

Sale FG-341-2016-49-

District: Forest Grove

Date: January 20, 2016

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$1,767,801.96	\$0.00	\$1,767,801.96
		Project Work:	\$0.00
		Advertised Value:	\$1,767,801.96

Sale FG-341-2016-49-

District: Forest Grove

Date: January 20, 2016

Timber Description

Location: Portions of Sections 23 and 24, T2N, R5W, W.M., Washington County, Oregon.

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	18	0	98

Volume by Grade	2S	3S	4S	Total
Douglas - Fir	2,376	1,442	258	4,076
Total	2,376	1,442	258	4,076

Comments: Pond Values Used: 4th Quarter Calendar Year 2015.

Western Hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost: \$266.46 = \$430/MBF - \$163.54/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$986.46/MBF = \$1,150/MBF - \$163.54/MBF

Red Alder and Other Hardwoods Stumpage Price = Pond Value minus Logging Cost: \$481.46/MBF = \$645/MBF - \$163.54/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added): Brand and Paint: 4,076 MBF x \$2/MBF = \$8,152 Non Project Road: 950 feet (9.5 Stations) x \$100/Station = \$950 TOTAL Other Costs (with Profit & Risk to be added) = \$9,102

Other Costs (No Profit & Risk added): Block/Waterbar Roads/Skid Trails: 15 hrs x \$150/hour = \$2,250 Pile Landing Slash/Sort Firewood: 20 hrs x \$150/hour = \$3,000 Equipment Cleaning: 3 x \$1,000/Piece = \$3,000 Slash Piling : 20 acres at \$150/acre = \$3,000 TOTAL Other Costs (No Profit & Risk added) = \$11,250

ROAD MAINTENANCE Move-in: \$4,000 General Road Maintenance: 3.5 miles x \$1,200/mile = \$4,200 TOTAL Road Maintenance: \$8,200/4,076 MBF = \$2.01/MBF

Sale FG-341-2016-49-

District: Forest Grove

Date: January 20, 2016

Logging Conditions

Combination#: 1	Douglas - Fir	95.00%
Logging System: yarding distance: tree size:	Shovel Short (400 ft) Mature / Regen Cut (900 Bft/tree), 3-5 logs/ME	Process: Stroke Delimber downhill yarding: No F
loads / day: cost / mbf: machines:	10 \$68.96 Stroke Delimber (B)	bd. ft / load: 4600
Combination#: 2	Douglas - Fir	5.00%
Logging System: yarding distance: tree size:	Cable: Small Tower <=40 Short (400 ft) Mature / Regen Cut (900 Bft/tree), 3-5 logs/ME	Process: Stroke Delimber downhill yarding: No F
loads / day: cost / mbf: machines:	8 \$152.17 Log Loader (A) Stroke Delimber (A) Tower Yarder (Small)	bd. ft / load: 4600

Sale FG-341-2016-49-

District: Forest Grove

Date: January 20, 2016

Logging Costs

Operating Seasons: 1.00	Profit Risk: 10%
Project Costs: \$0.00	Other Costs (P/R): \$9,102.00
Slash Disposal: \$0.00	Other Costs: \$11,250.00

Miles of Road		Road Maintenance:	\$2.01
Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	4.2

Sale FG-341-2016-49-

District: Forest Grove

Date: January 20, 2016

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling	Other	Total
Douglas -	Fir								
\$73.12	\$2.05	\$1.08	\$63.14	\$2.23	\$14.16	\$0.00	\$5.00	\$2.76	\$163.54

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$597.25	\$433.71	\$0.00

Sale FG-341-2016-49-

District: Forest Grove

Date: January 20, 2016

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	4,076	\$433.71	\$1,767,801.96

<u>Gross Tim</u>	ber Sale Value
Recovery:	\$1,767,801.96
Prepared By: Eric Foucht	Phone: 503-359-7473

TIMBER SALE SUMMARY CAT'S MEOW Contract No. 341-16-49

- 1. <u>Location</u>: Portions of Sections 23 & 24, T2N, R5W, W.M., Washington County, Oregon.
- 2. <u>Type of Sale</u>: This timber sale is an 86 acre Modified Clearcut. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. <u>Revenue Distribution</u>: 100% BOF, Washington County
- 4. <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS software.
- 5. <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in November of 2015. For more information see Cruise Report.
- 6. <u>Timber Description</u>: The Timber Sale Area is a well-stocked 74 year old Douglasfir stand. The average Douglas-fir DBH is 18". The estimated average net per acre Douglas-fir volume is 48.4 MBF.

