

Sale FG-341-2016-43-

District: Forest Grove Date: September 01, 2015

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$1,866,047.04	\$5,764.64	\$1,871,811.68
		Project Work:	(\$444,010.00)
		Advertised Value:	\$1,427,801.68

9/01/15

Sale FG-341-2016-43-

District: Forest Grove Date: September 01, 2015

Timber Description

Location: Portions of Section 13, T4N, R6W, W.M., Clatsop County, Oregon and portions of Section 18, T4N, R5W, W.M., Columbia County, Oregon.

Stand Stocking: 20%

Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	18	0	98
Alder (Red)	25	0	95

Volume by Grade	2 S	3S	4 S	Camprun	Total
Douglas - Fir	3,362	1,640	380	0	5,382
Alder (Red)	0	0	0	16	16
Total	3,362	1,640	380	16	5,398

9/01/15

Comments: Pond Values Used: 2nd Quarter Calendar Year 2015.

Western Hemlock and Other Conifers

Stumpage Price = Pond Value minus Logging Cost:

216.08/MBF = 435/MBF - 218.92/MBF

Western redcedar and Other Cedars

Stumpage Price = Pond Value minus Logging Cost:

1,056.08/MBF = 1,275/MBF - 218.92/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE

Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added):

Brand and Paint: 5,398 MBF x \$2/MBF = \$10,796

Intermediate supports: 10 @ \$200 each = \$2,000

TOTAL Other Costs (with Profit & Risk to be added) = \$12,796

Other Costs (No Profit & Risk added):

Block/Waterbar Roads/Skid Trails: 20 hrs x \$150/hour = \$3,000

Pile Landing Slash/Sort Firewood: 15 hrs x \$150/hour = \$2,250

Equipment Cleaning: 4 x \$1,000/Piece = \$4,000

TOTAL Other Costs (No Profit & Risk added) = \$9,250

ROAD MAINTENANCE

Move-in: \$4,000

General Road Maintenance: 12.8 miles x \$1,200/mile = \$15,360 TOTAL Road Maintenance: \$19,360/5,398 MBF = \$3.59/MBF

9/01/15

Sale FG-341-2016-43-

District: Forest Grove Date: September 01, 2015

Logging Conditions

Combination#: 1 Douglas - Fir 82.25%

Alder (Red) 79.00%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 12 bd. ft / load: 4600

cost / mbf: \$108.70

machines: Log Loader (A)

Stroke Delimber (A) Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 17.75%

Alder (Red) 21.00%

Logging System: Shovel **Process:** Stroke Delimber

yarding distance: Short (400 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 12 bd. ft / load: 4600

cost / mbf: \$57.46

machines: Stroke Delimber (B)

Sale FG-341-2016-43-

District: Forest Grove Date: September 01, 2015

Logging Costs

Operating Seasons: 1.00

Profit Risk: 10%

Project Costs: \$444,010.00

Other Costs (P/R): \$12,796.00

Slash Disposal: \$0.00

Other Costs: \$9,250.00

Miles of Road

Road Maintenance:

\$3.59

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	2.0	4.6
Alder (Red)	\$0.00	2.0	4.0

Sale FG-341-2016-43-

District: Forest Grove Date: September 01, 2015

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling	Other	Total
Douglas -	Fir								
\$99.60	\$3.66	\$0.81	\$86.48	\$2.37	\$19.29	\$0.00	\$5.00	\$1.71	\$218.92
Alder (Red	d)								
\$97.94	\$3.77	\$0.81	\$102.38	\$2.37	\$20.73	\$0.00	\$5.00	\$1.71	\$234.71

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$565.64	\$346.72	\$0.00
Alder (Red)	\$0.00	\$595.00	\$360.29	\$0.00

Sale FG-341-2016-43-

District: Forest Grove Date: September 01, 2015

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	5,382	\$346.72	\$1,866,047.04
Alder (Red)	16	\$360.29	\$5,764.64

Gross Timber Sale Value

Recovery: \$1,871,811.68

Prepared By: Eric Foucht Phone: 503-359-7473

Clear Head Contract No. 341-16-43

- 1. <u>Location</u>: Portion of Section 13, T4N, R6W, W.M., Clatsop County, Oregon and portion of Section 18, T4N, R5W, W.M., Columbia County, Oregon
- 2. <u>Type of Sale</u>: This timber sale is a 167 acre modified clearcut in 2 sale areas. The timber will be sold on a recovery basis at a sealed bid auction.
- **3.** Revenue Distribution: 100% BOF, Columbia County 80%, Clatsop County 20%, (Tax Code 8-01).
- **4.** <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS software.
- **5.** <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in March and April of 2015. For more information see Cruise Report.
- **6.** <u>Timber Description</u>: The Timber Sale Area consists of medium to well stocked 56 to 76 year old Douglas-fir stands with minor amounts of western hemlock and red alder. A portion of Area 1 was thinned in 2006.

7.

Sale Area	Net Acres	Average Diameter	Net MBF Per Acre (D-fir)
Area 1	55	20"	27
Area 2	112	18"	34

8. Topography and Logging Method:

Slopes within the sale areas range from 10% to 70% and are variable in aspect. The following table summarizes the estimated maximum and average horizontal cable corridor length, the estimated maximum and average tractor skid trail length, and the percent harvest method for each Sale Area.

	А	rea 1 (MC)	Area 2 (MC)		
Method	Ave	Max	%	Ave	Max	%
Tractor	250	420	9	350	780	21
Cable	675	1200	91	700	1350	79

9. Access: Access to the Timber Sale Area is on surfaced all-weather roads. From Forest Grove, travel north on Highway 47 through Banks then merge onto Highway 26 and continue west to the North Fork Wolf Creek Road, near milepost 35. Turn right on North Fork Wolf Creek Road and continue for 4.5 miles to junction of McGregor Road and turn right. Continue on McGregor Road for 2.4 miles to the spur just north of the Cherry Lane junction. Continue on the spur for 0.6 miles to the western boundary of Area 1. Continue on McGregor Road for 1.4 miles to the Pit Road junction. Continue right on Pit Road for 1.3 miles to the southwestern boundary of Area 2.

10. Projects:

101 <u>1 10 10 10 10 1</u> 1	
Project No. 1: Road Improvement	\$15,026.16
Project No. 2: Crush Rock and Surface Roads	\$107,670.07
Project No. 3: Road Construction and Improvement	\$66,472.71
Project No. 4: Surfacing	\$100,269.69
Project No. 5: Crush and Stockpile 10,000cy 1 1/2"- 0 rock	\$112,984.00
Project No. 6: Pit Rehab	\$25,200.00
Project No. 7: Grass Seed, Fertilize, & Mulch	\$1,074.39
Project No. 8: Road Brushing	\$7,152.00
Move in and equipment cleaning:	\$8,156.39

Total (rounded) \$444,010

PROJECT COST SUMMARY SHEET

Timber Sale: Clear Head
Sale Number: 341-16-43

PROJECT NO. 1: ROAD IMPROVEMENT

Road Segment	Length	Cost
E to F	248+80	\$14,241.36
N to O	7+55	\$784.80
	256+35	stations
	4.86	miles

<u>TOTAL PROJECT NO. 1 COST = \$15,026.16</u>

PROJECT NO. 2: SURFACING

 Road Segment	Amount	Туре	Cost	
E to F	7,770 cy	1 1/2" - 0	\$104,296.57	
	36 cy	24" - 6	\$271.44	
N to O	246 cy	1 1/2" - 0	\$3,102.06	
Total	8,016 cy	1 1/2" - 0		
	36 cy	24" - 6		

TOTAL PROJECT NO. 2 COST = \$107,670.07

PROJECT NO. 3: ROAD CONSTRUCTION AND IMPROVEMENT

CONSTRUCTION

Road Segment	Length	Cost
A to B	9+75	\$2,851.15
C to D	5+50	\$4,388.05
	15+25	stations
	0.29	miles

SUBTOTAL CONSTRUCTION \$7,239.20

IMPROVEMENTS

<u> </u>		
Road Segment	Length	Cost
F to G	196+95	\$20,927.13
G to H	8+75	\$2,075.00
G to I	119+20	\$26,545.32
J to K	80+60	\$8,553.57
L to M	16+50	\$1,132.50
	422+00	stations
	7.99	miles

SUBTOTAL IMPROVEMENTS \$59,233.52

TOTAL PROJECT NO. 3 COST = \$66,472.71

PROJECT NO. 4: SURFACING

5 18 OUNT AC			
Road Segment	Amount	Туре	Cost
A to B	24 cy	1 1/2" - 0	\$309.60
	868 cy	3" - 0	\$11,197.20
C to D	24 cy	1 1/2" - 0	\$308.88
	570 cy	3" - 0	\$7,335.90
F to G	524 cy	1 1/2" - 0	\$6,034.92
G to H	48 cy	1 1/2" - 0	\$454.56
	269 cy	3" - 0	\$2,736.79
G to I	360 cy	1 1/2" - 0	\$3,549.60
	4,004 cy	3" - 0	\$42,321.24
	72 cy	24" - 6	\$259.20
J to K	24 cy	1 1/2" - 0	\$246.72
	2,306 cy	3" - 0	\$25,296.88
L to M	20 cy	3" - 0	\$218.20
Total	1,004 cy	1 1/2" - 0	
	8,037 cy	3" - 0	
	72 cy	24" - 6	

<u>TOTAL PROJECT NO. 4 COST = \$100,269.69</u>

PROJECT NO. 5: CRUSH AND CON	STRUCT 10,000CY STOCKPILE	
10,000 CY 1½"-0 Stockpile Measurem	ent	
<u>TC</u>	OTAL PROJECT NO. 5 COST =	\$112,984.00
PROJECT NO. 6: PIT REHAB		
ŢC	OTAL PROJECT NO. 6 COST =	\$25,200.00
PROJECT NO. 7: GRASS SEED, FE	RTILIZE, & MULCH	,
ŢĊ	OTAL PROJECT NO. 7 COST =	\$1,074.39
PROJECT NO. 8: ROAD BRUSHING		
TC	OTAL PROJECT NO. 8 COST =	\$7,152.00
MOVE IN & EQUIPMENT CLEANING		,
Brush Cutter	\$598.78	
Grader	\$929.12	
Roller (smooth/grid) & Comp	pactor \$598.78	
Excavator (Large) + Equipm	ent Cleaning \$1,929.12	
Tractor (D8) + Equipment C	leaning \$1,971.29	
Dump Trucks (10 yd & Off F	lighway) \$1,979.31	
Water Truck (1500 Gal)	\$149.99	
TOTAL MOVE IN & EC	QUIPMENT CLEANING COST =	\$8,156.39
	TOTAL ALL PROJECTS	\$444,005.42
•	TOTAL CREDITS	\$444,010.00

Timber Sale:	Clear He	ad		Timber	Sale No. : _	341-16-4	43
Road Segment:	A to B		•	Co	nstruction: _ 	9+75 stations 0.18 miles	
PROJECT NO. 3							
EXCAVATION		2.00		64 070 00		# 005 45	
Clearing and Grubbing (Sca	•		-	\$1,078.00	•	\$965.15 \$1,072.50	
Balanced Road Construction	n	9.75	_		per sta =	\$1,072.50 \$66.00	
Construct Turnouts (1)		1			per ea. =	\$82.50	
Construct Turnaround (1)		1			per ea. =	•	
Landing		1	$\overline{}$		per ea. =	\$314.00 \$351.00	
Grade, Ditch, and Roll		9.75	sta @	\$36.00	per sta =	\$351.00	
				PF	OJECT NO	0. 3 TOTAL COST = _	\$2,851.15
PROJECT NO. 4:							
SURFACING 12	2 "deep=	=65 cy/sta					
A to B 63		3" - 0	· @	\$12.90	per cy =	\$8,178.60	
Turnouts (1) 2	•	3" - 0	@		per cy =	\$283.80	
Turnaround 2	•		@	\$12.90	per cy =	\$258.00	
Junction 1	•		@	\$12.90	per cy =	\$154.80	
Landing 18	•		@		per cy =	\$2,322.00	
Traction Rock 2		1 1/2" - 0	_		per cy =	\$309.60	
Total = 89			•				
		1 1/2" - 0		\$12.90	per cy =	\$309.60	
86	*	3" - 0			per cy =	\$11,197.20	
				PF	ROJECT NO). 4 TOTAL COST =	\$11,506.80
PROJECT NO. 7:							
Grass seed and fertilize are disturbed soil.	eas of	0.45	acres @	\$425.00	per acre =	\$190.25	
				PF	ROJECT NO	D. 7 TOTAL COST =	\$190.25
						TOTAL COST =	\$14,548.21

