

Timber Sale Appraisal **Donut Combination** Sale 341-14-40

June 10, 2013 **District:** Date: **Astoria**

cost summary

	Conifer	Hardwood	Total	
Gross Timber Sale Value	\$967,808.48	\$258,976.55	\$1,226,785.03	
		Project Work:	\$(370,449.00)	
		Advertised Value:	\$856,336.03	

6/20/13 1

Timber Sale Appraisal Donut Combination Sale 341-14-40

"STEWARDSHIP IN FORESTRY"

District: Astoria Date: June 10, 2013

timber description

Location: Portions of Sections 20, 21, 28, 29 and 33, T4N, R8W,, Clatsop County, Oregon.

Stand Stocking: 60%

SpecieName	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	22	0	97
Western Hemlock / Fir	16	0	97
Sitka Spruce	22	0	97
Red Cedar	19	0	97
Alder (Red)	13	0	96

Volume by Grade	1S	2S	3S	4S	Other	Total
Douglas - Fir	0	170	38	10	0	218
Western Hemlock / Fir	0	1,440	984	210	0	2,634
Sitka Spruce	0	114	57	22	171	364
Red Cedar	0	1	0	0	0	1
Alder (Red)	200	199	148	258	0	805
Total	200	1,924	1,227	500	171	4,022

Timber Sale Appraisal Donut Combination Sale 341-14-40

"STEWARDSHIP IN FORESTRY"

District: Astoria Date: June 10, 2013

comments: Pond Values Used: 1st Quarter Calendar Year 2013.

Expected Log Markets: Warrenton, Tillamook, Garibaldi, Forest Grove, Clatskanie, Mist and Springfield, OR; Morton and Longview, WA.

SCALING COST ALLOWANCE = \$5.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE

Hauling Costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added):

Additional Logging Costs:

Branding and Painting: $$1MBF \times 4,022MBF = $4,022$

Log Loader Slash & Landing Piling (includes Move-in and Pile

Materials) = \$11,946 (see attached appraisal)

Machine washing for noxious weed compliance = \$2,000

Total Other Costs (with Profit & Risk to be added) = \$17,968

Other Costs (No Profit & Risk added)

TOTAL Other Costs (No Profit & Risk added) = None

NOTE:

Sitka spruce has been split apart as follows:

Note Volume:

SS < 20" Scaling Diameter: Total Volume 193 MBF

2Saw = 114 MBF

3Saw = 57 MBF

4Saw = 22 MBF

SS = 20" or > Scaling Diameter *: Total Volume 171 MBF

2Saw = 70 MBF

3Saw = 101 MBF

4Saw = 0 MBF

* SS = 20" or > Scaling Diameter was listed as "Other" for grade in this appraisal.

This volume was appraised at 1 load per day to Sprinfield, OR.

Timber Sale Appraisal Donut Combination Sale 341-14-40

"STEWARDSHIP IN FORESTRY"

District: Astoria Date: June 10, 2013

logging conditions

combination#: 1 Douglas - Fir 68.00%

 Western Hemlock / Fir
 68.00%

 Sitka Spruce
 68.00%

 Red Cedar
 68.00%

 Alder (Red)
 68.00%

yarding distance:Medium (800 ft)downhill yarding:Nologging system:ShovelProcess:Stroke Delimbertree size:Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBFloads / day:6.0bd. ft / load:3,500

cost / mbf: \$68.49

machines: Stroke Delimber (B)

combination#: 2 Douglas - Fir 32.00%

 Western Hemlock / Fir
 32.00%

 Sitka Spruce
 32.00%

 Red Cedar
 32.00%

 Alder (Red)
 32.00%

yarding distance: Medium (800 ft) downhill yarding: No

logging system: Cable: Small Tower <=40 Process: Manual Falling/Delimbing

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF loads / day: 8.0 bd. ft / load: 3,500

cost / mbf: \$96.46

machines: Log Loader (A)

Tower Yarder (Small)

combination#: 3

yarding distance: Medium (800 ft) downhill yarding: No

 logging system:
 Track Skidder
 Process:
 Manual Falling/Delimbing

tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF

loads / day: 11.0 bd. ft / load: 3,500

cost / mbf: \$89.36

machines: Log Loader (B)

Track Skidder

combination#: 4

6/20/13

"STEWARDSHIP IN FORESTRY"

Timber Sale Appraisal Donut Combination Sale 341-14-40

District: Astoria Date: June 10, 2013

yarding distance: Medium (800 ft) downhill yarding: No

logging system: Cable: Small Tower <=40 Process: Manual Falling/Delimbing

tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF

loads / day: 6.0 bd. ft / load: 3,700

cost / mbf: \$121.67

machines: Log Loader (A)
Tower Yarder (Small)

Timber Sale Appraisal Donut Combination Sale 341-14-40

"STEWARDSHIP IN FORESTRY"

District: Astoria Date: June 10, 2013

logging costs

Operating Seasons: 2.00 Profit Risk: 12.00%

Project Costs: \$370,449.00 **Other Costs (P/R):** \$17,968.00

Slash Disposal: \$0.00 Other Costs: \$0.00

Miles of Road

Road Maintenance: \$6.70

	Rock	Rock		
Dirt	(Contractor)	(State)	Paved	
0.0	0.0	0.0	0.0	

Hauling Costs

Species	\$ / MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	4.0	4.5
Western Hemlock / Fir	\$0.00	3.0	4.0
Sitka Spruce	\$0.00	2.0	5.0
Red Cedar	\$0.00	2.0	3.5
Alder (Red)	\$0.00	2.0	3.5

Local Pond Values

Date	Specie	Grade	Value
4/22/13	Sitka Spruce	Other	\$200.00

Timber Sale Appraisal Donut Combination Sale 341-14-40

"STEWARDSHIP IN FORESTRY"

District: Astoria Date: June 10, 2013

logging costs breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling	Other	Total
Douglas - F	ir								
\$77.44	\$6.90	\$2.18	\$39.85	\$4.47	\$15.70	\$0.00	\$5.00	\$0.00	\$151.54
Western He	mlock / Fir								
\$77.44	\$6.90	\$2.18	\$59.78	\$4.47	\$18.09	\$0.00	\$5.00	\$0.00	\$173.86
Sitka Sprud	ce								
\$77.44	\$6.90	\$2.18	\$71.73	\$4.47	\$19.53	\$0.00	\$5.00	\$0.00	\$187.25
Red Cedar									
\$77.44	\$6.90	\$2.18	\$102.47	\$4.47	\$23.22	\$0.00	\$5.00	\$0.00	\$221.68
Alder (Red))								
\$77.44	\$6.97	\$2.18	\$103.47	\$4.47	\$23.34	\$0.00	\$5.00	\$0.00	\$222.87

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$624.17	\$472.63	\$0.00
Western Hemlock / Fir	\$0.00	\$485.07	\$311.21	\$0.00
Sitka Spruce	\$0.00	\$308.87	\$121.62	\$0.00
Red Cedar	\$0.00	\$1,000.00	\$778.32	\$0.00
Alder (Red)	\$0.00	\$544.58	\$321.71	\$0.00

"STEWARDSHIP IN FORESTRY"

Timber Sale Appraisal Donut Combination Sale 341-14-40

District: Astoria Date: June 10, 2013

summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00
Sitka Spruce	0	\$0.00	\$0.00
Red Cedar	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	218	\$472.63	\$103,033.34
Western Hemlock / Fir	2,634	\$311.21	\$819,727.14
Sitka Spruce	364	\$121.62	\$44,269.68
Red Cedar	1	\$778.32	\$778.32
Alder (Red)	805	\$321.71	\$258,976.55

Gross Timber Sale Value

Recovery: \$1,226,785.03

Prepared by: Bryce Rodgers **Phone:** 503-325-5451

Site Prep Appraisal

Sale Number: 341-14-40
Sale Name: Donut Combo
Date: 04/19/2013

Vegetation Type/Zone	Type/Zone Code Code Production Rate (hr/ac)		Estimated Piles/Acre	
Doug-fir	Α	1.0	3.0	
Hemlock/Fir	В	1.5	4.5	
Hemlock/Spruce	С	2.0	6.0	
Hemlock	D	2.0	6.0	
Conifer/Hardwood	Е	1.5	4.5	
Whole Tree Yarding	F	0.5	0.5	

Sale Area	Harvest Type	Veg Type/Zone	Ground Based Yarding Acres	Estimated Piling Hours/Area	Cost/Hour	Total Cost/Area
1	MC	С	13.0	26	\$110.00	\$2,860.00
3	MC	С	29.0	58	\$110.00	\$6,380.00

In-unit Piling Sub Total = \$9,240.00

Number of Landings to be Cost/Landing Number of In-Material Total Piled Pile **Total Cost/Area Unit Piles** Cost/Pile Cost/Area Sale Area 0 \$220.00 \$0.00 26 \$5.00 \$130.00 3 4 \$220.00 \$880.00 58 \$5.00 \$290.00

*Cost includes separating firewood Materials **Sub Total =** \$420.00

Move-In Number of Total Move-In Sub Total = \$880.00

 Allowance
 Move-In's
 Allowance

 \$1,406.00
 1
 \$1,406.00
 Move-In
 Sub Total =
 \$1,406.00

Grand Total = \$11,946.00

DONUT COMBINATION 341-14-40

SUMMARY OF ALL PROJECT COSTS

SALE NAME	E: Donut Combo			
ROAD CON	STRUCTION:			
Surfaced	Road segment	<u>Length/Sta</u> 25.75	<u>Cost</u> \$20,840	
Dirt	2A-2B, 2C-2D	11.60	\$4,132	
	TOTALS	37.35 0.71		\$24,972
		0.71		
	Road segment 11-12, 13-14, 15-16, 17-18 3-110, 111-112, 113-114 TOTALS	<u>Length/Sta</u> 274.15	<u>Cost</u> \$105,670	\$105,670
	miles	5.19		······································
SPECIAL PR	Description PROJECT NO. 3: Fall C	Creek Quarry Development and Crushing Vacating 20.4 Sta./0.39 miles	Cost \$220,622 \$7,661 \$3,306	
	TOTAL		****	\$231,589
MOVE IN:	Equipment Dozer (D8) Dump Trucks (12 cy x 6 Dump Trucks (20 cy x 2 F E Loader (C966) Grader (14G) Rubber Tire Skidder (C5 Vibratory Roller Water Truck (2,500 gallo Excavator (C315) Excavator (C330)	(18)	Cost \$1,406.00 \$978.00 \$382.00 \$778.00 \$778.00 \$717.00 \$778.00 \$190.00 \$805.00 \$1,406.00	
	TOTAL		778-77 F-10-10-10-10-10-10-10-10-10-10-10-10-10-	\$8,218.00
GRAND TOT	AL			\$370,449.00
Compiled By:	Kraig Kirkpatrick		Date: _	04/20/2013

SUMMARY OF CONSTRUCTION COSTS

	Donut Combina					ONSTRUCTION:			0.22 M
AD:	(Dirt Sprurs) 2A	A-2B (4+00)		-	ı	MPROVEMENT:		STATIONS	M
INTS:	2C-2D (7+60)								
EARING &	GRUBBING			1			1		
	Method			Acres/amount	X	Rate	=	Cost	
		er Outside R/	N	1 1	x	\$1,337	=	\$1,337.00	
	2E-2F(18+90),				×		=		
	3C-3D(1+85) F	2t. 4A(0+00)			×		=		
					x		=		1
TOTAL F	OR CLEARING	& GRUBBING	3						\$1,337
AVATION	Material			Cy/amount	x	Rate	=	Cost	
	Balanced Cons		a	11.60	×	\$122.00	=	\$1,415.20	
	Dalaricca Corio	2A-2B, 2C-2		11.00	x	Ψ122.00	=	\$1,710.20	
		ZA-ZD, ZO-Z	<u> </u>		x		=		
							=		
	Landing Constr	ruction		3.00	X	\$389.00	=	\$1,167.00	
	Pt. 2B,2C-2D s		n	3.00	X X	Ψ309.00	=	φ1,107.00	
	Ft. 20,20-20 S	ia. 5+30, Ft. 2	.0				=		
				-	x				
				<u> </u>	X		=		
					x	L	_		İ
TOTAL F	OR EXCAVATION	ON							\$2,582
	TERIALS AND I					l 5: "		1 5. 1	
ocation	Dia/type	Lineal ft.	Rate	Cost	Location	Dia/type	Lineal ft.	Rate	Cost
		 		-					
				-			·		
		<u> </u>		L					
				Description		Quantity	Rate	Cost	
	Other/miscellan	eous:	Subgrade Pr	ep. 14' Outslope		11.60	\$18.35	\$212.86	
	01								
	Culvert stakes &	& markers:							
TOTAL F	OR CULVERT M	ATERIALS 8	INSTALLATIO	ON					\$213
							Subtotal of C	Clearing, Exc., Culv.	\$4,132

SUMMARY OF CONSTRUCTION COSTS

SALE NAME:				_	NEW CC	INSTRUCTION:	W CONSTRUCTION: 25.75 STATIONS IMPROVEMENT: STATIONS			
	(Surfaced Sprur				11	MPROVEMENT:		_STATIONS		
	3A-3B(5+00), 30	C-3D(1+85) Pt	. 4A(0+00)							
CLEARING &										
	Method			Acres/amount		Rate	=	Cost		
		er Outside R/W	<u> </u>	2	x	\$1,337	=	\$2,674.00		
	2E-2F(18+90),				X		=			
	3C-3D(1+85) P	t. 4A(0+00)			x		=			
					X		=			
SUB TOTAL F	OR CLEARING 8	& GRUBBING							\$2,674	
EXCAVATION										
	Material			Cy/amount	X	Rate	=	Cost		
	Balanced Const			19.75	X	\$122.00	=	\$2,409.50		
	Drift earth up to	200' \$\$/sta		6	x	\$190.00	=	\$1,140.00		
	2E-2F,3A-3B,3C-3D				x		=			
					x		=			
	Landing Constru	uction		2	X	\$389.00	=	\$778.00		
	Pt. 3B, Pt. 3D \$			 	×		=	7		
					×		=			
					x		=			
					x	-	=	-		
SUB TOTAL F	OR EXCAVATIO	N							\$4,328	
CULVERT MA	ERIALS AND IN	STALLATION		1 - 1						
CULVERT MAT	TERIALS AND IN	ISTALLATION Lineal ft.	Rate	Cost	Location	Dia/type	Lineal ft.	Rate	\$4,328 Cost	
CULVERT MATA Location 5+00	FERIALS AND IN Dia/type 18CCP	NSTALLATION Lineal ft. 30	Rate \$19.53	\$585.90	Location	Dia/type	Lineal ft.	Rate		
CULVERT MAT Location 5+00 11+70	TERIALS AND IN Dia/type 18CCP 18CCP	NSTALLATION Lineal ft. 30 30	Rate \$19.53 \$19.53	\$585.90 \$585.90	Location	Dia/type	Lineal ft.	Rate		
CULVERT MATA Location 5+00	FERIALS AND IN Dia/type 18CCP	NSTALLATION Lineal ft. 30	Rate \$19.53	\$585.90	Location	Dia/type	Lineal ft.	Rate		
CULVERT MAT Location 5+00 11+70	TERIALS AND IN Dia/type 18CCP 18CCP	NSTALLATION Lineal ft. 30 30	Rate \$19.53 \$19.53	\$585.90 \$585.90	Location	Dia/type	Lineal ft.	Rate		
CULVERT MAT Location 5+00 11+70	TERIALS AND IN Dia/type 18CCP 18CCP	NSTALLATION Lineal ft. 30 30	Rate \$19.53 \$19.53	\$585.90 \$585.90	Location	Dia/type	Lineal ft.	Rate		
CULVERT MAT Location 5+00 11+70	TERIALS AND IN Dia/type 18CCP 18CCP	NSTALLATION Lineal ft. 30 30	Rate \$19.53 \$19.53	\$585.90 \$585.90	Location	Dia/type	Lineal ft.	Rate		
CULVERT MAT Location 5+00 11+70	TERIALS AND IN Dia/type 18CCP 18CCP	NSTALLATION Lineal ft. 30 30	Rate \$19.53 \$19.53	\$585.90 \$585.90	Location	Dia/type	Lineal ft.	Rate		
CULVERT MAT Location 5+00 11+70	TERIALS AND IN Dia/type 18CCP 18CCP	NSTALLATION Lineal ft. 30 30	Rate \$19.53 \$19.53	\$585.90 \$585.90	Location	Dia/type	Lineal ft.	Rate		
CULVERT MAT Location 5+00 11+70	TERIALS AND IN Dia/type 18CCP 18CCP	NSTALLATION Lineal ft. 30 30	Rate \$19.53 \$19.53	\$585.90 \$585.90	Location	Dia/type	Lineal ft.	Rate		
CULVERT MAT Location 5+00 11+70	TERIALS AND IN Dia/type 18CCP 18CCP	NSTALLATION Lineal ft. 30 30	Rate \$19.53 \$19.53	\$585.90 \$585.90	Location	Dia/type	Lineal ft.	Rate		
CULVERT MAT Location 5+00 11+70	TERIALS AND IN Dia/type 18CCP 18CCP	NSTALLATION Lineal ft. 30 30	Rate \$19.53 \$19.53	\$585.90 \$585.90	Location	Dia/type	Lineal ft.	Rate		
CULVERT MAT Location 5+00 11+70	TERIALS AND IN Dia/type 18CCP 18CCP	NSTALLATION Lineal ft. 30 30	Rate \$19.53 \$19.53	\$585.90 \$585.90	Location	Dia/type	Lineal ft.	Rate		
CULVERT MAT Location 5+00 11+70	TERIALS AND IN Dia/type 18CCP 18CCP 18CCP	NSTALLATION Lineal ft. 30 30 30	Rate \$19.53 \$19.53	\$585.90 \$585.90	Location	Dia/type Dia/type	Lineal ft.	Rate		
CULVERT MA* Location 5+00 11+70 17+00	TERIALS AND IN Dia/type 18CCP 18CCP	NSTALLATION Lineal ft. 30 30 30 30	Rate \$19.53 \$19.53 \$19.53	\$585.90 \$585.90 \$585.90						

SUB TOTAL FOR CULVERT MATERIALS & INSTALLATION

\$1,818 **\$8,819**

Subtotal of Clearing, Exc., Culv.

