

Timber Sale Appraisal Josey Gales Sale FG-341-2017-23-

District: Forest Grove Date: January 03, 2017

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$2,105,306.66	\$33,567.52	\$2,138,874.18
		Project Work:	(\$136,825.00)
		Advertised Value:	\$2,002,049.18

Timber Sale Appraisal Josey Gales

Sale FG-341-2017-23-

District: Forest Grove Date: January 03, 2017

Timber Description

Location: Portions of Section 33, T2N, R5W, W.M., Washington County, Oregon.

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	17	0	98
Alder (Red)	15	0	95

Volume by Grade	2\$	38	4 S	Camprun	Total
Douglas - Fir	2,591	1,891	205	0	4,687
Alder (Red)	0	0	0	86	86
Total	2,591	1,891	205	86	4,773

Comments: Pond Values Used: 4th Quarter Calendar Year 2016.

Western Hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost:

\$308.47/MBF = \$490/MBF - \$181.53/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost:

\$928.47/MBF = \$1,110/MBF - \$181.53/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

BRANDING AND PAINTING COST ALLOWANCE = \$2.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE

Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added):

None.

Other Costs (No Profit & Risk added):

Slash Treatment: 35 acres @150/acre = \$5,250 Snag Creation: 100 trees @\$40/tree = \$4,000

Block/Waterbar Roads/Skid Trails: 10 hrs x \$150/hour = \$1,500

Pile Landing Slash: 20 hrs x \$150/hour = \$3,000 Equipment Cleaning: 3 x \$1,000/Piece = \$3,000

TOTAL Other Costs (No Profit & Risk added) = \$16,750

ROAD MAINTENANCE

Move-in: \$4,000

General Road Maintenance: 4.3 miles x \$1,200/mile = \$5,160 TOTAL Road Maintenance: \$9,160/4,773 MBF = \$1.92/MBF

Timber Sale Appraisal Josey Gales

Sale FG-341-2017-23-

District: Forest Grove Date: January 03, 2017

Logging Conditions

 Combination#: 1
 Douglas - Fir
 35.00%

 Alder (Red)
 35.00%

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF

loads / day: 10 bd. ft / load: 3800

cost / mbf: \$157.90

Logging System:

machines: Log Loader (A)

Stroke Delimber (A) Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 65.00%

Alder (Red) 65.00%

Logging System: Shovel **Process:** Stroke Delimber

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF

loads / day: 14 bd. ft / load: 3800

cost / mbf: \$59.62

machines: Stroke Delimber (B)

Timber Sale Appraisal Josey Gales

Sale FG-341-2017-23-

District: Forest Grove Date: January 03, 2017

Logging Costs

Operating Seasons: 2.00

Profit Risk: 10%

Project Costs: \$136,825.00

Other Costs (P/R): \$0.00

Slash Disposal: \$0.00

Other Costs: \$16,750.00

Miles of Road

Road Maintenance:

\$1.92

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	4.6
Alder (Red)	\$0.00	2.0	3.3

Timber Sale Appraisal Josey Gales

Sale FG-341-2017-23-

District: Forest Grove Date: January 03, 2017

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling / Brand & Paint	Other	Total
Douglas -	Fir								
\$94.02	\$1.96	\$1.84	\$57.65	\$0.00	\$15.55	\$0.00	\$7.00	\$3.51	\$181.53
Alder (Red	l)			_					
\$94.02	\$2.02	\$1.84	\$124.09	\$0.00	\$22.20	\$0.00	\$7.00	\$3.51	\$254.68

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$630.71	\$449.18	\$0.00
Alder (Red)	\$0.00	\$645.00	\$390.32	\$0.00

Timber Sale Appraisal Josey Gales

Sale FG-341-2017-23-

District: Forest Grove Date: January 03, 2017

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	4,687	\$449.18	\$2,105,306.66
Alder (Red)	86	\$390.32	\$33,567.52

Gross Timber Sale Value

Recovery: \$2,138,874.18

Prepared By: Joe Koch Phone: 503-357-2191

Josey Gales Contract No. 341-17-23

- 1. <u>Location</u>: Portions of Section 33, T2N, R5W, W.M., Washington County, Oregon.
- 2. <u>Type of Sale</u>: This timber sale is 101 net acres of Modified Clearcut, and a Right-of-Way of less than one acre. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. Revenue Distribution: 100% BOF, Washington County.
- **4.** <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS software.
- **5.** <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in November, 2016. For more information see Cruise Report.
- **6.** <u>Timber Description</u>: The Timber Sale Area consists of a well-stocked 60 year old Douglas-fir stand with minor amounts of western hemlock, western redcedar, true firs, and hardwoods. The stand has an average of 250 ft² of basal area (all species), an average Douglas-fir DBH of 17 inches, and an estimated average net Douglas-fir volume of approximately 47,520 BF per acre.

7. Volume Summary

SPECIES		2 SAW	3 SAW	4 SAW	Camp Run	TOTAL
	Cruise Volume	2,644	1,930	209		4,783
Dougles fir	Hidden D&B (2%)	(53)	(39)	(4)		(96)
Douglas-fir	NET TOTAL	2,591	1,891	205		4,687
	% of Total	55	40	4		
	Cruise Volume				88	88
Red alder	Hidden D&B (2%)				(2)	(2)
Red aldel	NET TOTAL				86	86
	% of Total				100	
Douglas-fir		2,591	1,891	205		4,687
Red alder					86	86
SALE TOTAL				4,773		

8. Topography and Logging Method: Slopes within the sale areas range from 5% to 65%, but are generally less than 35%, and are variable in aspect. The timber sale is 65% ground-based yarding and 35% cable yarding. The maximum cable corridor length is 844 feet and the average is 394 feet. The maximum horizontal skid trail length is approximately 820 feet and the average is approximately 450 feet.

