

Sale FG-341-2016-44-

District: Forest Grove Date: September 01, 2015

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$1,622,296.00	\$16,972.20	\$1,639,268.20
		Project Work:	\$0.00
		Advertised Value:	\$1,639,268.20

9/01/15

Sale FG-341-2016-44-

Date: September 01, 2015 **District: Forest Grove**

Timber Description

Location: Portions of Sections 21, 27, and 28, T1N, R5W, W.M., Washington County, Oregon.

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	16	0	98
Alder (Red)	12	0	95

Volume by Grade	2\$	3S	4 S	Long Poles	Short Poles	Camprun	Total
Douglas - Fir	1,312	1,674	219	500	400	0	4,105
Alder (Red)	0	0	0	0	0	60	60
Total	1,312	1,674	219	500	400	60	4,165

2 9/01/15

Comments: Pond Values Used: 2nd Quarter Calendar Year 2015.

Western Hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost:

\$179.88/MBF = \$435/MBF - \$255.12/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost:

\$1,019.88/MBF = \$1,275/MBF - \$255.12/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE

Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added):
Brand and Paint: 4,165 MBF x \$2/MBF = \$8,330
Non-Project Road (Move In, Construction, and Rocking) = \$3,151
TOTAL Other Costs (with Profit & Risk to be added) = \$11,481

Other Costs (No Profit & Risk added):

Block/Waterbar Roads, & Skid Trails: 20 hrs x \$150/hour = \$3,000 Pile Landing Slash and Sort Firewood: 20 hrs x \$150/hour = \$3,000

Equipment Cleaning: 3 x \$1,000/Piece = \$3,000 TOTAL Other Costs (No Profit & Risk added) = \$9,000

ROAD MAINTENANCE

Move-in: \$4,000

General Road Maintenance: 6.2 miles x \$1,200/mile = \$7,440 TOTAL Road Maintenance: \$11,440/4,165 MBF = \$2.75/MBF

9/01/15

Sale FG-341-2016-44-

District: Forest Grove Date: September 01, 2015

Logging Conditions

Combination#: 1 Douglas - Fir 97.00%

Alder (Red) 97.00%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 8 bd. ft / load: 4600

cost / mbf: \$163.04

machines: Log Loader (A)

Stroke Delimber (A) Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 3.00%

Alder (Red) 3.00%

Logging System: Shovel Process: Stroke Delimber

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 12 bd. ft / load: 4600

cost / mbf: \$57.46

machines: Stroke Delimber (B)

Sale FG-341-2016-44-

District: Forest Grove Date: September 01, 2015

Logging Costs

Operating Seasons: 1.00

Profit Risk: 10%

Project Costs: \$0.00 Slash Disposal: \$0.00 Other Costs (P/R): \$11,481.00

Other Costs: \$9,000.00

Miles of Road

Road Maintenance:

\$2.75

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	4.5
Alder (Red)	\$0.00	2.0	3.7

Local Pond Values

Date	Specie	Grade	Value
09/01/2015	Douglas - Fir	Long Poles	\$1,075.00
09/01/2015	Douglas - Fir	Short Poles	\$875.00

Sale FG-341-2016-44-

District: Forest Grove Date: September 01, 2015

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling	Other	Total
Douglas -	Fir		-						
\$159.87	\$2.80	\$1.05	\$58.94	\$2.76	\$22.54	\$0.00	\$5.00	\$2.16	\$255.12
Alder (Red	d)								
\$159.87	\$2.89	\$1.05	\$110.68	\$2.76	\$27.72	\$0.00	\$5.00	\$2.16	\$312.13

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$650.32	\$395.20	\$0.00
Alder (Red)	\$0.00	\$595.00	\$282.87	\$0.00

Sale FG-341-2016-44-

District: Forest Grove Date: September 01, 2015

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	4,105	\$395.20	\$1,622,296.00
Alder (Red)	60	\$282.87	\$16,972.20

Gross Timber Sale Value

Recovery: \$1,639,268.20

Prepared By: Eric Foucht Phone: 503-359-7473

TIMBER SALE SUMMARY Dodgin' Scoggins Contract No. 341-16-44

- 1. Location: Portions of Sections 21, 27, & 28, T1N, R5W, W.M., Washington County, Oregon.
- **2.** Type of Sale: This timber sale is a 91 acre Modified Clearcut. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. Revenue Distribution: 100% BOF, Washington County.
- **4.** <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS software.
- **5.** <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in May. For more information see Cruise Report.

