

Timber Sale Appraisal Gales Back Pocket Sale FG-341-2017-37-

District: Forest Grove Date: September 01, 2016

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$2,050,197.96	\$0.00	\$2,050,197.96
		Project Work:	(\$85,585.00)
		Advertised Value:	\$1,964,612.96

9/01/16

Timber Sale Appraisal Gales Back Pocket

Sale FG-341-2017-37-

District: Forest Grove Date: September 01, 2016

Timber Description

Location: Portions of Sections 33 and 34, T2N T5W, W.M., Washington County, Oregon.

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	16	0	98

Volume by Grade	28	3S	4 S	Total
Douglas - Fir	2,027	2,376	319	4,722
Total	2,027	2,376	319	4,722

Comments: Pond Values Used: 2nd Quarter Calendar Year 2016.

Western Hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost:

\$276.37/MBF = \$435/MBF - \$158.63/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$1,016.63/MBF = \$1,175/MBF - 158.37/MBF

Red Alder and Other Hardwoods Stumpage Price = Pond Value minus Logging Cost: \$451.37/MBF = \$610/MBF - \$158.63/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

BRANDING AND PAINTING COST ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added): None.

Other Costs (No Profit & Risk added):
Block/Waterbar Roads/Skid Trails: 10 hrs x \$150/hour = \$1,500
Pile Landing Slash: 20 hrs x \$150/hour = \$3,000
Equipment Cleaning: 3 x \$1,000/Piece = \$3,000
TOTAL Other Costs (No Profit & Risk added) = \$7,500

ROAD MAINTENANCE

Move-in: \$4,000

General Road Maintenance: 4.5 miles x \$1,200/mile = \$5,400 TOTAL Road Maintenance: \$9,400/4,722 MBF = \$1.99/MBF

9/01/16

Timber Sale Appraisal Gales Back Pocket

Sale FG-341-2017-37-

District: Forest Grove Date: September 01, 2016

Logging Conditions

Combination#: 1 Douglas - Fir 100.00%

Logging System: Shovel **Process:** Stroke Delimber

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 10 bd. ft / load: 4600

cost / mbf: \$68.96

machines: Stroke Delimber (B)

Timber Sale Appraisal Gales Back Pocket

Sale FG-341-2017-37-

District: Forest Grove Date: September 01, 2016

Logging Costs

Operating Seasons: 1.00

Profit Risk: 10%

Project Costs: \$85,585.00

Other Costs (P/R): \$0.00

Slash Disposal: \$0.00

Other Costs: \$7,500.00

Miles of Road

Road Maintenance:

\$1.99

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	4.0

Timber Sale Appraisal Gales Back Pocket Sale FG-341-2017-37-

District: Forest Grove Date: September 01, 2016

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling / Brand & Paint	Other	Total
Douglas -	Fir								
\$68.96	\$2.03	\$0.93	\$66.30	\$0.00	\$13.82	\$0.00	\$7.00	\$1.59	\$160.63

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$594.81	\$434.18	\$0.00

Timber Sale Appraisal Gales Back Pocket

Sale FG-341-2017-37-

District: Forest Grove Date: September 01, 2016

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	4,722	\$434.18	\$2,050,197.96

Gross Timber Sale Value

Recovery: \$2,050,197.96

Prepared By: Eric Foucht Phone: 503-359-7473

Gales Back Pocket Contract No. 341-17-37

- **1.** <u>Location</u>: Portions of Sections 33 and 34, T2N, R5W, W.M., Washington County, Oregon.
- 2. <u>Type of Sale</u>: This timber sale is 113 net acres of Modified Clearcut, and 1 acre of Right-of-Way. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. Revenue Distribution: 89% BOF and 11% CSL, Washington County.
- **4.** <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS software.
- **5.** <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in April of 2016. For more information see Cruise Report.
- **6.** <u>Timber Description</u>: The Timber Sale Area consists of an over-stocked 65 year old Douglas-fir stand with minor amounts of western hemlock, western redcedar, true firs, and hardwoods. The stand has an average of 269 ft² of basal area (all species), an average Douglas-fir DBH of 16 inches, and an estimated average net Douglas-fir volume of approximately 42.3 MBF per acre.

7. Volume Summary

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	2,068	2,425	326	4,819
Douglas-	Hidden D&B (2%)	(41)	(49)	(7)	(97)
fir	NET TOTAL	2,027	2,376	319	4,722
	% of Total	43	50	7	

- **8.** Topography and Logging Method: Slopes within the sale areas range from 5% to 60%, are generally less than 35%, and variable in aspect. The timber sale is 100% ground-based yarding. The average horizontal skid trail length is approximately 300 feet and the maximum is approximately 800 feet.
- 9. Access: All access to the Timber Sale Area is on surfaced all-weather roads. From Forest Grove travel west on Highway 8 to its intersection with Highway 6. Proceed west onto Highway 6 for approximately 5½ miles between mileposts 36 and 37, to the South Fork Gales Creek Road. Turn and proceed south on South Fork Gales Creek Road 2¾ miles to a spur on the left. Turn and continue east a little less than ½ mile to the west side of the Timber Sale Area.