9. <u>Access</u>: All access to the Timber Sale Area is on surfaced all-weather roads. From the Forest Grove District Office drive west on Highway 8 to its junction with Highway 6. Head West on Highway 6 for approximately 5.5 miles and turn left onto South Fork Gales Creek Road. Head south on South Fork Gales Creek Road for approximately 3 miles to the north end of the Timber Sale Area.

10. Projects:

Project No. 1: Road Construction and Improvement	\$29,164.49
Project No. 2: Road Surfacing	\$100,477.37
Project No. 3: Grass Seed, Fertilize, and Mulch	\$1,079.25
Move in and equipment cleaning:	\$6,103.89

Total Credit for all Projects (rounded) \$136,825.00

PROJECT COST SUMMARY SHEET

Timber Sale:	Josey Gales
Sale Number:	341-17-23

PROJECT NO. 1: ROAD CONSTRUCTION AND IMPROVEMENT

CONSTRUCTION

Road Segment	Length	Cost
C to D	45+00	\$14,179.40
	45+00	stations
	0.85	miles

SUBTOTAL CONSTRUCTION = \$14,179.40

IMPROVEMENTS

Road Segment	Length	Cost
A to B	24+60	\$14,985.09
	24+60	stations
	0.47	miles

<u>SUBTOTAL IMPROVEMENTS = \$14,985.09</u> <u>TOTAL PROJECT NO. 1 COST = \$29,164.49</u>

PROJECT NO. 2: SURFACING

Road Segment	Rock Amount	Rock Type	Cost
A to B	602 cy	1 1/2" - 0	\$11,768.30
	1021 cy	3" - 0	\$20,675.25
	20 cy	Pit-run	\$158.20
	50 cy	36" - 24"	\$304.70
C to D	3077 cy	3" - 0	\$67,570.92
Total	4,770 cy		
	602 cy	1 1/2" - 0	
	4,098 cy	3" - 0	
	20 cy	Pit-run	
	50 cy	36" - 24"	

TOTAL PROJECT NO. 2 COST = \$100,477.37

PROJECT NO. 3 GRASS SEED, FERTILIZE, & MULCH

TC	DTAL	. PRO	JECT NO). 3 COST =	\$1,079.25

MOVE-IN & EQUIPMENT CLEANING

Grader	\$856.97
Roller (smooth/grid) & Compactor	\$538.72
Excavator (Large) - Equipment Cleaning	\$1,856.97
Dozer (Large) - Equipment Cleaning	\$1,901.55
Dump Truck (10cy +)	\$949.68

TOTAL MOVE-IN & EQUIPMENT CLEANING COST = \$6,103.89

TOTAL CREDITS \$136,825.00

SUMMARY OF CONSTRUCTION COST

Josey Gales

Timber Sale:

Sale Number: 341-17-23

Tilliber Sale.		Jusey Gale		,	sale Mullibel.	341	-17-23	•
Road Segment:		A to B		I	mprovement:	24+60	stations	
·						0.47	miles	
PROJECT NO. 1								
EXCAVATION								
Puncheon Excavation								
Excavate puncheon		235	cy @	\$1.64	per cy =		\$385.40	
End-haul material		305.5	су @	\$0.77	per cy =		\$235.24	
Compact waste area		305.5	cy @	\$0.30	per cy =		\$91.65	
Install Log Stringer Bridge							\$5,332.70	
Construct Turnouts		3	ea @	\$66.00	per ea =		\$198.00	
Construct Turnaround		1	ea @	\$82.50	per ea =		\$82.50	
Construct Landing		1	ea @	\$314.00	per ea =		\$314.00	
Grade, ditch, & roll		24.60	sta @	\$36.00	per sta =		\$885.60	
Grade, ditch, & foll		24.00	sia W	ψ30.00	•			¢7 505 00
CULVERTS - MATERIALS & INSTALLATION	J				TOTAL	EXCAVATION	ON COSTS =	\$7,525.09
Culverts	<u> </u>				***************************************			
	I = -£ 40!!	#2 200 00						
	LF of 18"							
	LF of 24"							
	LF of 30"	\$1,560.00)					
Culvert Markers								
9	markers	\$90.00)					
					<u>TO1</u>	AL CULVE	RT COSTS =	\$7,460.00
					DDO IEC	T NO 1 TO	TAL COST =	¢14 095 00
					FROJEC	1 10. 1 10	TAL 0031 -	Ψ14,900.09
PROJECT NO. 2:								
SURFACING	4	" deep =	20 cy/sta					
	6	" deep =	31 cy/sta					
Base Rock	763	cy of	3" - 0	@	\$20.25	per cy =	\$15,450.75	
Surfacing	492	cy of	1 1/2" - 0	@	\$20.25	per cy =	\$9,963.00	
Turnouts (3)	72	cy of	3" - 0	@	\$20.25	per cy =	\$1,458.00	
Turnaround	16	cy of	3" - 0	@	\$20.25	per cy =	\$324.00	
Junction	20	cy of	3" - 0	@	\$20.25	per cy =	\$405.00	
Landing	150	cy of	3" - 0	@	\$20.25	per cy =	\$3,037.50	
Culvert bedding	80	cy of	1 1/2" - 0	@	\$19.53	per cy =	\$1,562.40	
-	30	-	36" - 24"		\$9.09		\$272.70	
Log Stringer Bridge - Riprap Rock		cy of		@		per cy =		
Log Stringer Bridge - Riprap Rock (obtained locally)	20	cy of	36" - 24"	@	\$1.60	per cy =	\$32.00	
Log Stringer Bridge - Footing Base Rock	20	cy of	Pit-run	@	\$7.91	per cy =	\$158.20	
Log Stringer Bridge - Footing Surface Rock	10	cy of	1 1/2" - 0	@	\$8.37	per cy =	\$83.70	
				_			•	
Log Stringer Bridge - Surfacing Rock Rock Total =	20	cy of	1 1/2" - 0	@	\$7.96	per cy =	\$159.20	
ROCK TOTAL =	1,693		4 4 (01) 0					
	602	cy of	1 1/2" - 0					
	1,021	cy of	3" - 0					
	20	cy of	Pit-run					
	50	cy of	36" - 24"					
					PROJEC	T NO. 2 TO	TAL COST =	\$32,906.45
PROJECT NO. 3:								
Grass seed & fertilizer		0.50	acres	@	\$425.00	per acre =	\$212.50	
Mulch		26		@	\$8.00	per bale =	\$208.00	
				_		•		
					PROJEC	T NO. 3 TO	TAL COST =	\$420.50
		oran aranga yali ili dili bizati dibi zaka				<u>TO</u>	TAL COST =	\$48,312.04
							-	

