

District: Forest Grove

Date: November 28, 2016

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$1,457,852.50	\$22,689.56	\$1,480,542.06
		Project Work:	(\$42,110.00)
		Advertised Value:	\$1,438,432.06

District: Forest Grove

Date: November 28, 2016

Timber Description

Location: Portions of Sections 19 and 20, T3N, R6W, W.M., Tillamook County, Oregon.

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	21	0	98
Alder (Red)	15	0	95

Volume by Grade	2S	3S	4S	Camprun	Total
Douglas - Fir	2,642	1,102	131	0	3,875
Alder (Red)	0	0	0	68	68
Total	2,642	1,102	131	68	3,943

Comments: Pond Values Used: 3rd Quarter Calendar Year 2016.

Western Hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost: \$216.55/MBF = \$450/MBF - \$233.45/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$916.55/MBF = \$1,150/MBF - \$233.45/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

BRANDING AND PAINTING COST ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$3.00/MBF

HAULING COST ALLOWANCE Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added): None.

Other Costs (No Profit & Risk added): Pile Landing Slash: 20 hrs @ \$150/hr = \$3,000 Equipment Cleaning: 1 pieces @ \$1,000/piece = \$1,000 Snag creation: 117 snags @ \$40/tree = \$4,680 TOTAL Other Costs (No Profit & Risk added) = \$8,680

Road Maintenance Move in: \$2,000 Road Maintenance: 10 miles @ \$1,200/mile = \$12,000 TOTAL Road Maintenance: \$14,000/3,943 MBF = \$3.55/MBF

District: Forest Grove

Date: November 28, 2016

	Logg	ing Conditions		
Combination#: 1	Douglas - Fir Alder (Red)	97.00% 97.00%		
Logging System:	Cable: Medium Tower >40 - <70	Process: Stroke Delimber		
yarding distance: tree size:	Medium (800 ft) downhill yarding: No Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF			
loads / day:	10 bd. ft / load: 4100			
cost / mbf:	\$146.34			
machines:	Log Loader (A) Stroke Delimber (A) Tower Yarder (Medium)			
Combination#: 2	Douglas - Fir Alder (Red)	3.00% 3.00%		
Logging System:	Track Skidder	Process: Stroke Delimber		
yarding distance: tree size:	Short (400 ft) Mature / Partial Cut (900 Bft/tree), 3-5 I	downhill yarding: No ogs/MBF		
loads / day:	12	bd. ft / load: 4100		
cost / mbf:	\$64.47			
machines:	Stroke Delimber (B)			

District: Forest Grove

Date: November 28, 2016

Logging Costs			
Operating Seasons: 1.00 Profit Risk: 10%			
Project Costs: \$42,110.00	Other Costs (P/R): \$0.00		
Slash Disposal: \$0.00	Other Costs: \$8,680.00		

Miles of Road	Road Maintenance: \$3.55			
Dirt	Rock (Contractor)	Rock (State)	Paved	
0.0	0.0	0.0	0.0	

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	4.8
Alder (Red)	\$0.00	2.0	3.8

District: Forest Grove

Date: November 28, 2016

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling / Brand & Paint	Other	Total
Douglas -	Fir								
\$143.88	\$3.62	\$1.11	\$55.25	\$0.00	\$20.39	\$0.00	\$7.00	\$2.20	\$233.45
Alder (Red	4)								
\$143.88	\$3.73	\$1.11	\$107.76	\$0.00	\$25.65	\$0.00	\$7.00	\$2.20	\$291.33

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$609.67	\$376.22	\$0.00
Alder (Red)	\$0.00	\$625.00	\$333.67	\$0.00

District: Forest Grove

Date: November 28, 2016

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	3,875	\$376.22	\$1,457,852.50
Alder (Red)	68	\$333.67	\$22,689.56

Gross Timber Sale Value				
Recovery:	\$1,480,542.06			
Prepared By: Eric Foucht	Phone: 503-359-7473			

TIMBER SALE SUMMARY Salmonberry Bends Contract No. 341-17-27

- 1. Location: Portions of Sections 19 & 20, T3N, R6W, W.M., Tillamook County, Oregon.
- 2. <u>Type of Sale</u>: This timber sale is 117 net acres of Modified Clearcut. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. <u>Revenue Distribution</u>: 100% BOF, Tillamook County, (Tax Code 56-1.)
- 4. <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS software.
- 5. <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in October of 2016. For more information see Cruise Report.
- 6. <u>Timber Description</u>: The Timber Sale Area consists of well stocked 64 year old Douglas-fir stand with minor amounts of western hemlock, true firs, and red alder. The stand has an average of 204 ft² of basal area (all species), an average Douglas-fir DBH of 21 inches, with an average bole length of 121 feet. The estimated average net Douglas-fir volume of approximately 33.8 MBF per acre.

SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
	Cruise Volume	2,696	1,124	134	0	3,954
Dougloo fir	Hidden D&B (2%)	(54)	(22)	(3)	()	(79)
Douglas-fir	NET TOTAL	2,642	1,102	131	0	3,875
	% of Total	69	28	3	0	
SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
	Cruise Volume	0	0	0	69	69
Red Alder	Hidden D&B (2%)	()	()	()	(1)	(1)
Reu Aluei	NET TOTAL	0	0	0	68	68
	% of Total	0	0	0	100	

7. Volume Summary

- 8. <u>Topography and Logging Method</u>: Slopes within the sale areas range from 10% to 70%, and average around 60%. The aspect is generally north. The timber sale is 3% ground-based yarding and 97% cable yarding. The average cable corridor length is 730 feet and the maximum length is 1800 feet. The average horizontal skid trail length is approximately 400 feet and the maximum length is approximately 800 feet.
- **9.** <u>Access</u>: All access to the Timber Sale Area is on surfaced all-weather roads. From Forest Grove, travel north on Highway 47 through Banks then merge onto Highway 26 westbound and continue for approximately 20 miles. Between the 31 and the 32 mile markers, turn south onto the Salmonberry Road and continue for approximately 8.6 miles to the North Fork Salmonberry Road. Turn right at the junction and proceed .4 miles to the southwest corner of the Timber Sale Area.