SPECIES		2 SAW	3 SAW	4 SAW	TOTAL
	Cruise Volume	2,424	1,471	263	4,158
Douglas-	Hidden D&B (2%)	(48)	(29)	(5)	(82)
fir	NET TOTAL	2,376	1,442	258	4,076
	% of Total	58	35	6	

7. Volume Summary

- 8. <u>Topography and Logging Method</u>: Slopes within the sale areas range from 10% to 45% and are variable in aspect. The Timber Sale Area is 95% ground-based yarding. The average horizontal tractor skid trail length is approximately 490 feet and the maximum is approximately 830 feet. The average cable corridor length is 270 feet and the maximum is 390 feet. To facilitate yarding of a portion of the east side of the sale area, a "Non Project" road will probably be necessary.
- **9.** <u>Access</u>: All access to the Timber Sale Area is on surfaced all-weather roads. From Forest Grove travel west on Highway 8 to its intersection with Highway 6. Proceed west onto Highway 6 for approximately 3 miles, then turn right onto Timber Road. Go north on Timber Road about 2 miles, turn right onto Wildcat Mountain Road. Proceed through the yellow gate and continue on Wildcat Mountain Road for approximately 2.4 miles and turn right on the spur heading south. Continue south for about mile to the north end of the timber sale area.

10. Projects: None

CRUISE REPORT CAT'S MEOW 341-16-49

1. LOCATION: Portions of Sections 23 & 24, T2N, R5W, W.M., Washington County, Oregon.

2. CRUISE DESIGN:

The cruise design assumed a Coefficient of Variation of 50%, an average stand diameter of 17 inches, a desired sampling error of 10% at a 68% confidence level, and a minimum sample size of 100 grade trees. Pre-cruise plots indicated that approximately 6 trees per plot could be realized with a 40 BAF prism.

3. SAMPLING METHOD:

The Sale Area was cruised in November, 2015 with 25 variable radius grade plots using a 40 BAF prism. Plots were laid out on a 4 chain x 5 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

4. CRUISE RESULTS

142 trees were measured and graded producing a cumulative sampling error of 7.8% on the basal area and 8.3% on the board foot volume.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following Columbia River Log Scale grade rules and favoring 40 foot segments.

a) Height Standards:

Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.

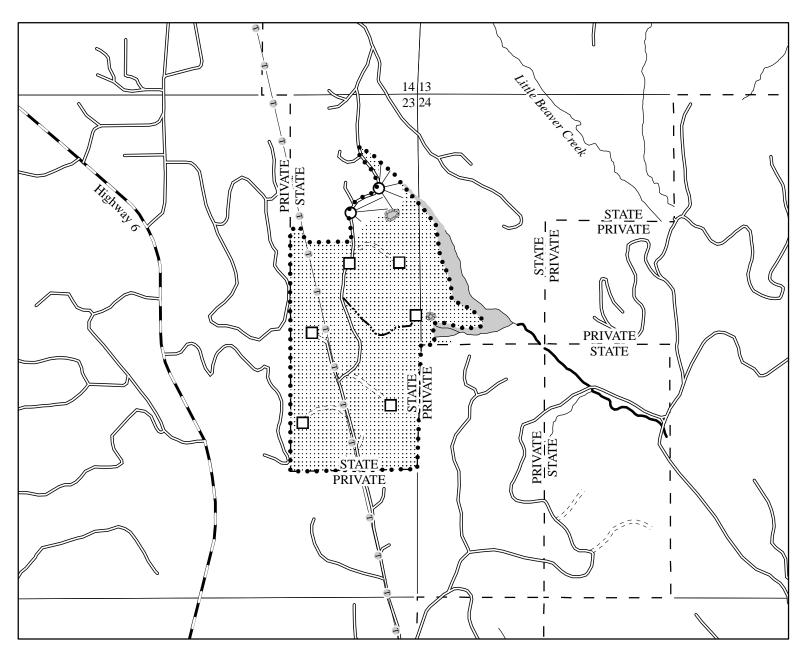
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) **Form Factors** were measured for each grade tree using a form point of 16 feet.

5. DATA PROCESSING

- a) **Volumes and Statistics**, Volume estimates and sampling statistics were derived from Super Ace 2008 cruise software.
- b) **Deductions:** Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.
- 6. CRUISERS: The sale was cruised by ODF cruisers Joe Koch and Mark Savage.