Timber Sale:	С	lear Hea	d		Timber	Sale No.:_	341-16-4	13
Road Segment:		C to D			Col	nstruction: _ -	5+50 stations 0.10 miles	
PROJECT NO. 3							,	
EXCAVATION				,			00.40.40	
Clearing and Grubbing	(Scatter)					per acre =	\$346.46	
Clearing and Grubbing		1)		acres @	\$1,631.22	per acre =	\$299.58	
Balanced Road Constru			3.50	sta @	\$110.00	per sta =	\$385.00	
Full Bench Endhaul Co	nstructio	n						
Excavate & Load			650	cy @		per cy =	\$936.00	
Haul			650	су @		per cy =	\$1,631.50	
Compact Waste Are	ea		650	су @		per cy =	\$195.00	
Construct Turnaround			1	ea. @		per ea. =	\$82.50	
Landing	` '		1	ea. @	\$314.00	per ea. =	\$314.00	
Grade, Ditch, and Roll			5.50	sta @	\$36.00	per sta =	\$198.00	
				·	PR	OJECT NO.	3 TOTAL COST =	\$4,388.05
PROJECT NO. 4:								
SURFACING	12		=65 cy/sta		***	•		
C to D	358	cy of	3" - 0	@		per cy =	\$4,607.46	
Turnaround	20	cy of	3" - 0	@		per cy =	\$257.40	
Junction	12	cy of	3" - 0	@		per cy =	\$154.44	
Landing	180	cy of	3" - 0	@	\$12.87	per cy =	\$2,316.60	
Traction Rock	24	cy of	1 1/2" - 0	@	\$12.87	per cy =	\$308.88	
Total =	594			,.				
	24	cy of	1 1/2" - 0		\$12.87	per cy =	\$308.88	
	570	cy of	3" - 0		\$12.87	per cy =	\$7,335.90	
		·			PR	OJECT NO	. 4 TOTAL COST =	\$7,644.78
,								,,
PROJECT NO. 7:					M 405 00		\$68.30	
Grass seed and fertiliz	e areas	of	0.16	acres @	3 \$425.00	per acre =	φυσ.30_	
disturbed soil.								
4					PR	ROJECT NO	. 7 TOTAL COST =	\$68.30
							TOTAL COST =	\$12,101.12
							IOIAL COST -	Ψ12,101.12

Timber Sale: Clear Head Timber Sale No.: 341-16-43 Road Segment: E to F (No. Fk. Wolf Creek Rd) Improvement: 248+80 stations 4.71 miles **PROJECT NO. 1 EXCAVATION** \$1,270.80 \$60.00 per sta = Clean ditch & endhaul waste material 21.18 sta @ \$25.00 per ea = \$300.00 Clean Existing Culverts 12 ea @ \$350.00 2 hrs @ \$175.00 per hr = Waste Area Clearing **Cutslope Excavation** Clearing and Grubbing (Scatter) 0.07 acres @ \$1,078.00 per acre = \$73.25 \$1.44 per cy = \$296.00 Excavate & Load 206 cy @ \$1.79 per cy = \$367.94 206 су @ Haul \$0.30 per cy = 206 \$61.67 Compact Waste Area cy @ \$40.50 per sta = \$6,164.10 Grade, Ditch, and Roll 18' wide 152.20 sta @ \$36.00 per sta = \$3,477.60 Grade Ditch and Roll 16' wide 96.60 sta @ \$12,361.36 TOTAL EXCAVATION COSTS= **CULVERTS - MATERIALS & INSTALLATION** Culverts 90 LF of 18" \$1,800.00

Culvert Markers

8 markers

\$80.00

TOTAL CULVERT COSTS = \$1,880.00

PROJECT NO. 1 TOTAL COST = \$14,241.36

SURFACING	4	" deep =	23 cy/sta	,			
<u></u>	6	" déep =	36 cy/sta				
Panning	6	" deep =	31 cy/sta				
4" lift 0+00 - 79+20	1,822	cy of	1 1/2" - 0 @	\$13.43	per cy =	\$24,464.09	
6" lift 79+20 - 152+20	2,628	cy of	1 1/2" - 0 @	\$13.43	per cy =	\$35,294.04	
6" lift 152+20 - 248+80	2,995	cy of	1 1/2" - 0 @	\$13.43	per cy =	\$40,217. 4 8	
Turnouts 6" depth (12)	132	cy of	1 1/2" - 0 @	\$13.43	per cy =	\$1,772.76	
Junction 6" depth	24	cy of	1 1/2" - 0 @	\$13.43	per cy =	\$322.32	
Culvert Bedding &							
Backfill	72	cy of	1 1/2" - 0 @	\$12.71	per cy =	\$915.12	
Curve Widening 6"							
depth	98	cy of	1 1/2" - 0 @	\$13.43	per cy =	\$1,310.77	
Energy Dissipator	36	cy of	24" - 6" @	\$7.54	per cy =	\$271.44	
Total =	7,806	-				· · · · · · · · · · · · · · · · · · ·	
	7,698	cy of	1 1/2" - 0	\$13.43	per cy =	\$103,381.45	
	72	cy of	1 1/2" - 0	\$12.71	per cy =	\$915.12	
	36	cy of	24" - 6"	\$7.54	per cy =	\$271.44	
					PROJECT NO	. 2 TOTAL COST =	\$104,568.01
PROJECT NO. 7:			,				
Grass seed and fertilize disturbed soil.	areas of		0.00 acre	s@ \$425.00	per acre =	\$0.00	
Mulch			4 bale	s@ \$8.00	per bale =	\$32.00	
Bio-bag			4 each	_	•	\$20.00	
•					PROJECT NO	. 7 TOTAL COST =	\$52.00

TOTAL COST = \$118,861.38

Timber Sale: _		Clear Hea	d		Timber	Sale No. :	341-16-	43
Road Segment: _	F to 0	G (McGreg	or Rd.)		lmp	orovement: _ -	196+95 stations 3.73 miles	
PROJECT NO. 3							,	
EXCAVATION Clean ditch & endhaul	wasta m:	aterial	78.35	sta @	\$60.00	per sta =	\$4,701.00	
Clean Existing Culverts		alciiai	17	ea @		per sta =	\$425.00	
Waste Area Clearing	,		6	hrs @		per ta =	\$1,050.00	
Cutslope Excavation			Ü	1113 @	ψ170.00	per III –	Ψ1,000.00	
Clearing and Grubbi	ing /Scat	ter\	0.51	മറുടെ ത്ര	\$1.078.00	per acre =	\$553.35	
Excavate & Load	ing (Ocai	iter)	1,553	cy @	1.7	per cy =	\$2,236.00	
Haul			1,553	cy @		per cy =	\$2,779.47	
Compact Waste Are	22		1,553	cy @		per cy =	\$465.83	
Grade, Ditch, and Roll			196.95	sta @		per cy =	\$7,976.48	
Grade, Ditch, and Non	io wide		190.93	sta W		•	CAVATION COSTS=	\$20,187.13
CULVERTS - MATERI	IAI S & IAI	USTALLAT	ION			OTAL LAC	AVAIION 00010-	Ψ20,101.10
Culverts	ALO G II	101712271						
	E of 10"	\$600.00						
Culvert Mark		φ 0 00.00						
	narkers	\$140.00						
14 1	Harkers	φ140.00				ΤΩΤΔΙ (CULVERT COSTS =	\$740.00
					PF	ROJECT NO	D. 3 TOTAL COST = _	\$20,927.13
PROJECT NO. 4:								
SURFACING	6	" deep =	31 cy/sta					
Spot Rock	500	cy of	1 1/2" - 0	@	\$11.55	per cy =	\$5,775.00	
Culvert Bedding &		•						
Backfill	24	cy of	1 1/2" - 0	@	\$10.83	per cy =	\$259.92	
Total =	524			_		,		
	500	cy of	1 1/2" - 0		\$11.55	per cy =	\$5,775.00	
	24	cy of	1 1/2" - 0		\$10.83	per cy =	\$259.92	
		•				,	D. 4 TOTAL COST =	\$6,034.92
					• •		-	70,00
PROJECT NO. 7:					<u>.</u>			
Grass seed and fertilize disturbed soil.	e areas o	of	0.00	acres @	\$425.00	per acre =	\$0.00	
Mulch			6	bales @	\$8.00	per bale =	\$48.00	
Bio-bag				each @		per each =	·	
-				-	Pf	ROJECT NO	D. 7 TOTAL COST =	\$78.00
							TOTAL COST =	\$27,040.05

Timber Sale:		Clear Hea	d	_	Timber	Sale No. : _	341-16-	43
Road Segment: _	G to H (Lower Ro	ck Ck Rd)	-	lmp	orovement:	8+75 stations 0.17 miles	
PROJECT NO. 3				•				
EXCAVATION				, ,				
Grade Ditch and Roll 1	6' wide		8.75	sta @			\$315.00 VATION COSTS=	\$315.00
CULVERTS - MATER	IALS & IN	ISTALLATI	ION	_				
Culverts								
60	LF of 24"	\$1,740.00)					
Culvert Mark	kers							
2	markers	\$20.00)			TOTAL C	JLVERT COSTS =	\$1,760.00
					PR	OJECT NO	3 TOTAL COST =	\$2,075.00
							-	7 ,0.0.0
PROJECT NO. 4:								
SURFACING		" deep =	31 cy/sta	_				
G to H	269	cy of	3" - 0	@	\$10.19	per cy =	\$2,736.79	
Culvert Bedding &								
Backfill	48	cy of	1 1/2" - 0	@	\$9.47	per cy =	<u>\$454.56</u>	
Total =	317		4 4 (01) 0		00.47		045450	
	48	cy of	1 1/2" - 0			per cy =	\$454.56	
	269	cy of	3" - 0		\$10.19	per cy =	\$2,736.79	
					PR	OJECT NO.	4 TOTAL COST = _	\$3,191.35
PROJECT NO. 7:								
Grass seed and fertilized disturbed soil.	e areas of		0.02	acres @	\$425.00	per acre =	\$8.50	
Mulch		•	8	bales @	\$8.00	per bale =	\$64.00	
Bio-bag				each @		per each =	\$20.00	
• •				-	PR	OJECT NO.	7 TOTAL COST = _	\$92.50
			- tum					\$5.050.0F
							TOTAL COST =	\$5,358.85

