

Sale FG-341-2016-04-

District: Forest Grove Date: July 20, 2015

## **Cost Summary**

|                            | Conifer        | Hardwood          | Total          |
|----------------------------|----------------|-------------------|----------------|
| Gross Timber<br>Sale Value | \$1,273,730.35 | \$0.00            | \$1,273,730.35 |
|                            |                | Project Work:     | (\$422,680.00) |
|                            |                | Advertised Value: | \$851,050.35   |



Sale FG-341-2016-04-

District: Forest Grove Date: July 20, 2015

## **Timber Description**

Location: Portions of Sections 14, 23, and 24, T1N, R6W, W.M., Tillamook County, Oregon.

Stand Stocking: 20%

| Specie Name           | AvgDBH | Amortization (%) | Recovery (%) |
|-----------------------|--------|------------------|--------------|
| Douglas - Fir         | 20     | 0                | 98           |
| Western Hemlock / Fir | 16     | 0                | 98           |
| Noble Fir             | 21     | 0                | 98           |

| Volume by Grade          | 28    | 3S    | 4S  | Total |
|--------------------------|-------|-------|-----|-------|
| Douglas - Fir            | 2,136 | 1,287 | 170 | 3,593 |
| Western Hemlock<br>/ Fir | 19    | 64    | 11  | 94    |
| Noble Fir                | 139   | 34    | 5   | 178   |
| Total                    | 2,294 | 1,385 | 186 | 3,865 |

**Comments:** Pond Values Used: 2nd Quarter Calendar Year 2015.

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost:

\$1,048.29/MBF = \$1,275/MBF - \$226.71/MBF

Red Alder and Other Hardwoods Stumpage Price = Pond Value minus Logging Cost:

\$369.23/MBF = \$595/MBF - \$225.77/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE

Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added): Brand and Paint: 3,865 MBF x \$2/MBF = \$7,730

TOTAL Other Costs (with Profit & Risk to be added) = \$7,730

Other Costs (No Profit & Risk added):

Snag Creation: 74 Snags @ \$40 each = \$2,960

Block/Waterbar Roads/Skid Trails: 20 hrs x \$150/hour = \$3,000 Pile Landing Slash/Sort Firewood: 15 hrs x \$150/hour = \$2,250

Slash Treatment: 20 acres x \$150/acre = \$3,000 Equipment Cleaning: 4 x \$1,000/Piece = \$4,000 TOTAL Other Costs (No Profit & Risk added) = \$15,210

**ROAD MAINTENANCE** 

Move-in: \$4,000

General Road Maintenance: 9.9 miles x \$1,200/mile = \$11,880 TOTAL Road Maintenance = \$15,880/3,865 MBF = \$4.11/MBF



Sale FG-341-2016-04-

District: Forest Grove Date: July 20, 2015

## **Logging Conditions**

Combination#: 1 Douglas - Fir 60.91%

Western Hemlock / Fir 49.00% Noble Fir 77.00%

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 7 bd. ft / load: 4600

cost / mbf: \$186.34

machines: Log Loader (A)

Stroke Delimber (A) Tower Yarder (Medium)

Combination#: 2 Douglas - Fir 39.09%

Western Hemlock / Fir 51.00% Noble Fir 23.00%

**Logging System:** Shovel **Process:** Stroke Delimber

yarding distance: Medium (800 ft) downhill yarding: No

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 8 bd. ft / load: 4600

cost / mbf: \$86.19

machines: Stroke Delimber (B)



Sale FG-341-2016-04-

District: Forest Grove Date: July 20, 2015

## **Logging Costs**

**Operating Seasons: 2.00** 

Profit Risk: 10%

**Project Costs:** \$422,680.00

Other Costs (P/R): \$7,730.00

Slash Disposal: \$0.00 Other Costs: \$15,210.00

Miles of Road

Road Maintenance:

\$4.11

| Dirt | Rock<br>(Contractor) | Rock<br>(State) | Paved |
|------|----------------------|-----------------|-------|
| 0.0  | 0.0                  | 0.0             | 0.0   |

### **Hauling Costs**

| Species               | \$/MBF | Trips/Day | MBF / Load |
|-----------------------|--------|-----------|------------|
| Douglas - Fir         | \$0.00 | 4.0       | 4.7        |
| Western Hemlock / Fir | \$0.00 | 4.0       | 3.8        |
| Noble Fir             | \$0.00 | 4.0       | 4.3        |



Sale FG-341-2016-04-

District: Forest Grove Date: July 20, 2015

## **Logging Costs Breakdown**

| Logging   | Road<br>Maint | Fire<br>Protect | Hauling | Other<br>P/R appl | Profit &<br>Risk | Slash<br>Disposal | Scaling | Other  | Total    |
|-----------|---------------|-----------------|---------|-------------------|------------------|-------------------|---------|--------|----------|
| Douglas - | Fir           |                 |         |                   |                  |                   |         |        |          |
| \$147.19  | \$4.19        | \$2.27          | \$42.32 | \$2.00            | \$19.80          | \$0.00            | \$5.00  | \$3.94 | \$226.71 |
| Western H | lemlock .     | / Fir           |         |                   |                  |                   |         |        |          |
| \$135.26  | \$4.19        | \$2.27          | \$52.35 | \$2.00            | \$19.61          | \$0.00            | \$5.00  | \$3.94 | \$224.62 |
| Noble Fir |               |                 |         |                   |                  |                   |         |        |          |
| \$163.31  | \$4.19        | \$2.27          | \$46.26 | \$2.00            | \$21.80          | \$0.00            | \$5.00  | \$3.94 | \$248.77 |

| Specie                | Amortization | Pond Value | Stumpage | Amortized |
|-----------------------|--------------|------------|----------|-----------|
| Douglas - Fir         | \$0.00       | \$565.10   | \$338.39 | \$0.00    |
| Western Hemlock / Fir | \$0.00       | \$437.98   | \$213.36 | \$0.00    |
| Noble Fir             | \$0.00       | \$461.35   | \$212.58 | \$0.00    |



Sale FG-341-2016-04-

District: Forest Grove Date: July 20, 2015

## **Summary**

#### Amortized

| Specie                | MBF | Value  | Total  |
|-----------------------|-----|--------|--------|
| Douglas - Fir         | 0   | \$0.00 | \$0.00 |
| Western Hemlock / Fir | 0   | \$0.00 | \$0.00 |
| Noble Fir             | 0   | \$0.00 | \$0.00 |

#### Unamortized

| Specie                | MBF   | Value    | Total          |
|-----------------------|-------|----------|----------------|
| Douglas - Fir         | 3,593 | \$338.39 | \$1,215,835.27 |
| Western Hemlock / Fir | 94    | \$213.36 | \$20,055.84    |
| Noble Fir             | 178   | \$212.58 | \$37,839.24    |

### **Gross Timber Sale Value**

**Recovery:** \$1,273,730.35

Prepared By: Joe Koch Phone: 503-359-7460

# TIMBER SALE SUMMARY Blazing Saddles Contract No. 341-16-04

- **1.** <u>Location</u>: Portions of Sections 14, 23, & 24, T1N, R6W, W.M., Tillamook County, Oregon.
- 2. <u>Type of Sale</u>: This timber sale is 117 acres of Modified Clearcut and one acre of right of Way. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. Revenue Distribution: 100% BOF, 100% Tillamook County, Tax Code 9-2.
- **4.** <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS software.
- **5.** <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in April, 2015. For more information see Cruise Report.
- 6. <u>Timber Description</u>: Area 1 consists of a medium to well stocked 60 year old stand of Douglas-fir, with a small component of noble fir and patches of western hemlock. The south half of Area 1 was partial cut in 2000. Area 2 is also a 60 year old stand with a small component of noble fir. In Area 1 all noble fir and western hemlock between 8" and 14" DBH are reserved. The following table summarizes volumes for Douglas-fir only.

| Sale Area  | Net   | Average  | Net MBF Per Acre |
|------------|-------|----------|------------------|
|            | Acres | Diameter | (D-fir)          |
| Area 1     | 74    | 19"      | 27               |
| Area 2     | 43    | 21"      | 37               |
| Area 3 R/W | 1     | 20"      | 11               |

7. <u>Topography and Logging Method</u>: Slopes within the sale areas generally range from 10% to 75% with some steeper pitches. Area 1 has a north aspect and Area 2 is variable in aspect. The following table summarizes average and maximum cable corridor or estimated tractor skid trail length, and harvest method by percent for each sale area.

|         | Area 1 (MC) |      |     | Area 2 (MC) |      |    |
|---------|-------------|------|-----|-------------|------|----|
|         | Ave Max %   |      | Ave | Max         | %    |    |
| Tractor | 500         | 650  | 51  | 500         | 650  | 23 |
| Cable   | 600         | 1475 | 49  | 480         | 1100 | 77 |

**8.** <u>Access</u>: All access to the Timber Sale Areas is on surfaced all-weather roads. From Forest Grove, travel 7 miles west on Highway 8 to its intersection with Highway 6.

Proceed west onto Highway 6 for approximately 10 miles, then turn left onto Beaverdam Road. Follow Beaverdam Road for approximately 8.5 miles, then turn left onto Seven Cedars Road. Continue on Seven Cedars Road for approximately 0.5 miles to the timber sale area.

### 9. Projects:

| Project No. 1: Road Construction and Improvement | \$66,158.84  |
|--------------------------------------------------|--------------|
| Project No. 2: Surfacing                         | \$203,810.25 |
| Project No. 3: Crush 2,500 CY 1-1/2" Stockpile   | \$44,428.00  |
| Project No. 4: Grass Seed, Fertilize, and Mulch  | \$1,552.44   |
| Project No. 5: Bridge Installation               | \$95,177.15  |
| Project No. 6: Road Vacating                     | \$5,114.93   |
| Move in and equipment cleaning:                  | \$6,437.50   |
|                                                  |              |

Total Credit for all Projects (rounded) \$422,680.00

#### PROJECT COST SUMMARY SHEET

Timber Sale: Blazing Saddles

Sale Number: 341-16-04

#### PROJECT NO. 1: ROAD CONSTRUCTION AND IMPROVEMENT

#### CONSTRUCTION

| Road Segment | Length | Cost        |
|--------------|--------|-------------|
| A to B       | 14+20  | \$10,857.37 |
| C to D       | 15+25  | \$5,484.60  |
| E to F       | 23+40  | \$6,327.26  |
|              | 52+85  | stations    |
|              | 1.00   | miles       |

#### SUBTOTAL CONSTRUCTION \$22,669.23

#### **IMPROVEMENTS**

| Road Segment | Length | Cost        |
|--------------|--------|-------------|
| G to H       | 108+85 | \$12,055.31 |
| H to I       | 23+35  | \$2,870.32  |
| H to J       | 44+60  | \$22,814.44 |
| K to C       | 4+90   | \$176.40    |
| L to M       | 6+40   | \$2,340.40  |
| N to E       | 55+35  | \$3,232.60  |
| -            | 243+45 | stations    |
|              | 4.61   | miles       |

SUBTOTAL IMPROVEMENTS \$43,489.47

TOTAL PROJECT NO. 1 COST = \$66,158.70

#### PROJECT NO. 2: SURFACING

| Road Segment A to B C to D E to F G to H H to I H to J | Amount 20 cy 1,235 cy 1,787 cy 4,191 cy 1,292 cy 52 cy 2,570 cy | Type 3" - 0 3" - 0 3" - 0 1 1/2" - 0 3" - 0 1 1/2" - 0 3" - 0 | Cost<br>\$414.00<br>\$21,723.65<br>\$32,398.31<br>\$70,991.73<br>\$21,821.88<br>\$852.24<br>\$45,077.80 |
|--------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|                                                        | •                                                               |                                                               | •                                                                                                       |
| H to J                                                 | 120 cy                                                          | 1 1/2" - 0                                                    | \$1,831.20                                                                                              |
| L to M<br>N to E                                       | 72 cy<br>144 cy                                                 | 1 1/2" - 0<br>3" - 0                                          | \$1,140.48<br>\$2,494.08                                                                                |
| N to E<br>O to P                                       | 72 cy<br>140 cy                                                 | 1 1/2" - 0<br>1 1/2" - 0                                      | \$1,213.44<br>\$1,547.16                                                                                |
| O to P                                                 | 150 cy                                                          | 3" - 0                                                        | \$1,652.78                                                                                              |
| O to P<br>Total                                        | 50 cy<br>4,647 cy                                               | 36"-24"<br>1 1/2" - 0                                         | \$651.50                                                                                                |
|                                                        | 7,198 cy<br>50 cy                                               | 3" - 0<br>36" - 24"                                           |                                                                                                         |

#### TOTAL PROJECT NO. 2 COST = \$203,810.25

| PROJECT NO | . 3: C | RUSH & | BUILD | 11/2"-0 | STOCKP | ILE |
|------------|--------|--------|-------|---------|--------|-----|
|            |        |        |       |         |        |     |

2,000 CY 11/2"-0 Stockpile \$44,428.00

TOTAL PROJECT NO. 3 COST = \$44,428.00

PROJECT NO. 4: GRASS SEED, FERTILIZE, & MULCH

TOTAL PROJECT NO. 4 COST = \$1,552.44

PROJECT NO. 5: CONSTRUCT ROAD & BRIDGE BETWEEN O & P

TOTAL PROJECT NO. 5 COST = \$95,177.15

PROJECT NO. 6: ROAD VACATING

TOTAL PROJECT NO. 6 COST = \$5,114.93

#### MOVE IN & EQUIPMENT CLEANING

| Graders                        | \$977.91   |  |
|--------------------------------|------------|--|
| Rollers                        | \$598.78   |  |
| Excavator - Equipment Cleaning | \$1,977.91 |  |
| Tractor - Equipment Cleaning   | \$2,020.08 |  |
| Dump Trucks (10 cy +)          | \$862.82   |  |
|                                |            |  |

TOTAL MOVE IN & EQUIPMENT CLEANING COST = \$6,437.50

TOTAL ALL PROJECTS \$422,678.96 TOTAL CREDITS

\$422,680.00

| sta = \$924.00<br>sta = \$1,044.00 | Construction :   | Co       |         |              | A to B   |            | Road Segment:                           |
|------------------------------------|------------------|----------|---------|--------------|----------|------------|-----------------------------------------|
| sta = \$924.00<br>sta = \$1,044.00 |                  |          |         |              |          |            | Troad degment.                          |
| sta = \$924.00<br>sta = \$1,044.00 |                  |          |         | •            |          |            | PROJECT NO. 1                           |
| sta = \$924.00<br>sta = \$1,044.00 | · ·              |          |         |              |          |            | EXCAVATION                              |
| sta = \$1,044.00                   | 30.80 per acre = |          | acres @ | 0.65         |          |            | Clearing and Grubbing (Scatter)         |
|                                    | 10.00 per sta =  |          | sta @   | 8.40         |          |            | Balanced Road Construction              |
| each = \$132.00                    | 30.00 per sta =  |          | sta @   | 5.80         |          |            | Drift                                   |
|                                    | 36.00 per each = |          | ea. @   | 2            |          |            | Construct Turnouts (1)                  |
| each = \$82.50                     | 32.50 per each = | \$82.50  | ea. @   | 1            |          |            | Construct Turnaround (1)                |
| \$7,000.00                         |                  |          |         |              |          |            | Install Log Stringer Bridge             |
| each = \$175.00                    | 75.00 per each = | \$175.00 | ea. @   | 1            |          |            | Improve Landing                         |
| sta = \$115.20                     | 36.00 per sta =  | \$36.00  | sta @   | 3.20         |          |            | Grade, Ditch, and Roll                  |
| sta = \$396.00                     | 15.40 per sta =  | \$15.40  | sta @   | 11.00        |          |            | Grade and Roll (Outslope)               |
| EXCAVATION COSTS= \$10,247.37      | TOTAL EXCA       | TC       | _       |              |          |            |                                         |
| ·                                  |                  |          |         |              | 1        | LLATION    | CULVERTS - MATERIALS & INSTA            |
|                                    |                  |          |         |              |          |            | Culverts                                |
|                                    |                  |          |         |              | \$600.00 | F of 18"   | 30 L                                    |
|                                    |                  |          |         |              |          | S          | Culvert Markers                         |
|                                    |                  |          |         |              | \$10.00  | narkers    | 1 n                                     |
| TAL CULVERT COSTS = \$610.00       | TOTAL CU         |          |         |              |          |            |                                         |
|                                    | DDO (FOT NO      | DD.      |         |              |          |            |                                         |
| CT NO. 1 TOTAL COST = \$10,857.37  | PROJECT NO.      | PKC      |         |              |          |            |                                         |
|                                    |                  |          |         |              |          |            | PROJECT NO. 2:                          |
| cy = \$414.00                      | 20.70 per cy =   | \$20.70  | @       | 1 1/2" - 0 ( | cy of    | 20<br>20   | Abutments & Surfacing @ Bridge  Total = |
| cy = \$414.00                      | 20.70 percy =    | \$20.70  |         | 1 1/2" - 0   | cy of    | 20         |                                         |
| T NO. 2 TOTAL COST = \$414.00      | PROJECT NO.      | PRO      |         |              |          |            |                                         |
|                                    |                  |          |         |              |          |            | PROJECT NO. 6:                          |
| each = \$55.00                     | 55.00 per each = | \$55.00  | ea. @   | 1            |          |            | Construct Tank Traps                    |
|                                    | 50.00 per sta =  |          | sta @   | 14.20        |          |            | Rip Road Surface                        |
|                                    | 0.00 per each =  |          | ea. @   | 1            |          |            | Rip and Narrow Landing                  |
|                                    | 50.00 per each = |          | ea. @   | 1            |          |            | Remove Existing Culverts                |
|                                    | 00.00 per each = |          |         | 1            |          |            | Remove Log Stringer Bridge              |
| \$269.47                           |                  | , ,      |         |              | il.      | turbed soi | Grass seed and fertilize areas of dis   |
| \$380.46                           |                  |          |         |              |          |            | Mulch                                   |
| \$2,000.00                         |                  |          |         |              |          | aning      | Excavator Move-in & Equipment Cle       |
| CT NO. 6 TOTAL COST = \$5,114.93   | PROJECT NO.      | PRO      |         |              |          | . •        |                                         |