Prepared by:	Joe Koch	12/02/2015
Reviewed by:	Eric Foucht	12/03/2015

	FATS				DJECT ROJECT	STATI CA			PAGE DATE	1 11/24/201	
ſW₽	RGE	SC TRACT	· ·	ГҮРЕ		AC	CRES	PLOTS	TREES	CuFt	BdFt
03N	05	23 00A1		00MC			86.00	25	142	S	W
					TREES		ESTIMATED TOTAL		ERCENT SAMPLE		
		PLOTS	TREES		PER PLOT	Г	TREES		TREES		
TOTA	AL.	25	142		5.7						
CRUI	ISE	25	142		5.7		10,779		1.3		
	COUNT										
	OREST										
COUI											
100 %											
				STA	ND SUM	MARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
	G FIR-L	3	.5	41.7	162	0.7	4.8	1,350	1,174	245	245
	G FIR-T	138	124.4	18.0	125	52.0	220.8	48,739	48,346	10,258	10,258
NOB TOTA	FIR-L	1 142	.5 125.3	25.0 18.2	160 126	0.3 <i>53.2</i>	1.6 227.2	507 50.597	507 50.027	95 10.598	95 10,598
1012	AL	142	125.5	18.2	120	33,2		30,397	50,027	10,390	10,398
CON	FIDENC 68	CE LIMITS OF			ME WILL	, BE WIT	HIN THE SAM	MPLE ERRC)R		
CL	68.1	COEFF				LE TREE		#	OF TREES	-	INF. POP.
SD:	1.0	VAR.%	****	I.	.OW	AVG	HIGH		5	10	1
	G FIR-L G FIR-T	22.9 69.5	15.8 5.9		1,955 575	2,323 611	2,691 647				
	FIR-L	09.5	3.9		575	011	047				
TOT		75.6	6.3		609	650	691		228	57	2.
CL	68.1	COEFF			SAMPI	LE TREE	S - CF	#	OF TREES	REO.	INF, POP.
SD:	1.0	VAR.%	S.E.%	L	.OW	AVG	HIGH		5	10	1.
DOU	G FIR-L	12.8	8.9		442	485	528				
DOU	G FIR-T		5.5		120	127	134				
		64.8	5.5								
	FIR-L				127	135			204	51	2
тот	FIR-L AL	71.5	6.0		127	135	143	ш	204	51 REQ	
TOT.	FIR-L AL 68.1	71.5 COEFF	6.0	Ţ	TREES	ACRE	143	#	OF PLOTS	REQ.	INF. POP.
TOTA CL SD:	FIR-L AL 68.1 1.0	71.5	6.0	I				#			INF. POP.
TOTA CL SD: DOU	FIR-L AL 68.1	71.5 COEFF VAR.%	6.0 S.E.%	I	TREES	ACRE AVG	<i>143</i> HIGH	#	OF PLOTS	REQ.	INF. POP.
CL SD: DOUG NOB	FIR-L AL 68.1 1.0 G FIR-L G FIR-T FIR-L	71.5 COEFF VAR.% 367.7 49.7 500.0	6.0 S.E.% 75.0 10.1 102.0	I	TREES	ACRE AVG 1 124 0	143 HIGH 1 137 1	#	OF PLOTS 5	REQ. 10	INF. POP. 1
TOTA CL SD: DOUG	FIR-L AL 68.1 1.0 G FIR-L G FIR-T FIR-L	71.5 COEFF VAR.% 367.7 49.7	6.0 S.E.% 75.0 10.1	I	TREES	ACRE AVG 1 124	<i>143</i> HIGH 1 137	#	OF PLOTS	REQ.	INF. POP. 1
CL SD: DOUA NOB TOTA	FIR-L AL 68.1 1.0 G FIR-L G FIR-L FIR-L AL 68.1	71.5 COEFF VAR.% 367.7 49.7 500.0 48.1 COEFF	6.0 S.E.% 75.0 10.1 102.0 9.8		TREES OW 0 112 //3 BASAL	ACRE AVG 1 124 0 125 AREA/A	143 HIGH 1 137 1 138 CRE		OF PLOTS 5 96 OF PLOTS	REQ. 10 24 REQ.	INF. POP. 1
CL SD: DOUG NOB TOTA SD:	FIR-L AL 68.1 1.0 G FIR-L G FIR-L FIR-L AL 68.1 1.0	71.5 COEFF VAR.% 367.7 49.7 500.0 48.1 COEFF VAR.%	6.0 S.E.% 75.0 10.1 102.0 9.8 S.E.%		TREES .OW 0 112 //3 BASAL .OW	/ACRE AVG 1 124 0 /25 / AREA/A AVG	143 HIGH 1 137 1 138 ACRE HIGH		OF PLOTS 5 96	REQ. 10 24	INF. POP. 1 INF. POP.
CL SD: DOUA NOB TOTA CL SD: DOUA	FIR-L AL 68.1 1.0 G FIR-L G FIR-L FIR-L AL 68.1 1.0 G FIR-L	71.5 COEFF VAR.% 367.7 49.7 500.0 48.1 COEFF VAR.% 366.4	6.0 S.E.% 75.0 10.1 102.0 9.8 S.E.% 74.7		TREES .OW 0 112 <i>113</i> BASAL .OW 1	/ACRE AVG 1 124 0 125 / AREA/A AVG 5	143 HIGH 1 137 1 138 ACRE HIGH 8		OF PLOTS 5 96 OF PLOTS	REQ. 10 24 REQ.	INF. POP. 1 INF. POP.