SUMMARY OF CONSTRUCTION COST

		JIMIMARY OF						
Timber	r Sale:	Josey Gale	es	_	Sale Number:	341	-17-23	
Road Seg	ıment:	C to D		_ (Construction:	45+00	_ stations	
						0.85	_ miles	
PROJECT NO. 1								
EXCAVATION								
Clearing & grubbing (scatter)	3.10	ac @	\$1,078.00	per acre	=	\$3,341.80)	
Balanced road construction	42.50	sta @		per sta =		\$4,675.00		
End-haul road construction (2.5 sta		J (C	*	p		¥ .,		
Excavate & load	410	cy @	\$1.64	per cy =		\$672.40		
Haul	410	cy @	\$0.77	per cy =		\$315.70		
Compact waste area	410	cy @	\$0.30	per cy =		\$123.00		
Turnouts	6	ea @	\$66.00	per ea =		\$396.00		
Turnarounds	3	ea @	\$82.50	per ea =		\$247.50		
Roadside landing	2	ea @		per ea =		\$330.00		
G	2	•		•		•		
Landings		ea @		per ea =		\$628.00		
Grade, ditch, & roll	45.00	sta @	\$36.00	per sta =		\$1,620.00		
					TOTAL	EXCAVATION	ON COSTS =	\$12,349.40
CULVERTS - MATERIALS & INST								
Cu	lverts							
		" \$1,800.00						
Culvert Ma	ırkers							
	3 markers	\$30.00						
					<u>TOT</u>	AL CULVE	RT COSTS =	\$1,830.00

		4410			PROJEC	T NO. 1 TO	TAL COST =	\$14,179.40
PROJECT NO. 2:								
SURFACING	1(0 " deep =	53 cy/sta	_				
C to D	2,385	cy of	3" - 0	@	\$21.96	per cy =	\$52,374.60	
Turnouts (6)	144	cy of	3" - 0	@	\$21.96	per cy =	\$3,162.24	
Turnaround	48	cy of	3" - 0	@	\$21.96	per cy =	\$1,054.08	
Junction	40	cy of	3" - 0	@	\$21.96	per cy =	\$878.40	
Roadside Landings	160	cy of	3" - 0	@	\$21.96	per cy =	\$3,513.60	
Landing	300	cy of	3" - 0	@	\$21.96	per cy =	\$6,588.00	
Rock T				0	,	1	,	
	3,077	cy of	3" - 0					
	0,0	5, 5 .						
					PROJEC	T NO. 2 TO	TAL COST =	\$67,570.92
PROJECT NO. 3:					A		4055	
Grass seed & fertilizer		1.55	acres	@	\$425.00	per acre =	\$658.75	
					ספס ובסי	T NO 2 TO	TAL COST =	¢ CE0 75
					PROJEC	1 NO. 3 10	TAL COST =	\$658.75
							TAL COST	000 400 07
						10	TAL COST =	\$82,409.07

ROCK PIT DEVELOPMENT & CRUSHING COST SUMMARY

Timber Sale: Josey Gales 341-17-23 Sale Number: Pit Name: Wildcat Mountain Pit 3" - 0: 4,098 cy (truck measure) Total truck yardage: 4,098 cy Total in place yardage: 3,152 cy 130% Swell: Shrinkage: 116% / cy x \$18,913.85 Oversize Reduction \$6.00 3,152 cy = Load crusher \$0.80 / cy x 4,098 cy = \$3,278.40 4,098 cy = Crush (3" - 0) \$3.30 / cy x \$13,523.40 Load dump truck \$0.80 4,098 \$3,278.40 / cy x cy = Subtotal: \$38,994.05 Equipment cleaning & move in excavator \$1,771.55 \$691.55 Move in loader Move in crusher \$3,286.00 \$3,327.00 Setup crusher **Gradation tests** \$275.00 /2,000cy x 3 tests \$825.00 \$700.00 Clean up pit Subtotal: \$10,601.10 **TOTAL PRODUCTION COST =** \$49,595.15

ROCK DEVELOPMENT COST =

CRUISE REPORT Josey Gales 341-17-23

1. LOCATION:

Portions of Section 33, T2N, R5W, W.M., Washington County, Oregon.

2. CRUISE DESIGN:

Pre-cruise evaluation indicated that the stand's average DBH is approximately 17 inches and its Coefficient of Variation is about 55%. For sales of this size and approximate value, ODF cruise standards require a Sampling Error of 9% at a 68% confidence level, and a minimum sample size of 100 graded trees. The cruise design chosen for this sale is a variable radius sample plot using a 40 BAF prism and employing a combination of count and measure plots at a ratio of 1 measured plot to 1 count plots.

3. SAMPLING METHOD:

The Timber Sale Area was cruised in November 2016. The Timber Sale Area was sampled with 23 variable radius grade plots and 23 variable radius count plots using a 40 BAF prism. Plots were laid out on a 4 chain x 4 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

4. CRUISE RESULTS

142 trees were measured and graded producing a cumulative Sampling Error of 4.4% on the Basal Area and 4.4% on the Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following Columbia River Log Scale grade rules and favored 40 foot segments.

- a) **Height Standards:** Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) **Form Factors** were measured for each grade tree using a form point of 16 feet.

