other Costs (with Profit & Risk to be added) = \$45,650

Other Costs (No Profit & Risk added):

Block/Waterbar Roads/Skid Trails: 10 hrs x \$150/hour = \$1,500

Refurbish Recreational Trail: \$4/foot x 1,250' = \$5,000

Pile Landing Slash: 20 hrs x \$150/hour = \$3,000 Equipment Cleaning: 3 x \$1,000/Piece = \$3,000

TOTAL Other Costs (No Profit & Risk added) = \$12,500

ROAD MAINTENANCE

Move-in: \$4,000

General Road Maintenance: 4.2 miles x \$1,200/mile = \$5,040 TOTAL Road Maintenance: \$9,040/4,565 MBF = \$1.98/MBF

9/02/16

Timber Sale Appraisal Shining C

Sale FG-341-2017-38-

District: Forest Grove Date: September 02, 2016

Logging Conditions

Combination#: 1 Douglas - Fir 90.01%

Alder (Red) 73.92%

yarding distance: Long (1,500 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 8 bd. ft / load: 4600

cost / mbf: \$168.48

machines: Log Loader (A)

Stroke Delimber (A) Tower Yarder (Large)

Combination#: 2 Douglas - Fir 9.99%

Alder (Red) 26.08%

Logging System: Shovel Process: Stroke Delimber

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 12 bd. ft / load: 4600

cost / mbf: \$57.46

machines: Stroke Delimber (B)

Timber Sale Appraisal Shining C

Sale FG-341-2017-38-

District: Forest Grove Date: September 02, 2016

Logging Costs

Operating Seasons: 1.00

Profit Risk: 15%

Project Costs: \$271,000.00

Other Costs (P/R): \$45,650.00

Slash Disposal: \$0.00

Other Costs: \$12,500.00

Miles of Road

Road Maintenance:

\$1.98

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load	
Douglas - Fir	\$0.00	3.0	4.5	
Alder (Red)	\$0.00	2.0	3.0	

Timber Sale Appraisal Shining C

Sale FG-341-2017-38-

District: Forest Grove Date: September 02, 2016

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling / Brand & Paint	Other	Total
Douglas -	Fir								
\$157.39	\$2.02	\$0.96	\$58.94	\$10.00	\$34.40	\$0.00	\$7.00	\$2.74	\$273.45
Alder (Red	l)			_					
\$139.53	\$2.08	\$0.96	\$136.50	\$10.00	\$43.36	\$0.00	\$7.00	\$2.74	\$342.17

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$604.47	\$331.02	\$0.00
Alder (Red)	\$0.00	\$695.00	\$352.83	\$0.00

Timber Sale Appraisal Shining C

Sale FG-341-2017-38-

District: Forest Grove Date: September 02, 2016

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	4,175	\$331.02	\$1,382,008.50
Alder (Red)	390	\$352.83	\$137,603.70

Gross Timber Sale Value

Recovery: \$1,519,612.20

Prepared By: Eric Foucht Phone: 503-359-7473

TIMBER SALE SUMMARY Shining C Contract No. 341-17-38

- **1.** <u>Location</u>: Portions of Sections 16 and 17, T1N, R6W, W.M, Tillamook County, Oregon.
- **2.** <u>Type of Sale</u>: This timber sale is 111 acres of Modified Clearcut in 2 sale areas. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. Revenue Distribution: 100% BOF, Tillamook County, Tax Code 9-2
- **4.** <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS software.
- **5.** <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in April of 2016. For more information see Cruise Report.

6. <u>Timber Description</u>:

Area 1 is a 44 acre moderately stocked stand of 64 year old Douglas-fir with a significant component of red alder and a lesser amount of western hemlock. Area 2 is a 67 acre well-stocked stand of 64 year old Douglas-fir with minor mounts of red alder and western hemlock.

The following table summarizes the ODF cruise estimates for Douglas-fir.

Sale Area	Net Acres	Average DBH	Trees/Acre	Net MBF/Acre
Area 1	44	19	89	28.4
Area 2	67	19	108	38.5

7. Topography and Logging Method:

Slopes within the sale areas range from 15% to 85% and have a generally northwest aspect. Elevations range from 1600 to 2320 feet. The following table summarizes the estimated maximum and average horizontal cable corridor length, the estimated maximum and average tractor skid trail length, and the percent harvest method for each Sale Area.

		Tractor		Cable		
Sale Area	Average	Maximum	%	Average	Maximum	%
Area 1	350	720	27	645	1210	73
Area 2	200	330	3	1550	3042	97

8. Access: All access to the Timber Sale Area is on surfaced all-weather roads. From Forest Grove travel west on Highway 8 to its intersection with Highway 6. Proceed west onto Highway 6 for approximately 14.3 miles to the South Fork Wilson River Road. Turn left and continue south 2.8 miles to the C-Line Road. Turn right and continue approximately 1 mile to the northeast corner of Area 2.

9. Projects:

Project No. 1: Road Construction and Improvement Project No. 2: Rock Crushing and Road Surfacing Project No. 3: Construct Stockpile Site Project No. 4: Construct 3"-0 Rock Stockpile Project No. 5: Grass Seed, Fertilize & Mulch Move in and equipment cleaning:	\$30,022.88 \$61,471.97 \$18,173.76 \$153,618.80 \$1,412.00 \$6,300.59
Total Credit for all Projects	\$271,000

PROJECT COST SUMMARY SHEET

Timber Sale:	Shining C
Sale Number:	341-17-38

PROJECT NO. 1	· ROAD	CONSTRUCTION	AND IMPROVEMENT

NST		

Road Segment	Length	Cost
E to F	27+60	\$20,845.94
G to H	4+00	\$1,476.38
	31+60	stations
	0.60	miles

SUBTOTAL CONSTRUCTION = \$22,322.32

IMPROVEMENTS

Road Segment	Length	Cost
A to B	61+00	\$5,630.17
C to D	24+50	\$2,070.39
	85+50	stations
	1.62	miles

SUBTOTAL IMPROVEMENTS = \$7,700.56 TOTAL PROJECT NO. 1 COST = \$30,022.88

PROJECT NO. 2: SURFACING

Road Segment	Rock Amount	Rock Type	Cost
A to B	989 cy	1 1/2" - 0	\$10,961.34
C to D	24 cy	1 1/2" - 0	\$241.20
	890 cy	3" - 0	\$12,728.75
E to F	290 cy	1 1/2" - 0	\$3,103.00
	1,776 cy	3" - 0	\$25,923.76
	78 cy	Jaw Run	\$1,102.14
G to H	460 cy	3" - 0	\$6,849.40
	39 cy	Jaw Run_	\$562.38
Total	1,303 cy	1 1/2" - 0	
	3,125 cy	3" - 0	
	117 cy	Jaw Run	

<u>TOTAL PROJECT NO. 2 COST = \$61,471.97</u>

PROJECT NO. 3 CONSTRUCT STOCKPILE SITE AT POINT I

CONSTRUCTION

Stockpile Site 1.31 ac = \$1,982.82

SUBTOTAL CONSTRUCTION = \$1,982.82

SURFACING

Jaw Run 1,202 cy = \$16,190.94

<u>SUBTOTAL SURFACING = </u> \$16,190.94 <u>TOTAL PROJECT NO. 3 COST = </u> \$18,173.76

PROJECT NO. 4 CONSTRUCT 9,500CY STOCKPILE OF 3"-0 AT POINT I

9,500cy Stockpile = 11,020 cy 3"-0 \$153,618.80

TOTAL PROJECT NO. 4 COST = \$153,618.80

PROJECT NO. 5 GRASS SEED, FERTILIZE, & MULCH

<u>TOTAL PROJECT NO. 5 COST = \$1,412.00</u>

MOVE-IN & EQUIPMENT CLEANING

Grader	\$836.47
Loader (into Beaverdam Stockpile)	\$618.87
Roller (smooth/grid) & Compactor	\$522.69
Excavator - Equipment Cleaning	\$1,836.47
Dozer - Equipment Cleaning	\$1,881.05
Dump Trucks	\$470.14
Water Truck	\$134.90