SURFACING								Stations/		Rate/		
	Subgrade prep:		Description					amount	Х	sta/amt	Cost	
		Grade, Shape and D						25.75	х	\$24.83	\$639.37	
		Subgrade Compaction	on					25.75	X	\$20.19	\$519.89	
									х		<u> </u>	
ROAD SEGMENT	2A to 2B			POINT TO	POINT	Sta. to	Sta				l	
NOAD SCOMENT	ZATOZD	E	Depth of	2A to		0+00 to		TOTAL	Rate/			
	Rock Size		Rock	Volume		Numb		VOLUME	Sta./	Cost		
Application	and Type	Location	(inches)	per	ισ.,	of		(CY)	amt.			
Junction Rock	4"-0" Crushed	0+00	N/A	junction	22	junctions	1	22	\$4.58	\$101		
Total Rock for Road S			2A to 2B	janonon		janotionoj	<u>'</u>	22	Vu		\$101	
ROAD SEGMENT	2C to 2D			POINT TO	POINT	Sta. to	Sta.					
			Depth of	2C to	2D	0+00 to		TOTAL	Rate/	Cost		
Application	Rock Size		Rock	Volume	(CY)	Numb	er	VOLUME	Sta./	Cost		
	and Type	Location	(inches)	per		of		(CY)	amt.			
Junction Rock	4"-0" Crushed	0+00	N/A	junction	22	junctions	11	22	\$4.58	\$101		
Total Rock for Road S			2C to 2D					22			\$101	
ROAD SEGMENT	2E to 2F			POINT TO		Sta. to						
	1 2		Depth of	2E to :		0+00 to 1		TOTAL	Rate/	Cost		
Application	Rock Size		Rock	Volume	(CY)	Numb	er	VOLUME	Sta./			
	and Type	Location	(inches)	per		of	40.00	(CY)	amt.	A 1.000		
Base Rock	4"-0" Crushed 1 1/2" - 0" Crushed	0+00 to 18+90 0+00 to 18+90	8	station	50	stations	18.90	945	\$4.58 \$4.19	\$4,328		
Traction Rock	4"-0" Crushed	6+50,12+20,14+40	2	station	13	stations	18.90	246		\$1,029		
Turnouts Junctions	4"-0" Crushed	0+00	8 N/A	TO junction	22 22	TO's junctions	<u>3</u> 1	66	\$4.58 \$4.58	\$302 \$101		
Junctions	1 1/2" - 0" Crushed		N/A	junction	22	junctions	1	22	\$4.19	\$92		
Total Rock for Road S		1 0100	2E to 2F	junction		junctions		1,301	Ψ4.13	Ψ92	J \$5,853	
ROAD SEGMENT	3A to 3B		2L (0 2)	POINT TO	POINT	Sta. to	Sta	1,001		1727 200	ψο,οοο 	
NOND CLOSILLIN			Depth of	3A to 3		0+00 to		TOTAL	Rate/			
	Rock Size		Rock	Volume		Numb		VOLUME	Sta./	Cost		
Application	and Type	Location	(inches)	per		of		(CY)	amt.			
Base Rock	4"-0" Crushed	0+00 to 5+00	8	station	50	stations	5.00	250	\$4.58	\$1,145		
Turnouts	4"-0" Crushed	4+00	8	TO	22	TO's	1.00	22	\$4.58			
Junctions	4"-0" Crushed	0+00	N/A	junction	22	junctions	1	22	\$4.58	\$101		
Landing	6"-0" Pit Run	Pt. 3B	N/A	Landing	60	Landings	1	60	\$3.42	\$205		
Total Rock for Road So	egment:		3A to 3B					354			\$1,451	
ROAD SEGMENT	3C to 3D			POINT TO		Sta. to		4				
			Depth of	3C to 3		0+00 to		TOTAL	Rate/	Cost		
Application	Rock Size		Rock	Volume	(CY)	Numb	er	VOLUME	Sta./			
	and Type	Location	(inches)	per		of	4.0-	(CY)	amt.	0.004		
Base Rock	4"-0" crushed	0+00 to 1+85	8	station	50	stations	1.85	93	\$4.58	\$424		
Landing Total Rock for Road Se	6"-0" Pit Run	Pt.3D	N/A	Landing	60	Landings	1	60	\$3.42	\$205	# 000	
ROAD SEGMENT	Pt. 4A		3C to 3D	POINT TO	DOINT	Sta. to	C4-	153			\$629	
ROAD SEGMENT	F L 4A		Depth of	Pt. 4/		0+00		TOTAL	Rate/			
	Rock Size		Rock	Volume		Numb		VOLUME	Sta./	Cost		
Application	and Type	Location	(inches)	per	(0.1)	of	•	(CY)	amt.			
Landing	6"-0" Pit Run	Pt. 4A	N/A	Landing	60	Landings	1	60	\$3.42	\$205		
Total Rock for Road Se			Pt. 4A				<u>-</u>	60	40	7200	\$205	
	3	Processing:		Description					No.sta	Rate/sta	Cost	
		J		cess & Compa	act: 4	"-0" Base Rock			25.75	\$56.48	\$1,454	
						"-0" Traction R			18.90	\$56.48	\$1,067	
			•									
					6"-0"	4"-0"	1 1/2"-0"		Total			
	SUB TOTAL FOR	SURFACING			180	1,464	268		1,911	1,911		\$12,02
	SPECIAL PROJEC	CTS										
				De	escription				Cost	_		
										-		
			_							_		
			_									
	SUB TOTAL FOR	SPECIAL PROJECTS	S									
										of Surfacing &		\$12,02
									Subto	tal of Clearing,	Exc.,Culv.	\$8,81
	CDAND TOTAL											600.04
***	GRAND TOTAL					 		~~~				\$20,840
	0	D. D. dere							Б.	04/00/0045		
	Compiled By:	B. Rodgers							Date:	04/03/2013		

SUMMARY OF CONSTRUCTION COSTS

	Material	Cy/amount	x	Rate	=	Cost
l1 - l2						
l Replaceme	ents 12+75 & 20+25		x		=	
•	End-haul excavation \$/CY	690.00	x	\$4.00	=	\$2,760.00
	Waste material compaction \$/CY	690.00	x	\$0.40	=	\$276.00
	Common drift - backfill \$/CY	830	x	\$1.80	=	\$1,494.00
	Backfill compaction \$/CY	830	x	\$0.70	=	\$581.00
	Fill Armor Placement w/330 \$/hr	10	x	\$155.00	=	\$1,550.00
			×		=	
	Dissipator placement w/315 \$/hr	1.00	x	\$101.00	=	\$101.00
13 - 14	Construct turnaround w/315 \$/hr	0.50	x	\$101.00	=	\$50.50
17 - 18	Excavate, load, and haul ditch waste material \$/sta	55	x	\$22.92	=	\$1,260.60
l9 - l10			x		=	
1+80-2+80	Excavate, load, and haul ditch waste material \$/sta	1.00	x	\$22.92	=	\$22.92
	Dissipator & ditchline armor placement w/315 \$/hr	2.00	x			
Replaceme	nts 40+80		x		=	
	End-haul excavation \$/CY	1000	x	\$4.00		\$4,000.00
	Waste material compaction \$/CY	1000	x	\$0.40		\$400.00
	Second 330 excavator \$/hr	16		\$155.00		\$2,480.00
	Common drift - backfill \$/CY	1200	x	\$1.80		\$2,160.00
	Backfill compaction \$/CY	1,200	x	\$0.70	=	\$840.00
	Fill Armor Placement w/330 \$/hr	10	x	\$155.00		\$1,550.00
38+60-40+40	End-haul excavation \$/CY	270	x	\$4.00		\$1,080.00
	Cut slope rounding \$/sta	2.00	x	\$43.00	=	\$86.00
	Sidecast pullback & hauled to waste area \$/sta	1.00	×	\$557.00	=	\$557.00
111 - 112	Excavate, load, and haul ditch waste material \$/sta	2.00	×	\$22.92	=	\$45.84
113 - 114	Excavate, load, and haul ditch waste material \$/sta	2.00	x	\$22.92	=	\$45.84

Location 11-12 6+25	Dia/type	Lineal ft.							
6+25		Lilleal It.	Rate	Cost	Location	Dia/type	Lineal ft.	Rate	Cost
					19-110	,			
7.00	30" ACSP	50	\$34.01	\$1,700.50	6+40	18" CPP	30	\$19.53	\$585.90
7+30	18" CPP	30	\$19.53	\$585.90	15+75	18" CPP	35	\$19.53	\$683.55
9+90	18" CPP	30	\$19.53	\$585.90	40+80	24" ACSP	75	\$27.04	\$2,028.00
12+75	24" ACSP	80	\$27.04	\$2,163.20	41+45	18" CPP	30	\$19.53	\$585.90
14+40	18" CPP	30	\$19.53	\$585.90	45+40	18" CPP	30	\$19.53	\$585.90
18+40	18" CPP	30	\$19.53	\$585.90	I13-I14				
20+25	24" ACSP	45	\$27.04	\$1,216.80	2+40	18" CPP	30	\$19.53	\$585.90
22+00	18" CPP	30	\$19.53	\$585.90					
24+00	18" CPP	30	\$19.53	\$585.90					
29+15	18" CPP	40	\$19.53	\$781.20					
13-14									
10+00	18" CPP	30	\$19.53	\$585.90					
16+60	18" CPP	30	\$19.53	\$585.90					
26+20	18" CPP	40	\$19.53	\$781.20					
15-16									
5+75	18" CPP	40	\$19.53	\$781.20					
16+20	18" CPP	30	\$19.53	\$585.90					
17-18									
0+85	18" CPP	30	\$19.53	\$585.90					
12+35	18" CPP	30	\$19.53	\$585.90					
14+50	18" CPP	30	\$19.53	\$585.90					
16+80	18" CPP	30	\$19.53	\$585.90					
25+20	18" CPP	30	\$19.53	\$585.90					
28+60	18" CPP	30	\$19.53	\$585.90					
34+20	18" CPP	30	\$19.53	\$585.90					
36+25	18" CPP	30	\$19.53	\$585.90					
48+55	18" CPP	30	\$19.53	\$585.90					
				Description		Quantity	Rate I	Cost	

SUB TOTAL FOR CULVERT MATERIALS & INSTALLATION

Culvert stakes & markers:

Install @ new culverts
Install @ existing culverts

Subtotal of Clearing, Exc., Culv.

\$560.00 \$140.00

\$20.00 \$20.00

45,066

SURFACING	Subgrade prep:	Grade, Shape and Subgrade Compac						Stations/ amount 274.15 274.15	x x x	Rate/ sta/amt \$24.83 \$20.19	Cost \$6,807.14 \$5,535.09
									_		
ROAD SEGMENT	11 to 2	T	Depth of	POINT TO			o Sta .	TOTAL	Rate/		
Application	Rock Size		Rock	Volum	e (CY)	Nur	nber	VOLUME	Sta./	Cost	
Subgrade Leveling	and Type 1 1/2"-0" Crushed	Location	(inches) N/A	pε	er 		of	(CY) 121	\$4.19	\$507	
Surface Rock	1 1/2"-0" Crushed	0+00-29+15 6+25, 7+30, 9+90,	3	station	19	station	29.15	554	\$4.19	\$2,321	
		12+75, 14+40, 18+40, 20+25, 22+00, 24+00,									
Base Rock Replacement	4"-0" Crushed	29+15 1+50, 11+65, 17+50,	N/A					231	\$4.58	\$1,058	
Turnouts	1 1/2"-0" Crushed	25+60,	3	to	22	to's	4	88	\$4.19	\$369	
Fill Replacement Backfill Fill Armor	Screened Reject 24"-6" Rip-rap	12+75, 20+25 12+75, 20+25	N/A N/A	fill fill	n/a n/a	fill	n/a n/a	830 528	\$5.29 \$4.85	\$4,391 \$2,561	
Culvert Dissipator	24"-6" Rip-rap	22+00, 24+00 6+25, 7+30, 9+90,	N/A	culvert	11	culverts	2	22	\$4.85	\$107]
		14+40, 18+40,									
Culvert Bedding/Backfill	Screened Reject	22+00, 24+00, 29+15	N/A	culvert		culverts		297	\$5.29	\$1,571	
Total Rock for Road Segr ROAD SEGMENT	nent: 13 to 14		I1 to I2	POINT TO	POINT	Sta. t	o Sta	2,671			\$12,88
ITOND CLOMENT			Depth of	13 to	14	0+00 to	55+50	TOTAL	Rate/	Cost	
Application	Rock Size and Type	Location	Rock (inches)	Volum			nber of	VOLUME (CY)	Sta./		
Subgrade Leveling Subgrade Leveling	1 1/2"-0" Crushed 4"-0" Crushed	0+00-26+20 26+20-55+50	N/A N/A					132 88	\$4.19 \$4.58	\$553 \$403	
Surface Rock	1 1/2"-0" Crushed	0+00-26+20	3	station	19	station	26.20	498	\$4.19	\$2,086	
Surface Rock	4"-0" Crushed	26+20-55+50 1+60, 3+30, 7+10,	4	station	25	station	29.30	733	\$4.58	\$3,355	1
Turnouts Turnouts	1 1/2"-0" Crushed 4"-0" Crushed	13+00, 17+60, 22+80 28+60, 46+00	3 4	to to	11	to's	6 2	66 22	\$4.19 \$4.58	\$277 \$101	-
Base Replacement	4"-0" Crushed	10+00, 16+60, 26+20	N/A								
		10+00, 16+60,						33	\$4.58	\$151	
Culvert Bedding/Backfill Turnarounds	Screened Reject 4"-0" Crushed	26+20 43+90, 53+50	N/A N/A	culvert TA	22	culverts TA's	2	110 44	\$5.29 \$4.58	\$582 \$202	
Landings	6"-0" Pit-run	55+50	N/A	Landing	44	Landings	1	44	\$3.42	\$150]
Total Rock for Road Segn ROAD SEGMENT	nent: 15 to 16		13 to 14	POINT TO	POINT	Sta. to	o Sta.	1,769			\$7,859]
	Rock Size		Depth of Rock	I5 to Volume		0+00 to	29+90 iber	TOTAL VOLUME	Rate/ Sta./	Cost	
Application	and Type	Location	(inches)	pe			f	(CY)	amt.		
Subgrade Leveling Traction Rock	4"-0" Crushed 1 1/2"-0" Crushed	20+20-23+50	N/A 2	station	13	station	3	132 44	\$4.58 \$4.19	\$605 \$184	
Turnouts Turnarounds	4"-0" Crushed 4"-0" Crushed	8+60, 17+70 24+75	N/A N/A	to TA	11 22	to's TA's	2	22 22	\$4.58 \$4.58	\$101 \$101	
Base Replacement	4"-0" Crushed	5+75, 16+20	N/A		- 22			22	\$4.58	\$101	
Culvert Bedding/Backfill Total Rock for Road Segr	Screened Reject nent:	5+75, 16+20	N/A I5 to I6	culvert		culverts		77 · 319	\$5.29	\$407	\$1,499
ROAD SEGMENT	17 to 18		Depth of	POINT TO		Sta. to 0+00 to		TOTAL	Batal		
Application	Rock Size		Rock	Volume	(CY)	Num	ber	VOLUME	Rate/ Sta./	Cost	
Subgrade Leveling	and Type 4"-0" Crushed	Location	(inches) N/A	pe	r	0	f	(CY) 330	amt. \$4.58	\$1,511	
Surface Rock	1 1/2"-0" Crushed	0+00-55+00 8+00, 20+50, 25+60,	3	station	19	station	55	1,045	\$4.19	\$4,379	
Turnouts	1 1/2"-0" Crushed	32+45, 35+70, 42+45, 46+35, 52+90	N/A	TA	11	TA's	8	0.0	64.40	#260	
Culvert Dissipator	24"-6" Rip-rap	14+50, 16+80	N/A	culvert	11	culverts	2	88 22	\$4.19 \$4.85	\$369 \$107	
		0+85, 12+35, 14+50, 16+80, 25+20, 28+60,									
Culvert Bedding/Backfill Total Rock for Road Segm	Screened Reject	34+20, 36+25, 48+55	N/A 17 to 18	culvert		culverts		297 1,782	\$5.29	\$1,571	 \$7,937
ROAD SEGMENT	19 to 110		Depth of	POINT TO		Sta. to 0+00 to			D-4-1		4,,55,
Application	Rock Size		Rock	Volume		Num	ber	TOTAL VOLUME	Rate/ Sta./	Cost	
Subgrade Leveling	and Type 1 1/2"-0" Crushed	Location	(inches) N/A	pe	r	0	f	(CY) 275	amt. \$4.19	\$1,152	
Base Rock Replacement	4"-0" Crushed	38+60-41+60 38+60-41+60	8	station	50	station	3	154	\$4.58	\$705	
Surface Rock Check Dam	1 1/2"-0" Crushed 6"-4" Pit-run	40+00-40+50	3 N/A	station dam	19 n/a	station dam	3	55 33	\$4.19 \$3.42	\$230 \$113	
Fill Replacement Backfill Fill Armor	Screened Reject 24"-6" Rip-rap	40+80 40+80	N/A N/A	fill fill	n/a n/a	fill	n/a n/a	1,200 583	\$5.29 \$4.85	\$6,348 \$2,828	
Ditchout Armor	24"-6" Rip-rap	1+80	N/A	ditchout	22	ditchout	1	22	\$4.85	\$107	
Culvert Dissipator	24"-6" Rip-rap	15+75 6+40, 15+75, 41+45,	N/A	culvert	11	culverts	1	11	\$4.85	\$53	
Culvert Bedding/Backfill Total Rock for Road Segm	Screened Reject nent:	45+40	N/A I9 to I10	culvert		culverts		132 2,465	\$5.29	\$698	\$12,235
ROAD SEGMENT	I11 to I12		Depth of	POINT TO		Sta. to			Batal		
Application	Rock Size		Rock	Volume	(CY)	0+00 to Num	ber	TOTAL VOLUME	Rate/ Sta./	Cost	
Subgrade Leveling	and Type 4"-0" Crushed	Location	(inches) N/A	pe	Γ	o I	f	(CY) 319	amt. \$4.58	\$1,461	
Furnouts Frurnarounds	4"-0" Crushed 4"-0" Crushed	29+90, 50+75	N/A	to TA	22	to's	2	44	\$4.58	\$202	
Total Rock for Road Segm	ent:	29+90, 50+75	N/A I11 to I12	······································	11	TA's	2	22 385	\$4.58	\$101	\$1,763
ROAD SEGMENT	I13 to I14		Depth of	POINT TO		Sta. to 0+00 to		TOTAL	Rate/		
Application	Rock Size	La sant	Rock	Volume	(CY)	Num	ber	VOLUME	Sta./	Cost	
Subgrade Leveling	and Type 4"-0" Crushed	Location	(inches) N/A	pei		O'		(CY) 44	amt. \$4.58	\$202	
Furnouts Culvert Bedding/Backfill	4"-0" Crushed Screened Reject	1+40 2+40	N/A N/A	to culvert	22	to's culverts	1	22 33	\$4.58 \$5.29	\$101 \$175	
Total Rock for Road Segm		2.10	113 to 114	5017611		OGIVOI (O		99	Ψ5.23	\$175	\$477
		Processing:	Water, Proce	Description	act.				No.sta	Rate/sta	Cost
		-	vvaler, Proce	os a comp	aul.				148.65	\$24.28	\$3,609