		Clear Head				Sale No. :	341-16-4	
Road Segment:	. (G to I (Pit Re	d)		lmp	rovement: ₋	119+20 stations 2.26 miles	
PROJECT NO. 3								
EXCAVATION	. مغممید این	torial	22 55	oto @	ሳሌ ሰብቃ	per sta =	\$1,953.00	
Clean ditch & endha Clean Existing Culve		materiai	32.55 22	sta @ ea @		per sta =	\$550.00	
Construct Settling P			12	ea. @		per ea. =	\$300.00	
Removal of Large S			12	cu. w	Ψ20.00	por ou.	4000.00	
Excavate & Load			14	ea. @	\$82.50	per ea. =	\$1,155.00	
Haul			14	ea. @		per ea. =	\$165.43	
Cutslope Excavation	ו			J		•		
Clearing and Gru		catter)	0.54	acres @	\$1,078.00	per acre =	\$581.07	
Excavate & Load			1,631	су @		per cy =	\$2,348.00	
Haul			1,631	су @		per cy =	\$4,092.69	
Compact Waste			1,631	су @		per cy =	\$489.17	
Construct Turnarou			1	ea. @		per ea. =	\$82.50	
Remove Existing Cu			6	ea. @		per ea. =	\$900.00	
Grade Ditch and Ro			106.90	sta @		per sta =	\$3,848.40	
Grade and Roll (Ou	islope) 14	, Mige	12.30	sta @		per sta =	\$396.06 CAVATION COSTS=	\$16,861.32
OULVEDTO MAT		INICTALLAT	ION			TOTAL E	CAVATION COSTS-	\$10,001.32
CULVERTS - MATE	ERIALS &	INOTALLA	ION					
Culverts	LF of 18"	\$4,200.00						
	LF of 24"			Bands				
	LF of 54"				ea. of 54"	74.00		
Culvert M		φ-1,000.00		•	04. 0. 0 .			
	markers	\$190.00						
		•				TOTAL	_ CULVERT COSTS =	\$9,684.00
					F	ROJECT N	NO. 3 TOTAL COST =	\$26,545.32
					F	ROJECT	NO. 3 TOTAL COST =	\$26,545.32
PROJECT NO. 4:	. 6	" doon =	31 cyleta		F	ROJECT	NO. 3 TOTAL COST =	\$26,545.32
SURFACING	6	" deep =	31 cy/sta	· @				\$26,545.32
SURFACING G to I (Pit Rd)	3,695	cy of	3" - 0	. @	\$10.58	per cy =	\$39,095.22	\$26,545.32
SURFACING G to I (Pit Rd) Turnouts (15)	3,695 165	cy of cy of	3" - 0 3" - 0	@	\$10.58 \$10.58	per cy = per cy =	\$39,095.22 \$1,745.70	\$26,545.32
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround	3,695 165 16	cy of cy of cy of	3" - 0 3" - 0 3" - 0	@	\$10.58 \$10.58 \$10.58	per cy = per cy = per cy =	\$39,095.22 \$1,745.70 \$169.28	\$26,545.32
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction	3,695 165	cy of cy of	3" - 0 3" - 0	@	\$10.58 \$10.58 \$10.58	per cy = per cy =	\$39,095.22 \$1,745.70	\$26,545.32
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding &	3,695 165 16 12	cy of cy of cy of cy of	3" - 0 3" - 0 3" - 0 3" - 0	@ @	\$10.58 \$10.58 \$10.58 \$10.58	per cy = per cy = per cy =	\$39,095.22 \$1,745.70 \$169.28	\$26,545.32
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding & Backfill	3,695 165 16 12 360	cy of cy of cy of cy of	3" - 0 3" - 0 3" - 0	@ @ @	\$10.58 \$10.58 \$10.58 \$10.58	per cy = per cy = per cy = per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96	\$26,545.32
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding & Backfill Curve Widening	3,695 165 16 12	cy of cy of cy of cy of	3" - 0 3" - 0 3" - 0 3" - 0 1 1/2" - 0	@ @	\$10.58 \$10.58 \$10.58 \$10.58 \$9.86 \$10.58	per cy = per cy = per cy = per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96 \$3,549.60	\$26,545.32
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding & Backfill Curve Widening Stump Backfill	3,695 165 16 12 360 56	cy of cy of cy of cy of cy of	3" - 0 3" - 0 3" - 0 3" - 0 1 1/2" - 0 3" - 0	@ @ @	\$10.58 \$10.58 \$10.58 \$10.58 \$10.58 \$9.86 \$10.58 \$9.86	per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96 \$3,549.60 \$592.48	\$26,545.32
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding & Backfill Curve Widening Stump Backfill	3,695 165 16 12 360 56 60	cy of cy of cy of cy of cy of cy of cy of	3" - 0 3" - 0 3" - 0 3" - 0 1 1/2" - 0 3" - 0 3" - 0 24" - 6"	@ @ @ @ @	\$10.58 \$10.58 \$10.58 \$10.58 \$9.86 \$10.58 \$9.86 \$3.60	per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96 \$3,549.60 \$592.48 \$591.60 \$259.20	\$26,545.32
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding & Backfill Curve Widening Stump Backfill Energy Dissipator	3,695 165 16 12 360 56 60 72 4,436 360	cy of cy of cy of cy of cy of cy of cy of	3" - 0 3" - 0 3" - 0 3" - 0 1 1/2" - 0 3" - 0 24" - 6"	@ @ @ @ @	\$10.58 \$10.58 \$10.58 \$10.58 \$9.86 \$10.58 \$9.86 \$3.60	per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96 \$3,549.60 \$592.48 \$591.60 \$259.20	\$26,545.32
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding & Backfill Curve Widening Stump Backfill Energy Dissipator	3,695 165 16 12 360 56 60 72 4,436 360 60	cy of	3" - 0 3" - 0 3" - 0 3" - 0 1 1/2" - 0 3" - 0 24" - 6" 1 1/2" - 0 3" - 0	@ @ @ @ @	\$10.58 \$10.58 \$10.58 \$10.58 \$9.86 \$10.58 \$9.86 \$3.60 \$9.86 \$9.86	per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96 \$3,549.60 \$592.48 \$591.60 \$259.20 \$3,549.60 \$591.60	\$26,545.32
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding & Backfill Curve Widening Stump Backfill Energy Dissipator	3,695 165 16 12 360 56 60 72 4,436 360	cy of	3" - 0 3" - 0 3" - 0 3" - 0 1 1/2" - 0 3" - 0 24" - 6" 1 1/2" - 0 3" - 0 3" - 0	@ @ @ @ @	\$10.58 \$10.58 \$10.58 \$10.58 \$9.86 \$10.58 \$9.86 \$3.60 \$9.86 \$9.86 \$10.58	per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96 \$3,549.60 \$592.48 \$591.60 \$259.20 \$3,549.60 \$591.60 \$41,729.64	\$26,545.32
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding & Backfill Curve Widening Stump Backfill Energy Dissipator	3,695 165 16 12 360 56 60 72 4,436 360 60	cy of	3" - 0 3" - 0 3" - 0 3" - 0 1 1/2" - 0 3" - 0 24" - 6" 1 1/2" - 0 3" - 0	@ @ @ @ @	\$10.58 \$10.58 \$10.58 \$10.58 \$9.86 \$10.58 \$9.86 \$3.60 \$9.86 \$9.86 \$10.58	per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96 \$3,549.60 \$592.48 \$591.60 \$259.20 \$3,549.60 \$591.60	\$26,545.32
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding & Backfill Curve Widening Stump Backfill Energy Dissipator	3,695 165 16 12 360 56 60 72 4,436 360 60 3,944	cy of	3" - 0 3" - 0 3" - 0 3" - 0 1 1/2" - 0 3" - 0 24" - 6" 1 1/2" - 0 3" - 0 3" - 0	@ @ @ @ @	\$10.58 \$10.58 \$10.58 \$10.58 \$9.86 \$10.58 \$9.86 \$3.60 \$9.86 \$10.58 \$3.60	per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96 \$3,549.60 \$592.48 \$591.60 \$259.20 \$3,549.60 \$591.60 \$41,729.64	\$26,545.32 \$46,130.04
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding & Backfill Curve Widening Stump Backfill Energy Dissipator Total =	3,695 165 16 12 360 56 60 72 4,436 360 60 3,944	cy of	3" - 0 3" - 0 3" - 0 3" - 0 1 1/2" - 0 3" - 0 24" - 6" 1 1/2" - 0 3" - 0 3" - 0	@ @ @ @ @	\$10.58 \$10.58 \$10.58 \$10.58 \$9.86 \$10.58 \$9.86 \$3.60 \$9.86 \$10.58 \$3.60	per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96 \$3,549.60 \$592.48 \$591.60 \$259.20 \$3,549.60 \$591.60 \$41,729.64 \$259.20	
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding & Backfill Curve Widening Stump Backfill Energy Dissipator Total = PROJECT NO. 7: Grass seed and fer	3,695 165 16 12 360 56 60 72 4,436 360 60 3,944 72	cy of	3" - 0 3" - 0 3" - 0 3" - 0 1 1/2" - 0 3" - 0 24" - 6" 1 1/2" - 0 3" - 0 3" - 0 24" - 6"	@ @ @ @ @	\$10.58 \$10.58 \$10.58 \$10.58 \$9.86 \$10.58 \$9.86 \$3.60 \$9.86 \$10.58 \$3.60	per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96 \$3,549.60 \$592.48 \$591.60 \$259.20 \$3,549.60 \$591.60 \$41,729.64 \$259.20 NO. 4 TOTAL COST =	
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding & Backfill Curve Widening Stump Backfill Energy Dissipator Total = PROJECT NO. 7: Grass seed and fer disturbed soil.	3,695 165 16 12 360 56 60 72 4,436 360 60 3,944 72	cy of	3" - 0 3" - 0 3" - 0 1 1/2" - 0 3" - 0 3" - 0 24" - 6" 1 1/2" - 0 3" - 0 3" - 0 24" - 6"	@ @ @ @ @ @ @ acres @	\$10.58 \$10.58 \$10.58 \$10.58 \$9.86 \$10.58 \$9.86 \$3.60 \$9.86 \$10.58 \$3.60	per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96 \$3,549.60 \$592.48 \$591.60 \$259.20 \$3,549.60 \$591.60 \$41,729.64 \$259.20 NO. 4 TOTAL COST =	
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding & Backfill Curve Widening Stump Backfill Energy Dissipator Total = PROJECT NO. 7: Grass seed and fer disturbed soil. Mulch	3,695 165 16 12 360 56 60 72 4,436 360 60 3,944 72	cy of	3" - 0 3" - 0 3" - 0 3" - 0 1 1/2" - 0 3" - 0 24" - 6" 1 1/2" - 0 3" - 0 3" - 0 24" - 6"	@ @ @ @ @ @ @ @ @ @ acres @ bales @	\$10.58 \$10.58 \$10.58 \$10.58 \$9.86 \$10.58 \$9.86 \$3.60 \$9.86 \$10.58 \$3.60	per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96 \$3,549.60 \$592.48 \$591.60 \$259.20 \$3,549.60 \$591.60 \$41,729.64 \$259.20 NO. 4 TOTAL COST =	
SURFACING G to I (Pit Rd) Turnouts (15) Turnaround Junction Culvert Bedding & Backfill Curve Widening Stump Backfill Energy Dissipator Total = PROJECT NO. 7: Grass seed and fer disturbed soil.	3,695 165 16 12 360 56 60 72 4,436 360 60 3,944 72	cy of	3" - 0 3" - 0 3" - 0 3" - 0 1 1/2" - 0 3" - 0 24" - 6" 1 1/2" - 0 3" - 0 3" - 0 24" - 6"	@ @ @ @ @ @ @ acres @	\$10.58 \$10.58 \$10.58 \$10.58 \$9.86 \$10.58 \$9.86 \$3.60 \$9.86 \$10.58 \$3.60 \$10.58 \$3.60	per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96 \$3,549.60 \$592.48 \$591.60 \$259.20 \$3,549.60 \$591.60 \$41,729.64 \$259.20 NO. 4 TOTAL COST = \$229.09 = \$224.00 \$110.00	\$46,130.04
SURFACING G to I (Pit Rd) Furnouts (15) Furnaround Junction Culvert Bedding & Backfill Curve Widening Stump Backfill Energy Dissipator Total = PROJECT NO. 7: Grass seed and fer disturbed soil. Mulch	3,695 165 16 12 360 56 60 72 4,436 360 60 3,944 72	cy of	3" - 0 3" - 0 3" - 0 3" - 0 1 1/2" - 0 3" - 0 24" - 6" 1 1/2" - 0 3" - 0 3" - 0 24" - 6"	@ @ @ @ @ @ @ @ @ @ acres @ bales @	\$10.58 \$10.58 \$10.58 \$10.58 \$9.86 \$10.58 \$9.86 \$3.60 \$9.86 \$10.58 \$3.60 \$10.58 \$3.60	per cy =	\$39,095.22 \$1,745.70 \$169.28 \$126.96 \$3,549.60 \$592.48 \$591.60 \$259.20 \$3,549.60 \$591.60 \$41,729.64 \$259.20 NO. 4 TOTAL COST =	

Timber Sale:		Clear Hea	ıd		Timber	Sale No.:	341-16-4	3
Road Segment:	J to K	(Eastside	Grade)	-	lmp	orovement:	80+60 stations 1.53 miles	
PROJECT NO. 3								
IMPROVEMENT						,		
Removal of Large Stum	ps		12	ea. @	\$82.50	per ea. =	\$990.00	
Clean ditch & endhaul w		erial	20.65	sta @	\$60.00	per sta =	\$1,239.00	
Cutslope Excavation				•		•		
Clearing and Grubbir	ng (Scatte	er)	0.14	acres @	\$1,078.00	per acre =	\$147.25	
Excavate & Load	•	,	661	cy @		per cy =	\$952.00	
Haul			661	cy @		per cy =	\$1,183.39	
Compact Waste Area	а		661	cy @		per cy =	\$198.33	
Clean Existing Culverts			5			per ea. =	\$125.00	
Improve Landing			1			per ea. =	\$157.00	
Grade, Ditch, and Roll			80.60	_		per sta =	\$2,901.60	
Oraco, Ditori, and ritori				- 3 @			CAVATION COSTS=	\$7,893.57
CULVERTS - MATERIA	21 S & IN	STALLATIO	ON					40,000.00
Culverts	100 0111	217 (LL) (11)	-	-				
	LF of 18"	\$600.00						
		φουυ.υυ						
Culvert Ma		ቀረስ ሰሰ						
6	markers	\$60.00				TOTAL	CHIVEDT COSTS =	\$660.00
						IOIAL	. CULVERT COSTS =	\$000.00
					P	ROJECT N	IO. 3 TOTAL COST = _	\$8,553.57
PROJECT NO. 4:	6	" deep =	31 cy/sta				·····	
SURFACING			3" - 0	- @	¢11.00	nor ov =	\$22,407.00	
0+00 - 65+70	2,037	cy of		@		per cy = per cy =	\$1,089.00	
Turnouts (9)	99	cy of	3" - 0	@			\$264.00	
Junction	24	cy of	3" - 0	@		per cy =		
Landing	50	cy of	3" - 0	@	\$11.00	per cy =	\$550.00	
Culvert Bedding &		_	4.4700		* 40.00		#040.70	
Backfill	24	cy of	1 1/2" - 0	@	\$10.28	per cy =	\$246.72	
Stump Removal				_			****	
Backfill	96	cy of	3" - 0	@	\$10.28	per cy =	\$986.88	
Total =	2,330				.		خسوشه بالم	
	24	cy of	1 1/2" - 0			per cy =	\$246.72	
	96	cy of	3" - 0			per cy =	\$986.88	
	2,210	cy of	3" - 0		\$11.00	per cy =	\$24,310.00	
					Р	ROJECT N	IO. 4 TOTAL COST =	\$25,543.60
PROJECT NO. 7:		···			# 155 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		A4.05	
Grass seed and fertilize	areas of		0.01	acres @	\$425.00	per acre	= \$4.25	
disturbed soil.					<u>.</u>			
Mulch				bales @		per bale =		
Bio-bag			2	each @	\$5.00	per each	= \$10.00	
					Р	ROJECT N	IO. 7 TOTAL COST = _	\$30.25
			•					
							TOTAL COST = _	\$34,127.42