10. Projects:

Project No. 1: Road Construction and Improvement	\$20,116.83
Project No. 2: Road Surfacing	\$55,751.72
Project No. 3: Grass Seed, Fertilize, and Mulch	\$646.38
Move in and equipment cleaning:	\$9,070.07

Total Credit for all Projects (rounded) \$85,585.00

PROJECT COST SUMMARY SHEET

Timber Sale: Gales Back Pocket
Sale Number: 341-17-37

PROJECT NO. 1: ROAD CONSTRUCTION AND IMPROVEMENT

CONSTRUCTION

Road Segment	Length	Cost
A to B	12+80	\$5,270.72
C to D	3+55	\$1,184.30
E to F	20+00	\$5,157.60
	36+35	stations
	0.69	miles

SUBTOTAL CONSTRUCTION = \$11,612.62

IMPROVEMENTS

Road Segment	Length	Cost
G to H	56+00	\$6,159.01
l to J	22+20	\$2,019.20
K to A	6+00	\$326.00
	84+20	stations
	1.59	miles

SUBTOTAL IMPROVEMENTS = \$8,504.21 TOTAL PROJECT NO. 1 COST = \$20,116.83

PROJECT NO. 2: SURFACING

Road Segment	Rock Amount	Rock Type	Cost
A to B	892 cy	3" - 0	\$8,812.96
A to B	20 cy	1 1/2" - 0	\$264.60
C to D	378 cy	3" - 0	\$3,700.62
E to F	1,327 cy	3" - 0	\$13,349.62
G to H	1,862 cy	3" - 0	\$17,335.22
G to H	100 cy	1 1/2" - 0	\$1,221.00
I to J	744 cy	3" - 0	\$7,216.80
I to J	40 cy	1 1/2" - 0	\$516.40
K to A	342 cy	3" - 0	\$3,334.50
Total	5,705 cy		
	5,545 cy	3" - 0	
	160 cy	1 1/2" - 0	

TOTAL PROJECT NO. 2 COST = \$55,751.72

PROJECT NO. 3 GRASS SEED, FERTILIZE, & MULCH

TOTAL PROJECT NO. 3 COST = \$646.38

MOVE-IN & EQUIPMENT CLEANING

Grader \$833.07

Loader (into Wildcat Stockpile) \$698.90

Roller (smooth/grid) & Compactor \$560.09

Excavator - Equipment Cleaning \$1,833.07

Dozer - Equipment Cleaning \$1,877.65

Dump Trucks \$466.84

TOTAL MOVE-IN & EQUIPMENT CLEANING COST = \$9,070.07

TOTAL ALL PROJECTS \$85,585.00

	Timber Sale:		les Back Po			Sale Number:	341	-17-37	
R	pad Segment:		A to B	JORGE	_	Construction:		stations	
			7110 B		_	Construction.	0.24	_miles	
PROJECT NO. 1						, , , , , , , , , , , , , , , , , , , ,			
EXCAVATION									
Clearing & grubbing (s	scatter)	0.89	ac @	\$1,078.00	per acre	=	\$959.42		
Balanced road constru	uction	12.80	sta @	\$110.00	per sta =	:	\$1,408.00		
Turnouts		1	ea @	\$66.00	per ea =		\$66.00		
Turnarounds		1	ea @	\$82.50	per ea =		\$82.50		
Landing		1	ea @	\$314.00	per ea =		\$314.00		
Grade, ditch, & roll		12.80	sta @	\$36.00	per sta =	:	\$460.80		
, ,					·	TOTAL	EXCAVATIO	ON COSTS =	\$3,290.72
CULVERTS - MATER	IALS & INSTAL	LATION						_	
	Culverts								
	40	LF of 18"	\$800.00						
	40	LF of 24"	\$1,160.00						
Cu	lvert Markers								
	2	markers	\$20.00						
						<u>T01</u>	AL CULVER	RT COSTS =	\$1,980.00
						DD0 150	T NO. 4 TO:	- TAL COST -	AF 070 70
						PROJEC	1 NO. 1 10	TAL COST =	\$5,270.72
PROJECT NO. 2:									
SURFACING		10	" deep =	53 cy/sta					
A to B		678	cy of	3" - 0		\$9.88	per cy =	\$6,698.64	
Turnouts (1)		24	cy of	3" - 0	@	\$9.88	per cy =	\$237.12	
Turnaround		16	cy of	3" - 0	@	\$9.88	per cy =	\$158.08	
Junction		24	cy of	3" - 0	@	\$9.88	per cy =	\$237.12	
Landing		150	cy of	3" - 0	@	\$9.88	per cy =	\$1,482.00	
Culvert bedding		20	cy of	1 1/2" - 0	@	\$13.23	per cy =	\$264.60	
	Rock Total =	912	•		_		, ,		
		20	cy of	1 1/2" - 0		\$13.23	per cy =	\$264.60	
		892	cy of	3" - 0		\$9.88	per cy =	\$8,812.96	
						PROJEC	T NO. 2 TO	TAL COST =	\$9,077.56
									Ψ0,077.00
PROJECT NO. 3:									
Grass seed & fertilizer			0.45	acres	@	\$425.00	per acre =	\$189.13	
Mulch			8	bales	@	\$8.00	per bale =	\$64.00	
						DD0 150	T NO. 0 TO:		0050 40
						PROJEC	1 NO. 3 TO	<u> </u>	\$253.13
							TO:		***

<u>TOTAL COST = \$14,601.41</u>

Timber Sale:		ales Back Po		100 11011 00 le?	e Number:	341-	17_37	
Road Segment:		C to D	JORGE	-	nstruction:	3+55	stations	
Road Segment		C 10 D		_	nstruction.	0.07	_ stations _ miles	
PROJECT NO. 1				-				
EXCAVATION								
Clearing & grubbing (scatter)	0.25	ac @	\$1,078.00	per acre =		\$269.50		
Balanced road construction	3.55	sta @		per sta =		\$390.50		
Turnarounds	1	ea @	\$82.50			\$82.50		
Landing	1	ea @	\$314.00	-		\$314.00		
Grade, ditch, & roll	3.55	sta @	\$36.00	per sta =		\$127.80		
					TOTAL	EXCAVATIO	N COSTS =	\$1,184.30
					PROJEC	T NO. 1 TOT	AL COST =	\$1,184.30
PROJECT NO. 2:								
SURFACING	10	" deep =	53 cy/sta					
C to D	188	cy of	3" - 0	- @	\$9.79	per cy =	\$1,840.52	
Turnaround	16	cy of	3" - 0	@	\$9.79	per cy =	\$156.64	
Junction	24	cy of	3" - 0	@	\$9.79	per cy =	\$234.96	
Landing	150	cy of	3" - 0	@	\$9.79	per cy =	\$1,468.50	
Rock Total =	378							
	378	cy of	3" - 0		\$9.79	per cy =	\$3,700.62	
					PROJEC	T NO. 2 TOT	AL COST =	\$3,700.62
PROJECT NO. 3:				-				
Grass seed & fertilizer		0.13	acres	@	\$425.00	per acre =	\$53.13	
					PROJEC	Г NO. 3 ТОТ	AL COST =	\$53.13
						<u>T</u> OT.	AL COST =	\$4,938.05

