

Sale FG-341-2015-23-

District: Forest Grove

Date: April 17, 2015

Cost Summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$1,339,011.75	\$27,359.20	\$1,366,370.95
		Project Work:	(\$498,290.00)
		Advertised Value:	\$868,080.95

Sale FG-341-2015-23-

District: Forest Grove

Date: April 17, 2015

Timber Description

Location: Portions of Sections 4 and 5, T2N, R5W, W.M., Washington County, Oregon.

		5	
Specie Name	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	17	0	98
Western Hemlock / Fir	20	0	98
Alder (Red)	18	0	98

Volume by Grade	2S	3S	4S	Camprun	Total
Douglas - Fir	2,255	1,382	188	0	3,825
Western Hemlock / Fir	48	25	2	0	75
Alder (Red)	0	0	0	88	88
Total	2,303	1,407	190	88	3,988

Stand Stocking: 20%

Comments: Pond Values Used: 1st Quarter Calendar Year 2015.

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$954.96/MBF = \$1,185/MBF - \$230.04/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added): Brand and Paint: 3,988 MBF x \$2/MBF = \$7,976 TOTAL Other Costs (with Profit & Risk to be added)= \$7,976

Other Costs (No Profit & Risk added): Block/Waterbar Roads, & Skid Trails: 20 hrs x \$150/hour =\$3,000 Pile Landing Slash and Sort Firewood: 15 hrs x \$150/hour = \$2,250 Equipment Cleaning: 3 x \$1,000/Piece = \$3,000 TOTAL Other Costs (No Profit & Risk added) = \$8,250

ROAD MAINTENANCE Move-in: \$4,000 General Road Maintenance: 5.1 miles x \$1,200/mile = \$6,100 TOTAL Road Maintenance: \$10,100/3,988 MBF = \$2.53/MBF

Sale FG-341-2015-23-

District: Forest Grove

Date: April 17, 2015

Logging Conditions

Combination#: 1	Douglas - Fir Western Hemlock / Fir Alder (Red)	65.94% 78.53% 93.92%
Logging System: yarding distance: tree size:	Cable: Large Tower >=70 Long (1,500 ft) Mature / Regen Cut (900 Bft/tree), 3-5 logs/I	Process: Stroke Delimber downhill yarding: No MBF
loads / day: cost / mbf: machines:	9 \$149.76 Log Loader (A) Stroke Delimber (A) Tower Yarder (Large)	bd. ft / load: 4600
Combination#: 2	Douglas - Fir Western Hemlock / Fir Alder (Red)	5.61% 21.47% 6.08%
Logging System: yarding distance: tree size:	Shovel Short (400 ft) Mature / Partial Cut (900 Bft/tree), 3-5 logs/M	Process: Stroke Delimber downhill yarding: No MBF
loads / day: cost / mbf: machines:	11 \$70.33 Stroke Delimber (B)	bd. ft / load: 4100
Combination#: 3	Douglas - Fir	16.78%
Logging System: yarding distance: tree size:	Cable: Small Tower <=40 Medium (800 ft) Mature / Partial Cut (900 Bft/tree), 3-5 logs/M	Process: Stroke Delimber downhill yarding: No MBF
loads / day: cost / mbf: machines:	10 \$136.59 Log Loader (A) Stroke Delimber (A) Tower Yarder (Small)	bd. ft / load: 4100
Combination#: 4	Douglas - Fir	11.66%
Logging System: yarding distance: tree size:	Shovel Medium (800 ft) Mature / Partial Cut (900 Bft/tree), 3-5 logs/M	Process: Stroke Delimber downhill yarding: No MBF
loads / day: cost / mbf: machines:	9 \$85.96 Stroke Delimber (B)	bd. ft / load: 4100

Sale FG-341-2015-23-

District: Forest Grove

Date: April 17, 2015

Logging Costs

Operating Seasons: 2.00	Profit Risk: 10%
Project Costs: \$498,290.00	Other Costs (P/R): \$7,976.00
Slash Disposal: \$0.00	Other Costs: \$8,250.00

Miles of Road		Road Maintenance:	\$2.53
Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	3.0	4.4
Western Hemlock / Fir	\$0.00	3.0	4.0
Alder (Red)	\$0.00	2.0	3.8

Sale FG-341-2015-23-

District: Forest Grove

Date: April 17, 2015

Logging Costs Breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling	Other	Total
Douglas -	Fir								
\$135.65	\$2.58	\$2.20	\$60.27	\$2.00	\$20.27	\$0.00	\$5.00	\$2.07	\$230.04
Western H	emlock	/ Fir							
\$132.71	\$2.58	\$2.20	\$66.30	\$2.00	\$20.58	\$0.00	\$5.00	\$2.07	\$233.44
Alder (Red	I)								
\$144.93	\$2.58	\$2.20	\$104.68	\$2.00	\$25.64	\$0.00	\$5.00	\$2.07	\$289.10

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$575.30	\$345.26	\$0.00
Western Hemlock / Fir	\$0.00	\$478.67	\$245.23	\$0.00
Alder (Red)	\$0.00	\$600.00	\$310.90	\$0.00

Sale FG-341-2015-23-

District: Forest Grove

Date: April 17, 2015

Summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	3,825	\$345.26	\$1,320,619.50
Western Hemlock / Fir	75	\$245.23	\$18,392.25
Alder (Red)	88	\$310.90	\$27,359.20

	Gross	Timber	Sale	Value
--	-------	--------	------	-------

Recovery: \$1,366,370.95

Prepared By: Eric Foucht

Phone: 503-357-2191

TIMBER SALE SUMMARY Top Step Contract No. 341-15-23

- 1. Location: Portions of Sections 4 & 5, T2N, R5W, W.M., Washington County, Oregon.
- 2. <u>Type of Sale</u>: This timber sale is 44 acres of Modified Clearcut, 80 acres of Partial Cut, and 2 acres of right-of-way. The timber will be sold on a recovery basis at a sealed bid auction.
- 3. <u>Revenue Distribution</u>: 98% BOF, 2% CSL, 100% Washington County.
- 4. <u>Sale Acreage</u>: Acres are net of stream buffers and road prisms. Acreage was determined using ESRI ArcMap GIS software.
- 5. <u>Cruise</u>: The Timber Sale was cruised by ODF Cruisers in February, 2015. For more information see Cruise Report.
- 6. <u>Timber Description</u>: The Timber Sale Area consists of a well stocked 78 year old stand of Douglas-fir, and a 63 year old stand of Douglas-fir with a small component of western hemlock.

Sale Area	Net Acres	Average Diameter	Net MBF Per Acre (D-fir)
Area 1	44	19"	61,576
Area 2	80	15"	13,893
Area 3 R/W	2	20"	42,316

7. <u>Topography and Logging Method</u>: Slopes within the sale areas range from 5% to 65% and are variable in aspect. The following table summarizes average and maximum cable corridor or estimated tractor skid trail length, and harvest method by percent for each sale area.

	Ar	ea 1 (MC)	Are	ea 2 (PCN	1)	A	rea 3 (R/V	V)
	Ave	Max	%	Ave	Max	%	Ave	Max	%
Tractor	200	350	5	450	680	41	718	1252	100
Cable	800	950	95	800	1000	59			0

8. <u>Access</u>: From Forest Grove, travel north on Highway 8 to its junction with Highway 6. Turn left and travel west approximately 3.5 miles to Timber Road. Turn right, proceed north on Timber Road approximately 6.5 miles and turn onto Cochran Road. Continue west on Cochran Road for 3.5 miles to Round Top Road. Turn onto Round Top Road and continue for approximately 1.5 miles. Turn left onto Rice Road and continue for approximately 2 miles to Sale Area 2.

9. <u>Projects</u> :	
Project No. 1: Road Construction and Improvement	\$46,861.90
Project No. 2: Surfacing	\$402,951.65
Project No. 3: Grass Seed, Fertilize, and Mulch	\$1,596.51
Project No. 4: Road Vacating	\$332.50
Project No. 5: Crush 2,500 CY 1-1/2" Stockpile	\$40,803.00
Move in and equipment cleaning:	\$5,741.00
Total Credit for all Projects (rounded)	\$498,290

PROJECT COST SUMMARY SHEET

Timber Sale: Top Step

Sale Number. 341-15-23

PROJECT NO. 1: ROAD CONSTRUCTION AND IMPROVEMENT

PROJECT NO. 2: SURFACING

CONSTRUCTION			
	Road Segment	Length	Cost
	FloG	17+10	\$5,957.33
	H to I	11+25	\$828.48
	L to M	2+10	\$4,438.64
	N to O	4+00	\$1,376.46
		34+45	stations
		0.65	mles

		SUBTOTAL C	ONSTRUCTION	\$12,600.90
IMPROVEMENTS				
	Road Segment	Lenglh	Cost	
	A to B	9+50	\$427.50	
	B to C	182+65	\$19,676.60	
	D to E	151+65	\$11,709.40	
	E to F	8+25	\$322.00	
	J to K	15+50	\$2,125.50	
		367+55	stations	
		6.96	mles	
		SUBTOTALI	MPROVEMENTS	\$34,261.00

<u>TOTAL PROJECT NO. 1 COST = \$46,861.90</u>

	<u> </u>			
Road Segment	Amount	Туре	Cost	
AtoB	402 cy	1 1/2"-0"	\$13,290.12	
B to C	3,262 cy	1 1/ 2"-0"	\$114,568.34	
	60 cy	Pit-Run	\$352.80	
	100 cy	36"-24" Rip-	R∉ \$2,269.00	
D to E	96 cy	1 1/ 2"-0"	\$3,476.16	
	5,489 cy	3"-0"	\$198,771.17	
E to F	576 cy	Pil-Run	\$7,418.88	
F to G	1,451 cy	Pit-Run	\$19,109.67	
H to I	130 cy	3°'-0''	\$4,876.30	
	953 cy	Pit-Run	\$12,379.47	
J to K	1,208 cy	Pit-Run	\$15,764.40	
L to M	337 cy	Pit-Run	\$4,411.33	
N to O	480 cy	Pit-Run	\$6,264.00	
Total	14,544 cy			
	3,760 cy	1 1/2"-0"		
	5,619 cy	3"-0"		
	5,065 cy	Pil-Run		
	100 cy	36"-24" Rip-	Rap	
	IC	TAL PROJECT	NO. 2 COST =	\$402,951.65
			···	
PROJECT NO. 3: GRASS SE	ED, FERTIUZ	E, & MULCH		
	IC	TAL PROJECT	NO, 3 COST =	\$1,596.51
PROJECT NO. 4: ROAD VA	CATING			
	TC	TAL PROJECT	<u>NO. 4 COST =</u>	\$332,50
PROJECT NO. 5: CRUSH 2,	500CY 1-1/2"	STOCKPILE		
	TC	TAL PROJECT	NO. 5 COST =	\$40,803.00
MOVE IN & EQUIPMENT CL		TAL PROJECT		\$40,803.00
MOVE IN & EQUIPMENT CL Grader		DTAL PROJECT	\$709.55	\$40,803.00
Grader Roller (smooth/g	EANING rid) & Compac	ctor	\$709.55 \$465.95	\$40,803.00
Grader	EANING rid) & Compac	ctor	\$709.55 \$465.95 \$1,709.55	\$40,803.00
Grader Roller (smooth/g	EANING rid) & Compac) - Equipment	ctor Cleaning	\$709.55 \$465.95 \$1,709.55 \$1,819.72	\$40,803.00
Grader Roller (smooth/g Excavator (Large	EANING rid) & Compac) - Equipment quipment Clear	ctor Cleaning	\$709.55 \$465.95 \$1,709.55	\$40,803.00
Grader Roller (smooth/g Excavator (Large Tractor (D8) - Ec	EANING rid) & Compace () - Equipment quipment Clear () cy +)	ctor Cleaning	\$709.55 \$465.95 \$1,709.55 \$1,819.72	\$40,803.00
Grader Roller (smooth/g Excavator (Large Tractor (D8) - Ec Dump Trucks (10 Water Truck (15)	EANING rid) & Compac e) - Equipment quipment Clear) cy +) 00 Gal)	ctor Cleaning ning	\$709.55 \$465.95 \$1,709.55 \$1,819.72 \$905.44	
Grader Roller (smooth/g Excavator (Large Tractor (D8) - Ec Dump Trucks (10 Water Truck (15)	EANING rid) & Compac e) - Equipment quipment Clear) cy +) 00 Gal)	ctor Cleaning ning QUIPMENT_CL	\$709.55 \$465.95 \$1,709.55 \$1,819.72 \$905.44 \$130.79 EANING COST =	\$5,741.00
Roller (smooth/g Excavator (Large Tractor (D8) - Ec Dump Trucks (16 Water Truck (15)	EANING rid) & Compac e) - Equipment quipment Clear) cy +) 00 Gal)	ctor Cleaning ning	\$709.55 \$465.95 \$1,709.55 \$1,819.72 \$905.44 \$130.79 EANING COST = PROJECTS	\$40,803.00 \$5,741.00 <u>\$498,286.56</u> \$498,290.00