10. Projects:

Project No. 1: Road Improvement	\$30,137.28
Project No. 2: Road Surfacing	\$4,590.06
Project No. 3: Grass Seed, Fertilize, and Mulch	\$351.50
Project No. 4: Rock Quarry Test Drilling	\$2,840.88
Move in and equipment cleaning:	\$4,190.28

Total Credit for all Projects

\$42,110.00

Salmonberry Bends Page 2 of 2

PI	ROJECT COST	SUMMARY SH	IEET								
	Timber Sale: Salmonberry Bends										
	Sale Number:	34	1-17-27								
PROJECT NO. 1: ROAD IMPR	ROVEMENT										
	Road Segmen		Cost								
	A to B	336+43	\$29,351.48								
	C to D	15+80	\$785.80								
		352+23 s	tations								
		6.67 n	niles								
		TOTAL PROJI	<u>ECT NO. 1 COST =</u>	\$30,137.28							
PROJECT NO. 2: SURFACIN	IG										
Road Segment	Rock Amount	Rock Type	Cost								
A to B	192 cy	1 1/2" - 0	\$1,608.96								
A to B	870 cy	Jaw Run	\$2,731.80								
C to D	90 cy	1 1/2" - 0	\$249.30								
Tota	1152 cy										
	282 cy	1 1/2" - 0									
	870 cy	Jaw Run									
	-	TOTAL PROJ	<u>ECT NO. 2 COST =</u>	\$4,590.06							
PROJECT NO. 3 GRASS SEE	D. FERTILIZE.	& MULCH									
			ECT NO. 3 COST =	\$351.50							
PROJECT NO. 4 ROCK QUA	REY TEST DRI	LING									
			ECT NO. 4 COST =	\$2,840.88							
MOVE-IN & EQUIPMENT CLE	ANING										
Grader			\$754.44								
Loader (Med. & La	rae)		\$761.03								
Roller (smooth/grid	• /		\$458.58								
Excavator (Large)	<i>,</i> .	aning	\$1,917.17								
Dump Trucks (10c)		a.m.g	\$299.06								
		EQUIPMENT C	LEANING COST =	\$4,190.28							
		lande Marie Internet and a second		¢42 440 00							

TOTAL CREDITS \$42,110.00

	UMMARY C						
	monberry B	ends	•	ale Number:		-17-27	
Road Segment:	A to B		. Ir	nprovement:	<u>336+43</u> 6.37	_stations miles	
PROJECT NO. 1							
EXCAVATION							
Clean culvert inlet & outlet	62	ea @	\$25.00	per ea =		\$1,550.00	
End-haul		Ŭ		per ea =			
Excavate & load unsuitable fill material	200	су @	\$1.64	per ea =		\$328.00	
Haul	200	cý @	\$3.20	per ea =		\$640.00	
Compact waste area	200	cý @	\$0.30	per ea =		\$60.00	
Clearing & grubbing (scatter)	0.50	ac @		per acre =		\$539.00	
Construct roadside landing	5	ea @	\$157.00			\$785.00	
Construct roadside landing	2	ea @	\$628.00	per ea =		\$1,256.00	
Construct roadside landing	2	ea @	\$66.00	per ea =		\$132.00	
Grade & roll	336.43	sta @	\$36.00	per sta =		\$12,111.48	
	000.10	000 @	\$00.00	•	FXCAVATI	ON COSTS =	\$17 401 48
CULVERTS - MATERIALS & INSTALLATION							φ <i>Π</i> , 101.10
Culverts							
120 LF of 18"	\$2,400.00)					
110 LF of 24"	\$3,190.00	1					
40 LF of 30"	\$1,560.00	1					
90 LF of 36"	\$4,500.00	1					
Culvert Markers							
30 markers	\$300.00	1					
				TO	FAL CULVE	<u>RT COSTS =</u>	\$11,950.00
				PROJEC	<u>T NO. 1 TO</u>	TAL COST =	\$29,351.48
PROJECT NO. 2:							
SURFACING 12	deep =	20 cy/sta					
Roadside Landing 870	cy of	Jaw Run	. @	\$3.14	per cy =	\$2,731.80	
Culvert bedding/Backfill 192	cy of	1 1/2" - 0	0	\$8.38	per cy =	\$1,608.96	
Rock Total = 1,062							
192	cy of	1 1/2" - 0		\$8.38	per cy =	\$1,608.96	
870	cy of	Jaw Run		\$3.14	per cy =	\$2,731.80	
				PROJEC	<u>T NO. 2 TO</u>	TAL COST =	\$4,340.76
PROJECT NO. 3:							
Grass seed & fertilizer	0.30	acres	@	\$425.00	per acre =	\$127.50	
Mulch	28	bales	@	\$8.00	per bale =		
				<u>PROJEC</u>	<u>T NO. 3 TO</u>	TAL COST =	\$351.50

TOTAL COST = \$34,043.74

	รเ	JMMARY C	OF CONSTR	UCTION C	OST			
Timber Sale:	Salı	monberry E	Bends	S	Sale Number:	341-	17-27	
Road Segment:		C to D		h	mprovement:	15+80	stations	
						0.30	miles	
PROJECT NO. 1								
EXCAVATION								
Clean culvert inlet & outlet		2	ea @	\$25.00	per ea =		\$50.00	
Construct roadside landing		1	ea @	\$157.00	per ea =		\$157.00	
Grade & roll		15.80	sta @	\$36.00	per sta =		\$568.80	
					TOTAL	EXCAVATIC	ON COSTS =	\$775.80
CULVERTS - MATERIALS & INSTALLAT	ΓΙΟΝ							
Culvert Markers								
1 m	arkers	\$10.00)					
					<u>T01</u>	AL CULVER	RT COSTS =	\$10.00
							-	#705.00
					PROJEC	I NO. 1 TO	TAL COST =	\$785.80
PROJECT NO. 2:								
SURFACING		" deep =	20 cy/sta					
Roadside Landing	90	cy of	Jaw Run	@	\$2.77	per cy =	\$249.30	
Rock Total =	90	-						
	90	cy of	Jaw Run		\$2.77	per cy =	\$249.30	
					PROJEC	T NO. 2 TO	TAL COST =	\$249.30