	50	ININARY OF	- CONSTR	OCTION CC)51			
Timber Sale:	Ga	ales Back Po	ocket	_ Sa	le Number:	341-17-37		
Road Segment:		E to F		Co	onstruction:	20+00	stations	
				_		0.38	miles	
PROJECT NO. 1								
EXCAVATION								
Clearing & grubbing (scatter)	1.45	ac @	\$1,078.00	per acre =		\$1,563.10		
Balanced road construction	20.00	sta @	\$110.00	per sta =		\$2,200.00		
Junction construction	1.00	sta @	\$110.00	per sta =		\$110.00		
Turnouts	2	ea @	\$66.00	per ea =		\$132.00		
Turnarounds	1	ea @	\$82.50	per ea =		\$82.50		
Landing	1	ea @	\$314.00	per ea =		\$314.00		
Grade, ditch, & roll	21.00	sta @	\$36.00	per sta =		\$756.00		
					TOTAL	EXCAVATION	ON COSTS =	\$5,157.60
					PROJE	CT NO. 1 TO	TAL COST =	\$5,157.60
PROJECT NO. 2:								
SURFACING	10	" deep =	53 cy/sta					
E to F	1060	cy of	3" - 0		\$10.06	per cy =	\$10,663.60	
Turnouts (2)	48	cy of	3" - 0	@	\$10.06	per cy =	\$482.88	
Turnaround	16	cy of	3" - 0	@	\$10.06	per cy =	\$160.96	
Junction	53	cy of	3" - 0	@	\$10.06	per cy =	\$533.18	
Landing	150	cy of	3" - 0	@	\$10.06	per cy =	\$1,509.00	
Rock Total =	1,327	_		•				
	1,327	cy of	3" - 0		\$10.06	per cy =	\$13,349.62	
					PROJE	CT NO. 2 TO	TAL COST =	\$13,349.62
PROJECT NO. 3:								
Grass seed & fertilizer		0.73	acres	@	\$425.00	per acre =	\$308.13	
					PROJE	CT NO. 3 TO	TAL COST =	\$308.13

<u>TOTAL COST = \$18,815.35</u>

Timeles and			OF CONSTR			. 044	1 47 07	
Timber		les Back P	ocket		Sale Number:		I-17-37	
Road Segn	nent:	G to H		·	mprovement:		_ stations	
						1.06	_ miles	
PROJECT NO. 1								
EXCAVATION								
Clean ditch & scatter waste mate	rial	11.00	sta @	\$12.41	per sta =		\$136.51	
Turnarounds		1	ea @	\$82.50	per ea =		\$82.50	
Landing		1	ea @	\$314.00	per ea =		\$314.00	
Grade, ditch, & roll		56.00	sta @	\$36.00	per sta =		\$2,016.00	
					TOTAL	EXCAVATI	ON COSTS =	\$2,549.01
CULVERTS - MATERIALS & INS	TALLATION							
Culv	rerts							
	120 LF of 18"	\$2,400.00)					
	40 LF of 24"	\$1,160.00)					
Culvert Mar	kers							
	5 markers	\$50.00)					
					<u>TO </u>	TAL CULVE	RT COSTS =	\$3,610.00
					PROJEC	T NO. 1 TC	TAL COST =	\$6,159.01
PROJECT NO. 2:								
SURFACING	6	" deep =	31 cy/sta					
G to H	1736	cy of	3" - 0	@	\$9.31	per cy =	\$16,162.16	
Turnouts (8)	112	cy of	3" - 0	@	\$9.31	per cy =	\$1,042.72	
Junction	14	cy of	3" - 0	@	\$9.31	per cy =	\$130.34	
Culvert bedding/Backfill	100	cy of	1 1/2" - 0	@	\$12.21	per cy =	\$1,221.00	
Rock To	tal = 1,962			_				
	100	cy of	1 1/2" - 0		\$12.21	per cy =	\$1,221.00	
	1,862	cy of	3" - 0		\$9.31	per cy =	\$17,335.22	
		-						
					PROJEC	T NO. 2 TO	TAL COST =	\$18,556.22
PROJECT NO. 3:								
Mulch		4	bales	@	\$8.00	per bale =	\$32.00	
					PROJEC	T NO. 3 TO	TAL COST =	\$32.00
		***************************************				TO	TAL COST =	\$24.747.23
						<u></u>		,,

Gales Back Pocket Timber Sale: Sale Number: 341-17-37 Road Segment: I to J Improvement: 22+20 stations 0.42 miles PROJECT NO. 1 **EXCAVATION** Grade, ditch, & roll 22.20 sta @ \$36.00 per sta = \$799.20 TOTAL EXCAVATION COSTS = \$799.20 **CULVERTS - MATERIALS & INSTALLATION** Culverts 60 LF of 18" \$1,200.00 **Culvert Markers** \$20.00 2 markers TOTAL CULVERT COSTS = \$1,220.00 PROJECT NO. 1 TOTAL COST = \$2,019.20 PROJECT NO. 2: SURFACING 6 " deep = 31 cy/sta I to J 688 cy of 3" - 0 \$9.70 per cy = \$6,673.60 3" - 0 Turnouts (3) 42 cy of @ \$9.70 per cy = \$407.40 Junction 3" - 0 14 cy of @ \$9.70 per cy = \$135.80 cy of Culvert bedding/Backfill 40 1 1/2" - 0 \$12.91 \$516.40 @ per cy = Rock Total = 784 1 1/2" - 0 \$516.40 40 \$12.91 cy of per cy = 744 3" - 0 cy of \$9.70 per cy = \$7,216.80 **PROJECT NO. 2 TOTAL COST =** \$7,733.20