TOTAL MOVE-IN & EQUIPMENT CLEANING COST = \$6,300.59

		S	UMMARY C	F CONSTR	UCTION C	OST				
	Timber Sale: Road Segment:		Shining C		5	Sale Number: _ Improvement:		341-17-38		
			A to B	A to B				stations		
	_						1.16	_ _miles		
PROJECT NO. 1										
EXCAVATION										
Roadside brushing (lig	ht)		1.16	mi @	\$700.00	per mi =		\$812.00		
Clean ditch & scatter v			38.45	sta @	\$12.41	per sta =		\$477.17		
Clean culvert inlet & or	utlet		11	ea @	\$25.00	per ea =		\$275.00		
Grade, ditch, & roll			61.00	sta @	\$36.00	per sta =		\$2,196.00		
						TOTAL	EXCAVATI	ON COSTS =	\$3,760.17	
CULVERTS - MATERI	ALS & INSTALL	ATION								
	Culverts									
	90 I	LF of 18"	\$1,800.00)						
С	ulvert Markers									
	7 1	markers	\$70.00)						
						TO	TAL CULVE	RT COSTS =	\$1,870.00	
								•		
						PROJEC	T NO. 1 TC	TAL COST =	\$5,630.17	
PROJECT NO. 2:										
SURFACING		3	" deep =	15 cy/sta						
A to B		915	cy of	1 1/2" - 0	@	\$10.38	per cy =	\$9,497.70		
Turnouts (2)		14	cy of	1 1/2" - 0	@	\$10.38	per cy =	\$145.32		
Junction		60	cy of	1 1/2" - 0	@	\$10.38	per cy =	\$622.80		
Culvert bedding		72	cy of	1 1/2" - 0	@	\$9.66	per cy =	\$695.52		
-	Rock Total =	1,061	-							
		989	cy of	1 1/2" - 0		\$10.38	per cy =	\$10,265.82		
		72	cy of	1 1/2" - 0		\$9.66	per cy =	\$695.52		
						PROJEC	T NO. 2 TO	TAL COST =	\$10,961.34	
PROJECT NO. 5:			0.00	00700		\$405.00	nor core =	. ¢0 =0		
Grass seed & fertilizer			0.02 11		@	\$425.00	per acre =			
Mulch			11	bales	@	\$8.00	per bale =	\$88.00		
						PROJEC	T NO. 5 TO	TAL COST =	\$96.50	
, Marie M.							TO	TAL COST =	\$16 688 01	

TOTAL COST = \$16,688.01

Timber Sale:	Timber Sale:			S	Sale Number:	341		
Road Segment:	: C to D		lr	mprovement:	24+50			
						0.46	_miles	
PROJECT NO. 1								
EXCAVATION								
Roadside brushing (light)		0.47	mi @	\$700.00	per mi =		\$329.00	
Clean ditch & scatter waste material		6.80	sta @	\$12.41	per sta =		\$84.39	
Clean culvert inlet & outlet		7	ea @	\$25.00	per ea =		\$175.00	
Grade, ditch, & roll		24.50	sta @	\$36.00	per sta =		\$882.00	
Improve/Enlarge Landing		1	ea @	\$157.00	per ea=		\$157.00	
					TOTAL	EXCAVATI	ON COSTS =	\$1,470.39
CULVERTS - MATERIALS & INSTALL	ATION							
Culverts								
30	LF of 18"	\$600.00						
Culvert Markers								
1	markers	\$0.00						
					PROJEC	T NO. 1 TO	TAL COST =	\$2,070.39
							<u> </u>	
PROJECT NO. 2:								
SURFACING		" deep =	31 cy/sta	_			***	
C to D	760	cy of	3" - 0	@	\$14.31	per cy =	\$10,868.45	
Landing	130	cy of	3" - 0	@	\$14.31	per cy =	\$1,860.30	
Culvert bedding	24	_ cy of	1 1/2" - 0	@	\$10.05	per cy =	\$241.20	
Rock Total =	914						****	
	24	cy of	1 1/2" - 0		\$10.05	per cy =		
	890	cy of	3" - 0		\$14.31	per cy =	\$12,728.75	
					PROJEC	T NO. 2 TO	OTAL COST =	\$12,969.95
PROJECT NO. 5:								
Grass seed & fertilizer		0.01	acres	@	\$425.00	per acre =	\$4.25	
Mulch		7	bales	@	\$8.00	per bale =	\$56.00	
					PROJEC	T NO. 5 TO	TAL COST =	\$60.25
						TC	TAL COST =	\$15 100 50

Timber Sale:		Shining C		Sale	e Number:	341-17-38		
Road Segment:		E to F		Со	nstruction:	27+60	_stations	
						0.52	miles	
PROJECT NO. 1								
EXCAVATION	_							
Clearing & grubbing (scatter)	2.73	ac @	\$1,078.00	per acre =		\$2,942.94		
Clearing & grubbing (end-haul)	0.44	ac @	\$1,993.00	per acre =		\$876.92		
Balanced road construction	21.85	sta @	\$110.00	per sta =		\$2,403.50		
Drift	1.95	sta @	\$180.00	per sta =		\$351.00		
Full Bench End-haul Road Construction								
Excavate & load	4,316	cy @	\$1.64	per cy =		\$7,078.24		
Haul	4,316	cy @	\$0.59	per cy =		\$2,546.44		
Compact waste area	4,316	cy @	\$0.30	per cy =		\$1,294.80		
Turnouts	2	ea @	\$66.00	per ea =		\$132.00		
Turnarounds	1	ea @	\$82.50	per ea =		\$82.50		
Landing	1	ea @	\$314.00	per ea =		\$314.00		
Grade, ditch, & roll	27.60	sta @	\$36.00	per sta =		\$993.60		
					TOTAL	EXCAVATION	ON COSTS =	\$19,015.94
CULVERTS - MATERIALS & INSTALLA	TION							
Culverts								
90	LF of 18"	\$1,800.00						
Culvert Markers	;							
3	markers	\$30.00						
					<u>TOT</u>	AL CULVE	RT COSTS =	\$1,830.00
					DDO IEC	T NO 4 TO	TAL COST -	600 045 04

PROJECT NO. 1 TOTAL COST = \$20,845.94

12	" deep =	65 cy/sta					
9	" deep =	47 cy/sta					
884	cy of	3" - 0	@	\$14.60	per cy =	\$12,900.56	
572	cy of	3" - 0	@	\$14.60	per cy =	\$8,351.20	
58	cy of	3" - 0	@	\$14.60	per cy =	\$846.80	
20	cy of	3" - 0	@	\$14.60	per cy =	\$292.00	
12	cy of	3" - 0		\$14.60	per cy =	\$175.20	
180	cy of	3" - 0		\$14.60	per cy =	\$2,628.00	
50	cy of	3" - 0		\$14.60	per cy =	\$730.00	
8	cy of	1 1/2" - 0		\$10.70	per cy =	\$85.60	
78	cy of	Jaw Run		\$14.13	per cy =	\$1,102.14	
282	cy of	1 1/2" - 0	@	\$10.70	per cy =	\$3,017.40	
2,144	•						
290	cy of	1 1/2" - 0		\$10.70	per cy =	\$3,103.00	
1,776	cy of	3" - 0		\$14.60	per cy =	\$25,923.76	
78	cy of	Jaw Run		\$14.13	per cy =	\$1,102.14	
				PROJEC	T NO. 2 TO	TAL COST =	\$30,128.90
	1.59	9 acres	@	\$425.00	per acre =	\$675.75	
	0.42	2 acres	@	\$425.00	per acre =	\$178.50	
	0.42	2 acres	@	\$600.00	per bale =	\$252.00	
	9 884 572 58 20 12 180 50 8 78 282 2,144 290 1,776	572 cy of 58 cy of 20 cy of 12 cy of 180 cy of 50 cy of 8 cy of 78 cy of 282 cy of 2,144 290 cy of 1,776 cy of 78 cy of 78 cy of	9 " deep = 47 cy/sta 884				