5. DATA PROCESSING

- a) **Volumes and Statistics**, Cruise estimates and sampling statistics, were derived from Super Ace 2008 cruise software
- b) **Deductions:** Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.
- **6. Cruisers:** The sale was cruised by ODF cruisers Mark Savage, Kenton Burns, and Joe Koch.

Prepared by:		
, ,	ODF Forester	Date
Reviewed by:		
•	Eric Foucht	Date

TC PST	TATS					DJECT S OJECT		STICS SEGFIN			PAGE DATE	1 11/18/2016
TWP	RGE	SC	TRACT	,	ГҮРЕ		AC	CRES	PLOTS	TREES	CuFt	BdFt
02N	05	29	00A1	,	00MC			101.00	46	289	S	W
				50 St.		TREES		ESTIMATED TOTAL		ERCENT SAMPLE		
		F	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA	A L		46	289		6.3						
	SE COUNT DREST		25	142		5.7		16,287		.9		
COUN BLAN 100 %	NKS		21	138		6.6						
					STA	ND SUM	MARY					
			MPLE REES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG	G FIR		138	153.7	16.9	119	58.3	240.0	47,520	47,362	10,401	10,401
R ALI			2	6.8	14.6	115	2.1	7.8	891	873	243	243
	MLOCK		1	.4	28.0	140	0.3	1.7	529	529	99	99 45
NOB TOTAL			1 142	.3 <i>161.3</i>	22.0 16.9	147 119	0.2 61.0	.9 250.4	217 <i>49.157</i>	217 <i>48,981</i>	45 10,788	45 10.788
CON	FIDENC 68			THE SAMPI T OF 100 T		ME WILL	BE WITI	HIN THE SAM	MPLE ERRO)R		
CL	68.1		COEFF			SAMPL	E TREE	S - BF	#	OF TREES		INF. POP.
CL 68.1 SD: 1.0				S.E.%						-		1.5
	110		VAR.%		L	OW	AVG	HIGH		5	10	15
DOUG R ALI	G FIR DER MLOCK		79.5 96.8	6.8 90.6	L	OW 486 18	522 190	557 362		5	10	15
DOUG R ALI WHEI	G FIR DER MLOCK FIR		79.5	6.8	L	486	522	557		253	63	28
DOUG R ALI WHEI NOB TOTA	G FIR DER MLOCK FIR AL 68.1		79.5 96.8 79.6 COEFF	6.8 90.6		486 18 488 SAMPL	522 190 523 E TREE	557 362 558 S - CF	#	253 OF TREES	<i>63</i> REQ.	<i>28</i> INF. POP.
DOUG R ALI WHEI NOB : TOTA CL SD:	G FIR DER MLOCK FIR AL 68.1 1.0		79.5 96.8 79.6 COEFF VAR.%	6.8 90.6 6.7 S.E.%		486 18 488 SAMPL OW	522 190 523 E TREE AVG	557 362 558 S - CF HIGH	#	253	63	28
DOUG R ALL WHEI NOB TOTA CL SD: DOUG R ALL WHEI	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK		79.5 96.8 79.6 COEFF	6.8 90.6		486 18 488 SAMPL	522 190 523 E TREE	557 362 558 S - CF	#	253 OF TREES	<i>63</i> REQ.	<i>28</i> INF. POP.
DOUG R ALI WHEI NOB : TOTA CL SD: DOUG R ALI	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR		79.5 96.8 79.6 COEFF VAR.% 71.6	6.8 90.6 6.7 S.E.% 6.1		486 18 488 SAMPL OW 105	522 190 523 E TREE AVG 111	557 362 558 S - CF HIGH 118	#	253 OF TREES	<i>63</i> REQ.	<i>28</i> INF. POP.
DOUG R ALL WHEI NOB : TOTA CL SD: DOUG R ALL WHEI NOB :	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6	6.8 90.6 6.7 S.E.% 6.1 97.9		486 18 488 SAMPL OW 105 1	522 190 523 E TREE AVG 111 55	557 362 558 S - CF HIGH 118 109		253 OF TREES 5	63 REQ. 10	28 INF. POP. 15
DOUG R ALI WHEI NOB TOTA CL SD: DOUG R ALI WHEI NOB : TOTA	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.%	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0	L	486 18 488 SAMPL OW 105 1 105 TREES/	522 190 523 E TREE AVG 111 55 112 ACRE AVG	557 362 558 S - CF HIGH 118 109		253 OF TREES 5	63 REQ. 10	28 INF. POP. 15
DOUG R ALI WHEI NOB TOTA CL SD: DOUG R ALI WHEI NOB TOTA CL SD:	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR 1.0 G FIR		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.%	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0 S.E.% 8.2	L	486 18 488 SAMPL OW 105 1 105 TREES/OW 141	522 190 523 E TREE AVG 111 55 112 ACRE AVG 154	557 362 558 S - CF HIGH 118 109 118		253 OF TREES 5 204 OF PLOTS	63 REQ. 10 51 REQ.	28 INF. POP. 15 23 INF. POP.
DOUC R ALL WHEN NOB SD: DOUC R ALL WHEN NOB TOTAL CL SD: DOUC R ALL SD: DOUC R ALL SD:	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR 1.0 G FIR 1.0 G FIR 1.0		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.% 55.5 386.1	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0 S.E.% 8.2 56.9	L	486 18 488 SAMPL OW 105 1 105 TREES/OW 141 3	522 190 523 E TREE AVG 111 55 112 ACRE AVG 154 7	557 362 558 S - CF HIGH 118 109 118 HIGH 166 11		253 OF TREES 5 204 OF PLOTS	63 REQ. 10 51 REQ.	28 INF. POP. 15 23 INF. POP.
DOUC R ALL WHEN NOB SD: DOUC R ALL NOB TOTAL SD: DOUC R ALL SD: DO	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK G FIR DER MLOCK		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.% 55.5 386.1 474.2	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0 S.E.% 8.2	L	486 18 488 SAMPL OW 105 1 105 TREES/OW 141	522 190 523 E TREE AVG 111 55 112 ACRE AVG 154	557 362 558 S - CF HIGH 118 109 118		253 OF TREES 5 204 OF PLOTS	63 REQ. 10 51 REQ.	28 INF. POP. 15 23 INF. POP.
DOUC R ALI WHEN NOB TOTAL CL SD: CL SD: DOUC R ALI WHEN NOB TOTAL CL SD: DOUC R ALI WHEN NOB TOTAL SD:	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR MLOCK FIR AL 1.0 HODER MLOCK FIR HODER		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.% 55.5 386.1	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0 S.E.% 8.2 56.9 69.9	L	486 18 488 SAMPL OW 105 1 TREES/ OW 141 3 0	522 190 523 E TREE AVG 111 55 112 ACRE AVG 154 7 0	557 362 558 S - CF HIGH 118 109 118 HIGH 166 11		253 OF TREES 5 204 OF PLOTS	63 REQ. 10 51 REQ.	28 INF. POP. 15 23 INF. POP.
DOUG R ALI WHEI NOB TOTA CL SD: DOUG R ALI WHEI NOB I TOTA TOTA	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.% 55.5 386.1 474.2 678.2 50.3 COEFF	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0 S.E.% 8.2 56.9 69.9 99.9 7.4	L	486 18 488 SAMPL OW 105 1 105 TREES/OW 141 3 0 0 149 BASAL	522 190 523 E TREE AVG 111 55 112 ACRE AVG 154 7 0 0 161 AREA/A	557 362 558 S - CF HIGH 118 109 118 HIGH 166 11 1 1 173	#	253 OF TREES 5 204 OF PLOTS 5	63 REQ. 10 51 REQ. 10	28 INF. POP. 15 23 INF. POP. 15