| Timber Sale:                                                 |                                          | lazing Sadd                               | ies                                            |                                       | Timber Sa                                                                      | _                                                       | 341-16-04                                                                             |                           |
|--------------------------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------|
| Road Segment:                                                |                                          | C to D                                    |                                                |                                       | Constr                                                                         | ruction : _<br>                                         | 15+25 stations<br>0.29 miles                                                          |                           |
| PROJECT NO. 1                                                |                                          |                                           |                                                |                                       |                                                                                |                                                         |                                                                                       |                           |
| EXCAVATION                                                   |                                          |                                           |                                                |                                       |                                                                                |                                                         |                                                                                       |                           |
| Clearing and Grubbing (S                                     |                                          |                                           |                                                | acres @                               | \$1,078.00 per                                                                 |                                                         | \$1,509.60                                                                            |                           |
| Balanced Road Construct                                      | ion                                      |                                           | 15.25                                          | _                                     | \$110.00 per                                                                   |                                                         | \$1,677.50                                                                            |                           |
| Construct Turnouts (2)                                       |                                          |                                           | 2                                              | $\sim$                                | \$66.00 pe                                                                     |                                                         | \$132.00                                                                              |                           |
| Construct Turnaround (1)                                     |                                          |                                           | 1                                              |                                       | \$82.50 pe                                                                     |                                                         | \$82.50                                                                               |                           |
| Landing                                                      |                                          |                                           | 1                                              |                                       | \$314.00 pei                                                                   |                                                         | \$314.00                                                                              |                           |
| Grade, Ditch, and Roll                                       |                                          |                                           | 15.25                                          | sta @                                 | \$36.00 pei                                                                    |                                                         | \$549.00                                                                              |                           |
|                                                              |                                          |                                           |                                                |                                       | TO <sup>-</sup>                                                                | TAL EXC                                                 | CAVATION COSTS=                                                                       | \$4,264.60                |
| CULVERTS - MATERIAL                                          | S & INSTA                                | ALLATION                                  |                                                |                                       |                                                                                |                                                         |                                                                                       |                           |
| Culverts                                                     |                                          |                                           |                                                |                                       |                                                                                |                                                         |                                                                                       |                           |
| 60                                                           | LF of 18'                                | \$1,200.00                                |                                                |                                       |                                                                                |                                                         |                                                                                       |                           |
| Culvert Ma                                                   | arkers                                   |                                           |                                                |                                       |                                                                                |                                                         |                                                                                       |                           |
| 2                                                            | markers                                  | \$20.00                                   |                                                |                                       |                                                                                |                                                         |                                                                                       |                           |
|                                                              |                                          |                                           |                                                |                                       |                                                                                | TOTAL                                                   | ALILLIEDT AAATA -                                                                     | ቂ4 ኃኃስ ሰስ                 |
|                                                              |                                          |                                           |                                                |                                       |                                                                                | TOTAL                                                   | CULVERT COSTS =                                                                       | \$1,220.00                |
|                                                              |                                          |                                           |                                                |                                       | PRO                                                                            |                                                         |                                                                                       |                           |
|                                                              |                                          |                                           |                                                |                                       | PRO                                                                            |                                                         | D. 1 TOTAL COSTS =                                                                    | \$5,484.60                |
| PROJECT NO. 2:                                               |                                          |                                           |                                                |                                       | PRO                                                                            |                                                         |                                                                                       |                           |
|                                                              | 12                                       | " deep =                                  | 65 cy/sta                                      |                                       | PRO                                                                            |                                                         |                                                                                       |                           |
| SURFACING                                                    | 12<br>991                                | " deep =                                  | 3" - 0                                         | · · · · · · · · · · · · · · · · · · · | \$17.59 pe                                                                     | DJECT NO                                                | \$17,431.69                                                                           |                           |
| SURFACING<br>C to D                                          |                                          |                                           |                                                | @<br>@                                | \$17.59 per                                                                    | er cy =                                                 | \$17,431.69<br>\$773.96                                                               |                           |
| SURFACING<br>C to D<br>Turnouts (2)                          | 991                                      | cy of                                     | 3" - 0                                         |                                       | \$17.59 per<br>\$17.59 per<br>\$17.59 per                                      | er cy =                                                 | \$17,431.69<br>\$773.96<br>\$351.80                                                   |                           |
| SURFACING<br>C to D<br>Turnouts (2)<br>Turnaround            | 991<br>44<br>20<br>180                   | cy of<br>cy of                            | 3" - 0<br>3" - 0                               | @                                     | \$17.59 per                                                                    | er cy =                                                 | \$17,431.69<br>\$773.96                                                               |                           |
| SURFACING<br>C to D<br>Turnouts (2)<br>Turnaround            | 991<br>44<br>20<br>180                   | cy of<br>cy of<br>cy of                   | 3" - 0<br>3" - 0<br>3" - 0                     | @<br>@                                | \$17.59 per<br>\$17.59 per<br>\$17.59 per                                      | er cy =                                                 | \$17,431.69<br>\$773.96<br>\$351.80                                                   |                           |
| SURFACING<br>C to D<br>Turnouts (2)<br>Turnaround<br>Landing | 991<br>44<br>20<br>180                   | cy of<br>cy of<br>cy of                   | 3" - 0<br>3" - 0<br>3" - 0                     | @<br>@                                | \$17.59 per<br>\$17.59 per<br>\$17.59 per                                      | er cy =                 | \$17,431.69<br>\$773.96<br>\$351.80                                                   |                           |
| SURFACING<br>C to D<br>Turnouts (2)<br>Turnaround<br>Landing | 991<br>44<br>20<br>180<br>1,235          | cy of<br>cy of<br>cy of<br>cy of          | 3" - 0<br>3" - 0<br>3" - 0<br>3" - 0           | @<br>@                                | \$17.59 per<br>\$17.59 per<br>\$17.59 per<br>\$17.59 per                       | er cy =         | \$17,431.69<br>\$773.96<br>\$351.80<br>\$3,166.20                                     |                           |
| SURFACING C to D Turnouts (2) Turnaround Landing Total =     | 991<br>44<br>20<br>180<br>1,235          | cy of<br>cy of<br>cy of<br>cy of          | 3" - 0<br>3" - 0<br>3" - 0<br>3" - 0           | @<br>@                                | \$17.59 per<br>\$17.59 per<br>\$17.59 per<br>\$17.59 per                       | er cy =         | \$17,431.69<br>\$773.96<br>\$351.80<br>\$3,166.20<br>\$21,723.65                      | \$5,484.60                |
| PROJECT NO. 4:                                               | 991<br>44<br>20<br>180<br>1,235<br>1,235 | cy of<br>cy of<br>cy of<br>cy of<br>cy of | 3" - 0<br>3" - 0<br>3" - 0<br>3" - 0<br>3" - 0 | @ @                                   | \$17.59 per<br>\$17.59 per<br>\$17.59 per<br>\$17.59 per<br>\$17.59 per        | er cy =         | \$17,431.69<br>\$773.96<br>\$351.80<br>\$3,166.20<br>\$21,723.65<br>D. 2 TOTAL COST = | \$5,484.60                |
| SURFACING C to D Turnouts (2) Turnaround Landing Total =     | 991<br>44<br>20<br>180<br>1,235<br>1,235 | cy of<br>cy of<br>cy of<br>cy of<br>cy of | 3" - 0<br>3" - 0<br>3" - 0<br>3" - 0<br>3" - 0 | @<br>@                                | \$17.59 per<br>\$17.59 per<br>\$17.59 per<br>\$17.59 per<br>\$17.59 per<br>PRO | er cy = | \$17,431.69<br>\$773.96<br>\$351.80<br>\$3,166.20<br>\$21,723.65<br>D. 2 TOTAL COST = | \$5,484.60<br>\$21,723.65 |
| SURFACING C to D Furnouts (2) Furnaround Landing Total =     | 991<br>44<br>20<br>180<br>1,235<br>1,235 | cy of<br>cy of<br>cy of<br>cy of<br>cy of | 3" - 0<br>3" - 0<br>3" - 0<br>3" - 0<br>3" - 0 | @ @                                   | \$17.59 per<br>\$17.59 per<br>\$17.59 per<br>\$17.59 per<br>\$17.59 per<br>PRO | er cy = | \$17,431.69<br>\$773.96<br>\$351.80<br>\$3,166.20<br>\$21,723.65<br>D. 2 TOTAL COST = | \$5,484.60                |
| SURFACING D to D Furnouts (2) Furnaround Landing Total =     | 991<br>44<br>20<br>180<br>1,235<br>1,235 | cy of<br>cy of<br>cy of<br>cy of<br>cy of | 3" - 0<br>3" - 0<br>3" - 0<br>3" - 0<br>3" - 0 | @ @                                   | \$17.59 per<br>\$17.59 per<br>\$17.59 per<br>\$17.59 per<br>\$17.59 per<br>PRO | er cy = | \$17,431.69<br>\$773.96<br>\$351.80<br>\$3,166.20<br>\$21,723.65<br>D. 2 TOTAL COST = | \$5,484.60<br>\$21,723.65 |

| Timber Sale: B                          | lazing Saddles     | _         | Timber Sal     | e No. : 341-16-04                  |                    |
|-----------------------------------------|--------------------|-----------|----------------|------------------------------------|--------------------|
| Road Segment:                           | E to F             | _         | Constru        | uction : 23+40 stations 0.44 miles |                    |
| PROJECT-NO. 1                           |                    |           |                |                                    |                    |
| EXCAVATION                              |                    |           |                |                                    |                    |
| Clearing and Grubbing (Scatt            | er) 2.1            | 5 acres@  | \$1,078.00 per |                                    |                    |
| Balanced Road Construction              | 23.4               | 0 sta@    |                |                                    |                    |
| Construct Turnouts (3)                  |                    | 3 ea. @   |                |                                    |                    |
| Construct Turnaround (1)                |                    | 1 ea. @   |                |                                    |                    |
| Landing                                 |                    | 1 ea. @   |                |                                    |                    |
| Grade, Ditch, and Roll                  | 23.4               | 0 sta @   | \$36.00 per    | sta = \$842.4                      | 40                 |
|                                         |                    |           | PROJ           | ECT NO. 1 TOTAL COST               | = \$6,327.26       |
| PROJECT NO. 2:                          |                    |           |                |                                    |                    |
| SURFACING 12                            | " deep = 65 cy/sta | 1         |                |                                    |                    |
| E to F 1,521                            | cy of 3" - 0       | _@        | \$18.13 per    | cy = \$27,575.                     | 73                 |
| Turnouts (3) 66                         | cy of 3" - 0       | @         | \$18.13 per    | cy = \$1,196.5                     | 58                 |
| Turnaround 20                           | cy of 3" - 0       | @         | \$18.13 per    | cy = \$362.6                       | 30                 |
| Landing 180                             | cy of 3" - 0       | @         | \$18.13 per    | cy = \$3,263.4                     | 40_                |
| Total = 1,787                           | <del></del>        |           |                |                                    |                    |
| 1,787                                   | cy of 3" - 0       |           | \$18.13 per    | cy = \$32,398.3                    | 31                 |
|                                         |                    |           | PROJ           | ECT NO. 2 TOTAL COST               | = \$32,398.31      |
| PROJECT NO. 4:                          |                    |           |                |                                    |                    |
| Grass seed and fertilize areas          | s of disturbe 1.0  | 7 acres @ | \$425.00 per   | acre = \$456.6                     | 31                 |
|                                         |                    |           | PROJ           | ECT NO. 4 TOTAL COST               | `= <u>\$456.61</u> |
| 1.11.11.11.11.11.11.11.11.11.11.11.11.1 |                    |           |                | TOTAL COS                          | Γ= \$39,182.19     |

| Timber Sale:                 | В           | lazing Sado  | lles       | =       | Timbe    | r Sale No. : | 341-16-04                     |             |
|------------------------------|-------------|--------------|------------|---------|----------|--------------|-------------------------------|-------------|
| Road Segment:                | G to H      | (Beaverda    | m Road)    | -       | lmp      | provement :  | 108+85 stations<br>2.06 miles |             |
| PROJECT NO. 1                |             |              |            |         |          |              |                               |             |
| EXCAVATION                   |             |              | ,          |         |          |              |                               |             |
| Endhaul (17+20 to 18+00)     |             |              |            |         |          |              |                               |             |
| Excavate & Load              |             |              | 63         | су @    |          | per cy =     | \$84.78                       |             |
| Haul                         |             |              | 63         | су @    |          | per cy =     | \$30.77                       |             |
| Compact Waste Area           |             |              | 63         | су @    |          | per cy =     | \$18.84                       |             |
| Clean/Construct Ditch and    | Waste Lo    | cally        | 101.05     | sta @   | \$60.00  | per sta =    | \$6,063.00                    |             |
| Grade, Ditch and Roll        |             |              | 101.05     | sta @   | \$36.00  | per sta =    | \$3,637.80                    |             |
| Grade and Roll (Outslope)    |             |              | 7.80       | sta @   | \$15.40  | per sta =    | \$120.12                      |             |
| , ,                          |             |              |            | ~       |          |              | CAVATION COSTS=               | \$9,955.31  |
| CULVERTS - MATERIALS         | 3 & INSTA   | ALLATION     |            |         |          |              |                               |             |
| Culverts                     |             |              |            | •       |          |              |                               |             |
| 100                          | LF of 18"   | \$2,000.00   |            |         |          |              |                               |             |
| Culvert Ma                   |             |              |            |         |          |              |                               |             |
| 10                           | markers     | \$100.00     |            |         |          |              |                               |             |
|                              |             | ,            |            |         |          | TOTAL        | CULVERT COSTS =               | \$2,100.00  |
|                              |             |              |            |         | F        | PROJECT N    | O. 1 TOTAL COST = _           | \$12,055.31 |
| DDO IECT NO. 2.              |             |              | *****      |         |          |              |                               |             |
| PROJECT NO. 2:<br>SURFACING  | 6           | " deep =     | 36 cy/sta  |         |          |              |                               |             |
| G to H                       | 3,919       | cy of        | 1 1/2" - 0 | _<br>@  | \$16.95  | per cy =     | \$66,427.05                   |             |
| Turnouts (16)                | 176         | cy of        | 1 1/2" - 0 |         |          | per cy =     | \$2,983.20                    |             |
| Junction (Pt. G & H)         | 60          | cy of        | 1 1/2" - 0 |         |          | per cy =     | \$1,017.00                    |             |
| Culvert Bedding/Backfill     | 36          | cy of        | 1 1/2" - 0 |         |          | per cy =     | \$564.48                      |             |
| Total =                      | 4,191       | Cy Oi        | 1 1/2 - 0  | w       | ψ10.00   | per cy –     | Ψουτ.τυ_                      |             |
| i Otai –                     | 4,155       | cy of        | 1 1/2" - 0 |         | \$16 Q5  | per cy =     | \$70,427.25                   |             |
|                              | 36          | cy of        | 1 1/2 - 0  |         |          | per cy =     | \$564.48                      |             |
|                              | 30          | Cy Oi        | 1 1/2 - 0  |         |          | •            |                               |             |
|                              |             |              |            |         | F        | PROJECT N    | IO. 2 TOTAL COST = _          | \$70,991.73 |
| PROJECT NO. 4:               |             |              |            |         |          |              |                               |             |
| Grass seed and fertilize are | eas of dist | turbed soil. | 0.10       | acres @ | \$425.00 | per acre =   |                               |             |
| Mulch                        |             |              | 4          | bales @ | \$8.00   | per bale =   | \$32.00                       |             |
|                              |             |              |            | _       | F        | PROJECT N    | IO. 3 TOTAL COST =            | \$74.50     |
|                              |             |              |            |         |          |              | TOTAL COST =                  | \$83,121.54 |
|                              |             |              |            |         |          |              | IOIAL COSI -                  | ψου, 121.34 |

**Blazing Saddles** Timber Sale No.: 341-16-04 Timber Sale: Improvement: 23+35 stations Road Segment: H to I (Seven Cedars Road) 0.44 miles PROJECT NO. 1 **EXCAVATION** \$175.00 per hr = \$700.00 Clearing and Grubbing (Scatter) 4.00 hrs @ Clean/Construct Ditch and Waste Locally 15.20 sta.@ \$60.00 per sta = \$912.00 \$19.20 per sta = \$448.32 Grade and Ditch 23.35 sta @ TOTAL EXCAVATION COSTS= \$2,060.32 **CULVERTS - MATERIALS & INSTALLATION** Culverts 40 LF of 18" \$800.00 **Culvert Markers** 1 markers \$10.00 TOTAL CULVERT COSTS = \$810.00 PROJECT NO. 1 TOTAL COST = \$2,870.32 PROJECT NO. 2: SURFACING 10 deep = 53 cy/sta 1,238 \$16.89 per cy =\$20,909.82 3" - 0 @ H to I cy of Turnouts (3) 3" - 0 \$16.89 per cy = \$912.06 54 cy of @ \$16.89 per cy = \$675.60 Junction (Pt. H & N) 1 1/2" - 0 @ 40 cy of \$176.64 Culvert Bedding/Backfill 1 1/2" - 0 @ \$14.72 per cy = 12 cy of Total = 1,344 40 cy of 1 1/2" - 0 \$16.89 per cy = \$675.60 12 cy of 1 1/2" - 0 14.72 per cy = \$176.64 3" - 0 \$16.89 per cy = \$21,821.88 1,292 cy of PROJECT NO. 2 TOTAL COST = \$22,674.12 TOTAL COST = \$25,544.44

**Blazing Saddles** 

Timber Sale:

341-16-04

Timber Sale No.:

Improvement: 44+60 stations Road Segment: H to J (Upper Saddle Mtn. Road) 0.84 miles PROJECT NO. 1 **EXCAVATION** 4.00 hrs @ \$175.00 per hr = \$700.00 Clearing and Grubbing (Scatter) Road Widening (36+00 to 36+50) 0.50 sta @ \$110.00 per sta = \$55.00 Endhaul (Culvert No. 11, 25+20 to 28+90 & 36+00 to 36+50) \$1.35 per cy = \$1,115.51 Excavate & Load 826 cy @ \$0.57 per cy = \$491.36 862 Endhaul cy @ \$524.16 \$2.40 per cy = 218 Place Fill cy @ \$0.50 per cy = \$109.20 Compact Fill 218 cy@ \$0.30 per cy = \$258.61 Compact Waste Area 862 cy@ Improve 50' x 50' Landing ea. @ \$165.00 per ea. = \$165.00 Clean/Construct Ditch and Waste Locally 36.75 sta @ \$60.00 per cy = \$2,205.00 (0+00 to 28+90 & 37+75 to 44+60) 100.00 per cy = \$885.00 Clean/Construct Ditch and Endhaul (28+90 to 37+75) 8.85 sta @ \$1,605.60 44.60 sta @ \$36.00 per sta = Grade, Ditch, and Roll TOTAL EXCAVATION COSTS= \$8,114.44 **CULVERTS - MATERIALS & INSTALLATION** Culverts 140 LF of 18" \$2,800.00 60 LF of 24" \$1,740.00 LF of 36" \$3,000.00 LF of 60" 50 \$6,700.00 **Culvert Markers** 11 markers \$110.00 Additional Culvert Installation Cost \$175.00 per hr. = \$350.00 2 Hrs. @ TOTAL CULVERT COSTS = \$14,700.00 PROJECT NO. 1 TOTAL COST = \$22,814.44 PROJECT NO. 2: SURFACING 10 " deep = 53 cy/sta cy of \$41,464.56 2,364 3" - 0 \$17.54 per cy = H to J @ 126 3" - 0 \$17.54 per cy = \$2,210.04 Turnouts (7) cy of @ Landing (39+75) cy of 3" - 0 \$17.54 per cy = \$1,403.20 80 @ \$15.26 per cy = \$1,831.20 Culvert Bedding/Backfill 120 cy of 1 1/2" - 0 @ Total = 2,690 \$15.26 per cy = 1 1/2" - 0 \$1,831.20 cy of 120 \$17.54 per cy = \$45,077.80 2,570 3" - 0 cy of PROJECT NO. 2 TOTAL COST = \$46,909.00 PROJECT NO. 4: \$425.00 per acre = 0.50 acres @ \$212.50 Grass seed and fertilize areas of disturbed soil. \$8.00 per bale = \$160.00 20 bales @ Mulch PROJECT NO. 4 TOTAL COST = \$372.50 TOTAL COST = \$70,095.94

| Road Seg      | gment: | K to C |      |       | Improvement:                    | 4+90 stations             |          |
|---------------|--------|--------|------|-------|---------------------------------|---------------------------|----------|
|               |        |        |      |       | · -                             | 0.09 miles                |          |
| PROJECT NO    |        |        |      |       |                                 |                           |          |
| Grade, Ditch, |        |        | 4.90 | sta @ | \$36.00 per sta =<br>TOTAL EXCA | \$176.40<br>VATION COSTS= | \$176.40 |
|               |        |        |      |       | PROJECT NO.                     | TOTAL COST = _            | \$176.40 |

341-16-04 Timber Sale: **Blazing Saddles** Timber Sale No. : L to M Improvement: 6+40 stations Road Segment: 0.12 miles PROJECT NO. 1 **EXCAVATION** Grade, Ditch, and Roll 6.40 sta @ \$36.00 per sta = \$230.40 TOTAL EXCAVATION COSTS= \$230.40 **CULVERTS - MATERIALS & INSTALLATION** Culverts 104 LF of 18" \$2,080.00 **Culvert Markers** 3 markers \$30.00 \$2,110.00 TOTAL CULVERT COSTS = \$2,340.40 PROJECT NO. 1 TOTAL COST = PROJECT NO. 2: 36 \$557.28 Culvert Bedding/Backfill cy of 1 1/2" - 0 @ \$15.48 per cy = 1 1/2" - 0 @ Surfacing over culverts 36 \$16.20 per cy = \$583.20 cy of Total = 72 36 cy of 1 1/2" - 0 \$15.48 per cy = \$557.28 36 cy of 1 1/2" - 0 \$16.20 per cy =\$583.20 PROJECT NO. 2 TOTAL COST = \$1,140.48 TOTAL COST = \$3,480.88

**Blazing Saddles** Timber Sale No.: 341-16-04 Timber Sale: Road Segment: N to E Improvement: 55+35 stations 1.05 miles **PROJECT NO. 1 EXCAVATION** sta @ \$36.00 per sta = Grade, Ditch, and Roll 55.35 \$1,992.60 \$1,992.60 TOTAL EXCAVATION COSTS= CULVERTS - MATERIALS & INSTALLATION Culverts 60 LF of 18" \$1,200.00 **Culvert Markers** 4 markers \$40.00 TOTAL CULVERT COSTS = \$1,240.00 PROJECT NO. 1 TOTAL COST = \$3,232.60 PROJECT NO. 2: SURFACING " deep = 20 cy/sta Culvert Bedding/Backfill 24 1 1/2" - 0 @ \$15.92 per cy = \$382.08 cy of Surfacing over culverts 24 cy of 3" - 0 @ \$17.32 per cy = \$415.68 3" - 0 17.32 per cy =\$2,078.40 Spot Rock 120 @ cy of 17.32 per cy =Spot Rock 48 1 1/2" - 0 @ \$831.36 cy of 216 Total = 3" - 0 \$2,494.08 \$17.32 per cy = 144 cy of \$382.08 24 cy of 1 1/2" - 0 \$15.92 per cy = cy of 1 1/2" - 0 \$17.32 per cy = \$831.36 48 PROJECT NO. 2 TOTAL COST = \$3,707.52

TOTAL COST =

\$6,940.12

**Blazing Saddles** Timber Sale No.: 341-16-04 Timber Sale: O to P Road Segment:. Construction: 4+50 stations 0.09 miles PROJECT NO. 5 Bridge Installation 50' Bridge, Sills, Sheet Pile Back Walls (including freight) \$59,400.00 \$5,000.00 Dewatering Sills Installation 8 hrs @ \$175.00 per hr = \$1,400.00 Excavator Laborers 24 hrs @ \$40.00 per hr = \$960.00 \$350.00 per day = \$350.00 Jumping Jack Compactor 1 day @ Set Bridge \$350.00 per hr = \$2,800.00 Crane 8 hrs @ Laborers 16 \$40.00 per hr = \$640.00 hrs @ Road Construction (O to P) Clearing and Grubbing (Endhaul Stumps) \$370.98 0.41 acres @ \$904.82 per acre = **Balanced Road Construction** 4.50 \$110.00 per sta = \$495.00 sta@ Grade, Ditch, and Roll 4.50 sta@ \$36.00 per sta = \$162.00 Mobilization \$3,305.26 Crane \$78.38 Grader - move from Timber Sale Area Roller - move from Timber Sale Area \$93.50 Excavator (Large) \$1,652.63 Excavator (Large) - move from Timber Sale Area \$700.00 Tractor (D8) - move from Timber Sale Area \$700.00 Dump Trucks (10 cy +) - move from Timber Sale Area \$123.75 Water Truck (2500 Gal) - move from Timber Sale Area \$41.25 \$4,000.00 Licensed Engineer **CULVERTS - MATERIALS & INSTALLATION** Culverts 24 LF of 18" \$480.00 **Culvert Markers** 1 markers \$10.00 **SUBTOTAL = \$82,762.74** Profit and Risk 15% = \$12,414.41 PROJECT NO. 5 TOTAL COST = \$95,177.15 PROJECT NO. 2: SURFACING 6 " deep = 31 cy/sta " deep = 20 cy/sta Bridge Sill Footings 10 3" - 0 per cy = \$111.30 cy of \$11.13 @ Sill Footings 1 1/2" - 0 \$22.26 2 cy of @ \$11.13 per cy = per cy = **Bridge Surfacing** 48 cy of 1 1/2" - 0 @ \$11.05 \$530.40 cy of per cy = Riprap 50 36" - 24" @ \$13.03 \$651.50 cy of Base Rock (6" deep) 140 3" - 0 @ \$11.05 per cy = \$1,541.48 cy of Surfacing Rock (4" deep) 90 1 1/2" - 0 \$11.05 per cy ≍ \$994.50 Total = 340 cy of 1 1/2" - 0 \$11.13 \$22,26 2 per cy = 1 1/2" - 0 \$11.05 per cy = \$1,524.90 138 cy of 3" - 0 \$111.30 cy of \$11.13 per cy = 10 3" - 0 \$11.05 per cy = \$1,541.48 140 cy of 50 cy of 36" - 24" \$13.03 per cy = \$651.50 \$3,851.44 PROJECT NO. 2 TOTAL COST = PROJECT NO. 4: Grass seed & Mulch @ Bridge Site 0.10 acres @ \$950.00 per acre = \$95.00 Grass seed, Fertilize, & Mulch @ Waste Area 0.25 acres @ \$1,025.00 per acre = \$256.25 PROJECT NO. 4 TOTAL COST = \$351.25

TOTAL COST = \$99,379.84

Timber Sale: Blazing Saddles Timber Sale No. : 341-16-04

Road Segment: 11/2" - 0 Stockpile

PROJECT NO. 3: 1 1/2" - 0 Stockpile

2,000cy Stockpile 2,320 (Truck Measure) cy of 1 1/2" - 0 @ \$19.15 per cy = \$44,428.00

2,320

PROJECT NO. 3 TOTAL COST = \$44,428.00

#### ROCK PIT DEVELOPMENT AND CRUSHING COST SUMMARY

**Blazing Saddles** 

**TOTAL PRODUCTION COST** 

\$181,717.71

Timber Sale:

341-16-04 Sale Number: Pit Name: Seven Cedars Pit 1-1/2"-0 (trk measure) 4,647 cv Swell: 130% 7,198 cy 3"-0 (trk measure) Shrinkage: 116% 1 1/2"-0 Stockpile (stockpile measure) 2,000 cy 85% Drill Pct.: 15% Total Truck Yardage: 14,165 cy Screening Loss: Total In Place Yardage: 10,896 cy Reject Material Stockpile Site Development & Pit Development \$1,400.00 12,819 cy \$35,891.95 Drill & Shoot: \$2.80 /cv x = = \$13,331.29 \$0.80 16,664 cy Load Crusher: /cy x Screen Rock \$2.90 /cy x 16,664 cy = \$48,325.94 4.647 cy \$15,335.10 \$3.30 Crushing (1-1/2" - 0): /cy x \$23,751.75 7,198 cy Crushing (3" - 0): \$3.30 /cy x = Crushing (Stockpile): \$3.30 /cy x 2,320 cy = \$7,656.00 2,500 cy \$1,299.80 \$0.52 = Waste Reject: /cy x \$0.80 16,664 cy \$13,331.29 Load Dump Truck: /cy x 2,320 cy \$2,552.00 Build and Shape Stockpile: \$1.10 /cy x \$167,075.13 Subtotal \$2,000.00 **Equipment Cleaning** Move in Crusher (Stage 3) \$3,286.00 \$3,327.00 Set up Crusher Move in and set up Drill and Compressor \$671.83 Move in Screening Plant \$465.00 \$1,091.76 Move in Excavator \$1,133.93 Move in D-8 \$945.06 Move in Loader \$875.00 Clean Up Pit \$71.50 cy/2000cy x tests \$572.00 Gradation Tests (\$65/2000 cy) \$275.00 Change Gradation Subtotal \$14,642.58

**ROCK DEVELOPMENT COST =** \$12.83/cy

### CRUISE REPORT Blazing Saddles 341-16-04

1. LOCATION: Portions of Sections 14, 23, & 24, T1N, R6W, W.M., Tillamook County, Oregon.

#### 2. CRUISE DESIGN:

The cruise design assumed a Coefficient of Variation of 55%, an average stand diameter of 18 inches, a desired sampling error of 11% and a minimum sample size of 100 grade trees. Precruise plots indicated that approximately 5 trees per plot could be realized with a 40 BAF prism.

#### 3. SAMPLING METHOD:

The two Sale Areas were cruised in April 2015 with 31 variable radius grade plots using a 40 BAF prism (19 plots in Area 1 and 12 plots in Area 2). Plots were laid out on a 5 chain x 5 chain grid for both Sale Areas. Plots falling on or near existing roads or no-harvest areas were offset 1 chain.

#### 4. CRUISE RESULTS

Area 1: 97 trees were measured and graded producing a cumulative Basal Area sampling error of 10.1% and 10.6% on the Board Foot Volume.

Area 2: 68 trees were measured and graded producing a cumulative Basal Area sampling error of 10.5% and 12.8 % on the Board Foot Volume.

#### 5. TREE MEASUREMENT AND GRADING:

All sample trees were measured and graded following Columbia River Log Scale grade rules and favoring 40 foot segments.

#### a) Height Standards:

Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.

- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors were measured for each grade tree using a form point of 16 feet.

#### 5. DATA PROCESSING

- Volumes and Statistics, Cruise volume estimates, and sampling statistics, were derived from Super Ace 2008 cruise software.
- b) **Deductions:** Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.
- **6. Cruisers:** The sale was cruised by ODF cruisers.

| Prepared by: | Joe Koch     | 4/7/2015 |
|--------------|--------------|----------|
|              | ODF Forester | Date     |
| Reviewed by: |              |          |
| ,            | Eric Foucht  | Date     |