<u>TOTAL COST = \$52,081.09</u>

Timber Sale:	Shining C			Sale Number: _ Construction: _		341-17-38		_
Road Segment: _	G to H		4+00			_stations		
						0.08	_ miles	
PROJECT NO. 1								
EXCAVATION								
Clearing & grubbing (scatter)	0.46	ac @	\$1,078.00	per acre =		\$495.88		
Balanced road construction	4.00	sta @	\$110.00	per sta =		\$440.00		
Turnarounds	1	ea @	\$82.50	per ea =		\$82.50		
Landing	1	ea @	\$314.00	per ea =		\$314.00		
Grade, ditch, & roll	4.00	sta @	\$36.00	per sta =		\$144.00		
					TOTAL	EXCAVATIO	N COSTS =	\$1,476.38
					PROJEC	T NO. 1 TO	TAL COST =	\$1,476.38
PROJECT NO. 2:								
SURFACING	12	" deep =	65 cy/sta	_				
G to H	260	cy of	3" - 0	@	\$14.89	per cy =	\$3,871.40	
Turnaround	20	cy of	3" - 0	@	\$14.89	per cy =	\$297.80	
Landing	180	cy of	3" - 0	@	\$14.89	per cy =	\$2,680.20	
Subgrade reinforcement _	39	cy of	Jaw Run	@	\$14.42	per cy =	\$562.38	
Rock Total =	499							
	460	cy of	3" - 0		\$14.89	per cy =	\$6,849.40	
	39	cy of	Jaw Run		\$14.42	per cy =	\$562.38	
					PROJEC	T NO. 2 TO	TAL COST =	\$7,411.78
PROJECT NO. 5:								
Grass seed & fertilizer		0.23	acres	@	\$425.00	per acre =	\$97.75	
					PROJEC	T NO. 5 TO	TAL COST =	\$97.75
						TO	TAL COST =	¢8 085 01

<u>TOTAL COST = \$8,985.91</u>

Timber Sale:		Shining C	;	Sal	e Number: _	341-	17-38	
-		Point I		_ _ Co	nstruction: _	Stock	oile Site	
PROJECT NO. 3								
EXCAVATION								
Clearing & grubbing (scatter)	1.31	ac @	\$1,078.00	per acre =		\$1,412.18		
Grade & roll	1.31	ac @	\$435.60	per ac =		\$570.64		
Surface with Jaw-Run at 10" depth	1,202	cy @	\$13.47	per cy =		\$16,190.94		
					PROJ	IECT NO. 3 T	OTAL COST =	\$18,173.76
PROJECT NO. 4:								
Construct 9,500cy stockpile	11,020	cy of	3" - 0	@	\$13.94	per cy =	\$153,618.80	
Rock Total =	11,020							
	11,020	cy of	3" - 0		\$13.94	per cy =	\$153,618.80	
					PRO	IECT NO. 4 T	OTAL COST =	\$153,618.80
PROJECT NO. 5:								
Grass seed & fertilizer		0.05	acres	@	\$425.00	per acre =	\$21.25	
Mulch		0.05	acres	@	\$600.00	per acre =	\$30.00	
					PRO	IECT NO. 5 T	OTAL COST =	\$51.25
						I	OTAL COST =	\$171,843.81

ROCK PIT DEVELOPMENT & CRUSHING COST SUMMARY

Timber Sale:	Shining C
Sale Number:	341-17-38
Pit Name:	West C-Line Pit

3" - 0: 3,125 cy (truck measure) Jaw-run: 1,319 cy (truck measure) 3"-0 Stockpile: 9,500 cy (stockpile measure)

Total truck yardage: 15,464 cy

Total in place yardage: 11,895 cy

> Swell: 130% Shrinkage: 116% Drill %: 85% Screening Loss: 15%

Pit development, including clearing & grubbing of waste area, place

overburden in waste area	•	\$2,433.42		
Drill & shoot	\$2.80	/ cy x	13,995 cy =	\$39,185.05
Push rock	\$0.80	/ cy x	18,193 cy =	\$14,554.45
Load crusher	\$0.80	/ cy x	18,193 cy =	\$14,554.45
Screen rock	\$2.90	/ cy x	18,193 cy =	\$52,759.87
Waste reject	\$0.80	/ cy x	2,729 cy =	\$2,183.17
Crush (3" - 0)	\$2.60	/ cy x	3,125 cy =	\$8,125.26
Crush (Jaw-run)	\$2.10	/ cy x	1,319 cy =	\$2,769.90
Crush (Stockpile)	\$2.60	/ cy x	11,020 cy =	\$28,652.00
Load dump truck	\$0.80	/ cy x	15,464 cy =	\$12,371.28

Subtotal: \$177,588.84

Move in & setup drill				\$572.23
Equipment cleaning & move	in excavator			\$1,976.56
Equipment cleaning & move	in dozer			\$1,946.25
Setup screening plant				\$435.00
Move in loader				\$850.61
Move in crusher				\$2,109.00
Setup crusher				\$2,110.00
Gradation tests	\$71.50 /2,000cy x	8	tests	\$572.00
Change gradation				\$275.00
Clean up pit				\$500.00
Grass seed, fertilize, and mu	Ich Existing Waste Are	ea		\$358.75

Subtotal: \$11,705.40

TOTAL PRODUCTION COST = \$189,294.24

ROCK DEVELOPMENT COST = \$12.24/cy

CRUISE REPORT Shining C 341-17-38

1. LOCATION: Portions of Sections 16 and 17, T1N, R6W, W.M, Tillamook County, Oregon.

2. CRUISE DESIGN:

Pre-cruise evaluation indicated that the stand's average DBH is approximately 18 inches and its Coefficient of Variation (CV%) is estimated to be 60%. For sales of this size and approximate value, ODF cruise standards require a Sampling Error (SE%) of 7% at a 68% confidence level, and a minimum sample size of 100 graded trees. Because the CV% is higher than usual, the sample size was increased in order to meet the SE% objective.

3. SAMPLING METHOD:

Sale Areas 1 & 2 were cruised in April 2016 with 24 variable radius grade plots and 24 variable radius count plots using a 40 BAF prism. Plots were laid out on a 4 chain x 6 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

4. CRUISE RESULTS

135 trees were measured and graded producing a cumulative SE% of 5.7% on the Basal Area and 6.0% on the Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All grade plot sample trees were measured and graded following Columbia River Log Scale grade rules and favoring 40 foot segments.

a) Height Standards:

Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.

- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors were measured for each grade tree using a form point of 16 feet.

5. DATA PROCESSING

- a) **Volumes and Statistics**, Cruise and grown forward volume estimates, and sampling statistics, were derived from Super Ace 2008 cruise software
- b) **Deductions:** Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.
- **6. Cruisers:** The sale was cruised by ODF cruisers Mark Savage and Kenton Burns.