DOUG R ALI WHEI NOB TOTA CL SD: DOUG R ALI WHEI NOB I TOTA TOTA	G FIR DER MLOCK FIR AL 68.1 1.0		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.% 55.5 386.1 474.2 678.2 50.3	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0 S.E.% 8.2 56.9 69.9 99.9	L	486 18 488 SAMPL OW 105 1 105 TREES/OW 141 3 0 0 149	522 190 523 E TREE AVG 111 55 112 ACRE AVG 154 7 0 0 161	557 362 558 S - CF HIGH 118 109 118 HIGH 166 11 1 1 173	#	253 OF TREES 5 204 OF PLOTS 5	63 REQ. 10 51 REQ. 10	28 INF. POP. 15 23 INF. POP. 15
DOUCE RALIES NOB TOTAL CL SD: DOUCE RALIES NOB TOTAL CL SD: CL SD: DOUCE RALIES NOB TOTAL CL SD: CL SD:	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.% 55.5 386.1 474.2 678.2 50.3 COEFF VAR.%	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0 S.E.% 8.2 56.9 69.9 99.9 7.4	L	486 18 488 SAMPL OW 105 1 105 TREES/OW 141 3 0 0 149 BASAL	522 190 523 E TREE AVG 111 55 112 ACRE AVG 154 7 0 0 161 AREA/A	557 362 558 S - CF HIGH 118 109 118 HIGH 166 11 1 1 173	#	253 OF TREES 5 204 OF PLOTS 5	63 REQ. 10 51 REQ. 10	28 INF. POP. 15 23 INF. POP. 15
DOUCE RALIES DOUCE	G FIR DER MLOCK FIR 4L 68.1 1.0 G FIR DER MLOCK FIR 4L 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR MLOCK MLOCK FIR MLOCK		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.% 55.5 386.1 474.2 678.2 50.3 COEFF VAR.%	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0 S.E.% 8.2 56.9 69.9 99.9 7.4 S.E.% 5.2 56.4 69.9	L	486 18 488 SAMPL OW 105 1 105 TREES/ OW 141 3 0 0 149 BASAL OW 228 3 1	522 190 523 E TREE AVG 111 55 112 ACRE AVG 154 7 0 0 161 AREA/A AVG 240	557 362 558 S - CF HIGH 118 109 118 HIGH 166 11 1 1 173 CCRE HIGH 252 12 3	#	253 OF TREES 5 204 OF PLOTS 5	63 REQ. 10 51 REQ. 10	28 INF. POP. 15 23 INF. POP. 15
DOUCE RALIES NOBE TOTAL CLESD: DOUCE RALIES NOBE TOTAL CLESD: DOUCE RALIES NOBE TOTAL CLESD: DOUCE RALIES NOBE NOBE NOBE NOBE NOBE NOBE NOBE NOBE	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.% 55.5 386.1 474.2 678.2 50.3 COEFF VAR.% 35.3 382.8 474.2 678.2	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0 S.E.% 8.2 56.9 69.9 99.9 7.4 S.E.% 5.2 56.4 69.9 99.9	L	486 18 488 SAMPL OW 105 1 105 TREES/ OW 141 3 0 0 149 BASAL OW 228 3 1 0	522 190 523 E TREE AVG 111 55 112 ACRE AVG 154 7 0 0 161 AREA/A AVG 240 8 2	557 362 558 S - CF HIGH 118 109 118 HIGH 166 11 1 1 173 CCRE HIGH 252 12 3 2	#	253 OF TREES 5 204 OF PLOTS 5 101 OF PLOTS 5	63 REQ. 10 51 REQ. 10 25 REQ. 10	28 INF. POP. 15 23 INF. POP. 15 11 INF. POP. 15
DOUC R ALL WHEN NOB TOTA CL SD: DOUC R ALL WHEN NOB TOTA CL SD: DOUC R ALL WHEN NOB TOTA CL SD: TOTA	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.% 55.5 386.1 474.2 678.2 50.3 COEFF VAR.% 35.3 382.8 474.2 678.2 30.0	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0 S.E.% 8.2 56.9 69.9 99.9 7.4 S.E.% 5.2 56.4 69.9	L	486 18 488 SAMPL OW 105 1 105 TREES/OW 141 3 0 0 149 BASAL OW 228 3 1 0 239	522 190 523 E TREE AVG 111 55 112 ACRE AVG 154 7 0 0 161 AREA/A AVG 240 8 2 1 250	557 362 558 S - CF HIGH 118 109 118 HIGH 166 11 1 1 173 CCRE HIGH 252 12 3	#	253 OF TREES 5 204 OF PLOTS 5 101 OF PLOTS 5	63 REQ. 10 51 REQ. 10 25 REQ. 10	28 INF. POP. 15 INF. POP. 15 INF. POP. 15
DOUCE RALL WHEN NOB TOTAL CL SD: DOUCE RALL WHEN NOB TOTAL CL	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.% 55.5 386.1 474.2 678.2 50.3 COEFF VAR.% 35.3 382.8 474.2 678.2 30.0 COEFF	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0 S.E.% 8.2 56.9 69.9 99.9 7.4 S.E.% 5.2 56.4 69.9 99.9 4.4	L	486 18 488 SAMPL OW 105 1 105 TREES/ OW 141 3 0 149 BASAL OW 228 3 1 0 239 NET BF	522 190 523 E TREE AVG 111 55 112 ACRE AVG 154 7 0 0 161 AREA/A AVG 240 8 2 1 250	557 362 558 S - CF HIGH 118 109 118 HIGH 166 11 1 1,73 CRE HIGH 252 12 3 2 262	#	253 OF TREES 5 204 OF PLOTS 5 101 OF PLOTS 5	63 REQ. 10 51 REQ. 10 25 REQ. 10	28 INF. POP. 15 23 INF. POP. 15 11 INF. POP. 15
DOUCE RALL WHEN NOB TOTAL CL SD: DOUCE RALL WHEN NOB TOTAL CL SD:	G FIR DER MLOCK FIR AL 68.1 1.0		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.% 55.5 386.1 474.2 678.2 50.3 COEFF VAR.% 35.3 382.8 474.2 678.2 30.0 COEFF VAR.%	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0 S.E.% 8.2 56.9 69.9 99.9 7.4 S.E.% 5.2 56.4 69.9 99.9 4.4 S.E.%	L L	486 18 488 SAMPL OW 105 1 105 TREES/ OW 141 3 0 0 149 BASAL OW 228 3 1 0 239 NET BF	522 190 523 E TREE AVG 111 55 112 ACRE AVG 154 7 0 0 161 AREA/A AVG 240 8 2 1 250 /ACRE AVG	557 362 558 S - CF HIGH 118 109 118 HIGH 166 11 1 1 173 CCRE HIGH 252 12 3 2 262 HIGH	#	253 OF TREES 5 204 OF PLOTS 5 101 OF PLOTS 5	63 REQ. 10 51 REQ. 10 25 REQ. 10	28 INF. POP. 15 23 INF. POP. 15 11 INF. POP. 15
DOUCE RALIES NOBE TOTAL CL SD: DOUCE SD: DOUCE SD: DOUCE SD: DOUCE SD: DOUCE SD: DOUCE SD:	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.% 55.5 386.1 474.2 678.2 50.3 COEFF VAR.% 35.3 382.8 474.2 678.2 30.0 COEFF VAR.%	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0 S.E.% 8.2 56.9 69.9 99.9 7.4 S.E.% 5.2 56.4 69.9 99.9 4.4 S.E.% 5.0	L L	486 18 488 SAMPL OW 105 1 105 TREES/ OW 141 3 0 0 149 BASAL OW 228 3 1 0 239 NET BF	522 190 523 E TREE AVG 111 55 112 ACRE AVG 154 7 0 0 161 AREA/A AVG 240 8 2 1 250 /ACRE AVG	557 362 558 S - CF HIGH 118 109 118 HIGH 166 11 1 1,73 CRE HIGH 252 12 3 2 262	#	253 OF TREES 5 204 OF PLOTS 5 101 OF PLOTS 5	63 REQ. 10 51 REQ. 10 25 REQ. 10	28 INF. POP. 15 23 INF. POP. 15 11 INF. POP. 15
DOUCE RALLE NOB TOTALE SD: DOUCE RALLE SD: DOUCE RALLE SD:	G FIR DER MLOCK FIR AL 68.1 1.0 G FIR DER MLOCK FIR AL		79.5 96.8 79.6 COEFF VAR.% 71.6 104.6 71.5 COEFF VAR.% 55.5 386.1 474.2 678.2 50.3 COEFF VAR.% 35.3 382.8 474.2 678.2 30.0 COEFF VAR.%	6.8 90.6 6.7 S.E.% 6.1 97.9 6.0 S.E.% 8.2 56.9 69.9 99.9 7.4 S.E.% 5.2 56.4 69.9 99.9 4.4 S.E.%	L L	486 18 488 SAMPL OW 105 1 105 TREES/ OW 141 3 0 0 149 BASAL OW 228 3 1 0 239 NET BEOW 5,015	522 190 523 E TREE AVG 111 55 112 ACRE AVG 154 7 0 0 161 AREA/A AVG 240 8 2 1 250 /ACRE AVG	557 362 558 S - CF HIGH 118 109 118 HIGH 166 11 1 1 173 CCRE HIGH 252 12 3 2 262 HIGH 49,710	#	253 OF TREES 5 204 OF PLOTS 5 101 OF PLOTS 5	63 REQ. 10 51 REQ. 10 25 REQ. 10	28 INF. POP. 15 23 INF. POP. 15 11 INF. POP. 15

