

Sale FG-341-2017-24-

District: Forest Grove Date: October 07, 2016

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$2,471,752.65	\$0.00	\$2,471,752.65
		Project Work:	\$0.00
		Advertised Value:	\$2,471,752.65

Sale FG-341-2017-24-

District: Forest Grove Date: October 07, 2016

Timber Description

Location: Portions of Section 13, T3N, R6W, W.M., Tillamook County, Oregon and Section 18, T3N, R5W, W.M., Washington County, Oregon.

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	20	0	98

Volume by Grade	28	3S	4 S	Total
Douglas - Fir	4,551	1,217	177	5,945
Total	4,551	1,217	177	5,945

Comments: Pond Values Used: 3rd Quarter Calendar Year 2016.

Western Hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost: \$252.21/MBF = \$450/MBF - \$197.79/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$952.21/MBF = \$1,150/MBF - \$197.79/MBF

Red Alder and Other Hardwoods Stumpage Price = Pond Value minus Logging Cost: \$427.21/MBF = \$625/MBF - \$197.79/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

BRANDING AND PAINTING COST ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added):
Construct Operator's Spur: 10 sta. @ \$200/sta. = \$2,000
TOTAL Other Costs (with Profit & Risk to be added) = \$2,000

Other Costs (No Profit & Risk added):
Block/Waterbar Roads/Skid Trails: 5 hrs x \$150/hour = \$750
Pile Landing Slash and Sort Firewood: 20 hrs x \$150/hour = \$3,000
Mechanical Site-Prep: 40 acres @ \$150/acre = \$6,000
Equipment Cleaning: 3 pieces x \$1,000/piece = \$3,000
TOTAL Other Costs (No Profit & Risk added) = \$12,750

ROAD MAINTENANCE Move-in: \$4,000

General Road Maintenance: 5.6 miles x \$1,200/mile = \$6,720 TOTAL Road Maintenance: \$10,720/5,945 MBF = \$1.80/MBF

Sale FG-341-2017-24-

District: Forest Grove Date: October 07, 2016

Logging Conditions

Combination#: 1 Douglas - Fir 95.00%

Logging System: Shovel **Process:** Stroke Delimber

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 7 bd. ft / load: 4600

cost / mbf: \$98.51

machines: Stroke Delimber (B)

Combination#: 2 Douglas - Fir 5.00%

Logging System: Cable: Small Tower <=40 **Process:** Stroke Delimber

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 7 bd. ft / load: 4600

cost / mbf: \$173.91

machines: Log Loader (A)

Stroke Delimber (A) Tower Yarder (Small)

Sale FG-341-2017-24-

District: Forest Grove Date: October 07, 2016

Logging Costs

Operating Seasons: 1.00

Profit Risk: 10%

Project Costs: \$0.00 Slash Disposal: \$0.00

Other Costs (P/R): \$2,000.00

Other Costs: \$12,750.00

Miles of Road

Road Maintenance:

\$1.80

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	4.0

Sale FG-341-2017-24-

District: Forest Grove Date: October 07, 2016

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling / Brand & Paint	Other	Total
Douglas -	Fir								
\$102.28	\$1.84	\$0.74	\$66.30	\$0.34	\$17.15	\$0.00	\$7.00	\$2.14	\$197.79

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$613.56	\$415.77	\$0.00

Sale FG-341-2017-24-

District: Forest Grove Date: October 07, 2016

Summary

Amortized

Specie	MBF	Value	Total	
Douglas - Fir	0	\$0.00	\$0.00	

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	5,945	\$415.77	\$2,471,752.65

Gross Timber Sale Value

Recovery: \$2,471,752.65

Prepared By: Kenton Burns Phone: 503-359-7477

TIMBER SALE SUMMARY Old Norse Contract No. 341-17-24

- **1.** <u>Location</u>: Portion of Section 13, T3N, R6W, W.M., Tillamook County, Oregon. Portion of Section 18, T3N, R5W, W.M., Washington County, Oregon.
- 2. <u>Type of Sale</u>: The Timber Sale Area is a 116 acre Modified Clearcut in a stand of 70 year old Douglas-fir. The timber will be sold on a recovery basis at a sealed bid auction.
- **3.** Revenue Distribution: 100% BOF, 12% Washington County, 88% Tillamook County. Tax Code 56-1.
- **4.** <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS software.
- **5.** <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in June of 2016. For more information see Cruise Report.
- **6.** <u>Timber Description</u>: The Timber Sale Area consists of a well-stocked 70 year old Douglas-fir stand with minor amounts of western hemlock, western redcedar, true firs, and hardwoods. The stand has an average of 255 ft² of basal area (all species), an average Douglas-fir DBH of 20 inches, and an estimated average net Douglas-fir volume of approximately 52 MBF per acre.