		-								
}		24"-	6" 6"-4"	6"-0"pr	4"-0"	1 1/2"-0"	Screened Reject	Total		
	SUB TOTAL FOR SURFACIN	IG 1,18	38 33	44	2,284	2,966	2,976	9,490	9,490	\$60,604
	SPECIAL PROJECTS									
1				Description				Cost	_	1
1									-	1
									_	
										l
	SUB TOTAL FOR SPECIAL F	PROJECTS								\$0
								Subtotal of	Surfacing & Spec. Proj.	\$60,604
								Subtota	al of Clearing, Exc.,Culv.	\$45,066
	GRAND TOTAL									£40E 670
	GRAND TOTAL									\$105,670
	Compiled By: Kraig Kirl	kpatrick						Date:	03/15/2013	

CRUSHED ROCK COST

SALE NAME: Donut Combo
PROJECT: No. 1 and 2
QUARRY: Sweethome Stockpile

DATE: 04/04/2013
BY: Kraig Kirkpatrick

Road	Stations	Cubic		1				AY HAUL IN				Total
Segment		Yards	50	MPH	30	MPH	25 MPH		15 MPH			
11 to 12	29.15	763						0.30	0.75	0.50	0.10	1.65
13 to 14	55.50	696						0.30	0.90	1.00	0.10	2.30
15 to 16	29.90	44						0.30	0.90	1.25	0.10	2.55
17 to 18	55.00	1,133						0.50	1.00	0.90	0.10	2.50
19 to 110	45.40	330						0.50	1.30	1.50	0.10	3.40
2E to 2F	18.90	268					***************************************	0.50	1.00	0.95	0.10	2.55
]
]
]
	1											
OTAL	233.85	3,234										AVERAGE
	STA./NO.									1		HAUL
UBIC YARD							1	0.41	0.95	0.90	0.10	2.35
							A		d Trip Distar		4.71	

ROCK HAUL:

Truck type:	D20	No. trucks:	2		
Delay min.:	8	Efficiency:	85%	Ave haul: \$3.41	/cy
				Load: \$0.30	/cy
Truck type:	D12	No. trucks:	6	Spread: \$0.48	/cy
Delay min.:	6	Efficiency:	85%		
Truck type:	D10	No. trucks:		Production: cy/day = 1,5	582
Delay min.:	5	Efficiency:	85%		

CRUSHED ROCK HAUL COSTS 3,234 cy @ \$4.19 /cy

SCREENED REJECT FILL MATERIAL COST

SALE NAME:	Donut Combo		DATE:	04/05/2013
PROJECT:	No. 2	MATERIAL: Screened Reject	BY:	Kirkpatrick
QUARRY:	Sweethome Stockpile			

Road	C4="	Road Stations Cubic ONE WAY HAUL IN MILES									
Segment	Stations	Yards	50 MF	H 30	MPH				10 MPH	5 MPH	Total Haul
I1 to I2	29.15	1,127					0.50	0.55	0.50	0.10	1.65
13 to 14	55.50	110					0.50	0.70	1.00	0.10	2.30
15 to 16	29.90	77					0.50	0.70	1.25	0.10	2.55
17 to 18	55.00	297					0.50	1.00	0.90	0.10	2.50
19 to 110	45.40	1,365					0.50	1.30	1.50	0.10	3.40
113 to 114	6.50	33					0.50	2.10	2.20	0.10	4.90
1181											-
											<u> </u>
]
				+							
]
				-							-
				┿							
								<u> </u>			-
											ĺ
				_							
				-							
				-							
											1
				-							
				+							
OTAL	221.45	3,009									AVERAG
~ · / \L	STA./NO.										HAUL
UBIC YARD	WEIGHTED			1			0.50	0.96	1.05	0.10	2.61

ROCK HAUL:

Truck type:		No. trucks:			
Delay min.:		Efficiency:		Ave haul: \$3.97 Load: \$0.48	/cy /cy
Truck type: Delay min.:	D12 6	No. trucks: _ Efficiency:	6 85%	Spread: \$0.84	/cy
Truck type: Delay min.:		No. trucks: _ Efficiency:		Production: cy/day =	954

SCREENED REJECT FILL MATERIAL HAUL COSTS 3,009 cy @ \$5.29 /cy

CRUSHED ROCK COST

SALE NAME: ______ Donut Combination DATE: 04/03/2013 MATERIAL: 4"-0" Crushed PROJECT: No. 1 and 2 BY: Fall Creek QUARRY:

Road		Cubic	T			0	NE W	AY HAUL IN	MILES			Total
Segment	Stations	Yards	50 MPH	1 30	MPH I					10 MPH	5 MPF	
2A to 2B	4.00	22						0.50	1.00	0.40	0.10	2.00
2C to 2D	7.60	22						0.50	1.00	0.60	0.10	2.20
2E to 2F	18.90	1,033						0.50	1.00	0.95	0.10	2.55
3A to 3B	5.00	294						0.50	1.00	0.85	0.10	2.45
3C to 3D	1.85	93						0.50	1.00	1.25	0.10	2.85
I1 to I2	29.15	231						0.30	0.75	0.50	0.10	1.65
13 to 14	55.50	920						0.30	0.90	1.00	0.10	2.30
15 to 16	29.90	198						0.30	0.90	1.25	0.10	2.55
17 to 18	55.00	330						0.50	1.00	0.90	0.10	2.50
I9 to I10	45.40	154						0.50	1.30	1.50	0.10	3.40
I11 to I12	52.70	385						0.50	1.70	2.00	0.10	4.30
I13 to I14	6.50	66						0.50	2.10	2.20	0.10	4.90
												1
												1
						_						1
												1
												1
												1
												1
												1
												1
												1
												1
				-								1
												ł
												1
												1
				<u> </u>								-
				\vdash	- 							-
				-	-							-
				 								-
ΓΟΤΑL	211 50	3,748										AVEDACE
IOTAL	311.50 STA./NO.						l					AVERAGE
CLIDIC VADO I								040	400	400	0.40	HAUL
CUBIC YARD \	WEIGHTED	HAUL						0.43	1.06	1.09	0.10	2.68
							A	verage Rour	nd Trip Dista	nce (miles)	5.36	

ROCK HAUL:

Truck type:	D20	No. trucks:	2		
Delay min.:	8	Efficiency:	85%	Ave haul: \$3.80 Load:	/cy /cy
Truck type:	D12	No. trucks:	6	Spread: \$0.78	/cy
Delay min.:	6	Efficiency:	85%		
Truck type:		No. trucks:		Production: cy/day =	1,417
Delay min.:		Efficiency:			

CRUSHED ROCK HAUL COSTS 3,748 cy @ \$4.58 /cy

PIT RUN ROCK COST

SALE NAME:	Donut Combination			DATE:	04/03/2013
PROJECT:	No. 1 and 2	MATERIAL:	Pit Run	BY:	
QUARRY:	Fall Creek	(

Road	Ctations	Cubic	l				<u> </u>	NE W	AY H	AUL IN	MIL	ES					Total
Segment	Stations	Yards	50	MPH	30	MPH	25	MPH	20	MPH	15	MPH	10	MPH	5	MPH	Haul
3A to 3B	5.00	60															
3C to 3B	1.85	60															
Pt. 4A		60]
13 to 14	55.50	44								.30		.90		00		.10	2.30
19 to 110	45.40	33							0.	.50	1	.30	1.	50	0	.10	3.40
					-												
																	-
																	
														-			
						i											
													•				
TOTAL	107.75	257		İ													AVERAGE
OUDIO VADO	STA./NO.								_	,,	_	.		_	_		HAUL
CUBIC YARD	WEIGHTED	HAUL								12		.32	0.			.03	0.83
								A	verag	e Rour	nd I ri	p Dista	nce (r	niles)	1.	.66	

ROCK HAUL:

Truck type:		No. trucks:			
Delay min.:		Efficiency:		Ave haul: \$1.74	/cy
				Load: \$0.60	/cy
Truck type:	D12	No. trucks: _	2	Spread: \$1.08	/cy
Delay min.:	6	Efficiency:	85%		
Truck type:		No. trucks:		Production: cy/day =	728
Delay min.:		Efficiency:			

PIT RUN ROCK HAUL COSTS 257 cy @ \$3.42 /cy

PIT RUN ROCK COST

SALE NAME:	Donut Combination			DATE:	04/03/2013
PROJECT:	No. 1 and 2	MATERIAL:	Pit Run	BY:	
QUARRY:	Fall Creek				

Road	Τ	Cubic	ONE WAY HAUL IN MILES										
Segment	Stations	Yards	50	мрнІ	30	MPH I			15 MPH	10 MPH	5 MPH	Total Haul	
3A to 3B	5.00	60										7,000	
3C to 3B	1.85	60											
Pt. 4A		60										1	
13 to 14	55.50	44						0.30	0.90	1.00	0.10	2.30	
19 to 110	45.40	33						0.50	1.30	1.50	0.10	3.40	
												1	
]	
]	
]	
												1	
												1	
			ļ										
												-	
											-		
				-+								{	
				-									
				-									
						-							
				-+									
					_					-	w		
				-+									
				$\overline{}$	-								
TOTAL	107.75	257										AVERAGE	
	STA./NO.	CU. YD.										HAUL	
CUBIC YARD	WEIGHTED	HAUL				ļ		0.12	0.32	0.36	0.03	0.83	
							A ¹		nd Trip Distar		1.66		

ROCK HAUL:

Truck type:		No. trucks:				
Delay min.:		Efficiency:		Ave haul:	\$1.74	/cy
				Load:	\$0.60	/cy
Truck type:	D12	No. trucks:	2	Spread:	\$1.08	/cy
Delay min.:	6	Efficiency:	85%			
Truck type:		No. trucks:		Production: cy/day :	_	728
Delay min.:		Efficiency:		- Floudction, cy/day	_	120
_ 5.5, 1111111		2c/0/10y.				

PIT RUN ROCK HAUL COSTS 257 cy @ \$3.42 /cy

RIP RAP ROCK COST

SALE NAME:	Donut Combo			DATE:	04/04/2013
PROJECT:	No. 2	MATERIAL:	Rip Rap	BY:	
QUARRY:	Fall Creek			_	

Road	I	Cubic ONE WAY HAUL IN MILES] Total
Segment	Stations	Yards	50	мрнІ	30	мен					10 MPH	5 MPH	
I1 to I2	29.15	550						.,,,,	0.30	0.75	0.50	0.10	1.65
17 to 18	55.00	22	1						0.50	1.00	0.90	0.10	2.50
I9 to I10	45.40	616	1						0.50	1.30	1.50	0.10	3.40
													1
]
			ļ										
										-			
													
TOTAL	129.55	1,188		- 1				- 1	ļ				AVERAGE
	STA./NO.							- 1					HAUL
CUBIC YARD	WEIGHTED	HAUL							0.41	1.04	1.03	0.10	2.57
								A	verage Rour	nd Trip Dista	nce (miles)	5.15	

ROCK HAUL:

Truck type:	D12	No. trucks:	4			
Delay min.:	6	Efficiency:	85%	Ave haul:	\$3.95	/cy
				Load:	\$0.90	/cy
Truck type:_		No. trucks:		Develop:		/cy
Delay min.:		Efficiency:		-		

Production: cy/day = 640

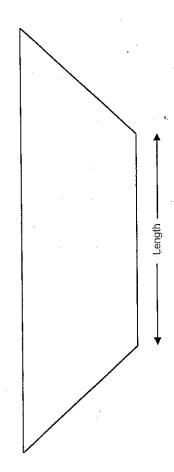
RIP RAP ROCK HAUL COSTS 1,188 cy @ \$4.85 /cy

Donut Combination

Project No.4 Road Vacating

			C330 Excavator	Labor	Seeding	Straw Mulch	Total
17 hrs	12 hrs						
			2.5 sta				
		10					
17 hrs	12 hrs	10	2.5	2 ac	200 lb	100 Bales	
\$155 /hr	\$101 /hr	\$35 ea	\$362 sta	\$628 /ac	\$1.15 /lb	\$10.73 /Bale	
\$2,635	\$1,212	\$350	\$905	\$1,256	\$230	\$1,073.00	\$7,661
20/20/00/00	17 hrs	Excavator Excavator 17 hrs 12 hrs 17 hrs 12 hrs 155 /hr \$101 /hr	Excavator Excavator Excavator 17 hrs 12 hrs 10 10 17 hrs 12 hrs 10 \$155 /hr \$101 /hr \$35 ea	Excavator Excavator Excavator Excavator 17 hrs 12 hrs 2.5 sta 10 10 2.5 \$155 /hr \$101 /hr \$35 ea \$362 sta	Excavator Excavator Excavator Excavator 17 hrs 12 hrs 2.5 sta 10 2.5 sta 2.5 sta 17 hrs 12 hrs 10 2.5 sta \$155 /hr \$101 /hr \$35 ea \$362 sta \$628 /ac	Excavator Excavator Excavator Excavator 17 hrs 12 hrs 2.5 sta 10 2.5 sta 2.5 sta 17 hrs 12 hrs 10 \$155 /hr \$101 /hr \$35 ea \$362 sta \$628 /ac \$1.15 //b	Excavator Excavator Excavator Excavator Mulch 17 hrs 12 hrs 2.5 sta 2.5 sta

Prepared by: Kraig Kirkpatrick Date:

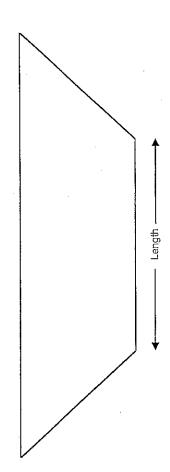

03/15/2013

Fill Armor Computation Sheet

		(c _Y)	삼 *	- T	- Carrier			코 왕 즉,		14 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1886 A.		A188		2000	4,475		% () () () () () () () () () (\$ 4 E	Page 2000	27.82%	W	37	este A.
		Total (CY)	For Truck	- lan	0.0000000000000000000000000000000000000			7	Section .	10 M	984 S	1000	14 miles	\$ 19 4	Sec. 20. 12.	SECTION OF THE	1. 2. 2. 2. 10		2000-200		\$24.040×	14.55E-1			发生
			Total	418	777	-	0	0	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3																									
Armor Thickness (feet): 3		200		volumne 237	100	72	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
mor Thickne		=0		Length	207	25		\$500 V 450	ASSIST SAN		450 15 15 W			A. Selling Commission	32.05 to 17.06 to	180 Sept. 180 Sept.	100 march 100 m			\$200 CAS			(A) (A) (A) (A)	Section Control	
Ar		RIGHT SIDE	Slope	Height	3	12337					A STATE OF THE STATE OF	· 图表图形以数		S. Children Carbony &	Street of the	100 CONTRA	A Same	· 医克里克斯氏		10000000	The second second	1970 W. S. C.	中の年上の大学を	Maria Contract Contra	A Charles Bullet
		_		Height	+	88.77 B		· · · · · · · · · · · · · · · · · · ·	All probabilities of the	May Color	1000 May 100 M	TO ALLEY TO THE SECOND	東京の大学を	ないなくない		Section of the second	17日本資本於				Company of the same	Service Service	The state of the state	THE WORLD	第6位的时间
		*****				·-																		THE WAY	
<i>y</i>	Company of the																								
	Town Street Street											ī	ī	ı	T.	1	Т	T	T	ı	ı	T	ī	ī	
	Walter Strain			Volumne	104	49	0		0			0	0	0		0	0	0	0	0		0		0	0
	Walter Strain	3(,	-+		. 25 49	0 3000000	0	0	0			0 0	0 2000			0	0	0		14000000	J. Parket		19 % W 3 19 2 19 2 19 2 19 2 19 2 19 2 19 2 19	\$3.00 JANES 194
	By Aware grant	टार्ट्स कर्ना । LEFT SIDE	,	Length	c7			10000	Section Section Section	Control of the Control	のないのできるのでは	2 60 C 7 60 60	Ş	L		ALL MANAGEMENT	3. C. M. B. W. J. M. B.	L			14000000	A STATE OF THE STA	4 4 4 4 4	2000 CA 640	A459/47/A
Date:	By Aware grant		Slope	t Height Length	C7 97			在24.15mm 是世	Section Section Section		一次 はない できた 高級 一般の しゅうしゅ でき	でのたじをある。たるはのはなる	- でなる。日本の一日、一日の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本	No. of the Second	000000000000000000000000000000000000000	ALL MANAGEMENT						Security of the second of the		李章等以表示 李章等人全会	
Date:	By Aware grant		Slope	t Height Length	C7 97	5.0 mm 10 5.0 mm 25 5.0 mm		在24.15mm 是世			一次 はない できた 高級 一般の しゅうしゅ でき	でのたじをある。たるはのはなる	である。 はんかつ のうがらない	あるするながないかになる	000000000000000000000000000000000000000				· · · · · · · · · · · · · · · · · · ·	新 1 年 1 年 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日	Control of the Contro	大きのでは、この後の一次は、人ができましている。			
Date:	By Aware grant		Slope	t Height Length	C7 97	5.0 mm 10 5.0 mm 25 5.0 mm		在24.15mm 是世			一次 はない できた 高級 一般の しゅうしゅ でき	でのたじをある。たるはのはなる	である。 はんかつ のうがらない	あるするながないかになる	000000000000000000000000000000000000000				· · · · · · · · · · · · · · · · · · ·	新 1 年 1 年 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日	Control of the Contro	大きのでは、この後の一次は、人ができましている。			
	District of the state of the st		Fill Slope	Height Height Length	C7 97	5.0 mm 10 5.0 mm 25 5.0 mm													京後 は なん なん なんかん なんかん なんかん なんかん なんかん なんかん な	一					