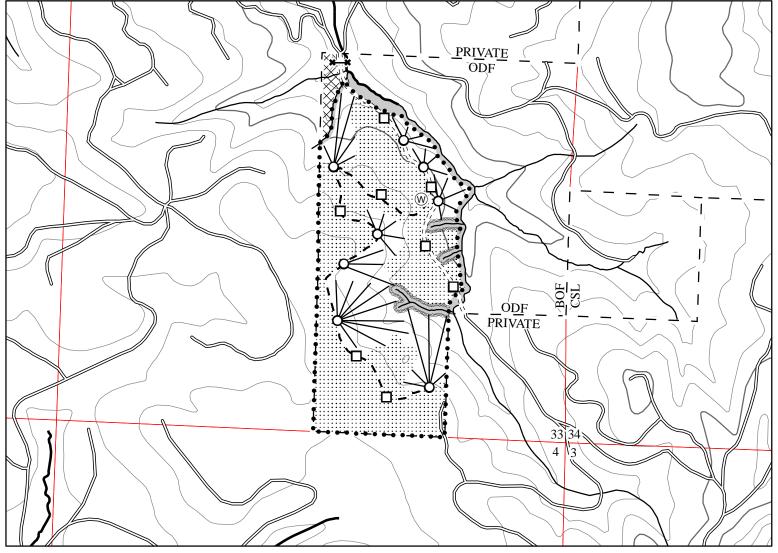
TC PS	ΓATS				PROJEC'		ISTICS SEGFIN			PAGE DATE	2 11/18/2016
TWP	RGE	SC	TRACT	TYF	'E	A	CRES	PLOTS	TREES	CuFt	BdFt
02N	05	29	00A1	00M	С		101.00	46	289	S	W
CL	68.1		COEFF		NET	BF/ACRE			# OF PLOT	S REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
тот	AL		30.1	4.4	46,813	48,981	51,150		36	9	4
CL	68.1		COEFF		NET	CUFT FT/	'ACRE		# OF PLOTS F	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR		33.6	5.0	9,886	10,401	10,917				
R AL	DER		385.3	56.8	105	243	381				
WHE	MLOCK		474.2	69.9	30	99	168				
NOB	FIR		678.2	99.9	0	45	90				
тот	AL		29.3	4.3	10,323	10,788	11,253		34	9	4