Timber Sale: _		Clear Hea	d			Timber	Sale No.:	341-16-	43
Road Segment:		L to M	****	-		lmp	rovement:	16+50 stations 0.31 miles	
PROJECT NO. 3									
EXCAVATION									
Clean ditch & endhau	ul waste	material	16.50		sta @	\$60.00	per sta =	\$990.00	
Construct Turnaroun	d (1)		1		ea. @	\$82.50	per ea. =	\$82.50	
Clean Existing Culve	rts		2		ea. @		per ea. =	\$50.00	
•						TO	OTAL EXC	AVATION COSTS=	\$1,122.50
CULVERTS - MATE	RIALS	& INSTALL	ATION						
Culvert Ma	rkers		****	_					
1 r	narkers	\$10.00							
							TOTAL (CULVERT COSTS =	\$10.00
						PR	OJECT NO). 3 TOTAL COST =	\$1,132.50
PROJECT NO. 4:			.189						
SURFACING	12	" deep =	65 cy/sta	_					
Turnaround	20	cy of	3" - Ŏ	@		\$10.91	per cy =	<u>\$218.20</u>	
Total = ¯	20	_							
	20	cy of	3" - 0			\$10.91	per cy =	\$218.20	
						PR	OJECT NO	O. 4 TOTAL COST =	\$218.20
								TOTAL COST =	\$1,350.70

Timber Sale:		Clear Hea	d			Timber	Sale No. : _	341-16-4	13
Road Segment:		N to O		-		lmp	rovement: _	7+55 stations 0.14 miles	
PROJECT NO. 1									
EXCAVATION	,								
Clean ditch & endhau	l waste ma	aterial	7.55		sta @		per sta =	\$453.00	
Clean Existing Culver	ts		2		-	-	per ea. =	\$50.00	
Grade, Ditch, and Rol			7.55	i	sta @		per sta =	<u>\$271.80</u>	
						T	OTAL EXC	AVATION COSTS=	\$774.80
CULVERTS - MATER	RIALS & I	<u>NSTALLAT</u>	ION	_					
Culvert M	arkers								
1	markers	\$10.00							
							TOTAL C	ULVERT COSTS =	\$10.00
						PR	OJECT NO	. 1 TOTAL COST = _	\$784.80
PROJECT NO. 2:									
SURFACING	6	" deep =	31 cy/sta						
N to O	234	cy of	1 1/2" - 0	_@		\$12.61	per cy =	\$2,950.74	
Junction	12	cy of	1 1/2" - 0	@		\$12.61	per cy =	<u>\$151.32</u>	
Total =	246	_ •							
	246	cy of	1 1/2" - 0			\$12.61	per cy =	\$3,102.06	
						PR	OJECT NO). 2 TOTAL COST = _	\$3,102.06
								We-	
								TOTAL COST =	\$3,886.86

Timber Sale: Clear Head Timber Sale No. : 341-16-43

PROJECT NO. 5

Crush 10,000 cy 11,600 cy of 1 1/2" - 0 @ \$8.64 per cy = \$100,224.00

Build and Shape Stockpile 11,600 cy of 1 1/2" - 0 @ \$1.10 per cy = \$12,760.00

TOTAL COST = \$112,984.00

Timber Sale: Clear Head Timber Sale No. : 341-16-43

 PROJECT NO. 6

 Drift fill material
 14,000
 cy @ \$1.50
 \$21,000.00

 Compact fill
 14,000
 cy @ \$0.30
 \$er cy = \$4,200.00

TOTAL COST = \$25,200.00

Timber Sale:	Clear He	ad	_imber Sale No. :	341-16-43
PROJECT NO. 8:				
Road Brushing			,	
Station	Brush Density	miles @	<u> \$ per mile =</u>	
E to F	Light	1.83	\$700.00	\$1,281.00
F to G	Light	3.73	\$700.00	\$2,611.00
G to H	Light	0.17	\$700.00	\$119.00
G to I	Light	2.26	\$700.00	\$1,582.00
J to K	Light	1.25	\$700.00	\$875.00
J to K	Heavy	0.28	\$1,300.00	\$364.00
L to M	Moderate	0.32	\$1,000.00	\$320.00
	Total Miles=	9.84		
			TOTAL COST =	\$7,152.00

ROCK PIT DEVELOPMENT AND CRUSHING COST SUMMARY

	Ti	mber Sale:	Tanak Sandalah Maria	Clear He	ead			
	Sa	le Number:		341-16-	-43	•		
		Pit Name:	Lo	wer Rock (Creek Pit			
Şwell: Shrinkage:	130% 116%		1-	-1/2"-0 (trk 3"-0 (trk	measure) measure)		-	9,020 cy 8,037 cy
Drill Pct.:	100%	Stockpile		kpile meas				10,000 cy
				Total Trụck	_			28,657 cy
			Tot	al In Place	Yardage:		-	22,044 cy
Pit Development, Was	te Area Clea	ring, & Stoc	kpile	Site Prep				\$1,750.00
Drill & Shoot:		\$2.80	/cy	Х	22,044	су	=	\$61,721.86
Load and Haul to Crus	shing Site	\$1.30	/cy	X	28,657	су	=	\$37,253.55
Load Crusher:		\$0.80	/cy	Х	28,657	су	=	\$22,925.26
Crushing (1-1/2" - 0):		\$3.30	/cy	Х	9,020	су	=	\$29,765.34
Crushing (3" - 0):	,	\$3.30	/cy	Х	8,037	су	=	\$26,521.36
Crushing (Stockpile):	'	\$3.30	/cy	Х	11,600	су	=	\$38,280.00
Load Dump Truck:	,	\$0.80	/cy	Х	17,057	су	=	\$13,645.26
	'		_			S	ubtotal	\$231,862.63
Equipment Cleaning								\$1,000.00
Move in Crusher (3 St	age)							\$3,286.00
Set up Crusher								\$3,327.00
Move in and set up Dr	ill and Compr	essor						\$557.33
Move in Excavator								\$929.12
Move in Loader								\$818.53
Pump Development A	rea During Cı	ushing						\$2,850.00
Clean Up and Block P	it							\$1,750.00
Gradation Tests (\$71.		\$71.50	/200	00cy x	15	tes	ts	\$1,072.50
Change Gradation	• /	<u>, , , , , , , , , , , , , , , , , , , </u>	-	•		•		\$275.00
Ü						S	Subtotal	\$15,865.48
ROCK DEVELOPME	ENT COST =	\$8.64/cy		TOTAL P	RODUCT	ION	COST	\$247,728.11

CRUISE REPORT Clear Head 341-16-43

1. LOCATION: Portion of Section 13, T4N, R6W, W.M., Clatsop County, Oregon and portion of Section 18, T4N, R5W, W.M., Columbia County, Oregon.

2. CRUISE DESIGN:

The cruise design assumed a Coefficient of Variation of 60%, an average stand diameter of 19 inches, a desired sampling error of 9% and a minimum sample size of 100 grade trees. Precruise plots indicated that approximately 5-6 trees per plot could be realized with a 40 BAF prism.

3. SAMPLING METHOD:

The Sale Areas were cruised in March and April, 2015 with 29 variable radius grade plots and 29 variable radius count plots using a 40 BAF prism. In Area 1 plots were laid out on a 4 chain x 5 chain grid. In Area 2 plots were laid out on a 5 chain x 5 chain grid. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

4. CRUISE RESULTS

144 trees were measured and graded producing a cumulative sampling error of 6.1% on the basal area and 7% on the Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All grade plot sample trees were measured and graded following Columbia River Log Scale grade rules and favoring 40 foot segments.

a) Height Standards:

Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top or one quarter of the DBH for trees over twenty-four inches in diameter.

- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors were measured for each grade tree using a form point of 16 feet.

5. DATA PROCESSING

- a) Volumes and Statistics: Volume estimates and sampling statistics, were derived from Super Ace 2008 cruise software.
- b) **Deductions:** Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.