7. Volume Summary

AREA 1: PC-M (116 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
000	Cruise Volume	4,644	1,242	181	6,067
Douglas-	Hidden D&B (2%)	(93)	(25)	(4)	(121)
fir	NET TOTAL	4,551	1,217	177	5,945
-	% of Total	77	20	3	

- 8. <u>Topography and Logging Method</u>: Slopes within the sale areas range from 5% to 60%, average about 25%, and are southern in aspect. The timber sale is 95% ground-based yarding and 5% cable yarding. The maximum cable corridor length is 700 feet and the average is about 500 feet. The average horizontal skid trail length is approximately 450 feet and the maximum is approximately 600 feet.
- **9.** <u>Access</u>: All access to the Timber Sale Area is on surfaced all-weather roads. From Forest Grove, travel north on Highway 47 through Banks then merge onto Highway 26

westbound and continue for approximately 11 ½ miles to the Timber Road. Turn left and proceed south on the Timber Road .7 miles to the Lousignont Road. Turn right and continue west on Lousignont Road for 2 miles. Continue right on North Lousignont Road for 2 miles to the north Portion of the Timber Sale Area.

10. Projects: None

CRUISE REPORT Old Norse 341-17-24

1. LOCATION: Portion of Section 13, T3N R6W, W.M., Tillamook County, Oregon and Portion of Section 18, T3N, R5W, W.M., Washington County, Oregon.

2. CRUISE DESIGN:

Pre-cruise evaluation indicated that the stand's average DBH is approximately 20 inches and its Coefficient of Variation is about 50%. For sales of this size and approximate value, ODF cruise standards require a Sampling Error of 9% at a 68% confidence level, and a minimum sample size of 100 graded trees. The cruise design chosen for this sale is a variable radius sample plot using a 40 BAF prism and employing a combination of count and measure plots at a ratio of 1 measured plot to 1 count plot.

3. SAMPLING METHOD:

The Timber Sale Area was cruised in June, 2016. The Timber Sale Area was sampled with 20 variable radius grade plots and 20 variable radius count plots using a 40 BAF prism. Plots were laid out on a 5 chain x 6 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

4. CRUISE RESULTS

121 trees were measured and graded producing a cumulative Sampling Error of 8% on the Basal Area and 8.9% on the Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following Columbia River Log Scale grade rules and favored 40 foot segments.

a) Height Standards:

Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.

- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors were measured for each grade tree using a form point of 16 feet.

5. DATA PROCESSING

- Volumes and Statistics, Cruise estimates and sampling statistics, were derived from Super Ace 2008 cruise software.
- b) **Deductions:** Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.
- **6. Cruisers:** The sale was cruised by ODF cruisers Kenton Burns and Mark Savage.