TC	PSPCSTGR		S_{l}	pecies,	Sort G	rade - Boar	d Foo	ot Vo	olumo	es (P	roject	t)							
T02	2N R05W S29	7 Ty00N	MC 1	01.00		Project:	JOS	SEG	FIN							Page		1	
						Acres		101.0	00							Date Time		1/18/2 :50:0	
		%					Perc	ent of	Net Bo	oard Fo	oot Volu	ıme				Avera	ige Lo	g	Logs
	S So Gr	Net		t. per Acre	•	Total	L	og Sca	ale Dia.			Log L	ength		Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF	CU														5	17		0.00	2.0
DF	2M	55	.5	26,302	26,176	2,644			57	43	1	2	1	97		15		1.87	72.4
DF	3M	40	.2	19,144	19,113	1,930		97	3				9	91	39	8	97		197.4
DF	4M	5		2,074	2,074	209		100			42	58			21	6	24	0.30	84.8
DF	Totals	97	.3	47,520	47,362	4,784		44	33	24	2	3	4	91	34	9	133	0.85	356.6
																			_
WH	2M	95 -		504	504	51		100	32	68				100 100	ı	19 7	620	2.66 0.83	.8
WH	3M	5		24	24	2		100											.4
WH	Totals	1		529	529	53		5	31	65				100	39	15	433	2.09	1.2
RA	CU														1	11		0.00	5.0
RA RA	R	100	2.0	891	873	88		61	39		26	23	12	39	1	8	57	0.70	15.3
RA	Totals	2	2.0	891	873	88		61	39		26	23	12	39	18	9		0.66	20.3
NF	2M	90		198	198	20			100					100	40	14	300	1.50	.7
NF	3M	10		20	20	2		100						100	36	6	60	0.49	.3
NF	Totals	0		217	217	22		9	91					100	39	11	220	1.18	1.0
Tota	ls		0.4	49,157	48 981	4,947		43	33	24	3	4	4	90	34	9	129	0.85	379.1

 TC PLOGSTVB
 Log Stock Table - MBF

 T02N R05W S29 Ty00MC
 101.00

 Project: JOSEGFIN Acres
 101.00


 Date 11/18/2016 Time 1:50:04PM

	s	So Gr	Log	Gross	Def Net	%]	<u>Net Vo</u> li	ıme by	Scalin	g Dian	neter in l	nches			
Spp	T	rt de		MBF	% MBF	Spc	2-3	4-5	6-7	8-9	10-11			16-19	20-23	24-29	30-39 40+
DF		2M	18	15	15	.3									15		
DF		2M	24	20	20	.4									20		
DF		2M	28	24	24	.5									24		
DF		2M	32	19	6.3	.4								18			
DF		2M	36	18	18	.4						18					
DF		2M	40	2,560	2,549	53.3						626	557	858	477	30	
DF		3M	32	92	92	1.9			71	19	3						
DF		3M	34	73	73	1.5			59	15							
DF		3M	36	38	38	.8			38								
DF		3M	38	74	74	1.5			74								
DF		3M	40	1,656	1,652	34.5			304	738	561	49					
DF	İ	4M	12	8	8	.2			8								
DF		4M	14	6	6	.1			6								
DF		4M	16	40	40	.8			40								
DF		4M	18	20	20	.4			20								
DF		4M	20	14	14	.3			14								
DF		4M	22	22	22	.5			22								
DF		4M	24	17	17	.4			17								
DF		4M	26	9	9	.2			9								
DF		4M	28	43	43	.9			43								
DF		4M	30	31	31	.6			31								
DF		Totals		4,799	4,784	96.7			755	771	564	693	557	876	536	30	
WH		2M	40	51	51	95.4								16	35		
WH		3M	36	2	2	4.6			2								
WH		Totals		53	53	1.1			2					16	35		
RA		R	12	10	10	11.4			10								
RA		R	20	13	13	14.4					13						
RA		R	24	20	20	22.8			20								
RA		R	34	11	11	12.3			11								
RA		R	40	36	5.0 34	39.0						34					
RA		Totals		90	2.0 88	1.8			41		13	34					
NF		2M	40	20	20	90.9						7		13			
NF		3M	36	2	2	9.1			2								
NF	7	Totals		22	22	.4			2			7		13			