			SUM	MARY	OF CONS	STRUCTION COST		
Timber Sale:		Top S	tep			Timber Sale No. :	341-1	5-23
– Road Segment:		A to B				Improvement:	9+50 stations	
							0.18 miles	
PROJECT NO. 1								
EXCAVATION								
Grade and Ditch Roll Subgrade				9.50 9.50	sta @ sta @	\$24.00 persta = \$21.00 persta =	\$228.00 \$199.50	
-					Р	ROJECT NO. 1	TOTAL COST = _	\$427.50
PROJECT NO. 2:	:				¹ ¹			
SURFACING	6	° deep =	36 cy/sta					
A to B	342	cy of	1 1/2" -0"		<u>ē</u>	\$33.06 percy =	\$11,306.52	
Junction	60	cy of	1 1/2" -0"	(<u>a</u>	\$33.06 percy=	\$1,983.60	
Total =	402 402	cy of	1 1/2" -0"			\$33.06 percy =	\$13,290.12	
					Р	ROJECT NO. 2	TOTAL COST = _	\$13,290.12
PROJECT NO. 3	<u>.</u>							
Grass seed and fertilize a Mulch by Bale		disturbed sc	pil.	0.01 10	acres @ bales @	\$425.00 per acre = \$8.00 per bale =	\$4.25 \$80.00	
-4					Р	ROJECT NO. 3	TOTAL COST =	\$84.25

TOTAL COST = \$13,801.87

			SUMMARY	OF	CONST	FRUCTIO	N COST			
Timber Sale:		Top S [.]	tep			Timber	Sale No.	:	341-15	5-23
- Road Segment:		B to C		•		mpr	ovement	: 182+65	stations	
				•					miles	
PROJECT NO. 1								····		
EXCAVATION Clean Ditch and Endhaul Wa			47.75		sta @	\$100.00	norcta⊨		\$4,775.00	
Grade and Ditch	ISTE MATE	1161	75.60		sta @		persta =		\$1,451.52	
Roll Subgrade			75.60		sta @		per sta =		\$1,270.08	
Tion Subgrade						,	TOTAL	EXCAVATIO	DN COSTS=	\$7,496.60
CULVERTS - MATERIA	4LS & I	NSTALLA	TION	_						
Culverts					70		<u>*0 000 0/</u>			
494	LF of 18"	\$9,880.00			70	LF 0124"	\$2,030.00	J		
Culvert Mark		4070.00								
27 (markers	\$270.00	<u> </u>				TO	TAL CULVEF	AT COSTS =	\$12,180.00
					DE			TOTAL		\$19,676.60
					Pr	NUJEUI	NO. I	TOTAL	-10031 -	φ13,010.00
PROJECT NO. 2:									w	
SURFACING	6	" deep =	36 cy/sta	-~		40 5 40			\$95,773.10	
B to C (0+00 to 75+60)	2,722	cy of	1 1/2" -0"	0			percy =		\$95,775.10 \$1,055.70	
Junction (Pt. D)	30	cy of	1 1/2" -0" 1 1/2" -0"	@ @			per cy = per cy =		\$9,927.36	
Culvert Bedding & Fill Spot rock over Culverts No. 1	288	cy of	11/2 -0	Q		₽ J 7 .77	percy -		\$0,021.00	
Spotrock over Cuivens No.	192	cy of	1 1/2" -0"	0		\$35.19	per cy =		\$6,758.48	
Curve Widening	30	cy of	1 1/2" -0"	0			percy =		\$1,055.70	
Energy Dissipator	70	cy of	36"-24" Riprap	ĕ			per cy =		\$1,588.30	
Fill Armor	60	cy of	Pit-Run	ē			percy =		\$352.80	
Fill Armor	30	cy of	36"-24" Riprap	0		\$22.69	per cy =		\$680.70	
Total =	3,422	-								
	2,974	cy of	1 1/2" -0"				per cy =		\$104,640.98	
	288	cy of	1 1/2" -0"				per cy =		\$9,927.36 #359.99	
	60	cy of	Pit-Run				per cy =		\$352.80 \$2,269.00	
	100	cy of	36"-24" Riprap				per cy =			
					PF	ROJECT	⁻ NO. 2	TOTAL	COST =	\$117,190.14
PROJECT NO. 3:							<u></u>			
Grass seed and fertilize are	as of die	turhed soil	0.0	1 7	acres @	\$425.00	per acre =	:	\$2.43	
Bio-Bags	43 01 415	unusu 208.	41		ea. @		pereach		\$200.00	
Mulch by Bale			31		bales @		per bale -		\$240.00	
					PF		•	TOTAL	COST =	\$442.43
						<u> </u>				<u>φ107 0Λ0 10</u>
								1017	AL COST =	\$137,309.18
									2	

			SUMMA	RY C	F CONS	TRUCTIO	ON COST			
Timber Sale:		Top Ste	р			Timber	Sale No. :	34	41-15-23	
Road Segment:		D to E				Imp	rovement:	151+65 stations 2.87 miles		
PROJECT NO. 1		1 1 102 4 1 100 1								
EXCAVATION Grade and Ditch Roll Subgrade				51.65 51.65	sta @ sta @		persta = persta = TOTAL	\$2,911. <u>\$2,547.</u> EXCAVATION COST	72	1.40
CULVERTS - MATE	RIALS &	INSTALLA		<u> </u>						
Culverts 120	LF of 18	° \$2,400.00			130	LF of 24"	\$3,770.00			
Culvert Marke 8 n	ers narkers	\$80.00	_				тот	AL CULVERT COSTS	S = \$6,25().00
					PF	ROJECT	Γ NO. 1	TOTAL COST	= \$11,70	9.40
PROJECT NO. 2	:				_W/ ,					
SURFACING	6	" deep =	36 cy/sta							
Surface Junction Culvert Bedding	5,459 30 96	cy of cy of cy of	3" ~ 0 3" - 0 1 1/2"-0"	(9 9		per cy = per cy = per cy =	\$197,684. \$1,086. \$3,476.	30	
Tota! =	5,585 96 5,489	cy of cy of	1 1/2°-0° 3° - 0°				per cy = per cy =	\$3,476. \$198,771.		
					PF	ROJECT	F NO. 2	TOTAL COST	= \$202,2	47.33
PROJECT NO. 3	:									
Grass seed and fertilize a Bio-Bags Mulch by Bale	areas of di	sturbed soil.		0.01 40 8.00	acres @ ea. @ bales @	\$5.00	per acre = per each = per bale =	\$2 \$200 \$36		
-					PF	ROJEC	T NO. 3	TOTAL COST	= \$238	3.53

TOTAL COST = \$214,195.26

SUMMARY OF CONSTRUCTION COST

	~		• • •		RUCTION CODT		
	Top Step	р			Timber Sale No. :	341-1	5-23
	E to F				- Improvement:	8+25 stations	
•						0.16 miles	
∋t			1	ea. 🙆	\$25.00 perea.=		
		8.2	5	sta @	\$19.20 persta =		
		8.2	5	sta @	\$16.80 persta=	\$138.60	
				PRC	JECT NO. 1 TO	TAL COST =	\$322.00
12	"daon -	65 culeta					
					\$12.88 nerov=	\$6 903.68	
	-						
	Uyu	FICENUI	w		фт2.00 рогсу		
576 576	cy of	Pit-Run			\$12.88 percy =	\$7,418.88	
	ŕ			PRC	DJECT NO. 2 TO	DTAL COST =	\$7,418.88
							¥
	- et 12 536 40 576 576	E to F et <u>12 "deep =</u> 536 cy of <u>40</u> cy of 576	- et 8.2 8.2 12 "deep = 65 cy/sta 536 cy of Pit-Run 40 cy of Pit-Run 576	E to F et 1 8.25 8.25 8.25 12 "deep = 65 cy/sta 536 cy of Pit-Run @ 40 cy of Pit-Run @ 576	E to F E to F et 1 ea.@ 8.25 sta@ 8.25 sta@ PRC 12 "deep = 65 cy/sta 536 cy of Pit-Run @ 40 cy of Pit-Run @ 576 576 cy of Pit-Run	E to F Improvement: • 1 ea.@ \$25.00 per ea. = et 1 ea.@ \$19.20 per sta = 8.25 sta@ \$19.20 per sta = 8.25 sta@ \$16.80 per sta = 8.25 sta@ \$16.80 per sta = PROJECT NO. 1 TO 12 " deep = 65 cy/sta 536 cy of Pit-Run \$12.88 per cy = 40 cy of Pit-Run \$12.88 per cy = 576 576 cy of Pit-Run \$12.88 per cy =	E to F Improvement: 8+25 stations . 0.16 miles et 1 ea.@ \$25.00 per ea.= \$25.00 8.25 sta@ \$19.20 per sta= \$158.40 8.25 sta@ \$16.80 per sta= \$138.60 PROJECT NO. 1 TOTAL COST = 12 "deep = 65 cy/sta 536 cy of Pit-Run \$12.88 per cy = \$\$6,903.68 40 cy of Pit-Run \$\$12.88 per cy = \$\$6,903.68 576 \$\$12.88 per cy = \$\$12.88 per cy = \$\$12.88 per cy = \$\$12.88 per cy =

.

		SI	UMMARY	Y OF CO	NSTRUCT				
Timber Sale:	Тор	Step			Timber	Sale No.	· ·	341-18	-23
Road Segment:	F to	G			Co	nstruction	: 17+10 stati 0.32 mile		
PROJECT NO. 1	·····								
EXCAVATION Clearing and Grubbing (Sc Balanced Road Constructio Drift Roadside Landing Grade and Ditch Roll Subgrade CULVERTS - MATER Culverts 30	on (IALS & INST LF of 18" \$6	ALLA 00.00	1.57 7.40 9.70 1 17.10 17.10 TTION	acres (sta (sta (ea. (sta (sta (\$110.00 \$180.00 \$165.00 \$314.00 \$314.00 \$19.20	per acre = per sta = per sta = per ea. = per sta = per sta = TOTAL		I,692.73 \$814.00 I,746.00 \$165.00 \$314.00 \$328.32 <u>\$287.28</u> COSTS=	\$5,347.33
Culvert Marker 1 m		10.00				тот	AL CULVERT (:OSTS =	\$610.00
				1	PROJEC		TOTAL CC		\$5,957.33
PROJECT NO. 2:	1.848///v								
SURFACING	·······	ep =	65 cy/sta						
F to G	•	/	Pit-Run	@		per cy =	\$1	4,645.04	
Tumout		·	Pit-Run	0		per cy =		\$579.48 \$263.40	
Turnaround		,	Pit-Run	0		percy =		\$200.40	
Landing			Pit-Run	0		' percy = ' percy =		1,251.15	
Roadside Landing		y of	Pit-Run	0	\$13.17	per cy -		1,201.10	
Total =	1,451 1,451 c	y of	Pit-Run		\$13.17	percy=	\$1	9,109.67	
		,			PROJEC ⁻	T NO. 2	TOTAL CO	ST = .	\$19,109.67
PROJECT NO. 3:	······								
Grass seed and fertilize a		d soil.	0.79	acres @	\$425.00) peracre =		\$333.68	
					PROJEC ⁻	T NO. 3	TOTAL CO	DST =	\$333.68
			<u>,</u>		PROJEC			•	\$333.68 \$25,400.6