Total CY to Apply*: 0

 Volumne rounded off to the nearest 10 cubic yard load



Fill Armor Computation Sheet

		Total (CY)	For Truck	Haul*	**************************************	40 M M M M M M M M M M M M M M M M M M M	经验证金额	(新文学第二字本)等 A	1880 Sec. 1889	N. 352 N. 35	Brown M. March	Kalifornia de Santa	404 Charles	4,000 mess 10,000	Butter Salan Barrell	11.00 Sept. 2.00	医骨骨 医骨骨	5. N. S.	M. W. Carlotte	1.02°200.03°			Section of the Control of the	Section of the Contraction	10 mm 10 mm 12 mg
			Totai	<u>ر</u> ک	579	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
၉																									
Armor Thickness (feet): 3			100	Volumne	404	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ırmor Thickn		IDE		Length	-: - 40; -: -:					25,500				17 - 97 Geografie	2000-500-500	April 2000 April 2000	2014 S. S. S.	Section of the section		12.50 100 100 100 100		es de Mariena de	A STATE OF STATE	Same Comments	328 000 05
٩.		RIGHT SIDE	Slope	Height	40:				1968 - 1869 A.B.	建筑地位的		SA BURE OF MY ME	MEN OF THERE	经分价工品品额	MANAGE OF THE PROPERTY OF THE	497	ANTONIO		Company William	\$60 11 \$1 \$1 \$ cg	Flancour Dis	Carlot Action	(2) 大学の人ではない。		
			Ē	Height	< 20 <	100 Medical	May and wife	ASSAMPLY OF THE	\$500 ex \$500 E	A SAME	151 15000	Save See	900 PA (100	200 A 200	はおり強く	VANCOUS AND IN	W. Synch Jan	W 0.00 TV	*1.40%	A STANSON A	Walter State Co.	M. G. 1813	MIN MARTIN	Section of the State of the Sta	#C#867
					32					· Ç	7 S	12	9		de :	- 33								100	CONTRACTOR OF
	A STATE OF THE STA		×							· G		19												-Sy	
	and a section of the segment of the section of the			Volumne	175	0	0	0	0	· · · · · · · · · · · · · · · · · · ·	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Date:	By: "The graph was graded and after a strain	DE		Length Volumne	175	0		18 18 18 18 18 18 18 18 18 18 18 18 18 1	5 miles (10 miles)	200 mg/mg/mg/	N. 62 No. 10 No. 1	100 mg 10	26-25-17-45-45	18 ST 48 S	\$600 Page 178	0		0 0	0		Participation and Sal	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0 488490000		s little gravelt gitt
Date:		LEFT SIDE	Slope	-	175		All the second of the second o		15 (15%)		The Market of the Control of the Con	があるというには * ** ** ** ** ** ** ** ** ** ** ** **	33	一等意以人名為 名者等持不被軍人為		0	0		3.		Principles and Street Landing	湯からうな 送ってもちる	高男子をおける の言をよる 歌		
			Fill Slope	Length	175			18 18 18 18 18 18 18 18 18 18 18 18 18 1	5 miles (10 miles)	200 mg/mg/mg/	N. 62 No. 10 No. 1	100 mg 10	26-25-17-45-45	18 ST 48 S	\$600 Page 178	0			3.		Participation and Sal	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	AND CONTRACTOR OF		s little gravelt gitt
			_	Height Height Length	22/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	とはないはないのではないのである	All the second of the second o	一般に考めてひかると、変わる でこ	其一次有一次有一次 一次 人名 人名 人名 人名 人名 人名 人名 人名 人名 人名 人名 人名 人名	The second secon	The Market of the Control of the Con	AND THE STATE OF T		· · · · · · · · · · · · · · · · · · ·	まではなるとは、できて、一般ななくないない	0	0		- 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一		お書きなるという 大学 一人をあると なるない	1000年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	を表するではれのできましるが、まであるのである。 を表するではれるできます。		
			_	Height Length	175 175 175 175 175 175 175 175 175 175	とはないはないのではないのである	All the second of the second o	一般に考めてひかると、変わる でこ	其一次有一次有一次 一次 人名 人名 人名 人名 人名 人名 人名 人名 人名 人名 人名 人名 人名	The second secon	The Market of the Control of the Con	があるというには * ** ** ** ** ** ** ** ** ** ** ** **		一等意以人名為 名者等持不被軍人為	まではなるとは、できて、一般ななくないない	0	0		おなる事故の者 得蒙古 · 水水 歌		お書きなるという 大学 一人をあると なるない	湯からうな 送ってもちる	高男子をおける の言をよる 歌		

Total CY to Apply*: 0

* Volumne rounded off to the nearest 10 cubic yard load

SUMMA PROJEC		CK DEVELOPI	MENT ANI	CRUSHIN Tim	G COSTS iber Sale Name:	Donut Com	bo		
Quarry:	Fall Creek	<u> </u>				Swell:			
Location:	NF 1/4 SE	1/4, Sec. 20, T4l	N. R8W			Shrink:	16%		
County:	Clatsop								
By:	d.mellison					oading Hopper	: Yes		
Date:	03/04/13					•			
					_				
					STOCKPILE		TRUCK MEAS		TOTAL
	ROCK SIZE	E REJECT (GRADATIO	ON	CU. YDS.		CU. YDS.		CU. YDS.
	3/4"-0"		CR						
	6"-0"		PR			-	257		257
	4"-0"	40%	CR _		10,000		3,748		15,348
	4"-0"	40%	CR		3,000	<u>)</u>	1 100		3,480
	24"-6"		RR			_	1,188		1,188
	36"	•	RR			_			
	TOTAL CU	UBIC YARDS	OF ROCK:		13,000)	5,193		20,273
1) MOB	ILIZATION	& SET UP:							
EOM IIII	רדי א ז'יוי	QUANTITY	RATE	COST	EQUIPMENT		QUANTITY	RATE	COST
EQUIPM Screening		1	\$553	\$553	Off Highway D		1	\$774	\$774
Loading I		1	\$553	\$553	2 Stage Crush		1	\$2,175	\$2,175
D6 Cat	Toppei	1 1	\$533	\$533	1 3.035 3.035		1		
	mpressor	1	\$1,406	\$1,406					
Powder	присодог	1	\$351	\$351					
Excavato		1	\$1,406	\$1,406					
Loader		1	\$805	\$805					
10000			- in-						
<u> </u>	SUB TOTA	L FOR MOBIL	IZATION						\$8,555
						•	1		
	EQUIP <u>ME</u> I	NT SET UP			TIMES		RATE	COST	-
	2 Stage Cru	sher		_	1	_	\$2,175	\$2,175	
	Screening F	Plants		-	1	_	\$293	\$293	
	Loading Ho	pper			1	_	\$293	\$293	
	Original Cal	ibration		_	1	<u>.</u>	\$544	\$544	
				_			}		
				_		_			
				-)		1		
		* 505 CERTIF	a co cerc					\$3,305	
	SUB TOTA	L FOR SET U	2 COS13					Ψυ,υου	
	TOTAL M	OBILIZATIO	N & CET II	P COSTS	•				\$11,860
	TOTALM	OBILIZATIO	, CC DEI U	1 COSID					
2) CLE	ARING & G	RUBBING							
2) 000	DESCRIPT				QUANTITY	UNIT	RATE	COST	_
				-					
	,			-					
				_					
				- , -					
				_					
			•						
	TOTAL C	LEARING & C	RUBBING	COSTS					

8) STOC	KPILING STOCKPILE	CITE DEED	AD ATION							
	Equipment	Hours	Rate	Total						
	Dozer	1,5	\$113.00	\$169.50	Rock	for Floor (CY)	\$/CY Haul	Total		
	Compactor	1,0	\$72.00	Ψ100.00	1001	10,1,00, (0,2)	41 0 1 1 1 1 1 1			
	Grader	1	\$90.00	\$90.00				<u> </u>		
	Excavator	· · · · · · · · · · · · · · · · · · ·	\$138.00					•		
					\$259.50					
	SUB TOTAL							\$260		
	HAUL & STO	OCKPILE		1	# of					
	STOCKPILE		1	SIZE	TRUCKS	CU. YDS.	RATE	COST		
1.	Sweethome			4"-0"	4	11,600	\$2.99	\$34,704		
2.	Fall Creek			4"-0"	2	3,480	\$1.41	\$4,897		
3.										
4.										
5.			··						•	
6.	·							•		
				-			-	* 20 * 0 *		
	SUB TOTAL							\$39,601		
	mom 17 000	CYZDYT ING	T:COCTO							\$39,860
	TOTAL STO	CKPILING	3 COS18		****				A	\$39,000
o) MISCI	ELLANEOUS	COSTS	•			•				
9) MISCI	DESCRIPTIO							COST		
			and compact	the reject mate	rial at the waste	e area.				
	\$2.27 /			Cubic yards	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			\$17,096		
	φω		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•				
				**		•				
	***************************************					•				
						•				
			•	•						
	TOTAL MIS	CELLANE	OUS COSTS					·		\$17,096
10) GRA	ND TOTAL:						•	:		\$220,622
						<u> </u>		\$/Cubic Yard		\$11.72
Footnotes	s:		,					-		
				1						

Road Maintenance after completion of Projects

Donut Combo 05-Apr-13 Kraig Kirkpatrick Sale: Date: By:

							\$3,306
Cost	\$1,200	\$316	\$332	\$924	\$534		
Rate	\$100	6/4	\$83	\$77	\$89		
Hours	12	4	4	12	9		
Equipment/Rationale	Grader 14G	Duling 11 uck 1201 X Z	FE Loader C966	Maintenance Vibratory Roller	Haul Route Water Truck 2,500 gallon		
Type	Fibol	ומו -	Road	Maintenance	Haul Route		Total

Production Rates	Miles/day	Distance(miles)	Days
Grader	1.5	2.0	1.3
Vibratory Roller	1.5	2.0	1.3

*Project work road maintenance

Fall Creek Rd: Quarry to Sweethome Creek Rd Sweethome Creek Rd: Jct of Fall Creek Rd to Pt. 18

Road Maintenance Cost Summary (Interim and Post Harvest)

Sale:

Donut Combination

MBF:

Date:

June 10, 2013

\$\$/MBF:

Ву:

Bryce Rodgers

		Move-in				
Туре	Equipment/Rationale	Rate	Times	Hours	Rate	Cost
	Grader 14G	\$778	1	17	\$100	\$2,478
Interim	Dump Truck 12CY	\$163	2	8	\$79	\$958
Operations Entries - 1	FE Loader C966	\$778	1	1	\$83	\$861
Final Road Maintenance	Grader 14G Dump Truck 12CY FE Loader C966 Vibratory Roller Water Truck 2,500 gallon Backhoe-small Labor	\$778 \$163 \$778 \$778 \$190 \$321	1 2 1 1 1	73 8 4 73 20 16 8	\$100 \$79 \$83 \$108 \$89 \$77 \$40	\$8,078 \$958 \$1,110 \$8,662 \$1,970 \$1,553 \$320
Total					:	

Interim Operations Road Maintenance

Proc	luction Rates		Distance (miles)	Days	Hours
Grader		3.5	6.0	1.7	17

Final Road Maintenance

Production Rates	Miles/day	Distance (miles)	Days	Hours
Process - Grader	1.5	11	7.3	73
Vibratory Roller	1.5	11.0	7.3	73

Process and Compact: North Fork Road, Sweethome Creek Road, Rector Ridge Road,	
And all spurs used during log hauling.	
TOTAL MILES = 11,0	

Donut Combination TIMBER CRUISE REPORT FY 2013

Sale Area Location: Areas 1, 2, 3, 4, 5, 6 and 7 are located in portions of Sections 20, 21, 28, 29 and 33, T4N, R8W, W.M., Clatsop County, Oregon.

2. Fund Distribution: BOF 100%

Tax Code 8-01 (100%)

3. Sale Acreage by Area:

Area	Treatment	Gross Acres	Posted Buffers	New R/W	Old R/W	Net Acres	Survey Method
1	Modified Clearcut	18	2	0	3	13	GIS
2	Partial Cut	77	0	3	4	70	GIS
3	Modified Clearcut	65	9	1	5	50	GIS
4	Partial Cut	8	0	0	0	8	GIS
5	Partial Cut	46	0	0	3	43	GIS
6	Retention Cut	6	0	0	1	5	GIS
7	Retention Cut	6	1	0	0	5	GIS
8 (R/W)	Right of Way	4				4	LxW
TOTALS		230	12	4	16	198	

- **4. Cruisers and Cruise Dates:** All areas were cruised by Will Lawrence, Jon Long, Ed Holloran, Bryce Rodgers, Derek Bangs, Nick Haile, and Kevin Berry in April 2013.
- **5. Cruise Method and Computation:** All cruisers used Corvallis Micro Technology (CMT) data collectors, and were downloaded to the Atterbury <u>Super A.C.E.</u> program at the Astoria District for computing. See the attached <u>Cruise Design</u> for more details on the cruise method. The cruise calculations were processed in the Astoria District office.

<u>Areas 1 and 3</u> are modified clearcut units and were variable plot cruised using a 40 BAF. These plots are located on a 5 chain by 2.5 chain grid, with every third plot measured and graded. A total of 51 plots were sampled, with 18 measured and graded plots, and 33 count plots.

<u>Area 2</u> is a partial cut and was variable plot cruised using a 40 BAF for conifer and 33.61 BAF for hardwoods. These plots are located on a 5.5 chain by 3 chain grid, with every third plot measured and graded. A total of 41 plots were sampled, with 17 measured and graded plots, and 24 count plots.

Area 4 is a partial cut. An individual tree selection cruise was used. 126 trees were 100% cruised.

<u>Area 5</u> is a partial cut and was variable plot cruised using a 40 BAF. These plots are located on a 5 chain by 3 chain grid, with every third plot measured and graded. A total of 30 plots were sampled, with 14 measured and graded plots, and 16 count plots.

<u>Areas 6 and 7</u> are retention cuts and were variable plot cruised using a 40 BAF. These plots are located on a 3 chain by 2 chain grid, a total of 13 plots were all measured and graded.

<u>Area 8 R/W</u> Right-of-way volume was calculated by multiplying the R/W acreage and the average volume per acre from the plots in Areas 1 and 3(MC) and Area 2(PC). Right-of-way totals 4 acres.

AREA	CRUISE	TRACT	TYPE	ACRES
1 and 3	T04N R08W 20	1&3	TAKE	63
Area 2	T04N R08W 20	AREA2	TAKE	70
Area 4	T04N R08W 29	AREA4	TAKE	8
Area 5	T04N R08W 20	AREA5	TAKE	43
6 and 7	T04N R08W 33	6&7	TAKE	10
Area 8 R/W	T04N R08W 20	R/W	R/W	4

6. Timber Description:

Areas 1 and 3 are modified clearcut units, approximately 65 to 70 years old, consisting of western hemlock, Sitka spruce, Douglas-fir and red alder. The average western hemlock tree size to be harvested is approximately 20 inches DBH, with an average height of 64 feet to a merchantable top (6 inch d.i.b./40% fp). The average volume per acre to be harvested (net) is 32 MBF.

Area 2 is a partial cut unit, approximately 65 to 70 years old, consisting of western hemlock, Sitka spruce, and red alder. The leave stand will have an average Basal Area of 180, and SDI of around 30%, and have approximately 42 trees per acre. The average western hemlock tree size to be harvested is approximately 13 inches DBH, with an average height of 46 feet to a merchantable top (6 inch d.i.b./40% fp). The average volume per acre to be harvested (net) is 10 MBF.

Area 4 is a partial cut unit, approximately 60 years old, consisting of red alder. The leave stand will have an average Basal Area of 180. The average red alder tree size to be harvested is approximately 15 inches DBH, with an average height of 45 feet to a merchantable top (6 inch d.i.b./40% fp). The average volume per acre to be harvested (net) is 1.9 MBF.

<u>Area 5</u> is a partial cut unit, approximately 65 years old, consisting of western hemlock, Sitka spruce, Douglas-fir and red alder. The leave stand will have an average Basal Area of 160, and SDI of around 31%, and have approximately 60 trees per acre. The average western hemlock tree size to be harvested is approximately 15 inches DBH, with an average height of 62 feet to a merchantable top (6 inch d.i.b./40% fp). The average volume per acre to be harvested (net) is 19 MBF.

Areas 6 and 7 are retention cut units, approximately 65 years old, consisting of western hemlock and red alder. The average western hemlock tree size to be harvested is approximately 14 inches DBH, with an average height of 52 feet to a merchantable top (6 inch d.i.b./40% fp). The average volume per acre to be harvested (net) is 22 MBF.

Area 8 R/W is similar to the timber description mentioned above for Areas 1, 2 and 3. The average volume (net) is 42 MBF/acre.

7. Statistical Analysis and Stand Summary: (See "Statistics" - Type Reports, attached)

Statistics for Stand B.F. volumes

Area	Estimated CV	Target SE%	Actual CV	Actual SE%
1 & 3	60	10	35.8	5
2	60	12	30.1	4.7
4	N/A	N/A	N/A	N/A
5	40	12	22.2	4.1
6 & 7	70	12	45.9	13.2

8. Take Volumes by Species and Log Grades for All Sale Areas by MBF: (See "Species, Sort Grade-Board Feet Volumes (Project)", "Statistics (Project)", and the "Stand Table Summary" attached). Volumes do not include "in-growth." The majority of defect and breakage was taken out during the cruise.

Species	DBH	Net Vol.	2 Saw	3Saw	4 Saw	Camp Run	% D&B	% Sale
Douglas-fir	22"	218	170	38	10		2	5
Western Hemlock	16"	2,634	1,440	984	210		2	65
Sitka Spruce	22"	193	114	57	22		8	5
Sitka Spruce 20"+	*	171					8	4
Cedar	19"	1		1			2	1

^{*} All logs greater or equal to 20" (Scaling End)

Species	DBH	Net Vol.	12"+	10"-11"	8"-9"	6"-7"	% D&B	% Sale
Red Alder	13"	805	200	199	148	258	1	20

T	OTAL	NET	VOLUME	4,022
---	------	-----	--------	-------

Alder grades based on scaling end diameter. Diameter break downs for each size class were: 12" + = 1 Saw; 10" - 11" = 2 Saw; 8" - 19" = 3 Saw; 6" - 7" = 4 Saw. These volumes were converted and reported as shown above.