Prepared by: Kenton Burns

Reviewed by: Eric Foucht

TC PS	TATS					OJECT ROJECT		ISTICS DNORSE			PAGE DATE	1 6/27/2016
TWP	RGE	SC	TRACT	-	ТҮРЕ		A	CRES	PLOTS	TREES	CuFt	BdFt
03N	06	13	00A1		00MC			116.00	32	204	S	W
						TREES		ESTIMATED TOTAL		ERCENT SAMPLE		
			PLOTS	TREES		PER PLO	Γ	TREES		TREES		
TOT	AL		32	204		6.4						
	ISE COUNT OREST		20	125		6,3		13,305		.9		
COU BLA	NT NKS		12	76		6.3						
					STA	AND SUM	MARY					
			AMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOU	G FIR-T		121	112.8	20.2	117	55.7	250.0	53,268	52,302	11,453	11,453
	EMLOCK-	L	3	1.5	21.5	144	0.8	3.8	972	972	201	201
NOB TOT	FIR-L		1 125	.4	25.0	145	0.3	1.3	242	231	60	
101	AL		123	114.7	20.2	118	56.8	255.0	54,482	53,505	11,715	11,715
CON	FIDENC 68			THE SAMPI T OF 100 T		ME WILI	BE WIT	HIN THE SAM	MPLE ERRO)R		
CL	68.1		COEFF			SAMPI	LE TREE	S - BF	#	OF TREES	REQ.	INF. POP,
SD:	1.0		VAR.%	S.E.%	I	LOW	AVG	HIGH		5	10	15
WHE	G FIR-T EMLOCK- FIR-L	L	67.2 28.5	6.1 19.7		780 554	831 690	882 826				
TOT			66.6	6.0		777	826	875		177	44	20
CL	68.1		COEFF			SAMPI	LE TREE	S - CF	#	OF TREES	REQ.	INF. POP.
SD:	1.0		VAR,%	S.E.%	I	LOW	AVG	HIGH		5	10	15
WHE	G FIR-T MLOCK- FIR-L	L	62.4 30.9	5.7 21.4		169 113	179 144	189 174				
TOT			61.8	5.5		168	178	188		153	38	17
CL	68.1		COEFF			TREES	/ACRE		#	OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	I	.OW	AVG	HIGH		5	10	15
	G FIR-T	.	54.9	9.7		102	113	124				
	MLOCK- FIR-L	L	326.1 565.7	57.6 99.9		1 0	1 0	2 1				
TOT			52.I	9.2		104	115	125		108	27	12
CL	68.1		COEFF				AREA/A			OF PLOTS		INF, POP.
SD:	1.0		VAR.%	S.E.%	ī	.OW	AKCA/A	HIGH	#	5	10	15 15
	G FIR-T		45.1	8.0		230	250	270		~		
	MLOCK-	L	315.9	55.8		2	4	6				
	FIR-L		565.7	99.9		0	1	2			. _	
TOT	AL		41.5	7.3		236	255	274		69	17	8
	68.1		COEFF	a = */	_		F/ACRE	III.C.	#	OF PLOTS		INF. POP.
SD:	1.0 G FIR-T		VAR,% 50.2	S.E.% 8.9		.OW 47,667	AVG 52,302	HIGH 56,936		5	10	15
	G FIK-1 MLOCK-	L	316.3	8.9 55.9	•	429	32,302 972	1,515				
	FIR-L	-	565.7	99.9		0	231	462				
TOT	AL		46.6	8.2	4	9,097	53,505	57,912		87	22	10
	68.1		COEFF				UFT FT/A		#	OF PLOTS		INF. POP.
SD:	1.0		VAR.%	S.E.%		.OW	AVG	HIGH		5	10	15
	G FIR-T	ſ	49.0	8.7 55.9	1	10,462 89	11,453	12,445				
WHE	MLOCK-	L	316.0	55.8		89	201	314				

TATS		PROJECT STATISTICS PROJECT OLDNORSE								2 6/27/2016
RGE	SC	TRACT	TY	PE	A	CRES	PLOTS	TREES	CuFt	BdFt
06	13	00A1	001	ИС		116.00	32	204	S	W
68.1		COEFF		NET CUFT FT/ACRE					S REQ.	INF. POP.
1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
FIR-L		565.7 45.4	99.9 8.0	0 10 776	60 11.715	121 12.654		82	21	9
	RGE 06 68.1 1.00	RGE SC 06 13 68.1 1.00 FIR-L	RGE SC TRACT 06 13 00A1 68.1 COEFF 1.00 VAR. FIR-L 565.7	RGE SC TRACT TY 06 13 00A1 00M 68.1 COEFF 1.00 VAR. S.E.% FIR-L 565.7 99.9	PROJECT RGE SC TRACT TYPE 06 13 00A1 00MC 68.1 COEFF NET 6 1.00 VAR. S.E.% LOW FIR-L 565.7 99.9 0	PROJECT OL RGE SC TRACT TYPE A 06 13 00A1 00MC 68.1 COEFF NET CUFT FT/LOW 1,00 VAR. S.E.% LOW AVG FIR-L 565.7 99.9 0 60	RGE SC TRACT TYPE ACRES 06 13 00A1 00MC 116.00 68.1 COEFF NET CUFT FT/ACRE 1.00 VAR. S.E.% LOW AVG HIGH FIR-L 565.7 99.9 0 60 121	PROJECT OLDNORSE RGE SC TRACT TYPE ACRES PLOTS 06 13 00A1 00MC 116.00 32 68.1 COEFF LOW NET CUFT FT/ACRE LOW HIGH 1,00 VAR. S.E.% LOW AVG HIGH FIR-L 565.7 99.9 0 60 121	RGE SC TRACT TYPE ACRES PLOTS TREES 06 13 00A1 00MC 116.00 32 204 68.1 COEFF NET CUFT FT/ACRE # OF PLOT 1.00 VAR. S.E.% LOW AVG HIGH 5 FIR-L 565.7 99.9 0 60 121	PROJECT OLDNORSE DATE RGE SC TRACT TYPE ACRES PLOTS TREES CuFt 06 13 00A1 00MC 116.00 32 204 S 68.1 COEFF NET CUFT FT/ACRE # OF PLOTS REQ. 1.00 VAR. S.E.% LOW AVG HIGH 5 10 FIR-L 565.7 99.9 0 60 121 12