		-			The bar of		、	-15-22
Timber Sale:		Top Step			Timber S		- <u> </u>	-15-23
Road Segment:		H to I			Cons	struction	: 11+25 stations	
	······································						0.21 miles	
PROJECT NO. 1								
EXCAVATION				~			41 110 04	
Clearing and Grubbing (Sc	atter)		1.03	acres @ sta @	\$1,078.00 p \$110.00 p		\$1,113.64 \$1,237.50	
Balanced Road Construction	on		11.25 1	ea. @	φιιο.00 μ \$66.00 μ		\$66.00	
Construct Turnout Construct Turnaround			1	ea. @	\$82.50 p		\$82.50	
			1	ea. @	\$314.00 p		\$314.00	
.anding Grade and Ditch			11.25		\$19.20 p		\$216.00	
Roll Subgrade			11.25		\$16.80 p	per sta =	\$189.00	
ton oubgrade					·	TOTAL	EXCAVATION COSTS-	\$3,218.64
CULVERTS - MATER	IALS &	INSTALLA	TION	.				
Culverts 60	LF of 18'	' \$1,200.00	I					
Culvert Marker								
	rs iarkers	\$20.00)					
Z 40								
Z fli						тот	AL CULVERT COSTS =	\$1,220.00
2 11				PF	ROJECT		AL CULVERT COSTS =	
PROJECT NO. 2:		" doop =	65 cv/sta	PF	ROJECT			
PROJECT NO. 2: SURFACING	12	" deep =	65 cy/sta Pit-Bun			NO. 1		\$4,438.64
PROJECT NO. 2: SURFACING 0+00 to 1+85 & 3+85 to 11	12 731	cy of	Pit-Run	 	\$12.99 }	NO. 1	TOTAL COST =	\$4,438.64
PROJECT NO. 2: SURFACING 0+00 to 1+85 & 3+85 to 11 1+85 to 3+85	12 731 130	cy of cy of		 	\$12.99	NO. 1 percy = percy =	TOTAL COST = \$9,495.65	\$4,438.64
PROJECT NO. 2: SURFACING 0+00 to 1+85 & 3+85 to 11 1+85 to 3+85 Turnout	12 731	cy of	Pit-Run 3º-0º	 	\$12.99 \$37.51	NO. 1 percy = percy = percy =	FOTAL COST = \$9,495.69 \$4,876.30 \$285.71 \$259.80	\$4,438.64
PROJECT NO. 2: SURFACING 0+00 to 1+85 & 3+85 to 11 1+85 to 3+85 Turnout Turnaround	12 731 130 22	cy of cy of cy of	Pit-Run 3"-0" Pit-Run	 @ @ @	\$12.99 ; \$37.51 ; \$12.99 ;	percy = percy = percy = percy =	FOTAL COST = \$9,495.69 \$4,876.30 \$285.78	\$4,438.64
PROJECT NO. 2: SURFACING 0+00 to 1+85 & 3+85 to 11 1+85 to 3+85 Turnout	12 731 130 22 20 180 1,083	cy of cy of cy of cy of cy of cy of	Pit-Run 3"-0" Pit-Run Pit-Run Pit-Run	 @ @ @	\$12.99 \$37.51 \$12.99 \$12.99 \$12.99 \$12.99	per cy = per cy = per cy = per cy = per cy =	FOTAL COST = \$9,495.63 \$4,876.30 \$285.76 \$259.81 \$2,338.21	\$4,438.64
PROJECT NO. 2: SURFACING 0+00 to 1+85 & 3+85 to 11 1+85 to 3+85 Turnout Turnaround Landing	12 731 130 22 20 180 1,083 130	cy of cy of cy of cy of cy of cy of	Pit-Run 3"-0" Pit-Run Pit-Run Pit-Run 3" - 0	 @ @ @	\$12.99 \$37.51 \$12.99 \$12.99 \$12.99 \$12.99 \$37.51	per cy = per cy = per cy = per cy = per cy = per cy =	FOTAL COST = \$9,495.63 \$4,876.30 \$285.76 \$259.81 \$2,538.21 \$4,876.31 \$4,876.31	\$4,438.64
PROJECT NO. 2: SURFACING 0+00 to 1+85 & 3+85 to 11 1+85 to 3+85 Turnout Turnaround Landing	12 731 130 22 20 180 1,083	cy of cy of cy of cy of cy of cy of	Pit-Run 3"-0" Pit-Run Pit-Run Pit-Run	0 0 0 0	\$12.99 \$37.51 \$12.99 \$12.99 \$12.99 \$12.99 \$37.51 \$12.99	NO. 1 per cy = per cy = per cy = per cy = per cy = per cy =	FOTAL COST = \$9,495.63 \$4,876.30 \$259.80 \$2,338.20 \$4,876.30 \$12,379.4	\$4,438.64
PROJECT NO. 2: SURFACING 0+00 to 1+85 & 3+85 to 11 1+85 to 3+85 Turnout Turnaround Landing	12 731 130 22 20 180 1,083 130	cy of cy of cy of cy of cy of cy of	Pit-Run 3"-0" Pit-Run Pit-Run Pit-Run 3" - 0	0 0 0 0	\$12.99 \$37.51 \$12.99 \$12.99 \$12.99 \$12.99 \$37.51 \$12.99	NO. 1 per cy = per cy = per cy = per cy = per cy = per cy =	FOTAL COST = \$9,495.63 \$4,876.30 \$285.76 \$259.81 \$2,538.21 \$4,876.31 \$4,876.31	\$4,438.64
PROJECT NO. 2: SURFACING 0+00 to 1+85 & 3+85 to 11 1+85 to 3+85 Turnout Turnaround Landing Total =	12 731 130 22 20 180 1,083 130 953	cy of cy of cy of cy of cy of cy of	Pit-Run 3"-0" Pit-Run Pit-Run Pit-Run 3" - 0	0 0 0 0	\$12.99 \$37.51 \$12.99 \$12.99 \$12.99 \$12.99 \$37.51 \$12.99	NO. 1 per cy = per cy = per cy = per cy = per cy = per cy =	FOTAL COST = \$9,495.63 \$4,876.30 \$259.80 \$2,338.20 \$4,876.30 \$12,379.4	\$4,438.64
PROJECT NO. 2: SURFACING 0+00 to 1+85 & 3+85 to 11 1+85 to 3+85 Turnout Turnaround Landing Total =	12 731 130 22 20 180 1,083 130 953	cy of cy of cy of cy of cy of cy of cy of	Pit-Run 3"-0" Pit-Run Pit-Run 3" - 0 Pit-Run	0 0 0 0	\$12.99 \$37.51 \$12.99 \$12.99 \$12.99 \$37.51 \$12.99 ROJECT \$425.00	NO. 1 per cy = per cy = per cy = per cy = per cy = NO. 2 per acre =	TOTAL COST = \$9,495.63 \$4,876.30 \$285.74 \$259.80 \$2,338.24 \$4,876.31 \$12,379.4 TOTAL COST = \$219.5	\$4,438.64 3 3 3 3 3 3 3 3 3 3 3 3 3
PROJECT NO. 2: SURFACING 0+00 to 1+85 & 3+85 to 11 1+85 to 3+85 Turnout Turnaround Landing Total =	12 731 130 22 20 180 1,083 130 953	cy of cy of cy of cy of cy of cy of cy of	Pit-Run 3"-0" Pit-Run Pit-Run 3" - 0 Pit-Run 0.5	- @ @ @ @ P	\$12.99 \$37.51 \$12.99 \$12.99 \$12.99 \$37.51 \$12.99 ROJECT \$425.00	NO. 1 per cy = per cy = per cy = per cy = per cy = per cy = NO. 2	TOTAL COST = \$9,495.63 \$4,876.30 \$285.74 \$259.80 \$2,338.24 \$4,876.31 \$12,379.4 TOTAL COST = \$219.5	\$4,438.64 3 3 3 3 3 3 3 3 3 3 3 3 3
PROJECT NO. 2: SURFACING 0+00 to 1+05 & 3+85 to 11 1+85 to 3+85 Turnout Turnaround Landing Total = PROJECT NO. 3: Grass seed and fertilize a	12 731 130 22 20 180 1,083 130 953	cy of cy of cy of cy of cy of cy of cy of	Pit-Run 3"-0" Pit-Run Pit-Run 3" - 0 Pit-Run 0.5	© @ @ @ @ P P 2 acres @ 3 bales @	\$12.99 \$37.51 \$12.99 \$12.99 \$12.99 \$37.51 \$12.99 ROJECT \$425.00 \$8.00	per cy = per cy = per cy = per cy = per cy = per cy = NO. 2 per acre = per bale =	TOTAL COST = \$9,495.63 \$4,876.30 \$2259.80 \$2,338.20 \$4,876.30 \$12,379.40 TOTAL COST = \$219.5 \$32.0	\$4,438.64 3 3 3 3 3 3 3 3 3 3 3 3 3
PROJECT NO. 2: SURFACING 0+00 to 1+05 & 3+85 to 11 1+85 to 3+85 Turnout Turnaround Landing Total = PROJECT NO. 3: Grass seed and fertilize a	12 731 130 22 20 180 1,083 130 953	cy of cy of cy of cy of cy of cy of cy of	Pit-Run 3"-0" Pit-Run Pit-Run 3" - 0 Pit-Run 0.5	© @ @ @ @ P P 2 acres @ 3 bales @	\$12.99 \$37.51 \$12.99 \$12.99 \$12.99 \$37.51 \$12.99 ROJECT \$425.00 \$8.00	NO. 1 per cy = per cy = per cy = per cy = per cy = NO. 2 per acre = per bale = NO. 3	TOTAL COST = \$9,495.63 \$4,876.30 \$285.74 \$259.80 \$2,338.24 \$4,876.31 \$12,379.4 TOTAL COST = \$219.5 \$32.0 TOTAL COST =	\$4,438.64 3 3 3 3 3 3 3 3 3 3 3 3 3
PROJECT NO. 2: SURFACING 0+00 to 1+05 & 3+85 to 11 1+85 to 3+85 Turnout Turnaround Landing Total = PROJECT NO. 3: Grass seed and fertilize a	12 731 130 22 20 180 1,083 130 953	cy of cy of cy of cy of cy of cy of cy of	Pit-Run 3"-0" Pit-Run Pit-Run 3" - 0 Pit-Run 0.5	© @ @ @ @ P P 2 acres @ 3 bales @	\$12.99 \$37.51 \$12.99 \$12.99 \$12.99 \$37.51 \$12.99 ROJECT \$425.00 \$8.00	NO. 1 per cy = per cy = per cy = per cy = per cy = NO. 2 per acre = per bale = NO. 3	TOTAL COST = \$9,495.63 \$4,876.30 \$2259.80 \$2,338.20 \$4,876.30 \$12,379.40 TOTAL COST = \$219.5 \$32.0	\$4,438.64 3 3 3 3 3 3 3 3 3 3 3 3 3

SUMMARY OF CONSTRUCTION COST

		e	SUMMAR`	Y OF	CONST	FRUCTI	ON COST		
Timber Sale:		Top Step	i			Timber	Sale No.:	341-1	5-23
_ Road Segment: _		J to K		- -		Imp	provement:	15+50 stations 0.29 miles	
PROJECT NO. 1									
EXCAVATION Road Brushing Grade and Ditch Roll Subgrade			15.50 15.50		sta @ sta @		persta = persta = TOTAL E>	\$875.00 \$297.60 <u>\$260.40</u> <cavation costs="</td"><td>\$1,515.50</td></cavation>	\$1,515.50
CULVERTS - MATE	RIALS &	INSTALL	ATION	_					
Culverts 30	LF of 18"	\$600.00							
Culvert Marke	ers								
1 1	narkers	\$10.00					ΤΟΤΑΙ	L CULVERT COSTS =	\$610.00
					PRC	JECT	NO. 1 T	OTAL COST = _	\$2,125.50
PROJECT NO. 2	• • • • • • • • • • • • • • • • • • •		******						
SURFACING .	12	" deep =	65 cy/sta						
J to K Junction Landing	1,008 20 180	cy of cy of cy of	Pit-Run Pit-Run Pit-Run	0 0		\$13.05	per cy = per cy = per cy =	\$13,154.40 \$261.00 \$2,349.00	
Total =	1,208 1,208	cy of	Pit-Run			\$13.05	per cy ≖	\$15,764.40	
					PRC	JECT	NO. 2 T	OTAL COST =	\$15,764.40
							TO	FAL COST =	\$17,889.90