Prepared by:		
, ,	ODF Forester	Date
Reviewed by:		
	Eric Foucht	Date

TC PS	TATS					OJECT ROJECT		STICS NGCFIN			PAGE DATE	1 5/5/2016
FWP	RGE	SC	TRACT		TYPE		AC	CRES	PLOTS	TREES	CuFt	BdFt
01N 01N	06 06W	17 17	00A1 00A2		00MC 00MC			111.00	48	282	S	W
						TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
)	PLOTS	TREES		PER PLOT	Г	TREES		TREES		
TOTA	AL		48	282		5.9						
	ISE COUNT DREST		24	135		5.6		14,722		.9		
COU BLAI 100 %	NT NKS		24	147		6.1						
					STA	AND SUM	MARY					
		SA	AMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
			TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOU	G FIR		123	108.5	18.8	117	48.1	208.1	39,308	38,469	8,954	8,954
R AL	DER		′ 10 ·	21.1	15.0	94	6.7	25.9	3,578	3,578	893	893
	MLOCK		2	3.1	15.8	79	1.0	4.2	706	677	160	
TOT	AL		135	132.6	18.1	112	55.9	238.1	43,592	42,724	10,007	10,007
	68							HIN THE SAM			nro	DIE DOD
CL	68.1		COEFF	0.047			LE TREE		ħ	OF TREES		INF. POP.
SD:	1,0		VAR,%	S.E.% 5.2		LOW	AVG 488	HIGH		5	10	1:
R AL	G FIR		58.0 32.5	10.8		462 159	488 178	513 197				
	MLOCK		114.9	10.6		139	320	664				
			* * * * * * * * * * * * * * * * * * * *	10,,0								
TOT	AL		61.6	5.3		438	462	487		151	38	17
TOT				5,3					<u>+</u>			<u> </u>
CL	68.1		COEFF	<u> </u>	1	SAMPI	LE TREE	S - CF	#	FOF TREES	REQ.	INF. POP.
CL SD:	68.1 1.0			5.3 S.E.% 4.7	<u> </u>				ħ			INF. POP.
CL SD:	68.1 1.0 G FIR		COEFF VAR.%	S.E.%		SAMPI LOW	LE TREE AVG	S - CF HIGH	ħ	FOF TREES	REQ.	INF. POP.
CL SD: DOU R AL	68.1 1.0 G FIR		COEFF VAR.% 52.0	S.E.% 4.7	1	SAMPI LOW 109	LE TREE AVG 114	S - CF HIGH 119	ħ	FOF TREES	REQ.	INF. POP.
CL SD: DOU R AL	68.1 1.0 G FIR DER		COEFF VAR.% 52.0 30.7	S.E.% 4.7 10.2		SAMPI LOW 109	LE TREE AVG 114 45	S - CF HIGH 119 49	ħ	FOF TREES	REQ.	INF. POP.
CL SD: DOU R AL WHE TOT	68.1 1.0 G FIR DER		COEFF VAR.% 52.0 30.7 105.1	S.E.% 4.7 10.2 98.4	1	SAMPI LOW 109 40 1 103	LE TREE AVG 114 45 73	S - CF HIGH 119 49 144		FOF TREES	REQ. 10	INF. POP.
CL SD: DOU R AL WHE TOT	68.1 1.0 G FIR DER MLOCK AL		COEFF VAR.% 52.0 30.7 105.1 55.4	S.E.% 4.7 10.2 98.4		SAMPI LOW 109 40 1 103	AVG 114 45 73 108	S - CF HIGH 119 49 144		FOF TREES 5	REQ. 10	INF. POP.
CL SD: DOU R ALL WHE TOT: CL SD: DOU	68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.%	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3		SAMPI LOW 109 40 1 103 TREES LOW 97	LE TREE AVG 114 45 73 108 6/ACRE AVG 108	S - CF HIGH 119 49 144 113 HIGH 120		OF TREES 5 123 FOF PLOTS	REQ. 10 31 REQ.	INF. POP.
CL SD: DOU R AL SD: DOU R AL	68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0		SAMPI LOW 109 40 1 103 TREES LOW 97 14	AVG 114 45 73 108 6/ACRE AVG 108 21	S - CF HIGH 119 49 144 113 HIGH 120 28		FOF TREES 5 123 FOF PLOTS	REQ. 10 31 REQ.	INF. POP.
CL SD: DOUGH ALL SD: DOUGH ALL WHE	68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5		SAMPI LOW 109 40 1 103 TREES LOW 97 14 2	AVG 114 45 73 108 8/ACRE AVG 108 21 3	S - CF HIGH 119 49 144 113 HIGH 120 28 5		FOF TREES 5 123 FOF PLOTS 5	REQ. 10 31 REQ. 10	INF. POP. 14 INF. POP. 15
CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CT	68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER MLOCK AL		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0		SAMPI LOW 109 40 1 103 TREES LOW 97 14	AVG 114 45 73 108 6/ACRE AVG 108 21	S - CF HIGH 119 49 144 113 HIGH 120 28	ħ	# OF TREES 5 123 # OF PLOTS 5	REQ. 10 31 REQ. 10	INF. POP. 14 INF. POP. 15
CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL CL CL	68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER MLOCK AL		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6 COEFF	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5 8.2		SAMPI LOW 109 40 1 103 TREES LOW 97 14 2 122 BASAL	AVG 114 45 73 108 6/ACRE AVG 108 21 3 133	S - CF HIGH 119 49 144 113 HIGH 120 28 5 143	ħ	OF TREES 5 123 FOF PLOTS 5 128 FOF PLOTS	31 REQ. 10 32 REQ.	INF. POP. 14 INF. POP. 15 14 INF. POP.
CL SD:	68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER MLOCK AL 68.1 1.0		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6 COEFF VAR.%	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5 8.2 S.E.%		SAMPI LOW 109 40 1 103 TREES LOW 97 14 2 122 BASAL LOW	AVG 114 45 73 108 6/ACRE AVG 108 21 3 133 . AREA/A	S - CF HIGH 119 49 144 113 HIGH 120 28 5 143 ACRE HIGH	ħ	# OF TREES 5 123 # OF PLOTS 5	REQ. 10 31 REQ. 10	INF. POP. 14 INF. POP. 15 14 INF. POP.
CL SD: DOU R ALL WHE SD: CL SD: DOU CL SD: DOU	68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6 COEFF VAR.%	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5 8.2 S.E.% 7.3		SAMPI LOW 109 40 1 103 TREES LOW 97 14 2 122 BASAL LOW 193	AVG 108 21 3 133 AREA/A AVG 208	S - CF HIGH 119 49 144 113 HIGH 120 28 5 143 ACRE HIGH 223	ħ	OF TREES 5 123 FOF PLOTS 5 128 FOF PLOTS	31 REQ. 10 32 REQ.	INF. POP. 12 INF. POP. 13 INF. POP.
CL SD: DOU R ALL WHE TOT: CL SD: DOU R ALL SD: DOU R ALL SD: DOU R ALL SD: DOU R ALL	68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6 COEFF VAR.% 50.9 227.0	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5 8.2 S.E.% 7.3 32.7		SAMPI LOW 109 40 1 103 TREES LOW 97 14 2 122 BASAL LOW 193 17	AVG 108 21 3 133 AREA/A AVG 208 26	S - CF HIGH 119 49 144 113 HIGH 120 28 5 143 ACRE HIGH 223 34	ħ	OF TREES 5 123 FOF PLOTS 5 128 FOF PLOTS	31 REQ. 10 32 REQ.	INF. POP. 12 INF. POP. 13 INF. POP.
CL SD: DOU R ALL WHE TOT: CL SD: DOU R ALL WHE TOT: CL SD: DOU R ALL WHE SD: DOU R ALL WHE	68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER MLOCK AL		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6 COEFF VAR.% 50.9 227.0 296.4	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5 8.2 S.E.% 7.3 32.7 42.7		SAMPI LOW 109 40 1 103 TREES LOW 97 14 2 122 BASAL LOW 193 17 2	AVG 208 26 4 4 45 73 108 6/ACRE AVG 108 21 3 133 4 AREA/A AVG 208 26 4	S - CF HIGH 119 49 144 113 HIGH 120 28 5 143 ACRE HIGH 223 34 6	ħ	FOF TREES 5 123 FOF PLOTS 5 128 FOF PLOTS 5	REQ. 10 31 REQ. 10 32 REQ. 10	INF. POP. 12 INF. POP. 14 INF. POP. 15