TC PSTNDSUM	Stand Table Summary	Page 1 Date: 6/27/2016
T03N R06W S13 Ty00MC 116.00	Project OLDNORSE	Time: 11:21:51AM
	Acres 116.00	Grown Year:

S Sample FF Av Trees/ BA/ Logs Net Net Tons/ Cu.Ft. Bd.Ft. Acre Acre Acre Acre Acre Acre Acre Acre	MBF 76
DF 9 3 87 80 14.030 6.20 14.03 9.4 46.7 3.76 132 655 436 153	
DF 10 3 85 75 11.364 6.20 11.36 11.4 46.7 3.68 129 530 427 150	62
DF 11 2 91 94 6.261 4.13 12.52 9.7 45.0 3.48 122 564 404 142	65
DF 12 2 77 88 5.261 4.13 7.89 14.3 50.0 3.21 113 395 373 131	46
DF 13 2 88 118 4.483 4.13 8.97 17.8 82.5 4.55 160 740 528 185	86
DF 14 1 86 105 1.933 2.07 3.87 17.2 75.0 1.89 66 290 220 77	34
DF 15 1 80 64 1.684 2.07 1.68 29.9 70.0 1.43 50 118 166 58	14
DF 16 4 89 131 5.919 8.26 16.28 22.2 98.2 10.31 362 1,598 1,195 419	185
DF 18 7 89 126 8.184 14.46 23.38 27.0 115.0 17.97 631 2,689 2,085 731	312
DF 19 7 87 128 7.345 14.46 20.99 30.7 129.0 18.37 645 2,707 2,131 748	314
DF 20 5 88 121 4.735 10.33 13.26 31.6 134.3 11.94 419 1,780 1,385 486	207
DF 21 5 86 128 4.295 10.33 12.88 35.6 154.7 13.08 459 1,993 1,517 532	231
DF 22 3 86 144 2.348 6.20 7.04 42.9 192.2 8.61 302 1,354 998 350	157
DF 23 5 85 131 3.580 10.33 10.74 43.9 189.3 13.45 472 2,034 1,560 547	236
DF 24 5 86 143 3.288 10.33 9.86 51.9 232.0 14.58 512 2,289 1,691 593	265
DF 25 5 89 153 3.031 10.33 9.70 57.3 287.5 15.85 556 2,788 1,838 645	323
DF 26 6 86 153 3.362 12.40 10.65 60.9 285.8 18.48 648 3,043 2,144 752	353
DF 27 3 82 123 1.559 6.20 4.16 63.2 247.5 7.49 263 1,029 868 305	119
DF 28 10 85 154 4.832 20.66 15.46 67.6 328.7 29.77 1,045 5,083 3,453 1,212	590
DF 29 7 86 154 3.153 14.46 10.81 71.8 361.3 22.11 776 3,905 2,565 900	453
DF 30 6 83 145 2.525 12.40 7.58 80.9 376.1 17.46 613 2,850 2,025 711	331
DF 31 6 84 154 2.365 12.40 7.88 81.5 382.0 18.32 643 3,012 2,125 746	349
DF 32 6 83 143 2.220 12.40 6.66 90.0 431.7 17.08 599 2,874 1,981 695	333
DF 33 5 84 157 1.739 10.33 5.57 97.0 479.4 15.38 540 2,668 1,785 626	309
DF 34 3 80 150 .983 6.20 3.28 92.7 396.0 8.65 304 1,298 1,004 352	151
DF 35 1 74 161 .309 2.07 .93 109.2 456.7 2.89 101 424 335 118	49
DF 36 3 76 146 .877 6.20 2.92 101.0 391.0 8.41 295 1,143 976 342	133
DF 38 3 84 149 .787 6.20 2.89 102.2 509.1 8.40 295 1,469 975 342	170
DF 42 1 80 138 .215 2.07 .64 149.3 730.0 2.74 96 470 318 112	55
DF 48 1 82 154 .164 2.07 .49 219.1 1036.7 3.08 108 511 357 125	59
DF Totals 121 86 117 112.834 250.00 264.38 43.3 197.8 326.42 11,453 52,302 37,865 13,286	6,067
WH 19 1 88 150 .635 1.25 2.54 26.4 127.5 2.15 67 324 249 78	38
WH 21 1 95 142 .520 1.25 1.56 44.3 220.0 2.21 69 343 256 80	40
WH 26 1 87 136 .339 1.25 1.02 64.1 300.0 2.09 65 305 242 76	35
WH Totals 3 90 144 1.494 3.75 5.12 39.4 190.0 6.44 201 972 747 234	113
NF 25 1 80 145 367 1.25 1.10 55.0 210.0 1.45 60 231 168 70	27
NF Totals 1 80 145 .367 1.25 1.10 55.0 210.0 1.45 60 231 168 70	27