	S	UMMARY	OF CONS	STRUCTION COST		
Timber Sale:	Top Step)		Timber Sale No. :	341-1	5-23
Road Segment:	L to M			Construction:	2+10 stations	
				-	0.04 miles	
PROJECT NO. 1						
EXCAVATION						
Clearing and Grubbing (Scatter)		0.19	acres @	\$1,078.00 per acre =	\$207.88	
Balanced Road Construction		2. 1 Ŭ		\$110.00 persta =	\$231.00	
Landing		1	ea. @	\$314.00 perea. =	\$314.00	
Grade and Ditch		2.10	_	\$19.20 persta =	\$40.32	
Roll Subgrade		2.10	sta @	\$16.80 persta=	\$35.28	
			PR	OJECT NO. 1 TO	DTAL COST =	\$828.48
PROJECT NO. 2:	********					
SURFACING 12	· " deep =	65 cy/sta				
L to M 137	cy of	Pit-Run	@	\$13.09 percy =	\$1,793.33	
Turnaround 20	cy of	Pit-Run	0	\$13.09 percy=	\$261.80	
Landing180	cy of	Pit-Run	0	\$13.09 percy=	\$2,356.20	
Total = 337 337	cy of	Pit-Run		\$13.09 percy=	\$4,411.33	
	2		PR	OJECT NO. 2 TO	DTAL COST =	\$4,411.33
PROJECT NO. 3:						
Grass seed and fertilize areas of di	isturbed soil.	0.10	acres @	\$425.00 per acre =	\$40.98	
			PR	OJECT NO. 3 TO	DTAL COST =	\$40.98
				тот	AL COST =	\$5,280.79

			9	UMMAR	YOF	CONS	STRUCTI	ON COST			
Timbe	r Sale:		Top Step)			Timbe	r Sale No. :		341-1	5-23
Road Se	gment:		N to O				Co	nstruction:	4+00	stations	······································
									0.08	miles	
PROJECT	NO. 1										
EXCAVATIO	N										
Clearing and Gr	ubbing (Sc	catter)		0.3	7 ε	cres @	\$1,078.00	per acre =		\$395.86	
Balanced Road		ion		4.Ŭ	0	sta @		persta =		\$440.00	
Construct Turna	round				1	ea. @		perea. =		\$82.50	
Landing					1	ea. @		perea.≃		\$314.00	
Grade and Ditcl	h			4.0		sta @		per sta =		\$76.80 \$67.20	
Roll Subgrade				4.0	U	sta @		per sta =			
						PR	OJECT	NO. 1 TO	OTAL C	OST =	\$1,376.46
PROJECT	NO 2.										1
SURFACING		12	" deep =	65 cy/sta							**************************************
N to O		260	cy of	Pit-Run	_@		\$13.05	per cy =		\$3,393.00	
Turnaround		20	cy of	Pit-Run	Q			percy =		\$261.00	
Junction		20	cy of	Pit-Run	ē			percy =		\$261.00	
Landing		180	cy of	Pit-Run	0		\$13.05	percy =		\$2,349.00	
	Total =	480									
		480	cy of	Pit-Run			\$13.05	per cy =		\$6,264.00	
						PR	OJECT	NO. 2 T(OTAL C	:OST =	\$6,264.00
PROJECT	NO 3.										
Grass seed and			turbed soil	01	8 80	es (@	\$425.00	per acre =		\$78.05	
		000 0, uic		0.1	0.00						470 OF
						PR	OJECT	NO. 3 T(JIAL C	OSI =	\$78.05
<u> </u>								ТОТ		DST =	\$7,718.51

SUMMARY OF CONSTRUCTION COST

	0011		• • • • • •				
Timber Sale:	Top Step			Timber	Sale No. :	341-15	5-23
Road Segment:	V1 to V2				Vacate :	4+50 stations	
						0.09 miles	
PROJECT NO. 4							
EXCAVATION			_			1110 50	
Rip Road Surface		4.50	sta @		per sta =	\$112.50	
Construct Waterbars		2	ea, 🥝		perea. =	\$55.00	
Construct Tank Trap		3	ea. @		per ea. =	\$165.00	
Remove berm		4.50	sta 💿	\$25.00	per sta =		
					TOTAL EXC	AVATION COSTS=	\$332.50
PROJECT NO. 3:							
Grass seed and fertilize areas (of disturbed soil.	0.12 a	cres @	\$425.00	per acre =	\$52.69	
vluich		0.12 a	cres @	\$600.00	per acre =	\$74.38	
			PRO	OJECT	NO. 3 TC	TAL COST =	\$127.07
And and a second se	a 100.700,000	<u></u>			TOT	AL COST =	\$459.57

.

			SUMMAR	YOF	CONSTRUCTION COST		
Timber Sale:		Top Ste	р		Timber Sale No. :	341-18	5-23
-	1 1/:	2''-0 Sto	ckpile				
PROJECT NO. 5	: 2,500	1-1/2" \$	Stockpile	(Sto	ckpile Measure)		
SURFACING 2,500 cy Stockpile Total =	2,900 2,900	cy of	1 1/2"-0	@	\$14.07 per cy =	\$40,803.00	
					PROJECT NO. 5 TOTA	AL COST = _	\$40,803.00
ayaali					ΤΟΤΑΙ	_ COST = :	\$40,803.00

Ŷ

ROCK DEVELOPMENT COST SUMMARY

	Timber Sale:	Top Step	1	
	Sale Number:	341-15-23	3	
	Pit Name:	Round Top	Pit	
Shrinkage: 1	30% 16% 85%	То	: Run (trk measure) tal Truck Yardage: tal In Place Yardage:	5,065 cy 5,065 cy 3,896 cy
Scalp & Clear Overburden: Rip Rock: Screen Rock Load Dump Truck:	\$2.10 \$2.90 \$0.80	lcy x 📃	4,584 cy = 5,065 cy = 5,065 cy = Subtotal	\$4,499.04 \$9,625.79 \$14,688.50 \$4,052.00 \$32,865.33
Move in Excavator (in-sale n Move in D-8 (in-sale move) Clean Up Pit	nove)		Subtotal	\$461.68 \$444.56 \$875.00 \$2,781.24
ROCK DEVELOPMENT	FCOST = <u>\$7.04/cy</u>		RODUCTION COST	\$35,646.57

ROCK PIT DEVELOPMENT AND CRUSHING COST SUMMARY

ſ	imber Sale:	Top Ste	эр		
Si	ale Number:	341-15-	23		
	Pit Name:	Wildca	at		
Swell:130%Shrinkage:116%Screening Loss:15%	•	tockpile meas Total Truck Total In Place	measure) surement) Yardage:		3,760 cy 5,619 cy 2,500 cy 12,279 cy 9,445 cy 1,700 cy
Pit Development & Cleanup including Waste Area @ adjacent to pit, place of in Waste Area, spread and compact. Drill & Shoot: Push Rock: Screen Rock Waste Reject: Load Crusher: Crushing (1-1/2" - 0): Crushing (3" - 0): Build and Shape Stockpile: Load Dump Truck:		cy x cy x cy x cy x cy x cy x cy x cy x	9,805 cy 12,746 cy 14,446 cy 2,167 cy 12,279 cy 6,660 cy 5,619 cy 2,900 cy 9,379 cy S	= = = = = = ubtotal	\$7,280.00 \$27,452.67 \$10,196.71 \$41,893.06 \$1,733.51 \$9,823.20 \$21,976.68 \$18,544.02 \$3,190.00 \$7,503.20 \$149,593.04
Move in Crusher Set up Crusher Move in and set up Drill and Compress Move in Screening Plant Move in Excavator + Equipment Clean Move in D-8 + Equipment Cleaning Move in Loader Pit Clean Up - clean off benches, scre access roads, stockpile boulders, etc Grass seed, fertilize and mulch waste Gradation Tests (\$65/2000 cy) Change Gradation	ning een excess sho e area fill slope	s cy/2000cy x	tes	Subtotal	\$3,286.00 \$3,327.00 \$420.71 \$465.00 \$1,750.21 \$1,745.63 \$671.34 \$5,600.00 \$307.50 \$500.50 \$275.00 \$18,348.89
ROCK DEVELOPMENT COST =	\$13.68/cy	TOTAL F	PRODUCTION		\$167,941.93

CRUISE REPORT TOP STEP 341-15-23

1. LOCATION: Portions of Sections 4 & 5, T2N, R5W, W.M., Washington County.

2. CRUISE DESIGN:

The cruise design assumed a Coefficient of Variation (CV%) of 40%, an average stand diameter of 18 inches, a desired sampling error (SE%) of 9% and a minimum sample size of 100 grade trees. Pre-cruise plots indicated that approximately 6 leave trees per plot could be realized with a 40 BAF prism.

3. SAMPLING METHOD:

The Sale Areas were all cruised in February 2015 with variable radius plots using a 40 BAF prism. Plots falling on or near existing roads or no-harvest areas were offset 1 chain. Sale Area 1 was sampled with 12 count plots and 12 grade plots laid out on a 4 chain x 4 chain grid. Area 2 was sampled with 13 count plots and 13 grade plots laid out on a 4 chain x 5 chain grid. In Area 2 cruisers 'thinned' plots from below to 140 ft² of basal area by assigning a 'Take' or 'Leave' status to each tree in every plot.

4. CRUISE RESULTS

A total of 161 trees were measured and graded producing a cumulative sampling error of 9.3% on the Douglas-fir 'take tree' Basal Area and 8.9% on the Douglas-fir 'take tree' Board Foot Volume.

5. TREE MEASUREMENT AND GRADING:

All grade plot 'Take' trees were measured and graded following Columbia River Log Scale grade rules and favoring 40 foot segments.

a) Height Standards:

Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.

- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) Form Factors were measured for each grade tree using a form point of 16 feet.

5. DATA PROCESSING

- a) Volumes and sampling statistics, were derived from Super Ace 2008 cruise software.
- b) Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.
- c) The volumes for Area 3 were extrapolated from the total volumes per acre of Area 2.
- 6. Cruisers: The sale was cruised by ODF cruisers.