TOTAL COST = \$1,035.10

Timber Sale:	Sa	monberry Be	nds	_	Sale Number:	341-1	7-27	
Road Segment:		Project 4		-				
PROJECT NO. 4								
Access road construction	5	hr @	\$140.00	per hr =		\$700.00		
Drill test holes with report.	10	hr @	\$132.00	per hr =		\$1,320.00		
Move-in equipment						\$820.88		
				PROJE	CT NO. 4 TOT	AL COST =	\$2,840.88	

CRUISE REPORT Salmonberry Bends 341-17-27

1. LOCATION: Portions of Sections 19 & 20, T3N, R6W, W.M., Tillamook County, Oregon.

2. CRUISE DESIGN:

Pre-cruise evaluation indicated that the stand's average DBH is approximately 16 inches and its Coefficient of Variation is about 50%. For sales of this size and approximate value, ODF cruise standards require a Sampling Error of 9% at a 68% confidence level, and a minimum sample size of 100 graded trees. The cruise design chosen for this sale is a variable radius sample plot using a 40 BAF prism and employing a combination of count and measure plots at a ratio of 1 measured plot to 1 count plots.

3. SAMPLING METHOD:

The Timber Sale Area was cruised in October, 2016 with 19 variable radius grade plots and 19 variable radius count plots using a 40 BAF prism. Plots were laid out on a 4 chain x 4 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

4. CRUISE RESULTS

109 trees were measured and graded producing a cumulative Sampling Error of 4.2% on the Douglas-fir Basal Area and 3.9% on the Douglas-fir Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following Columbia River Log Scale grade rules and favored 40 foot segments.

a) Height Standards:

Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch DIB.

- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors were measured for each grade tree using a form point of 16 feet.

5. DATA PROCESSING

- a) **Volumes and Statistics**, Cruise estimates and sampling statistics, were derived from Super Ace 2008 cruise software
- b) **Deductions:** Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.
- 6. Cruisers: The sale was cruised by ODF cruisers (Names).

Prepared by:

ODF Forester

Date

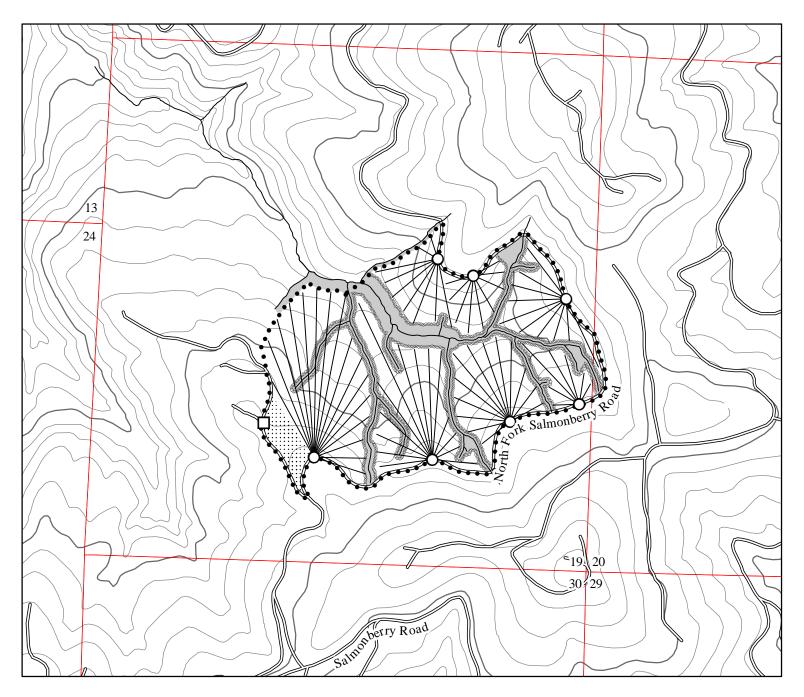
Reviewed by:

Eric Foucht

Date

TC PS	TATS					DJECT S ROJECT		STICS INDS			PAGE DATE	1 10/20/2010
ГWP	RGE	SC	TRACT	r	ГҮРЕ		AC	CRES	PLOTS	TREES	CuFt	BdFt
03N	05	19	00A1		00MC			117.00	40	204	S	W
						TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		I	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA	AL		40	204		5.1						
	ISE COUNT DREST		21	109		5.2		10,239		1.1		
COU BLAN 100 %	NKS		19	90		4.7						
					STA	ND SUM	MARY					
			AMPLE FREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
	G FIR		98	79.6	21.0	121	41.9	192.0	34,358	-	8,111	8,094
R AL			7	6.1	14.5	77	1.8	7.0	662		190	175
	EMLOCK		3	1.6	21.5	119	0.9	4.0	720		165	165
NOB TOT			1 109	.3 87.5	27.0 20.7	141 118	0.2 44.9	1.0 204.0	224 35,964		. 49 8, <i>516</i>	49 <i>8,483</i>
CON	IFIDENC 68			THE SAMPI T OF 100 TI		ME WILL	BE WIT	HIN THE SAM	MPLE ERR	.OR		
CL	68.1		COEFF			SAMPL	E TREE	S - BF		# OF TREES	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	15
	G FIR		55.3	5.6		507	537	566				
				10.7								
R AL WHE NOB	EMLOCK		47.3 41.4	19.2 28.7		81 345	100 483	119 622				
WHE	EMLOCK FIR									142	36	16
WHE NOB	EMLOCK FIR		41.4	28.7		345	483 <i>510</i>	622 539		<i>142</i> # OF TREES		16 INF. POP.
WHE NOB TOT CL SD:	EMLOCK FIR AL 68.1 1.0		41.4 59.7 COEFF VAR.%	28.7 5.7 S.E.%	L	345 481 SAMPL OW	483 <i>510</i> E TREE AVG	622 <i>539</i> S - CF НІGН		··· ··································		INF. POP.
WHE NOB TOT CL SD: DOU	EMLOCK FIR AL 68.1 1.0 G FIR		41.4 59.7 COEFF VAR.% 52.0	28.7 5.7 S.E.% 5.2	<u>L</u>	345 481 SAMPL OW 121	483 510 E TREE AVG 127	622 <i>539</i> S - CF <u>HIGH</u> 134		# OF TREES	REQ.	INF. POP.
WHE NOB TOTA CL SD: DOUG R AL	EMLOCK FIR AL 68.1 1.0 G FIR DER EMLOCK		41.4 59.7 COEFF VAR.%	28.7 5.7 S.E.%	L	345 481 SAMPL OW	483 <i>510</i> E TREE AVG	622 <i>539</i> S - CF НІGН		# OF TREES	REQ.	INF. POP.
WHE NOB TOTA CL SD: DOUG R AL WHE	EMLOCK FIR AL 68.1 1.0 G FIR DER EMLOCK FIR		41.4 59.7 COEFF VAR.% 52.0 37.1	28.7 5.7 5.2 15.1	L	345 481 SAMPL OW 121 25	483 510 E TREE AVG 127 30	622 <i>539</i> S - CF НІGH 134 34		# OF TREES	REQ.	INF. POP. 15
WHE NOB TOTA SD: DOUG R ALA WHE NOB TOTA	EMLOCK FIR AL 68.1 1.0 G FIR DER EMLOCK FIR AL 68.1		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF	28.7 5.7 5.2 15.1 23.2 5.4		345 481 SAMPL OW 121 25 85 115 TREES/	483 510 E TREE AVG 127 30 110 121 ACRE	622 539 S - CF HIGH 134 34 136 <i>128</i>		# OF TREES 5 5 125 # OF PLOTS	REO. 10 31 REO.	INF. POP. 15 14 INF. POP.
WHE NOB TOTA SD: DOUG R AL WHE NOB TOTA CL SD:	EMLOCK FIR AL 68.1 1.0 G FIR DER EMLOCK FIR AL 68.1 1.0		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.%	28.7 5.7 5.2 15.1 23.2 5.4 S.E.%		345 <u>481</u> <u>SAMPL</u> <u>OW</u> 121 25 85 115 <u>TREES/</u> <u>OW</u>	483 510 E TREE AVG 127 30 110 121 ACRE AVG	622 539 S - CF HIGH 134 34 136 128 HIGH		# OF TREES 5	REQ. 10 31	INF. POP. 15 14 INF. POP.
WHE NOB TOTA SD: DOUG R AL: WHE NOB TOTA CL SD: DOUG	EMLOCK FIR AL 68.1 1.0 G FIR DER EMLOCK FIR AL 68.1 1.0 G FIR		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.% 43.0	28.7 5.7 5.2 15.1 23.2 5.4 S.E.% 6.8		345 <u>481</u> <u>SAMPL</u> <u>OW</u> 121 25 85 115 <u>TREES/</u> <u>OW</u> 74	483 510 E TREE AVG 127 30 110 121 ACRE AVG 80	622 539 S - CF HIGH 134 34 136 128 HIGH 85		# OF TREES 5 5 125 # OF PLOTS	REO. 10 31 REO.	INF. POP. 15 14 INF. POP.
WHE NOB TOTA SD: DOUG R AL WHE NOB TOTA CL SD: DOUG R AL	EMLOCK FIR AL 68.1 1.0 G FIR DER EMLOCK FIR AL 68.1 1.0 G FIR DER		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.% 43.0 632.5	28.7 5.7 5.2 15.1 23.2 5.4 S.E.% 6.8 99.9		345 <u>481</u> <u>SAMPL</u> <u>OW</u> 121 25 85 115 <u>TREES/</u> <u>OW</u>	483 510 E TREE AVG 127 30 110 121 ACRE AVG	622 539 S - CF HIGH 134 34 136 128 HIGH 85 12		# OF TREES 5 5 125 # OF PLOTS	REO. 10 31 REO.	INF. POP. 15 14 INF. POP.