6. Cruisers:	The sale was	cruised by O	DF cruisers	Mark C.	Savage,	Joe P.	Koch,	Dax M.
Strubb and K	evin Gehrig.				_			

Prepared by:		
	Dax Strubb	Date
Reviewed by:		
	Eric Foucht	Date

TC PS	TATS					DJECT : ROJECT		STICS FIN		PAGE 1 DATE 7/16 //				
ГWР	RGE	SC	TRACT	•	ГҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt		
04N 04N	06 06W	13 13	00A1 00A2		00MC 00MC			167.00	58	294	S	W		
	***************************************					TREES		ESTIMATED TOTAL		ERCENT SAMPLE				
			PLOTS	TREES		PER PLOT		TREES		TREES				
TOTA	AL		58	294		5.1								
CRU	ISE		27	144		5.3		18,071		.8				
	COUNT													
	OREST		20	150		5.2								
COU			29 2	130		3.2								
100 %			2											
					STA	ND SUM	MARY							
		S	AMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET		
			TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC		
DOU	G FIR-L		11	.9	38.5	137	1.2	7.6	1,789	1,752	350	350		
DOU	IG FIR-T		130	106.5	18.2	104	45.0	191.9	33,318	32,891	7,684	7,684		
	DER-T		2	.6	24.9	68	0.4	2.1	94	94	64			
	EMLOCK-	L	1	.2	26.0	142	0.1	.7	200	200	37	37		
TOT	AL		144	108.2	18.5	104	47.0	202.3	35,401	34,936	8,135	8,135		
CON	NFIDENC 68			THE SAMPI T OF 100 TI		ME WILL	BE WITH	HIN THE SAI	MPLE ERRO)R				
CL	68.1		COEFF			SAMPL	E TREE:	S - BF	#	OF TREES	REQ.	INF. POP.		
SD:	1.0		VAR.%	S.E.%	L	.OW	AVG	HIGH		5	10	15		
	IG FIR-L		26.0	8.2		1,732	1,887	2,042						
DOU	IG FIR-T		77.2	6.8		5/1/1								
RAI	DER-T					540 150	579 150	618 150						
	DER-T EMLOCK:	·L				150	150	150						
	EMLOCK-	·L	84.0	7.0						282	71	31		
WHE	EMLOCK-	·L	84.0 COEFF			150 630	150	150 724	#	282 OF TREES		31 INF. POP.		
WHE TOT CL SD:	EMLOCK- CAL 68.1 1.0	L		7.0 S.E.%	L	150 630	150 677	150 724 S - CF HIGH	#			INF. POP.		
WHE TOT CL SD:	EMLOCK- 'AL 68.1 1.0 IG FIR-L	·L	COEFF VAR.% 17.8	7.0 S.E.% 5.6	I	150 630 SAMPL OW 358	677 E TREE: AVG 379	150 724 S - CF HIGH 400	#	OF TREES	REQ.	INF. POP.		
WHE TOT CL SD: DOU DOU	EMLOCK- CAL 68.1 1.0 JG FIR-L JG FIR-T	·L	COEFF VAR.% 17.8 69.1	7.0 S.E.% 5.6 6.1	L	150 630 SAMPL OW 358 123	150 677 E TREE: AVG 379 130	724 S - CF HIGH 400 138	#	OF TREES	REQ.	INF. POP.		
CL SD: DOU DOU R AL	68.1 1.0 IG FIR-L IGER-T		COEFF VAR.% 17.8	7.0 S.E.% 5.6	L	150 630 SAMPL OW 358	677 E TREE: AVG 379	150 724 S - CF HIGH 400	#	OF TREES	REQ.	INF. POP.		
CL SD: DOU DOU R AL WHE	68.1 1.0 IG FIR-L JOER-T LDER-T EMLOCK		COEFF VAR.% 17.8 69.1 8.7	7.0 S.E.% 5.6 6.1 8.2	L	150 630 SAMPL OW 358 123 94	150 677 E TREE: AVG 379 130 103	150 724 S - CF HIGH 400 138 111	#	OF TREES 5	REQ.	INF. POP.		
CL SD; DOU DOU R AL WHE	68.1 1.0 IG FIR-L JOER-T LDER-T EMLOCK		COEFF VAR.% 17.8 69.1 8.7 73.5	7.0 S.E.% 5.6 6.1	1	150 630 SAMPL OW 358 123 94 140	677 E TREES AVG 379 130 103	724 S - CF HIGH 400 138		OF TREES 5	REQ. 10	INF. POP. 15		
CL SD: DOU R AL WHE TOT	68.1 1.0 IG FIR-L JG FIR-T LDER-T EMLOCK- CAL 68.1		COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF	7.0 S.E.% 5.6 6.1 8.2 6.1		150 630 SAMPL OW 358 123 94 140 TREES	677 E TREE: AVG 379 130 103 150	724 S - CF HIGH 400 138 111 159		OF TREES 5 216 OF PLOTS	REQ. 10 54 REQ.	INF. POP. 15		
CL SD: DOU R AL WHE TOT CL SD:	68.1 1.0 IG FIR-L IG FIR-T LDER-T EMLOCK- CAL 68.1 1.0		COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.%	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.%		150 630 SAMPL OW 358 123 94 140	677 E TREES AVG 379 130 103	150 724 S - CF HIGH 400 138 111		OF TREES 5	REQ. 10	INF. POP. 15		
CL SD: CL SD: DOU	68.1 1.0 IG FIR-L JG FIR-T LDER-T EMLOCK- CAL 68.1		COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF	7.0 S.E.% 5.6 6.1 8.2 6.1		150 630 SAMPL OW 358 123 94 140 TREES	150 677 E TREE: AVG 379 130 103 150 ACRE AVG	150 724 S - CF HIGH 400 138 111 159 HIGH		OF TREES 5 216 OF PLOTS	REQ. 10 54 REQ.	INF. POP. 15		
WHE TOT CL SD: DOU R AL WHE TOT CL SD: DOU R AL	68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L JG FIR-L JG FIR-L LDER-T	-1.	COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.% 226.9	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.% 29.8 7.9 56.8		150 630 SAMPL OW 358 123 94 140 TREES	150 677 E TREE: AVG 379 130 103 150 ACRE AVG 1 106 1	150 724 S - CF HIGH 400 138 111 159 HIGH 1 115		OF TREES 5 216 OF PLOTS	REQ. 10 54 REQ.	INF. POP. 15		
WHE TOT CL SD: DOU R AL WHE TOT CL SD: DOU R AL WHE WHE R AL WHE	68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-L IG FIR-L EMLOCK EMLOCK CAL	-1.	COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.% 226.9 60.1 432.9 761.6	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.% 29.8 7.9 56.8 99.9		150 630 SAMPL OW 358 123 94 140 TREES OW 1 98 0 0	150 677 E TREE: AVG 379 130 103 150 ACRE AVG 1 106 1 0	150 724 S - CF HIGH 400 138 111 159 HIGH 1 115 1 0		OF TREES 5 216 OF PLOTS 5	REQ. 10 54 REQ. 10	INF. POP. 15		
WHE TOT CL SD: DOU R AL WHE TOT CL SD: DOU R AL	68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-L IG FIR-L EMLOCK EMLOCK CAL	-1.	COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.% 226.9 60.1 432.9	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.% 29.8 7.9 56.8		150 630 SAMPL OW 358 123 94 140 TREES OW 1 98 0	150 677 E TREE: AVG 379 130 103 150 ACRE AVG 1 106 1	150 724 S - CF HIGH 400 138 111 159 HIGH 1 115		OF TREES 5 216 OF PLOTS	REQ. 10 54 REQ.	INF. POP. 15		
CL SD: DOU DOU R AL WHE TOT DOU R AL WHE TOT CL CL CL	68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 G FIR-L A EMLOCK AL	-1.	COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.% 226.9 60.1 432.9 761.6 59.4 COEFF	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.% 29.8 7.9 56.8 99.9 7.8	L	150 630 SAMPL OW 358 123 94 140 TREES OW 1 98 0 0 100 BASAL	150 677 E TREE: AVG 379 130 103 150 ACRE AVG 1 106 1 0 108 AREA/A	150 724 S - CF HIGH 400 138 111 159 HIGH 1 115 1 0 117 CRE	#	OF TREES 5 216 OF PLOTS 5	REQ. 10 54 REQ. 10 35 REQ.	INF. POP. 15 24 INF. POP. 16 INF. POP.		
CL SD: DOU R AL WHE TOT CL SD:	68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-T EMLOCK CAL 68.1 1.0 68.1 1.0 68.1	-1.	COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.% 226.9 60.1 432.9 761.6 59.4 COEFF VAR.%	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.% 29.8 7.9 56.8 99.9 7.8 S.E.%	L	150 630 SAMPL OW 358 123 94 140 TREES OW 1 98 0 0 100 BASAL	150 677 E TREE: AVG 379 130 103 150 ACRE AVG 1 106 1 0 108 AREA/A	150 724 S - CF HIGH 400 138 111 159 HIGH 1 115 1 0 117 CRE HIGH	#	OF TREES 5 216 OF PLOTS 5	REQ. 10 54 REQ. 10	INF. POP. 15 24 INF. POP. 16 INF. POP.		
CL SD: DOU R AL WHE TOT CL SD: DOU CL SD:	68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-L IG FIR-L IG FIR-L IG FIR-T L EMLOCK AL 68.1 1.0 JG FIR-L JG FIR-L JG FIR-L JG FIR-T JG FIR-L JG FIR-T	-1.	COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.% 226.9 60.1 432.9 761.6 59.4 COEFF VAR.% 229.0	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.% 29.8 7.9 56.8 99.9 7.8 S.E.% 30.0	L	150 630 SAMPL OW 358 123 94 140 TREES O 0 100 BASAL OW 5	150 677 E TREE: AVG 379 130 103 150 ACRE AVG 1 106 1 0 108 AREA/A AVG 8	150 724 S - CF HIGH 400 138 111 159 HIGH 1 115 1 0 117 CRE HIGH 10	#	OF TREES 5 216 OF PLOTS 5	REQ. 10 54 REQ. 10 35 REQ.	INF. POP. 15 24 INF. POP. 16 INF. POP.		
WHE TOT CL SD: DOU R AL WHE TOT CL SD: DOU R AL WHE TOT CL SD: DOU DOU R AL WHE TOT	68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-L IG FIR-L EMLOCK AL 68.1 1.0 JG FIR-L JG FIR-L JG FIR-T JG FIR-T JG FIR-L	-1.	COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.% 226.9 60.1 432.9 761.6 59.4 COEFF VAR.% 229.0 49.1	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.% 29.8 7.9 56.8 99.9 7.8 S.E.% 30.0 6.4	L	150 630 SAMPL OW 358 123 94 140 TREES OW 1 98 0 0 100 BASAL OW 5 180	150 677 E TREE: AVG 379 130 103 150 ACRE AVG 1 106 1 0 108 AREA/A AVG 8 192	150 724 S - CF HIGH 400 138 111 159 HIGH 1 115 1 0 117 CRE HIGH 10 204	#	OF TREES 5 216 OF PLOTS 5	REQ. 10 54 REQ. 10 35 REQ.	INF. POP. 15 24 INF. POP. 16 INF. POP.		
CL SD: DOU R ALL WHIE TOT CL SD: DOU R ALL WHIE TOT CL SD: DOU R ALL WHIE TOT CL SD: DOU R ALL SD: D	68.1 1.0 IG FIR-L IG FIR-T EMLOCK CAL 68.1 1.0 IG FIR-L IG FIR-L DER-T EMLOCK CAL 68.1 1.0 IG FIR-L DIG FIR-L DIG FIR-L DIG FIR-T DIG FIR-T DIG FIR-T DIGR-T	I.	COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.% 226.9 60.1 432.9 761.6 59.4 COEFF VAR.% 229.0 49.1 431.9	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.% 29.8 7.9 56.8 99.9 7.8 S.E.% 30.0	L	150 630 SAMPL OW 358 123 94 140 TREES O 0 100 BASAL OW 5	150 677 E TREE: AVG 379 130 103 150 ACRE AVG 1 106 1 0 108 AREA/A AVG 8	150 724 S - CF HIGH 400 138 111 159 HIGH 1 115 1 0 117 CRE HIGH 10	#	OF TREES 5 216 OF PLOTS 5	REQ. 10 54 REQ. 10 35 REQ.	INF. POP. 15 24 INF. POP. 16 INF. POP.		
CL SD: DOU R ALL WHIE TOT CL SD: DOU R ALL WHIE TOT CL SD: DOU R ALL WHIE TOT CL SD: DOU R ALL SD: D	68.1 1.0 IG FIR-L IG FIR-T EMLOCK- CAL 68.1 1.0 IG FIR-L IG FIR-T EMLOCK- CAL 68.1 1.0 IG FIR-T EMLOCK- CAL 68.1 1.0 IG FIR-T EMLOCK- CAL 68.1 1.0 IG FIR-T EMLOCK- CAL IG FIR-T EMLOCK- CAL IG FIR-T EMLOCK-	I.	COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.% 226.9 60.1 432.9 761.6 59.4 COEFF VAR.% 229.0 49.1	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.% 29.8 7.9 56.8 99.9 7.8 S.E.% 30.0 6.4 56.7	L	150 630 SAMPL OW 358 123 94 140 TREES OW 1 98 0 100 BASAL OW 5 180 1	150 677 E TREE: AVG 379 130 103 150 ACRE AVG 1 106 1 0 108 AREA/A AVG 8 192 2	150 724 S - CF HIGH 400 138 111 159 HIGH 1 115 1 0 117 CRE HIGH 10 204 3	#	OF TREES 5 216 OF PLOTS 5	REQ. 10 54 REQ. 10 35 REQ.	INF. POP. 15 24 INF. POP. 15 16 INF. POP. 15		
CL SD: DOU R AL WHE TOT CL SD:	68.1 1.0 IG FIR-L IG FIR-T EMLOCK CAL 68.1 1.0 IG FIR-L IG FIR-T LDER-T EMLOCK CAL 68.1 1.0 IG FIR-L IG FIR-T LDER-T EMLOCK CAL 68.1 1.0 IG FIR-T LDER-T EMLOCK CAL IG FIR-T LOER-T EMLOCK CAL IG FIR-T LOER-T EMLOCK CAL	I.	COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.% 226.9 60.1 432.9 761.6 59.4 COEFF VAR.% 229.0 49.1 431.9 761.6 46.3	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.% 29.8 7.9 56.8 99.9 7.8 S.E.% 30.0 6.4 56.7 99.9	L	150 630 SAMPL OW 358 123 94 140 TREES O 0 100 BASAL OW 5 180 1 0 190	150 677 E TREE: AVG 379 130 103 150 ACRE AVG 1 106 1 0 108 AREA/A AVG 8 192 2 1 202	150 724 S - CF HIGH 400 138 111 159 HIGH 1 115 1 0 117 CRE HIGH 10 204 3 1	#	OF TREES 5 216 OF PLOTS 5 141 OF PLOTS 5	REQ. 10 54 REQ. 10 35 REQ. 10	INF. POP. 15 24 INF. POP. 15 16 INF. POP. 15		
CL SD: DOU R ALL WHEE TOT CL SD: DOU R ALL WHEE TOT CL SD:	68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-L IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-T EMLOCK EMLOC	I.	COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.% 226.9 60.1 432.9 761.6 59.4 COEFF VAR.% 229.0 49.1 431.9 761.6 46.3 COEFF	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.% 29.8 7.9 56.8 99.9 7.8 S.E.% 30.0 6.4 56.7 99.9 6.1	<u>I</u>	150 630 SAMPL OW 358 123 94 140 TREES OW 1 98 0 100 BASAL OW 5 180 1 0 190 NET BE	150 677 E TREE: AVG 379 130 103 150 ACRE AVG 1 106 1 0 108 AREA/A AVG 8 192 2 1 202 E/ACRE	150 724 S - CF HIGH 400 138 111 159 HIGH 1 115 1 0 117 CRE HIGH 10 204 3 1 215	#	OF TREES 5 216 OF PLOTS 5 141 OF PLOTS 5	REQ. 10 54 REQ. 10 35 REQ. 10	INF. POP. 15 16 INF. POP. 15 10 INF. POP.		
WHE TOT CL SD: DOU R AL WHE TOT CL SD: DOU R AL WHE TOT CL SD:	68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-L IG FIR-L DER-T EMLOCK AL 68.1 1.0 IG FIR-L DER-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0	I.	COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.% 226.9 60.1 432.9 761.6 59.4 COEFF VAR.% 229.0 49.1 431.9 761.6 46.3 COEFF VAR.%	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.% 29.8 7.9 56.8 99.9 7.8 S.E.% 30.0 6.4 56.7 99.9	<u>I</u>	150 630 SAMPL OW 358 123 94 140 TREES OW 1 98 0 100 BASAL OW 5 180 1 0 190 NET BE	150 677 E TREE: AVG 379 130 103 150 ACRE AVG 1 106 1 0 108 AREA/A AVG 8 192 2 1 202 E/ACRE AVG	150 724 S - CF HIGH 400 138 111 159 HIGH 1 115 1 0 117 CRE HIGH 10 204 3 1 215 HIGH	#	OF TREES 5 216 OF PLOTS 5 141 OF PLOTS 5	REQ. 10 54 REQ. 10 35 REQ. 10	15 24 INF. POP. 15 16 INF. POP. 15		
WHE TOT CL SD: DOU R AL WHE TOT CL SD: DOU R AL WHE TOT CL SD: DOU CL SD:	68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-L IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-T EMLOCK AL 68.1 1.0 IG FIR-L IG FIR-T EMLOCK EMLOC	I.	COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.% 226.9 60.1 432.9 761.6 59.4 COEFF VAR.% 229.0 49.1 431.9 761.6 46.3 COEFF	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.% 29.8 7.9 56.8 99.9 7.8 S.E.% 30.0 6.4 56.7 99.9 6.1 S.E.%	I.	150 630 SAMPL OW 358 123 94 140 TREES OW 1 98 0 100 BASAL OW 5 180 1 0 190 NET BE	150 677 E TREE: AVG 379 130 103 150 ACRE AVG 1 106 1 0 108 AREA/A AVG 8 192 2 1 202 E/ACRE	150 724 S - CF HIGH 400 138 111 159 HIGH 1 115 1 0 117 CRE HIGH 10 204 3 1 215	#	OF TREES 5 216 OF PLOTS 5 141 OF PLOTS 5	REQ. 10 54 REQ. 10 35 REQ. 10	INF. POP. 15 16 INF. POP. 15 10 INF. POP.		
WHE TOT CL SD: DOU R AL WHE TOT CL SD: DOU R AL WHE TOT CL SD: DOU CL SD: DOU DOU R AL WHE TOT CL DOU DOU R AL WHE TOT CL DOU	68.1 1.0 IG FIR-L IG FIR-T EMLOCK- CAL 68.1 1.0 IG FIR-L IG FIR-T EMLOCK- CAL 68.1 1.0 IG FIR-T EMLOCK- CAL 68.1 1.0 IG FIR-L IG FIR-T EMLOCK- CAL 68.1 1.0 IG FIR-L IG FIR-T EMLOCK- CAL 68.1 1.0 IG FIR-L IG FIR-T EMLOCK- CAL 68.1 1.0 IG FIR-T EMLOCK- CAL	I.	COEFF VAR.% 17.8 69.1 8.7 73.5 COEFF VAR.% 226.9 60.1 432.9 761.6 59.4 COEFF VAR.% 229.0 49.1 431.9 761.6 46.3 COEFF VAR.%	7.0 S.E.% 5.6 6.1 8.2 6.1 S.E.% 29.8 7.9 56.8 99.9 7.8 S.E.% 30.0 6.4 56.7 99.9 6.1 S.E.% 29.5	I.	150 630 SAMPL OW 358 123 94 140 TREES OW 1 98 0 100 BASAL OW 5 180 1 0 190 NET BE	150 677 E TREE: AVG 379 130 103 150 ACRE AVG 1 106 1 0 108 AREA/A AVG 8 192 2 1 202 E/ACRE AVG 1,752	150 724 S - CF HIGH 400 138 111 159 HIGH 1 115 1 0 117 CRE HIGH 10 204 3 1 215 HIGH 2,268	#	OF TREES 5 216 OF PLOTS 5 141 OF PLOTS 5	REQ. 10 54 REQ. 10 35 REQ. 10	INF. POP. 15 24 INF. POP. 15 16 INF. POP. 15		