Prepared by:	Joe Koch	2/11/2015
	ODF Forester	Date
Reviewed by:		
-	Eric Foucht	Date

T]	rspc	STGR			Species,	Sort Gi Project	rade - Boar t: TOP	d Fo STEI		olun	nes (7	Гуре)				Pag Dat Tin	e 3	1 /19/20 I:24:5	
T03N Twj 03N	р	5W S32 T Rge 05W	MC Sec 32	Tract 00A)		Туре МС	Acre 44.(Plots 24		-	le Tree 92	es	C S	uFt	T03N BdFt W	R05W	S32 T	мс
			%	<u> </u>				Per	cent N	let Bo	oard Fo	oot Vol	ume			Avera	ige Log	5	Logs
Spp	S T	So Gr rt ad	Net BdF		Ft. per Ac Gross	re Net	Total Net MBF	Lo 4-5	og Sca 6-11		a. 5 17+	i	g Len 21-30	-	36-99	Ln Dia Ft In	Bd Ft	CF/ Lf	Per /Acre
DF	Т	CU														3 12		0.00	7.0
DF	Т	2M	62		38,311	38,311	1,686			50	50		0		100	40 15	390	1.88	98.2
DF	Т	3M	34		21,387	21,387	941		94	6		1	3	17	79	379	105	0.66	203.8
DF	Т	4M	4		1,877	1,877	83		100			60	40			18 6	19	0.31	99.0
DF	T '	Totals	91		61,576	61,576	2,709		36	33	31	2	2	6	89	32 10	151	0.98	408.0
DF	L	3M	100		2,734	2,734	120		2	9	89			75	25	34 19	647	3.19	4.2
DF	Ľ	Totals	4		2,734	2,734	120		2	9	89			75	25	34 19	647	3.19	4.2
RA	Т	CR	100		1,179	1,179	52		20	80			20		80	34 10	125	0.91	9.4
RA	Т	Totals	2		1,179	1,179	52		20	80			20		80	34 10	125	0.91	9.4
WH	т	2M	78		1,115	1,115	49			75	25				100	40 14	300	1.48	3.7
WH	Т	3M	19		261	261	12		100						100	40 8	99	0.69	2.7
WH	Т	4M	3		41	41	2		100			61	39			16 6	18	0.36	2.2
WH	Ŧ	Totals	2		1,417	1,417	62		21	59	20	2	1		97	34 10	165	1.05	8.6
ВМ	Т	3M	61		514	514	23		54	46				14	86	37 10	137	0.80	3.7
BM	T	4M			41	41	2		100			100				16 7	30	0.41	1.4
BM	Т	CR			281	281	12		100			17			83	30 9	90	0.62	3.1
BM	Т	Totals	1		835	835	37		71	29		10		9	81	31 9	102	0.70	8.2
RC	L	3М	100		170	170	7	38	62				100			27 7	40	0.40	4.2
RC	L	Totals	0		170	170	7	38	62				100			27 7	40	0.40	4.2
Type	Total	ls			67,912	67,912	2,988	0	34	33	32	2	3	9	87	32 10	153	0.99	442.8

FC TLC)GSTVB					g Stoc oject:	k Ta	uble - I TOP	MBF STEP								
TO3N F Twp 03N	R05W S3 Rge 05W	52 TN Sec 32	e Tra			Type MC		Acres 44.0		lots 24	Sample	e Tree 92	es	P D	N R05 age ate 'ime	W S32 1 3/19/2 1:24::	015
S	So Gr L	.0g	Gross	%	Net	%			Net Vol	ume by	y Scalin	g Diar	neter in	Inches	3		
	rt de L		MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11 1	2-13	14-15	6-19	20-23	24-29	30-39 40+
DF L	3M 3		19		19	.7									8	11	
DF L	3M (1	3		3	, l								3 4	16	24	12
DFL DFL	3M 3 3M 3		56 12		56 12	2.0 .4			I					-	10	2.4	12
DF L	3M 3		30		30	1.1			2					11		17	
DF T	CU	2															<u> </u>
DF T	CU																
DF T	2M 2	24	3		3	.1						3				- 4	
DF T	2M -	40	1,683		1,683	59.5						332	304	676	318	54	÷
DF T	3M		8		8	.3					22	8					
DF T DF T	3M 1 3M 1		22 7		22 7	.8 .2				7	22						
DF T	3M		151		151	5.3			72	79							
DF T	3M	1	11		11	.4			11								
DF T DF T	3M 3M		16 20		16 20	.6 .7			7 12	8	9						
DF T	3M		706		20 706	24.9			87	156	418	46					
DF T	4M	12	18		18	.6	<u> </u>		18								
DF T	4M		13		13	.5	Ì		13								
DF T	4M		9		9 10	.3 .4			9 10								
DF T DF T	4M 4M		10 3		3	.1			3								
DF T	4M	24	5		5	.2			5								
DF T	4M		4		4 15	.1			4 15								
DF T DF T	4M 4M		15 6		6	.2			6								
DF	Total	s	2,830		2,830	94.7			275	249	449	388	304	694	341	106	24
RA T	CR	28	10		10	20.0			10								
RA T	CR	40	41		41	80.0						41					
RA	Total	ls	52		52	1.7			10			41	ļ		ļ		1
WH T	2M	40	49		49	78.7					<u> </u>	25	12	12			
WH T	3M	40	12		12	18.4				12							
WH T	4M		0		0				0		1						
WH T WH T	4M 4M		1		1	1.1					1						
WH	Tota	_	62		62	1			2	12	1	25	12	12			
BM T	3M		3		3	1			3								
BM T	3M		19		19						9	11					
вм т	4M	16	2		2	4.9			2								
вм т	CR		2		2				2		10						
BM T	CR		10			-	-		-		10 19						
BM	Tota	t	37		37		+		7	5		11	·]				
RC L RC L	3M 3M		5 3		5			3							<u> </u>		
RC	Tota	ls	- 7		7	.2		3		5					1		

TC TL	OGSTVB				Lo	g Sto	ek Ta	able - ľ	MBF									
					Pr	oject:		TOP	STEP)					v			
TO3N Twp 03N	R05W Rge 05W	S	_			Туре МС		Acres 44.0		Plots 24	Samp	ole Tree 92	es	F	N ROS Page Date Time	5W S32 2 3/19/2 1:24:		
S	So Gr	Log	Gross	%	Net	%			Net Vo	olume by	y Scali	ng Diar	neter i	n Inche	s			
Spp T	rt de	Len	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39	40+
fotal All	Species		2,988		2,988	100.0		3	294	265	468	465	316	706	341	106	24	

TC 1	TST	NDSUM	í				1000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 -	Stand	Table	Summa	ry					
								Proje	ect	TOPSTI	EP					······
T03N Twp 03N)	k05W Rge 05W	S32 T Sec 32	MC Trac 00A				уре 1С		cres 4.00	Plots S 24	Sample T 92		T03N R(Page: Date: Time:)5W S32 ' 1 03/19/2(1:24:51):
					Av	T /	D A /	Lago	Avera Net	nge Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	Τe	tals	
Spc	S T		Sample Trees	e FF 16'	Ht Tot	Trees/ Acre	BA/ Acre	Logs Acre		Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF	Т	11	4	89	100	21.628	14.27	43.26	9.7	41.2	12.02	422	1,784	529	186	79
DF	Т	14	6	89	112	20.028	21.41	43.39	18.0	83.8	22,25	781	3,638	979	343	160
DF	Т	15	4	89	120	11,631		29.08	19.4	89.0	16.07	564	2,588	707	248	114
DF	Т	16	8	89	113	20.445		53.67	20.2	91.0	30.90	1,084	4,881	1,360	477	215
DF	Т	18	11	90	133	22.212		66.64	27.3	122.4	51.88	1,820	8,158	2,283	801	359
DF	Т	19	2	89	141	3.625	7.14	10.87	33.1	156.7	10.27	360	1,704	452	159	75
DF	Т	20	4	90		6.542		19.63	34.4	158.3	19.25	675	3,108	847	297 224	137 116
DF	Т	21	3			4.451		13.35	39.9	196.7	15.17	532	2,626	668	234	
DF	Т	22	6			8.111		24.33	44.7	214.4	31.03	1,089	5,218	1,365	479	230 39
DF	Т	23	1	89		1.237	3.57	3.71	50.1	240.0	5.29	186	890	233	82	39 323
DF	Т	24	9			10.223		31.80	49.3	231.1	44.71	1,569	7,349	1,967	690 405	323 244
DF	Т	26	6	89		5.807		21.29	52.9	260.9	32.08	1,126	5,555	1,411	495	
DF	Т		2			1.795	7.14	7.18	54.0	290.0	11.05	388	2,082	486	171 253	92 132
DF	Т		3			2.504		10.01	57.4	300.0	16.38		3,004	721 249	253 87	46
DF	Т		1			.727	3.57	2.91	68.3	357.5	5.66		1,040		87 490	40 260
DF	Т	1	6			3.833	21.41	15.33	72.7	385.4	31.75	-	5,910 1,063	1,397 250	490 88	200 47
DF	Т	33	1			.601	3.57	2.40	82.9	442.5	5.68		1,063 977	230	88 79	43
DF	Т	35	1	89	142	.534	3.57	2.14	84.2	457.5	5.13	180	911	220	19	
DF		Totals	78	89	125	145.933	278.33	401.00	32.1	153.6	366.57	12,862	61,576	16,129	5,659	2,709
DF	L	36	3	89	155	.707	5.00	2.83	97.6	572.5	7.87		1,620	346	121	71
DF	L	40	1	89	160	.191	1.67	.76	124.0	727.5	2.70		556	119	42	24
DF	L	44	1	90	160	.158	1.67	.63	149.2	885.0	2.68	94	559	118	41	25
DF		Totals	5	89	157	1.056	8.33	4.22	110.1	647.2	13.25	465	2,734	583	205	120
WH	Т	18	2	92	117	1.886	3,33	4.72	30.8	134.0	4.65	145	632	205	64	28
WH	Т		1	92	120	.764	1.67	2.29	34.1	166.7	2.50		382	110	34	17
WH	Т	24	1	93	124	.531	1.67	1.59	52.0	253.3	2.65		403	116	36	18
WH		Totals	4	92	: 119	3.181	6,67	8.60	35.6	164.8	9.80	306	1,417	431	135	62
RA	Т	18	1	93	90	4.716	8.33	9.43	31.0	125.0	8.04	292	1,179	354	129	52
RA		Totals	1	93	90	4.716	8,33	9.43	31.0	125.0	8.04	292	1,179	354	129	52
BM	Т	14	1	93	90	1.559	1.67	3.12	18.7	90.0			281	68	26	12
BM	Т	1	1	92	2 80	1.358	1.67	2.72	19.4	90.0	1,40		244	61	23	11
BM	Т	1	1	94	100	1.194	1.67	2.39	28.5	130.0	1.81	68	310	79	30	14
BM		Totals	3	3 93	90	4.111	5.00	8.22	21.8	101.6	4.75	5 179	835	209	79	37
RC	L	, 12	1	8	80	2.122	1.67	4.24	10.8	40.0	1.07	7 46	170	47	20	7
RC		Totals	1	8	80	2.122	1.67	4.24	10.8	40.0	1.07	7 46	170	47	20	7
Total	s		92	2 90) 122	161.119	308.33	435.72	32.5	155.9	403.48	3 14150	67,912	17,753	6,226	2,988

ΤΊ	SPCS	STGR			Species,	Sort G Projec	rade - Boai t: TOI	d Fo STE		olun	nes (7	Гуре)				D	-	1 5/19/20 1:51:1	1
T03N Twj 03N)	W S32 Rge 05W	ГООРС Sec 32	Tract 00A2		Type 00P		00	Plots 26		-	le Tree 72		C S	uFt	BdFt W			00PC
Spp	S s T r		% Net BdF		Ft. per Ac Gross	re Net	Total Net MBF		og Sca	ale Di		Log 12-20	g Ler	-	36-99		rage Log ia Bd 1 Ft	CF/ Lf	Logs Per /Acre
DF DF DF DF	L L L L	CU 2M 3N 4N	1 19 1 79		5,630 22,446 347	5,630 22,446 347	450 1,796 28		20 100	37 27	63 53	1 76	7 24	31	100 62	4 1 40 1 35 1 18	6 447 2 243	0.00 2.11 1.39 0.36	1.7 12.6 92.5 13.7
DF I	LT	otals	58		28,423	28,423	2,274		17	29	55	2	5	24	69	33-1	2 236	1.41	120.5
DF DF DF	T T T	2N 3N 4N	1 37		7,380 5,191 1,321	7,380 5,191 1,321	590 415 106		100 100	84	16	22	45	19	100 81 34	40 1 37 26	8 101	1.52 0.64 0.32	25.8 51.6 43.5
DF 1	гт	otals	28		13,893	13,893	1,111		47	45	9	2	4	7	86	34	9 115	0.77	120.8
WH	L	31	1 100		6,500	6,500	520		8	31	61			13	87	37 1	2 276	1.49	23.5
WH	ΓJ	Fotals	13		6,500	6,500	520		8	31	61			13	87	37 1	2 276	1.49	23.5
BM	L	3N	1 100		403	403	32		22	78			100			27 1	0 111	0,92	3.6
BM	LΊ	fotals	1		403	403	32		22	78			100			27 1	0 111	0.92	3.6
Type T	otals				49,218	49,218	3,937		24	34	42	1	5	18	76	34 1	0 183	1,13	268.5