TOTAL COST = \$9,752.40

		00	DIVINION ALC L	OONOTING	JO HON O	701			
	Timber Sale: _	G	ales Back P	ocket	5	ale Number:	341-	-17-37	
	Road Segment:		K to A		li	mprovement:	6+00	stations	
							0.11	_ miles	
PROJECT NO. 1									
EXCAVATION									
Road widening (drift)			1.00	sta @	\$110.00	per sta =		\$110.00	
Grade, ditch, & roll			6.00	sta @	\$36.00	per sta =		\$216.00	
						TOTAL E	XCAVATIO	N COSTS =	\$326.00
						PROJECT	NO. 1 TOT	AL COST =	\$326.00
PROJECT NO. 2:									
SURFACING		10	" deep =	53 cy/sta					
K to A		318	cy of	3" - 0	@	\$9.75	per cy =	\$3,100.50	
Junction		24	cy of	3" - 0	@	\$9.75	per cy =	\$234.00	
	Rock Total =	342							
		342	cy of	3" - 0		\$9.75	per cy =	\$3,334.50	
						PROJECT	NO. 2 TOT	AL COST =	\$3,334.50
							<u> TOT</u>	AL COST =	\$3,660.50

CRUISE REPORT Gales Back Pocket 341-17-37

1. LOCATION: Portions of Sections 33 and 34, T2N T5W, W.M., Washington County, Oregon.

2. CRUISE DESIGN:

Pre-cruise evaluation indicated that the stand's average DBH is approximately 15 inches and its Coefficient of Variation (CV%) is estimated to be 58%. For sales of this size and approximate value, ODF cruise standards require a Sampling Error (SE%) of 10%, and a minimum sample size of 100 graded trees. A combination of count and measure plots and a higher than usual sample size was employed to address a CV% estimate that was higher than normal.

3. SAMPLING METHOD:

The Sale Area was cruised in April 2016 with 22 variable radius grade plots and 23 variable radius count plots using a 40 BAF prism. Plots were laid out on a 4 chain x 6 chain grid. (Plots falling on or near existing roads or no-harvest areas were offset 1 chain).

4. CRUISE RESULTS

161 trees were measured and graded producing a cumulative sampling error of 4.6% on the Basal Area and 5.1% on the Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All grade plot sample trees were measured and graded following Columbia River Log Scale grade rules and favoring 40 foot segments.

a) Height Standards:

Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.

- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors were measured for each grade tree using a form point of 16 feet.

5. DATA PROCESSING

- a) **Volumes and Statistics**: Cruise volume estimates, and sampling statistics, were derived from Super Ace 2008 cruise software.
- b) **Deductions:** Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.
- **6. Cruisers:** The sale was cruised by ODF cruiser Kenton Burns.

Prepared by:	Kenton Burns	5/16/2016	
		Date	
Reviewed by:	Eric Foucht	5/17/2016	
•		Date	