6. Volume Summary

Volume Sur	iiiiai y							
SPECIES		Long Pole	Short Pole	2 SAW	3 SAW	4 SAW	CAMP RUN	TOTAL
	Cruise Volume	510	408	1,339	1,708	223	0	4,188
Douglas-fir	Hidden D&B (2%)	(10)	(8)	(27)	(34)	(4)	()	(83)
	NET TOTAL	500	400	1,312	1,674	219	0	4,105
	% of Total	12	10	32	41	5	0	
	Cruise Volume			0	0	0	61	61
Red Alder & other	Hidden D&B (2%)			()	()	()	(1)	(1)
Hardwoods	NET TOTAL			0	0	0	60	60
	% of Total			0	0	0	100	
TO	OTAL	500	400	1,312	1,674	219	60	4,165

- 7. <u>Timber Description</u>: The Timber Sale Area consists of medium to well stocked 65 year old stand of Douglas-fir. The average "take" Douglas-fir DBH is 16 inches. The estimated average total per acre Douglas-fir volume is 46 MBF. The 2 Saw and 3 Saw grade volumes reported in the cruise tables were reapportioned in the volume summary to show an estimated 22% of the sale's volume as pole grade.
- 8. Topography and Logging Method: Slopes within the sale areas range from 20% to 80% and are generally of western aspect. The Timber Sale Area is 3% ground-based yarding, and 97% cable-based yarding. The average horizontal cable corridor length is approximately 950 feet and the maximum is approximately 1,700 feet. The average horizontal skid trail length will be approximately 350 feet and the maximum is approximately 550 feet. There is an abandoned road within the Timber Sale Area that accesses approximately 20 acres of tractor ground. Should the PURCHASER choose to open this road, it would be available for dry-weather use only.
- 9. Access: All access roads are open, surfaced, all-weather roads. Beginning at the junction of Highways 8 and 47 in Forest Grove, travel south 5.3 miles on Highway 47 to Scoggins Valley Road. Turn left and continue 7.7 miles on the paved portion of the road along the north side of Hagg Lake to where the pavement ends. Continue on the gravel portion 3.7 miles to the gate near the ODF property boundary. Continue through the gate and travel 1.2 miles to a spur on the left. Turn there and continue .6 miles to the east side of the Timber Sale Area.

10. Projects: None

CRUISE REPORT DODGIN SCOGGINS 341-16-44

1. LOCATION:

Portions of Sections 21, 27, & 28, T1N, R5W, W.M., Washington County, Oregon.

2. CRUISE DESIGN:

The cruise design assumed a Coefficient of Variation of 60%, an average stand diameter of 17 inches, a desired sampling error of 9% and a minimum sample size of 100 grade trees. Pre-cruise plots indicated that approximately 6 trees per plot could be realized with a 40 BAF prism.

3. SAMPLING METHOD:

The Sale Area was cruised in May, 2015 with 44 variable radius grade plots using a 40 BAF prism. Plots were laid out on a 4 chain x 4 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

4. CRUISE RESULTS

297 trees were measured and graded producing a sampling error of 5.3% on the Douglas-fir Board Foot Volume and a cumulative sampling error of 4.6% on the stand's basal area.

5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following Columbia River Log Scale grade rules and favoring 40 foot segments.

a) **Height Standards**:

Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.

- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors were measured for each grade tree using a form point of 16 feet.

5. DATA PROCESSING

Reviewed by:

- a) **Volumes and Statistics**: Volume estimates and sampling statistics were derived from Super Ace 2008 cruise software
- b) **Deductions:** Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.

Date

6. Cruisers: The sale was c	ruised by ODF cruisers Joe Koch, Ma	ark Savage, and Dax Strubb.
Prepared by:		
	ODF Forester	Date