WHE NOB TOTA SD: DOUG R AL WHE NOB TOTA CL SD: DOUG R AL	EMLOCK FIR AL 68.1 1.0 G FIR DER EMLOCK FIR AL 68.1 1.0 G FIR DER MLOCK		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.% 43.0	28.7 5.7 5.2 15.1 23.2 5.4 S.E.% 6.8		345 <u>481</u> <u>SAMPL</u> <u>OW</u> 121 25 85 <u>115</u> <u>TREES/</u> <u>OW</u> 74 0	483 510 E TREE AVG 127 30 110 121 ACRE AVG 80 6	622 539 S - CF HIGH 134 34 136 128 HIGH 85		# OF TREES 5 5 125 # OF PLOTS	REO. 10 31 REO.	INF. POP. 15 14 INF. POP.
WHE NOB TOTA SD: DOUG R AL WHE NOB TOTA CL SD: DOUG R AL WHE	MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.% 43.0 632.5 369.8	28.7 5.7 5.2 15.1 23.2 5.4 S.E.% 6.8 99.9 58.4		345 <u>481</u> <u>SAMPL</u> <u>OW</u> 121 25 85 <i>115</i> <u>TREES/</u> <u>OW</u> 74 0 1	483 510 E TREE AVG 127 30 110 121 ACRE AVG 80 6 2	622 539 S - CF HIGH 134 34 136 128 HIGH 85 12 3		# OF TREES 5 5 125 # OF PLOTS	REO. 10 31 REO.	INF. POP. 15 14 INF. POP. 15
WHE NOB TOTA SD: DOUG R AL WHE NOB TOTA CL SD: DOUG R AL WHE NOB TOTA	MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.% 43.0 632.5 369.8 632.5 47.7 COEFF	28.7 5.7 S.E.% 5.2 15.1 23.2 5.4 S.E.% 6.8 99.9 58.4 99.9 7.5	L	345 481 SAMPL OW 121 25 85 115 TREES/ OW 74 0 1 0 81 BASAL	483 510 E TREE AVG 127 30 110 121 ACRE AVG 80 6 2 0 88 AREA/A	622 539 S - CF HIGH 134 34 136 128 HIGH 85 12 3 1 94 CRE		# OF TREES <u>5</u> <i>125</i> # OF PLOTS <u>5</u> <i>91</i> # OF PLOTS	REO. 10 31 REO. 10 23 REO.	INF. POP. 15 14 INF. POP. 15 10 INF. POP.
WHE NOB TOTA SD: DOUA R AL WHE NOB TOTA CL SD: NOB TOTA CL SD:	EMLOCK FIR AL 68.1 1.0 G FIR DER EMLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.% 43.0 632.5 369.8 632.5 47.7 COEFF VAR.%	28.7 5.7 5.2 15.1 23.2 5.4 S.E.% 6.8 99.9 58.4 99.9 7.5 S.E.%	L	345 481 SAMPL OW 121 25 85 115 TREES/ OW 74 0 1 0 81 BASAL OW	483 510 E TREE AVG 127 30 110 121 ACRE AVG 80 6 2 0 88 AREA/A AVG	622 539 S - CF HIGH 134 34 136 128 HIGH 85 12 3 1 94 CRE HIGH		# OF TREES 5 <i>125</i> # OF PLOTS 5 <i>91</i>	REO. 10 31 REO. 10 23	INF. POP. 15 14 INF. POP. 15 10 INF. POP.
WHE NOB TOTA SD: DOUA R AL WHE NOB TOTA CL SD: DOUA R AL NOB TOTA CL SD: CL SD: DOUA	MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.% 43.0 632.5 369.8 632.5 47.7 COEFF VAR.% 26.8	28.7 5.7 5.2 15.1 23.2 5.4 S.E.% 6.8 99.9 58.4 99.9 7.5 S.E.% 4.2	L	345 <u>481</u> SAMPL OW 121 25 85 115 TREES/ OW 74 0 1 0 81 BASAL OW 184	483 510 E TREE AVG 127 30 110 121 ACRE AVG 80 6 2 0 88 AREA/A AVG 192	622 539 S - CF HIGH 134 34 136 128 HIGH 85 12 3 1 94 CRE HIGH 200		# OF TREES <u>5</u> <i>125</i> # OF PLOTS <u>5</u> <i>91</i> # OF PLOTS	REO. 10 31 REO. 10 23 REO.	INF. POP. 15 14 INF. POP. 15 10 INF. POP.
WHE NOB TOTA SD: DOUA R AL WHE NOB TOTA CL SD: DOUA R AL SD: CL SD: DOUA R AL	MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.% 43.0 632.5 369.8 632.5 47.7 COEFF VAR.%	28.7 5.7 5.2 15.1 23.2 5.4 S.E.% 6.8 99.9 58.4 99.9 7.5 S.E.%	L	345 481 SAMPL OW 121 25 85 115 TREES/ OW 74 0 1 0 81 BASAL OW	483 510 E TREE AVG 127 30 110 121 ACRE AVG 80 6 2 0 88 AREA/A AVG	622 539 S - CF HIGH 134 34 136 128 HIGH 85 12 3 1 94 CRE HIGH		# OF TREES <u>5</u> <i>125</i> # OF PLOTS <u>5</u> <i>91</i> # OF PLOTS	REO. 10 31 REO. 10 23 REO.	INF. POP. 15 14 INF. POP. 15 10 INF. POP.
WHE NOB TOTA SD: DOUA R AL WHE NOB TOTA CL SD: DOUA R AL SD: CL SD: DOUA R AL	MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR AL 68.1 1.0 G FIR DER MLOCK		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.% 43.0 632.5 369.8 632.5 47.7 COEFF VAR.% 26.8 632.5	28.7 5.7 5.2 15.1 23.2 5.4 S.E.% 6.8 99.9 58.4 99.9 7.5 S.E.% 4.2 99.9	L	345 481 SAMPL OW 121 25 85 115 TREES/ OW 74 0 1 0 81 BASAL OW 184 0	483 510 E TREE AVG 127 30 110 121 ACRE AVG 80 6 2 0 88 AREA/A AVG 192 7	622 539 S - CF HIGH 134 34 136 128 HIGH 85 12 3 1 94 CRE HIGH 200 14		# OF TREES <u>5</u> <i>125</i> # OF PLOTS <u>5</u> <i>91</i> # OF PLOTS	REO. 10 31 REO. 10 23 REO.	INF. POP. 15 14 INF. POP. 15 10 INF. POP.