TC PST	TATS					DJECT S ROJECT		STICS BPFIN			PAGE DATE			
TWP	RGE	SC	TRACT		TYPE		AC	RES	PLOTS	TREES	CuFt	BdFt		
T2N	R5	34	00A1		00MC			114.00	45	304	S	W		
						TREES		ESTIMATED TOTAL		ERCENT SAMPLE				
		P	PLOTS	TREES		PER PLOT		TREES		TREES				
TOTA	AL.		45	304		6.8								
	ISE COUNT DREST		22	161		7.3		21,546		.7				
COUN BLAN	NT NKS		23	143		6.2								
100 %	0				ĆT A	ND SUMI	ALDV							
		SA	MPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS			
		Т	REES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC		
	G FIR-T		153	183.5	16.1	109	64.5	258.7	42,674	42,276	10,156	,		
GR FI			6	4.4	17.3	111	1.7	7.1	1,361	1,361	296			
	MLOCK-		1	.8	25.0	127	0.5	2.7	681	618	137	137		
	EDAR-L		1	.3	23.0	110	0.2	.9	80	74	34			
TOTA	AL		161	189.0	16.2	109	67.0	269.3	44,797	44,329	10,622	10,622		
CL	68.1	.1 1	COEFF	T OF 100 T	HE VOLU	SAMPL		IIN THE SAM		OF TREES	REO	INF. POP.		
CL									TT .		-			
CD.	1.0		17 A D 0/	C E 0%	T	ΩW	AVG	HIGH			1111			
SD:	1.0		VAR.%	S.E.% 4 7	I	.OW 310	AVG 325	HIGH 340		5	10	13		
DOUG GR FI WHE	G FIR-T		VAR.% 57.6 39.5	S.E.% 4.7 17.6	I	310 280	325 340	340 400		3	10	13		
DOUG GR FI WHE	G FIR-T IR-L MLOCK- CEDAR-L		57.6	4.7	Į.	310	325	340		131	33			
DOUG GR FI WHEI WR C TOTA	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1		57.6 39.5 57.3 COEFF	4.7 17.6 4.5		310 280 313 SAMPL	325 340 328 E TREES	340 400 343 S - CF	#	131 OF TREES	33 REQ.	<i>15</i> INF. POP.		
DOUG GR FI WHEN WR C TOTA CL SD:	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0		57.6 39.5 57.3 COEFF VAR.%	4.7 17.6 4.5 S.E.%		310 280 <i>313</i> SAMPL OW	325 340 328 E TREES AVG	340 400 343 S - CF HIGH	#	131	33	15		
DOUG GR FI WHE! WR C TOTA CL SD: DOUG GR FI WHE!	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T	L	57.6 39.5 57.3 COEFF	4.7 17.6 4.5		310 280 313 SAMPL	325 340 328 E TREES	340 400 343 S - CF	#	131 OF TREES	33 REQ.	<i>15</i> INF. POP.		
DOUG GR FI WHE! WR C TOTA CL SD: DOUG GR FI WHE!	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK- CEDAR-L	L	57.6 39.5 57.3 COEFF VAR.% 55.7	4.7 17.6 4.5 S.E.% 4.5		310 280 313 SAMPL OW 74	325 340 328 E TREES AVG 78	340 400 343 8 - CF HIGH 82	#	131 OF TREES	33 REQ.	15 INF. POP. 15		
DOUG GR FI WHE! WR C TOTA CL SD: DOUG GR FI WHE! WR C TOTA	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK- CEDAR-L AL 68.1	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7	4.7 17.6 4.5 S.E.% 4.5 15.4	L	310 280 313 SAMPL OW 74 62 75 TREES/	325 340 328 E TREES AVG 78 73	340 400 343 S - CF HIGH 82 84		131 OF TREES 5	33 REQ. 10	15 INF. POP. 15 14 INF. POP.		
DOUG GR FI WHEI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA	G FIR-T IR-L MLOCK-CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK-CEDAR-L AL 68.1 1.0	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.%	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3	L	310 280 313 SAMPL OW 74 62 75 TREES/	325 340 328 E TREES AVG 78 73 79 ACRE AVG	340 400 343 S - CF HIGH 82 84		131 OF TREES 5	33 REQ. 10	15 INF. POP. 15 14 INF. POP.		
DOUG GR FI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA CL SD:	G FIR-T IR-L MLOCK-CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK-CEDAR-L AL 68.1 1.0 G FIR-T	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7	L	310 280 313 SAMPL .OW 74 62 75 TREES/	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184	340 400 343 S - CF HIGH 82 84 82 HIGH 194		131 OF TREES 5	33 REQ. 10	15 INF. POP. 15 14 INF. POP.		
DOUG GR FI WHE! WR C TOTA CL SD: DOUG GR FI VHE! CL SD: DOUG GR FI	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T IR-T	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9 526.7	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7 78.4	L	310 280 313 SAMPL .OW 74 62 75 TREES/ .OW 173 1	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184 4	340 400 343 S - CF HIGH 82 84 82 HIGH 194 8		131 OF TREES 5	33 REQ. 10	15 INF. POP. 15 14 INF. POP.		
DOUG GR FI WHE! WR C TOTA CL SD: DOUG GR FI WHE! DOUG GR FI WHE!	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK- G FIR-T IR-L	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9 526.7 378.4	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7 78.4 56.4	L	310 280 313 SAMPL OW 74 62 75 TREES/ OW 173 1 0	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184 4	340 400 343 S - CF HIGH 82 84 82 HIGH 194		131 OF TREES 5	33 REQ. 10	15 INF. POP. 15 14 INF. POP.		
DOUG GR FI WHE! WR C TOTA CL SD: CL SD: DOUG GR FI WHE! WHE! WHE! WR C	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK- CEDAR-L AL 1.0 G FIR-T IR-L MLOCK- CEDAR-L MLOCK- CEDAR-L MLOCK- CEDAR-L	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9 526.7 378.4 670.8	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7 78.4 56.4 99.9	L	310 280 313 SAMPL OW 74 62 75 TREES/ OW 173 1 0 0	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184 4 1	340 400 343 8 - CF HIGH 82 84 82 HIGH 194 8		131 OF TREES 5 122 OF PLOTS 5	33 REQ. 10 30 REQ. 10	15 INF. POP. 15 14 INF. POP.		
DOUG GR FI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK- CEDAR-L MLOCK- CEDAR-L AL	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9 526.7 378.4 670.8 36.3	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7 78.4 56.4	L	310 280 313 SAMPL .OW 74 62 75 TREES/ .OW 173 1 0 0 179	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184 4 1 0 189	340 400 343 8 - CF HIGH 82 84 82 HIGH 194 8 1 1	#	131 OF TREES 5 122 OF PLOTS 5	33 REQ. 10 30 REQ. 10	15 INF. POP. 15 INF. POP. 15		
DOUG GR FI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA CL SD: DOUG GR FI WHEI WR C	G FIR-T IR-L MLOCK-CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK-CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK-CEDAR-L AL MLOCK-CEDAR-L AL 68.1	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9 526.7 378.4 670.8 36.3 COEFF	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7 78.4 56.4 99.9 5.4	I	310 280 313 SAMPL .OW 74 62 75 TREES/ .OW 173 1 0 0 179 BASAL	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184 4 1 0 189 AREA/A	340 400 343 S - CF HIGH 82 84 82 HIGH 194 8 1 1 199	#	131 OF TREES 5 122 OF PLOTS 5 OF PLOTS	33 REQ. 10 30 REQ. 10	15 INF. POP. 15 INF. POP. 15		