Eric Foucht

TC PST	TATS					DJECT : ROJECT		STICS FIN			PAGE DATE	1 6/17/2015
TWP	RGE	SC	TRACT	7	TYPE		AC	RES	PLOTS	TREES	CuFt	BdFt
01N	05	28 00A1		(00MC			91.00	44	297	S	W
						TREES		ESTIMATED TOTAL		ERCENT SAMPLE	w	
		F	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA	\L		44	297		6.8						
CRUISE DBH COUNT REFOREST COUNT BLANKS 100 %			44	297		6.8		17,366		1.7		
			,		STA	ND SUM	MARY					
		8.2	MPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
			TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOUG	G FIR-L		4	.4	39.2	163	0.6	3.6	945	861	189	189
DOUG	G FIR-T		279	174.7	16.3	114	62.8	253.6	46,065	46,022	10,420	10,420
R AL	DER-T		11	12.5	12.1	65	2.9	10.0	533	533	197	197
BL M	APLE-T		3	3.2	12.6	66	0.8	2.7	130	130	56	
TOTA	AL		297	190.8	16.1	110	67.3	270.0	47,673	47,547	10,862	10,862
CI.	68	.1		T OF 100 TI	HE VOLU			HIN THE SAN		OR OF TREES	DEO	INF. POP.
CL	68.1		COEFF				E TREE:		#			
OD.			37 A F3 0/		1	αw	AMC	1.117.21.4				
SD:	1.0		VAR.%	S.E.%	L	.OW	AVG	HIGH		5	10	1.3
DOU	G FIR-L		13.5	7.7	I	1,835	1,988	2,140		5	10	15
DOUG	G FIR-L G FIR-T		13.5 67.0	7.7 4.0	<u> </u>			2,140 393		5	10	15
DOUG DOUG R AL	G FIR-L		13.5	7.7	<u> </u>	1,835 363	1,988 378	2,140			10	13
DOUG DOUG R AL	G FIR-L G FIR-T DER-T IAPLE-T		13.5 67.0 34.6	7.7 4.0 10.9	I	1,835 363 40	1,988 378 45	2,140 393 50		274	68	
DOUG DOUG R ALI BL M TOTA	G FIR-L G FIR-T DER-T IAPLE-T		13.5 67.0 34.6 52.9 82.8	7.7 4.0 10.9 36.6	<u>I</u>	1,835 363 40 32 366	1,988 378 45 50 384	2,140 393 50 68 402		274	68	30
DOUG R ALI BL M TOTA	G FIR-L G FIR-T DER-T IAPLE-T AL		13.5 67.0 34.6 52.9 82.8	7.7 4.0 10.9 36.6 4.8		1,835 363 40 32 366 SAMPL	1,988 378 45 50 384 E TREE	2,140 393 50 68 402 S - CF	1	274 OF TREES	<i>68</i> REQ.	30 INF. POP.
DOUG R ALI BL M TOTA CL SD:	G FIR-L G FIR-T DER-T IAPLE-T AL 68.1 1.0		13.5 67.0 34.6 52.9 82.8 COEFF VAR.%	7.7 4.0 10.9 36.6 4.8 S.E.%		1,835 363 40 32 366 SAMPL	1,988 378 45 50 384 E TREES	2,140 393 50 68 402 S - CF HIGH	#	274	68	30 INF. POP.
DOUG DOUG R ALJ BL M TOTA CL SD:	G FIR-L G FIR-T DER-T IAPLE-T AL 68.1 1.0 G FIR-L		13.5 67.0 34.6 52.9 82.8	7.7 4.0 10.9 36.6 4.8		1,835 363 40 32 366 SAMPL	1,988 378 45 50 384 E TREE	2,140 393 50 68 402 S - CF	#	274 OF TREES	<i>68</i> REQ.	30 INF. POP.
DOUG DOUG R ALL BL M TOTA CL SD: DOUG DOUG	G FIR-L G FIR-T DER-T IAPLE-T AL 68.1 1.0		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6	7.7 4.0 10.9 36.6 4.8 S.E.%		1,835 363 40 32 366 SAMPL	1,988 378 45 50 384 E TREE: AVG 437	2,140 393 50 68 402 S - CF HIGH 458	ħ	274 OF TREES	<i>68</i> REQ.	30 INF. POP.
DOUG R ALL BL M TOTA CL SD: DOUG R ALL	G FIR-L G FIR-T DER-T IAPLE-T AL 68.1 1.0 G FIR-L G FIR-T		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7		1,835 363 40 32 366 SAMPL .OW 415 82	1,988 378 45 50 384 E TREES AVG 437 85 17 23	2,140 393 50 68 402 S - CF HIGH 458 88	1	274 FOF TREES 5	68 REQ. 10	30 INF. POP. 15
DOUG R ALL BL M TOTA CL SD: DOUG R ALL	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9		1,835 363 40 32 366 SAMPL .OW 415 82 15	1,988 378 45 50 384 E TREES AVG 437 85 17	2,140 393 50 68 402 S - CF HIGH 458 88 20	<i>†</i>	274 OF TREES	<i>68</i> REQ.	30 INF. POP.
DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA	G FIR-L G FIR-T DER-T IAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T IAPLE-T AL		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3		1,835 363 40 32 366 SAMPL .OW 415 82 15	1,988 378 45 50 384 E TREE AVG 437 85 17 23 87	2,140 393 50 68 402 S - CF HIGH 458 88 20 34		274 FOF TREES 5	68 REQ. 10	30 INF. POP. 15
DOUG R ALL BL M TOTA CL SD: DOUG R ALL BL M	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3	1	1,835 363 40 32 366 SAMPL .OW 415 82 15 12 83	1,988 378 45 50 384 E TREE AVG 437 85 17 23 87	2,140 393 50 68 402 S - CF HIGH 458 88 20 34		274 FOF TREES 5	68 REQ. 10	30 INF. POP. 15
DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD:	G FIR-L G FIR-T DER-T IAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T IAPLE-T AL 68.1		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5	1	1,835 363 40 32 366 SAMPL .OW 415 82 15 12 83 TREES	1,988 378 45 50 384 E TREE AVG 437 85 17 23 87	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90		274 FOF TREES 5 239 FOF PLOTS	68 REQ. 10	30 INF. POP. 15 27 INF. POP.
DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD:	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.%	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8	1	1,835 363 40 32 366 SAMPL .OW 415 82 15 12 83 TREES. .OW 0 159	1,988 378 45 50 384 E TREE AVG 437 85 17 23 87 ACRE AVG 0 175	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH		274 FOF TREES 5 239 FOF PLOTS	68 REQ. 10	30 INF. POP. 15 27 INF. POP.
DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: DOUG R ALI	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T T DER-T T DER-T T DER-T		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.% 514.1 58.7 242.9	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8 36.6	1	1,835 363 40 32 366 SAMPL .OW 415 82 15 12 83 TREES. .OW 0 159 8	1,988 378 45 50 384 E TREE AVG 437 85 17 23 87 ACRE AVG 0 175 13	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH 1		274 FOF TREES 5 239 FOF PLOTS	68 REQ. 10	30 INF. POP. 15 27 INF. POP.