125

Totals

86 118

114.694 255.00 270.59

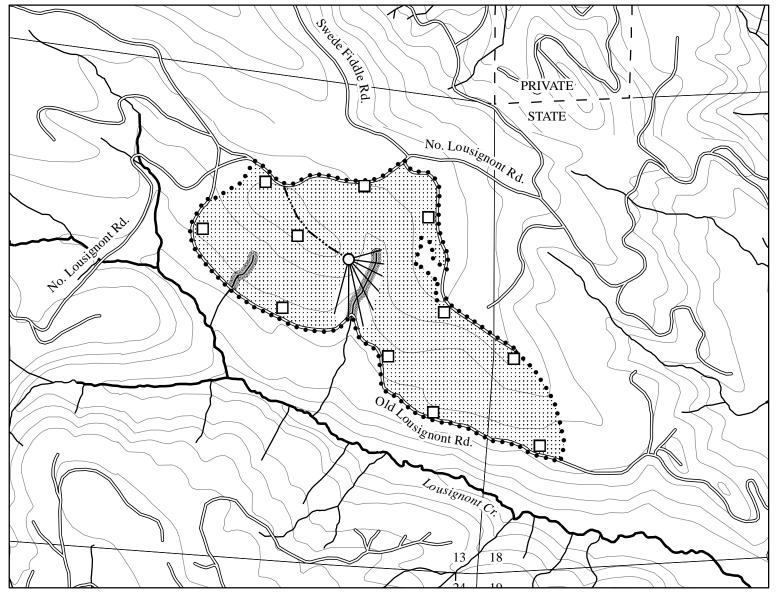
43.3

197.7 334.32 11,715 53,505

38,781

13,590

6,207


				.			ACIC	,		110						Time	: 11: _	21:54A	M
	S	So Gr			Def	Net	%		ľ	Net Volu	ıme by	Scaling	<u>Dian</u>	ieter in l	Inches				
Spp	T	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	+01
DF		2N	16	18	25.0	13	.2								13				
DF		2N	24	37	13.3	32	.5						12			20			
DF		2M	36	8		8	.1						8						
DF		2N	40	4,683	2.0	4,591	75.7						532	916	1458	1340	314	32	
DF		3M	20	2		2	.0			ļ	2		:						
DF		3M	[24	2		2	.0				2				•				
DF		3M	32	21		21	.4			18		3							
DF		3M	I 34	19		19	.3			16	3								
DF		3M	36	68		68	1.1			65	3								
DF		3M	38	18		18	.3			18				i					
DF	İ	3M	[40	1,119		1,112	18.3			260	405	413	34						
DF		4M	12	13		13	.2			12	1								
DF		4M	14	33		33	.5			33									
DF		4M	T 16	4		4	.1			4									
DF		4M	18	11		11	.2			9	1								
DF		4M	20	36		36	.6			26	10								
DF		4M	22	10		10	.2			8	2								
DF		4M	24	5		5	.1			5									
DF		4M	26	15		15	.2			15									
DF		4M	28	5		5	.1			5									
DF		4M	30	24	18.3	20	.3			20									
DF		4M	32	26		26	.4			26									
DF		4M	36	3		3	.0			3									
DF		Totals	s	6,179	1.8	6,067	97.8			544	429	416	586	916	1471	1360	314	32	
WH		2M	40	36		36	32.1						12		24				
WH		3M	30	31		31	27.4						11	20					
WH		3M	31	5		5	4.6				5								
WH		3M	32	1		1	1.3		1										
WH		3M	36	4		4	3.2			4									
WH		3M	38	22		22	19.9								22				
WH		3M	40	. 13		13	11.5		2					11					
WH		Totals		113		113			3	4	5		23	31	47				
NF		2M	40	26	5.0	24	90.5						9		16				
NF		3M	40	3		3	9.5			3									
NF		Totals	3	28	4.5	27	.4			3			9		16				

TC PLC	GSTVB		-			Log	Stock	Table	- MB	F								
T03N R06W S13 Ty00MC 116.00						Project: OLDNORSE Acres 116.00									Page Date Time	6/2	2 7/2010 21:54	_
s	So Gr	Log	Gross	Def	Net	%		Ŋ	Net Voli	ıme by	Scalin	g Dian	eter in	Inches				