CL SD: DOUGHALL WHE TOT:	68.1 1.0 G FIR DER MILOCK AL		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6 COEFF VAR.% 50.9 227.0 296.4 39.7	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5 8.2 S.E.% 7.3 32.7		SAMPI LOW 109 40 1 103 TREES LOW 97 14 2 122 BASAL LOW 193 17 2 2224	AVG 108 21 3 133 AREA/A AVG 208 26 4 238	S - CF HIGH 119 49 144 113 HIGH 120 28 5 143 ACRE HIGH 223 34	†i	FOF TREES 5 123 FOF PLOTS 5 128 FOF PLOTS 5 63	REQ. 10 31 REQ. 10 32 REQ. 10	INF. POP. 14 INF. POP. 15 14 INF. POP. 15
CL SD: DOUGH ALL WHE TOT: CL SD: DOUGH ALL WHE TOT: CL SD:	68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER MLOCK AL		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6 COEFF VAR.% 50.9 227.0 296.4 39.7 COEFF	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5 8.2 S.E.% 7.3 32.7 42.7 5.7		SAMPI LOW 109 40 1 103 TREES LOW 97 14 2 122 BASAL LOW 193 17 2 2224 NET BI	AVG 108 21 3 108 21 3 133 AREA/A AVG 208 26 4 238	S - CF HIGH 119 49 144 113 HIGH 120 28 5 143 ACRE HIGH 223 34 6 252	†i	FOF TREES 5 123 FOF PLOTS 5 128 FOF PLOTS 5 63 FOF PLOTS	REQ. 10 31 REQ. 10 32 REQ. 10 16 REQ.	INF. POP. 12 INF. POP. 13 INF. POP. 15 INF. POP.
CL SD: DOU R AL WHE TOT: CL SD: DOU R AL WHE TOT: CL SD: C	68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER MLOCK AL		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6 COEFF VAR.% 50.9 227.0 296.4 39.7 COEFF VAR.%	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5 8.2 S.E.% 7.3 32.7 42.7 5.7 S.E.%]	SAMPI LOW 109 40 1 103 TREES LOW 97 14 2 122 BASAL LOW 193 17 2 224 NET BI	AVG 108 21 3 108 21 3 133 AREA/A AVG 208 26 4 238 F/ACRE AVG	S - CF HIGH 119 49 144 113 HIGH 120 28 5 143 ACRE HIGH 223 34 6 252 HIGH	†i	FOF TREES 5 123 FOF PLOTS 5 128 FOF PLOTS 5 63	REQ. 10 31 REQ. 10 32 REQ. 10	INF. POP. 12 INF. POP. 13 INF. POP. 15 INF. POP.
CL SD: DOUGH ALL WHE TOT: CL SD: DOUGH ALL WHE TOT: CL SD: DOUGH ALL WHE TOT: CL SD: DOUGH ALL SD: D	68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR DER MLOCK AL		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6 COEFF VAR.% 50.9 227.0 296.4 39.7 COEFF VAR.%	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5 8.2 S.E.% 7.3 32.7 42.7 5.7 S.E.% 7.5]	SAMPI LOW 109 40 1 103 TREES LOW 97 14 2 122 BASAL LOW 193 17 2 224 NET BI LOW 35,565	AVG 108 21 3 133 AREA/A AVG 208 26 4 238 F/ACRE AVG 38,469	S - CF HIGH 119 49 144 113 HIGH 120 28 5 143 CCRE HIGH 223 34 6 252 HIGH 41,373	†i	FOF TREES 5 123 FOF PLOTS 5 128 FOF PLOTS 5 63 FOF PLOTS	REQ. 10 31 REQ. 10 32 REQ. 10 16 REQ.	INF. POP. 12 INF. POP. 13 INF. POP. 15 INF. POP.
CL SD: DOUGRAL WHE TOT: CL SD: DOUGRAL WHE TOT: CL SD: DOUGRAL WHE TOT: CL SD: DOUGRAL SD: DOUGRAN SD:	68.1 1.0 G FIR DER MLOCK AL 68.1		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6 COEFF VAR.% 50.9 227.0 296.4 39.7 COEFF VAR.%	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5 8.2 S.E.% 7.3 32.7 42.7 5.7 S.E.% 7.5 34.0]	SAMPI LOW 109 40 1 103 TREES LOW 97 14 2 122 BASAL LOW 193 17 2 2224 NET Bl LOW 35,565 2,363	LE TREE AVG 114 45 73 108 6/ACRE AVG 108 21 3 133 AREA/A AVG 208 26 4 238 F/ACRE AVG 38,469 3,578	S - CF HIGH 119 49 144 113 HIGH 120 28 5 143 ACRE HIGH 223 34 6 252 HIGH 41,373 4,793	†i	FOF TREES 5 123 FOF PLOTS 5 128 FOF PLOTS 5 63 FOF PLOTS	REQ. 10 31 REQ. 10 32 REQ. 10 16 REQ.	INF. POP. 12 INF. POP. 13 INF. POP. 15 INF. POP.
CL SD: DOUGRAL WHE TOT: CL SD: DOUGRAL WHE TOT: CL SD: DOUGRAL WHE TOT: CL SD: DOUGRAL SD: DOUGRAN SD:	68.1 1.0 G FIR DER MLOCK AL 68.1 1.0 G FIR MLOCK AL		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6 COEFF VAR.% 50.9 227.0 296.4 39.7 COEFF VAR.%	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5 8.2 S.E.% 7.3 32.7 42.7 5.7 S.E.% 7.5]	SAMPI LOW 109 40 1 103 TREES LOW 97 14 2 122 BASAL LOW 193 17 2 224 NET BI LOW 35,565 2,363 359	AVG 108 21 3 133 AREA/A AVG 208 26 4 238 F/ACRE AVG 38,469	S - CF HIGH 119 49 144 113 HIGH 120 28 5 143 CCRE HIGH 223 34 6 252 HIGH 41,373	†i	FOF TREES 5 123 FOF PLOTS 5 128 FOF PLOTS 5 63 FOF PLOTS	REQ. 10 31 REQ. 10 32 REQ. 10 16 REQ.	INF. POP. 14 INF. POP. 15 INF. POP. 15 INF. POP. 15
CL SD: DOUGH ALL WHE TOT: CL SD: CL SD	68.1 1.0 G FIR DER MLOCK AL		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6 COEFF VAR.% 50.9 227.0 296.4 39.7 COEFF VAR.% 52.3 235.6 325.9 41.7	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5 8.2 S.E.% 7.3 32.7 42.7 5.7 S.E.% 7.5 34.0 47.0]	SAMPI LOW 109 40 1 103 TREES LOW 97 14 2 122 BASAL LOW 193 17 2 224 NET BI LOW 35,565 2,363 359 40,152	AVG 108 21 3 108 21 3 133 AREA/A AVG 208 26 4 238 F/ACRE AVG 38,469 3,578 677 42,724	S - CF HIGH 119 49 144 113 HIGH 120 28 5 143 ACRE HIGH 223 34 6 252 HIGH 41,373 4,793 996 45,296	# #	# OF TREES	REQ. 10 31 REQ. 10 32 REQ. 10 16 REQ. 10	INF. POP. 14 INF. POP. 15 14 INF. POP. 15 INF. POP. 15
CL SD: DOUGH ALL WHE TOT: CL SD: DOUGH ALL WHE TOT: CL SD:	68.1 1.0 G FIR DER MLOCK AL 68.1		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6 COEFF VAR.% 50.9 227.0 296.4 39.7 COEFF VAR.% 52.3 235.6 325.9 41.7 COEFF	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5 8.2 S.E.% 7.3 32.7 42.7 5.7 S.E.% 7.5 34.0 47.0 6.0	1	SAMPI LOW 109 40 1 103 TREES LOW 97 14 2 122 BASAL LOW 193 17 2 224 NET Bl LOW 35,565 2,363 359 40,152 NET CI	LE TREE AVG 114 45 73 108 6/ACRE AVG 108 21 3 133 4 AREA/A AVG 208 26 4 238 F/ACRE AVG 38,469 3,578 677 42,724 UFT FT/A	S - CF HIGH 119 49 144 113 HIGH 120 28 5 143 CCRE HIGH 223 34 6 252 HIGH 41,373 4,793 996 45,296 ACRE	# #	FOF TREES 5 123 FOF PLOTS 5 63 FOF PLOTS 5	REQ. 10 31 REQ. 10 32 REQ. 10 16 REQ. 10 17 REQ.	INF. POP. 12 INF. POP. 13 INF. POP. 15 INF. POP. 15
CL SD: DOUGH ALL WHE TOT: CL SD: DOUGH ALL WHE TOT: CL SD:	68.1 1.0 G FIR DER MLOCK AL		COEFF VAR.% 52.0 30.7 105.1 55.4 COEFF VAR.% 71.4 228.6 349.9 56.6 COEFF VAR.% 50.9 227.0 296.4 39.7 COEFF VAR.% 52.3 235.6 325.9 41.7	S.E.% 4.7 10.2 98.4 4.8 S.E.% 10.3 33.0 50.5 8.2 S.E.% 7.3 32.7 42.7 5.7 S.E.% 7.5 34.0 47.0	1	SAMPI LOW 109 40 1 103 TREES LOW 97 14 2 122 BASAL LOW 193 17 2 224 NET BI LOW 35,565 2,363 359 40,152	AVG 108 21 3 108 21 3 133 AREA/A AVG 208 26 4 238 F/ACRE AVG 38,469 3,578 677 42,724	S - CF HIGH 119 49 144 113 HIGH 120 28 5 143 ACRE HIGH 223 34 6 252 HIGH 41,373 4,793 996 45,296	# #	# OF TREES	REQ. 10 31 REQ. 10 32 REQ. 10 16 REQ. 10	14 INF. POP. 15 14 INF. POP. 15 7 INF. POP. 15