TC TL	OGSTVB				g Stoc oject:	k Ta	able - TOI	MBF PSTEP								
T03N Twp 03N	-	00PC ec Tra 32 00A2			Туре 00РС		Acres 80.0		lots 26	Samp	le Tre 72	es	F I	N R05 Page Date Time	1 3/19/2	T00PC 015 :16AM
S	So Gr Log	Gross	%	Net	%			Net Vo	lume b	y Scali	ng Dia	meter ir	Inche	s		
Spp Т	rt de Len	MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23	24-29	30-39 40+
DF L	CU 4															
DF L	2M 40	450		450	13.3						60	38	162	146	45	
DF L	3M 12	15	,	15	.4							15				
DF L	3M 22	15		15	.4						15					
DF L	3M 24	4		4	1.			4								
DF L	3M 30	98		98	2.9						10		22			
DF L	3M 31	38		38	1.1			2					100	36	~	
DF L	3M 32	256		256	7.6			40	11	7	34		103 44		62	
DF L	3M 33	58		58	1.7			12			15 33		44 25		35	
DF L	3M 34 3M 35	160 36		160 36	4.7						33	10	23	39	55	
DFL DFL	3M 35 3M 36	36 390		30 390	11.5			23		16		67	164		42	
DF L	3M 30 3M 37	390		390	1.0			2			33					
DF L	3M 37	188		188	5.6			17			16		55	39		44
DF L	3M 39	85		85	2.5			3		1				82		
DF L	3M 40	417		417	12.3			37	27	155		53	13	60	31	41
DF L	4M 12	2		2	.0			2						1		
DF L	4M 12 4M 16	16		16	.5			16						1		
DF L	4M 20	3		3	.1	1		3								
DF L	4M 24	7		7	.2			7								
DF T	2M 40	590		590	17,4						273	178	140			
DF T	3M 32	73		73	2.2			47	26							
DF T	3M 34	7		7	.2			7								
DF T	3M 40	335		335	9.9			29	128	179						
DF T	4M 12	3		3	.1	1		3								
DF T	4M 16	4		4	.1			4								
DF T	4M 20	16		16	.5			16								
DF T	4M 24	9		9	.3			9								
DF T	4M 28	39		39	1.1			39								
DF T	4M 40	35		35	1.0	-		35			**	<u> </u>				
DF	Totals	3,385		3,385	86.0	 		355	191	357	490	384		+	215	85
WH L	3M 34	68		68	13.1	ĺ							68			
WH L	3M 36	234		234	45.0			8			52	1			73	
WH L	3M 37	83		83	16.0			14		1	35		34			
WH L	3M 38	129		129	24.8			14		1			37	77		
WH L	3M 40	6		6	1.1			6				<u> </u>		<u> </u>		
WH	Totals	520		520	13.2	<u> </u>		42		<u> </u>	87		206	5 77	73	
BM L	3M 26	11		11	35.6						11					
BM L	3M 27	14		14	42.0	1						14				
BM L	3M 28	7		7	22.4			7				<u> </u>				
BM	Totals	32		32	.8	<u> </u>		7			11	<u> </u>				07
Total Al	l Species	3,937		3,937	100.0			405	191	357	588	432	933	659	288	85

тс т	ST	NDSUM	1							Summa	-					
T03N	R	.05W	S32 T()0PC				Proje	ect	TOPST	<u>EP</u>			T03N R	05W S32	Төөрс
Twp 03N	I	Rge)5W	Sec	Tract 00A2				`уре 0РС		cres 0.00	Plots S 26	Sample T 72		Page: Date: Time:	1 03/19/2 11:51:1	
			Samula	FF	Av Ht	Trees/	D A /	Loga	Avera Net	nge Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	Т	otals	
	S T		Sample Trees	гг 16'	п. Tot	Acre	Acre	Logs Acre	Cu.Ft.		Acre	Acre	Acre	Tons	Cunits	MBF
DF		10	1	80	44	5.504	3.00	5.50	5.7	30.0	.89	31	165	71	25	13
DF	L	14	1	88	101	2.808	3.00	5.62	17.5	75.0	2.80	98	421	224	78	34
DF	L	15	1	88	109	2.446	3.00	4.89	22.1	100.0	3.08	108	489	246	86	39
DF	L	16	1	88	110	2.150	3.00	4.30	27.4	120.0	3.36	118	516	269	94	41
DF	L	17	2	89	113	3.809	6.00	9.52	24.7	104.0	6.69	235	990	535	188	79
DF	L	18	3	87	93	5.096	9.01	11.89	23.1	102.9	7.83	275	1,223	627	220	98 54
DF	L	21	1	89	137	1.248	3.00	3,74	36.9	180.0	3.94	138	674 2.604	315	111 440	54 208
DF	L	22	4	90	131	4,549	12.01	13.65	40.3	190.8	15.66	550 146	2,604 676	1,253 332	440 11 7	208 54
DF	L	23	1	89	139	1.040 1.911	3.00 6.00	3.12 5.73	46.7 48.4	216.7 226.7	4.15 7.91	146 277	1,300	632	222	54 104
DF		24 25	2	89 89	130 141	1.911	6.00 3.00	5.73 2.64	48.4 55.6	226.7	4.18	147	704	335	117	56
DF DF	L L	25 26	1 5	89 89	141	.881 4.071	3.00 15.01	2.64 13.03	55.6	200.7	20.22	710	3,517	1,618	568	281
DF DF		20 27	3	89 90	135	2.265	9.01	7.55	62.9	326.0	13.54	475	2,461	1,013	380	197
DF	L	28	3	89	136	2.106	9.01	7.02	62.4	324.0	12.48	438	2,275	998	350	182
DF	L	30	6	89	145	3,669	18.01	12.84	73.1	387.1	26.77	939	4,972	2,141	751	398
DF	Ĺ	38	3	89	157	1.143	9.01	4.57	109.9	626.7	14.33	503	2,866	1,146	402	229
DF	Ľ	40	1	90	120	.344	3.00	1.03	125.5	660.0	3.69	130	681	295	104	54
DF	L	42	2	89	157	.624	6.00	2.18	155.0	864.3	9.65	339	1,888	772	271	151
DF		Totals	41	88	114	45,664	123.08	118.84	47.6	239.2	161.17	5,655	28,423	12,894	4,524	2,274
DF	Т	9	1	87	72	9,120	4.03	9.12	7.6	30.0	1.98	70	274	159	56	22
DF	Т	10	2	87	76	14.775	8.06	14.78	11.5	55.0	4.84	170	813	387	136	65
DF	Т	12	1	86	76	5.130	4.03	5.13	18.5	70.0	2.71	95	359	217	76	29
DF	Т	13	1	88	89	4.371	4.03	4.37	22.7	90.0	2.83	99	393	226	79	31
DF	Т	14	1	88	90	3.769	4.03	7.54	16.8	70.0	3.61	127	528	289 319	101 112	42 47
DF	Т	15	1	89	96	3.283	4.03	6.57	21.3	90.0	3.99 5.23	140 183	591 792	418	112	47 63
DF	T T	17 18	1 4	89 89	137 107	2,556 9,120	4.03 16.12	7.67 22.80	23.9 26.9	103.3 112.0	17.48	613	2,554	1,398	491	204
DF DF		18	4	89 90	133			6.14	20.9	12.0	5.10		778	408	143	62
DF DF	T	20	3	90 89	133		4.03	16.62	32.3	142.2	15.28		2,364	1,223	429	189
DF	T	20	1	89 89	132	1.675	4.03	5.03	40.2	196.7	5.75		988	460	161	79
DF	T	21	1	89	125	1.526	4.03	4.58	38.5	176.7	5.03		809	402	141	65
DF	T	23	1	89	131	1.397	4.03	4.19	44.0	203.3	5,26		852	421	148	68
DF	T	26	1	89	134	1.093	4.03	3.28	58.4	273.3	5.46		896	437	153	72
DF	Т	27	1	89	136	1.013	4.03	3.04	62.9	296.7	5.45	191	902	436	153	72
DF		Totals	21	88	97	66.418	84.62	120.85	26.1	115.0	90.00	3,158	13,893	7,200	2,526	1,111
WH	L	18	1	92	93	2.960	5.23	5.92	32.8	140.0	6.22		829	497	155	66
WH	L	22	1	94	135	1.981	5.23	5.94	46.4	233.3	8.82		1,387	706	221	111
WH	L	24	1	93	127	1,665	5.23	5.00	53.3	276.7	8.52		1,382	682	213	111
WH	L	28	1	94	135	1.223	5.23	3.67	78.1	410.0	9.17		1,505	734	229	120
WH	L	31	1	93	127	.998		2.99	88.6	466.7	8.49		1,397	679	212	112
WH		Totals	5	93			26.15	23.52	54.8	276.3	41.22		6,500	3,298	1,031	520
BM DM	L	16 20	1	92 90	75 70	1.102 .705	1.54 1,54	2.20 1.41	20.5 32.0	90.0 145.0	1.19 1.20		198 205	96 96	36 36	16 16
BM	L		1			ļ				145.0	2.39		403	191	72	32
BM		Totals	2	91	73	1.807	3.08	3.61	25.0						8,153	3,937
Totals			69	88	105	122,717	236.92	266.82	38.2	184.5	L 294.79	10192	49,218	23,583	6,105	3,937