WHE NOB TOTA SD: DOUA R AL WHE NOB TOTA CL SD: DOUA R AL SD: CL SD: DOUA R AL SD: CL	MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR FIR		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.% 43.0 632.5 369.8 632.5 369.8 632.5 47.7 COEFF VAR.% 26.8 632.5 378.9	28.7 5.7 5.2 15.1 23.2 5.4 S.E.% 6.8 99.9 58.4 99.9 7.5 S.E.% 4.2 99.9 59.9	L	345 481 SAMPL OW 121 25 85 115 TREES/ OW 74 0 1 0 81 BASAL OW 184 0 2	483 510 E TREE AVG 127 30 110 121 ACRE AVG 80 6 2 0 88 AREA/A AVG 192 7 4	622 539 S - CF HIGH 134 34 136 128 HIGH 85 12 3 1 94 CRE HIGH 200 14 6		# OF TREES <u>5</u> <i>125</i> # OF PLOTS <u>5</u> <i>91</i> # OF PLOTS	REO. 10 31 REO. 10 23 REO.	INF. POP. 15 14 INF. POP. 15 10 INF. POP. 15
WHE NOB TOTA SD: DOUA R AL WHE NOB TOTA CL SD: DOUA R AL SD: CL SD: DOUA R AL SD: DOUA R AL SD: CL SD: CL	MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.% 43.0 632.5 369.8 632.5 47.7 COEFF VAR.% 26.8 632.5 378.9 632.5 378.9 632.5 23.4 COEFF	28.7 5.7 5.2 15.1 23.2 5.4 S.E.% 6.8 99.9 58.4 99.9 7.5 S.E.% 4.2 99.9 59.9 99.9 59.9 99.9 3.7	L	345 481 SAMPL OW 121 25 85 115 TREES/ OW 74 0 10 81 BASAL OW 184 0 2 0 196 NET BF	483 510 E TREE AVG 127 30 110 121 ACRE AVG 80 6 2 0 88 AREA/A AVG 192 7 4 1 204 /ACRE	622 539 S - CF HIGH 134 34 136 128 HIGH 85 12 3 1 94 CRE HIGH 200 14 6 2 212		# OF TREES <u>5</u> <i>125</i> # OF PLOTS <u>5</u> <i>91</i> # OF PLOTS <u>5</u> <i>22</i> # OF PLOTS 5	REQ. 10 31 REQ. 10 23 REQ. 10 5 REQ.	INF. POP. 14 INF. POP. 15 10 INF. POP. 15 2 INF. POP.
WHE NOB TOTA SD: DOUA R AL WHE NOB TOTA CL SD: DOUA R AL SD: DOUA R AL SD: DOUA R AL SD: CL SD: CL SD: CL SD: CL SD: SD: CL SD:	MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.% 43.0 632.5 369.8 632.5 47.7 COEFF VAR.% 26.8 632.5 378.9 632.5 23.4 COEFF VAR.%	28.7 5.7 5.2 15.1 23.2 5.4 S.E.% 6.8 99.9 58.4 99.9 7.5 S.E.% 4.2 99.9 59.9 99.9 3.7 S.E.%		345 481 SAMPL OW 121 25 85 115 TREES/ OW 74 0 10 81 BASAL OW 184 0 2 0 196 NET BF OW	483 510 E TREE AVG 127 30 110 121 ACRE AVG 80 6 2 0 88 AREA/A AVG 192 7 4 1 204 /ACRE AVG	622 539 S - CF HIGH 134 34 136 128 HIGH 85 12 3 1 94 CRE HIGH 200 14 6 2 212 HIGH		# OF TREES <u>5</u> <i>125</i> # OF PLOTS <u>5</u> <i>91</i> # OF PLOTS <u>5</u>	REO. 10 31 REO. 10 23 REO. 10 5	INF. POP. 14 INF. POP. 15 10 INF. POP. 15 2 INF. POP.
WHE NOB TOTA CL SD: DOUA R AL WHE NOB TOTA CL SD: DOUA R AL SD: DOUA R AL SD: DOUA R AL SD: CL SD: CL SD: CL SD: CL SD: CL SD: DOUA	MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.% 43.0 632.5 369.8 632.5 47.7 COEFF VAR.% 26.8 632.5 378.9 632.5 378.9 632.5 378.9 632.5 23.4 COEFF VAR.% 24.7	28.7 5.7 5.2 15.1 23.2 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4		345 481 SAMPL OW 121 25 85 115 TREES/ OW 74 0 10 81 BASAL OW 184 0 2 0 196 NET BF OW 2,471	483 510 E TREE AVG 127 30 110 121 ACRE AVG 80 6 2 0 88 AREA/A AVG 192 7 4 1 204 /ACRE AVG 33,792	622 539 S - CF HIGH 134 34 136 128 HIGH 85 12 3 1 94 CRE HIGH 200 14 6 2 212 HIGH 35,112		# OF TREES <u>5</u> <i>125</i> # OF PLOTS <u>5</u> <i>91</i> # OF PLOTS <u>5</u> <i>22</i> # OF PLOTS 5	REQ. 10 31 REQ. 10 23 REQ. 10 5 REQ.	15 14 INF. POP. 15 10 INF. POP. 15 2
WHE NOB TOTA CL SD: DOUG R AL SD: DOUG R AL SD: DOUG R AL SD: DOUG R AL SD: CL SD: DOUG R AL SD: CL SD: CL SD: CL SD: CL SD: SD: CL	MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK		41.4 59.7 COEFF VAR.% 52.0 37.1 33.6 56.0 COEFF VAR.% 43.0 632.5 369.8 632.5 47.7 COEFF VAR.% 26.8 632.5 378.9 632.5 23.4 COEFF VAR.%	28.7 5.7 5.2 15.1 23.2 5.4 S.E.% 6.8 99.9 58.4 99.9 7.5 S.E.% 4.2 99.9 59.9 99.9 3.7 S.E.%		345 481 SAMPL OW 121 25 85 115 TREES/ OW 74 0 10 81 BASAL OW 184 0 2 0 196 NET BF OW	483 510 E TREE AVG 127 30 110 121 ACRE AVG 80 6 2 0 88 AREA/A AVG 192 7 4 1 204 /ACRE AVG	622 539 S - CF HIGH 134 34 136 128 HIGH 85 12 3 1 94 CRE HIGH 200 14 6 2 212 HIGH		# OF TREES <u>5</u> <i>125</i> # OF PLOTS <u>5</u> <i>91</i> # OF PLOTS <u>5</u> <i>22</i> # OF PLOTS 5	REQ. 10 31 REQ. 10 23 REQ. 10 5 REQ.	INF. POP. 14 INF. POP. 15 10 INF. POP. 15 2 INF. POP.