TC PS	FATS			I	PROJEC' PROJEC'		ISTICS INGCFIN		PAGE 2 DATE 5/5/2016					
TWP	RGE	SC	TRACT	TYPE	3	A	CRES	PLOTS	TREES	CuFt	BdFt			
01N 01N	06 06W	17 17	00A1 00A2	00MC 00MC			111.00	48	282	S	W			
CL	68.1		COEFF		NET	CUFT FT.	ACRE		# OF PLOT	S REQ.	INF. POP.			
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15			
WHE	MLOCK		311.9	45.0	88	160	231							
TOT	AL		39.0	5.6	9,444	10,007	10,570		61	15	7			

.

т тя	SPCSTG	R			Species,	Sort G Projec	rade - Boar t: SHI	rd Fo NGCI		olun	nes (T	Гуре)					Page Date Time	5	1 /5/201 3:57:3	
T01N Twp 01N	•		Sec	Tract 0A1		Type 00M			Plot		-	le Tree 47	s	S	uFt	T0 Bd W		R06W	S17 T	00MC
			%					Per	rcent N	let Bo	oard Fo	oot Vol	ume			A	verag	ge Log	•	Logs
Spp T rt ad BdFt Def%					Ft. per Ac Gross	ore Net	Total Net MBF	L 4-5			le Dia. Log		g Ler 21-30		36-99	Ln Ft		Bd Ft	CF/ Lf	Per /Acre
DF		2M	67	2.2	19,561	19,124	841			71	29	6	1		93	38	15	318	1.97	60.
DF		3M	28	1.3	8,019	7,918	348		93	7			1	3	96	39	8	92	0.64	85,
DF		4M	5		1,364	1,364	60		100			49	51			19	6	23	0.33	60.
DF	Totals		74	1.9	28,943	28,406	1,250	ļ 	31	50	20	6	4	1	89	33	9	138	1.04	206.
RA RA		3M 4M	6		605	605	27		100						100	40 6	7 7	70	0.53 0.00	8. 8.
RA		R	94		8,091	8,091	356		100			15	12	2	71	30	9	91	0.75	88.
RA	Totals		23		8,695	8,695	383		100			14	11	2	73	29	8	82	0.71	105.
WH		2M	63	7.5	957	885	39			100					100	40	16	370	1.90	2.
WH		3M	31		431	431	19		100						100	40	11	180	1.03	2.
WH		4M	6		72	72	3		100				100			22	6	30	0.43	2
WH	Total	S	4	4.9	1,459	1,388	61		36	64			5		95	34	11	193	1.24	7
Туре То	otals			1.6	39,098	38,489	1,694		47	39	14	8	5	1	86	32	9	121	0.94	319.

TC TL	OGSTVB					g Stoo	ck Ta		MBF NGCF	IN								
T01N R06W S17 T00MC Twp Rge Sec Tract 01N 06W 17 00A1 S So Gr Log Gross %						Туре 00М(2	Acres		Plots 19	Samj	ple Tre 47	es]]	IN R06 Page Date Fime	5W S17 1 5/5/20 8:57		
s	So Gr	Log	Gross	%	Net	%			Net V	olume by	y Scali	ng Dia	meter i	n Inche	s			
Spp T	rt de	Len	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF		16	15		15	1.2								15				
DF		20	32		32	2.5								32				
DF		28	12		12	1.0							12					
DF	2M	40	803	2.4	783	62.7						93	368	243	79			
DF		26	2		2	.1				2								
DF		28	2		2	.2				2								
DF		34	10		10	.8			3									
DF		36	42		42	3.4			22									
DF		38	28		28	2.3			22			2.4						
DF _	3M	40	268	1.6	264	21.1			58	116	66	24			<u> </u>			
DF	4M	12	5		5	.4			5									
DF		16	4		4	.3			4									
DF		18	10		10	.8			10									
DF		20	10		10	.8			8				Į.					
DF		22	14		14	1.1			12									
DF		24	7		7	.5			7 2									
DF DF		26 28	2 2		2 2	.1 .1			2									
DF DF		30	7		7	.6			7									
DF	Tota	-	1,274	1.9	1,250	73.8			163		66	117	380	289	79			
RA		40	27	1.7	27	7.0			27			117	300	20)	, , , , , , , , , , , , , , , , , , ,		<u> </u>	
RA -		6				,			 									
I —					6	1.5	<u> </u>		_									
RA RA	R R	13 19	6 8		8	2.2			6 8									
RA RA	R R	20	40		40	10.5			°	21	19							
RA	R	25	9		9	2.2			9		'							
RA	R	28	11		11	2.8	1		11									
RA	R	29	23		23	6.0			23									
RA	R	31	8		8	2.2			8									
RA	R	40	251		251	65.7				67	184							
RA	Tota	als	383		383	22.6			91	88	204							
WH	2M	40	42	7.5	39	63.8								39				
wh _	3M	40	19		19	31.0						9						
wh _	4M	22	3		3	5.2			3									
WH	Tota	als	64	4.9	61	3.6	ļ		3		19			39				
Total All	Species		1,720	1.6	1,694	100.0			257	243	289	117	380	328	79			