CL SD: DOUA NOB TOTA SD: DOUA DOUA	FIR-L AL 68.1 1.0 G FIR-L G FIR-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-T	71.5 COEFF VAR.% 367.7 49.7 500.0 48.1 COEFF VAR.% 366.4 38.5	6.0 S.E.% 75.0 10.1 102.0 9.8 S.E.% 74.7 7.8		TREES .OW 0 112 //3 BASAL .OW	/ACRE AVG 1 124 0 125 / AREA/A AVG 5 221	143 HIGH 1 137 1 138 CRE HIGH 8 238		OF PLOTS 5 96 OF PLOTS	REQ. 10 24 REQ.	INF. POP. 1 INF. POP.
CL SD: DOUG NOB TOT, CL SD: DOUG	FIR-L AL 68.1 1.0 G FIR-L G FIR-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-L	71.5 COEFF VAR.% 367.7 49.7 500.0 48.1 COEFF VAR.% 366.4	6.0 S.E.% 75.0 10.1 102.0 9.8 S.E.% 74.7		TREES .OW 0 112 <i>113</i> BASAL .OW 1	/ACRE AVG 1 124 0 125 / AREA/A AVG 5	143 HIGH 1 137 1 138 ACRE HIGH 8		OF PLOTS 5 96 OF PLOTS	REQ. 10 24 REQ.	INF. POP. 1: <i>I</i> . INF. POP. 1:
TOT. CL SD: DOUA NOB TOT. CL SD: DOUA DOUA NOB TOT.	FIR-L AL 68.1 1.0 G FIR-L G FIR-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-L AL	71.5 COEFF VAR.% 367.7 49.7 500.0 48.1 COEFF VAR.% 366.4 38.5 500.0 33.2	6.0 S.E.% 75.0 10.1 102.0 9.8 S.E.% 74.7 7.8 102.0 6.8		TREES .OW 0 112 113 BASAL .OW 1 203 212	/ACRE AVG 1 124 0 /25 /AREA/A AVG 5 221 2 227	143 HIGH 1 137 1 138 ACRE HIGH 8 238 3	#	OF PLOTS 5 96 OF PLOTS 5 46	REQ. 10 24 REQ. 10 11	INF. POP. 1 1 INF. POP. 1 1
CL SD: DOUA NOB TOTA CL SD: DOUA NOB TOTA	FIR-L AL 68.1 1.0 G FIR-L G FIR-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-L FIR-L AL 68.1	71.5 COEFF VAR.% 367.7 49.7 500.0 48.1 COEFF VAR.% 366.4 38.5 500.0	6.0 S.E.% 75.0 10.1 102.0 9.8 S.E.% 74.7 7.8 102.0 6.8	1	TREES .OW 0 112 113 BASAL .OW 1 203 212	/ACRE AVG 1 124 0 125 / AREA/A AVG 5 221 2	143 HIGH 1 137 1 138 ACRE HIGH 8 238 3	#	OF PLOTS 5 96 OF PLOTS 5 46 OF PLOTS	REQ. 10 24 REQ. 10 11 REQ.	INF. POP. 1 INF. POP. 1 INF. POP.
TOTA CL SD: DOUA NOB TOTA CL SD: DOUA NOB TOTA CL SD: CL SD:	FIR-L AL 68.1 1.0 G FIR-L G FIR-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-L AL	71.5 COEFF VAR.% 367.7 49.7 500.0 48.1 COEFF VAR.% 366.4 38.5 500.0 33.2 COEFF	6.0 S.E.% 75.0 10.1 102.0 9.8 S.E.% 74.7 7.8 102.0 6.8	1	TREES .OW 0 112 //3 BASAL .OW 1 203 2/2 NET BI	/ACRE AVG 1 124 0 125 / AREA/A AVG 5 221 2 227 F/ACRE	143 HIGH 1 137 1 138 CRE HIGH 8 238 3 243	#	OF PLOTS 5 96 OF PLOTS 5 46	REQ. 10 24 REQ. 10 11	INF. POP. 1 INF. POP. 1 INF. POP.
TOTA CL SD: DOUA NOB TOTA CL SD: DOUA NOB TOTA CL SD: DOUA DOUA NOB TOTA	FIR-L AL 68.1 1.0 G FIR-L G FIR-L AL 68.1 1.0 G FIR-L G FIR-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-L G FIR-L G FIR-L G FIR-L	71.5 COEFF VAR.% 367.7 49.7 500.0 48.1 COEFF VAR.% 366.4 38.5 500.0 33.2 COEFF VAR.% 369.3 40.6	6.0 S.E.% 75.0 10.1 102.0 9.8 S.E.% 74.7 7.8 102.0 6.8 S.E.% 75.3 8.3	1	TREES .OW 0 112 113 BASAL .OW 1 203 212 NET BI .OW	/ACRE AVG 1 124 0 125 / AREA/A AVG 5 221 2 227 F/ACRE AVG	143 HIGH 1 137 1 138 ACRE HIGH 8 238 3 243 HIGH 2,058 52,344	#	OF PLOTS 5 96 OF PLOTS 5 46 OF PLOTS	REQ. 10 24 REQ. 10 11 REQ.	INF. POP. 1 INF. POP. 1 INF. POP.