TC PS	TATS				PROJECT PROJECT		ISTICS ENDS			PAGE DATE	2 10/20/2016
TWP	RGE	SC	TRACT	TY	PE	A	CRES	PLOTS	TREES	CuFt	BdFt
03N	05	19	00A1	00N	1C		117.00	40	204	S	W
CL	68.1		COEFF		NET I	BF/ACRE			# OF PLO	ΓS REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
тот	AL		17.0	2.7	34,370	35,319	36,268		12	3	1
CL	68.1		COEFF		NET (CUFT FT/	ACRE		# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR		24.9	3.9	7,775	8,094	8,413				
R AL	DER		632.5	99.9	0	175	350				
WHE	MLOCK		368.5	58.2	69	165	261				
NOB	FIR		632.5	99.9	0	49	98				
тот	AL		18.1	2.9	8,241	8,483	8,726		13	3	1


TC	TC PSPCSTGR Species, Sort Grade - Board Foot Volumes (Project)																		
ТО	3N R05W S19	9 Ty001	MC 1	17.00		Project: Acres		SBENDS 117.00								Page Date Time		1)/20/2 :29:1	016
Spp	S _{So Gr} T rt ad	% Net BdFt	Bd. F Def%	t. per Acre Gross		Total Net MBF	L	og Sca	Net Bale Dia		oot Volu 12-20	ume Log L 21-30		36-99		Avera Dia In	ge Lo Bd Ft	g CF/ Lf	Logs Per /Acre
DF DF DF DF	CU 2M 3M 4M	68 28 4	100.0 1.7 .8	83 23,443 9,686 1,147	23,039 9,605 1,147	2,696 1,124 134		100 100	61	39	1 1 41	4 0 59	3 6	93 93	9 39 39 20	13 15 8 6	329 108 24	0.00 1.92 0.72 0.37	4.5 69.9 89.3 47.3
DF	Totals	96	1.6	34,358	33,792	3,954		32	42	27	2	5	4	90	34	10	160	1.12	211.1
RA RA	CU R	100	100.0 1.4	64 598	589	69		100			6	35		59	4 32	8 8	68	0.00 0.64	5.3 8.7
RA	Totals	2	11.0	662	589	69		100			6	35		59	21	8	42	0.59	13.9
WH WH WH WH	CU 2M 3M 4M	72 24 4	3.3	516 183 22	516 176 22	60 21 3		100 100	63	37	16	84		100 100	4 40 39 21	20 15 8 6	326 111 23	0.00 1.71 0.80 0.37	1.0 1.6 1.6 1.0
WH	Totals	2	.8	720	714	84		28	45	27	1	3		97	29	12	140	1.10	5.1
NF NF NF	2M 3M Totals	94 6 1		211 13 224	211 13 224	25 1 26		100	29 	71 67			100	100 	40 34 38	6	50	2.21 0.56	.5 .3
Tota		_	1.8	35,964		4,132		33	41	26	2	5	4	89	33			1.10	230.9

TC	PSTNDSU	JM				S	Stand	Table	Summa	ry			Page Date:	1 10/20/2	2016
T03N	R05W S	19 Ty00N	ЛС	117.0	00		Projec Acres	et S	BENDS 117.0	0			Time: Grown Year:	2:29:1	1 PM
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs	Averag Net Cu.Ft.		Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre		Гоtаls Cunits	MBF
DF	13	1	84	108	2.126	1.96	4.25	16.3	60.0	1.97	69	255	230	81	30
DF	13	4	86		7.331	7.84	14.66	18.4	73.8	7.67	269	1,081	898	315	127
DF	16	5	84		7.016	9.80	14.03	26.4	109.0	10.57	371	1,529	1,237	434	179
DF	10	5	86		6.215	9.80	13.67	27.3	111.8	10.63	373	1,529	1,244	436	179
DF	18	6	87	116	6.652	11.76	15.52	29.8	117.9	13.18	463	1,829	1,542	541	214
DF	19	6	86		5.970	11.76	14.93	31.9	124.0	13.56	476	1,851	1,586	557	217
DF DF	20	7	87	123	6.286	13.71	17.96	32.4	132.5	16.60	583	2,380	1,943	682	278
DF	20	11	86	121	8.960	21.55	25.25	35.5	145.5	25.52	895	3,674	2,986	1,048	430
DF	22	8	85	121	5.937	15.67	17.07	38.3	157.8	18.65	654	2,694	2,182	766	315
DF	23	6	85	123	4.074	11.76	12.22	40.4	170.0	14.08	494	2,078	1,647	578	243
DF	24	7	87	133	4.365	13.71	13.10	48.7	214.3	18.18	638	2,806	2,127	746	328
DF	25	6	83	139	3.448	11.76	9.77	55.8	238.8	15.76	545	2,333	1,844	638	273
DF	26	4	86	127	2.126	7.84	6.38	52.0	231.7	9.46	332	1,477	1,107	388	173
DF	27	5	81	130	2.464	9.80	7.39	58.5	232.0	12.32	432	1,715	1,442	506	201
DF	28	6	83	136	2.749	11.76	8.71	59.4	266.3	15.01	517	2,318	1,756	605	271
DF	29	2	82	146	.854	3.92	2.56	72.2	303.3	5.27	185	777	617	216	91
DF	30	2	83	138	.798	3.92	2.39	74.3	336.7	5.07	178	806	593	208	94
DF	31	2	83	134	.748	3.92	2.24	81.4	363.3	5.20	183	815	609	214	95
DF	32	1	87	131	.351	1.96	1.05	85.2	393.3	2.55	90	414	299	105	48
DF	33	1	78	130	.330	1.96	.99	86.4	363.3	2.44	86	360	285	100	42
DF	34	1	79	123	.311	1.96	.93	86.6	343.3	2.30	81	320	269	94	37
DF	36	1	80	149	.277	1.96	.83	111.6	496.7	2.64	93	413	309	109	48
DF	40	1	69	151	.225	1.96	.67	131.5	500.0	2.52	89	337	295	104	39
DF	Totals	98	85	121	79.612	192.00	206.59	39.2	163.6	231.18	8,094	33,792	27,048	9,470	3,954
WH	20	2	88	120	1.222	2.67	3.06	36.4	152.0	3.56	111	464	416	130	54
WH	26	1	88	116	.362	1.33	1.08	49.6	230.0	1.72	54	250	202	63	29
WH	Totals	3	88	119	1.584	4.00	4.14	39.9	172.4	5.28	165	714	618	193	84
RA	13	2	84	70	2.170	2.00	3.25	16.0	53.3	1.43	52	174	167	61	20
RA	14	1	83	60	.935	1.00	.94	25.4	70.0	.65	24	65	76	28	8
RA	15	1	82	88	.815	1.00	1.63	18.6	70.0	.83	30	114	97	35	13
RA	16	3	80	87	2.149	3.00	2.86	24.1	82.5	2.31	69	236	271	81	28
RA	Totals	7	82	77	6.069	7.00	8.68	20.1	67.9	5.23	175	589	612	205	69
NF	27	1	85	141	.252	1.00	.75	65.2	296.7	1.18	49	224	138	58	26
NF	Totals	1	85	141	.252	1.00	.75	65.2	296.7	1.18	49	224	138	58	26
Totals		109	85	118	87.516	204.00	220.17	38.5	160.4	242.87	8,483	35,319	28,415	9,926	4,132