9. Approvals:

Prepared by:

Bryce Rodgers

Date: April 17, 2013

Unit Forester Approval: _

Date: MAY 31, 2013

10. Attachments:

Cruise Design and Map - 12 pages

Volume Report - 7 pages Statistics Report - 23 pages Log Stock Tables - 3 pages Stand Table Summary – 3 pages

X:\Sunset Unit\2013 FY Sales\Donut Combination\Sale Prep\Cruise\Cruise_Report.docx

CRUISE DESIGN ASTORIA DISTRICT

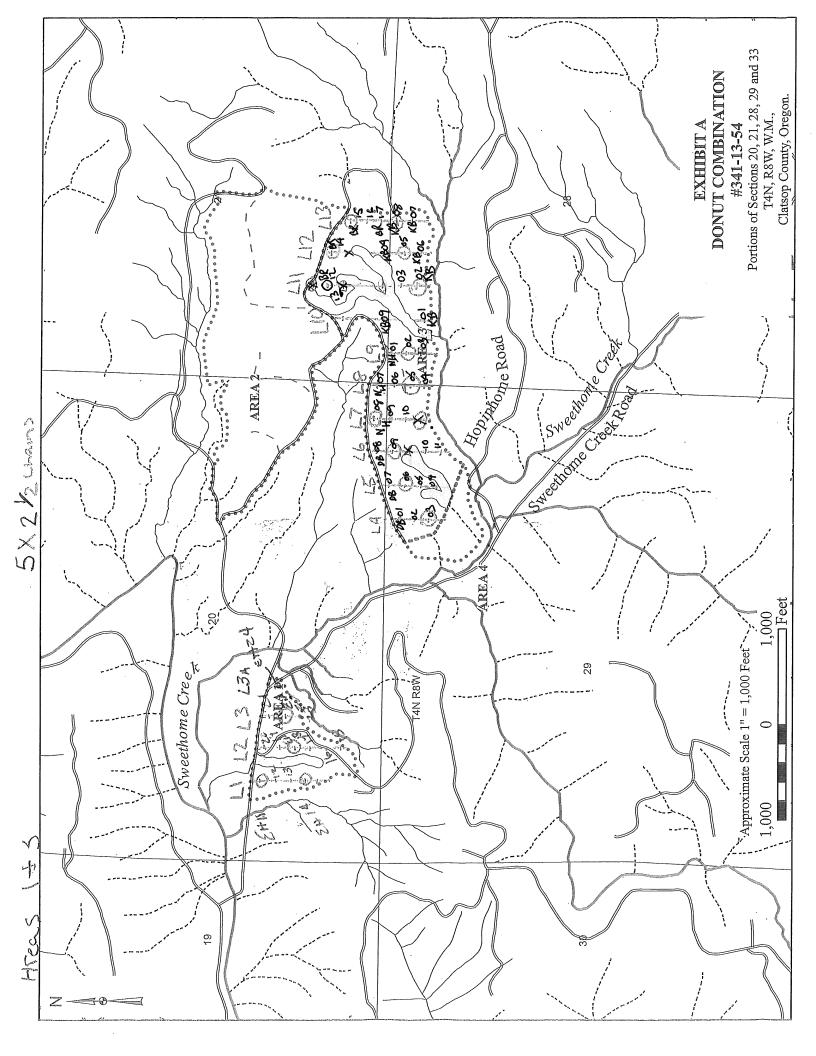
Sale Name: <u>Donut Co</u>	ombo	Areas <u>1 & 3</u>	
Harvest Type: (CC) Cle	earcut		
Approx. Cruise Acres: _	71 Estimated CV% _	60 Net BF/Acre SI	E% Objective 10 Net BF/Acre
Planned Sale Volume :	5.5 MMBF Estimated	Sale Area Value/	'Acre: \$10,000/Ac
		unt); (c) Other go	nardwood trees: pals (<u>X</u> Determine volume and
Cru Cru Cru	F 40.0 (Full point) Half point Ha	th /South) _ (chains) ? (chains)	
If a cruise plot ends up	near a buffer adiust whe	re feasible by ½ o	chain. If plot falls clearly inside a

C. Tree Measurements:

1. Diameter: Minimum DBH to cruise is <u>8"</u> for conifers and <u>8"</u> for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24".

are leave trees. Record all snags as SN. Grade all hardwoods.

buffer, and major adjustment is necessary, drop the plot. Take plots as marked on map. All cedar


- 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- **3. Top Cruise Diameter (TCD):** Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.
- 5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for

hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merchantable segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

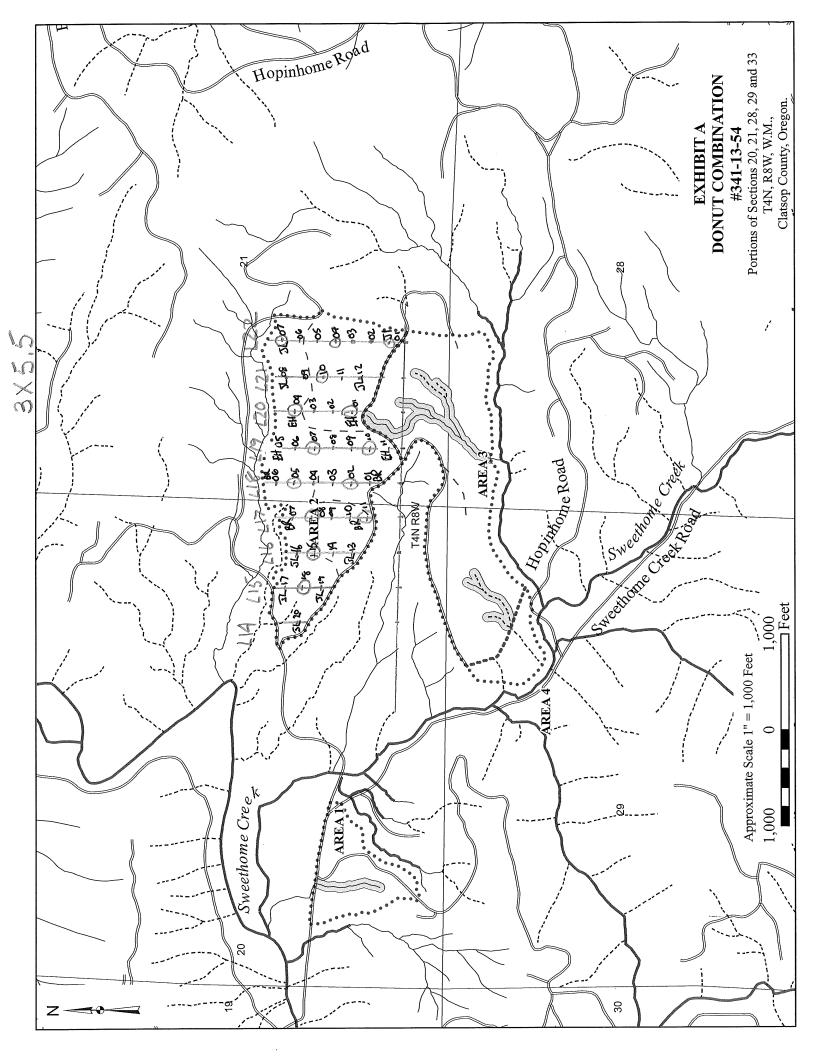
6. Species, Sort, and Grade Codes:

- A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.)
- B. Sort: Use code "1" (Domestic).
- C. Grade: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; R = Camp Run.
- D. Alder Grades: 12" + = 1 Sawmill; 10" 11" = 2 Sawmill; 8"-9" = 3 Sawmill; 6"-7" = 4 Sawmill
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by: Bryce Rodgers Approved by: Jh Tll Date: 03/06/13

CRUISE DESIGN ASTORIA DISTRICT

Sale Name:Donut Combination	Area(s)2				
Harvest Type: (PC) "Automark Thinning"					
Approx. Cruise Acres: <u>77</u> Estimated CV% <u>60</u> Net BF/A	Acre SE% Objective 12 Net BF/Acre				
Planned Sale Volume: <u>5.5 MMBF</u> Estimated Sale Area Value/Acre: <u>\$3,000/Ac</u>					
A. <u>Cruise Goals</u> : (a) Grade minimum <u>70</u> conifer and <u>(b) Sample 42</u> cruise plots (<u>1</u> grade/ <u>2</u> count); (c) O thinning standards; <u>X</u> Determine log grades for sale tree species and sizes.	ther goals (Determine "automark"				
B. Cruise Design: 1. Plot Cruises: BAF 40.0 (Conifer) 33.61 (Hardwood Cruise Line Direction(s) (North / South) Cruise Line Spacing 5.5 (chains) Cruise Plot Spacing 3 (chains) Grade/Count Ratio 1/2					
Basal Area leave target is 180 sq. ft. Cruiser needs to sel Cruise all take and leave trees. All conifer less than 8" DE reserved. All Cedar are reserved. Record all snags as SI over 10" DBH. All trees greater than 35" DBH are leave trees.	3H and all hardwoods less than 10" are N. Grade all alder. Take all hardwoods				


C. Tree Measurements:

- **1. Diameter:** Minimum DBH to cruise is <u>8"</u> for conifers and <u>8"</u> for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- **2. Bole Length:** Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- **3. Top Cruise Diameter (TCD):** Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each

merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes:
- A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.)
- B. Sort: Use code "1" (Domestic).
- C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; R = Camp Run.
- D. Alder Grades: 12" + = 2 Sawmill; 10" 12" = 3 Sawmill; under 10" = 4 Sawmill
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Desigr		Bryce, R	Rodgers	
Approved by:	1/2	Telle	3/6/13	
Date:	O	03/06	/2013	

CRUISE DESIGN ASTORIA DISTRICT

Sa	ale Name: _.	Donut Combination		Area(s) <u>5</u>	_
Ha	arvest Type	e: (PC) "Automark Thinn	ing"		
A	pprox. Crui	se Acres: <u>46</u> Estima	ated CV% <u>40</u> Net BF/A	cre SE% Objectiv	ve <u>12</u> Net BF/Acre
PI	anned Sale	Volume: 5.5 MMBF	Estimated Sale Area	Value/Acre: \$3,0	000/Ac
Α.	(b) Samplethinning sta	pals: (a) Grade minimum e_28_ cruise plots (_1_ g andards;X_ Determin es and sizes.	rade/ 2 count); (c) Ot	ner goals (D	etermine "automark"
В.	Cruise De 1. Plot Cr	ruises: BAF <u>40.0 (Coni</u> Cruise Line Direc Cruise Line Spac	otion(s) <u>295</u> ing <u>5</u> (chains) ing <u>3</u> (chains)	int) (circle one)	
	Cruise all t	leave target is 160 sq. ft ake and leave trees. All o Record all snags as SN.	conifer less than 8" DB	ect 4 conifer leave H are reserved. <i>F</i>	e trees per plot. All Cedar are
C.	Record trees >	surements: er: Minimum DBH to cruid dbh to nearest ½" for tree 24". If tree diameters are to closest estimate.	es < 1 6 ", to nearest 1"	for trees 16-24", a	and to nearest 2" for
		ength: Record bole lengt ntable height, estimating			iter than 100 feet in
	hardwo	u ise Diameter (TCD): M ods or <u>40</u> % of dob at d 40% of dob @ FP for tre	16' form point. Genera		
	measur	actors: (1) Measure or e ed/graded; OR (2) Measu on the cruise area, and u	re a minimum of 20 fo	rm factors for eac	h major conifer

5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32'

and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each

cruise. Hardwood form factors are a Standard 87.

merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes:
- A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.)
- B. Sort: Use code "1" (Domestic).
- C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; R = Camp Run.
- D. <u>Alder Grades</u>: 12" + = 1 Sawmill; 10" 11" = 2 Sawmill; 8"-9" = 3 Sawmill; 6"-7" = 4 Sawmill
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by	/: Bryce/Rodgers	
Approved by:	1 Tillo 4/5/13	
Date:	04/05/2013	
•		

CRUISE DESIGN ASTORIA DISTRICT

Sa	ale l	Name: Donut Combination Area(s	6 & 7
На	arve	vest Type: (PC) "Automark Thinning"	,
		prox. Cruise Acres: _1_ Estimated CV% _70_Net BF/Acre SE	% Objective <u>12</u> Net BF/Acre
		nned Sale Volume: <u>5.5 MMBF</u> Estimated Sale Area Value	
Α.	(b) sta	Cruise Goals: (a) Grade minimum _70 conifer and30_ hb) Sample_14_ cruise plot All Grade; (c) Other goals (Destandards;X Determine log grades for sale value; _X Despecies and sizes.	termine "automark" thinning
B.	1.	Cruise Design: . Plot Cruises: BAF <u>40.0 (Conifer) (</u> Full point; Half point) (conifer) (Cruise Line Direction(s) <u>310</u> Cruise Line Spacing <u>3</u> (chains) Cruise Plot Spacing <u>2</u> (chains) Grade/Count Ratio <u>All Grade</u>	, and the second
	<u>all t</u>	Basal Area leave target is 80 sq. ft. Cruiser needs to select 2 co Il take and leave trees. All conifer less than 8" DBH are reserve	nifer leave trees per plot. Cruise d. All Cedar are reserved.
C.	<u>Tre</u> 1. [ree Measurements: Diameter: Minimum DBH to cruise is 8" for conifers and 8" Record dbh to nearest 1/2" for trees < 16", to nearest 1" for tree trees > 24". If tree diameters are estimated (only estimate on record to closest estimate.	es 16-24", and to nearest 2" for
	2.	Bole Length: Record bole length to nearest foot at TCD. For merchantable height, estimating to the nearest 5 feet is accept	trees greater than 100 feet in

- 3. Top Cruise Diameter (TCD): Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for
- 3. Top Cruise Diameter (TCD): Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.
- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each

merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.

- 6. Species, Sort, and Grade Codes:
- A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.)
- B. Sort: Use code "1" (Domestic).
- C. Grade: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; R = Camp Run.
- D. Alder Grades: 12" + = 1 Sawmill; 10" 11" = 2 Sawmill; 8"-9" = 3 Sawmill; 6"-7" = 4 Sawmill
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design	by: <u>/1 E</u>	Bryce Rodgers	
Approved by:	16	Tilh	
Date:	\mathcal{O}	04/05/2013	

Species, Sort Grade - Board Foot Volumes (Project) TC PSPCSTGR Project: **DONUT** Page 1 T04N R08W S20 TyR/W Date 4/22/2013 THRU Acres 198.00 T04N R08W S33 TyTAKE Time 11:39:46AM Percent of Net Board Foot Volume Average Log Logs Net S So Gr Bd. Ft. per Acre Total Log Scale Dia. Log Length Ln BdCF/ Per T rt ad BdFt Spp Def% Gross Net Net MBF 4-5 6-11 12-19 20+ 12-20 21-30 31-35 36-99 Ft Lf /Acre Α DOCU 11 0.00 5.0 Α DO1S 24 .6 1,018 1,012 200 79 21 10 42 23 29 24 167 1.48 6.1 Α DO2S 25 1.2 1,015 1,003 199 100 22 3 26 49 35 129 7.8 1.01 DO3S 18 1.0 754 A 747 148 99 22 28 49 29 1 69 10.8 0.80 Α DO4S 33 1.1 1,320 1,305 258 0 100 18 18 15 49 29 44 29.6 0.54 A Totals 20 1.0 4,108 4,068 805 0 80 20 13 27 17 43 28 69 0.74 59.3 **DOCU** S 7 0.00 S DO2S 50 3.3 960 928 184 62 38 5 95 39 633 3.63 1.5 S DO3S 43 13.2 917 796 158 10 26 65 29 2 1 68 35 344 2.70 2.3 S DO4S 7 .2 115 115 282 96 4 55 43 2 22 33 3.5 0.62 9 \mathbf{S} Totals 7.7 1,992 1,839 364 10 43 47 4 3 15 78 28 227 2.13 8.1 Η CU .5 0.00 Η DOCU 10 7.2 0.00 Η DO2S 54 3.2 7,516 7,272 1,440 3 65 32 1 3 12 84 37 353 2.14 20.6 Η DO3S 38 1.3 5,033 4,967 984 92 1 5 1 2 6 27 65 36 94 0.77 53.1 DO4S 8 Η 2.3 1,089 1,065 210 95 5 0 49 37 4 11 22 28 0.42 37.5 H Totals 65 2.4 13,638 13,304 2,634 44 37 18 5 7 17 71 0.97 30 112 118.9 C DOCU 15 0.00 .0 \mathbf{C} DO2S 83 5.6 3 3 1 100 39 61 37 918 .0 6.84 C DO3S 17 1 1 0 100 37 36 64 183 2.07 .0 C Totals 0 4 4 4.7 1 17 83 21 39 61 140 2.03 .0 D DO2S 78 2.3 878 858 170 100 0 100 40 319 1.99 2.7 D DO3S 17 .0 192 192 100 38 19 0 81 38 90 2.1 0.81 D DO4S 5 50 50 10 100 0 100 40 89 0.85 .6 5 D Totals 1.8 1,121 1,100 218 22 0 78 0 0 3 97 39 204 1.42 5.4 M DOCU 15 0.00 .6 M Totals 15 0.00 .6 **Totals** 20,862 20,315 4,022 0 47 37 16 6 10 16 67 29 106 0.97 192.3

T	TSPCSTG	GR			Species	, Sort G Projec	rade - Boar et: DO	rd Foot V NUT	Volui	mes (Гуре)]	Page Date Fime	1 4/17/2 7:38:	013
T04N Tw 04N			Sec	Tract		Type TAF				_	le Tree	es	1	CuFt	T04 Bdl W		SW S20	ΓΤΑΚΙ
			%					Percent	Net B	oard F	oot Vol	ume			Av	erage]	Log	Ι.
	s so	Gr	Net	Bd.	Ft. per A	ore	Total	Log So	rale D	ia.	Lo	g Ler	ngth		Ln	Bd	CF/	Log Pe
Spp	T rt	ad	BdFt	Def%	Gross	Net	Net MBF			6 17+	12-20	-	_	36-99	Ft	Ft	Lf	/Acı
Н	DO	CU		<u> </u>							<u> </u>				9		0.00	
Н	DO	2S	77	3.8	15,344	14,760	930	2	40	58	0	4	11	85	37	411	2.44	36
Н	DO	3S	15	.6	3,069	3,051	192	80	14	7	3	18	27	52	34	113	1.03	2
Н	DO	4S	8	5.3	1,426	1,351	85	100			32	40	3	25	26	42	0.51	32
Н	Totals		59	3.4	19,839	19,163	1,207	21	33	46	3	9	13	76	32	192	1.48	9:
A	DO	CU													2		0.00	١.
A	DO	1S	32	.6	2,691	2,674	168	24	76		12	48	14	26	28	166	1.47	10
Α	DO	2S	25	1.6	2,138	2,104	133	100			4	8	19	69	36	130	0.99	10
A	DO	3S	7	2.7	576	561	35	100			19	62		19	27	67	0.83	;
A	DO	4S	36		2,902	2,902	183	100			20	10	13	57	29	46	0.56	63
A	Totals		25	.8	8,307	8,240	519	75	25		13	25	14	47	28	74	0.78	11
S	DO	CU													7		0.00] :
S	DO	2S	36	2.1	800	783	49			100			16	84	38	721	4.05	
S	DO	3S	52	15.0	1,339	1,137	72	8	8	84	4		11	86	34	497	3.81	1
S	DO	4S	12		244	244	15	100			39	61			24	29	0.56	;
S	Totals		7	9.2	2,382	2,164	136	15	4	80	6	7	11	75	24	154	1.72	1.
D	DO	2S	77	2.8	2,247	2,185	138		100					100	40	341	2.05	
D	DO	3S	17		478	478	30	100					23	77	37	102	0.90	4
D	DO	4S	6		154	154	10	100						100	40	90	0.85	
D	Totals		9	2.2	2,880	2,817	177	22	78				4	96	39	220	1.48	1:
M	DO	CU													15		0.00	
M	Totals											·····			15		0.00	
Туре Т	Cotale			3.1	33,408	32,384	2.040	35	33	32	6	12	12	70	30	135	1.18	23