TC	TST	NDSUN	vi					Stand	l Table	Summa	ry					
								Proj	ect	SHNGC	CFIN					
T01 Twp 01N	,	R06W Rge 06W	S17 T Sec 17	00MC Tract 00A1	t			Гуре 00МС		eres 4.00	Plots 19	Sample 7		T01N R Page: Date: Time:	06W S17 1 05/05/20 8:57:38	0:
	s		Sample	FF	Av Ht	Trees/ BA/ Logs Acre Acre Acre			Net	nge Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	Т	otals	
Spc	T	DBH	Trees	16'	Tot	Acre	Acre		Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF		10	2	80	91	16.900	9.22	16.90	13.7	60.0	6.6		1,014	291	102	45
DF		12	3	83	106	17.604		29.34	14.6	50.0	12.19		1,467	536	188	65
DF		13	1	85	103	5.000	4.61	10.00	16.0	60.0	4.5		600	200	70	26
DF		19	3	84	127		13.83	21.07	27.3	102.2	16.40		2,153	722	253	95
DF		20	3	89	126		13.83	19.01	32.2	140.0	17.4		2,662	769	270	117
DF		21	4	86	121		18.44	22.99	34.3	139.2	22.4		3,200	990	347	141
DF		22	2	82	122	3,492		10.48	35.9	135.0	10.7		1,414	471	165	62
DF		23	3	86	126		13.83	15.97	37.3	163.0	16.9		2,604	747	262	115
DF		24	5	79	126		23.04	22.01	44.4	166.7	27.8		3,668	1,226	430	161
DF		25	5	84	133		23.04	21.63	48.0	211.9	29.5		4,583	1,301	457	202
DF		26	1	85	133	1.250	4.61	3.75	55.4	220.0	5.92		825	261	91	36
DF		30	1	83	147	.939	4.61	2.82	80.0	376.7	6.42		1,061	282	99	47
DF		31	1	83	135	.879	4.61	2.64	77.8	323.3	5.83		853	257	90	38
DF		32	3	76	132	2.476	13.83	7.43	80.4	310.0	17.02	2 597	2,302	749	263	101
DF		Totals	37	83	114	88.452	170.53	206.03	34.1	137.9	200.0	5 7,019	28,406	8,802	3,089	1,250
RA		12	1	83	89	8.637	6.78	17.27	10.5	35.0	5.00	0 182	605	220	80	27
RA		14	2	85	88	12.691	13.57	25.38	17.9	72.5	12.53	3 455	1,840	551	200	81
RA		15	1	80	113	5.528	6.78	16.58	14.0	60.0	6.30	6 231	995	280	102	44
RA		16	4	88	96	19.434	27.13	38.87	26.6	112.5	28.4		4,373	1,250	454	192
RA		18	1	83	98	3.839	6.78	7.68	33.5	115.0	7.0	7 257	883	311	113	39
RA		Totals	. 9	85	95	50.129	61.05	105.79	20.4	82.2	59.30	6 2,159	8,695	2,612	950	383
WH		22	1	93	124	2,393	6.32	7.18	42.2	193.3	9.69	9 303	1,388	426	133	61
WH		Totals	1	93	124	2.393	6.32	7.18	42.2	193.3	9.69	9 303	1,388	426	133	61
Totals			47	84	108	140.973	237.89	319.00	29.7	120.7	269.10	0 9481	38,489	11,841	4,172	1,694

т т	SPCSTO	GR			Species, Sort Grade - Board Foot Volumes (Type) Project: SHNGCFIN													1 5/5/201 3:54:4	
T01N Twp 01N	R	S17 T(ge 6W	Sec	Tract 00A2		Туре 00М		-			le Tree 88	s	C S	uFt	T0: Bd W		k06W	S17 T	00MC
			%					Percent Net Board Foot Volume							A	verag	ge Log	•	Logs
Spp	S So T rt	Gr ad	Net BdFt	1	Ft. per Ac Gross	ere Net	Total Net MBF	Log So 4-5 6-1		ia. l6 1 7 +	Log	g Len 21-30		36-99	Ln Ft		Bd Ft	CF/ Lf	Per /Acre
DF		CU													9	12		0.00	2.7
DF		2M	64	2.6	29,619	28,857	1,933		66	34	1			99	39	15	330	1.74	87.4
DF		3M	31	1.9	14,559	14,284	957	100				0	3	97	39	8	104	0.68	137.6
DF		4M	5		1,936	1,936	130	100			51	49			19	6	22	0.34	88.8
DF	Totals	3	99	2.2	46,115	45,077	3,020	36	42	22	3	2	1	94	33	9	142	0.97	316.5
WH		3М	100		211	211	14	100						100	38	6	60	0.49	3.5
WH	Total	ls	0		211	211	14	100					*	100	38	6	60	0.49	3.5
RA		R	100		217	217	15	100			27	73			16	8	37	0.64	5.9
RA	Totals	6	0		217	217	15	100			27	73			16	8	37	0.64	5.9
Туре Т	otals			2.2	46,543	45,505	3,049	37	42	21	3	3	1	93	33	9	140	0.96	326.0

TC TI	LOGSTVB				g Stoo	ek T	able - SHI	MBF VGCFI	IN								
T01N Twp 01N		00MC ec Tra 17 00A		Type 00MC			Acres Plots 67.00 29			Samı	ole Tre 88	es	I	N R06 Page Pate Time	1 5/5/2	7 T00M 016 :45AM	
s	So Gr Log	Gross	%	Net	%			Net Vo	lume by	y Scali	ng Dia	meter ir	Inche	s			
Spp T	rt de Len	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
DF DF DF DF	CU CU 6 CU 23 CU 24																
DF DF DF DF DF	2M 14 2M 16 2M 18 2M 40	6 11 15 1,953	14.3 22.6 2.4	6 10 12 1,906	.2 .3 .4 63.1						448	10 644	616	12 198			
DF DF DF DF DF DF	3M 26 3M 30 3M 32 3M 34 3M 36 3M 38	2 2 12 17 40 59		2 2 12 17 40 59	.1 .4 .6 1.3 2.0			2 12 12 35 49	5 4								
DF DF DF DF	3M 40 4M 12 4M 14 4M 16	15 5 12	2.2	825 15 5 12	.5 .2 .4			75 15 5 12		417	•						
DF DF DF DF	4M 18 4M 20 4M 22 4M 24	13 21 5 3		13 21 5 3	.4 .7 .2 .1			13 21 5 3									
DF DF DF DF	4M 26 4M 27 4M 28 4M 30	18 3 14 21		18 3 14 21	.6 .1 .5 .7			18 3 14 21									
DF	Totals	3,090	2.2	3,020	99.1			315	354	417	448	654	622	210			
WH	3M 38	14			100.0			14									
WH	Totals	14		14	.5	_		14									
RA RA RA	R 9 R 18 R 22	4 11		4 11	27.3 72.7				4	11							
RA	Totals	15		15	.5				4	11							
Total Al	l Species	3,118	2.2	3,049	100.0			329	358	428	448	654	622	210			