|                                                                                                                                                     | TATS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                                                                                                                                                        |                                                                                                                                                                   |          | DJECT S<br>ROJECT                                                                     |                                                                                                                                                      | STICS<br>ZIFIN                                                                                                 |        |                             | PAGE<br>DATE             | 1<br>6/23/201 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------|---------------|
| TWP                                                                                                                                                 | RGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SC             | TRACT                                                                                                                                                                  | 7                                                                                                                                                                 | ГҮРЕ     |                                                                                       | AC                                                                                                                                                   | RES                                                                                                            | PLOTS  | TREES                       | CuFt                     | BdFt          |
| 01N<br>01N                                                                                                                                          | 06<br>06W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24<br>24       | A1<br>A2                                                                                                                                                               |                                                                                                                                                                   | MC<br>MC |                                                                                       |                                                                                                                                                      | 117.00                                                                                                         | 31     | 165                         | S                        | W             |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                        |                                                                                                                                                                   |          | TREES                                                                                 |                                                                                                                                                      | ESTIMATED<br>TOTAL                                                                                             |        | PERCENT<br>SAMPLE           |                          |               |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | PLOTS                                                                                                                                                                  | TREES                                                                                                                                                             |          | PER PLOT                                                                              |                                                                                                                                                      | TREES                                                                                                          |        | TREES                       |                          |               |
| TOT                                                                                                                                                 | AI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 31                                                                                                                                                                     | 165                                                                                                                                                               |          | 5.3                                                                                   |                                                                                                                                                      |                                                                                                                |        |                             |                          |               |
| CRU<br>DBH                                                                                                                                          | JISE<br>I COUNT<br>OREST<br>JNT<br>NKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 31                                                                                                                                                                     | 165                                                                                                                                                               |          | 5.3                                                                                   |                                                                                                                                                      | 12,278                                                                                                         |        | 1.3                         |                          |               |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                        |                                                                                                                                                                   | STA      | ND SUMN                                                                               | 1ARY                                                                                                                                                 |                                                                                                                |        |                             |                          |               |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S              | AMPLE                                                                                                                                                                  | TREES                                                                                                                                                             | AVG      | BOLE                                                                                  | REL                                                                                                                                                  | BASAL                                                                                                          | GROSS  | NET                         | GROSS                    | NET           |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | TREES                                                                                                                                                                  | /ACRE                                                                                                                                                             | DBH      | LEN                                                                                   | DEN                                                                                                                                                  | AREA                                                                                                           | BF/AC  | BF/AC                       | CF/AC                    | CF/AC         |
| DOU                                                                                                                                                 | JG FIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 151                                                                                                                                                                    | 91.3                                                                                                                                                              | 19.8     | 103                                                                                   | 43.7                                                                                                                                                 | 194.5                                                                                                          | 31,149 | 31,095                      | 7,385                    | 7,38          |
| NOB                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 6                                                                                                                                                                      | 2.9                                                                                                                                                               | 21.4     | 114                                                                                   | 1.6                                                                                                                                                  | 7.4                                                                                                            | 1,560  | 1,560                       | 330                      | 33            |
|                                                                                                                                                     | FIR-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 1                                                                                                                                                                      | .5                                                                                                                                                                | 23.0     | 118                                                                                   | 0.3                                                                                                                                                  | 1.3                                                                                                            | 263    | 185                         | 57                       | 5             |
| WHE                                                                                                                                                 | EMLOCK-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -L             | 3                                                                                                                                                                      | 6.5                                                                                                                                                               | 10.6     | 85                                                                                    | 1.2                                                                                                                                                  | 4.0                                                                                                            | 514    | 514                         | 115                      | 11            |
| WHE                                                                                                                                                 | EMLOCK-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -T             | 4                                                                                                                                                                      | 3.7                                                                                                                                                               | 16.2     | 99                                                                                    | 1.3                                                                                                                                                  | 5.3                                                                                                            | 809    | 809                         | 200                      | 20            |
| TOT                                                                                                                                                 | <b>TAL</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 165                                                                                                                                                                    | 104.9                                                                                                                                                             | 19.3     | 102                                                                                   | 48.4                                                                                                                                                 | 212.5                                                                                                          | 34,295 | 34,162                      | 8,088                    | 8,08          |
| CL<br>SD:                                                                                                                                           | 68.1<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | COEFF<br>VAR.%                                                                                                                                                         | S.E.%                                                                                                                                                             | <u> </u> | SAMPL)                                                                                | AVG                                                                                                                                                  | HIGH                                                                                                           |        | OF TREES 5                  | 10                       | INF, PO       |
|                                                                                                                                                     | JG FIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 63.1<br>56.3                                                                                                                                                           | 5.1<br>25.1                                                                                                                                                       |          | 436                                                                                   | 460                                                                                                                                                  | 484                                                                                                            |        |                             |                          |               |
|                                                                                                                                                     | 3 FIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 30.1                                                                                                                                                                   |                                                                                                                                                                   |          |                                                                                       | 125                                                                                                                                                  | 70.4                                                                                                           |        |                             |                          |               |
| NOB                                                                                                                                                 | FIR-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _              |                                                                                                                                                                        |                                                                                                                                                                   |          | 476                                                                                   | 635                                                                                                                                                  | 794                                                                                                            |        |                             |                          |               |
| NOB<br>Whe                                                                                                                                          | EMLOCK-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 12.5                                                                                                                                                                   | 8.6                                                                                                                                                               |          | 73                                                                                    | 80                                                                                                                                                   | 87                                                                                                             |        |                             |                          |               |
| NOB<br>Whe<br>Whe                                                                                                                                   | EMLOCK.<br>EMLOCK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 12.5<br>45.3                                                                                                                                                           | 8.6<br>25.9                                                                                                                                                       |          | 73<br>180                                                                             | 80<br>243                                                                                                                                            | 87<br>305                                                                                                      |        | 167                         | 42                       |               |
| NOB<br>WHE<br>WHE<br>TOT                                                                                                                            | EMLOCK-<br>EMLOCK-<br>FAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 12.5<br>45.3<br>64.7                                                                                                                                                   | 8.6                                                                                                                                                               |          | 73<br>180<br><i>431</i>                                                               | 80<br>243<br><i>454</i>                                                                                                                              | 87<br>305<br>477                                                                                               | 4      | 167                         | 42<br>REO                |               |
| NOB<br>WHE<br>WHE<br>TOT                                                                                                                            | EMLOCK-<br>EMLOCK-<br>FAL<br>68.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 12.5<br>45.3<br>64.7<br>COEFF                                                                                                                                          | 8.6<br>25.9<br>5.0                                                                                                                                                | Ţ        | 73<br>180<br><i>431</i><br>SAMPL                                                      | 80<br>243<br><i>454</i><br>E <b>TREE</b>                                                                                                             | 87<br>305<br><i>477</i><br>S - CF                                                                              | #      | OF TREES                    | REQ.                     | INF. PO       |
| NOB<br>WHE<br>WHE<br>TOT<br>CL<br>SD:                                                                                                               | EMLOCK-<br>EMLOCK-<br>FAL<br>68.1<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%                                                                                                                                 | 8.6<br>25.9                                                                                                                                                       | I        | 73<br>180<br><i>431</i>                                                               | 80<br>243<br><i>454</i>                                                                                                                              | 87<br>305<br><i>477</i><br>S - CF<br>HIGH                                                                      | #      |                             |                          | INF. PO       |
| NOB WHE WHE TOT CL SD: DOU NOB                                                                                                                      | EMLOCK-<br>EMLOCK-<br>FAL<br>68.1<br>1.0<br>JG FIR<br>3 FIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 12.5<br>45.3<br>64.7<br>COEFF                                                                                                                                          | 8.6<br>25.9<br>5.0<br>S.E.%                                                                                                                                       | I        | 73<br>180<br><i>431</i><br><b>SAMPL</b> E                                             | 80<br>243<br><i>454</i><br>E <b>TREE</b><br>AVG                                                                                                      | 87<br>305<br><i>477</i><br>S - CF                                                                              | #      | OF TREES                    | REQ.                     | INF. PO       |
| NOB WHE WHE TOT  CL SD: DOU NOB NOB                                                                                                                 | EMLOCK-<br>EMLOCK-<br>FAL<br>68.1<br>1.0<br>JG FIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -T             | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7                                                                                                                         | 8.6<br>25.9<br>5.0<br>S.E.%                                                                                                                                       | I        | 73<br>180<br>431<br>SAMPL                                                             | 80<br>243<br>454<br>E TREE<br>AVG<br>106                                                                                                             | 87<br>305<br><i>477</i><br>S - CF<br>HIGH                                                                      | #      | OF TREES                    | REQ.                     | INF. PO       |
| NOB WHE WHE TOT  CL SD: DOU NOB NOB WHE                                                                                                             | EMLOCK-EMLOCK-FAL  68.1  1.0  JG FIR 3 FIR-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -T             | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8                                                                                                                 | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7                                                                                                                        | I        | 73<br>180<br>431<br>SAMPLI<br>OW<br>101<br>103                                        | 80<br>243<br>454<br>E TREE<br>AVG<br>106<br>131                                                                                                      | 87<br>305<br>477<br>S - CF<br>HIGH<br>111<br>160                                                               | #      | OF TREES                    | REQ.                     | INF. POI      |
| NOB WHE WHE TOT  CL SD: DOU NOB NOB WHE                                                                                                             | EMLOCK- EMLOCK- FAL  68.1  1.0  JG FIR 3 FIR- B FIR-L  EMLOCK- EMLOCK-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -T             | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8                                                                                                                 | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7                                                                                                                        | I        | 73<br>180<br>431<br>SAMPLI<br>OW<br>101<br>103                                        | 80<br>243<br>454<br>E TREE<br>AVG<br>106<br>131                                                                                                      | 87<br>305<br>477<br>S - CF<br>HIGH<br>111<br>160                                                               | #      | OF TREES                    | REQ.                     | INF. PO       |
| NOB WHE TOT  CL SD: DOU NOB WHE WHE TOT  CL                                                                                                         | EMLOCK-EMLOCK-FAL  68.1  1.0  JG FIR 3 FIR-BEMLOCK-EMLOCK-EMLOCK-FAL  68.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -T             | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8<br>20.2<br>42.7<br>56.1<br>COEFF                                                                                | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7<br>14.0<br>24.4<br>4.4                                                                                                 |          | 73 180 431  SAMPLI OW 101 103 16 45 100  TREES/                                       | 80<br>243<br>454<br>E TREE<br>AVG<br>106<br>131<br>18<br>60<br>104<br>ACRE                                                                           | 87<br>305<br>477<br>S - CF<br>HIGH<br>111<br>160<br>21<br>74<br>109                                            |        | OF TREES 5  126  OF PLOTS   | REQ.<br>10<br>31<br>REQ. | INF. POI      |
| NOB WHE TOT  CL SD: DOU NOB WHE WHE TOT  CL SD:                                                                                                     | EMLOCK-EMLOCK-FAL  68.1  1.0  JG FIR 3 FIR-L EMLOCK-EMLOCK-FAL  68.1  1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -T             | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8<br>20.2<br>42.7<br>56.1<br>COEFF<br>VAR.%                                                                       | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7<br>14.0<br>24.4<br>4.4<br>S.E.%                                                                                        |          | 73<br>180<br>431<br>SAMPLI<br>OW<br>101<br>103<br>16<br>45<br>100<br>TREES/           | 80<br>243<br>454<br>E TREE<br>AVG<br>106<br>131<br>18<br>60<br>104<br>ACRE<br>AVG                                                                    | 87<br>305<br>477<br>S - CF<br>HIGH<br>111<br>160<br>21<br>74<br>109                                            |        | OF TREES 5                  | REQ.<br>10               | INF. POI      |
| NOB WHE TOT  CL SD: DOU NOB WHE WHE TOT  CL SD: DOU                                                                                                 | EMLOCK-EMLOCK-FAL  68.1  1.0  JG FIR B FIR-L EMLOCK-FAL  68.1  1.0  JG FIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -T             | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8<br>20.2<br>42.7<br>56.1<br>COEFF<br>VAR.%<br>50.8                                                               | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7<br>14.0<br>24.4<br>4.4<br>S.E.%<br>9.1                                                                                 |          | 73<br>180<br>431<br>SAMPLI<br>OW<br>101<br>103<br>16<br>45<br>100<br>TREES/           | 80<br>243<br>454<br>E TREE<br>AVG<br>106<br>131<br>18<br>60<br>104<br>ACRE<br>AVG<br>91                                                              | 87<br>305<br>477<br>S - CF<br>HIGH<br>111<br>160<br>21<br>74<br>109<br>HIGH                                    |        | OF TREES 5  126  OF PLOTS   | REQ.<br>10<br>31<br>REQ. | INF. POI      |
| NOB WHE WHE TOT  CL SD: DOU NOB WHE WHE TOT  CL SD: DOU NOB                                                                                         | EMLOCK-EMLOCK-FAL  68.1  1.0  JG FIR B FIR-L  EMLOCK-FAL  68.1  1.0  JG FIR B FIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -T             | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8<br>20.2<br>42.7<br>56.1<br>COEFF<br>VAR.%<br>50.8<br>300.7                                                      | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7<br>14.0<br>24.4<br>4.4<br>S.E.%<br>9.1<br>54.0                                                                         |          | 73<br>180<br>431<br>SAMPLI<br>OW<br>101<br>103<br>16<br>45<br>100<br>TREES/           | 80<br>243<br>454<br>E TREE<br>AVG<br>106<br>131<br>18<br>60<br>104<br>ACRE<br>AVG<br>91<br>3                                                         | 87<br>305<br>477<br>S - CF<br>HIGH<br>111<br>160<br>21<br>74<br>109<br>HIGH<br>100<br>5                        |        | OF TREES 5  126  OF PLOTS   | REQ.<br>10<br>31<br>REQ. | INF. POI      |
| NOB WHE WHE TOT  CL SD: DOU NOB WHE WHE TOT  CL SD: DOU NOB NOB                                                                                     | EMLOCK- EMLOCK- EMLOCK- EMLOCK- S FIR S FIR-L EMLOCK-  | -L<br>-T       | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8<br>20.2<br>42.7<br>56.1<br>COEFF<br>VAR.%<br>50.8<br>300.7<br>556.8                                             | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7<br>14.0<br>24.4<br>4.4<br>S.E.%<br>9.1<br>54.0<br>99.9                                                                 |          | 73 180 431  SAMPLI OW 101 103  16 45 100  TREES/                                      | 80<br>243<br>454<br>E TREE<br>AVG<br>106<br>131<br>18<br>60<br>104<br>ACRE<br>AVG<br>91<br>3<br>0                                                    | 87<br>305<br>477<br>S - CF<br>HIGH<br>111<br>160<br>21<br>74<br>109<br>HIGH<br>100<br>5                        |        | OF TREES 5  126  OF PLOTS   | REQ.<br>10<br>31<br>REQ. | INF. POI      |
| NOB WHE TOT  CL SD: DOU NOB WHE TOT  CL SD: DOU NOB WHE WHE TOT                                                                                     | EMLOCK- EMLOCK | -T<br>-L<br>-T | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8<br>20.2<br>42.7<br>56.1<br>COEFF<br>VAR.%<br>50.8<br>300.7<br>556.8<br>556.8                                    | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7<br>14.0<br>24.4<br>4.4<br>S.E.%<br>9.1<br>54.0<br>99.9<br>99.9                                                         |          | 73<br>180<br>431<br>SAMPLI<br>OW<br>101<br>103<br>16<br>45<br>100<br>TREES/           | 80<br>243<br>454<br>E TREE<br>AVG<br>106<br>131<br>18<br>60<br>104<br>ACRE<br>AVG<br>91<br>3<br>0<br>6                                               | 87<br>305<br>477<br>S - CF<br>HIGH<br>111<br>160<br>21<br>74<br>109<br>HIGH<br>100<br>5                        |        | OF TREES 5  126  OF PLOTS   | REQ.<br>10<br>31<br>REQ. | INF. POI      |
| NOB WHE TOT  CL SD: DOU NOB WHE TOT  CL SD: DOU NOB WHE WHE TOT                                                                                     | EMLOCK- EMLOCK | -T<br>-L<br>-T | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8<br>20.2<br>42.7<br>56.1<br>COEFF<br>VAR.%<br>50.8<br>300.7<br>556.8                                             | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7<br>14.0<br>24.4<br>4.4<br>S.E.%<br>9.1<br>54.0<br>99.9                                                                 |          | 73 180 431  SAMPLI OW 101 103  16 45 100  TREES/                                      | 80<br>243<br>454<br>E TREE<br>AVG<br>106<br>131<br>18<br>60<br>104<br>ACRE<br>AVG<br>91<br>3<br>0                                                    | 87<br>305<br>477<br>S - CF<br>HIGH<br>111<br>160<br>21<br>74<br>109<br>HIGH<br>100<br>5                        |        | OF TREES 5  126  OF PLOTS   | REQ.<br>10<br>31<br>REQ. | INF. POI      |
| NOB WHE TOT  CL SD: DOU NOB WHE TOT  CL SD: DOU NOB WHE TOT  CL SD: DOU NOB WHE TOT                                                                 | EMLOCK- EMLOCK | -T<br>-L<br>-T | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8<br>20.2<br>42.7<br>56.1<br>COEFF<br>VAR.%<br>50.8<br>300.7<br>556.8<br>556.8<br>421.7                           | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7<br>14.0<br>24.4<br>4.4<br>S.E.%<br>9.1<br>54.0<br>99.9<br>99.9<br>75.7                                                 |          | 73 180 431  SAMPLI OW 101 103  16 45 100  TREES/ OW 83 1 0 0 1                        | 80<br>243<br>454<br>E TREE<br>106<br>131<br>18<br>60<br>104<br>ACRE<br>AVG<br>91<br>3<br>0<br>6<br>4<br>105                                          | 87<br>305<br>477<br>S - CF<br>HIGH<br>111<br>160<br>21<br>74<br>109<br>HIGH<br>100<br>5<br>1<br>13<br>7        | #      | OF TREES 5  126  OF PLOTS 5 | 31<br>REQ. 10            | INF. POI      |
| NOB WHE TOT  CL SD: DOU NOB WHE TOT  CL SD: DOU NOB WHE TOT  CL SD: DOU NOB WHE TOT                                                                 | EMLOCK- EMLOCK- EMLOCK- FAL  68.1  1.0  JG FIR B FIR-L EMLOCK- EMLOCK- FAL  68.1  1.0  JG FIR B FIR-L EMLOCK-  | -T<br>-L<br>-T | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8<br>20.2<br>42.7<br>56.1<br>COEFF<br>VAR.%<br>50.8<br>300.7<br>556.8<br>556.8<br>421.7<br>61.6                   | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7<br>14.0<br>24.4<br>4.4<br>S.E.%<br>9.1<br>54.0<br>99.9<br>99.9<br>75.7                                                 | L        | 73 180 431  SAMPLI OW 101 103  16 45 100  TREES/ OW 83 1 0 0 1 93                     | 80<br>243<br>454<br>E TREE<br>106<br>131<br>18<br>60<br>104<br>ACRE<br>AVG<br>91<br>3<br>0<br>6<br>4<br>105                                          | 87<br>305<br>477<br>S - CF<br>HIGH<br>111<br>160<br>21<br>74<br>109<br>HIGH<br>100<br>5<br>1<br>13<br>7        | #      | OF TREES 5  126  OF PLOTS 5 | 31<br>REQ. 10            | INF. POI      |
| NOB WHE WHE TOT  CL SD: DOU NOB WHE WHE TOT  CL SD: DOU NOB NOB WHE TOT  CL SD: CL SD: CL SD: CL SD:                                                | EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EM | -T<br>-L<br>-T | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8<br>20.2<br>42.7<br>56.1<br>COEFF<br>VAR.%<br>50.8<br>300.7<br>556.8<br>556.8<br>421.7<br>61.6<br>COEFF          | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7<br>14.0<br>24.4<br>4.4<br>S.E.%<br>9.1<br>54.0<br>99.9<br>99.9<br>75.7<br>11.1                                         | L        | 73 180 431  SAMPLI OW 101 103  16 45 100  TREES/ OW 83 1 0 0 1 93  BASAL              | 80<br>243<br>454<br>E TREE<br>AVG<br>106<br>131<br>18<br>60<br>104<br>ACRE<br>AVG<br>91<br>3<br>0<br>6<br>4<br>105<br>AREA/A                         | 87<br>305<br>477<br>S - CF<br>HIGH<br>111<br>160<br>21<br>74<br>109<br>HIGH<br>100<br>5<br>1<br>13<br>7<br>117 | #      | OF TREES 5  126 OF PLOTS 5  | 31 REQ. 10 38 REQ.       | INF. POI      |
| NOB WHE WHE TOT  CL SD: DOU NOB WHE TOT  CL SD: DOU NOB NOB WHE TOT  CL SD: DOU NOB NOB WHE WHE TOT  CL NOB NOB NOB WHE WHE TOT                     | EMLOCK-EMLOCK-FAL  68.1  1.0  JG FIR 3 FIR-L EMLOCK-FAL  68.1  1.0  JG FIR 3 FIR-L EMLOCK-FAL  68.1  1.0  JG FIR 3 FIR-L EMLOCK-FAL  68.1  1.0  JG FIR 5 FIR-L EMLOCK-FAL  68.1  1.0  JG FIR 5 FIR-L  68.1  1.0  JG FIR 5 FIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -T<br>-L<br>-T | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8<br>20.2<br>42.7<br>56.1<br>COEFF<br>VAR.%<br>50.8<br>300.7<br>556.8<br>556.8<br>421.7<br>61.6<br>COEFF<br>VAR.% | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7<br>14.0<br>24.4<br>4.4<br>S.E.%<br>9.1<br>54.0<br>99.9<br>99.9<br>75.7<br>11.1<br>S.E.%<br>5.8<br>55.7                 | L        | 73 180 431  SAMPLI OW 101 103  16 45 100  TREES/ OW 83 1 0 0 1 93  BASAL              | 80<br>243<br>454<br>E TREE<br>AVG<br>106<br>131<br>18<br>60<br>104<br>ACRE<br>AVG<br>91<br>3<br>0<br>6<br>4<br>105<br>AREA/A                         | 87 305 477  S - CF HIGH 111 160  21 74 109  HIGH 100 5 1 13 7 117  CRE HIGH 206 11                             | #      | OF TREES 5  126 OF PLOTS 5  | 31 REQ. 10 38 REQ.       | INF. POI      |
| NOB WHE TOT  CL SD: DOU NOB WHE TOT  CL SD: DOU NOB NOB WHE TOT  CL SD: DOU NOB NOB WHE WHE TOT  CL SD: DOU NOB | EMLOCK-EMLOCK-FAL  68.1  1.0  JG FIR 3 FIR-L EMLOCK-FAL  68.1  1.0  JG FIR 3 FIR-L EMLOCK-FAL  68.1  1.0  JG FIR 3 FIR-L EMLOCK-FAL  68.1  1.0  JG FIR 5 FIR-L EMLOCK-FAL  68.1  1.0  JG FIR 5 FIR-L  68.1  1.0  JG FIR 5 FIR-L  68.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -L<br>-L<br>-T | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8<br>20.2<br>42.7<br>56.1<br>COEFF<br>VAR.%<br>50.8<br>300.7<br>556.8<br>556.8<br>421.7<br>61.6<br>COEFF<br>VAR.% | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7<br>14.0<br>24.4<br>4.4<br>S.E.%<br>9.1<br>54.0<br>99.9<br>99.9<br>75.7<br>11.1<br>S.E.%<br>5.8<br>55.7<br>99.9         | L        | 73 180 431  SAMPLI OW 101 103  16 45 100  TREES/ OW 83 1 0 0 1 93  BASAL OW 183 3 0   | 80<br>243<br>454<br>E TREE<br>AVG<br>106<br>131<br>18<br>60<br>104<br>ACRE<br>AVG<br>91<br>3<br>0<br>6<br>4<br>105<br>AREA/A<br>AVG<br>194<br>7<br>1 | 87 305 477  S - CF HIGH  111 160  21 74 109  HIGH  100 5 1 13 7 117  CRE HIGH  206 11 3                        | #      | OF TREES 5  126 OF PLOTS 5  | 31 REQ. 10 38 REQ.       | INF. POI      |
| NOB WHE WHE TOT  CL SD: DOU NOB WHE TOT  CL SD: DOU NOB NOB WHE WHE TOT  CL SD: DOU NOB WHE WHE TOT  CL SD: WHE | EMLOCK-EMLOCK-FAL  68.1  1.0  JG FIR 3 FIR-L EMLOCK-FAL  68.1  1.0  JG FIR 3 FIR-L EMLOCK-FAL  68.1  1.0  JG FIR 5 FIR-L EMLOCK-FAL  68.1  1.0  JG FIR 6 FIR-L EMLOCK-FAL  68.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -L<br>-L<br>-T | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8<br>20.2<br>42.7<br>56.1<br>COEFF<br>VAR.%<br>50.8<br>300.7<br>556.8<br>556.8<br>421.7<br>61.6<br>COEFF<br>VAR.% | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7<br>14.0<br>24.4<br>4.4<br>S.E.%<br>9.1<br>54.0<br>99.9<br>99.9<br>75.7<br>11.1<br>S.E.%<br>5.8<br>55.7<br>99.9<br>99.9 | L        | 73 180 431  SAMPLI OW 101 103  16 45 100  TREES/ OW 83 1 0 0 1 93  BASAL OW 183 3 0 0 | 80<br>243<br>454<br>E TREE<br>AVG<br>106<br>131<br>18<br>60<br>104<br>ACRE<br>AVG<br>91<br>3<br>0<br>6<br>4<br>105<br>AREA/A<br>AVG<br>194<br>7<br>1 | 87 305 477 S - CF HIGH 111 160 21 74 109 HIGH 100 5 1 13 7 117 CRE HIGH 206 11 3 8                             | #      | OF TREES 5  126 OF PLOTS 5  | 31 REQ. 10 38 REQ.       | INF. POP      |
| NOB WHE WHE TOT  CL SD: DOU NOB WHE TOT  CL SD: DOU NOB NOB WHE WHE TOT  CL SD: DOU NOB WHE WHE TOT  CL SD: WHE | EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EMLOCK-EM | -L<br>-L<br>-T | 12.5<br>45.3<br>64.7<br>COEFF<br>VAR.%<br>54.7<br>48.8<br>20.2<br>42.7<br>56.1<br>COEFF<br>VAR.%<br>50.8<br>300.7<br>556.8<br>556.8<br>421.7<br>61.6<br>COEFF<br>VAR.% | 8.6<br>25.9<br>5.0<br>S.E.%<br>4.4<br>21.7<br>14.0<br>24.4<br>4.4<br>S.E.%<br>9.1<br>54.0<br>99.9<br>99.9<br>75.7<br>11.1<br>S.E.%<br>5.8<br>55.7<br>99.9         | L        | 73 180 431  SAMPLI OW 101 103  16 45 100  TREES/ OW 83 1 0 0 1 93  BASAL OW 183 3 0   | 80<br>243<br>454<br>E TREE<br>AVG<br>106<br>131<br>18<br>60<br>104<br>ACRE<br>AVG<br>91<br>3<br>0<br>6<br>4<br>105<br>AREA/A<br>AVG<br>194<br>7<br>1 | 87 305 477  S - CF HIGH  111 160  21 74 109  HIGH  100 5 1 13 7 117  CRE HIGH  206 11 3                        | #      | OF TREES 5  126 OF PLOTS 5  | 31 REQ. 10 38 REQ.       | INF. POI      |