DOUG R ALI BL M TOTA CL SD: DOUG R ALI SD: DOUG R ALI BL M TOTA	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-L G FIR-L AL G FIR-L AL G FIR-L AL G FIR-T DER-T LAPLE-T		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.% 514.1 58.7 242.9 464.2	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8 36.6 69.9	1	1,835 363 40 32 366 SAMPL .OW 415 82 15 12 83 TREES. .OW 0 159 8	1,988 378 45 50 384 E TREE AVG 437 85 17 23 87 ACRE AVG 0 175 13	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH 1 190 17 5		274 FOF TREES 5 239 FOF PLOTS 5	68 REQ. 10 60 REQ. 10	30 INF. POP. 15 27 INF. POP.
DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: DOUG R ALI	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-L G FIR-L AL G FIR-L AL G FIR-L AL G FIR-T DER-T LAPLE-T		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.% 514.1 58.7 242.9	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8 36.6	1	1,835 363 40 32 366 SAMPL .OW 415 82 15 12 83 TREES. .OW 0 159 8	1,988 378 45 50 384 E TREE AVG 437 85 17 23 87 ACRE AVG 0 175 13	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH 1	ħ	274 FOF TREES 5 239 FOF PLOTS 5	68 REQ. 10 60 REQ. 10	36 INF. POP. 15 INF. POP. 15
DOUG R ALI BL M TOTA CL DOUG R ALI BL M TOTA CL DOUG R ALI BL M TOTA CL	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-L G FIR-L AL G FIR-L AL G FIR-L AL G FIR-T DER-T LAPLE-T		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.% 514.1 58.7 242.9 464.2 48.3 COEFF	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8 36.6 69.9 7.3	1	1,835 363 40 32 366 SAMPL .OW 415 82 15 12 83 TREES. .OW 0 159 8 1 177 BASAL	1,988 378 45 50 384 E TREE: AVG 437 85 17 23 87 ACRE AVG 0 175 13 3 191 AREA/A	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH 1 190 17 5 205	ħ	274 FOF TREES 5 239 FOF PLOTS 5	68 REQ. 10 60 REQ. 10	36 INF. POP. 15 INF. POP. 16 INF. POP.
DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD:	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-L 68.1 1.0 G FIR-L 1.0 68.1		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.% 514.1 58.7 242.9 464.2 48.3 COEFF VAR.%	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8 36.6 69.9 7.3 S.E.%	1	1,835 363 40 32 366 SAMPL .OW 415 82 15 12 83 TREES. .OW 0 159 8 1 177 BASAL	1,988 378 45 50 384 E TREE: AVG 437 85 17 23 87 ACRE AVG 0 175 13 3 191 AREA/A	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH 1 190 17 5 205 CRE HIGH	ħ	274 FOF TREES 5 239 FOF PLOTS 5	68 REQ. 10 60 REQ. 10	36 INF. POP. 15 INF. POP. 16 INF. POP.
DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: DOUG R ALI DOUG R ALI DOUG	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-L G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.% 514.1 58.7 242.9 464.2 48.3 COEFF VAR.%	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8 36.6 69.9 7.3 S.E.% 78.4	1	1,835 363 40 32 366 SAMPL .OW 415 82 15 12 83 TREES. .OW 0 159 8 1 177 BASAL	1,988 378 45 50 384 E TREE AVG 437 85 17 23 87 ACRE AVG 0 175 13 3 191 AREA/A	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH 1 190 17 5 205 CRE HIGH 6	ħ	274 FOF TREES 5 239 FOF PLOTS 5	68 REQ. 10 60 REQ. 10	36 INF. POP. 15 INF. POP. 16 INF. POP.
DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.% 514.1 58.7 242.9 464.2 48.3 COEFF VAR.%	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8 36.6 69.9 7.3 S.E.% 78.4 5.7	1	1,835 363 40 32 366 SAMPL .OW 415 82 15 12 83 TREES. .OW 0 159 8 1 177 BASAL .COW	1,988 378 45 50 384 E TREE AVG 437 85 17 23 87 ACRE AVG 0 175 13 3 191 AREA/A	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH 1 190 17 5 205 CRE HIGH 6 268	ħ	274 FOF TREES 5 239 FOF PLOTS 5	68 REQ. 10 60 REQ. 10	36 INF. POP. 15 INF. POP. 16 INF. POP.
DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-L G FIR-L DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L T DER-T LAPLE-T AL 68.1 1.0 G FIR-L T DER-T DER-T DER-T		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.% 514.1 58.7 242.9 464.2 48.3 COEFF VAR.%	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8 36.6 69.9 7.3 S.E.% 78.4 5.7 39.3	1	1,835 363 40 32 366 SAMPL .OW 415 82 15 12 83 TREES. .OW 0 159 8 1 177 BASAL .OW	1,988 378 45 50 384 E TREE: AVG 437 85 17 23 87 ACRE AVG 0 175 13 3 191 AREA/A AVG 4 254 10	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH 1 190 17 5 205 CRE HIGH 6 268 14	ħ	274 FOF TREES 5 239 FOF PLOTS 5	68 REQ. 10 60 REQ. 10	36 INF. POP. 15 INF. POP. 16 INF. POP.
DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA	G FIR-L G FIR-T DER-T IAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T IAPLE-T AL 68.1 1.0 G FIR-L G FIR-L G FIR-T DER-T IAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T IAPLE-T IAPLE-T AL 68.1 1.0 G FIR-L IAPLE-T IAPLE-T IAPLE-T IAPLE-T		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.% 514.1 58.7 242.9 464.2 48.3 COEFF VAR.%	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8 36.6 69.9 7.3 S.E.% 78.4 5.7 39.3 73.8	1	1,835 363 40 32 366 SAMPL OW 415 82 15 12 83 TREES OW 0 159 8 1 177 BASAL OW 1 239 6 1	1,988 378 45 50 384 E TREE: AVG 437 85 17 23 87 ACRE AVG 0 175 13 3 191 AREA/A AVG 4 254 10 3	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH 1 190 17 5 205 CRE HIGH 6 268 14 5	ħ	274 FOF TREES 5 239 FOF PLOTS 5	68 REQ. 10 60 REQ. 10 23 REQ. 10	36 INF. POP. 15 INF. POP. 15 INF. POP.
DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL AL 68.1 1.0 C FIR-T LAPLE-T AL		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.% 514.1 58.7 242.9 464.2 48.3 COEFF VAR.% 520.7 37.6 260.6 489.8 30.5	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8 36.6 69.9 7.3 S.E.% 78.4 5.7 39.3	1	1,835 363 40 32 366 SAMPL OW 415 82 15 12 83 TREES COW 0 159 8 1 177 BASAL OW 1 239 6 1 258	1,988 378 45 50 384 E TREE: AVG 437 85 17 23 87 ACRE AVG 0 175 13 3 191 AREA/A AVG 4 254 10 3 270	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH 1 190 17 5 205 CRE HIGH 6 268 14	<i>†</i>	274 FOF TREES 5 239 FOF PLOTS 5 93 FOF PLOTS 5	68 REQ. 10 60 REQ. 10 23 REQ. 10	36 INF. POP. 15 INF. POP. 15
DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: SD: CL SD: SD: SD: SD: SD: SD: SD: SD: SD: SD:	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L 68.1 1.0 G FIR-L 68.1 1.0 G FIR-L 68.1		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.% 514.1 58.7 242.9 464.2 48.3 COEFF VAR.% 520.7 37.6 260.6 489.8 30.5 COEFF	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8 36.6 69.9 7.3 S.E.% 78.4 5.7 39.3 73.8 4.6	1	1,835 363 40 32 366 SAMPL OW 415 82 15 12 83 TREES OW 0 159 8 1 177 BASAL OW 1 239 6 1 258 NET BI	1,988 378 45 50 384 E TREE: AVG 437 85 17 23 87 ACRE AVG 0 175 13 3 191 AREA/A AVG 4 254 10 3 270	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH 1 190 17 5 205 CRE HIGH 6 268 14 5 282	<i>†</i>	274 FOF TREES 5 239 FOF PLOTS 5 37 FOF PLOTS	68 REQ. 10 60 REQ. 10 23 REQ. 10	36 INF. POP. 15 INF. POP. 15 4 INF. POP.
DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: DOUG R ALI BL M TOTA CL SD: SD: CL SD: CL SD: CL SD: SD: SD: SD: SD: SD: SD: SD: SD: SD:	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L 68.1 1.0 G FIR-L G FIR-T LAPLE-T AL 68.1 1.0 G FIR-L 1.0		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.% 514.1 58.7 242.9 464.2 48.3 COEFF VAR.% 520.7 37.6 260.6 489.8 30.5 COEFF VAR.%	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8 36.6 69.9 7.3 S.E.% 78.4 5.7 39.3 73.8 4.6 S.E.%	1	1,835 363 40 32 366 SAMPL OW 415 82 15 12 83 TREES OW 0 159 8 1 177 BASAL OW 1 239 6 1 258 NET BE	1,988 378 45 50 384 ETREE: AVG 437 85 17 23 87 ACRE AVG 0 175 13 3 191 AREA/A AVG 4 254 10 3 270 E/ACRE AVG	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH 1 190 17 5 205 CRE HIGH 6 268 14 5 282 HIGH	<i>†</i>	274 FOF TREES 5 239 FOF PLOTS 5 93 FOF PLOTS 5	68 REQ. 10 60 REQ. 10 23 REQ. 10	36 INF. POP. 15 INF. POP. 15 4 INF. POP.
DOUG R ALI BL M TOTA CL SD: DOUG R ALI SD: DOUG R ALI SD: DOUG DOUG DOUG DOUG DOUG DOUG DOUG DOUG	G FIR-L G FIR-T DER-T IAPLE-T AL 68.1 1.0 G FIR-L G FIR-T IAPLE-T AL 68.1 1.0 G FIR-L G FIR-L G FIR-T DER-T IAPLE-T AL 68.1 1.0 G FIR-L 68.1 1.0 G FIR-L G FIR-T IAPLE-T AL 68.1 1.0 G FIR-L G FIR-T IAPLE-T AL 68.1 1.0 G FIR-L G FIR-T IAPLE-T AL		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.% 514.1 58.7 242.9 464.2 48.3 COEFF VAR.% 520.7 37.6 260.6 489.8 30.5 COEFF VAR.%	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8 36.6 69.9 7.3 S.E.% 78.4 5.7 39.3 73.8 4.6 S.E.% 76.5	1	1,835 363 40 32 366 SAMPL OW 415 82 15 12 83 TREES OW 0 159 8 1 177 BASAL OW 1 239 6 1 258 NET BI OW 202	1,988 378 45 50 384 E TREE: AVG 437 85 17 23 87 ACRE AVG 0 175 13 3 191 AREA/A AVG 4 254 10 3 270 EXAMBLE OF TREE: AVG 0 175 13 3 191 AREA/A AVG 4 254 10 3 270 EXAMBLE OF TREE: AVG 4 254 10 3 270 EXAMBLE OF TREE: AVG 8 8 8 8 8 8 8 8 8 8 8 8 8	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH 1 190 17 5 205 CRE HIGH 6 268 14 5 282 HIGH 1,520	<i>†</i>	274 FOF TREES 5 239 FOF PLOTS 5 37 FOF PLOTS	68 REQ. 10 60 REQ. 10 23 REQ. 10	30 INF. POP. 15 INF. POP. 15
DOUG R ALI BL M TOTA CL SD: DOUG R ALI SD: DOUG R ALI SD: DOUG DOUG DOUG DOUG DOUG DOUG DOUG DOUG	G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L G FIR-L G FIR-T DER-T LAPLE-T AL 68.1 1.0 G FIR-L 68.1 1.0 G FIR-L G FIR-T LAPLE-T AL 68.1 1.0 G FIR-L 1.0		13.5 67.0 34.6 52.9 82.8 COEFF VAR.% 8.6 61.9 40.9 66.9 77.4 COEFF VAR.% 514.1 58.7 242.9 464.2 48.3 COEFF VAR.% 520.7 37.6 260.6 489.8 30.5 COEFF VAR.%	7.7 4.0 10.9 36.6 4.8 S.E.% 4.9 3.7 12.9 46.3 4.5 S.E.% 77.4 8.8 36.6 69.9 7.3 S.E.% 78.4 5.7 39.3 73.8 4.6 S.E.%	1	1,835 363 40 32 366 SAMPL OW 415 82 15 12 83 TREES OW 0 159 8 1 177 BASAL OW 1 239 6 1 258 NET BE	1,988 378 45 50 384 ETREE: AVG 437 85 17 23 87 ACRE AVG 0 175 13 3 191 AREA/A AVG 4 254 10 3 270 E/ACRE AVG	2,140 393 50 68 402 S - CF HIGH 458 88 20 34 90 HIGH 1 190 17 5 205 CRE HIGH 6 268 14 5 282 HIGH	<i>†</i>	274 FOF TREES 5 239 FOF PLOTS 5 37 FOF PLOTS	68 REQ. 10 60 REQ. 10 23 REQ. 10	30 INF. POP. 15 INF. POP. 15 INF. POP. 15 4 INF. POP.