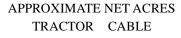
TC	PLOGSTVB	

						_~B			e - MB	_									
T03N R05W S19 Ty00MC 117.00					Project: Acres			SBE	SBENDS 117.00				Page Date Time				1 10/20/2016 2:29:09PM		
s	So Gr		Gross	Def	Net	%		1	Net Volu	ıme by	Scaling	g Dian	eter in I	nches					
Spp Т	rt de 1	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23 2	4-29	30-39 40+		
DF	CU	15	7	100.0															
DF	CU	31	3	100.0															
DF	2M	18	21		21	.5									21				
DF	2M		20		20	.5									20				
DF	2M	23	24	13.6	20	.5									20				
DF	2M	28	39		39	1.0								39					
DF	2M	30	24	9.6	22	.6									22				
DF	2M	32	76	1.5	74	1.9						21	27	27					
DF	2M	40	2,538	1.6	2,498	63.2						591	850	808	249				
DF	3M	20	7	14.3	6	.1					6				<u> </u>				
DF	3M	26			2	.1				2									
DF	3M	32	58		58	1.5			19	27	13								
DF	3M	34	14		14	.3			14										
DF	3M	36	31		31	.8			28	3									
DF	3M	40	1,022		1,013	25.6			151	380	482								
DF	4M	12	7		7	.2			7										
DF	4M	14	12		12	.3			12										
DF	4M	16	16		16	.4			16										
DF	4M	18	12		12	.3			11	1									
DF	4M	20	7		7	.2			7										
DF	4M	22	5		5	.1			4	2									
DF	4M	24	20		20	.5			20										
DF	4M	26	14		14	.3			14										
DF	4M	28	23		23	.6			23										
DF	4M	30	17		17	.4			17										
OF	Totals		4,020	1.6	3,954	95.7			344	414	500	612	876	875	332				
RA	CU	18	8	100.0															
RA	R	18	4		4	5.5			4										
RA	R	22	3		3	4.9			3										
RA	R	26	11		11	16.6			4	8									
RA	R	30	10	9.1	10	13.8					10								
RA	R	38	8		8	11.1			8										
RA	R	40	33		33	48.1			21		13								
RA	Totals		77	11.0	69	1.7			39	8	22								
WН	2M	40	60		60	72.2						17	21	22					

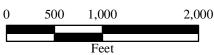
TC PLOGSTVB Log Stock Table								e - MB	F											
T03]	N R	.05W S19	ТуОС)MC	117	.00		Proj Acre		SBE	ENDS 117	7.00					Page Date Time	10	2 /20/2016 29:09PN	
	s	So Gr	Log	; Gi	ross	Def	Net	%		1	Net Vol	ume by	Scalin	g Dian	neter in]	Inches				
Spp	Т	rt de	Len	M	IBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 4	0+
WH	Ì	3M	[38	3	4	16.	7 4	4.3			4									
WH		3M	(4(0	17		17	20.4					17							
WH	Ī	4M	[12	2	0		0	.5			0									
WH		4M	[20	6	2		2	2.6			2									
WH		Totals	S		84		84	2.0			6		17	17	21	22				
NF		2M	[4(0	25		25	94.4						7		18				
NF		3M	[34	ŧ	1		1	5.6			1									
NF		Totals	5		26		26	.6			1			7		18				
Total		All Speci	es		4,208	1.8	3 4,132	100.0			391	422	539	637	897	915	332			

LOGGING PLAN

Legend


- •••• Timber Sale Boundary
- Stream Buffer Boundary
 - Stream Buffer
- O Cable Landing
- Tractor Landing
- Cable Yarding Area
- Tractor Yarding Area
- | ODF Ownership Boundary
- Section Line
- 400 Foot Contour Band

FOR TIMBER SALE CONTRACT # 341-17-27 SALMONBERRY BENDS PORTIONS OF SECTIONS 19, & 20, T3N, R6W TILLAMOOK COUNTY, OREGON.


Forest Grove District GIS September, 2016 This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1:12,000	
1 inch = 1,000 feet	

4	113
---	-----