TOTA CL SD: DOUA NOB TOTA CL SD: DOUA NOB TOTA CL SD: DOUA NOB TOTA	FIR-L AL 68.1 1.0 G FIR-L G FIR-L AL 68.1 1.0 G FIR-L G FIR-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-L G FIR-L G FIR-L	71.5 COEFF VAR.% 367.7 49.7 500.0 48.1 COEFF VAR.% 366.4 38.5 500.0 33.2 COEFF VAR.% 369.3 40.6 500.0	6.0 S.E.% 75.0 10.1 102.0 9.8 S.E.% 74.7 7.8 102.0 6.8 S.E.% 75.3 8.3 102.0	1	TREES .OW 0 112 113 BASAL .OW 1 203 212 NET BI .OW 290 14,349	/ACRE AVG 1 124 0 125 / AREA/A AVG 5 221 2 227 F/ACRE AVG 1,174 48,346 507	143 HIGH 1 137 1 138 CRE HIGH 8 238 3 243 HIGH 2,058 52,344 1,024	#	OF PLOTS 5 96 OF PLOTS 5 46 OF PLOTS 5	REQ. 10 24 REQ. 10 11 REQ. 10	INF. POP. 1 INF. POP. 1 INF. POP. 1
TOTA CL SD: DOUA NOB TOTA CL SD: DOUA NOB TOTA CL SD: CL SD: DOUA	FIR-L AL 68.1 1.0 G FIR-L G FIR-L AL 68.1 1.0 G FIR-L G FIR-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-L G FIR-L G FIR-L	71.5 COEFF VAR.% 367.7 49.7 500.0 48.1 COEFF VAR.% 366.4 38.5 500.0 33.2 COEFF VAR.% 369.3 40.6	6.0 S.E.% 75.0 10.1 102.0 9.8 S.E.% 74.7 7.8 102.0 6.8 S.E.% 75.3 8.3	1	TREES .OW 0 112 113 BASAL .OW 1 203 212 NET BI .OW 290 14,349	/ACRE AVG 1 124 0 125 / AREA/A AVG 5 221 2 227 F/ACRE AVG 1,174 48,346	143 HIGH 1 137 1 138 ACRE HIGH 8 238 3 243 HIGH 2,058 52,344	#	OF PLOTS 5 96 OF PLOTS 5 46 OF PLOTS	REQ. 10 24 REQ. 10 11 REQ.	INF. POP. 1 INF. POP. 1 INF. POP. 1
CL SD: DOUA NOB TOTA SD: DOUA NOB TOTA CL SD: DOUA NOB TOTA CL SD: DOUA NOB	FIR-L AL 68.1 1.0 G FIR-L G FIR-L AL 68.1 1.0 G FIR-L G FIR-L AL 68.1 1.0 G FIR-L G FIR-L G FIR-L G FIR-L G FIR-L AL 68.1	71.5 COEFF VAR.% 367.7 49.7 500.0 48.1 COEFF VAR.% 366.4 38.5 500.0 33.2 COEFF VAR.% 369.3 40.6 500.0 35.1 COEFF	6.0 S.E.% 75.0 10.1 102.0 9.8 S.E.% 74.7 7.8 102.0 6.8 S.E.% 75.3 8.3 102.0 7.2	1	TREES .OW 0 112 113 BASAL .OW 1 203 212 NET BI .OW 290 14,349 6,442 NET CI	/ACRE AVG 1 124 0 125 / AREA/A AVG 5 221 2 227 F/ACRE AVG 1,174 48,346 507 50,027 UFT FT/A	143 HIGH 1 137 1 138 ACRE HIGH 8 238 3 243	#	OF PLOTS 5 96 OF PLOTS 5 46 OF PLOTS 5 51 OF PLOTS	REQ. 10 24 REQ. 10 11 REQ. 10 13 REQ.	INF. POP. 1 INF. POP. 1 INF. POP. 1 INF. POP.
TOTA CL SD: DOUA NOB TOTA CL SD: DOUA NOB TOTA CL SD: DOUA NOB TOTA	FIR-L AL 68.1 1.0 G FIR-L G FIR-L AL 68.1 1.0 G FIR-L AL 68.1 1.0 G FIR-L AL G FIR-L G FIR-L G FIR-L G FIR-L G FIR-L AL	71.5 COEFF VAR% 367.7 49.7 500.0 48.1 COEFF VAR% 366.4 38.5 500.0 33.2 COEFF VAR% 369.3 40.6 500.0 35.1	6.0 S.E.% 75.0 10.1 102.0 9.8 S.E.% 74.7 7.8 102.0 6.8 S.E.% 75.3 8.3 102.0 7.2	1	TREES .OW 0 112 113 BASAL .OW .OW 1 203 212 NET BI .OW 290 14,349 6,442	/ACRE AVG 1 124 0 125 / AREA/A AVG 5 221 2 227 F/ACRE AVG 1,174 48,346 507 50,027	143 HIGH 1 137 1 138 CRE HIGH 8 238 3 243 HIGH 2,058 52,344 1,024 53,613	#	OF PLOTS 5 96 OF PLOTS 5 46 OF PLOTS 5	REQ. 10 24 REQ. 10 11 REQ. 10 13	1: INF, POP. 1: INF, POP. 1:


TC PS	FATS				PROJEC' PROJECT		ISTICS TRAW			PAGE DATE	2 11/24/2015
TWP	RGE	SC	TRACT	ТҮР	'E	A	CRES	PLOTS	TREES	CuFt	BdFt
03N	05	23	00A1	00M	С		86.00	25	142	S	W
CL	68.1		COEFF		NET	CUFT FT/	ACRE		# OF PLOT	'S REQ.	INF. POP
SD:	1.00		VAR,	S.E.%	LOW	AVG	HIGH		5	10	15
NOB	FIR-L		500.0	102.0		95	191				
тот	AL		34.3	7.0	9,858	10,598	11,339		49	12	5

TC	PSP	CSTGR		$\mathbf{S}_{]}$	pecies,	Sort G	rade - Boar	d Fo	ot V	olume	es (P	roject	;)							
Т03	IN R	05W S2	3 Ty00N	ΜС	86.00		Project: Acres	CA	ATRA 86.(Page Date Time	11	1 /24/2 :11:0	
			%				1	Per	cent of	Net Bo	ard F	oot Volu	ime				Avera	age Lo	g	Logs
	S	So Gr	Net	Bd. F	t. per Acre	9	Total	I	.og Sca	ale Dia.			Log L	ength		Ln	Dia	Bd	CF/	Per
Spp	Т	rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	In	Ft	Lf	/Acre
DF DF	T T T T	CU 2M 3M 4M	58 35 7	.9 .7	28,448 17,232 3,060	28,182 17,104 3,060	2,424 1,471 263		77 100	52 23	48	0 25	1 2 44	0 3 14	99 96 17		10 16 9 6	387 115 30	0.00 1.92 0.68 0.35	4.6 72.9 149.1 103.6
DF	Tot	als	97	.8	48,739	48,346	4,158		34	38	28	2	4	2	92	33	9	146	0.93	330.2
DF	L L L	2M 3M 4M	92 6 2	13.7 15.7	1,257 72 22	1,084 72 19	93 6 2		16 100	6 84	94	12 16 53	47	14	74 84	36 30 22	24 13 9	800 215 55	4.51 1.69 0.97	1.4 .3 .3
DF	Tot	als	2	13.1	1,350	1,174	101		3	10	87	13	1	13	74	33	20	579	3.69	2.0
NF NF	L L L Tot	2M 3M 4M	88 11 1		451 52 5 507	451 52 5 507	39 4 0 44		100 100	37	63 56	100			100 100 99	40 38 12 33	17 9 6 12			.9 .5 .5 1.9
Total				1.1	50,597	50,027	4,302		33	38	30	2	4	2	92	33		150	0.95	334.1