TC PS	FATS					PAGE 2 DATE 6/17/2015						
TWP	RGE	SC	TRACT	TYPI	C	A	CRES	PLOTS	TREES	CuFt	BdFt	
01N	05	28	00A1	00MC			91.00	44	297	S	W	
CL	CL 68.1 COEFF NET BF/ACRE								# OF PLOTS REQ. IN			
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15	
тот	AL		30.4	4.6	45,370	47,547	49,723	****	37	9	4	
CL	68.1		COEFF		NET CUFT FT/ACRE				# OF PLOTS R	INF. POP.		
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15	
DOU	G FIR-L		522.2	78.7	40	189	337					
DOU	G FIR-T		35.1	5.3	9,869	10,420	10,970					
R AL	DER-T		284.2	42.8	113	197	282					
BL M	1APLE-T		548.1	82.6	10	56	103					
TOT	AL		30.2	4.6	10,367	10,862	11,357		<i>36</i>	9	4	

Species, Sort Grade - Board Foot Volumes (Project) TC PSPCSTGR Page 1 Project: DOD_FIN 91.00 T01N R05W S28 Ty00MC Date 6/17/2015 91.00 Acres Time 3:21:31PM Average Log Logs Percent of Net Board Foot Volume Ln Dia Bd CF/ Per S So Gr Net Bd. Ft. per Acre Total Log Scale Dia. Log Length T rt ad BdFt Def% Gross Net MBF Lf /Acre Net 4-5 6-11 12-16 17+ 12-20 21-30 31-35 36-99 Ft In Spp 4 8 0.00 4.9 DF T CU19 100 40 14 302 1.62 71.0 1,951 81 21,476 21,442 DF T 2M 46 .2 100 0.61 220.3 9 90 38 8 0 0 22,138 22,129 2,014 98 2 DF T 3M 48 114.3 19 21 0.30 49 6 2,451 2,451 223 100 50 1 DF T 4M 6 410.5 4,188 39 9 3 3 4 90 33 9 112 0.77 46,065 46,022 53 DF Totals 97 .1 704 3.80 1.2 919 836 76 9 91 100 40 20 97 9.1 DF L 2M 100 40 10 150 1.36 . 1 2 100 17 17 DF L 3M 2 14 9 40 0.70 .2 100 100 J 8 8 DF L 4M 3 8 89 Į 99 36 18 572 3.43 1.5 DF Totals 2 8.8 945 861 78 12.5 49 100 13 54 11 23 25 7 43 0.62 RA T R 100 533 533 13 23 25 7 43 0.62 12.5 54 11 533 533 49 100 RA Totals 1 39 25 7 41 0.72 3.2 100 35 130 12 26 BM T 100 130 25 7 41 0.72 3.2 0 130 130 12 100 26 39 35 BM Totals 33 9 111 0.78 427.7 3 5 89 Totals 0.3 47,673 47,547 4,327 52 38 10