## PROJECT STATISTICS PROJECT BLAZIFIN

PAGE 2

DATE 6/23/2015

| Ft BdFt W INF. POP. |
|---------------------|
| INF. POP.           |
|                     |
| 15                  |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
| 9                   |
| INF. POP.           |
| 15                  |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |

| TC TST                                         | ATS                        |                      |                         |                                             | C/T         | A TOT OF     | PICC               |          |                   | PAGE         | 1                                       |
|------------------------------------------------|----------------------------|----------------------|-------------------------|---------------------------------------------|-------------|--------------|--------------------|----------|-------------------|--------------|-----------------------------------------|
| 10 101                                         | 7.75                       |                      |                         |                                             | PROJE       | CATIST<br>CT | HCS<br>BLAZIFIN    |          |                   |              | 5/23/2015                               |
| TWP                                            | RGE                        | SECT T               | RACT                    |                                             | TYPE        |              | CRES               | PLOTS    | TREES             | CuFt         | BdFt                                    |
| 01N_                                           | 06W                        | 24 A                 | .1                      |                                             | MC          |              | 74.00              | 19       | 97                | S            | W                                       |
|                                                |                            |                      |                         | <i>r</i>                                    | rees        |              | ESTIMATED<br>TOTAL |          | PERCENT<br>SAMPLE |              |                                         |
|                                                |                            | PLOTS                | TREES                   | I                                           | PER PLOT    |              | TREES              | 7        | TREES             |              |                                         |
| TOTA                                           | L                          | 19                   | 97                      |                                             | 5.1         |              |                    |          |                   |              |                                         |
| CRUE<br>DBH (<br>REFO<br>COUN<br>BLAN<br>100 % | COUNT<br>REST<br>VT<br>IKS | 19                   | 97                      |                                             | 5.1         |              | 8,320              |          | 1.2               |              |                                         |
|                                                |                            |                      |                         | STAI                                        | ND SUMI     | MARY         |                    |          |                   |              |                                         |
|                                                |                            | SAMPLE               | TREES                   | AVG                                         | BOLE        | REL          | BASAL              | GROSS    | NET               | GROSS        | NET                                     |
|                                                |                            | TREES                | /ACRE                   | DBH                                         | LEN         | DEN          | AREA               | BF/AC    | BF/AC             | CF/AC        | CF/AC                                   |
| DOUG                                           | 3 FIR                      | 89                   | 95.6                    | 19.0                                        | 99          | 43.0         | 187.4              | 27,511   | 27,424            | 6,767        | 6,767                                   |
|                                                | MLOCK-L                    | 3                    | 10.2                    | 10.6                                        | 85          | 1.9          | 6.3                | 812      | 812               | 182          | 182                                     |
|                                                | MLOCK-T                    | 4                    | 5.9                     | 16.2                                        | 99          | 2.1          | 8.4                | 1,279    | 1,279             | 316          | 316                                     |
| NOB                                            |                            | 1                    | .7                      | 23.0                                        | 118         | 0.4          | 2.1                | 416      | 292               | 91           | 91                                      |
| TOTA                                           | AL                         | 97                   | 112.4                   | 18.2                                        | 98          | 47.8         | 204.2              | 30,018   | 29,807            | 7,356        | 7,356                                   |
| CON                                            |                            |                      | THE SAMPL<br>OF 100 THE |                                             | WILL BE     | WITHIN       | THE SAMPI          | LE ERROR |                   |              |                                         |
| CL:                                            | 68.1 %                     | COEF                 | 7                       |                                             | SAMPL       | E TREE       | S - BF             | #        | OF TREES          | REQ.         | INF. POP.                               |
| SD:                                            | 1.0                        | VAR.9                | 6 S.E.%                 | LC                                          | )W          | AVG          | HIGH               |          | 5                 | 10           | 15                                      |
| DOUG                                           |                            | 60.6                 | 6.4                     |                                             | 356         | 380          | 405                |          |                   |              |                                         |
|                                                | MLOCK-L<br>MLOCK-T         | 12.5<br>45.3         | 8.6<br>25.9             |                                             | 73<br>180   | 80<br>243    | 87<br>305          |          |                   |              |                                         |
| NOB                                            |                            | 15.5                 | 40.7                    |                                             | 100         | 2.5          | 505                |          |                   |              |                                         |
| TOTA                                           | <b>AL</b>                  | 62.7                 | 6.4                     |                                             | 342         | 366          | 389                |          | 157               | 39           | 17                                      |
| CL:                                            | 68.1 %                     | COEFF                | 7                       |                                             | SAMPL       | E TREE       | S - CF             | #        | OF TREES          | S REQ.       | INF, POP,                               |
| SD:                                            | 1.0                        | ۷AR.%                | 6 S.E.%                 | LC                                          | )W          | AVG          | HIGH               |          | 5                 | 10           | 15                                      |
| DOUG                                           |                            | 54.2                 | 5.7                     |                                             | 87          | 92           | 97                 |          |                   |              |                                         |
|                                                | MLOCK-L<br>MLOCK-T         | 20.2<br>42.7         | 14.0<br>24.4            |                                             | 16<br>45    | 18<br>60     | 21<br>74           |          |                   |              |                                         |
| NOB                                            |                            | 42.7                 | 24.4                    |                                             | 43          | 00           | 74                 |          |                   |              |                                         |
| TOTA                                           |                            | 56.5                 | 5.7                     |                                             | 84          | 89           | 94                 |          | 128               | 32           | 14                                      |
| CL:                                            | 68.1 %                     | COEFF                | 7                       |                                             | TREES       | /ACRE        |                    | #        | OF PLOTS          | REO.         | INF. POP.                               |
|                                                | 1.0                        | VAR.9                | 6 S.E.%                 | LC                                          | )W          | AVG          | HIGH               | ,,       | 5                 | 10           | 15                                      |
| DOUG                                           |                            | 50.8                 | 12.0                    |                                             | 84          | 96           | 107                |          |                   |              | *************************************** |
|                                                | MLOCK-L                    | 435.9                | 102.7                   |                                             |             | 10           | 21                 |          |                   |              |                                         |
| NOB                                            | MLOCK-T                    | 327.5<br>435.9       | 77.2<br>102.7           |                                             | 1           | 6<br>1       | 10<br>1            |          |                   |              |                                         |
| TOTA                                           |                            | 65.3                 | 15.4                    |                                             | 95          | 112          | 130                |          | 180               | 45           | 20                                      |
|                                                | 68.1 %                     | COEFF                |                         |                                             |             | AREA/A       | CDF                | 4        | OF PLOTS          | PEO          | INF. POP.                               |
|                                                | 1.0                        | VAR.9                |                         | LC                                          | DASAL<br>)W | AVG          | HIGH               | n        | 5                 | 10           | 15                                      |
| DOUG                                           |                            | 32.7                 | 7.7                     |                                             | 173         | 187          | 202                |          |                   |              |                                         |
|                                                | MLOCK-L                    | 435.9                | 102.7                   |                                             |             | 6            | 13                 |          |                   |              |                                         |
|                                                | MLOCK-T                    | 338.8<br>435.9       | 79.8<br>102.7           |                                             | 2           | 8<br>2       | 15<br>4            |          |                   |              |                                         |
| NOB I                                          |                            | 435.9<br><i>42.8</i> | 102.7                   |                                             | 184         | 2<br>204     | 225                |          | 77                | 19           | 9                                       |
|                                                | 68.1 %                     | COEFF                |                         |                                             |             |              |                    |          | OF PLOTS          |              |                                         |
|                                                | 1.0                        | VAR.9                |                         | 17                                          | NET BF<br>W | VACRE<br>AVG | HIGH               | 71       | OF PLOTS          | 8 REQ.<br>10 | INF. POP.                               |
| DOUG                                           |                            | 33.9                 | 8.0                     | <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del> |             | 27,424       | 29,616             |          |                   | 10           | 13                                      |
|                                                | MLOCK-L                    | 435.9                | 102.7                   |                                             | -           | 812          | 1,647              |          |                   |              |                                         |
|                                                | MLOCK-T                    | 337.4                | 79.5                    |                                             | 262         | 1,279        | 2,295              |          |                   |              |                                         |
| NOB :                                          |                            | 435.9                | 102.7                   | 27                                          | 617         | 292          | 592<br>22.009      |          | 07                | 22           | 10                                      |
| TOTA                                           | <b>\</b> L                 | 45.4                 | 10.7                    | 26                                          | ,617 2      | 29,807       | 32,998             |          | 87                | 22           | 10                                      |

| TC TST | ATS     |      |     |       | S<br>PROJI | TATIS<br>ECT | STICS<br>BLAZIFI | N     |            | PAGE<br>DATE | 2<br>6/23/2015 |
|--------|---------|------|-----|-------|------------|--------------|------------------|-------|------------|--------------|----------------|
| TWP    | RGE     | SECT | TRA | СТ    | ТҮРЕ       | A            | CRES             | PLOTS | TREES      | CuFt         | BdFt           |
| 01N    | 06W_    | 24   | A1  |       | MC         |              | 74.00            | 19    | 97         | S            | W              |
| CL:    | 68.1%   | СО   | EFF |       | NET C      | CUFT FI      | /ACRE            | -     | # OF PLC   | TS REQ.      | INF. POP       |
| SD:    | 1.0     | VA   | R.  | S.E.% | LOW        | AVG          | HIGH             |       | 5          | 10           | 15             |
| CL:    | 68.1 %  | CO   | EFF |       | NET C      | CUFT FT      | /ACRE            |       | # OF PLOTS | REQ.         | INF. POP.      |
| SD:    | 1.0     | VA   | R.% | S.E.% | LOW        | AVG          | HIGH             |       | 5          | 10           | 15             |
| DOU    | G FIR   | 32   | 2.3 | 7.6   | 6,252      | 6,767        | 7,282            |       |            |              |                |
| WHE    | MLOCK-L | 435  | .9  | 102.7 |            | 182          | 369              |       |            |              |                |
| WHE    | MLOCK-T | 340  | 0.2 | 80.2  | 63         | 316          | 570              |       |            |              |                |
| NOB    | FIR-L   | 435  | 5.9 | 102.7 |            | 91           | 184              |       |            |              |                |
| TOT    | AL      | 44   | .0  | 10.4  | 6.594      | 7.356        | 8,118            |       | 82         | 20           | 9              |

| Т          | TSP  | CST      | GR                    |             |             | Species,            | Sort G<br>Projec | rade - Boat<br>t: BLA | d Foo |       | olun            | ies (T | Гуре)         |                |        |       | ]               | Page<br>Date<br>Fime | 6.       | 1<br>/23/20<br>2:58:2 |              |
|------------|------|----------|-----------------------|-------------|-------------|---------------------|------------------|-----------------------|-------|-------|-----------------|--------|---------------|----------------|--------|-------|-----------------|----------------------|----------|-----------------------|--------------|
| T011<br>Tw | /p   | R        | ' S24 TM<br>tge<br>6W | Sec         | Tract<br>A1 |                     | Туре<br>МС       | Acre<br>74.           |       | Plots | 8               | Samp   | le Tree<br>97 | s              | c<br>s | uFt   | T01<br>Bdl<br>W |                      | k06W :   | S24 T                 | MC           |
|            |      |          |                       | %           |             |                     |                  |                       | Perce | ent N | et Bo           | ard Fo | oot Vol       | ume            |        |       | A               | erag                 | ge Log   |                       | Logs         |
| Spp        |      | So<br>rt | Gr<br>ad              | Net<br>BdFt | Bd.<br>Def% | Ft. per Ac<br>Gross | ere<br>Net       | Total<br>Net MBF      | 1     |       | ile Di<br>12-16 |        | Log           | g Len<br>21-30 | •      | 36-99 | Ln<br>Ft        |                      | Bd<br>Ft | CF/                   | Per<br>/Acre |
| DF         |      | ^        | CU                    | l           |             |                     |                  |                       |       |       |                 |        |               |                |        |       | 11              | 15                   |          | 0.00                  | 2.5          |
| DF         |      |          | 2M                    | 51          | .3          | 14,102              | 14,053           | 1,040                 |       |       | 72              | 28     |               |                | 2      | 98    | 40              | 15                   | 346      | 1.96                  | 40.6         |
| DF         |      |          | 3M                    | 43          | .3          | 11,831              | 11,793           | 873                   |       | 77    | 23              |        |               | 1              | 21     | 78    | 38              | 9                    | 114      | 0.81                  | 103.9        |
| DF         |      |          | 4M                    | 6           |             | 1,578               | 1,578            | 117                   |       | 100   |                 |        | 66            | 34             |        |       | 18              | 7                    | 26       | 0.40                  | 61.6         |
| DF         | Т    | otal     | s                     | 92          | .3          | 27,511              | 27,424           | 2,029                 |       | 39    | 47              | 15     | 4             | 2              | 10     | 84    | 32              | 9                    | 132      | 1.01                  | 208.5        |
| WH         | Т    |          | 2M                    | 19          |             | 254                 | 254              | 19                    |       |       | 100             |        |               |                |        | 100   | 40              | 14                   | 290      | 1.74                  | .9           |
| WH         | T    |          | 3M                    | 69          |             | 880                 | 880              | 65                    |       | 100   |                 |        |               | 9              | 8      | 83    | 37              | 9                    | 122      | 0.81                  | 7.2          |
| WH         | T    |          | 4M                    | 12          |             | 145                 | 145              | 11                    |       | 100   |                 |        | 12            | 88             |        |       | 24              | 6                    | 32       | 0.36                  | 4.6          |
| WH         | T    | To       | tals                  | 4           |             | 1,279               | 1,279            | 95                    |       | 80    | 20              |        | 1             | 16             | 5      | 77    | 32              | 8                    | 101      | 0.77                  | 12.7         |
| WH         | L    |          | 3M                    | 83          |             | 678                 | 678              | 50                    |       | 100   |                 |        |               |                | 67     | 33    | 34              | 7                    | 66       | 0.42                  | 10.2         |
| WH         | L    |          | 4M                    | 17          |             | 134                 | 134              | 10                    |       | 100   |                 |        | 100           |                |        |       | 13              | 6                    | 13       | 0.25                  | 10.2         |
| WH         | L    | To       | tals                  | 3           |             | 812                 | 812              | 60                    |       | 100   |                 |        | 17            |                | 56     | 27    | 24              | 7                    | 40       | 0.37                  | 20.5         |
| NF         | L    |          | 2M                    | 72          | 27.5        | 292                 | 212              | 16                    |       |       | 100             |        |               |                |        | 100   | 40              | 16                   | 290      | 2.02                  | .7           |
| NF         | L    |          | 3M                    | 23          | 40.0        | 109                 | 66               | 5                     |       | 100   |                 |        |               |                |        | 100   | 40              | 10                   | 90       | 0.97                  | .7           |
| NF         | L    |          | 4M                    | 5           |             | 15                  | 15               | 1                     |       | 100   |                 |        | 100           |                |        |       | 12              | 7                    | 20       | 0.41                  | .7           |
| NF         | L    | Tota     | als                   | 1           | 29.8        | 416                 | 292              | 22                    |       | 27    | 73              |        | 5             |                |        | 95    | 31              | 11                   | 133      | 1.35                  | 2.2          |
| Туре       | Tota | ıls      |                       |             | .7          | 30,018              | 29,807           | 2,206                 |       | 42    | 44              | 13     | 4             | 3              | 11     | 82    | 31              | 9                    | 122      | 0.96                  | 243,9        |