DOUG GR FI WHE! SD: DOUG GR FI WHE! WR C TOTA CL SD: DOUG GR FI WHE! WR C TOTA	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK- CEDAR-L AL 1.0 G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9 526.7 378.4 670.8 36.3 COEFF VAR.%	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7 78.4 56.4 99.9 5.4 S.E.%	I	310 280 313 SAMPL OW 74 62 75 TREES/ OW 173 1 0 0 179 BASAL	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184 4 1 0 189 AREA/A	340 400 343 S - CF HIGH 82 84 82 HIGH 194 8 1 1 199 CRE HIGH	#	131 OF TREES 5 122 OF PLOTS 5	33 REQ. 10 30 REQ. 10	15 INF. POP. 15 INF. POP. 15		
DOUG GR FI WHE! SD: DOUG GR FI WHE! DOUG GR FI WHE! WR C TOTA	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9 526.7 378.4 670.8 36.3 COEFF VAR.%	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7 78.4 56.4 99.9 5.4 S.E.% 4.6	I	310 280 313 SAMPL OW 74 62 75 TREES/ OW 173 1 0 0 179 BASAL	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184 4 1 0 189 AREA/A AVG 259	340 400 343 S - CF HIGH 82 84 82 HIGH 194 8 1 1 199 CRE HIGH 271	#	131 OF TREES 5 122 OF PLOTS 5 OF PLOTS	33 REQ. 10 30 REQ. 10	15 INF. POP. 15 INF. POP. 15		
DOUG GR FI WHE! WR C SD: DOUG GR FI WHE! WR C TOTA CL SD: DOUG GR FI WHE! WR C TOTA	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9 526.7 378.4 670.8 36.3 COEFF VAR.%	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7 78.4 56.4 99.9 5.4 S.E.%	I	310 280 313 SAMPL OW 74 62 75 TREES/ OW 173 1 0 0 179 BASAL	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184 4 1 0 189 AREA/A	340 400 343 S - CF HIGH 82 84 82 HIGH 194 8 1 1 199 CRE HIGH	#	131 OF TREES 5 122 OF PLOTS 5 OF PLOTS	33 REQ. 10 30 REQ. 10	15 INF. POP. 15 INF. POP. 15		
DOUG GR FI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T IR-L AL	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9 526.7 378.4 670.8 36.3 COEFF VAR.%	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7 78.4 56.4 99.9 5.4 S.E.% 4.6 78.4	I	310 280 313 SAMPL OW 74 62 75 TREES/ OW 173 1 0 0 179 BASAL OW 247 2	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184 4 1 0 189 AREA/A AVG 259 7	340 400 343 8 - CF HIGH 82 84 82 HIGH 194 8 1 1 199 CRE HIGH 271 13	#	131 OF TREES 5 122 OF PLOTS 5 OF PLOTS	33 REQ. 10 30 REQ. 10	15 INF. POP. 15 INF. POP. 15		
DOUG GR FI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 CG FIR-T IR-L MLOCK- CEDAR-L AL	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9 526.7 378.4 670.8 36.3 COEFF VAR.% 31.2 526.7 378.4	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7 78.4 56.4 99.9 5.4 S.E.% 4.6 78.4 56.4	I	310 280 313 SAMPL OW 74 62 75 TREES/ OW 173 1 0 0 179 BASAL OW 247 2 1	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184 4 1 0 189 AREA/A AVG 259 7	340 400 343 8 - CF HIGH 82 84 82 HIGH 194 8 1 1 199 CRE HIGH 271 13 4	#	131 OF TREES 5 122 OF PLOTS 5 OF PLOTS	33 REQ. 10 30 REQ. 10	15 INF. POP. 15 INF. POP. 15 6 INF. POP. 15		
DOUG GR FI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK- CEDAR-L AL 68.1	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9 526.7 378.4 670.8 36.3 COEFF VAR.% 31.2 526.7 378.4 670.8 27.3 COEFF	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7 78.4 56.4 99.9 5.4 S.E.% 4.6 78.4 56.4 99.9 4.1	I	310 280 313 SAMPL OW 74 62 75 TREES/ OW 173 1 0 0 179 BASAL OW 247 2 1 0 258 NET BF	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184 4 1 0 189 AREA/A AVG 259 7 3 1 269	340 400 343 S - CF HIGH 82 84 82 HIGH 194 8 1 1 199 CRE HIGH 271 13 4 2 280	#	131 OF TREES 5 122 OF PLOTS 5 OF PLOTS 5	33 REQ. 10 30 REQ. 10 7 REQ.	15 INF. POP. 15 6 INF. POP. 15 3 INF. POP.		
DOUG GR FI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA CL SD:	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T IR-L MLOCK- CEDAR-L AL 1.0 G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 68.1 1.0	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9 526.7 378.4 670.8 36.3 COEFF VAR.% 31.2 526.7 378.4 670.8 27.3 COEFF VAR.%	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7 78.4 56.4 99.9 5.4 S.E.% 4.6 78.4 56.4 99.9 4.1	I I	310 280 313 SAMPL OW 74 62 75 TREES/ OW 173 1 0 0 179 BASAL OW 247 2 1 0 258 NET BF	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184 4 1 0 189 AREA/A AVG 259 7 3 1 269 /ACRE AVG	340 400 343 8 - CF HIGH 82 84 82 HIGH 194 8 1 1 199 CRE HIGH 271 13 4 2 280 HIGH	#	131 OF TREES 5 122 OF PLOTS 5 53 OF PLOTS 5	33 REQ. 10 30 REQ. 10 13 REQ. 10	15 INF. POP. 15 14 INF. POP. 15 3 INF. POP.		
DOUG GR FI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA CL SD: DOUG GR FI WHEI WR C TOTA	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9 526.7 378.4 670.8 36.3 COEFF VAR.% 31.2 526.7 378.4 670.8 27.3 COEFF VAR.%	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7 78.4 56.4 99.9 5.4 S.E.% 4.6 78.4 56.4 99.9 4.1 S.E.% 5.7	I I	310 280 313 SAMPL OW 74 62 75 TREES/ OW 173 1 0 179 BASAL OW 247 2 1 0 258 NET BF	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184 4 1 0 189 AREA/A AVG 259 7 3 1 269 /ACRE AVG	340 400 343 8 - CF HIGH 82 84 82 HIGH 194 8 1 1 199 CRE HIGH 271 13 4 2 280 HIGH 44,429	#	131 OF TREES 5 122 OF PLOTS 5 OF PLOTS 5	33 REQ. 10 30 REQ. 10 7 REQ.	14 INF. POP. 15 6 INF. POP. 15		
DOUG GR FI WHEE SD: DOUG GR FI WHEE WR C TOTA CL SD: DOUG GR FI WHEE WR C TOTA CL SD: DOUG GR FI WHEE WR C TOTA	G FIR-T IR-L MLOCK- CEDAR-L AL 68.1 1.0 G FIR-T	L	57.6 39.5 57.3 COEFF VAR.% 55.7 34.7 55.2 COEFF VAR.% 37.9 526.7 378.4 670.8 36.3 COEFF VAR.% 31.2 526.7 378.4 670.8 27.3 COEFF VAR.%	4.7 17.6 4.5 S.E.% 4.5 15.4 4.3 S.E.% 5.7 78.4 56.4 99.9 5.4 S.E.% 4.6 78.4 56.4 99.9 4.1	I I	310 280 313 SAMPL OW 74 62 75 TREES/ OW 173 1 0 0 179 BASAL OW 247 2 1 0 258 NET BF	325 340 328 E TREES AVG 78 73 79 ACRE AVG 184 4 1 0 189 AREA/A AVG 259 7 3 1 269 /ACRE AVG	340 400 343 8 - CF HIGH 82 84 82 HIGH 194 8 1 1 199 CRE HIGH 271 13 4 2 280 HIGH	#	131 OF TREES 5 122 OF PLOTS 5 OF PLOTS 5	33 REQ. 10 30 REQ. 10 7 REQ.	15 INF. POP. 15 6 INF. POP. 15 3 INF. POP.		