TC PS	FATS				PROJECT PROJECT		ISTICS R FIN			PAGE DATE	2 7/16/2015
TWP	RGE	SC	TRACT	T	YPE	A	CRES	PLOTS	TREES	CuFt	BdFt
04N 04N	06 06W	13 13	00A1 00A2		MC MC		167.00	58	294	S	W
CL	68.1		COEFF		NET I	BF/ACRE			# OF PLOT	S REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
тот	AL		51.6	6.8	32,570	34,936	37,303		106	27	12
CL	68.1		COEFF		NET (CUFT FT/	ACRE		# OF PLOTS F	EQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR-L		228.1	29.9	245	350	455				
DOU	G FIR-T		52.8	6.9	7,151	7,684	8,216				
R AL	DER-T		432.0	56.7	28	64	100				
WHE	MLOCK	-L	761.6	99.9	0	37	74				
TOT	AL		48.7	6.4	7,615	8,135	8,655		95	24	11

TC. TST	ATS				ST PROJEC	ATIST	TICS CLR FIN			PAGE DATE 7	1 /15/2015
TWP	RGE	SECT T	RACT		TYPE		CRES	PLOTS	TREES	CuFt	BdFt
04N	06W		0A1		00MC		55.00	20	82	S	W
<u> </u>	0077			-	rrees		ESTIMATED TOTAL	P	ERCENT AMPLE		
		PLOTS	TREES	I	PER PLOT		TREES	Т	REES		
TOTA	L.	20	82	-	4.1						
	SE COUNT PREST	9	40		4,4		3,881		1.0		
COUI BLAN 100 %	NKS	10 1	. 42		4.2						
				STA	ND SUMI	MARY					
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOU	G FIR-L	4	.9	39.8	134	1.3	8.0	1,914	1,802	376	376
DOU	G FIR-T	35	69.1	20.2	117	34.3	154.0	27,306	27,024	6,452	6,452
	MLOCK-L	1	.5	26.0	142	0.4	2.0	608	608	112	112
TOT	AL	40	70.6	20.6	117	36.1	164.0	29,828	29,434	6,940	6,940
CON			THE SAMPL OF 100 THE		WILL BE	WITHI	N THE SAMP	LE ERROR			
CL:	68.1 %	COEFF			SAMPL	E TREE	S - BF	#	OF TREES	REQ.	INF. POP.
SD:	1.0	VAR,%	S.E.%)W	AVG	HIGH		5	10	15
DOU	G FIR-L G FIR-T MLOCK-L	40.6 64.4	23.2 10.9	1	537	1,963 602	2,418 668				
TOT		79. <i>2</i>	12.5		657	751	845		250	63	28
CL:	68.1 %	COEFF	,		SAMPI	E TREE	S-CF	#	OF TREES	REO.	INF. POP.
SD:	1.0	VAR.%	S.E.%	LO	OW .	AVG	HIGH		5	10	15
DOU	G FIR-L	20.2	11.5		363	411	458				
	G FIR-T MLOCK-L	57.3	9.7		126	140	153				
TOT		67.3	10.6		151	169	187		181	45	20
CL:	68.1 %	COEFF	?		TREES	ACRE		#	OF PLOTS	REQ.	INF. POP.
	1.0	VAR.%		LC	OW	AVG	HIGH		5	10	15
	G FIR-L	257.5	59.0		0	1	1				
	G FIR-T MLOCK-L	68.6 447.2	15.7 102.5		58	69 1	80 1				
TOT		66.3	15.2		60	71	81		185	46	21
CL:	68.1 %	COEFF	?		RASAL	AREA/A	ACRE	4	OF PLOTS	REO	INF. POP.
	1.0	VAR.%	6 S.E.%	LC	DASAL DW	AVG	HIGH	,,	5	10	15
	G FIR-L	261.6	60.0		3	8	13				
DOU	G FIR-T	53.5	12.3		135	154	173				
	MLOCK-L		102.5		1.46	2	4		O.F.	2.4	* *
TOT		47.4	10.9		146	164	182		95	24	11
	68.1 %	COEFF			NET BE		шен	#	OF PLOTS		INF. POP.
	1.0 G FIR-L	VAR.% 248.8	6 S.E.% 57.0	LC	OW 774	AVG 1,802	HIGH 2,830		5	10	15
	G FIR-L G FIR-T	53.2	12.2	2.		27,024	30,319				
	MLOCK-L		102.5		-	608	1,230				
TOT	AL	44.6	10.2	26	,426	29,434	32,441		84	21	9
CL:	68.1 %	COEFF	7		NET CU	JFT FT/	ACRE	#	OF PLOTS	REQ.	INF. POP.
	1.0	VAR.%		LC)W	AVG	HIGH		5	10	15
	G FIR-L	255.7	58.6		156	376	596				
	G FIR-T	53.3	12.2	;	5,664	6,452	7,240 227				
WHE	MLOCK-L	447.2	102.5			112	LL I				

TC TST	`ATS				PRO.	STATIS IECT	STICS CLR FIN	1		PAGE DATE	2 7/15/2015
TŴP 04N	RGE 06W	SECT 13	TRAC	Т	TYPE 00Me	=	55.00	PLOTS 20	TREES 82	CuFt S	BdFt W
CL: SD:	68.1 % 1.0	CO. VA	EFF R.	S.E.%	NET LOW	CUFT FI AVG	T/ACRE HIGH		# OF PLO 5	TS REQ. 10	INF. POP. 15
TOT	AL	45	.7	10.5	6,212	6,940	7,668		88	22	10

•

T 1	ГSРС	STG	R			Species,	Sort G Projec	rade - Boar t: CLF	d Foot	Volu	mes (Type)				I	Page Date Fime	7	1 /15/20 [:33:1	
T04N Twj 04N	p	6W Rg 06	-	Sec	Tract 0A1		Type 00M			ots 20	Samp	ole Tree 40	s	c s	uFt	Bdl W	Ft			00MC
Spp	S T	rt	Gr ad	% Net BdFt	Bd. Def%	Ft. per Ac Gross	re Net	Total Net MBF	Log S	cale I		1	g Lei	_	36-99	Ln :	Dia	ge Log Bd Ft	CF/ Lf	Logs Per /Acre
DF DF DF	T T T	^	CU 2M 3M 4M	65 30 5	1.6	18,001 8,099 1,206	17,718 8,099 1,206	975 445 66	93 100			3	2 0 46	1 48	95 99	2 39 40 27		109	0.00 2.25 0.73 0.38	3.1 45.3 74.5 32.1
DF '	T 7	Fotal		92	1.0	27,306	27,024	1,486	32	2 39		2	4	2	92	36		174	1.15	155.0
DF DF	L L		2M 3M	93 7	6.2	1,803 111	1,691 111	93 6	100	1	99		21	1	99 79	39 36		911 159		1.9 .7
DF	L 7	Fotal	ls	6	5.9	1,914	1,802	99		5 1	93		1	1	98	38	20	705	3.84	2.6
WH WH	L L	Tota	2M 3M	94 6		575 33 608	575 33 608	32 2 33	100	34) 5 32					100 100	40 36 39	7	530 60 373		1.1 .5
Type T	Fotal:	s			1.3	29,828	29,434	1,619	3(36	33	2	3	2	93	36	10	185	1.21	159.2

.

TC T,L	OGSTVB					g Stoo	ck T	able -	MBF R FIN									
T04N Twp 04N	R06W S13 Rge 5	T00M Sec 13	AC Tra 00A1			Type	C	Acres 55.]	Plots 20	Samp	ole Tre	es	H H	N R00 Page Date Fime	5W S13 1 7/15/2 1:33:		
s	So Gr Log	G	ross	%	Net	%			Net Vo	lume by	y Scali:	ng Dia	meter i	n Inche	s			
Spp T	rt de Len	ı N	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	4
DF L DF L	2M 34 2M 40		2 97	58.8 5.1	1 92	.1 5.8						1		9	18	46	19	
DF L DF L	3M 26 3M 40		1 5		1 5	.1					5	1						
DF T DF T	CU 2 CU 4									*****		••••						
DF T DF T DF T	2M 20 2M 30 2M 38		26 20 11	26.3	26 20 8	1.7 1.2 .5						8	9	20	17			
DF T	2M 40		933	1.4	921	58.1						95	254	357	179	36		
DF T DF T DF T DF T	3M 28 3M 32 3M 36 3M 38 3M 40		2 3 4 8 429		2 3 4 8 429	.1 .2 .2 .5 27.0			4 8 79		182	32						
DF T DF T	4M 14 4M 16 4M 22		1 2 7		1 2 7	.1 .2 .4			1 2 7									
DF T DF T	4M 24 4M 28 4M 30		13 7 3		13 7 3	.8 .4 .2			11 7 3	2								
DF T DF T	4M 32 4M 34		4 28		4 28	.2 1.8			4 28									
DF	Totals		1,607	1.4	1,585	97.9			155	143	188	136	263	386	213	82	19	
WH L	2M 40		32		32	94,6							11		21			
WH L	3M 36		2		2	5.4			2									_
WH	Totals		33		33	2.1			2				11		21			
Total Ali	Species		1,641	1.3	1,619	100.0			156	143	188	136	274	386	234	82	19	