| T01N R06W S24 TMC  Twp Rge Sec Tract Type Acres 01N 06W 24 A1 MC 74.00    S   Sample FF   Ht   Trees/ BA/ Logs Net Net     Spc T   DBH Trees   16  Tot   Acre   Acre   Acre   Cu.Ft.   Bd.Ft.     DF   12   3   87   83   8.042   6.32   10.72   15.2   60     DF   13   3   87   89   6.852   6.32   13.70   13.0   53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tons/<br>O.0         Cu.Ft.<br>Acre         Bd.Ft.<br>Acre         Tons         Cunits         MBF           0.0         4.64         163         643         343         121         48           3.3         5.09         178         731         376         132         54           7.5         8.78         308         1,063         650         228         79           7.5         3.34         117         463         247         87         34           8.7         14.85         521         2,005         1,099         386         148           0.0         4.01         141         534         297         104         40                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Twp 01N         Rge 01N         Sec 1 Tract 01N         Type 01N         Acres 74.00           S Sample Spc T DBH Trees         FF Ht Trees/ BA/ Logs Net Net 16' Tot Acre Acre DF 13 3 87 83 8.042 6.32 10.72 15.2 60 DF 13 3 87 89 6.852 6.32 13.70 13.0 53 DF 14 5 84 87 9.847 10.53 15.75 19.6 67 DF 15 2 86 85 3.431 4.21 6.86 17.1 67 DF 16 8 85 92 12.062 16.84 22.62 23.0 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plots 19         Sample Trees 97         Page: 1 Date: 06/23/20 Time: 06/23/20 Time: 12:58:27PM           Og         Net Tons/ Cu.Ft. Bd.Ft.         Net Bd.Ft. To tals         To tals           6t. Acre Acre Acre Acre Tons Cunits MBF         0.0 4.64 163 643 343 121 48 33.3 5.09 178 731 376 132 54 75.5 8.78 308 1,063 650 228 79 7.5 3.34 117 463 247 87 34 8.7 14.85 521 2,005 1,099 386 148 0.0 4.01 141 534 297 104 40                                                                                                                                                                                                                                     |
| Spc         T         DBH Trees         16'         Tot         Acre         Acre         Acre         Net         Net         Net         Def         Def         Def         Tot         Acre         Acre         Acre         Cu.Ft.         Bd.Ft         Bd.Ft           DF         12         3         87         83         8.042         6.32         10.72         15.2         60           DF         13         3         87         89         6.852         6.32         13.70         13.0         53           DF         14         5         84         87         9.847         10.53         15.75         19.6         67           DF         15         2         86         85         3.431         4.21         6.86         17.1         67           DF         16         8         85         92         12.062         16.84         22.62         23.0         88 | Tons/ Cu.Ft.         Bd.Ft.         Totals           Acre         Acre         Acre         Tons         Cunits         MBF           0.0         4.64         163         643         343         121         48           3.3         5.09         178         731         376         132         54           7.5         8.78         308         1,063         650         228         79           7.5         3.34         117         463         247         87         34           8.7         14.85         521         2,005         1,099         386         148           0.0         4.01         141         534         297         104         40 |
| DF         12         3         87         83         8.042         6.32         10.72         15.2         60           DF         13         3         87         89         6.852         6.32         13.70         13.0         53           DF         14         5         84         87         9.847         10.53         15.75         19.6         67           DF         15         2         86         85         3.431         4.21         6.86         17.1         67           DF         16         8         85         92         12.062         16.84         22.62         23.0         88                                                                                                                                                                                                                                                                                | 0.0     4.64     163     643     343     121     48       3.3     5.09     178     731     376     132     54       7.5     8.78     308     1,063     650     228     79       7.5     3.34     117     463     247     87     34       8.7     14.85     521     2,005     1,099     386     148       0.0     4.01     141     534     297     104     40                                                                                                                                                                                                                                                                                                           |
| DF     13     3     87     89     6.852     6.32     13.70     13.0     53       DF     14     5     84     87     9.847     10.53     15.75     19.6     67       DF     15     2     86     85     3.431     4.21     6.86     17.1     67       DF     16     8     85     92     12.062     16.84     22.62     23.0     88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.3     5.09     178     731     376     132     54       7.5     8.78     308     1,063     650     228     79       7.5     3.34     117     463     247     87     34       8.7     14.85     521     2,005     1,099     386     148       0.0     4.01     141     534     297     104     40                                                                                                                                                                                                                                                                                                                                                                     |
| DF         14         5         84         87         9.847         10.53         15.75         19.6         67           DF         15         2         86         85         3.431         4.21         6.86         17.1         67           DF         16         8         85         92         12.062         16.84         22.62         23.0         88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.5     8.78     308     1,063     650     228     79       7.5     3.34     117     463     247     87     34       8.7     14.85     521     2,005     1,099     386     148       0.0     4.01     141     534     297     104     40                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DF 16 8 85 92 12.062 16.84 22.62 23.0 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.7     14.85     521     2,005     1,099     386     148       0.0     4.01     141     534     297     104     40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| : I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 4.01 141 534 297 104 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DF   17 2 85 94   2.671 4.21 5.34   26.3 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 - 10 10 4/1 1000 070 041 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DF 18 6 87 104 7.148 12.63 14.30 32.2 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DF 19 6 86 100 6.415 12.63 12.83 31.5 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DF 20 8 85 101 7.720 16.84 17.37 34.1 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DF 21 5 85 112 4.376 10.53 11.38 36.2 139<br>DF 22 10 86 110 7.975 21.05 22.33 36.5 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DF 23 7 86 109 5.108 14.74 13.13 43.3 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DF 24 11 86 112 7.371 23.16 20.10 46.0 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DF 25 1 89 109 .618 2.11 1.85 45.4 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DF 26 3 86 112 1.713 6.32 5.14 49.1 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DF 27 1 87 135 .529 2.11 1.59 62.9 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.7 2.85 100 471 211 74 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DF 28 3 85 124 1.477 6.32 4.43 62.3 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.4 7.86 276 1,216 582 204 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DF 29 3 84 121 1.377 6.32 4.13 64.3 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DF 30 1 89 116 .429 2.11 1.29 72.4 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DF 31 1 82 123 .402 2.11 1.20 74.6 323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.3 2.56 90 390 190 67 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DF Totals 89 86 99 95.563 187.37 206.08 32.8 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.1 192.86 6,767 27,424 14,272 5,008 2,029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WH T 14 1 85 99 1.969 2.11 3.94 19.3 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0 2.43 76 295 180 56 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0 2.48 78 326 184 57 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WH T 17 1 86 100 1.336 2.11 2.67 29.6 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| WH T 21 1 86 104 .875 2.11 2.63 31.8 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| WH Totals 4 86 99 5.896 8.42 12.67 25.0 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9 10.12 316 1,279 749 234 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WH L 10 1 91 81 3.860 2.11 7.72 7.1 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| WH L 11 2 89 88 6.380 4.21 12.76 10.0 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5 4.08 128 542 302 94 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WH Totals 3 90 85 10.240 6.32 20.48 8.9 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.7 5.83 182 812 431 135 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NF L 23 1 86 118 .730 2.11 2.19 41.5 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.3 2.18 91 292 161 67 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NF Totals 1 86 118 .730 2.11 2.19 41.5 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3 2.18 91 292 161 67 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Totals 97 86 98 112.428 204.21 241.41 30.5 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.5 210.99 7356 29,807 15,613 5,444 2,206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| TC TL                | OGSTVB               |                      |                        |      |                | g Sto              | ck Ta    | able -<br>BL | MBF<br>AZIFIN  | 1           |          |        |         |           |                               |                                |          |     |
|----------------------|----------------------|----------------------|------------------------|------|----------------|--------------------|----------|--------------|----------------|-------------|----------|--------|---------|-----------|-------------------------------|--------------------------------|----------|-----|
| T01N<br>Twp<br>01N   | R06W S<br>Rge<br>06W | S                    | CMC<br>ec Tra<br>24 A1 | act  |                | Туре<br>МС         |          | Acres        |                | Plots<br>19 | Samp     | le Tre | es      | ]         | N R00<br>Page<br>Date<br>Time | 6W S24<br>1<br>6/23/2<br>12:58 |          | [   |
| S                    | So Gr                | Log                  | Gross                  | %    | Net            | %                  |          |              | Net Vo         | lume by     | y Scalir | ıg Dia | meter i | n Inche   | s                             |                                |          |     |
| Spp T                | rt de                | Len                  | MBF                    | Def  | MBF            | Spc                | 2-3      | 4-5          | 6-7            | 8-9         | 10-11    | 12-13  | 14-15   | 16-19     | 20-23                         | 24-29                          | 30-39    | 40+ |
| DF<br>DF<br>DF       | CU                   | 1 4<br>1 10<br>1 16  |                        |      |                |                    |          |              |                |             |          |        |         |           |                               |                                |          |     |
| DF<br>DF             |                      | 1 32<br>1 40         | 20<br>1,024            | .4   | 20<br>1,020    | 1.0<br>50.3        |          |              |                |             |          | 222    | 347     | 20<br>380 |                               |                                |          |     |
| DF<br>DF<br>DF       | 3M<br>3M             | 1 24<br>1 32<br>1 36 | 5<br>184<br>39         | .4   | 5<br>184<br>39 | .3<br>9.1<br>1.9   |          |              | 22<br>33       | 62<br>6     | 99       | 5      |         |           |                               |                                |          |     |
| DF<br>DF<br>DF       | 4M                   | 1 40<br>1 12<br>1 16 | 647<br>15<br>32        | .3   | 15<br>32       | .7<br>1.6          |          |              | 94<br>13<br>32 | 152         | 196      | 203    |         |           |                               | ,,,,,,,,,,                     |          |     |
| DF<br>DF<br>DF       | 4M<br>4M             | 1 18<br>1 20<br>1 24 | 13<br>18<br>19         |      | 13<br>18<br>19 | .7<br>.9<br>.9     |          |              | 13<br>18<br>15 | 4           |          |        |         |           |                               |                                |          |     |
| DF<br>DF<br>DF       | 4N<br>4N             | 1 26<br>1 28<br>1 30 | 11<br>7<br>2           |      | 11<br>7<br>2   | .6                 |          |              | 11<br>7<br>2   |             |          |        |         |           |                               |                                |          |     |
| DF                   | Tot                  |                      | 2,036                  |      | 2,029          | 92.0               |          |              | 260            | 227         | 300      | 425    | 347     | 400       | 70                            |                                |          |     |
| WH L<br>WH L         |                      | 1 32<br>1 40         | 34<br>17               |      | 34<br>17       | 21.8<br>10.7       |          |              | 17<br>17       | 17          |          |        |         |           |                               |                                |          |     |
| WH L<br>WH L         |                      | 1 12<br>1 16         | 5<br>5                 |      | 5<br>5         | 3.4<br>3.1         |          |              | 5<br>5         |             |          |        |         |           |                               |                                |          |     |
| WH T                 | 2N                   | 1 40                 | 19                     |      | 19             | 12.1               |          |              |                |             |          |        | 19      |           |                               |                                |          |     |
| WH T<br>WH T<br>WH T | 3M                   | 1 24<br>1 34<br>1 40 | 6<br>5<br>54           |      | 6<br>5<br>54   | 3.8<br>3.2<br>35.1 |          |              | 5              | 17          |          | 6      |         |           |                               |                                |          |     |
| WH T<br>WH T<br>WH T | 4N                   | 1 18<br>1 24<br>1 26 | 1<br>5<br>4            |      | 1<br>5<br>4    | .8<br>3.3<br>2.8   |          |              | 1<br>5<br>4    |             |          |        |         |           |                               |                                |          |     |
| WH                   |                      | tals                 | 155                    |      | 155            | 7.0                |          |              | 59             | 34          | 43       |        | 19      | )         |                               |                                |          |     |
| NF L                 |                      | 1 40                 | 22                     | 27.5 | 16             | <b>↓</b>           |          |              |                |             |          |        |         | 16        | )                             |                                |          |     |
| NF L                 |                      | 1 40                 | 8                      | 40.0 | 5              |                    |          |              | <u> </u>       |             |          | 5      |         |           |                               |                                |          |     |
| NF L                 |                      | 1 12                 | 1                      |      | 1              | 5.0                | <u> </u> |              | 1              |             |          |        |         |           |                               |                                |          |     |
| NF<br>Total Al       | Tot<br>I Species     | tals                 | 2,221                  | 29.8 | 22 206         | 1.0                |          |              | 320            |             | 348      | 425    | 366     | 16        |                               |                                |          |     |
| . o.ai Al            | . opcores            |                      | 2,221                  |      | 4,400          | 1,00.0             |          |              | 1 340          | 401         |          | 723    |         |           | <u></u>                       |                                | <u> </u> |     |