Ѕрр Т	rt de	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
Total	All Spe	cies	6,320	1.8	6,207	100.0		3	550	434	416	618	947	1533	1360	314	32	

_f J

r ,

TC	TC PSPCSTGR Species, Sort Grade - Board Foot Volumes (Project)																			
T03N R06W S13 Ty00MC 116.00						Project: Acres		DNO	ORSE							Page Date Time	6/	1 6/27/2016 11:21:53AM		
		%									oot Volu					Avera	•	-	Logs	
Spp	S So Gr Trtad	Net BdFt	Bd. Fi Def%	t. per Acre Gross		Total Net MBF	4-5		ale Dia. 12-16		12.20	Log L 21-30		26.00	Ln Ft	Dia In	Bd Ft	CF/ Lf	Per /Acre	
DF DF DF DF	CU 2M 3M 4M Totals	76 21 3 98	2.1 .5 2.4	40,910 10,763 1,595 53,268 312 660	40,035 10,709 1,557	4,644 1,242 181 6,067	4	97 100 23	43 3 33 100 55	57	0 0 54 2	1 0 30 1	3 14 1	99 96 2 96 100 51	13 40 39 20 35 40 34	16 16 8 6 11	426 98 26	0.00 2.23 0.64 0.35 1.24 1.44 1.03	2.5 94.0 109.5 60.8 266.9	
WH	Totals	2		972	972	113	3	8	70	20		27	6	67	35	11	190	1.13	5.1	
NF NF	2M 3M Totals	90 10	5.0	220 22 242	209 22 231	24 3 27		100	100 90					100 100	40 40 40	6	60	1.82 0.49 1.37	.7 .4 1.1	
Tota	ls		1.8	54,482	53,505	6,207	0	23	34	43	2	2	1	95	35	11	196	1.24	273.1	

LOGGING PLAN

Legend

• • • • Timber Sale Boundary

------ Roads

---- Non-Project Road Construction

Type F Stream

Type N Stream

Stream Buffer

Stream Buffer Boundary

O Cable Landing

☐ Tractor Landing

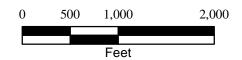
Cable Yarding Area

Tractor Yarding Area

ODF Ownership Boundary

Sections

80 Foot Contour Band


FOR TIMBER SALE CONTRACT # 341-17-24 OLD NORSE

PORTIONS OF SECTION 13, T3N R6W, W.M., TILLAMOOK COUNTY, OREGON & SECTION 18, T3N, R5W, W.M. WASHINGTON COUNTY, OREGON.

> Forest Grove District GIS July, 2016

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1:12,000 1 inch = 1,000 feet

APPROXIMATE NET ACRES

TRACTOR	110
CABLE	6
TOTAL	116