TC PLOGSTVB Log Stock Table - MBF																			
T02N R05W S29 Ty00MC 101.00					01.00	945 - Mary	Project: JOSEGFIN Acres 101.00									Page Date Time	11/	2 /18/201 50:04F	_
s	1	So Gr	Log	Gross	Def	Net	Net % Net Volume by Scaling Diameter in Inches												
Spp T		rt de	Len	1	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
Total		All Spec	ies	4,96	5	4,947	100.0			801	771	577	734	557	906	570	30		

TC PSTNDSUM	Stand Table Summary	Page 1 Date: 11/18/2016
T02N R05W S29 Ty00MC 101.00	Project JOSEGFIN	Time: 1:50:02PM
	Acres 101.00	Grown Year:

<u> </u>										-					
S Spc T	рвн	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Averag Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF	9	1	87	84	3.937	1.74	3.94	9.3	50.0	1.04	37	197	105	37	20
DF	10	8	88	95	25.509	13.91	38.26	9.7	45.8	10.57	371	1,754	1,067	375	177
DF	11	3	87	101	7.906	5.22	15.81	9.6	43.3	4.32	152	685	437	153	69
DF	12	4	87	106	8.857	6.96	15.50	14.8	62.9	6.53	229	974	659	231	98
DF	13	8	87	116	15.094	13.91	30.19	17.3	78.8	14.92	524	2,377	1,507	529	240
DF	14	11	88	118	17.895	19.13	37.42	19.3	86.5	20.58	722	3,237	2,079	729	327
DF	15	4	86	107	5.669	6.96	11.34	21.6	90.0	6.99	245	1,020	706	248	103
DF	16	6	88	134	7.473	10.43	21.17	21.6	97.1	13.04	457	2,055	1,317	462	208
DF	17	6	86	132	6.620	10.43	19.86	22.9	96.1	12.99	456	1,909	1,312	460	193
DF	18	8	87	137	7.873	13.91	22.64	27.7	117.8	17.90	628	2,667	1,808	634	269
DF	19	12	87	131	10.599	20.87	30.91	30.1	126.3	26.49	929	3,904	2,675	939	394
DF	20	9	87	137	7.174	15.65	21.52	33.9	148.9	20.80	730	3,205	2,101	737	324
DF	21	4	87	121	2.892	6.96	7.95	36.9	155.5	8.37	294	1,236	845	297	125
DF	22	12	87	139	7.906	20.87	23.06	43.4	199.7	28.51	1,000	4,605	2,879	1,010	465
DF	23	3	83	144	1.808	5.22	5.42	44.5	193.3	6.89	242	1,049	696	244	106
DF	24	9	86	144	4.982	15.65	14.95	51.1	230.0	21.78	764	3,438	2,200	772	347
DF	25	3	86	141	1.531	5.22	4.59	56.1	254.4	7.34	258	1,168	741	260	118
DF	26	5	87	142	2.358	8.70	7.08	60.3	288.7	12.16	427	2,042	1,228	431	206
DF	27	2	89		.875	3.48	2.62	60.9	303.3	4.56	160	796	460	162	80
DF	28	2	85	145	.813	3.48	2.44	70.1	313.3	4.88	171	765	493	173	77
DF	29	3	89	139	1.137	5.22	3.41	77.0	394.4	7.49	263	1,346	757	266	136
DF	30	4	90	140	1.417	6.96	4.25	82.8	424.2	10.03	352	1,803	1,013	355	182
DF	31	2	89	148	.664	3.48	1.99	94.6	498.3	5.37	188	992	542	190	100
DF	32	8	89	144	2.491	13.91	7.47	95.9	490.8	20.43	717	3,668	2,064	724	370
DF	35	1	89	140	.260	1.74	.78	111.6	600.0	2.48	87	469	251	88	47
DF	Totals	138	87	119	153.743	240.00	354.59	29.3	133.6	296.44	10,401	47,362	29,940	10,505	4,784
RA	12	1	73	108	4.982	3.91	9.96	7.2	30.0	1.96	71	299	198	72	30
RA	20	1	74	134	1.794	3.91	5.38	31.9	106.7	4.72	172	574	476	173	58
RA	Totals	2	73	115	6.776	7.83	15.35	15.8	56.9	6.68	243	873	675	245	88
WH	28	1	93	140	.407	1.74	1.22	81.0	433.3	3.16	99	529	319	100	53
WH	Totals	1	93	140	.407	1.74	1.22	81.0	433.3	3.16	99	529	319	100	53
NF	22	1	90	147	.329	.87	.99	45.8	220.0	1.09	45	217	110	46	22
NF	Totals	1	90	147	.329	.87	.99	45.8	220.0	1.09	45	217	110	46	22
Totals		142	87	119	161.255	250.43	372.14	29.0	131.6	307.37	10,788	48,981	31,044	10,896	4,947

Legend

• • • • Timber Sale Boundary

Surfaced Road

= = = : Unsurfaced Road

New Road Construction

☐ : ☐ Posted R/W Boundary

Type F Stream

Type N Stream

Stream Buffer Boundary

Stream Buffer

O Cable Landing

☐ Tractor Landing

Cable Yarding Area

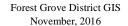
Tractor Yarding Area

_ | ODF Ownership Boundary

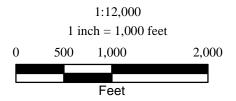
Section Line

— 400 Foot Contour Band

- 80 Foot Contour Band


Snag Creation Area

Waste Area


★ Blockage

LOGGING PLAN

FOR TIMBER SALE CONTRACT # 341-17-23 JOSEY GALES PORTIONS OF SECTION 33, T2N, R5W, W.M. WASHINGTON COUNTY, OREGON.

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

APPROXIMATE NET ACRES										
TR	RACTOR	CABLE								
AREA 1 AREA 2 R/W	66 >1	35								
TOTAL	66	35								