TC PS	rats				PROJECT PROJECT		ISTICS SBPFIN			PAGE DATE	2 5/17/2016
TWP	RGE	SC	TRACT	TYI	PE PE	A	CRES	PLOTS	TREES	CuFt	BdFt
T2N	R5	34	1A00	00M	IC		114.00	45	304	S	W
CL	68.1		COEFF		NET I	BF/ACRE			# OF PLOT	S REQ.	INF. POP.
SD:	00.1		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
тот	AL		29.7	4.4	42,368	44,329	46,290		35	9	4
CL	68.1		COEFF		NET	CUFT FT/	ACRE		# OF PLOTS I	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR-T		33.6	5.0	9,647	10,156	10,665				
GR F	IR-L		526.7	78.4	64	296	528				
WHE	MLOCK.	-L	378.4	56.4	60	137	214				
WR C	EDAR-L		670.8	99.9	0	34	67				
TOT	AL		<i>29.1</i>	4.3	10,162	10,622	11,082		34	8	4

TC :	PSP	CSTGR		$\mathbf{S}_{\mathbf{j}}$	pecies,	Sort G	rade - Boar	d Fo	ot V	olum	es (P	roject	t)							
TT2	2N R	RR5W S3	4 Ty00	MC I	14.00		Project: Acres	GI	LSBP 114.0								Page Date Time	5/	1 17/20 :17:0	
	S	So Gr	% Net	Bd. F	t, per Acre	2	Percent of Net Board Foot Volume Total Log Scale Dia. Log Length						T	Avera Dia		g CF/	Logs Per			
Spp		rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5		12-16	17+	12-20	21-30		36-99	1	In		Lf	/Acre
DF	T T T	2M 3M 4M	42 51 7	1.5	18,423 21,389 2,862	18,138 21,275 2,862	2,068 2,425 326		96 100	90 4	10	1 1 45	1 0 38	2 4 10	97 95 7	40 39 19	14 8 6	274 99 23	1.61 0.63 0.31	66.3 214.1 122.4
DF	Tot	als	95	.9	42,674	42,276	4,819		55	41	4	4	3	3	90	33	8	105	0.77	402.7
GF :	L	3M	100		1,361	1,361	155	11	32	57			40	45	15	32	9	112	0.76	12.1
GF	Tot	tals	3		1,361	1,361	155	11	32	57			40	45	15	32	9	112	0.76	12.1
RC I	L	2M 3M	75 25	10.0	62 18	55 18	6 2		100	100					100 100	40	12 6		2.24 0.49	.3
RC	Tot	tals	0	7.7	80	74	8		25	75					100	40	9	120	1.36	.6
WH I WH I	L	2M 3M 4M	65 31 4	13.3	469 188 23	407 188 23	46 21 3		100	100	100	***************************************	100	, "	100 100		19 13 6	520 240 30	2.56 1.45 0.56	.8 .8 .8
WH	То	tals	1	9,2	681	618	70		4	30	66		4		96	35	13	263	1.65	2.3
Totals	S			1.0	44,797	44,329	5,053	0	53	41	5	3	4	5	88	33	8	106	0.77	417.8

<u> </u>							·····									ringe 1.	17.031	171
	S	So Gr			Def	Net	%	<u> </u>				1	_	<u>ieter in l</u>				
Spp	T	rt de			%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23 24-29	30-39	40+
DF	Т		20	1	10.0	13	l								13			
DF	Т			1		19	l								19			
DF	T	2M		1		20	l							20				
DF	Т				11.8	18	l						18					
DF	Т	2M	40	2,025	1.4	1,996	41.4						781	676	539			
DF	Т	3M	16	9		9	.2					9						
DF	Т	3M	20	7	14.3	6	.1					6						
DF	T	3M	30	8		8	.2			8								
DF	T	3M	32	54		54	1.1			42			12					
DF	T	3M	34	38		38	.8			24	15							
DF	T	3M	36	233		233	4.8			164	69							
DF	Τ	3M	38	46		46	.9			12	34							
DF	Т	3M	40	2,044		2,032	42.2			389	665	886	78	13				
DF	Τ	4M	12	33		33	.7			33								
DF	Т	4M	14	41		41	.8			41								
DF	T	4M	16	25		25	.5			25								
DF	T	4M	18	19		19	.4			19								
DF	T	4M	20	28		28	.6			28								
DF	T	4M	22	14		14	.3			14								
DF	T	4M	24	22		22	.5			22								
DF	T	4M	26	47		47	1.0			47								
DF	T	4M	28	18		18	.4			18								
DF	T	4M	30	24		24	.5			24								
DF	T	4M	32	33		33	.7			33								
DF	T	4M	36	22		22	.5			22								
DF		Totals	3	4,865		4,819	95.4			965	782	901	890	709	572			
GF	L	3M	28	41		41	26.2				14		27		,			
GF	L	3M	30	22		22	14.1		6					16				
GF	L	3M	31	8		8	5.4					8						
GF	L	3M	32		•	38			2					17	18			
GF	L	3M	33	9		9	6.0					9						
GF	L		34			14	9.2		5				10					
GF	L	3M	38	19		19						19						
GF	L	3M	40	4		4	2.8		4									
GF		Totals	i	155		155	3.1		17		14	36	37	33	18			
RC	L	2M	40	7	10.0	6	75.0						6					