ТТ	SPCSTG	R		1	Species	, Sort G Projec	rade - Boar t: DO	rd Foot V NUT	Volu:	mes (T	Гуре)				I	Page Date Iime	1 4/17/2 7:38:3	013
T04N Twp 04N	,	ge	Sec	Tract AREA2		Type TAF				Samp	le Tree	es	C 1	uFt	T04 BdI W		SW S20 T	TAKE
			%					Percent	Net B	oard Fo	oot Vol	ume			Av	erage]	Log	-
	s so	Gr	Net	Bd.	Ft. per A	cre	Total	Log So	cale D	ia.	Lo	g Le	ngth		Ln	Bd	CF/	Logs Per
Spp	T rt	ad	BdFt	Def%	Gross	Net	Net MBF			6 17+	12-20	_	_	36-99	Ft	Ft	Lf	/Acr
Н	DO	CU													14		0.00	8
Н	DO	2S	36	4.2	2,145	2,054	144	20	13	66	11		13	76	37	269	1.70	7
Н	DO	3S	52	1.6	3,040	2,991	209	100			3		17	79	37	87	0.68	34
Н	DO	4S	12		634	634	44	100			69	31			19	21	0.39	29
H	Totals		53	2.4	5,818	5,678	397	71	5	24	13	3	14	69	28	71	0.70	79
A	DO	CU													34		0.00	3
A	DO	1S	10		291	291	20		100				100		32	160	1.50	1
A	DO	2S	12		350	350	24	100					100		32	120	1.00	2
A	DO	3S	46		1,321	1,321	92	100			16	18		66	31	73	0.79	18
Α	DO	4S	32	4.2	933	894	63	100			7	41	22	31	30	42	0.51	21
A '	Totals		27	1.3	2,895	2,856	200	90	10	100	10	21	29	40	31	59	0.64	48
S	DO	2S	74	3.6	1,717	1,656	116			100				100	40	579	3.35	2
S	DO	3S	22	11.3	534	474	33	17	83				83	17	34	165	1.52	2
S	DO	4S	4		85	85	6	100			100				17	40	0.82	2
S 7	Totals		21	5.2	2,336	2,214	155	8	18	75	4		18	78	32	282	2.26	7
Type T	otals			2.7	11,049	10,748	752	63	9	28	10	7	19	63	29	79	0.78	135

T	TSPCSTG	R		;	Species,	Sort G Projec	rade - Boar et: DOM		olun	nes (T	Type)				I	Page Date Sime	1 4/17/20 7:39:2	
T04N Tw 04N	-	ge	Sec	Tract AREA4		Туре				•	le Trees 26	S	C 1	uFt	T04 BdF W		W S29 T	T00PC
			%					Percent N	let Bo	ard Fo	ot Volu	ıme			Av	erage l	Log	Logs
	s so	Gr	Net	Bd.	Ft. per Ac	re	Total	Log Sc	ale Di	a.	Log	g Len	gth		Ln	Bd	CF/	Per
Spp	T rt	ad	BdFt	Def%	Gross	Net	Net MBF	4-5 6-11	12-16	5 17+	12-20	21-30	31-35	36-99	Ft	Ft	Lf	/Acre
A	DO	CU													5		0.00	1.5
A	DO	1S	33	1.5	656	646	5		91	9		5	19	76	38	259	1.78	2.5
Α	DO	2S	25	1.0	486	481	4	100				3	36	60	36	148	1.13	3.3
A	DO	3S	16	1.3	300	296	2	100			5	4	25	66	34	85	0.83	3.5
A	DO	4S	26	.7	503	499	4	100			35	20	14	31	25	38	0.53	13.1
A	Totals		100	1.2	1,945	1,923	15	66	31	3	10	8	23	59	28	81	0.86	23.9
Type T	Fotals			1.2	1,945	1,923	15	66	31	3	10	8	23	59	28	81	0.86	23.9

Т	TSPCSTC	GR			Species	, Sort G Projec	rade - Boa et: DO	rd Fo	oot V	⁷ oluı	mes ('	Гуре)]	Page Date Fime	4/17/2 7:38:	2013
T04N Tw 04N	_	S20 T ge BW	Sec	Tract AREA5		Туре ТАІ			Plot		Samp	le Tree	es	1	CuFt	T04 Bdl W		8W S20	TTA
			%					Per	cent l	Vet B	oard F	oot Vol	ume			A۱	erage	Log	T
Spp	s so	Gr ad	Net BdFt	Bd. Def%	Ft. per Ad Gross	cre Net	Total Net MBF	L 4-5	og Sc 6-11		ia. 6 17+	Lo 12-20	g Ler 21-30	-	36-99	Ln Ft	Bd Ft	CF/ Lf	L
Н		CU																0.00	\top
Н	DO	CU														7		0.00	
Н	DO	2S	30	.8	5,255	5,213	224			78	22			19	81	38	262	1.69	
Н	DO	3S	62	1.5	10,876	10,712	461	2	93	5		1	5	34	60	35	94	0.78	1
Н	DO	4S	8		1,348	1,348	58	17	83			61	31	8		21	24	0.35	
H	Totals		91	1.2	17,479	17,273	743	3	64	27	7	5	6	27	62	29	84	0.80	2
D	DO	2S	80		665	665	29			100					100	40	240	1.78	
D	DO	3S	20		166	166	7		100						100	40	60	0.60	
D	Totals		4		832	832	36		20	80					100	40	150	1.19	+
A	DO	CU																0.00	
A	DO	2S	72		621	621	27		100				100			30	130	1.13	
A	DO	3S	28		239	239	10		100			100				20	50	0.65	
A	Totals		5		859	859	37		100			28	72			17	60	0.94	
S	DO	3S	100		65	65	3		100						100	40	60	0.75	
S	Totals		0		65	65	3		100					7	100	40	60	0.75	†
Туре Т	otals			1.1	19,235	19,029	818	2	64	28	6	6	8	25	61	29	84	0.82	2

Т	TSPCSTG	GR.			Species	, Sort G Projec	Grade - Boar et: DO	rd Fo NUT	ot V	olur	nes (T	Гуре)]	Page Date Time	1 4/17/2 7:39:4	013
T04 Tv 04	•		Sec	Tract		Typo TAI			Plot 13		-	le Tree 59	es	C 1	uFt	T04 BdI W		SW S33 T	ГТАКЕ
			%					Perc	ent N	let Bo	oard Fo	oot Vol	ume			Av	erage	Log	Logg
Spp	S So	Gr ad	Net BdFt	Bd. Def%	Ft. per Ad Gross	cre Net	Total Net MBF	Lo 4-5		ale Di 12-1	ia. 6 17+	Lo 12-20	g Ler 21-30	~	36-99	Ln Ft	Bd Ft	CF/ Lf	Logs Per /Acre
Н	DO	CU														5		0.00	6.
Н	DO	2S	40	1.6	8,772	8,632	86			75	25			7	93	39	285	1.78	30.
Н	DO	3S	50	1.0	10,694	10,589	106		96	4		0	1	19	80	38	81	0.63	130.
Н	DO	4S	10		1,938	1,938	19		100			38	55		7	21	27	0.38	72.
H	Totals		93	1.1	21,404	21,159	212		57	32	10	4	5	13	79	32	88	0.75	239
A	DO	CU														4		0.00	2.
A	DO	1S	17		293	293	3			100			100			30	150	1.30	2
A	DO	2S	47	1.8	805	791	8		100				70		30	32	123	1.14	6
A	DO	3S	17	14.3	328	281	3		39	61			61	39		28	90	1.29	3
A	DO	4S	19		309	309	3		100			100				17	26	0.41	12
A	Totals		7	3.5	1,736	1,675	17		72	28		18	61	7	14	22	64	0.90	26
Туре	Totals			1.3	23,140	22,834	228		58	32	9	5	9	12	74	31	86	0.76	265.

TC	PSPCSTGR				Sort G	rade - B	oar	d Foo	ot Vo	olum	es (P	roject)						
	4N R08W S20 4N R08W S20) TyR/V		1.00		Project Acres	:	DO	NUT								Page Date Time	4/17/20 10:38:	013
<u> </u>		%				 		Doro	ont of	Not D	oord F	oot Volu					Avoros	o I o o	Lion
	S So Gr	Net	Bd. F	t. per Acre	•	Total				ile Dia		l voiu	Log L	ength		Ln	Averag Bd	CF/	Logs Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF				12-16		12-20			36-99	Ft	Ft	Lf	/Acre
A	DOCU										******					22		0.00	4.8
Α	DO1S	20	.5	897	893		4		18	82		9	36	36	20	29	164	1.48	5.4
A	DO2S	19	1.1	804	796		3		100			3	5	46	46	35	127	0.99	6.3
A A	DO3S DO4S	26 35	.3 2.0	1,163 1,508	1,159 1,478		5 6	4	100 96			17 17	23 24	17	60 42	30 28	72 38	0.80 0.51	16.1 38.7
												-				 			
A 7	Fotals	10	1.1	4,373	4,326		17	1	82	17		13	23	22	43	28	61	0.68	71.3
S S S	DOCU DO2S DO3S DO4S	26 71 3	4.7 12.2 2.8	4,870 14,250 366	4,639 12,506 355		19 50 1		2 37	2 5 43	98 93 21	1 34	3 34	3 21	97 74 32	12 39 34 22	863 744 71	0.00 5.02 5.38 1.07	3.2 5.4 16.8 5.0
s t	otals	42	10.2	19,486	17,500		70		2	5	93	2	3	16	79	31	577	4.57	30.3
Н Н Н	DOCU DO2S DO3S DO4S	74 20 6	3.1 2.9 3.2	14,396 3,970 1,030	13,949 3,857 997		56 15 4		3 88 95	28 5 5	69 7	2 8 50	2 6 40	9 22 1	88 64 8	12 38 35 21	471 91 28	0.00 2.71 0.80 0.44	8.4 29.6 42.4 35.8
н	Γotals	45	3.1	19,397	18,803		75		25	22	53	6	5	11	79	30	162	1.31	116.2
C C C	DOCU DO2S DO3S	83 17 0	5.6 4.7	155 29 184	146 29 175		1 0			100 17	100			39 36 39	61 64 61	15 37 37 21	918 183 140	0.00 6.84 2.07 2.03	.9 .2 .2
_		50	2.7	000	010					7.0	25				100		201		
D D	DO2S DO3S	79 16	2.7 2.2	938 189	913 185		4 1		100	73	27		10	40	100 50	40 35	386 104	2.27 0.93	2.4 1.8
D	DO3S DO4S	5	۷.۷	47	47		0		100			18	10	-70	82	27	55	0.76	.8
D T	Totals	3	2.5	1,174	1,145		5		20	58	22	1	2	6	91	36	230	1.61	5.0
M	DOCU															15		0.00	.5
																15		0.00	
IVI	Fotals												**********						.5
Total	ls		6.0	44,613	41,949		168	0	21	15	63	5	6	14	76	30	187	1.59	224.6

 $\overline{}$

=

TC TSTATS				STA PROJEC		TICS DONUT			PAGE DATE 5	1 5/28/2013
TWP RGE	SECT	TRACT		TYPE		CRES	PLOTS	TREES	CuFt	BdFt
04N 08W		1&3		00CC		63.00	51	323	1	W
				TREES		ESTIMATED TOTAL		PERCENT SAMPLE	•	
	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL	51	323		6.3						
CRUISE DBH COUNT	18 Г	114		6.3		9,284		1.2		
REFOREST COUNT BLANKS 100 %	33	196		5.9						
			STA	ND SUMM	ARY					
	SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
WHEMLOCK	4	7 53.1	20.1	64		116.9	19,839	19,163	4,653	4,653
R ALDER	4		14.2	45		80.8	8,307		2,459	2,459
S SPRUCE		9 9.9	18.7	36		18.8	2,382		581	581
DOUG FIR SPRUCELV		4 6.4 3 .7	22.7 50.9	85 104		18.0	2,880	,	741	741
SNAG		3 .7 4 1.2	28.6	38		9.4 5.5	1,707	1,596	356	356
HEMLEAV		2 .3	36.6	100		2.4	529	529	102	102
BL MAPLE		2 1.9	12.2	14		1.6	32)	32)	102	102
TOTAL	11	4 147.4	17.8	53		253.3	35,643	34,509	8,893	8,893
	CE LIMITS	OF THE SAMPI JT OF 100 THE		WILL BE V	WITHIN	N THE SAMPL	E ERROR			
CL: 68.1 %	CE LIMITS TIMES OF	OF THE SAMPI JT OF 100 THE FF	VOLUME	SAMPLE	TREE	S - BF		# OF TREES		INF. POP.
CL: 68.1 % SD: 1.0	CE LIMITS TIMES OF COR	OF THE SAMPI JT OF 100 THE EFF L% S.E.%	VOLUME	SAMPLE DW A	TREE AVG	S - BF HIGH			S REQ. 10	INF. POP.
CL: 68.1 %	CE LIMITS TIMES OF COR	OF THE SAMPI JT OF 100 THE EFF 2.% S.E.% 3 12.7	VOLUME	SAMPLE	TREE	S - BF		# OF TREES		
CL: 68.1 % SD: 1.0 WHEMLOCK	CE LIMITS TIMES OF COR VAI	OF THE SAMPLUT OF 100 THE OFF S.W. S.E.% 3 12.7 8 10.6	VOLUME	SAMPLE DW A 627 130	TREE AVG 718	S - BF HIGH 810		# OF TREES		
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR	CE LIMITS TIMES OF COR VAI 87 69 94 17	OF THE SAMPLUT OF 100 THE SEFF S.% S.E.% 12.7 8 10.6 7 33.4 6 10.1	VOLUME LC	SAMPLE DW A 627 130 706 1 398	TREE AVG 718 145 1,060 443	S - BF HIGH 810 161 1,414 487		# OF TREES		
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG	CE LIMITS TIMES OF CONTROL 87 69 94 17 51	OF THE SAMPLUT OF 100 THE SEFF S.% S.E.% 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9	VOLUME LC	SAMPLE DW 627 130 706 1 398 2,093 3	TREE AVG 718 145 1,060 443 3,267	S - BF HIGH 810 161 1,414 487 4,440		# OF TREES		
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE	CE LIMITS TIMES OF VAI 87 69 94 17 51	OF THE SAMPLUT OF 100 THE SET IN 10.6 THE SET IN 10.6 THE SET IN 10.1 THE SET	VOLUME LC	SAMPLE DW 627 130 706 1 398 2,093 3	TREE AVG 718 145 1,060 443	S - BF HIGH 810 161 1,414 487		# OF TREES 5		
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV	CE LIMITS TIMES OF CONTROL 87 69 94 17 51	OF THE SAMPLUT OF 100 THE SET IN 10.6 THE SET IN 10.6 THE SET IN 10.1 THE SET	VOLUME LC	SAMPLE DW 627 130 706 1 398 2,093 3	TREE AVG 718 145 1,060 443 3,267	S - BF HIGH 810 161 1,414 487 4,440		# OF TREES		
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE	CE LIMITS TIMES OF CORRESPONDENCE CO	OF THE SAMPI JT OF 100 THE EFF 8.% S.E.% 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0	VOLUME LC	SAMPLE DW 627 130 706 1 398 2,093 3	TREE AVG 718 145 1,060 443 3,267 1,705	S - BF HIGH 810 161 1,414 487 4,440 2,202	7	# OF TREES 5	10	15
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE	OF THE SAMPI JT OF 100 THE SFF 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF L% S.E.%	VOLUME LC 2	SAMPLE DW 4 627 130 706 1 398 2,093 3 1,208 1 492 TREES/A DW 4	TREE AVG 718 145 1,060 443 3,267 1,705 566 CRE AVG	S - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH	7	# OF TREES 5	10	15 86
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAI 82	OF THE SAMPI JT OF 100 THE SFF 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF % S.E.% 7 11.6	VOLUME LC 2	SAMPLE DW 6 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 4 47	TREE AVG 718 145 1,060 443 3,267 1,705 566 CRE AVG 53	S - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59	7	# OF TREES 5 772 # OF PLOTS	10 193 3 REQ.	86 INF. POP.
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAI 82 148	OF THE SAMPI JT OF 100 THE S.W. S.E.W. 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S.W. S.E.W. 7 11.6 6 20.8	VOLUME LC 2	SAMPLE DW 6 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 4 47 58	TREE AVG 718 145 1,060 443 3,267 1,705 566 CRE AVG 53 74	S - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89	7	# OF TREES 5 772 # OF PLOTS	10 193 3 REQ.	86 INF. POP.
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAI 82 148 228	OF THE SAMPI JT OF 100 THE S.W. S.E.W. 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S.W. S.E.W. 7 11.6 6 20.8 6 32.0	VOLUME LC 2	SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7	TREE AVG 718 145 1,060 443 3,267 4,705 566 CRE AVG 53 74 10	S - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13	7	# OF TREES 5 772 # OF PLOTS	10 193 3 REQ.	86 INF. POP.
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COF VAI 82 148 228 389	OF THE SAMPI JT OF 100 THE S.W. S.E.W. 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S.W. S.E.W. 7 11.6 6 20.8 6 32.0 9 54.6	VOLUME LC 2	SAMPLE DW 6 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 4 47 58	TREE AVG 718 145 1,060 443 3,267 1,705 566 CRE AVG 53 74	ES - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10	7	# OF TREES 5 772 # OF PLOTS	10 193 3 REQ.	86 INF. POP.
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAI 82 148 228	OF THE SAMPI JT OF 100 THE S. S.E. S.E. S. 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S. S.E. S.E. S.E. S.E. S.E. S.E. S.E.	VOLUME LC 2	SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3	TREE AVG 718 145 1,060 443 3,267 4,705 CRE AVG 53 74 10 6	S - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13	7	# OF TREES 5 772 # OF PLOTS	10 193 3 REQ.	86 INF. POP.
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COF VAI 82 148 228 389 271	OF THE SAMPI JT OF 100 THE S. S.E. S.E. S. 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S. S.E. S. S.E. S. S. S.E. S.E. S. S.E. S.E. S. S.E. S.	VOLUME LC 2	SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3	TREE AVG 718 145 1,060 443 3,267 4,705 CRE AVG 53 74 10 6 1	ES - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1	7	# OF TREES 5 772 # OF PLOTS	10 193 3 REQ.	86 INF. POP.
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE	CE LIMITS TIMES OF CORRESPONDENCE CO	OF THE SAMPI JT OF 100 THE S. S.E. S. 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S. S.E. S. 7 11.6 6 20.8 6 32.0 9 54.6 3 38.0 0 36.5 7 57.0 1 99.9	VOLUME LC LC	SAMPLE DW 4 627 130 706 1398 2,093 3 4,208 1 492 TREES/A DW 4 47 58 7 3 0 1 0 0	TREE AVG 718 145 1,060 443 3,267 1,705 CRE AVG 53 74 10 6 1 1 0 2	ES - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4	7	# OF TREES 5 772 # OF PLOTS 5	10 193 3 REQ.	86 INF. POP.
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR S SPRUCE DOUG FIR S SPRUCELV SNAG HEMLEAV	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAI 82 148 228 389, 271, 261, 407.	OF THE SAMPI JT OF 100 THE S. S.E. S. 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S. S.E. S. 7 11.6 6 20.8 6 32.0 9 54.6 3 38.0 0 36.5 7 57.0 1 99.9	VOLUME LC LC	SAMPLE DW 4 627 130 706 1398 2,093 3 4,208 1 492 TREES/A DW 4 47 58 7 3 0 1 0 0	TREE AVG 718 145 1,060 443 3,267 1,705 CRE AVG 53 74 10 6 1 1 0	ES - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2	7	# OF TREES 5 772 # OF PLOTS	10 193 3 REQ.	86 INF. POP.
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAI 82 148 228 389 271. 261. 407. 714. 72.	OF THE SAMPLUT OF 100 THE SET IN	VOLUME LC LC	SAMPLE DW 4 627 130 706 1398 2,093 3 4,208 1 492 TREES/A DW 4 47 58 7 3 0 1 0 0	TREE AVG 718 145 1,060 443 3,267 4,705 566 CRE AVG 53 74 10 6 1 1 0 2 147	HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162	#	# OF TREES 5 772 # OF PLOTS 5	193 3 REO. 10	86 INF. POP. 15
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 0.0	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COF VAI 82 148 228 389 271 261 407 714 72. COF	OF THE SAMPI JT OF 100 THE S.W. S.E.W. 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S.E.W. 7 11.6 6 20.8 6 32.0 9 54.6 3 38.0 0 36.5 7 57.0 1 99.9 7 10.2 FF	VOLUME LC LC	SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3 0 1 0 0 132 BASAL A DW A	TREE AVG 718 145 1,060 443 3,267 4,705 566 CRE AVG 53 74 10 6 1 1 0 2 147 REA/A	ES - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 CCRE HIGH	#	# OF TREES 5 772 # OF PLOTS 5	193 3 REO. 10	86 INF. POP. 15
CL: 68.1 % SD: 1.0 WHEWLOCK R ALJER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALJER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK S SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COF VAI 82 148 228 389 271. 261. 407. 714. 72. COF VAF	OF THE SAMPI JT OF 100 THE 2.% S.E.% 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF 2.% S.E.% 7 11.6 6 20.8 6 32.0 9 54.6 3 38.0 0 36.5 7 57.0 1 99.9 7 10.2 FF	LC LC	SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3 0 1 0 0 132 BASAL A DW A	TREE AVG 718 145 1,060 443 3,267 4,705 CRE AVG 53 74 10 6 1 1 0 2 147 REA/A AVG	ES - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 ACRE HIGH 129	#	# OF TREES 5 772 # OF PLOTS 5	193 3 REO. 10 53 5 REQ.	86 INF. POP. 15
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAE 82 148 228 389 271. 261. 407. 714. 72. COE VAE 75. 128.	OF THE SAMPI JT OF 100 THE S.W. S.E.W. 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S.E.W. 7 11.6 6 20.8 6 32.0 9 54.6 3 38.0 0 36.5 7 57.0 1 99.9 7 10.2 FF	LC LC	SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3 0 1 0 0 132 BASAL A DW 66	TREE AVG 718 145 1,060 443 3,267 4,705 CRE AVG 53 74 10 6 1 1 0 2 147 REA/A AVG	HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 CCRE HIGH 129 95	#	# OF TREES 5 772 # OF PLOTS 5	193 3 REO. 10 53 5 REQ.	86 INF. POP. 15
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE S SPRUCE	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COF VAR 82 148 228 389 271. 261. 407. 714. 72. COF VAF 75. 128. 171.	OF THE SAMPI JT OF 100 THE S.W. S.E.% 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S.E.% 7 11.6 6 20.8 6 32.0 9 54.6 3 38.0 0 36.5 7 57.0 1 99.9 7 10.2 FF S.E.% 9 10.6	LC LC	SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3 0 1 0 0 132 BASAL A DW 66 14	TREE AVG 718 145 1,060 443 3,267 4,705 CRE AVG 53 74 10 6 1 1 0 2 147 REA/A AVG 117 81 19	HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 CCRE HIGH 129 95 23	#	# OF TREES 5 772 # OF PLOTS 5	193 3 REO. 10 53 5 REQ.	86 INF. POP. 15
CL: 68.1 % SD: 1.0 WHEWLOCK R ALJER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALJER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALJER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALJER S SPRUCE DOUG FIR	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAB 82 148 228. 389. 271. 261. 407. 714. 72. COE VAF 75. 128. 171. 389.	OF THE SAMPI JT OF 100 THE S.W. S.E.% 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S.E.% 7 11.6 6 20.8 6 32.0 9 54.6 3 38.0 0 36.5 7 57.0 1 99.9 7 10.2 FF S.E.% 9 10.6 1 99.9 1 0.9 1 0.9	LC LC	SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3 0 1 0 0 132 BASAL A DW 66 14 8	TREE AVG 718 145 1,060 443 3,267 .,705 .,705 .,705 .,705 .,706 .,707 .,708 .,708 .,708 .,709 .,7	ES - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 CCRE HIGH 129 95 23 28	#	# OF TREES 5 772 # OF PLOTS 5	193 3 REO. 10 53 5 REQ.	86 INF. POP. 15
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SPRUCELV	CE LIMITS TIMES OF CORRESPONDENCE CO	OF THE SAMPI JT OF 100 THE S.W. S.E.% 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S.W. S.E.% 7 11.6 6 20.8 6 32.0 9 54.6 3 38.0 0 36.5 7 57.0 1 99.9 7 10.2 FF S.E.% S.E.% 9 54.6 3 38.0 0 36.5 7 57.0 1 99.9 7 10.2	LC LC	SAMPLE DW A 627 130 706 1398 2,093 3 4,208 1 492 TREES/A DW A 47 58 7 3 0 1 0 0 132 BASAL A DW A 104 666 14 8 6	TREE AVG 718 145 1,060 443 3,267 .,705 .,705 .,705 .,705 .,705 .,705 .,707 .,707 .,708 .,708 .,709 .,7	S - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 CCRE HIGH 129 95 23 28 13	#	# OF TREES 5 772 # OF PLOTS 5	193 3 REO. 10 53 5 REQ.	86 INF. POP. 15
CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR	CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAB 82 148 228. 389. 271. 261. 407. 714. 72. COE VAF 75. 128. 171. 389.	OF THE SAMPI JT OF 100 THE S. S.E. S. 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S. S.E. S. 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S. S.E. S. 7 11.6 6 20.8 6 32.0 9 54.6 3 38.0 0 36.5 7 57.0 1 99.9 7 10.2 FF S. S.E. S. 9 10.6 5 18.0 9 24.0 9 54.6 2 36.8 2 35.4	LC LC	SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3 0 1 0 0 132 BASAL A DW 66 14 8	TREE AVG 718 145 1,060 443 3,267 .,705 .,705 .,705 .,705 .,706 .,707 .,708 .,708 .,708 .,709 .,7	ES - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 CCRE HIGH 129 95 23 28	#	# OF TREES 5 772 # OF PLOTS 5	193 3 REO. 10 53 5 REQ.	86 INF. POP. 15