TC PSTATS					OJECT oject	STATIS TOP				PAGE DATE	1 3/19/2015
WP RGE	SC	TRACT	r	ГҮРЕ		ACI	RES	PLOTS	TREES	CuFt	BdFt
03N 05 03N 05W	32 32			MC 00PC			124.00	50	345	S	W
					TREES	I	ESTIMATED TOTAL		ERCENT		
		PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL		50	345		6.9						
CRUISE		25	161		6.4		16,907		1.0		
DBH COUNT											
REFOREST											
COUNT		25	181		7.2						
BLANKS 100 %											
				STA	ND SUMM	ARY					
	S	SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG FIR-L		46	29.8	22.5	115	17.4	82.4	19,308	19,308	3,814	3,814
DOUG FIR-E		40 99	29.8 94.6	17.2	113	17.4 36.9	153.4	30,813	30,813	5,814 6,601	6,601
WHEMLOCK	-L	5	5.7	23.3	112	3.5	16.9	4,193	4,193	831	831
WHEMLOCK	-T	4	1.1	19.6	119	0.5	2.4	503	503	109	109
R ALDER-T		1	1.7	18.0	90	0.7	3.0	418	418	104	104
BL MAPLE-L		2	1.2	17.7	73	0.5	2.0	260	260	58	58
BL MAPLE-T		3	1.5	14.9	90	0.5	1.8	296	296	64	64
WR CEDAR-I	-	1	.8	12.0	80	0.2	.6	60	60	16	16 <i>11,596</i>
	CE LII 68.1	161 MITS OF THE TIMES OUT COEFF	136.3 E SAMPLE Г OF 100 THE	18.8 VOLUME		60.5 VITHIN TH			55,851 OF TREES R	<u>11,596</u> EQ.	INF. POP.
CONFIDEN CL 68.1 SD: 1.0		MITS OF THI TIMES OUT COEFF VAR.%	E SAMPLE F OF 100 THE S.E.%	VOLUME	WILL BE V SAMPLE OW	VITHIN TH C TREES - AVG	E SAMPLE E BF HIGH	RROR			
CONFIDEN CL 68.1 SD: 1.0 DOUG FIR-L		MITS OF THI TIMES OUT COEFF VAR.% 76.4	E SAMPLE Γ OF 100 THE S.E.% 11.3	VOLUME	WILL BE V SAMPLE OW 1,067	VITHIN TH C TREES - AVG 1,203	E SAMPLE E BF HIGH 1,338	RROR	OF TREES R	EQ.	INF. POP.
CONFIDEN CL 68.1 SD: 1.0	68.1	MITS OF THI TIMES OUT COEFF VAR.%	E SAMPLE F OF 100 THE S.E.%	VOLUME	WILL BE V SAMPLE OW	VITHIN TH C TREES - AVG	E SAMPLE E BF HIGH	RROR	OF TREES R	EQ.	
CONFIDEN CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T	68.1 -L	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8	E SAMPLE T OF 100 THE <u>S.E.%</u> 11.3 7.6	VOLUME	WILL BE V SAMPLE OW 1,067 532	VITHIN TH TREES - <u>AVG</u> 1,203 576	E SAMPLE E BF HIGH 1,338 620	RROR	OF TREES R	EQ.	
CONFIDEN CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK	68.1 -L	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0	E SAMPLE Γ OF 100 THE <u>S.E.%</u> 11.3 7.6 24.8	VOLUME	WILL BE V SAMPLE OW 1,067 532 668	VITHIN TH TREES - <u>AVG</u> 1,203 576 888	E SAMPLE E BF HIGH 1,338 620 1,108	RROR	OF TREES R	EQ.	
CONFIDEN CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-L	-L -T	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1	E SAMPLE T OF 100 THE <u>S.E.%</u> 11.3 7.6 24.8 23.8 31.0	VOLUME	WILL BE V SAMPLE OW 1,067 532 668 368 162	VITHIN TH C TREES - <u>AVG</u> 1,203 576 888 483 235	E SAMPLE E BF HIGH 1,338 620 1,108 597 308	RROR	OF TREES R	EQ.	
CONFIDEN CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-T	-L -T	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6	E SAMPLE T OF 100 THE S.E.% 11.3 7.6 24.8 23.8	VOLUME	WILL BE V SAMPLE OW 1,067 532 668 368	VITHIN TH C TREES - <u>AVG</u> 1,203 576 888 483	E SAMPLE E BF HIGH 1,338 620 1,108 597	RROR	OF TREES R	EQ.	
CONFIDEN CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-L	-L -T	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1	E SAMPLE T OF 100 THE <u>S.E.%</u> 11.3 7.6 24.8 23.8 31.0	VOLUME	WILL BE V SAMPLE OW 1,067 532 668 368 162	VITHIN TH C TREES - <u>AVG</u> 1,203 576 888 483 235	E SAMPLE E BF HIGH 1,338 620 1,108 597 308	RROR	OF TREES R	EQ.	
CONFIDEN CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-T WR CEDAR-I	-L -T	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3	E SAMPLE T OF 100 THE <u>S.E.%</u> 11.3 7.6 24.8 23.8 31.0 15.5	VOLUME	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693	VITHIN TH 2 TREES - AVG 1,203 576 888 483 235 207	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799	RROR #	OF TREES R 5	EQ. 10 81	1
CONFIDEN CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-L BL MAPLE-T WR CEDAR-I TOTAL CL 68.1 SD: 1.0	-L -T	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.%	E SAMPLE T OF 100 THE <u>S.E.%</u> 11.3 7.6 24.8 23.8 31.0 15.5 <i>7.1</i> <u>S.E.%</u>	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW	VITHIN TH C TREES - <u>AVG</u> 1,203 576 888 483 235 207 746 C TREES - <u>AVG</u>	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH	RROR #	OF TREES R 5 325	EQ. 10 81	j J INF. POP.
CONFIDEN SD: 1.0 DOUG FIR-L DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-L BL MAPLE-T WR CEDAR-I TOTAL CL 68.1 SD: 1.0 DOUG FIR-L	-L -T	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.% 68.3	E SAMPLE T OF 100 THE <u>S.E.%</u> 11.3 7.6 24.8 23.8 31.0 15.5 <u>7.1</u> <u>S.E.%</u> 10.1	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW 202	VITHIN TH C TREES - <u>AVG</u> 1,203 576 888 483 235 207 746 C TREES - <u>AVG</u> 224	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH 247	RROR #	OF TREES R 5 325 OF TREES R	EQ. 10 81 EQ.	
CONFIDEN CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-L BL MAPLE-T WR CEDAR-I TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L	68.1 -L -T	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.% 68.3 68.3	E SAMPLE T OF 100 THE <u>S.E.%</u> 11.3 7.6 24.8 23.8 31.0 15.5 <i>7.1</i> <u>S.E.%</u> 10.1 6.9	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW 202 110	VITHIN TH C TREES - AVG 1,203 576 888 483 235 207 746 C TREES - AVG 224 118	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH 247 126	RROR #	OF TREES R 5 325 OF TREES R	EQ. 10 81 EQ.	j J INF. POP.
CONFIDENCE CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-T BL MAPLE-T BL MAPLE-T BL MAPLE-T CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK	-LL	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.% 68.3 68.3 68.3 45.9	E SAMPLE T OF 100 THE S.E.% 11.3 7.6 24.8 23.8 31.0 15.5 7.1 S.E.% 10.1 6.9 22.8	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW 202 110 134	VITHIN TH 2 TREES - AVG 1,203 576 888 483 235 207 746 2 TREES - AVG 224 118 173	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH 247 126 212	RROR #	OF TREES R 5 325 OF TREES R	EQ. 10 81 EQ.	j J INF. POP.
CONFIDEN CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-L BL MAPLE-T WR CEDAR-I TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L	-LL	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.% 68.3 68.3	E SAMPLE T OF 100 THE <u>S.E.%</u> 11.3 7.6 24.8 23.8 31.0 15.5 <i>7.1</i> <u>S.E.%</u> 10.1 6.9	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW 202 110	VITHIN TH C TREES - AVG 1,203 576 888 483 235 207 746 C TREES - AVG 224 118	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH 247 126	RROR #	OF TREES R 5 325 OF TREES R	EQ. 10 81 EQ.	j J INF. POP.
CONFIDEN CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-L BL MAPLE-T WR CEDAR-I TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK	-LTLT	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.% 68.3 68.3 68.3 45.9	E SAMPLE T OF 100 THE S.E.% 11.3 7.6 24.8 23.8 31.0 15.5 7.1 S.E.% 10.1 6.9 22.8	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW 202 110 134	VITHIN TH 2 TREES - AVG 1,203 576 888 483 235 207 746 2 TREES - AVG 224 118 173	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH 247 126 212	RROR #	OF TREES R 5 325 OF TREES R	EQ. 10 81 EQ.	INF. POP.
CONFIDENCE CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-T BL MAPLE-T CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-T	-LT	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.% 68.3 68.3 68.3 45.9 36.1	E SAMPLE T OF 100 THE S.E.% 11.3 7.6 24.8 23.8 31.0 15.5 7.1 S.E.% 10.1 6.9 22.8 20.6	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW 202 110 134 82	VITHIN TH 2 TREES - AVG 1,203 576 888 483 235 207 746 2 TREES - AVG 224 118 173 103	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH 247 126 212 124	RROR #	OF TREES R 5 325 OF TREES R	EQ. 10 81 EQ.	j J INF. POP.
CONFIDENCE CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-T BL MAPLE-T CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-L BL MAPLE-T WR CEDAR-T	-LT	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.% 68.3 68.3 68.3 45.9 36.1 31.2 24.7	E SAMPLE T OF 100 THE S.E.% 11.3 7.6 24.8 23.8 31.0 15.5 7.1 S.E.% 10.1 6.9 22.8 20.6 29.2 17.1	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW 202 110 134 82 37 37	VITHIN TH 2 TREES - AVG 1,203 576 888 483 235 207 746 2 TREES - AVG 224 118 173 103 52 44	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH 247 126 212 124 68 52	RROR #	OF TREES R 5 325 OF TREES R 5	EQ. 10 81 EQ. 10	INF. POP.
CONFIDEN CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L DOUG FIR-T WHEMLOCK R ALDER-T BL MAPLE-T WR CEDAR-I TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L DOUG FIR-T WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-L BL MAPLE-T WR CEDAR-I TOTAL	-LT	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.% 68.3 68.3 68.3 45.9 36.1 31.2 24.7 79.3	E SAMPLE T OF 100 THE S.E.% 11.3 7.6 24.8 23.8 31.0 15.5 7.1 S.E.% 10.1 6.9 22.8 20.6 29.2	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW 202 110 134 82 37 37 138	VITHIN TH C TREES - <u>AVG</u> 1,203 576 888 483 235 207 746 C TREES - <u>AVG</u> 224 118 173 103 52 44 147	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH 247 126 212 124 68	RROR #	OF TREES R 5 325 OF TREES R 5 251	EQ. 10 81 EQ. 10 63	3 INF. POP. 1
CONFIDENCE CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-T BL MAPLE-T BL MAPLE-T CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-L BL MAPLE-T WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-T MR CEDAR-1 TOTAL	-L -T	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.% 68.3 68.3 68.3 45.9 36.1 31.2 24.7	E SAMPLE T OF 100 THE S.E.% 11.3 7.6 24.8 23.8 31.0 15.5 7.1 S.E.% 10.1 6.9 22.8 20.6 29.2 17.1	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW 202 110 134 82 37 37	VITHIN TH C TREES - <u>AVG</u> 1,203 576 888 483 235 207 746 C TREES - <u>AVG</u> 224 118 173 103 52 44 147	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH 247 126 212 124 68 52	RROR #	OF TREES R 5 325 OF TREES R 5 251 OF PLOTS R	EQ. 10 81 EQ. 10 63 EQ.	INF. POP.
CONFIDENCE CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-T BL MAPLE-T WR CEDAR-I TOTAL CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-L BL MAPLE-T WR CEDAR-I TOTAL CL 68.1	-L -T	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.% 68.3 68.3 68.3 45.9 36.1 31.2 24.7 79.3 COEFF	E SAMPLE T OF 100 THE S.E.% 11.3 7.6 24.8 23.8 31.0 15.5 7.1 S.E.% 10.1 6.9 22.8 20.6 29.2 17.1 6.2	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW 202 110 134 82 37 37 138 TREES/2	VITHIN TH 2 TREES - AVG 1,203 576 888 483 235 207 746 2 TREES - AVG 224 118 173 103 52 44 147 ACRE	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH 247 126 212 124 68 52 156	RROR #	OF TREES R 5 325 OF TREES R 5 251	EQ. 10 81 EQ. 10 63	INF. POP.
CONFIDENCE CL 68.1 SD: 1.0 DOUG FIR-T WHEMLOCK WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-T BL MAPLE-T WR CEDAR-I TOTAL CL 68.1 SD: 1.0 DOUG FIR-T WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-L BL MAPLE-T WR CEDAR-I TOTAL CL 68.1 SD: 1.0	-L -T	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.% 68.3 68.3 68.3 45.9 36.1 31.2 24.7 79.3 COEFF VAR.%	E SAMPLE T OF 100 THE S.E.% 11.3 7.6 24.8 23.8 31.0 15.5 7.1 S.E.% 10.1 6.9 22.8 20.6 29.2 17.1 6.2 S.E.%	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW 202 110 134 82 37 37 138 TREES/A OW	VITHIN TH 2 TREES - AVG 1,203 576 888 483 235 207 746 2 TREES - AVG 224 118 173 103 52 44 147 XCRE AVG	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH 247 126 212 124 68 52 156 HIGH	RROR #	OF TREES R 5 325 OF TREES R 5 251 OF PLOTS R	EQ. 10 81 EQ. 10 63 EQ.	INF. POP. 1 2 INF. POP.
CONFIDENCE CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-T BL MAPLE-T WR CEDAR-I TOTAL CL 68.1 SD: 1.0 DOUG FIR-T WHEMLOCK R ALDER-T BL MAPLE-L BL MAPLE-L BL MAPLE-T WR CEDAR-I TOTAL CL 68.1 SD: 1.0 DOUG FIR-L	68.1 -L -T -L -T	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.% 68.3 68.3 45.9 36.1 31.2 24.7 79.3 COEFF VAR.% 114.0	E SAMPLE T OF 100 THE S.E.% 11.3 7.6 24.8 23.8 31.0 15.5 7.1 S.E.% 10.1 6.9 22.8 20.6 29.2 17.1 6.2 S.E.% 16.1	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW 202 110 134 82 37 37 138 TREES/2 OW 25 86 4	VITHIN TH 2 TREES - AVG 1,203 576 888 483 235 207 746 2 TREES - AVG 224 118 173 103 52 44 147 AVG 30	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH 247 126 212 124 68 52 156 HIGH 35 103 8	RROR #	OF TREES R 5 325 OF TREES R 5 251 OF PLOTS R	EQ. 10 81 EQ. 10 63 EQ.	INF. POP. 1 2 INF. POP.
CONFIDENCE CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-T BL MAPLE-T WR CEDAR-I TOTAL CL 68.1 SD: 1.0 DOUG FIR-L BL MAPLE-T WHEMLOCK WHEMLOCK CL 68.1 SD: 1.0 DOUG FIR-T WR CEDAR-I TOTAL	68.1 -L.T. -L.T. -LT.	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.% 68.3 68.3 45.9 36.1 31.2 24.7 79.3 COEFF VAR.% 114.0 64.5 255.7 535.9	E SAMPLE T OF 100 THE S.E.% 11.3 7.6 24.8 23.8 31.0 15.5 7.1 S.E.% 10.1 6.9 22.8 20.6 29.2 17.1 6.2 S.E.% 16.1 9.1 36.1 75.7	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW 202 110 134 82 37 37 138 TREES/A OW 25 86 4 0	VITHIN TH 2 TREES - AVG 1,203 576 888 483 235 207 746 2 TREES - AVG 224 118 173 103 52 44 147 AVG 30 95 6 1	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH 247 126 212 124 68 52 156 HIGH 35 103 8 2	RROR #	OF TREES R 5 325 OF TREES R 5 251 OF PLOTS R	EQ. 10 81 EQ. 10 63 EQ.	INF. POP. 1 2 INF. POP.
CONFIDENCE CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-T BL MAPLE-T WR CEDAR-I TOTAL CL 68.1 SD: 1.0 DOUG FIR-L BL MAPLE-T WHEMLOCK WHEMLOCK R ALDER-T BL MAPLE-T BL MAPLE-T BL MAPLE-T CL 68.1 SD: 1.0 DOUG FIR-L DOUG FIR-L DOUG FIR-L DOUG FIR-T WHEMLOCK	58.1 -LT -L -T -L -T	MITS OF THI TIMES OUT COEFF VAR.% 76.4 75.8 50.0 41.6 33.1 22.3 90.2 COEFF VAR.% 68.3 68.3 68.3 45.9 36.1 31.2 24.7 79.3 COEFF VAR.% 114.0 64.5 255.7	E SAMPLE T OF 100 THE S.E.% 11.3 7.6 24.8 23.8 31.0 15.5 7.1 S.E.% 10.1 6.9 22.8 20.6 29.2 17.1 6.2 S.E.% 16.1 9.1 36.1	VOLUME L	WILL BE V SAMPLE OW 1,067 532 668 368 162 175 693 SAMPLE OW 202 110 134 82 37 37 138 TREES/2 OW 25 86 4	VITHIN TH 2 TREES - AVG 1,203 576 888 483 235 207 746 2 TREES - AVG 224 118 173 103 52 44 147 AVG 30 95 6	E SAMPLE E BF HIGH 1,338 620 1,108 597 308 239 799 CF HIGH 247 126 212 124 68 52 156 HIGH 35 103 8	RROR #	OF TREES R 5 325 OF TREES R 5 251 OF PLOTS R	EQ. 10 81 EQ. 10 63 EQ.	3 INF. POP. 1