TC ·	TC - TSTNDSUM Stand Table Summary															
								Proje	ect	CLR F	IN					
T04I Twp 04N]	R06W Rge 06W	S13 T Sec 13	00M0 Tract 00A1	t			Sype OMC		cres 5.00	Plots 5	Sample T 40		T04N R Page: Date: Time:	06W S13 1 07/15/20 1:33:18	0 :
	s		Sample		Av Ht	Trees/		Logs	Net	ige Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.		tals	
Spc		DBH	Trees	16'	Tot	Acre	Acre	Acre		Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	Т	11	2	77	83	13.334	8.80	13.33	15.8	55.0	6.02		733	331	116	40
DF'	Τ		1	79	110	4.116	4.40	8.23	18.0	60.0	4.22		494	232	81	27
DF	T		2	84	114	7.171	8.80	14.34	22.8	95.0	9.33		1,362	513	180	75
DF	T		1	81	120	3.151	4.40	6.30	26.8	105.0	4.82		662	265	93 189	36 77
DF	T		2	84	121	5.583	8.80	11.17	30.7	125.0	9.78		1,396 299	538 158	55	16
DF	T		1	87	65	2.490	4.40 8.80	2.49	40.4 28.5	120.0 116.7	2.86 10.88		1,564	598	210	86
DF	T	1	2	87	132 123	4.469 2.017	4.40	13.41 4.03	43.7	165.0	5.03		666	277	97	37
DF	T	20 22	1 2	86 84	123	3.334	8.80	8.33	44.8	184.0	10.65		1,533	586	206	84
DF DF	T	Į.	3	86		4.575	13.20	13.73	44.9	202.2	17.58		2,776	967	339	153
DF	T	ı	3	82		4.202	13.20	12.61	46.4	192.2	16.66		2,423	916	322	133
DF	T	ı	2	79	125	2.582	8.80	7.74	46.7	180.0	10.30		1,394	566	199	77
DF	Т	ı	1	74	126	1.193	4.40	3.58	44,5	170.0	4.54		609	250	88	33
DF	Т	ı	2	84	147	2.213	8.80	6.64	64.6	286.7	12.22		1,903	672	236	105
DF	Т	ı	1	81	124	1.029	4.40	3.09	62.4	180.0	5.49	193	556	302	106	31
DF	Т	ı	3	84	149	2.878	13.20	8.63	76.2	360.0	18.74	658	3,108	1,031	362	171
DF	Т		1	74	159	.896	4.40	2.69	77.4	303.3	5.93	208	816	326	114	45
DF	Т		1	86	151	.839	4.40	2,52	91.1	443.3	6.54	229	1,116	360	126	61
DF	Т	32	2	81	138	1.576	8.80	4.73	87.7	393.3	11.82		1,859	650	228	102
DF	Т	33	1	74	152	.741	4.40	2.22	72.5	353.3	4.59	161	785	253	89	43
DF	Т	34	1	89	129	.698	4.40	2.09	98.1	463.3	5.86	205	970	322	113	53
DF		Totals	35	82	117	69.087	154.00	151.91	42.5	177.9	183.88	6,452	27,024	10,113	3,549	1,486
DF	L	36	1	86	156	.283	2.00	.85	124.4	676.7	3.01	106	574	165	58	32
DF	L	40	1	85	97	.229	2.00	.46	157.0	415.0	2.05		190	113	40	10
DF	L	42	2	87	140	.416	4.00	1.25	159.2	831.7	5.66	199	1,037	311	109	57
DF		Totals	4	86	134	.928	8.00	2.55	147.2	705.4	10.72	376	1,802	589	207	99
WH	L	26	1	92	142	.542	2.00	1.63	69.0	373.3	3.59	112	608	198	62	33
WH		Totals	1	92	142	.542	2.00	1.63	69.0	373.3	3,59	112	608	198	62	33
Totals		1	40	82	117	70.557	164.00	156.09	44.5	188.6	198.19	6940	29,434	10,900	3,817	1,619

TC TSTAT	S				ST PROJE	TATIST CT	TICS CLR FIN			PAGE DATE 7	1 //16/2015
TWP R	GE	SECT TR	ACT		ТҮРЕ		RES	PLOTS	TREES	CuFt	BdFt
	6W	13 004			00MC		112.00	38	212	S	W
					TREES		ESTIMATED TOTAL		ERCENT AMPLE		
		PLOTS	TREES		PER PLOT		TREES		REES		
TOTAL		38	212		5.6						
CRUISE DBH CO REFORE		18	104		5.8		14,190		.7		
COUNT BLANKS 100 %	S	19 1	108		5.7						
				STA	ND SUM	MARY					
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG F	IR-L	7	.9	37.8	138	1.2	7.4	1,727	1,727	338	338
DOUG F		95	124.8	17.6	101	50.2	210.5	36,270	35,772	8,289	8,289
R ALDEI		2	.9	24.9	68	0.6	3.2	140	140	95	95 9 72 1
TOTAL		104	126.7	17.9	101	52.3	221.1	38,137	37,638	8,721	8,721
		E LIMITS OF T TIMES OUT C			WILL BI	E WITHIN	I THE SAMPI	LE ERROR			
CL: 68	3.1 %	COEFF			SAMPI	E TREE	S - BF	#	OF TREES	REQ.	INF. POP.
	.0	VAR.%	S.E.%		OW	AVG	HIGH		5	10	15
DOUG F		15,1 82 .1	6.1 8.4		1,731 523	1,844 571	1,957 619				
R ALDE		02.1	0.4		150	150	150				
TOTAL		86.2	8.4		594	648	703		297	74	33
CL: 68	3.1 %	COEFF			SAMPI	LE TREE	S - CF	#	OF TREES	REQ.	INF. POP.
	.0	VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	15
DOUG F		15.5	6.3 7.6		338 117	361 127	384 137				
DOUG F R ALDE		73.9 8.7	7.6 8.2		94	103	111				
TOTAL		76.1	7.5		132	142	153		231	58	26
CL: 68	3.1 %	COEFF			TREES	/ACRE			OF PLOTS	REO.	INF. POP.
SD: 1		VAR.%	S.E.%	L	OW	AVG	HIGH	.,	5	10	15
DOUG F	IR-L	214.9	34.8		1	1	1				
DOUG F		48.9	7.9		115 0	125 1	135				
R ALDE TOTAL		346.9	56.2		U		1		94	24	10
CL: 68		48.6	7.9		117	127	137				
		48.6	7.9		117 BASAT	127	137 CDE			PEO	INE POP
	3.1 %	COEFF		I.	BASAL	AREA/A	CRE	#	OF PLOTS	-	INF. POP.
SD: 1	3.1 %		7.9 S.E.% 34.6	L				#		S REQ. 10	INF. POP.
SD: I DOUG F DOUG F	3.1 % .0 TR-L TR-T	COEFF VAR.% 213.3 43.7	S.E.% 34.6 7.1	L	BASAL OW 5 196	AREA/A AVG 7 211	CRE HIGH 10 225	#	OF PLOTS	-	
SD: I DOUG F DOUG F R ALDE	3.1 % .0 TR-L TR-T R-T	COEFF VAR.% 213.3 43.7 346.1	S.E.% 34.6 7.1 56.1	L	BASAL OW 5 196 1	AREA/A AVG 7 211 3	HIGH 10 225 5	#	OF PLOTS	10	15
SD: J DOUG F DOUG F R ALDE TOTAL	3.1 % .0 TR-L TR-T R-T	COEFF VAR.% 213.3 43.7 346.1 41.8	S.E.% 34.6 7.1	L	BASAL OW 5 196 1 206	7 211 3 221	CRE HIGH 10 225		OF PLOTS 5	10	8
SD: 1 DOUG F DOUG F R ALDE: TOTAL	3.1 % .0 IR-L IR-T R-T	COEFF VAR.% 213.3 43.7 346.1 41.8 COEFF	S.E.% 34.6 7.1 56.1 6.8		BASAL OW 5 196 1 206 NET B	AREA/A AVG 7 211 3 221 F/ACRE	HIGH 10 225 5 236		70 OF PLOTS	10 17 S REQ.	8 INF. POP.
SD: 1 DOUG F DOUG F R ALDE: TOTAL CL: 68 SD: 1	3.1 % .0 TR-L IR-T R-T 3.1 %	COEFF VAR.% 213.3 43.7 346.1 41.8 COEFF VAR.%	S.E.% 34.6 7.1 56.1	L	BASAL OW 5 196 1 206 NET B	7 211 3 221	HIGH 10 225 5 236 HIGH		OF PLOTS 5	10	8
SD: 1 DOUG F DOUG F R ALDE: TOTAL	3.1 % .0 TR-L IR-T R-T 3.1 % .0	COEFF VAR.% 213.3 43.7 346.1 41.8 COEFF	S.E.% 34.6 7.1 56.1 6.8 S.E.%	L	BASAL OW 5 196 1 206 NET B	AREA/A AVG 7 211 3 221 F/ACRE AVG	HIGH 10 225 5 236		70 OF PLOTS	10 17 S REQ.	8 INF. POP.
SD: 1 DOUG F DOUG F R ALDE: TOTAL CL: 68 SD: 1 DOUG F DOUG F R ALDE:	3.1 %0 IR-L IR-T R-T0 IR-L IR-T R-T	COEFF VAR.% 213.3 43.7 346.1 41.8 COEFF VAR.% 215.2 54.0 346.9	S.E.% 34.6 7.1 56.1 6.8 S.E.% 34.9 8.8 56.2	L	BASAL OW 5 196 1 206 NET B OW 1,125 2,638 61	AREA/A AVG 7 211 3 221 F/ACRE AVG 1,727 35,772 140	HIGH 2,330 38,905 218		FOF PLOTS 70 FOF PLOTS 5	10 17 B REQ. 10	8 INF. POP. 15
SD: 1 DOUG F DOUG F R ALDE: TOTAL CL: 68 SD: 1 DOUG F DOUG F R ALDE: TOTAL	3.1 % .0 TR-L TR-T R-T .0 TR-T IR-T R-T	COEFF VAR.% 213.3 43.7 346.1 41.8 COEFF VAR.% 215.2 54.0 346.9 50.7	S.E.% 34.6 7.1 56.1 6.8 S.E.% 34.9 8.8	L	BASAL OW 5 196 1 206 NET B OW 1,125 2,638 61	AREA/A AVG 7 211 3 221 F/ACRE AVG 1,727 35,772	HIGH 2,330 28,605	#	70 5 70 FOF PLOTS 5 103	17 3 REQ. 10	8 INF. POP. 15
SD: 1 DOUG F DOUG F R ALDE: TOTAL CL: 68 SD: 1 DOUG F DOUG F R ALDE: TOTAL CL: 68	3.1 % .0 TR-L TR-T R-T .0 TR-L TR-T 3.1 % .0 TR-L TR-T R-T	COEFF VAR.% 213.3 43.7 346.1 41.8 COEFF VAR.% 215.2 54.0 346.9 50.7 COEFF	S.E.% 34.6 7.1 56.1 6.8 S.E.% 34.9 8.8 56.2 8.2	L 3	BASAL OW 5 196 1 206 NET B OW 1,125 2,638 61 4,543 NET C	AREA/A AVG 7 211 3 221 F/ACRE AVG 1,727 35,772 140 37,638 UFT FT/A	HIGH 2,330 38,905 218 40,734	#	70 4 OF PLOTS 5 103	17 3 REQ. 10 26 3 REQ.	8 INF. POP. 15
SD: 1 DOUG F DOUG F R ALDE: TOTAL CL: 68 SD: 1 DOUG F DOUG F R ALDE: TOTAL CL: 68 SD: 1	3.1 % .0 TR-L TR-T R-T .0 TR-L TR-T 3.1 % .0 TR-L TR-T R-T .1 R-T .0	COEFF VAR.% 213.3 43.7 346.1 41.8 COEFF VAR.% 215.2 54.0 346.9 50.7 COEFF VAR.%	S.E.% 34.6 7.1 56.1 6.8 S.E.% 34.9 8.8 56.2 8.2 S.E.%	L 3	BASAL OW 5 196 1 206 NET B OW 1,125 2,638 61 4,543 NET C	AREA/A AVG 7 211 3 221 F/ACRE AVG 1,727 35,772 140 37,638 UFT FT/A AVG	HIGH 2,330 38,905 218 40,734 ACRE HIGH	#	70 5 70 FOF PLOTS 5 103	17 3 REQ. 10	8 INF. POP. 15
SD: 1 DOUG F DOUG F R ALDE: TOTAL CL: 68 SD: 1 DOUG F DOUG F R ALDE: TOTAL CL: 68	3.1 % .0 IR-L IR-T R-T 3.1 % .0 IR-L IR-T R-T .0 IR-L IR-T R-T .0	COEFF VAR.% 213.3 43.7 346.1 41.8 COEFF VAR.% 215.2 54.0 346.9 50.7 COEFF	S.E.% 34.6 7.1 56.1 6.8 S.E.% 34.9 8.8 56.2 8.2	L 3 3.	BASAL OW 5 196 1 206 NET B OW 1,125 2,638 61 4,543 NET C	AREA/A AVG 7 211 3 221 F/ACRE AVG 1,727 35,772 140 37,638 UFT FT/A	HIGH 2,330 38,905 218 40,734	#	70 4 OF PLOTS 5 103	17 3 REQ. 10 26 3 REQ.	8 INF. POP. 15

TC TST	ATS				S PROJ	STATIS ECT	STICS CLR FIN	T		PAGE DATE	2 7/16/2015
TWP 04N	RGE 06W	SECT 13	TRACT 00A2		TYPE 00MC		112.00	PLOTS 38	TREES 212	CuFt S	BdFt W
CL: SD:	68.1 % 1.0	COE VAF		.E.%	NET (CUFT FT AVG	/ACRE HIGH	1.4.11	# OF PLO 5	TS REQ.	INF. POP. 15
тот	AL	47.	0	7.6	8,057	8,721	9,386		88	22	10