TC PLOGSTVB Log Stock Table - MBF Page 91.00 T01N R05W S28 Ty00MC DOD FIN Project: Date 6/17/2015 Acres 91.00 3:21:32PM Time Net Volume by Scaling Diameter in Inches So Gr Log Gross Def Net % 30-39 40+ 10-11 12-13 14-15 16-19 20-23 24-29 rt de Len MBF % **MBF** Spc 2-3 4-5 6-7 8-9 Spp 15 695 644 522 76 1,951 1,954 46.6 Ţ 2M 40 DF 5 .1 5 20 DF T 3M 3 1 DF Т 3M 28 5 .1 2 3M 30 2 .0 DF Т 21 32 86 86 2.1 65 T 3M DF 40 99 2.4 Т 3M 34 99 54 DF 80 1.9 51 25 Т 80 DF 3M 36 Т 38 48 48 1.2 37 11 DF 3M 768 32 274 615 40 1,690 1,689 40.3 Т 3M DF 28 28 .7 12 28 Т 4M DF 21 .5 21 Т 14 21 DF 4M .0 1 15 T ĺ DF 4M 17 16 17 17 T 4M DF .5 20 20 DF Т 4M 18 20 .6 24 24 20 T 4M 24 DF .7 28 28 4M 22 28 Ţ DF 12 12 .3 T 4M 24 12 DF 14 14 .3 DF T 4M 26 14 20 .5 20 T 28 20 DF 4M 34 .8 34 T 30 34 DF 4M 3 3 3 .1 DF 4M 34 727 644 522 76 15 4,188 720 777 96.8 708 DF Totals 4,192 26 44 84 9.1 76 97.0 L 2M 40 DF 2 2 2.0 3M 40 2 DF L 0 0 .5 DF 4M 12 0 L 0 0 .5 DF L 4M 16 0 7 26 44 78 0 2 1.8 8.8 DF Totals 86

12.5

8.7

15.1

8.0

22.2

11.1

9.6

12.9

11

14

22

26

28

30

32

36

38

R

R

R

R

R

R

R

R

RA

RA

RA

RA

RA

RA

RA

RA

Т

T

Т

T

Τ

Ţ

T

6

4

4

11

5

6

6

4

7

11

5

5

6

4

TC PLOGSTVB Log Stock Table - MBF																				
T01N R05W S28 Ty00MC 91.00 Project Acres								ct: DOD_FIN					Page Date Time	2 6/17/2015 3:21:32PM						
	s	So	Gr	Log	Gross	Def	Net	%]	Net Volu	ıme by	Scaling	<u>Dian</u>	eter in]	Inches	,			
Spp	т				MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
RA			Total	ls	49)	49	1.1			45	4								
ВМ	Т		R	14		3	3	25.7		•	3									
ВМ	Т		R	34		5	5	39.3			5			·						
ВМ	Т		R	40	,	4	4	35.1			4									
BM			Total	is	1:	2	12	.3			12									
Total		All	Spec	ies	4,33	8	4,327	100.0			764	724	778	734	644	522	101	59		

1 Page TC **PSTNDSUM Stand Table Summary** 6/17/2015 Date: Time: 3:21:31PM DOD_FIN 91.00 T01N R05W S28 Ty00MC Project 91.00 Grown Year: Acres