TC	PLC	OGSTVB				Log Stock Table - MBF												
TT2N RR5W S34 Ty00MC 114.00						Project: GLSBPFIN Acres 114.00								Page Date Time	5/1	2 7/2016 17:05P		
	s	So Gr	Log	Gross	Def	Net	%		Net Volume by Scaling Diameter in Inches									
Spp	T		Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11 12-13	14-15	16-19	20-23	24-29	30-39	40+
RC	L	3N	и 40	2		2	25.0			2								
RC		Total	ls	9	7.7	8	.2			2		6		,				,
WH	L	2N	40	54	13.3	46	65.8							46				
WH	L	3N	40	21		21	30.4					21						
WH	L	41\	4 26	3		3	3,8			3								
WH		Total	ls	78	9.2	70	1.4			3		21		46				
Total		All Spec	ies	5,107	1.0	5,053	100.0		17	970	796	938 954	743	636				

•

TC PSTNDSUM	Stand Table Summary	Page 1 Date: 5/17/2016			
TT2N RR5W S34 Ty00MC 114.00	Project GLSBPFIN	Time: 1:17:03PM			
	Acres 114.00	Grown Year:			

<u></u>															
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Averag Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF T	9	4	86	81	15.307	6.76	15.31	9.2	50.0	4.00	140	765	456	160	87
DF T	10	4	84	79	12.399	6.76	12,40	12,3	52.5	4.35	153	651	496	174	74
DF T	11	7	83	92	17.932	11.83	28.18	12.1	47.3	9.75	342	1,332	1,112	390	152
DF T	12	5	83	101	10.763	8.45	21.53	12.4	45.0	7,62	268	969	869	305	110
DF T	13	11	85	99	20.176	18.60	38.52	16.0	64.3	17.54	615	2,476	2,000	702	282
DF T	14	6	87	106	9.489	10.14	18.98	18.6	81.7	10.07	353	1,550	1,148	403	177
DF T	15	9	86		12.399	15.22	27.55	20.1	88.0	15.79	554	2,425	1,801	632	276
DF T	16	5	86	109	6.054	8.45	12.11	26.2	110.0	9.04	317	1,332	1,030	361	152
DF T	17	18	87		19.306	30.43	51.48	24.0	99.4	35.26	1,237	5,116	4,020	1,411	583
DF T	18	10	87		9.567	16.91	27.74	25.4	103.4	20.10	705	2,870	2,292	804	327
DF T	19	17	86		14.597	28.74	42.93	28.4	114.8	34.78	1,220	4,929	3,965	1,391	562
DF T	20	9	86		6.974	15.22	20.92	30.4	122.2	18.13	636	2,557	2,067	725	292
DFT	21	13	86	-	9.137	21.98	27.41	35.4	147.2	27.69	971	4,035	3,156	1,107	460
DFT	22	11	86		7.045	18.60	20.49	40.3	176.9	23.54	826	3,625	2,684	942	413
DF T	23	7	83	136	4.102	11.83	12.31	43.8	187.6	15.34	538	2,309	1,749	614	263
DFT	24	6	84	128	3.229	10.14	9.69	45.2	191.7	12.48	438	1,857	1,423	499	212
DFT	25	3	80	139	1.488	5.07	4.46	51.9	208.9	6.60	232	932	753	264	106
DFT	26	6	84	134	2.751	10.14	8.25	56.2	238.3	13.21	464	1,967	1,506	528	224
DFT	27	1	80	147	.425	1.69	1.28	58,6	246.7	2.13	75	315	243	85	36
DFT	28	1	79	125	.395	1.69	1.19	59.1	223.3	2.00	70	265	228	80	30
DF T	Totals	153	85	109	183,536	258.67	402.73	25.2	105.0	289.45	10,156	42,276	32,997	11,578	4,819
GF L	15	1	93	100	.966	1.19	1.93	24.4	105.0	1.04	47	203	118	54	23
GF L	16	2	92	110	1.698	2.37	5.09	18.0	80.0	2.02	92	407	230	105	46
GF L	18	1	92	115	.671	1.19	2.01	25.2	116.7	1.12	51	235	127	58	27
GF L	20	1	93	120	.543	1.19	1.63	31.9	156.7	1.15	52	255	131	59	29
GF L	21	1	92	120	.493	1.19	1.48	36.7	176.7	1.19	54	261	136	62	30
GF L	Totals	6	92	111	4.370	7.11	12.14	24.4	112.1	6.51	296	1,361	742	337	155
WHL	25	I	94	127	.782	2.67	2.35	58.2	263.3	4.37	137	618	498	156	70
WHL	Totals	1	94	127	.782	2,67	2,35	58.2	263.3	4.37	137	618	498	156	70
RC L	23	1	70	110	.308	.89	.62	54.5	120.0	.79	34	74	90	38	8
RC L	Totals	1	70	110	.308	.89	.62	54.5	120.0	.79	34	74	90	38	8
Totals		161	85	109	188.996	269.33	417.84	25.4	106.1	301.11	10,622	44,329	34,327	12,109	5,053

Legend

ODF Property Boundary

- 400 Foot Contour Band

80 Foot Contour Band

Section Line

LOGGING PLAN

FOR TIMBER SALE CONTRACT # 341-17-37 GALE'S BACK POCKET PORTIONS OF SECTIONS 33 & 34, T2N, R5W, W.M. WASHINGTON COUNTY, OREGON

> Forest Grove District GIS May, 2015

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

NET ACRES TRACTOR YARDING = 114