TC PLOGSTVB Log Stock Table - MBF																		
Т03	IN F	R05W S23	Ty00I	MC 86	i.00	Project: Acres			CA	FRAW 86	.00					Page Date Time		1 /24/2015 11:08PM
	s	So Gr	Log	Gross	Def Net	9	6		נ	Net Volu	ime by	Scalin	g Dian	neter in I	nches			
Spp	Т				% MB		pc	2-3	4-5	6-7	8-9	10-11	_	14-15		20-23	24-29	30-39 40+
DF	Т	2M	16	9		9	.2								9			
DF	Т	2M	1 26	15		15	.4								15			
DF	Т	2M	32	11		11	.3							11				
DF	Т	2M	[40	2,411	2,	388 :	57.4						360	580	950	433	64	
DF	Т	3M	í 24	8		8	.2							8				
DF	Т	3M	[26	2		2	.0				2							
DF	Т	3M	1 28	6		6	.2				3	3						
DF	Т	3М	30	6		6	.2				6							
DF	Т	3M	1 32	40		40	1.0			22	6	3	9					
DF	Т	3M	1 34	3		3	.1			3								
DF	Т	3M	1 36	34		34	.8			11	17	6						
DF	Т	3M	[38	75		75	1.8			55	19							
DF	Т	3М	I 40	1,308	1,	297	31.2			140	525	309	311	13				
DF	Т	4M	[12	21		21	.5			20	1							
DF	Т	4M	14	10		10	.2			10								
DF	Т	4M	[16	17		17	.4			15	3							
DF	Т	4M	[18	5		5	.1			5								
DF	Т	4M	l 20	13		13	.3			13								
DF	Т	4M	í 22	24		24	.6			24								
DF	T	4M	[24	44		44	1.1			34	2	8						
DF	Т	4M	1 26	21		21	.5			21								
DF	Т	4M	1 28	9		9	.2			9								
DF	Т	4M	I 30	17		17	.4			17								
DF	Т		1 32			26	.6			13	12							
DF	Т		1 34			10	.2			10								
DF	Т		1 36			9	.2			9								
DF	T		[38			8	.2			8								
DF	Т	4M	[40	28		28	.7			18	10							
DF		Total		4,192	4,		96.6			458	605	330	680	613	974	433	64	
DF	L		18				11.0						:					11
DF	L		32				12.9										13	
DF	L	2M	[40	80	13.1	69 (68.4								9	13	46	
DF	L	3M	1 20	1		1	1.0					1						
DF	L	3М	i 40	5		5	5.1							5				
DF	L	4M	[16	1		1	.8					1						
DF	L		[28		28.6	1	.7				1							

TC	PLO	GSTVB					Log	Stock	. Table	- MB	F							
т03	T03N R05W S23 Ty00MC 86.00 Project Acres							CA	FRAW 86	.00					Page Date Time	11/	2 24/2015 11:08PN	
	s	So Gr	Log	Gross	Def	Net	%		1	Net Vol	ume by	Scalin	g Dian	neter in]	Inches			
Spp	Т	rt de	Len		%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40
DF		Total	s	116	13.1	101	2.3				1	2		5	9	13	59	11
NF	L	2M	E 40	39		39	88.9							15	24			
NF	L	3M	1 38	4		4	10.2				4							
NF	L	4M	I 12	0		0	.9			0								
NF		Total	s	44		44	1.0			0	4			15	24			
Total		All Speci	es	4,351	1.1	4,302	100.0			458	611	332	680	632	1008	447	123	11