Average Log Net Net Tot Totals S Net Net Cu.Ft. Bd.Ft. BA/ Logs Tons/ Trees/ Sample FF Αv Cunits MBF Tons Cu.Ft. Bd.Ft. Acre Acre Acre Spc T **DBH** 16' Ht Acre Acre Trees Acre 12 7 34 13 78 30.0 .38 .91 2.60 5.1 8 1 86 77 2.604 DF T 36 391 195 68 2.14 75 47.5 4 87 83 8.231 3.64 8.23 9.1 9 DF T 603 212 100 232 1,100 6.62 47.1 10 10 89 95 16.668 9.09 23.34 10.0 DF T 799 472 166 73 182 10.2 44.6 5.18 88 98 9.643 6.36 17.91 11 7 DF T 785 275 120 8.62 303 1,320 10.00 24.31 12.4 54.3 12 11 88 96 12.732 DF T 162 1,015 356 391 1,775 16.5 75.0 11.15 23.67 13 12 88 110 11.835 10.91 DF T 220 2,415 1,379 484 15.16 532 19.0 86.1 28.06 14 16 88 110 13.606 14.55 DF T 272 691 2,993 1,791 628 91.8 19.68 20 86 115 14.816 18.18 32.59 21.2 15 DF T 702 305 771 3,353 2,001 21.99 35.81 21.5 93.6 21 87 121 13.673 19.09 16 DF T 620 261 2,866 1,767 99.4 19.42 681 28.84 23.6 87 123 10.381 16.36 DF T 17 18 344 833 26.09 916 3,781 2,375 27.0 111.4 122 12.347 21,82 33.95 18 24 87 DF T 318 745 120.0 23.33 819 3,491 2,123 28.1 88 126 9.696 19.09 29.09 19 21 DF T 1,172 506 36.70 1.288 5,559 3,340 32.5 140.4 20 32 87 128 13.334 29.09 39.59 DF T 638 287 1,819 19.99 702 3,152 87 129 6.425 15.45 19.28 36.4 163.5 21 17 DF T 284 619 1,764 40.3 184.7 19.38 680 3,117 87 135 5.510 14.55 16.87 22 16 DF T 254 554 1,578 43.9 201.1 17.34 608 2,788 88 137 4.411 12.73 13.86 23 14 DF T 231 518 569 2,541 1,477 11.82 11.57 49.2 219.5 16.23 13 86 139 3.762 24 DF T 120 768 270 8.44 296 1.317 1.867 6.36 5.60 52.9 235.2 25 7 86 131 DF T 240 111 1,216 683 263 86 139 1.479 5.45 5.18 50.9 234.8 7.51 6 26 DF T 38 234 82 90 414 84 .457 1.82 1.60 56.3 258.6 2.57 2 145 27 DF T 42 22 .91 120 1.32 46 238 89 .213 .64 72.7 373.3 28 1 141 DF T 40 21 44 231 115 80.0 1.27 1 91 133 .185 .91 .56 416.7 30 DF T 82 39 234 2.57 90 423 86.6 406.7 31 2 83 148 .347 1.82 1.04 DF T 80 37 409 228 2.51 88 .326 1.82 .98 90.0 418.3 32 2 85 137 DF T 44 23 124 48 255 .144 .91 .43 110.9 590.0 1.37 1 90 147 34 DF T 9,482 4,188 27,023 174.693 253.64 405.60 25.7 113.5 296.96 10,420 46,022 DF T Totals 279 87 114 85 40 242 134.7 628.3 2.66 93 435 1.82 .69 2 82 158 .231 38 DF L 22 44 .42 572.5 1.38 48 239 126 .91 116.4 I 78 171 .104 40 DF L 17 43 187 122 472.5 1.34 47 78 169 .099 .91 .40 118.2 41 1 DF L 489 172 78 5.38 189 861 4 .434 3.64 1.51 125.3 571.8 Totals 80 163 DF L 51 18 6 20 67 .56 20.0 10 2 74 56 3.334 1.82 3.33 6.1 RA T 54 20 6 22 .60 69 15.8 50.0 i 73 110 1,378 .91 1.38 11 RA T 78 28 8 93 40.0 .86 31 2.315 1.82 2.31 13.5 12 2 73 48 RA T 16 60 1.81 178 165 22.3 60.0 66 2.96 13 3 73 70 2.959 2.73 RA T 12 128 146 53 50.0 1.60 58 22.8 2.55 14 3 74 62 2,551 2.73 RA T 180 49 533 494 5.43 197 12.536 12.54 15.7 42.5 11 73 65 10.00 RA T Totals 3 26 10 11 33 6.5 20.0 .29 74 72 1.667 .91 1,67 10 1 BM T 20 5 52 51 .91 .85 25.4 60.0 .57 22 60 .850 1 73 14 BM T 22 4 58 .91 .65 36.9 70.0 .64 24 46 60 .651 16 l 73 BM T 51 12 130 136 41.0 1.50 56 2.73 3.17 17.8 вм Т Totals 3 74 66 3,168 47,547 28,142 9,884 4,327 112.5 309.26 10,862 190.832 270.00 422.81 25.7 Totals 297 86 110

Legend

- • • Timber Sale Boundary
- ----- Roads

vvvvv Legacy Road

- New Construction
- Type F Stream
- Type N Stream
- Posted Stream Buffer Boundary
- Cable Landing
- Tractor Landing
- Cable Yarding Area

Tractor Yarding Area

/ Reforested Area

ODF Property Boundary

Section Line

- 400 Foot Contour Band

80 Foot Contour Band

LOGGING PLAN

FOR TIMBER SALE CONTRACT # 341-16-44 DODGIN SCOGGINS PORTIONS OF SECTIONS 21, 27, & 28, T1N, R5W, W.M.,

WASHINGTON COUNTY, OREGON

Forest Grove District GIS June, 2015

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1:12,000

1 inch = 1,000 feet500 1,000 2,000

APPROXIMATE	E NET ACRES
TRACTOR	CABLE
3	88