| TC TST                                                                                                     | ATS                                                                                                                      |                                                                                                                 |                                                                                                                             |                                           | ST.<br>PROJEC                                                               | ATIST                                                                             |                                                                  |          |                                            | PAGE<br>DATE 6                                     | 1<br>5/23/2015                                    |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------|----------|--------------------------------------------|----------------------------------------------------|---------------------------------------------------|
| TWD                                                                                                        | DCE.                                                                                                                     | CECT T                                                                                                          | ъ                                                                                                                           |                                           |                                                                             |                                                                                   | BLAZIFIN<br>DES                                                  | PLOTS    | TREES                                      | CuFt                                               | BdFt                                              |
| TWP                                                                                                        | RGE                                                                                                                      |                                                                                                                 | RACT                                                                                                                        |                                           | TYPE<br>MC                                                                  | AC                                                                                | <b>RES</b> 43.00                                                 | 12       | 1 KEES<br>68                               | S                                                  | - W                                               |
| 01N                                                                                                        | 06W                                                                                                                      | 24 A                                                                                                            | 12                                                                                                                          |                                           | WIC                                                                         |                                                                                   | 43.00                                                            | 12       | 00                                         | <u> u</u>                                          | VY                                                |
|                                                                                                            |                                                                                                                          |                                                                                                                 |                                                                                                                             | T                                         | REES                                                                        |                                                                                   | ESTIMATED<br>TOTAL                                               |          | ERCENT<br>AMPLE                            |                                                    |                                                   |
|                                                                                                            |                                                                                                                          | PLOTS                                                                                                           | TREES                                                                                                                       |                                           | REES<br>ER PLOT                                                             |                                                                                   | TREES                                                            |          | REES                                       |                                                    |                                                   |
| TOTA                                                                                                       |                                                                                                                          | 12                                                                                                              | 68                                                                                                                          |                                           | 5.7                                                                         |                                                                                   | TTELES                                                           |          | 14355                                      |                                                    |                                                   |
| CRUI                                                                                                       |                                                                                                                          | 12                                                                                                              | 68                                                                                                                          |                                           | 5.7                                                                         |                                                                                   | 3,958                                                            |          | 1.7                                        |                                                    |                                                   |
|                                                                                                            | COUNT                                                                                                                    |                                                                                                                 |                                                                                                                             |                                           |                                                                             |                                                                                   | ·                                                                |          |                                            |                                                    |                                                   |
| REFO                                                                                                       | DREST                                                                                                                    |                                                                                                                 |                                                                                                                             |                                           |                                                                             |                                                                                   |                                                                  |          |                                            |                                                    |                                                   |
| COU                                                                                                        |                                                                                                                          |                                                                                                                 |                                                                                                                             |                                           |                                                                             |                                                                                   |                                                                  |          |                                            |                                                    |                                                   |
| BLAN<br>100 %                                                                                              |                                                                                                                          |                                                                                                                 |                                                                                                                             |                                           |                                                                             |                                                                                   |                                                                  |          |                                            |                                                    |                                                   |
| 100 %                                                                                                      | 0                                                                                                                        |                                                                                                                 |                                                                                                                             | OT A N                                    | D CHIMA                                                                     | MADV                                                                              |                                                                  |          |                                            |                                                    |                                                   |
|                                                                                                            |                                                                                                                          | SAMPLE                                                                                                          | TREES                                                                                                                       |                                           | D SUMN<br>BOLE                                                              | REL                                                                               | BASAL                                                            | GROSS    | NET                                        | GROSS                                              | NET                                               |
|                                                                                                            |                                                                                                                          | TREES                                                                                                           | /ACRE                                                                                                                       | DBH                                       | LEN                                                                         | DEN                                                                               | AREA                                                             | BF/AC    | BF/AC                                      | CF/AC                                              | CF/AC                                             |
| DOU                                                                                                        | G FIR                                                                                                                    | 62                                                                                                              | 84.0                                                                                                                        | 21,2                                      | 110                                                                         | 44.9                                                                              | 206.7                                                            | 37,411   | 37,411                                     | 8,449                                              | 8,449                                             |
| NOB                                                                                                        | FIR                                                                                                                      | 6                                                                                                               | 8.0                                                                                                                         | 21.4                                      | 114                                                                         | 4.3                                                                               | 20.0                                                             | 4,245    | 4,245                                      | 898                                                | 898                                               |
| TOT                                                                                                        | AL                                                                                                                       | 68                                                                                                              | 92.0                                                                                                                        | 21.2                                      | 110                                                                         | 49.2                                                                              | 226.7                                                            | 41,656   | 41,656                                     | 9,348                                              | 9,348                                             |
| CON                                                                                                        |                                                                                                                          |                                                                                                                 | THE SAMPI<br>OF 100 THE                                                                                                     |                                           | VILL BE                                                                     | WITHIN                                                                            | THE SAMP                                                         | LE ERROR |                                            |                                                    |                                                   |
| CL:                                                                                                        | 68.1 %                                                                                                                   | COEF                                                                                                            | F                                                                                                                           |                                           | SAMPL                                                                       | E TREES                                                                           | S - BF                                                           | #        | OF TREES                                   | REQ.                                               | INF. POP.                                         |
|                                                                                                            | 1.0                                                                                                                      | VAR.9                                                                                                           |                                                                                                                             | LO                                        |                                                                             | AVG                                                                               | HIGH                                                             |          | 5                                          | 10                                                 | 15                                                |
| DOU:<br>NOB                                                                                                | G FIR                                                                                                                    | 57.2<br>56.3                                                                                                    | 7.3<br>25.1                                                                                                                 |                                           | 533<br>476                                                                  | 574<br>635                                                                        | 616<br>794                                                       |          |                                            |                                                    |                                                   |
| TOT.                                                                                                       |                                                                                                                          | 56.7                                                                                                            | 6.9                                                                                                                         |                                           | 470<br>540                                                                  | 580                                                                               | 620                                                              |          | 128                                        | 32                                                 | 14                                                |
|                                                                                                            | 68.1 %                                                                                                                   | COEFI                                                                                                           |                                                                                                                             |                                           | CAMBI                                                                       | E TREES                                                                           | e CE                                                             | 4        | OF TREES                                   | DEO                                                | INF. POP.                                         |
| SD:                                                                                                        | 1.0                                                                                                                      | VAR.9                                                                                                           |                                                                                                                             | LO                                        |                                                                             | AVG                                                                               | HIGH                                                             | 77       | 5                                          | 10                                                 | 15                                                |
|                                                                                                            | G FIR                                                                                                                    | 50.1                                                                                                            | 6.4                                                                                                                         |                                           | 118                                                                         | 126                                                                               | 134                                                              |          | <del></del>                                |                                                    |                                                   |
| NOB                                                                                                        |                                                                                                                          | 48.8                                                                                                            | 21.7                                                                                                                        |                                           | 103                                                                         | 131                                                                               | 160                                                              |          |                                            |                                                    |                                                   |
| TOT                                                                                                        | AY                                                                                                                       |                                                                                                                 |                                                                                                                             |                                           |                                                                             |                                                                                   |                                                                  |          |                                            |                                                    |                                                   |
|                                                                                                            | AL                                                                                                                       | 49.6                                                                                                            | 6.0                                                                                                                         |                                           | 119                                                                         | 126                                                                               | 134                                                              |          | 98                                         | 25                                                 | 11                                                |
| CL:                                                                                                        | 68.1 %                                                                                                                   |                                                                                                                 | 6.0                                                                                                                         |                                           | TREES/                                                                      |                                                                                   | 134                                                              | #        | 98<br>OF PLOTS                             |                                                    | INF. POP.                                         |
| SD:                                                                                                        | 68.1 %<br>1.0                                                                                                            | 49.6<br>COEFI<br>VAR.9                                                                                          | 6.0<br>F<br>% S.E.%                                                                                                         |                                           | TREES/                                                                      | ACRE<br>AVG                                                                       | HIGH                                                             | #        |                                            |                                                    |                                                   |
| SD:                                                                                                        | 68.1 %<br>1.0<br>G FIR                                                                                                   | 49.6<br>COEFI<br>VAR.9<br>48.9                                                                                  | 6.0<br>F<br>6 S.E.%<br>14.7                                                                                                 |                                           | TREES/<br>W<br>72                                                           | ACRE<br>AVG<br>84                                                                 | HIGH<br>96                                                       | #        | OF PLOTS                                   | REQ.                                               | INF. POP.                                         |
| SD:<br>DOU-<br>NOB                                                                                         | 68.1 %<br>1.0<br>G FIR<br>FIR                                                                                            | 49.6<br>COEFI<br>VAR.9<br>48.9<br>174.0                                                                         | 6.0<br>F<br>% S.E.%<br>14.7<br>52.4                                                                                         |                                           | TREES/<br>W<br>72<br>4                                                      | ACRE<br>AVG<br>84<br>8                                                            | HIGH<br>96<br>12                                                 | #        | OF PLOTS                                   | REQ.                                               | INF. POP.                                         |
| SD:<br>DOU-<br>NOB<br>TOT:                                                                                 | 68.1 %<br>1.0<br>G FIR<br>FIR                                                                                            | 49.6<br>COEFI<br>VAR.9<br>48.9<br>174.0<br>43.4                                                                 | 6.0<br>F<br>6 S.E.%<br>14.7<br>52.4<br>13.1                                                                                 | LO                                        | TREES/<br>W<br>72<br>4<br>80                                                | ACRE<br>AVG<br>84<br>8<br>92                                                      | HIGH<br>96<br>12<br>104                                          |          | OF PLOTS 5                                 | REQ.<br>10                                         | INF, POP,<br>15                                   |
| SD:<br>DOU-<br>NOB<br>TOT:<br>CL:                                                                          | 68.1 %<br>1.0<br>G FIR<br>FIR<br>AL<br>68.1 %                                                                            | 49.6<br>COEFI<br>VAR.9<br>48.9<br>174.0<br>43.4<br>COEFI                                                        | 6.0<br>F<br>6 S.E.%<br>14.7<br>52.4<br>13.1                                                                                 | LO                                        | TREES/<br>W 72<br>4 80<br>BASAL                                             | ACRE<br>AVG<br>84<br>8<br>92<br>AREA/A                                            | HIGH<br>96<br>12<br>104<br>CRE                                   |          | OF PLOTS 5 82 OF PLOTS                     | REQ.<br>10<br>20<br>REQ.                           | INF. POP.<br>15<br>9<br>INF. POP.                 |
| SD: DOUGNOB TOT: CL: SD:                                                                                   | 68.1 %<br>1.0<br>G FIR<br>FIR                                                                                            | 49.6<br>COEFI<br>VAR.9<br>48.9<br>174.0<br>43.4                                                                 | 6.0<br>F<br>6 S.E.%<br>14.7<br>52.4<br>13.1                                                                                 | ro.                                       | TREES/<br>W 72<br>4 80<br>BASAL                                             | ACRE<br>AVG<br>84<br>8<br>92                                                      | HIGH<br>96<br>12<br>104                                          |          | OF PLOTS 5                                 | REQ.<br>10                                         | INF, POP,<br>15                                   |
| SD: DOUNOB TOT: CL: SD: DOUNOB                                                                             | 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR                                                                                 | 49.6<br>COEFI<br>VAR.9<br>174.0<br>43.4<br>COEFI<br>VAR.9<br>180.9                                              | 6.0<br>F<br>6 S.E.%<br>14.7<br>52.4<br>13.1<br>F<br>6 S.E.%<br>10.2<br>54.5                                                 | ro                                        | TREES/W 72 4 80 BASAL W 186 9                                               | ACRE<br>AVG<br>84<br>8<br>92<br>AREA/A<br>AVG<br>207<br>20                        | HIGH 96 12 104  CRE HIGH 228 31                                  |          | OF PLOTS 5  82  OF PLOTS 5                 | REQ.<br>10<br>20<br>REQ.<br>10                     | INF. POP.<br>15<br>9<br>INF. POP.<br>15           |
| SD: DOUGNOB TOT: CL: SD: DOUGNOB                                                                           | 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR                                                                                 | 49.6<br>COEFI<br>VAR.9<br>48.9<br>174.0<br>43.4<br>COEFI<br>VAR.9                                               | 6.0<br>F<br>6 S.E.%<br>14.7<br>52.4<br>13.1<br>F<br>6 S.E.%<br>10.2                                                         | ro                                        | TREES/W 72 4 80 BASAL W 186                                                 | ACRE<br>AVG<br>84<br>8<br>92<br>AREA/A<br>AVG<br>207                              | HIGH 96 12 104  CRE HIGH 228                                     |          | OF PLOTS 5 82 OF PLOTS                     | REQ.<br>10<br>20<br>REQ.                           | INF. POP.<br>15<br>9<br>INF. POP.                 |
| SD: DOU- NOB TOT: SD: DOU- NOB TOT                                                                         | 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR                                                                                 | 49.6<br>COEFI<br>VAR.9<br>174.0<br>43.4<br>COEFI<br>VAR.9<br>180.9                                              | 6.0<br>F<br>6 S.E.%<br>14.7<br>52.4<br>13.1<br>F<br>6 S.E.%<br>10.2<br>54.5<br>10.5                                         | LO.                                       | TREES/W 72 4 80 BASAL W 186 9                                               | ACRE<br>AVG<br>84<br>8<br>92<br>AREA/A<br>AVG<br>207<br>20<br>227                 | HIGH 96 12 104  CRE HIGH 228 31                                  | #        | OF PLOTS 5  82  OF PLOTS 5                 | REQ.<br>10<br>20<br>REQ.<br>10                     | INF. POP.<br>15<br>9<br>INF. POP.<br>15           |
| SD: DOU- NOB TOT: SD: DOU- NOB TOT: CL: SD: SD: CL: SD:                                                    | 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0                                                               | 49.6<br>COEFI<br>VAR.9<br>48.9<br>174.0<br>43.4<br>COEFI<br>VAR.9<br>33.9<br>180.9<br>34.8<br>COEFI<br>VAR.9    | 6.0<br>F<br>6 S.E.%<br>14.7<br>52.4<br>13.1<br>F<br>6 S.E.%<br>10.2<br>54.5<br>10.5<br>F                                    | ro,                                       | TREES/W 72 4 80 BASAL W 186 9 203 NET BF                                    | ACRE AVG 84 8 92 AREA/A AVG 207 20 227 VACRE AVG                                  | HIGH  96 12 104  CRE HIGH  228 31 250  HIGH                      | #        | OF PLOTS 5  82  OF PLOTS 5                 | REQ.<br>10<br>20<br>REQ.<br>10                     | INF. POP.  15  9  INF. POP.  15                   |
| SD: DOU- NOB TOT: SD: DOU- NOB TOT: CL: SD: DOU- NOB TOT: DOU- SD: DOU- DOU- DOU- DOU- DOU- DOU- DOU- DOU- | 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0                                       | 49.6<br>COEFI<br>VAR.9<br>48.9<br>174.0<br>43.4<br>COEFI<br>VAR.9<br>33.9<br>180.9<br>34.8<br>COEFI<br>VAR.9    | 6.0<br>F<br>6 S.E.%<br>14.7<br>52.4<br>13.1<br>F<br>6 S.E.%<br>10.2<br>54.5<br>10.5<br>F                                    | LO  LO  LO  32,                           | TREES/W 72 4 80 BASAL W 186 9 203 NET BF W 987                              | ACRE AVG 84 8 92 AREA/A AVG 207 20 227 VACRE AVG 37,411                           | HIGH 96 12 104  CRE HIGH 228 31 250  HIGH 41,835                 | #        | OF PLOTS  82  OF PLOTS  5  OF PLOTS        | REQ. 10  20  REQ. 10  13  REQ.                     | INF. POP.  15  9  INF. POP.  15  6  INF. POP.     |
| SD: DOU- NOB TOT: SD: DOU- NOB TOT: CL: SD: DOU- NOB NOB NOB NOB                                           | 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR FIR                             | 49.6<br>COEFI<br>VAR.9<br>48.9<br>174.0<br>43.4<br>COEFI<br>VAR.9<br>33.9<br>180.9<br>34.8<br>COEFI<br>VAR.9    | 6.0  F 6 S.E.% 14.7 52.4 13.1  F 6 S.E.% 10.2 54.5 10.5  F 6 S.E.% 11.8 56.3                                                | LO LO 32,                                 | 72<br>4<br>80<br>BASAL<br>W<br>186<br>9<br>203<br>NET BF<br>W<br>987<br>856 | ACRE AVG 84 8 92 AREA/A AVG 207 20 227 VACRE AVG 37,411 4,245                     | HIGH  96 12 104  CRE HIGH  228 31 250  HIGH  41,835 6,633        | #        | OF PLOTS 5  82  OF PLOTS 5  53  OF PLOTS 5 | REQ. 10  20  REQ. 10  13  REQ.                     | INF. POP.  15  9  INF. POP.  15  6  INF. POP.     |
| SD: DOU- NOB TOT: SD: DOU- NOB TOT: SD: DOU- NOB TOT: SD: DOU NOB TOT:                                     | 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR                                 | 49.6  COEFI  VAR.9  174.0  43.4  COEFI  VAR.9  33.9  180.9  34.8  COEFI  VAR.9  39.3  186.9  43.3               | 6.0<br>F<br>6 S.E.%<br>14.7<br>52.4<br>13.1<br>F<br>6 S.E.%<br>10.2<br>54.5<br>10.5<br>F<br>6 S.E.%<br>11.8<br>56.3<br>13.0 | LO 32, 1, 36,                             | TREES/W 72 4 80 BASAL W 186 9 203 NET BF W 987 856 226 4                    | ACRE AVG 84 8 92 AREA/A AVG 207 20 227 VACRE AVG 37,411 4,245 41,656              | HIGH 96 12 104  CRE HIGH 228 31 250  HIGH 41,835 6,633 47,085    | #        | OF PLOTS 5  82  OF PLOTS 5  OF PLOTS 5     | REQ.<br>10<br>20<br>REQ.<br>10<br>13<br>REQ.<br>10 | INF. POP.  15  9  INF. POP.  15  6  INF. POP.  15 |
| SD: DOUNOB TOT: SD: DOUNOB TOT: SD: DOUNOB TOT: CL: SC: CL:                                                | 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR FIR AL 68.1 % 68.1 % 68.1 %                             | 49.6  COEFI  VAR.9  174.0  43.4  COEFI  VAR.9  33.9  180.9  34.8  COEFI  VAR.9  39.3  186.9  43.3  COEFI        | 6.0  F 6 S.E.%  14.7  52.4  13.1  F 6 S.E.%  10.2  54.5  10.5  F 6 S.E.%  11.8  56.3  13.0                                  | LO 32, 1, 36,                             | TREES/W 72 4 80 BASAL W 186 9 203 NET BF W 987 856 226 4 NET CU             | ACRE AVG 84 8 92 AREA/A AVG 207 20 227 VACRE AVG 37,411 4,245 41,656              | HIGH  96 12 104  CRE HIGH  228 31 250  HIGH  41,835 6,633 47,085 | #        | OF PLOTS 5  82  OF PLOTS 5  53  OF PLOTS 5 | REQ. 10  20  REQ. 10  13  REQ. 10  20  REQ.        | INF. POP.  15  6  INF. POP.  15  9  INF. POP.     |
| SD: DOU- NOB TOT: SD: DOU- NOB TOT: SD: DOU- NOB TOT: SD: CL: SD: CL: SD: CL: SD:                          | 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR                                 | 49.6  COEFI  VAR.9  174.0  43.4  COEFI  VAR.9  33.9  180.9  34.8  COEFI  VAR.9  39.3  186.9  43.3               | 6.0  F 6 S.E.%  14.7  52.4  13.1  F 6 S.E.%  10.2  54.5  10.5  F 6 S.E.%  11.8  56.3  13.0                                  | LO 32, 1, 36, LO                          | TREES/W 72 4 80 BASAL W 186 9 203 NET BF W 987 856 226 4 NET CU             | ACRE AVG 84 8 92 AREA/A AVG 207 20 227 VACRE AVG 37,411 4,245 41,656              | HIGH 96 12 104  CRE HIGH 228 31 250  HIGH 41,835 6,633 47,085    | #        | OF PLOTS 5  82  OF PLOTS 5  OF PLOTS 5     | REQ.<br>10<br>20<br>REQ.<br>10<br>13<br>REQ.<br>10 | INF. POP.  15  9  INF. POP.  15  6  INF. POP.  15 |
| SD: DOU- NOB TOT: SD: DOU- NOB TOT: SD: DOU- NOB TOT: SD: CL: SD: CL: SD: CL: SD:                          | 68.1 % 1.0 G FIR FIR AL 68.1 % 1.0 G FIR FIR FIR | 49.6  COEFI  VAR.9  174.0  43.4  COEFI  VAR.9  33.9  180.9  34.8  COEFI  VAR.9  39.3  186.9  43.3  COEFI  VAR.9 | 6.0  F 6 S.E.%  14.7  52.4  13.1  F 6 S.E.%  10.2  54.5  10.5  F 6 S.E.%  11.8  56.3  13.0  F                               | LO 10 10 10 10 10 10 10 10 10 10 10 10 10 | TREES/W 72 4 80 BASAL W 186 9 203 NET BF W 987 856 226 4 NET CU W 497 399   | ACRE AVG 84 8 92 AREA/A AVG 207 20 227 VACRE AVG 37,411 4,245 41,656 JFT FT/A AVG | HIGH  96 12 104  CRE HIGH  228 31 250  HIGH  41,835 6,633 47,085 | #        | OF PLOTS 5  82  OF PLOTS 5  53  OF PLOTS 5 | REQ. 10  20  REQ. 10  13  REQ. 10  20  REQ.        | INF. POP.  15  6  INF. POP.  15  9  INF. POP.     |