TC PSI	FATS				PROJECT project		<u>STICS</u> pstep			PAGE DATE	2 3/19/2015
тwр	RGE	SC	TRACT	TY	PE	A	CRES	PLOTS	TREES	CuFt	BdFt
03N 03N	05 05W	32 32	00A! 00A2	MC 00P			124.00	50	345	S S	W
CL	68.1		COEFF		TREES	ACRE			# OF PLO	IS REO.	INF. POP
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
WR C	CEDAR-L		707.1	99.9	0	1	2				
TOT	AL		41.9	5.9	128	136	144		70	18	8
CL	68.1		COEFF		BASAL	AREA/AG	CRE		# OF PLOTS I	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR-L		102.2	14.4	70	82	94				
DOU	G FIR-T		58.7	8.3	141	153	166				
WHE	EMLOCK-L		256.3	36.2	11	17	23				
WHE	MLOCK-T		555.6	78.5	1	2	4				
R AL	DER-T		364.2	51.5	1	3	4				
BL M	1APLE-L		707.1	99.9	0	2	4				
BL M	1APLE-T		399.8	56.5	1	2	3				
WR C	CEDAR-L		707.1	99.9	0	1	1				
TOT	AL		23.6	3.3	254	262	271		22	6	2
CL	68.1		COEFF		NET BI	F/ACRE			# OF PLOTS I	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR-L		103.7	14.7	16,477	19,308	22,138				
DOU	G FIR-T		64.3	9.1	28,011	30,813	33,614				
WHE	MLOCK-L		257.9	36.4	2,665	4,193	5,721				
WHE	EMLOCK-T		566.9	80.1	100	503	906				
R AL	DER-T		364.2	51.5	203	418	634				
BL M	1APLE-L		707.1	99.9	0	260	520				
BL M	IAPLE-T		401.8	56.8	128	296	465				
WR C	CEDAR-L		707.1	99.9	0	60	120				
TOT	AL		22.9	3.2	54,046	55,851	57,656		21	5	2
CL	68.1		COEFF		NET C	UFT FT/A	CRE		# OF PLOTS I	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR-L		103.1	14.6	3,258	3,814	4,369				
DOU	G FIR-T		62.6	8.8	6,018	6,601	7,185				
WHE	MLOCK-L		257.1	36.3	529	831	1,133				
WHE	EMLOCK-T		559.2	79.0	23	109	194				
R AL	DER-T		364.2	51.5	50	104	157				
BL M	1APLE-L		707.1	99.9	0	58	116				
BL M	IAPLE-T		402.3	56.8	27	64	100				
	CEDAR-L		707.1	99.9	0	16	32				

RESIDUAL STAND SPECIFICATIONS

TOP STEP 341-15-23

AREA 2

Residual QMD assumption (from leave tree cruise information) = 22.7 **Target Relative Density**

,		
=		32

	Minimum	Target	Maximum
Relative Density	29	31	34
Basal Area	140	150	160
Trees per Acre	50	53	57

 $RD = BA / \sqrt{DBH}$ BA = √DBH (RD) TPA = (BA/acre) / (BA/tree) BA / tree = $(\pi r^2) / (144)$

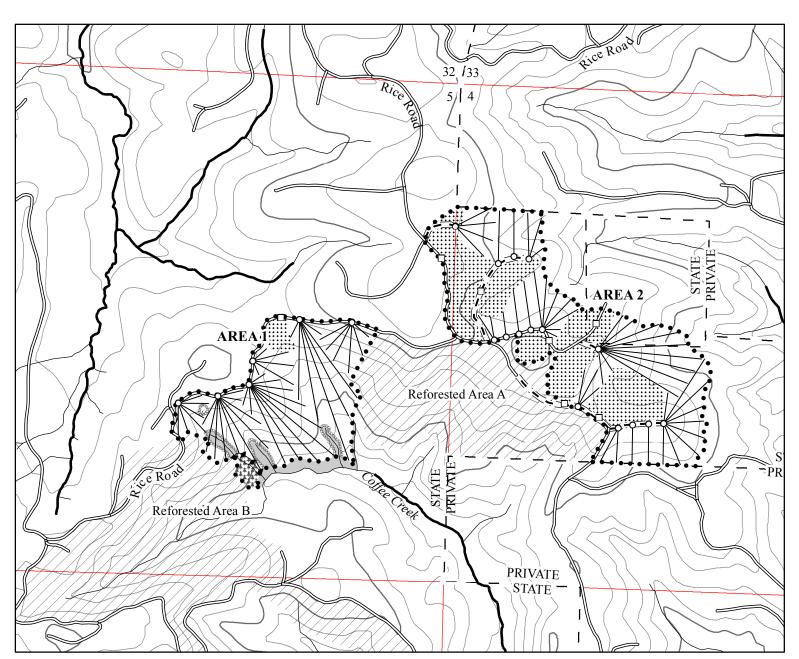
VOLUME SUMMARY

SHOWN IN MBF Top Step 341-15-23 March 2015

AREA 1: MC (44 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
	Cruise Volume	1,686	941	83	0	2,710
Douglas-fir	Hidden D&B (2%)	(34)	(19)	(2)	()	(54)
Douglas-III	NET TOTAL	1,652	922	81	0	2,656
	% of Total	62	35	3	0	
SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
	Cruise Volume	49	12	2	0	63
Western	Hidden D&B (2%)	(1)	()	()	()	(1)
hemlock	NET TOTAL	48	12	2	0	62
	% of Total	77	19	3	0	
SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
Red alder and	Cruise Volume	0	0	0	89	89
other	Hidden D&B (2%)	()	()	()	(2)	(2)
Hardwoods	NET TOTAL	0	0	0	87	87
Haruwoous	% of Total	0	0	0	100	

AREA 2: PC-M (80 ACRES)


SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
	Cruise Volume	546	384	98	0	1,028
Douglas-fir BOF	Hidden D&B (2%)	(11)	(8)	(2)	()	(21)
Douglas-III DOF	NET TOTAL	535	376	96	0	1,007
	% of Total	53	37	10	0	
SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
	Cruise Volume	44	31	8	0	83
Douglas-fir FDF	Hidden D&B (2%)	(1)	(1)	()	()	(2)
Douglas-III FDF	NET TOTAL	43	30	8	0	81
	% of Total	53	37	10	0	

AREA 3: R/W (2 ACRES)

SPECIES		2 SAW	3 SAW	4 SAW	CR	TOTAL
	Cruise Volume	26	55	3	0	84
Dougloo fir	Hidden D&B (2%)	(1)	(1)	()	()	(2)
Douglas-fir	NET TOTAL	25	54	3	0	82
	% of Total	30	66	4	0	
		2 SAW	3 SAW	4 SAW	CR	TOTAL
	Cruise Volume	0	13	0	0	13
Western	Hidden D&B (2%)	()	()	()	()	()
hemlock	NET TOTAL	0	13	0	0	13
	% of Total	0	100	0	0	
		2 SAW	3 SAW	4 SAW	CR	TOTAL
	Cruise Volume	0	0	0	1	1
Red alder and	Hidden D&B (2%)	()	()	()	()	()
other Harwoods	NET TOTAL	0	0	0	1	1
	% of Total	0	0	0	100	

SALE TOTAL

SPECIES	2 SAW	3 SAW	4 SAW	CR	Total
Douglas-fir	2,255	1,382	188	0	3,825
Western hemlock	48	25	2	0	75
Hardwoods				88	88
TOTAL					3,988

Legend

- • Timber Sale Boundary
- Posted Stream Buffer Boundary
- ♦ ♦ ♦ Reserve Tree Area Boundary
- = : : Posted R/W Boundary
- New Road Construction
- ----- Railroad Tracks
- Type F Stream
- Type N Stream
- Stream Buffer
- Pond
- Cable Landing
- Tractor Landing
- Cable Yarding Area
- Tractor Yarding Area
- $\mathbf{\Gamma}$ $\mathbf{\Gamma}$
 - ___ ODF Ownership Boundary Sections
 - 400 Foot Contour Band
 - 80 Foot Contour Band

LOGGING PLAN

FOR TIMBER SALE CONTRACT # 341-15-23 TOP STEP PORTIONS OF SECTIONS 4 & 5, T2N, R5W, W,M. WASHINGTON COUNTY, OREGON

Ν	
Å	
Ĩ	

APPROXIMATE NET ACRES

CABLE

42

47

89

0

TRACTOR

AREA 1

AREA 2

AREA 3

TOTAL

2

33

2

37

1:12,000

1 inch = 1,000 feet

500 1,000

0

Feet

2,000