TC	PSTNDSU	ЛМ				ŝ	Stand	Table	Summai	'y			Page Date:	1 11/24//	2015
T03N	R05W S	323 Ty00N	ΛС	86.0	00		Projec Acres	et C	CATRAW 86.0				Time: Grown Year:	3:11:()6PM
S Spc Т	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Averag Net Cu.Ft.	ge Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Гоtаls Cunits	MBF
DF T	10	4	89	91	11.734	6.40	17.60	9.9	48.3	4.99	175	851	429	151	73
DF T	11	2	90	117	4.849	3.20	9.70	11.3	55.0	3.13	110	533	269	94	46
DF T	12	8	88	100	16.297	12.80	32.59	12.2	52.5	11.30	397	1,711	972	341	147
DF T	13	6	88		10.415	9.60	22.57	16.1	76.2	10.38	364	1,718	892	313	148
DF T	14	7	89		10.477	11.20	20.95	19.2	85.7	11.48	403	1,796	987	346	154
DF T	15	3	87		3.911	4.80	9.13	19.6	82.9	5.11	179	756	439	154	65
DF T	16	2	89	137	2.292	3.20	6.88	21.7	98.3	4.26	149	676	366	128	58
DF T	17	11	88		11.166	17.60	32.48	24.8	110.9	23.00	807	3,603	1,978	694	310
DF T	18	6	87	132	5.432	9.60	16.30	26.6	110.0	12.38	434	1,793	1,065	374	154
DF T	19	9	88		7.314	14.40	21.94	30.1	130.7	18.83	661	2,869	1,620	568	247
DF T	20	8	87	131	5.867	12.80	16.87	34.1	149.6	16.40	576	2,523	1,411	495	217
DF T	21	12	89	146	7.982	19.20	25.94	37.6	183.1	27.78	975	4,750	2,389	838	408
DF T	22	5	88		3.031	8.00	9.70	42.2	208.1	11.68	410	2,018	1,004	352	174
DF T	23	9	89		4.991	14.40	15.53	46.0	210.0	20.35	714	3,261	1,750	614	280
DF T	24	8	88		4.074	12.80	13.75	48.7	233.0	19.09	670	3,203	1,641	576	275
DF T	25	10	89		4.694	16.00	16.43	51.6	252.0	24.16	848	4,140	2,077	729	356
DF T	26	2	88	156	.868	3.20	3.04	57.3	290.0	4.96	174	881	427	150	76
DF T	27	8	88	-	3.219	12.80	12.07	54.5	281.3	18.76	658	3,396	1,614	566	292
DF T	28	6	89	- + /	2.245	9.60	8.98	59.1	310.4	15.13	531	2,788	1,301	457	240
DF T	29	3	90		1.046	4.80	4.19	63.7	333.3	7.60	267	1,395	654	229	120
DF T	31	4	85	156	1.221	6.40	4.88	69.2	338.8	9.63	338	1,655	828	291	142
DF T	33	1	84	148	.269	1.60	.81	101.4	493.3	2.34	82	399	201	70	34
DF T	34	2	84	165	.508	3.20	1.52	111.9	540.0	4.86	170	822	418	147	71
DF T	35	1	85	164	.239	1.60	.96	90.8	460.0	2.48	87	441	213	75	38
DF T	37	1	83	153	.214	1.60	.86	94.5	430.0	2.31	81	369	199	70	32
DF T	Totals	138	88	126	124.357	220.80	325.66	31.5	148.5	292.36	10,258	48,346	25,143	8,822	4,158
DF L	41	1	82	155	.175	1.60	.70	106.3	455.0	2.11	74	318	182	64	27
DF L	42	2	82	166	.333	3.20	1.33	128.7	643.8	4.88	171	856	420	147	74
DF L	Totals	3	82	162	.507	4.80	2.03	121.0	578.8	6.99	245	1,174	601	211	101
NF L	25	1	90	160	.469	1.60	1.88	50.4	270.0	2.27	95	507	195	81	44
NF L	Totals	1	90	160	.469	1.60	1.88	50.4	270.0	2.27	95	507	195	81	44
Totals		142	88	126	125.333	227.20	329.56	32.2	151.8	301.63	10,598	50,027	25,940	9,115	4,302

Legend

- •••• Timber Sale Boundary
- ----- Paved Road
- Surfaced Road
- = = = = Unsurfaced Road
- ----- Non Project Road
- Type N Stream
- Stream Buffer Boundary
- Stream Buffer
- O Cable Landing
- Tractor Landing
- Tractor Yarding Area
 - Cable Yarding Area
 - | ODF Property Boundary
 - Electric Transmission Lines

Section Line

LOGGING PLAN

FOR TIMBER SALE CONTRACT # 341-16-49 CAT'S MEOW PORTIONS OF SECTIONS 23 & 24, T2N, R5W, W.M. WASHINGTON COUNTY, OREGON

> Forest Grove District GIS December, 2015 This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1:12,000

1 inch = 1,000 feet

APPROXIMATE NET ACRES

TRACTOR	CABLE
82	4

Ν