TC TSTATS				STATIS JECT	TICS DONUT			PAGE DATE	2 5/28/2013
TWP RGE	SECT TRA	ACT	TYP]	E A	CRES	PLOTS	TREES	CuFt	BdFt
04N 08W	20 1&3	3	00C	C	63.00	51	323	1	W
CL: 68.1%	COEFF		BASA	AL AREA/	ACRE		# OF PLC	TS REQ.	INF. POP.
SD: 1.0	VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
TOTAL	37.2	5.2	240	253	267		55	14	6
CL: 68.1 %	COEFF		NET	BF/ACRE		î	# OF PLOTS	REQ.	INF. POP.
SD: 1.0	VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
WHEMLOCK	76.7	10.7	17,106	19,163	21,219				
R ALDER	130.2	18.2	6,739	8,240	9,741				
S SPRUCE	177.3	24.8	1,627	2,164	2,701				
DOUG FIR	389.9	54.6	1,280	2,817	4,354				
SPRUCELV	263.3	36.8	1,008	1,596	2,184				
SNAG									
HEMLEAV	404.5	56.6	229	529	828				
BL MAPLE									
TOTAL	35.8	5.0	32,779	34,509	36,239		51	13	6

TC TSTATS				S'I PROJE	CT	FICS DONUT			PAGE DATE	1 5/28/2013
TWP RGE	SECT TH	RACT		TYPE		CRES	PLOTS	TREES	CuFt	BdFt
04N 08W		REA2		00PC	743	70.00	41	317	1	W
						ECTIMATED.				
				TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
	PLOTS	TREES		PER PLOT	•	TREES		REES		
TOTAL	41	317		7.7						
CRUISE	17	111		6.5		9,946		1.1		
DBH COUNT						•				
REFOREST										
COUNT	24	189		7.9						
BLANKS										
100 %										
				ND SUM						
	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET DE/AC	GROSS	
CDDIICEII	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
SPRUCELV HEMLEAV	43 22	9.6 18.8	45.9 25.1	99 70		110.2 64.7	22,314 13,423	19,940 12,982	4,838 2,909	
WHEMLOCK		18.8 50.9	13.6	70 46		51.7	5,818	5,678	2,909 1,569	2,909 1,569
R ALDER	12	45.4	13.2	35		42.9	2,895	2,856	953	953
S SPRUCE	3	2.9	27.4	90		11.7	2,336	2,214	561	561
SNAG	6	1.1	35.4	63		7.8				
ALDRLEAV	1	11.1	9.0	17		4.9	111	111	45	45
DOUGLEAV	2	.8 1.5	26.1	96		2.9	605	587	139	139
	2	1 1	19.2	24		2.9	245	234	69	69
	3 111 CE LIMITS OF TIMES OUT COEFF	<i>142.1</i> ГНЕ SAMPL	19.7 Æ		WITHIN			44,602 OF TREES	11,082 REQ.	
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0	111 CE LIMITS OF TIMES OUT COEFF VAR.%	142.1 THE SAMPL DF 100 THE S.E.%	19.7 LE VOLUME	WILL BE SAMPL	E TREE AVG	I THE SAMPI S - BF HIGH	E ERROR			INF. POP
CL: 68.1 % SD: 1.0 SPRUCELV	COEFF VAR.% 53.4	142.1 THE SAMPL DF 100 THE S.E.% 8.1	19.7 E VOLUME LC	WILL BE SAMPL DW 2,567	E TREE AVG 2,795	S - BF HIGH 3,022	E ERROR	OF TREES	REQ.	11,082 INF. POP
TOTAL CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV	COEFF VAR.% 53.4 59.5	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0	19.7 E VOLUME LC	SAMPL DW 2,567 1,110	E TREE AVG 2,795 1,275	N THE SAMPI S - BF HIGH 3,022 1,441	E ERROR	OF TREES	REQ.	INF. POP
CL: 68.1 % SD: 1.0 SPRUCELV	COEFF VAR.% 53.4	142.1 THE SAMPL DF 100 THE S.E.% 8.1	19.7 E VOLUME LC	WILL BE SAMPL DW 2,567	E TREE AVG 2,795	S - BF HIGH 3,022	E ERROR	OF TREES	REQ.	INF. POP
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE	COEFF VAR.% 53.4 59.5 117.6	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7	19.7 E VOLUME LC	WILL BE SAMPL DW 2,567 1,110 171	E TREE AVG 2,795 1,275 237	N THE SAMPI S - BF HIGH 3,022 1,441 302	E ERROR	OF TREES	REQ.	INF. POP
CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG	111 CE LIMITS OF TIMES OUT COEFF VAR.% 53.4 59.5 117.6 65.1	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6	19.7 E VOLUME LC	SAMPL OW 2,567 1,110 171 59	E TREE AVG 2,795 1,275 237 73	N THE SAMPI S - BF HIGH 3,022 1,441 302 88	E ERROR	OF TREES	REQ.	INF. POP
CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8	19.7 E VOLUME LC	WILL BE SAMPL DW 2,567 1,110 171 59 728	E TREE AVG 2,795 1,275 237 73 773	S - BF HIGH 3,022 1,441 302 88 818	E ERROR	OF TREES	REQ.	INF. POP
CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV	111 CE LIMITS OF TIMES OUT COEFF VAR.% 53.4 59.5 117.6 65.1 8.4	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8	19.7 E VOLUME LC	WILL BE SAMPL DW 2,567 1,110 171 59 728	E TREE AVG 2,795 1,275 237 73 773	S - BF HIGH 3,022 1,441 302 88 818	E ERROR	OF TREES	REQ.	INF. POP
CONFIDENCE 68.1 % CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3	J9.7 LO	WILL BE SAMPL DW 2,567 1,110 171 59 728	E TREE AVG 2,795 1,275 237 73 773	S - BF HIGH 3,022 1,441 302 88 818	E ERROR	OF TREES 5	REQ. 10	INF. POP
CCI: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8	J9.7 LO	WILL BE SAMPL DW 2,567 1,110 171 59 728 225 289 ,298	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442	S - BF HIGH 3,022 1,441 302 88 818	E ERROR	OF TREES 5	REQ. 10	INF. POP
CL: 68.1 % CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 %	111 CE LIMITS OF TIMES OUT (COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0	J9.7 LO LO	WILL BE SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE	S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587	E ERROR	OF TREES 5 447 OF PLOTS	REQ. 10	INF. POP
CL: 68.1 % CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 %	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3	J9.7 LO LO	WILL BE SAMPL DW 2,567 1,110 171 59 728 225 289 ,298	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442	S - BF HIGH 3,022 1,441 302 88 818	E ERROR	OF TREES 5	REQ. 10	INF. POP
CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1	J9.7 LO LO	WILL BE SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22	E ERROR	OF TREES 5 447 OF PLOTS	REQ. 10	INF. POP
CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9	J9.7 LO LO	WILL BE SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61	E ERROR	OF TREES 5 447 OF PLOTS	REQ. 10	INF. POP
CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0	J9.7 LO LO	SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES/DW 8 15 41 36	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55	E ERROR	OF TREES 5 447 OF PLOTS	REQ. 10	INF. POP
TOTAL CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7	J9.7 LO LO	SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES/DW 8 15 41 36 2	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4	E ERROR	OF TREES 5 447 OF PLOTS	REQ. 10	INF. POP
TOTAL CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2	J9.7 LO LO	SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2	E ERROR	OF TREES 5 447 OF PLOTS	REQ. 10	INF. POP
TOTAL CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7	J9.7 LO LO	SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES/DW 8 15 41 36 2	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4	E ERROR	OF TREES 5 447 OF PLOTS	REQ. 10	INF. POP
TOTHEM CCI: 68.1 % SD: 1.0 SPRUCELV HEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTHEM SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV CEDLEAV CEDLEAV	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6	J9.7 LO LO	SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0 0	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3	E ERROR	OF TREES 5 447 OF PLOTS 5	REQ. 10	INF. POP
TOTAL CU: 68.1 % SD: 1.0 SPRUCELV HEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV CEDLEAV	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 58.4	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5	J9.7 LO LO	SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1	E ERROR	OF TREES 5 447 OF PLOTS	REQ. 10	INF. POP 1 INF. POP 1
TOTHE STATE OF THE METER ALDER SPRUCE SNAG ALDER SPRUCE SVENT STATE STAT	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6	J9.7 LO LO	SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0 0	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 1 142	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3 155	E ERROR	OF TREES 5 447 OF PLOTS 5	REQ. 10 112 REQ. 10	INF. POP 1 INF. POP
TOTAL CCI: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CLI: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV CEDLEAV TOTAL CLI: 68.1 % SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CCI: 68.1 % SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CCI: 68.1 % SD: 1.0	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 58.4 COEFF VAR.%	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6 9.1 S.E.%	19.7 JE VOLUME	SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES/DW 8 15 41 36 2 1 5 0 0 129 BASAL	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 1 142 AREA/A AVG	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3 155 CRE HIGH	E ERROR	OF TREES 5 447 OF PLOTS 5	REQ. 10 112 REQ. 10	INF. POP
$TOT \rightarrow L$ $CONFIDENCY $	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 58.4 COEFF VAR.% 76.4	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6 9.1 S.E.% 11.9	19.7 JE VOLUME	SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0 0 129 BASAL DW 97	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 1 142 AREA/A AVG 110	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3 155 CRE HIGH 123	E ERROR	OF TREES 5 447 OF PLOTS 5	REQ. 10 112 REQ. 10	INF. POP
TOT+L $CONFIDENCY (68.1)$ $CL: 68.1 % (68.1)$ $SPRUCEUV$ $HEMLOCK (68.1)$ $SSPRUCE (68.1)$ $CL: 68.1 % (68.1)$ $SPRUCEUV$ $HEMLEAV (68.1)$ $SPRUCEUV$ $HEMLEAV (68.1)$ $SPRUCEUV$ $HEMLEAV (68.1)$ $SPRUCEUV$ $SSPRUCE (68.1)$ $SPRUCE (68.1)$ $CL: 68.1 % (68.1)$ $SPUCE (68.1)$ $CLI (68.1)$	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 58.4 COEFF VAR.% 76.4 91.1	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6 9.1 S.E.% 11.9 14.2	19.7 JE VOLUME	SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0 0 129 BASAL DW 97 56	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 1 142 AREA/A AVG 110 65	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3 155 CRE HIGH 123 74	E ERROR	OF TREES 5 447 OF PLOTS 5	REQ. 10 112 REQ. 10	INF. POP
TOT+L $CONFIDENCY (68.1)$ $CL: 68.1 % (68.1)$ $SPRUCEUV$ $HEMLEAV$ $WHEMLOCK$ $RALDER$ $SSPUCE$ $SNAG$ $ALDER$ $SD: 1.0$ $SPRUCEUV$ $HEMLEAV$ $WHEMLOCK$ $RALDER$ $SSPRUCE$ $SNAG$ $ALDER$ $SPRUCE$ $SNAG$ $ALDER$ $SPRUCE$ $SPRUCE$ $SPRUCE$ $SPRUCE$ $SPRUCE$ $SNAG$ $SPRUCE$	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 58.4 COEFF VAR.% 76.4 91.1 112.4	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6 9.1 S.E.% 11.9 14.2 17.5	19.7 JE VOLUME	SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0 0 129 BASAL DW 97 56 43	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 1 142 AREA/A AVG 110 65 52	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3 155 CCRE HIGH 123 74 61	E ERROR	OF TREES 5 447 OF PLOTS 5	REQ. 10 112 REQ. 10	INF. POP
TOT+L $CONFIDENCY (68.1)$ $CL: 68.1 % (68.1)$ $SPRUCEUV$ $HEMLOCK (68.1)$ $SSPRUCE (68.1)$ $CL: 68.1 % (68.1)$ $SPRUCEUV$ $HEMLEAV (68.1)$ $SPRUCEUV$ $HEMLEAV (68.1)$ $SPRUCEUV$ $HEMLEAV (68.1)$ $SPRUCEUV$ $SSPRUCE (68.1)$ $SPRUCE (68.1)$ $CL: 68.1 % (68.1)$ $SPUCE (68.1)$ $CLI (68.1)$	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 58.4 COEFF VAR.% 76.4 91.1	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6 9.1 S.E.% 11.9 14.2	19.7 JE VOLUME	SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0 0 129 BASAL DW 97 56	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 1 142 AREA/A AVG 110 65	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3 155 CRE HIGH 123 74	E ERROR	OF TREES 5 447 OF PLOTS 5	REQ. 10 112 REQ. 10	INF. POP
TOTHEM CCI: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV TOTHEM SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDRLEAV TOTHEM CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV CEDLEAV TOTHEM CL: 68.1 % SPRUCELV HEMLEAV WHEMLOCK R ALDER SPRUCELV HEMLEAV WHEMLOCK R ALDER	COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 58.4 COEFF VAR.% 76.4 91.1 112.4 137.1	142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6 9.1 S.E.% 11.9 14.2 17.5 21.4	19.7 JE VOLUME	SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0 0 129 BASAL DW 97 56 43 34	E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 1 142 AREA/A AVG 110 65 52 43	N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3 155 CRE HIGH 123 74 61 52	E ERROR	OF TREES 5 447 OF PLOTS 5	REQ. 10 112 REQ. 10	INF. POP