TC TS	STNDSU	M					Stand	l Table	Summa	ry					
							Proje	ect	SHNGC	FIN			.,		
T01N Twp 01N	R06W Rge 06W	S17 T Sec 17	00MC Tract 00A2				ype 0MC		cres 7.00	Plots 3	Sample T 88		T01N R0 Page: Date: Time:	06W S17 1 05/05/20 8:54:44	0:
S	3	Sample	FF	Av Ht	Trees/	BA/	Logs	Avera Net	ige Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	Т	tals	
Spc T	г двн	Trees	16'	Tot	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	10	2	91	96	9.704	5.29	19.41	7.9	37.5	4.40	154	728	295	103	49
DF	12	3	89	103	10.108	7.94	20.22	13.2	55.0	7.59	266	1,112	509	179	74
DF	13	3	88	108	8.613	7.94	17.23	15.9	66.7	7.79	273	1,148	522	183	77
DF	14	1	88	105	2.476	2.65	4.95	18.4	80.0	2.60	91	396	174	61	27
DF	15	3	86	111	7.229	8.87	17.37	22.9	110.1	11.34	398	1,913	760	267	128
DF	16	7	85	107	13.267	18.52	28.43	23.5	91.3	19.01	667	2,597	1,273	447	174
DF	17	2	88	127	3.358	5.29	10.07	22.5	86.7	6.46	227	873	433	152	58
DF	18	12	87	124	19.200	33.93	53.11	31.2	149.6	47.16	1.655	7,947	3,160	1,109	532
Dr	1 10		07	120,	17.200	20,70	00,11			17.120	-,	.,	5,100	.,	004

DF

RA

RA

WH

WH

Totals

20

21

22

23

24

25

26

27

28

32

33

16

12

Totals

Totals

Totals

5

6

5

6

6

3

9

4

4

1

1

86

1

1

1

1

88

85 123

86 125

86 131

86 131

84 130

84 126

85 138

83 130

84 136

81 132

82 119

87 118

74 79

74 79

82 59

82

59

86 116

6.065 13.23

6.601 15.88

5.012 13.23

5.503 15.88

5.351 16.81

6.759 24.92

2,662 10.59

2.476 10.59

7.94

2.65

2.65

2.76

2.76

2.76

2.76

127.153 238.24 323.25

2,329

.474

.446

1.976

1.976

3.512

3.512

121.665 232.73

18.19

18.70

15.04

16.51

16.05

6.99

21.71

7.99

7.43

1.42

.89

313,81

5.93

5,93

3.51

3.51

29.9

36.9

40.0

43.9

52.0

50.1

57.0

58.5

66.4

84.9

98.1

32.6

10.5

10.5

18.7

18.7

32.0

116.7

157.1

174.0

190.6

239.2

210.0

269,3

238.3

290.0

366.7

475.0

143.6

36.7

36.7

60.0

60.0

140.8

15.50

19.67

17.14

20.68

23.80

9.98

35.27

13.32

14.05

3.44

2,49

1.71

1.71

2.10

2.10

295.21

291.41 10,225

544

690

601

725

835

350

467

493

121

87

62

62

66

66

10352

1,238

2.123

2,938

2,616

3,146

3,839

1,467

5,848

1,904

2,154

521

423

45,077

217

217

211

211

45,505

1,039

1,318

1,149

1,385

1,595

2,363

669

892

942

231

167

114

114

140

140

19,779

19,524

364

462

403

486

560

235

829

313

330

81

59

42

42

44

44

6,936

6,851

142

197

175

211

257

98

392

128

144

35

28

15

15

14

14

3,049

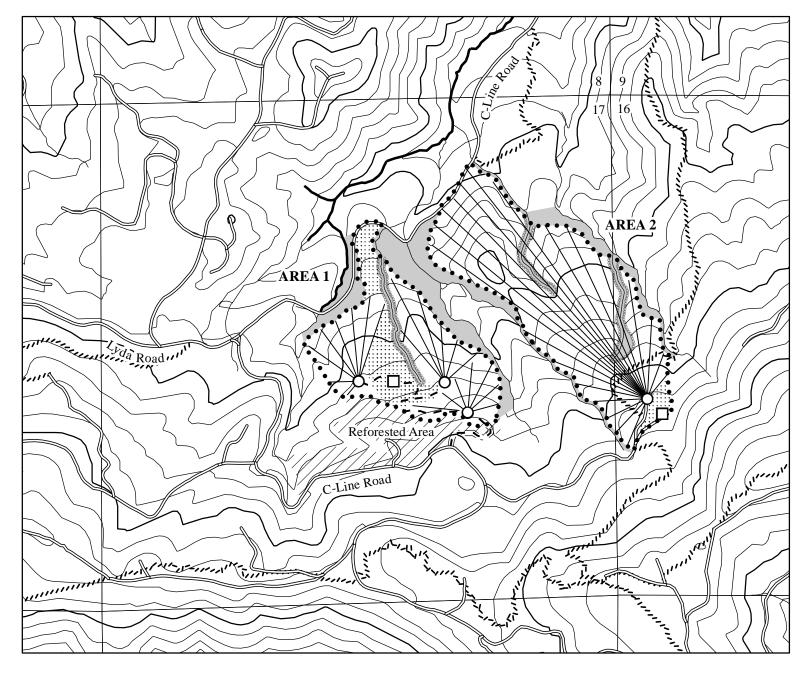
3,020

VOLUME SUMMARY

Volumes in MBF Shining C 341-17-38

April 2016

AREA 1: MC (44 ACRES)


SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
	Cruise Volume	840	341	60		1,241
Dougles fir	Hidden D&B (2%)	(17)	(7)	(1)		(25)
Douglas-fir	NET TOTAL	823	334	59		1,216
	% of Total	68	27	5		
	Cruise Volume				383	383
Red Alder	Hidden D&B (2%)				(8)	(8)
Red Aldel	NET TOTAL				375	375
	% of Total				100	

AREA 2: MC (67 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
	Cruise Volume	1,933	957	130		3,020
Dougloo fir	Hidden D&B (2%)	(39)	(19)	(3)		(60)
Douglas-fir	NET TOTAL	1,894	938	127		2,960
	% of Total	64	32	4		
	Cruise Volume				15	15
	Hidden D&B (2%)				()	()
Red Alder	NET TOTAL				15	15
	% of Total				100	

SALE TOTAL

SPECIES	2 SAW	3 SAW	4 SAW	CR	TOTAL
Douglas-fir	2,717	1,272	186		4,175
Red alder				390	390
Total					4,565

LEGEND

- • Timber Sale Boundary
- Roads
- New Road Construction
- = : Posted Right of Way Boundary
- """ Recreation Trail
- Type F Stream
- ---- Type N Stream
- Stream Buffer
- Posted Stream Buffer Boundary
- O Cable Landing
- ☐ Tractor Landing
- :::::: Tractor Yarding Area
- Cable Yarding Area
- —— 400 Foot Contour Band
- ----- 80 Foot Contour Band

LOGGING PLAN

FOR TIMBER SALE CONTRACT # 341-17-38 SHINING C

PORTIONS OF SECTIONS 16 & 17, T1N, R6W, W.M. TILLAMOOK COUNTY, OREGON

Forest Grove District GIS June, 2016

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1:12,000

1 inch - 1 000 feet

	1 1	mcn = 1,000	reet
0	500	1,000	2,000
			Feet

APPROXIMATE NET ACRES TRACTOR CABLE

AREA 1	12	32
AREA 2	2	65
TOTAL	14	97