Т	TSPC	CSTG	æR			Species,	Sort G Projec	rade - Boar t: CLF	d Foo LFIN	ot Vo	olun	nes (T	Гуре)					Page Date Time	7	1 /16/20):49:4	
T04F Tw	p	R	Φ.	Sec	Tract 0A2		Туре 00М			Plots	;	-	le Tree 04	S	C S	uFt	T0- Bd W		R06W	S13 T	00MC
				%					Perce	ent N	et Bo	oard Fo	oot Vol	ıme			A	verag	ge Log		Logs
Spp		So rt	Gr ad	Net BdFt	Bd. Def%	Ft. per Ac Gross	re Net	Total Net MBF		g Sca 6-11		a. 6 17+	Log 12-20	Len 21-30	_	36-99	Ln Ft	Dia In	Bd Ft	CF/ Lf	Per /Acre
DF	Т		CU														7	18		0.00	3.5
DF	T		2M	61	1.5	22,266	21,932	2,456			35	65	1	1		98	40	17	447	2.34	49.1
DF	T		3M	31	1.2	11,108	10,978	1,229		90	10			0	4	96	39	8	98	0.67	111.7
DF	T		4M	8	1.2	2,897	2,862	321		100			12	46	11	32	28	6	39	0.38	72.8
DF	T	Tota	Is	95	1.4	36,270	35,772	4,006		36	25	40	2	4	2	92	35	9	151	0.99	237.1
DF	L		CU														10	29		0.00	.3
DF	L		2M	92		1,592	1,592	178				100				100	40	22	906	4.20	1.8
DF	L		3M	7		127	127	14		58	42			24	20	56	32	10	134	1.39	.9
DF	L		4M	1		8	8	1		100			100				18	10	60	0.97	.1
DF	L	Tota	ls	5		1,727	1,727	193		5	3	92	0	2	ı	96	34	19	558	3,20	3,1
RA	Т		4M	100		140	140	16		100						100	40	10	150	2.56	.9
RA	Т	Tota	ıls	0		140	140	16		100						100	40	10	150	2.56	.9
Туре	Total	ls			1.3	38,137	37,638	4,216		34	24	42	1	4	2	92	35	9	156	1.02	241.2

ТС Т	LC)GSTVB					g Stoo	ck Ta	able - CLI	MBF R_FIN	•							
T04N Twp 04N	IF	R06W S Rge 06W	Se 13	c Tra			Type 00MC	2	Acres		Plots 38	Samp	le Tree	ès	r I	IN R06 Page Date Fime	5W S13 1 7/16/2 9:49:	
S	;	So Gr	Log	Gross	Gross % Net % Net Volume by Scaling Diameter in Inches													
Spp T		rt de	- 1	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
DF L		CU					<u> </u>											
DF L		CU																
_						16	.4					1					16	
DF L DF L		2M 2M		16 162		162	3.9								32	20	111	
_							ļ <u> </u>					 	,					
DF L		3M		3		3	l.l				1	-	3					
DF L DF L		3M 3M		1		1 3	.0 .1			ĺ	1							
DF L DF L		3M		8		8	.2				2	1			6			
DF L		4M	_	1		1	.0						l					
_												1						
DF T DF T		CU CU	4 7															
DF T		CU																
DF T		CU																
DF T	,	2M	20	24		24	.6					<u> </u>				24		
DF T		2M		20		20	,5									20		
DF T	,	2M	40	2,450	1.5	2,412	57.4						229	500	886	671	127	
DF T	•	3M	26	2		2	.0				2							
DF T		3M		3		3	1,				3	1						
DF T		3M		22		22	.5			18								
DF T		3M		27		27	.6			27								
DF T		3M 3M		7 62	2.0	7 61	1.4			61	4							
DF T		3M		1,122	1.2	1,108	26.4			234	376	371	127					
DF T	, ,	4M	14	3		3	.1			3	1							
DF T			16	8		8	.2			8								
DF T		4M		8		8	.2			6	1							
DF T			20	19		19	.5			19								
DF T			22	7		7	2			7								
DF T			24	24		24	.6			24		1						
DF T			26	15 26		15	.4			15								
DF T			28 30	26 75	2.7	26 73	1.7			26 73								
DF T			32	75 12	2.1	12	.3			12								
DF T			34	23		23	.5			23								
DF T			38	12	15.7	10	.2	1		10								-
DF T			40	92		92	2.2			65		27						
DF		Tota	als	4,256	1.3	4,200	99.6			635	396	401	356	500	924	735	254	
RA T	Γ	4M	40	16		16	100.0					16						
RA		Tota	als	16		16	.4					16						
Total A	AH :	Species		4,271	1.3	4,216	100.0			635	396	417	356	500	924	735	254	

TC T	ГSТ	'NDSUN	1					Stand	Table	Summa	ry					
								Proje	ect	CLR F	IN					
T04N Twp 04N		R06W Rge 06W		00MC Tract 00A2	ŧ			Гуре ОМС		cres 2.00	Plots 38	Sample 1		T04N R Page: Date: Time:	06W S13 1 07/16/20 9:49:50	0:
	s		Sample	FF	Av Ht	Trees/	BA/	Logs	Avera Net	ige Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	Т	otals	
Spc			Trees	16'	Tot	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	T	10	5	85	75	20.315	11.08	20.32	12.0	54.0	6.9	5 244	1,097	779	273	123
DF	Т		3	88	76	10.074	6.65	10.07	14.8	60.0	4.20	5 149	604	477	167	68
DF	Т	12	5	82	81	14.108	11.08	16.93	16.0	55.0	7.7	270	931	863	303	104
DF	Т	13	6	85	105	14.425	13.30	28.85	15.5	59.2	12.7	3 447	1,707	1,426	500	191
DF	T	•	4	85	97	8.292	8.86	16.58	17.1	66.3	8.1	1 284	1,099	908	319	123
DF	Т	•	4	84	99	7.223	8.86	14.45	20.2	73.7	8,3	2 292	1,065	932	327	119
DF	Т	16	5	86	107	7.936	11.08	15.87	24.5	101.0	11.09	389	1,603	1,242	436	180
DF	Т	ł	3	87	97	4,218	6.65	8.44	27.4	105.0	6.5	8 231	886	737	259	99
DF	Т	18	3	88	99	3.762	6.65	7.52	30.6	118.3	6.5	6 230	890	734	258	100
DF	Т	19	5	85	100	5.628	11.08	11.26	34.7	124.0	11.1-	4 391	1,396	1,247	438	156
DF	T	20	1	89	115	1.016	2.22	2.03	44.6	185.0	2.5	8 91	376	289	101	42
DF	T	21	2	89	143	1.843	4.43	5.53	39.4	190.0	6.2	0 218	1,050	695	244	118
DF	Т	22	3	88	127	2.518	6.65	6.72	44.3	200.0	8.4	8 297	1,343	950	333	150
DF	Т	23	1	87	119	.768	2.22	2.30	38.6	166.7	2.5	4 89	384	284	100	43
DF	T	24	2	87	142	1.411	4.43	4.23	50.9	226.7	6.1	4 215	959	687	241	107
DF	Т	25	3	85	132	1.950	6,65	5.85	52.0	226.7	8.6	7 304	1,326	971	341	149
DF	T	26	5	86	139	3.005	11.08	8.41	62.8	285.7	15.0	7 529	2,404	1,688	592	269
DF	T	27	6	86	126	3.344	13.30	9.47	61.5	270.6	16.6	0 582	2,564	1,859	652	287
DF	T	28	6	85	138	3.110	13.30	8.81	67.6	311.8	16.9	8 596	2,747	1,902	667	308
DF	T	29	9	85	138	4.348	19.94	13.04	72.7	322.6	27.0	2 948	4,208	3,027	1,062	471
DF	Т	30	4	84	140	1.806	8.86	5.42	74.2	324.2	11.4	5 402	1,756	1,282	450	197
DF	Т	31	1	88	138	.423	2.22	1.27	84.5	423,3	3.0	5 107	537	342	120	60
DF	Т	32	3	84	144	1.190	6.65	3.57	91.6	432.2	9.3	2 327	1,543	1,044	366	173
DF	T	33	1	88	155	.373	2.22	1.49	78.0	430.0	3.3	2 116	642	372	130	72
DF	Т	34	4	85	146	1.406	8.86	4.22	105.7	529.2	12.7	0 446	2,232	1,423	499	250
DF	T	35	1	84	122	.332	2.22	1.00	94.7	423.3	2.6	8 94	421	301	106	47
DF		Totals	95	85	101	124,823	210.53	233.65	35.5	153.1	236.2	3 8,289	35,772	26,457	9,283	4,006
DF	L	36	3	87	140	.447	3.16	1.34	115.9	595.6	4.4	3 155	798	496	174	89
DF	L	38	2	86	140	.267	2.11	.80	110.4	580.0	2.5	2 89	465	283	99	52
DF	L	39	1	83	135	.127	1.05	.38	118.3	580.0	1.2	8 45	221	144	50	25
DF	L	43	1	83	132	.104	1.05	.31	155.2	776.7	1.3	9 49	243	155	54	27
DF		Totals	7	86	138	.945	7.37	2,84	119.0	609.1	9,6	2 338	1,727	1,077	378	193
RA	T	24	1	64	71	.503	1.58	.50	96.4	150.0	1,3	3 48	75	149	54	8
RA	T	1	1	65		.428	1.58	.43	109.1	150.0	1.2	8 47	64	144	52	7
RA		Totals	2	64	68	.931	3.16	.93	102.3	150.0	2.6	2 95	140	293	107	16
Totals		1	104	85	101	126,699	221.05	237.42	36.7	158.5	248.4	6 8721	37,638	27,828	9,768	4,216

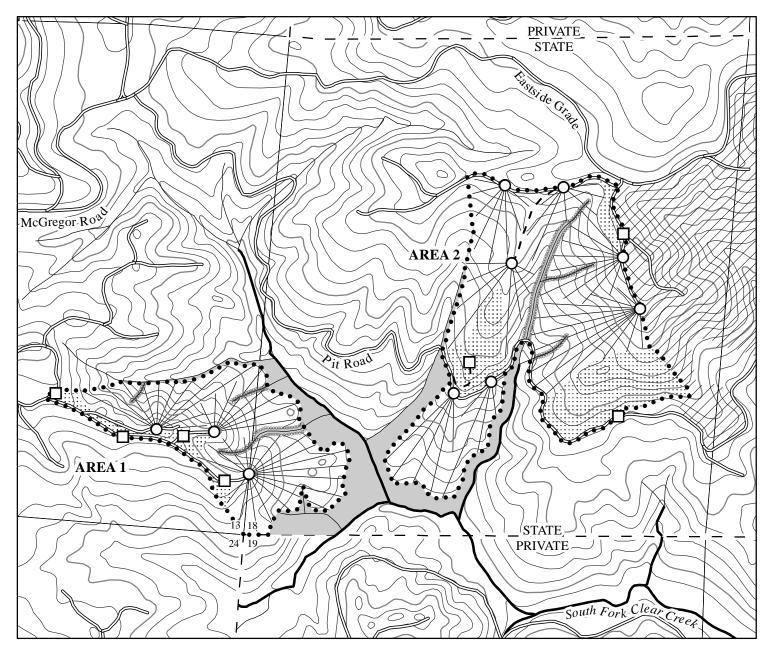
VOLUME SUMMARY

(Shown in MBF)

Clear Head Sale No. 341-16-43

Date: 07/16/2014

AREA 1: MC (55 ACRES)


SPECIES		2 SAW	3 SAW	4 SAW	Camp Run	TOTAL
	Cruise Volume	975	445	66	0	1,486
Douglas fir	Hidden D&B (2%)	(20)	(9)	(1)	()	(30)
Douglas-fir	NET TOTAL	955	436	65	0	1,456
	% of Total	66	30	4	0	

AREA 2: MC (112 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	Camp Run	TOTAL
	Cruise Volume	2,456	1,229	321	0	4,006
Douglas-fir	Hidden D&B (2%)	(49)	(25)	(6)	()	(80)
Douglas-III	NET TOTAL	2,407	1,204	315	0	3,926
	% of Total	61	31	8	0	
	Cruise Volume	0	0	0	16	16
Dad Aldar	Hidden D&B (2%)	()	()	()	()	()
Red Alder	NET TOTAL	0	0	0	16	16
	% of Total	0	0	0	100	

SALE TOTAL

SPECIES	2 SAW	3 SAW	4 SAW	Camp Run	TOTAL
Douglas-fir	3,362	1,640	380	0	5,382
Red Alder	0	0	0	16	16
Total	3,362	1,640	380	16	5,398

LEGEND

- • Timber Sale Boundary
- -Roads
- - New Construction
- Type F Stream
- --- Type N Stream
- Stream Buffer
- Posted Stream Buffer Boundary
- O Cable Landing
- ☐ Tractor Landing
- ← Cable Yarding Area
- ::::: Tractor Yarding Area
- // Reforested Area
- 1ODF Ownership Boundary
- Sections
- —— 400 Foot Contour Band
- ---- 80 Foot Contour Band

LOGGING PLAN

FOR TIMBER SALE CONTRACT # 341-16-43 CLEAR HEAD

PORTIONS OF SECTION 18, T4N, R5W, W.M. COLUMBIA COUNTY, OREGON & PORTIONS OF SECTION 13, T4N, R6W, W.M.

CLATSOP COUNTY, OREGON.

Forest Grove District GIS July, 2015

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1 inch = 1,000 feet

0 250 500 1,000 1,500 2,000

APPROXIMATE NET ACRES

	TRACTOR	CABLE
AREA 1 AREA 2	5 29	55 112
TOTAL	34	167