| T T                | SPCST | GR                    |             |             | Species,            | Species, Sort Grade - Board Foot Volumes (Type) Project: BLAZIFIN |                  |                    |       |              |                 |                |        |       |                 |      |          | 1<br>6/23/2015<br>12:58:27P |                      |
|--------------------|-------|-----------------------|-------------|-------------|---------------------|-------------------------------------------------------------------|------------------|--------------------|-------|--------------|-----------------|----------------|--------|-------|-----------------|------|----------|-----------------------------|----------------------|
| T01N<br>Twp<br>01N | 1     | V S24 T<br>Rge<br>I6W | Sec         | Tract       |                     | Type<br>MC                                                        | Acre<br>43.0     |                    |       | _            | le Tree<br>68   | s              | c<br>s | uFt   | T01<br>BdI<br>W |      | 06W      | S24 T                       | МС                   |
|                    |       |                       | %           |             |                     |                                                                   |                  | Percent 1          | Net B | oard Fo      | ot Vol          | ume            | **     |       | Av              | erag | e Log    |                             | Loge                 |
| Spp                | S So  | Gr<br>ad              | Net<br>BdFt | Bd.<br>Def% | Ft. per Ac<br>Gross | re<br>Net                                                         | Total<br>Net MBF | Log Sc<br>4-5 6-11 |       | ia.<br>6 17+ | Lo <sub>2</sub> | g Ler<br>21-30 | -      | 36-99 | Ln l<br>Ft l    |      | Bd<br>Ft | CF/<br>Lf                   | Logs<br>Per<br>/Acre |
| DF                 |       | CU                    |             |             |                     |                                                                   |                  |                    |       |              |                 |                |        |       | 6               | 12   |          | 0.00                        | 8.7                  |
| DF                 |       | 2M                    | 69          |             | 26,178              | 26,178                                                            | 1,126            |                    | 44    | 56           | 2               |                |        | 98    | 39              | 16   | 381      | 1.99                        | 68.7                 |
| DF                 |       | 3M                    | 27          |             | 9,952               | 9,952                                                             | 428              | 76                 | 24    |              |                 |                | 17     | 83    | 38              | 9    | 117      | 0.83                        | 84.9                 |
| DF                 |       | 4M                    | 4           |             | 1,281               | 1,281                                                             | 55               | 100                |       |              | 60              | 40             |        |       | 18              | 6    | 22       | 0.41                        | 59.3                 |
| DF                 | Total | s                     | 90          |             | 37,411              | 37,411                                                            | 1,609            | 24                 | 37    | 39           | 4               | 1              | 5      | 90    | 32              | 10   | 169      | 1.21                        | 221.6                |
| NF                 |       | 2M                    | 77          |             | 3,303               | 3,303                                                             | 142              |                    | 49    | 51           |                 |                |        | 100   | 40              | 15   | 380      | 1.85                        | 8.7                  |
| NF                 |       | 3M                    | 20          |             | 819                 | 819                                                               | 35               | 48                 | 52    |              |                 |                | 27     | 73    | 37              | 8    | 109      | 0.77                        | 7.5                  |
| NF                 |       | 4M                    | 3           |             | 123                 | 123                                                               | 5                | 100                |       |              | 23              | 77             |        |       | 22              | 6    | 31       | 0.50                        | 4.0                  |
| NF                 | Total | s                     | 10          | <u> </u>    | 4,245               | 4,245                                                             | 183              | 12                 | 48    | 40           | 1               | 2              | 5      | 92    | 35              | 11   | 210      | 1.26                        | 20.2                 |
| Type Te            | otals |                       |             |             | 41,656              | 41,656                                                            | 1,791            | 22                 | 38    | 39           | 3               | 1              | 5      | 90    | 32              | 10   | 172      | 1.21                        | 241.8                |

| TC TL                | LOGSTVB                       |                  |               |              |               | g Stoo          | ck T | able -<br>BLA | MBF<br>ZIFII  | N           |          |           |           |           |                                |                                       |         |     |
|----------------------|-------------------------------|------------------|---------------|--------------|---------------|-----------------|------|---------------|---------------|-------------|----------|-----------|-----------|-----------|--------------------------------|---------------------------------------|---------|-----|
| T01N<br>Twp<br>01N   | R06W S24<br>Rge<br>06W        | TMC<br>Sec<br>24 | Tra<br>A2     | net          |               | Туре<br>МС      |      | Acres         |               | Plots<br>12 | Samp     | le Tre    | es        | I<br>I    | IN R06<br>Page<br>Date<br>Fime | 6W S24<br>1<br>6/23/2<br>12:58        |         |     |
| s                    | So Gr Lo                      | g (              | Gross         | %            | Net           | %               |      |               | Net V         | olume b     | y Scalir | ıg Dia    | meter in  | 1 Inche   | s                              |                                       |         |     |
| Spp T                | rt de Le                      | n                | MBF           | Def          | MBF           | Spc             | 2-3  | 4-5           | 6-7           | 8-9         | 10-11    | 12-13     | 14-15     | 16-19     | 20-23                          | 24-29                                 | 30-39   | 40+ |
| DF<br>DF<br>DF<br>DF | CU 3<br>CU 4<br>CU 6<br>CU 12 | 5                |               |              |               |                 |      |               |               |             |          |           |           |           |                                |                                       |         |     |
| DF<br>DF             | 2M 20<br>2M 40                | ,                | 28<br>1,098   |              | 28<br>1,098   | 1.7<br>68.3     |      | :             |               |             |          | 171       | 11<br>252 | 16<br>468 |                                | 23                                    |         |     |
| DF<br>DF             | 3M 32<br>3M 36                | 5                | 74<br>14      |              | 74<br>14      | 4.6             |      |               | 17<br>8       |             | 18       | 6         |           |           |                                |                                       |         |     |
| DF<br>DF             | 3M 38<br>3M 40                |                  | 8<br>332      |              | 8<br>332      | .5<br>20.6      |      |               | 8<br>32       |             | 135      | 98        |           |           |                                |                                       |         |     |
| DF<br>DF             | 4M 12<br>4M 14                |                  | 11            |              | 11<br>1       | .7              |      |               | 8             |             |          |           |           |           |                                |                                       |         |     |
| DF<br>DF             | 4M 16<br>4M 18                | 3                | 3<br>6        |              | 3 6           | .2              |      |               | 3<br>6        |             |          |           |           |           |                                |                                       |         |     |
| DF<br>DF<br>DF       | 4M 20<br>4M 24<br>4M 26       | <b>.</b>         | 13<br>5<br>13 |              | 13<br>5<br>13 | .8<br>.3<br>.8  |      |               | 13<br>5<br>13 |             |          |           |           |           |                                |                                       |         |     |
| DF                   | 4M 30                         |                  | 3             |              | 3             | .3              |      |               | 3             |             |          |           |           |           |                                |                                       |         |     |
| DF                   | Totals                        | +                | 1,609         | ·            | 1,609<br>142  | 89.8<br>77.8    |      |               | 117           | 108         | 152      | 276<br>35 | 264<br>34 |           |                                | 23                                    |         |     |
| NF<br>NF             | 2M 40<br>3M 32                |                  | 142<br>9      | <del></del>  | 9             | 5.2             |      |               | 2             |             | 7        |           | 34        | 40        | 23                             |                                       | <u></u> |     |
| NF<br>NF             | 3M 38<br>3M 40                | 3                | 5<br>20       |              | 5<br>20       | 3.0<br>11.1     |      |               | 5<br>2        |             |          | 18        |           |           |                                |                                       |         |     |
| NF<br>NF<br>NF       | 4M 16<br>4M 24<br>4M 26       | ļ                | 1<br>3<br>1   |              | 1<br>3<br>1   | .7<br>1.6<br>.6 |      |               | 1<br>3<br>1   |             |          |           |           |           |                                | · · · · · · · · · · · · · · · · · · · |         |     |
| NF                   | Totals                        |                  | 183           | <del>.</del> | 183           | 10.2            |      |               | 15            |             | 7        | 53        | 34        | 48        | 25                             |                                       |         |     |
| Total All            | otal All Species 1            |                  |               |              | 1,791         | 100.0           |      |               | 133           | 108         | 160      | 329       | 298       | 532       | 209                            | 23                                    |         |     |

| TC         | TST | NDSU               | M         |                   |          |        |        | Stand      | l Table      | Summa          | ry      |               |               |                                   |                                     |       |
|------------|-----|--------------------|-----------|-------------------|----------|--------|--------|------------|--------------|----------------|---------|---------------|---------------|-----------------------------------|-------------------------------------|-------|
| 10         |     |                    |           |                   |          |        |        | Proje      | ect          | BLAZII         | IN      |               |               |                                   |                                     |       |
| Twp<br>01N |     | R06W<br>Rge<br>06W | Sec<br>24 | MC<br>Traci<br>A2 | t        |        |        | Гуре<br>ИС |              | cres<br>3.00   | Plots 1 | Sample T      |               | T01N R<br>Page:<br>Date:<br>Time: | 06W S24<br>1<br>06/23/24<br>12:58:2 | 0:    |
|            | s   |                    | Sample    | FF                | Av<br>Ht | Trees/ | BA/    | Logs       | Aver:<br>Net | age Log<br>Net | Tons/   | Net<br>Cu.Ft. | Net<br>Bd.Ft. | T                                 | otals                               |       |
| Spc        | T   | DBH                | Trees     | 16'               | Tot      | Acre   | Acre   | Acre       | Cu.Ft.       | Bd.Ft.         | Acre    | Acre          | Acre          | Tons                              | Cunits                              | MBF   |
| DF         |     | 14                 | 2         | 87                | 79       | 6.236  | 6.67   | 12.47      | 14.3         | 50.0           | 5.10    | 179           | 624           | 219                               | 77                                  | 27    |
| DF         |     | 15                 | 3         | 87                | 80       | 8.149  | 10.00  | 13.58      | 19.7         | 70.0           | 7.61    | 267           | 951           | 327                               | 115                                 | 41    |
| DF         |     | 17                 | 3         | 87                | 95       | 6.344  | 10.00  | 12,69      | 25.5         | 100.0          | 9.22    | 323           | 1,269         | 396                               | 139                                 | 55    |
| DF         |     | 18                 | 6         | 88                | 102      | 11.318 | 20.00  | 26.41      | 26.8         | 107.1          | 20.15   | 707           | 2,829         | 866                               | 304                                 | 122   |
| DF         |     | 19                 | 4         | 87                | 115      | 6.772  | 13.33  | 15.24      | 33.9         | 136.7          | 14.72   | 516           | 2,082         | 633                               | 222                                 | 90    |
| DF         |     | 20                 | 2         | 88                | 145      | 3.056  | 6.67   | 9.17       | 34.5         | 160.0          | 9.02    | 317           | 1,467         | 388                               | 136                                 | 63    |
| DF         |     | 21                 | 9         | 88                | 107      | 12.473 | 30.00  | 34.65      | 33.2         | 136.8          | 32.82   | ,             | 4,740         | 1,411                             | 495                                 | 204   |
| DF         |     | 22                 | 4         | 89                | 130      |        | 13.33  | 13.89      | 43.9         | 200.0          | 17.36   |               | 2,778         | 747                               | 262                                 | 119   |
| DF         |     | 24                 | 3         | 88                | 122      | 3.183  | 10.00  | 9.55       | 45.8         | 210.0          | 12.46   |               | 2,005         | 536                               | 188                                 | 86    |
| DF         |     | 25                 | 6         | 89                | 128      | 5.867  | 20.00  | 17.60      | 51.5         | 236.1          | 25.84   |               | 4,156         | 1,111                             | 390                                 | 179   |
| DF         |     | 26                 | 2         | 87                | 131      | 1.808  | 6.67   | 5.42       | 53.6         | 255.0          | 8.29    |               | 1,383         | 357                               | 125                                 | 59    |
| DF         |     | 27                 | 8         | 89                | 122      |        | 26.67  | 20.96      | 56.3         | 262.0          | 33.64   |               | 5,491         | 1,447                             | 508                                 | 236   |
| DF         |     | 28                 | 3         | 88                | 134      |        | 10.00  | 7.02       | 68.7         | 331.1          | 13.73   |               | 2,323         | 590                               | 207                                 | 100   |
| DF         |     | 29                 | 3         | 89                | 125      |        | 10.00  | 6.54       | 70.0         | 337.8          | 13.05   |               | 2,209         | 561                               | 197                                 | 95    |
| DF         |     | 30                 | 3         | 89                | 126      | 2.037  |        | 6.11       | 75.8         | 375.6          | 13.19   |               | 2,295         | 567                               | 199                                 | 99    |
| DF         |     | 34                 | 1         | 89                | 132      | ,529   | 3.33   | 1.59       | 101.8        | 510.0          | 4.60    | 161           | 809           | 198                               | 69                                  | 35    |
| DF         |     | Totals             | 62        | 88                | 110      | 84.048 | 206,67 | 212.88     | 39.7         | 175.7          | 240.81  | 8,449         | 37,411        | 10,355                            | 3,633                               | 1,609 |
| NF         |     | 17                 | i         | 90                | 106      | 2,115  | 3.33   | 4.23       | 31,1         | 130.0          | 3.16    | 132           | 550           | 136                               | 57                                  | 24    |
| NF         |     | 19                 | 1         | 90                | 87       | 1.693  | 3.33   | 3.39       | 31.8         | 120.0          | 2.59    | 108           | 406           | 111                               | 46                                  | 17    |
| NF         |     | 21                 | 1         | 91                | 111      | 1.386  | 3.33   | 4.16       | 34.2         | 166.7          | 3.41    | 142           | 693           | 147                               | 61                                  | 30    |
| NF         |     | 24                 | 1         | 91                | 138      | 1.061  | 3.33   | 3.18       | 54.9         | 273,3          | 4.19    | 175           | 870           | 180                               | 75                                  | 37    |
| NF         |     | 26                 | 1         | 91                | 127      | .904   | 3.33   | 2.71       | 60.0         | 290.0          | 3.90    | 163           | 787           | 168                               | 70                                  | 34    |
| NF         |     | 27                 | 1         | 90                | 143      | .838   | 3.33   | 2.52       | 71.3         | 373.3          | 4.31    | 179           | 939           | 185                               | 77                                  | 40    |
| NF         |     | Totals             | 6         | 90                | 113      | 7.997  | 20.00  | 20.18      | 44.5         | 210.3          | 21.56   | 898           | 4,245         | 927                               | 386                                 | 183   |

178.7

262.37 9348

41,656

11,282

4,020

1,791

40.1

68 88 110 92.045 226.67 233.06

Totals

#### **VOLUME SUMMARY**

(Shown in MBF)

Blazing Saddles 341-16-04 June 2015

### AREA 1 MC (74 ACRES)

| SPECIES         |                 | 2 SAW | 3 SAW | 4 SAW | TOTAL |
|-----------------|-----------------|-------|-------|-------|-------|
|                 | Cruise Volume   | 1,040 | 873   | 117   | 2,030 |
| Douglas fir     | Hidden D&B (2%) | (21)  | (17)  | (2)   | (41)  |
| Douglas-fir     | NET TOTAL       | 1,019 | 856   | 115   | 1,989 |
|                 | % of Total      | 51    | 43    | 6     |       |
|                 | Cruise Volume   | 19    | 65    | 11    | 95    |
| Western hemlock | Hidden D&B (2%) | ()    | (1)   | ()    | (2)   |
| Western Hermock | NET TOTAL       | 19    | 64    | 11    | 93    |
|                 | % of Total      | 20    | 69    | 12    |       |

#### **AREA 2 MC (43 ACRES)**

| SPECIES     |                 | 2 SAW | 3 SAW | 4 SAW | TOTAL |
|-------------|-----------------|-------|-------|-------|-------|
| Douglas-fir | Cruise Volume   | 1,126 | 428   | 55    | 1,609 |
|             | Hidden D&B (2%) | (23)  | (9)   | (1)   | (32)  |
|             | NET TOTAL       | 1,103 | 419   | 54    | 1,577 |
|             | % of Total      | 70    | 27    | 3     |       |
|             | Cruise Volume   | 142   | 35    | 5     | 182   |
| Noble fir   | Hidden D&B (2%) | (3)   | (1)   | ()    | (4)   |
| Noble fir   | NET TOTAL       | 139   | 34    | 5     | 178   |
|             | % of Total      | 78    | 19    | 3     |       |

#### AREA 3 R/W (1 ACRE)

| - 11 TO 14 TO 14 TO 15 |                 |       |       |       |       |
|------------------------|-----------------|-------|-------|-------|-------|
| SPECIES                |                 | 2 SAW | 3 SAW | 4 SAW | TOTAL |
| Douglas-fir            | Cruise Volume   | 14    | 12    | 1     | 27    |
|                        | Hidden D&B (2%) | ()    | ()    | ()    | (1)   |
|                        | NET TOTAL       | 14    | 12    | 1     | 26    |
|                        | % of Total      | 54    | 46    | 4     |       |

### **SALE TOTAL**

| SPECIES         | 2 SAW | 3 SAW | 4 SAW | TOTAL |
|-----------------|-------|-------|-------|-------|
| Douglas-fir     | 2,136 | 1,287 | 170   | 3,593 |
| Western hemlock | 19    | 64    | 11    | 94    |
| Noble fir       | 139   | 34    | 5     | 178   |
|                 |       |       |       | 3,865 |



FOR TIMBER SALE CONTRACT # 341-16-04 BLAZING SADDLES PORTIONS OF SECTIONS 14, 23, & 24, T1N, R6W, W.M. TILLAMOOK COUNTY, OREGON

Posted Stream Buffer BoundaryCable Landing

Cable Landing

☐ Tractor Landing

Type N Stream

Stream Buffer

Cable Yarding Area
Tractor Yarding Area

ODF Ownership Boundary

Sections

— 400 Foot Contour Band

80 Foot Contour Band

➡ ■ AREA 3 R/W

Blockage

Forest Grove District GIS June, 2015

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

1:12,000 1 inch = 1,000 feet





|            | TRACTOR | CABLE |
|------------|---------|-------|
| AREA 1     | 38      | 36    |
| AREA 2     | 10      | 33    |
| AREA 3 (R/ | W) 1    | 0     |
| TOTAL      | 49      | 69    |