TC TST	ΓATS			STATISTICS PROJECT DONUT				PAGE DATE :	2 5/28/2013	
TWP	RGE	SECT	TRACT	TYP	E A	CRES	PLOTS	TREES	CuFt	BdFt
04N	08W	20	AREA2	00PC	<u> </u>	70.00	41	317	1	W
CL:	68.1%	COE	7F	BASA	AL AREA	ACRE		# OF PLO	TS REQ.	INF. POP.
SD:	1.0	VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	GLEAV	360.3	56.2	1	3	5				
CEDI	LEAV	360.3	56.2	1	3	5				
TOTA	AL	28.6	4.5	287	300	313		33	8	4
CL:	68.1 %	COEF	F	NET	BF/ACRE			# OF PLOTS	REQ.	INF. POP.
SD:	1.0	VAR.	% S.E.%	LOW	AVG	HIGH		5	10	15
SPRU	ICELV	75.5	11.8	17,591	19,940	22,288				
HEMI	LEAV	94.9	14.8	11,059	12,982	14,905				
WHE	MLOCK	118.1	18.4	4,632	5,678	6,724				
R ALI	DER	137.9	21.5	2,241	2,856	3,471				
S SPR	RUCE	247.8	38.7	1,358	2,214	3,070				
SNAC	}									
ALDR	RLEAV	360.3	56.2	49	111	174				
DOUG	GLEAV	366.9	57.2	251	587	923				
CEDL	EAV	459.3	71.7	66	234	401				
TOTA	AL	30.1	4.7	42,505	44,602	46,699		36	9	4

	TATS				ST PROJE	CATIS	TICS DONUT			PAGE DATE	1 5/28/2013
TWP	RGE	SECT 7	ГRАСТ		TYPE	A	CRES	PLOTS	TREES	CuFt	BdFt
04N	08W	29 A	AREA4		00PC		8.00	3	126	1	W
							ESTIMATED	,	PERCENT		
					TREES		TOTAL	;	SAMPLE		
		PLOTS	TREES		PER PLOT		TREES	•	TREES		
TOTA	L	3	126		42.0						
CRUIS	SE	3	126		42.0		126		100.0		
DBH (COUNT										
REFO											
COUN											
BLAN											
100 %)										
				STA	ND SUMN	MARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROS	S NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	
R ALE	DER	126	15.8	14.7	45		18.6	1,945	1,923	57-	4 574
TOTA	AL.	126	15.8	14.7	45		10.6	1.045	1,923	574	
					73		18.6	1,945	1,923	3/2	4 3/4
CONF	FIDENCI 68.1	E LIMITS OF	F THE SAMPL	E	WILL BE		N THE SAMPI	LE ERROR			
CONF	68.1 %	E LIMITS OF TIMES OUT COEFI	F THE SAMPL COF 100 THE	E VOLUME	WILL BE	E TREE	N THE SAMPI	LE ERROR	OF TREES	S REQ.	
CONF	FIDENC 68.1 68.1 % 1.0	E LIMITS OF TIMES OUT COEFF VAR.9	F THE SAMPL F OF 100 THE F S.E.%	E VOLUME	WILL BE SAMPLI DW	E TREE AVG	N THE SAMPI S - BF HIGH	LE ERROR			INF. POP.
CONF CL: SD: R ALD	FIDENCE 68.1 68.1 % 1.0 DER	E LIMITS OF TIMES OUT COEFF VAR.9 81.5	F THE SAMPL C OF 100 THE F 6 S.E.% 7.3	E VOLUME	WILL BE SAMPLI DW 113	E TREE AVG 122	N THE SAMPI SS - BF HIGH 131	LE ERROR	FOF TREES	S REQ. 10	INF. POP.
CONF CL: SD: R ALD TOTA	FIDENC: 68.1 68.1 % 1.0 DER	E LIMITS OF TIMES OUT COEFF VAR.9 81.5 81.5	F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3	E VOLUME	WILL BE SAMPLI DW	E TREE AVG	N THE SAMPI S - BF HIGH	LE ERROR	OF TREES	S REQ.	INF. POP.
CONF CL: SD: R ALD TOTA	FIDENCE 68.1 68.1 % 1.0 DER	E LIMITS OF TIMES OUT COEFF VAR.9 81.5	F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3	E VOLUME	WILL BE SAMPLI DW 113	E TREE AVG 122 122	N THE SAMPI SS - BF HIGH 131	LE ERROR	FOF TREES	S REQ. 10 66	INF. POP. 1
CL: SD: R ALD TOTA CL: SD:	FIDENCE 68.1 % 1.0 DER L 68.1 % 1.0	E LIMITS OF TIMES OUT COEFF VAR.9 81.5 81.5 COEFF VAR.9	F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3 F 6 S.E.%	E VOLUME LC	WILL BE SAMPLI DW 113 113 TREES/A	E TREE AVG 122 122 ACRE AVG	N THE SAMPI SS - BF HIGH 131	LE ERROR	OF TREES 5	S REQ. 10 66	INF. POP. 1 2 INF. POP.
CL: SD: R ALD TOTA CL: SD: R ALD	FIDENCE 68.1 % 1.0 DER L 68.1 % 1.0 DER	E LIMITS OF TIMES OUT COEFF VAR.9 81.5 81.5 COEFF VAR.9 15.6	F THE SAMPL F OF 100 THE 6 S.E.% 7.3 7.3 7.3 F 6 S.E.% 10.8	E VOLUME LC	WILL BE SAMPLI DW 113 113 TREES/A DW 14	E TREE AVG 122 122 ACRE AVG 16	N THE SAMPI SS - BF HIGH 131 // 131 HIGH	LE ERROR	F OF TREES 5 265 F OF PLOTS	S REQ. 10 66 S REQ.	INF. POP. 1 2 INF. POP.
CCL: SD: R ALD TOTA CL: SD: R ALD TOTA	FIDENCE 68.1 % 1.0 DER LL 68.1 % 1.0 DER LL	E LIMITS OF TIMES OUT COEFFE VAR.9 81.5 81.5 COEFFE VAR.9 15.6 15.6	F THE SAMPL F OF 100 THE 6 S.E.% 7.3 7.3 7.3 6 S.E.% 10.8 10.8	E VOLUME LC	WILL BE SAMPLI DW 113 113 TREES/A	E TREE AVG 122 122 ACRE AVG	N THE SAMPI S - BF HIGH 131 131 HIGH	LE ERROR	F OF TREES 5 265 F OF PLOTS	S REQ. 10 66 S REQ.	INF. POP. 2 INF. POP.
CL: SD: R ALD TOTA CL: SD: R ALD CL: CL: CL: CL: CL: CL: CL:	68.1 % 1.0 DER 1.0 68.1 % 1.0 DER 1.0 DER 1.0 DER 1.0 DER 1.0 DER 1.0 DER 1.0 DER 1.0	COEFI VAR.% 81.5 81.5 COEFI VAR.% 15.6 15.6 COEFF	F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3 7.3 6 S.E.% 10.8 10.8	E VOLUME LC	WILL BE SAMPLI DW 113 113 TREES/A DW 14	AVG 122 122 ACRE AVG 16 16	N THE SAMPI SS - BF HIGH 131 131 HIGH 17	E ERROR	# OF TREES 5 265 # OF PLOTS 5	5 REQ. 10 66 5 REQ. 10	INF. POP. 1 2 INF. POP. 1
CL: SD: R ALD TOTA CL: SD: R ALD CL: CL: CL: CL: CL: CL: CL: CL: CL: CL:	FIDENCE 68.1 % 1.0 DER LL 68.1 % 1.0 DER LL 68.1 % 1.0	E LIMITS OF TIMES OUT COEFFE VAR.% 81.5 81.5 COEFFE VAR.% 15.6 COEFFE VAR.%	F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3 7.3 F 6 S.E.% 10.8 7 6 S.E.%	E VOLUME LC	WILL BE SAMPLI DW 113 113 TREES/A DW 14 14 BASAL A	E TREE AVG 122 122 ACRE AVG 16 16 AREA/A	N THE SAMPI SS - BF HIGH 131 131 HIGH 17 17 ACRE HIGH	E ERROR	# OF TREES 5 265 # OF PLOTS 5	5 REQ. 10 66 5 REQ. 10	INF. POP. 1 2 INF. POP. 1
CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: R ALD CL: R ALD CL: R ALD	FIDENCE 68.1 % 1.0 DER LL 68.1 % 1.0 DER LL 68.1 % 1.0 DER	E LIMITS OF TIMES OUT COEFF VAR.% 81.5 81.5 COEFF VAR.% 15.6 COEFF VAR.% 30.6	F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3 7.3 6 S.E.% 10.8 10.8 7 6 S.E.% 21.2	E VOLUME LC	WILL BE SAMPLI DW 113 113 TREES/A DW 14 14 BASAL A DW 15	E TREE AVG 122 122 ACRE AVG 16 16 AREA/A AVG 19	N THE SAMPI SS - BF HIGH 131 131 HIGH 17 17 ACRE HIGH 23	E ERROR	FOF TREES 5 265 FOF PLOTS 5 14 FOF PLOTS 5	S REQ. 10 66 S REQ. 10 4 S REQ. 10	INF. POP. 1 2 INF. POP. 1
CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: CC: CC: CC: CC: CC: CC: CC: CC: CC:	FIDENCE 68.1 % 1.0 DER AL 68.1 % 1.0 DER AL 68.1 % 1.0 DER AL	E LIMITS OF TIMES OUT COEFFE VAR.% 81.5 81.5 COEFFE VAR.% 15.6 COEFFE VAR.%	F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3 7.3 F 6 S.E.% 10.8 7 6 S.E.%	E VOLUME LC	WILL BE SAMPLI DW 113 113 TREES/A DW 14 14 BASAL A	E TREE AVG 122 122 ACRE AVG 16 16 AREA/A	N THE SAMPI SS - BF HIGH 131 131 HIGH 17 17 ACRE HIGH	E ERROR	# OF TREES 5 265 # OF PLOTS 5 14	5 REQ. 10 66 5 REQ. 10 4 5 REQ.	INF. POP. 1 INF. POP. 1 INF. POP.
CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: SD: TOTA	FIDENCE 68.1 % 1.0 DER LL 68.1 % 1.0 DER LL 68.1 % 1.0 DER	E LIMITS OF TIMES OUT COEFF VAR.% 81.5 81.5 COEFF VAR.% 15.6 COEFF VAR.% 30.6	F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3 F 6 S.E.% 10.8 10.8 F 6 S.E.% 21.2 21.2	E VOLUME LC	WILL BE SAMPLI DW 113 113 TREES/A DW 14 14 BASAL A DW 15	E TREE AVG 122 122 ACRE AVG 16 16 AREA/A AVG 19	N THE SAMPI SS - BF HIGH 131 131 HIGH 17 17 ACRE HIGH 23	LE ERROR	FOF TREES 5 265 FOF PLOTS 5 14 FOF PLOTS 5	S REQ. 10 66 S REQ. 10 4 S REQ. 10	INF. POP. 1 2 INF. POP. 1 INF. POP.
CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: SD: R ALD TOTA	FIDENCE 68.1 % 1.0 DER LL 68.1 % 1.0 DER LL 68.1 % 1.0 DER LL 68.1 % 1.0	E LIMITS OF TIMES OUT COEFF VAR.% 81.5 81.5 COEFF VAR.% 15.6 COEFF VAR.% 30.6 30.6 COEFF VAR.%	F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3 F 6 S.E.% 10.8 10.8 7 6 S.E.% 21.2 21.2 7 6 S.E.%	E VOLUME LC	WILL BE SAMPLI DW 113 113 TREES/A DW 14 14 BASAL A DW 15 15 NET BF/	E TREE AVG 122 122 ACRE AVG 16 16 AREA/A AVG 19	N THE SAMPI SS - BF HIGH 131 131 HIGH 17 17 ACRE HIGH 23	LE ERROR	# OF TREES 5 265 # OF PLOTS 5 14 # OF PLOTS 5 5 54	S REQ. 10 66 S REQ. 10 4 S REQ. 10	INF. POP. 1 INF. POP. 1 INF. POP. 1 INF. POP. 1
CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: CL: CC: CC: CC: CC: CC: CC: CC: CC:	FIDENCE 68.1 % 1.0 DER LL 68.1 % 1.0 DER LL 68.1 % 1.0 DER LL 68.1 % 1.0 DER LL	E LIMITS OF TIMES OUT COEFF VAR.% 81.5 81.5 COEFF VAR.% 15.6 15.6 COEFF VAR.% 30.6 30.6 COEFF	F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3 F 6 S.E.% 10.8 10.8 7 6 S.E.% 21.2 21.2	E VOLUME LC LC	WILL BE SAMPLI DW 113 113 TREES/A DW 14 14 BASAL A DW 15 15 NET BF/ DW	E TREE AVG 122 122 ACRE AVG 16 16 AREA/A AVG 19 19	N THE SAMPI S - BF HIGH 131 131 HIGH 17 17 ACRE HIGH 23 23	LE ERROR	# OF TREES 5 265 # OF PLOTS 5 14 # OF PLOTS 5 54	5 REQ. 10 66 5 REQ. 10 4 5 REQ. 10 13	INF. POP. 1 INF. POP. 1 INF. POP.

TC TSTATS				ST PROJE	`ATIS' CT	FICS DONUT			PAGE Date 5	1 5/28/2013
TWP RGE	SECT TI	RACT		TYPE	A	CRES	PLOTS	TREES	CuFt	BdFt
04N 08W	20 A)	REA5		OOPC		43.00	30	241	11	W
				TREES		ESTIMATED TOTAL		PERCENT AMPLE		
	PLOTS	TREES	•	PER PLOT		TREES		REES		
TOTAL	30	241		8.0						
CRUISE	14	76		5.4		7,517		1.0		
DBH COUNT										
REFOREST										
COUNT	16	128		8.0						
BLANKS 100 %										
100 70			C/TC A 2	AID CEDM	W A TOXY					
	CAMDLE	TDEEC		ND SUM		DAGAI	CDOGG	NET	CP CGG) IFT
	SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
WHEMLOCK	29	100.8	15.3	62	אויוע	128.0	17,479	17,273	4,795	4,795
HEMLEAV	31	45.1	22.0	77		118.7	21,233	20,692	5,030	4,795 5,030
DOUGLEAV	4	11.5	23.0	87		33.3	6,473	6,473	1,497	1,497
SNAG	5	5.3	24.5	28		17.3	* *	•	Ž •	,
DOUG FIR	1	2.8	21.0	82		6.7	832	832	263	263
R ALDER	1	4.8	16.0	56		6.7	859	859	224	224
SPRUCELV	2	.4	43.9	98		4.0	892	821	187	187
ALDRLEAV	1	2.3	18.0	64		4.0	656	656	158	158
S SPRUCE CEDLEAV	1	1.1 .8	15.0 18.0	41 42		1.3 1.3	65	65	33	33
TOTAL	76	.o 174.8	18.0 18.4	42 66		321.3	48,490	47,672	12,188	12,188
68.1	TIMES OUT (OF 100 THE	VOLUME	WILL BE	WITHIN	J THE SAMPI	E ERROR			
CT . CO 1 9/	COEEE		************							
CL: 68.1 %	COEFF		1.0	SAMPL	E TREE	S - BF		OF TREES		
SD: 1.0	VAR.%	S.E.%	LC)W	E TREE AVG	S - BF HIGH		OF TREES	REQ.	
			LC		E TREE	S - BF				
SD: 1.0 WHEMLOCK	VAR.% 66.2	S.E.% 12.5	LC	0W 203	E TREE AVG 232	S - BF HIGH 261				
SD: 1.0 WHE™LOCK HE™LEAV DOUGLEAV SNAG	VAR.% 66.2 72.0	S.E.% 12.5 12.9	LC	203 601	E TREE AVG 232 690	S - BF HIGH 261 779				
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR	VAR.% 66.2 72.0	S.E.% 12.5 12.9	LC	203 601	E TREE AVG 232 690	S - BF HIGH 261 779				
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER	VAR.% 66.2 72.0 51.8	S.E.% 12.5 12.9 29.6		203 601 507	E TREE AVG 232 690 720	S - BF HIGH 261 779 933				
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV	VAR.% 66.2 72.0	S.E.% 12.5 12.9		203 601	E TREE AVG 232 690	S - BF HIGH 261 779				
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER	VAR.% 66.2 72.0 51.8	S.E.% 12.5 12.9 29.6		203 601 507	E TREE AVG 232 690 720	S - BF HIGH 261 779 933				
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV	VAR.% 66.2 72.0 51.8	S.E.% 12.5 12.9 29.6		203 601 507	E TREE AVG 232 690 720	S - BF HIGH 261 779 933				
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV	VAR.% 66.2 72.0 51.8	S.E.% 12.5 12.9 29.6		203 601 507	E TREE AVG 232 690 720	S - BF HIGH 261 779 933				1
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 %	VAR.% 66.2 72.0 51.8 10.6	S.E.% 12.5 12.9 29.6	1	203 601 507 ,928 417 TREES/	E TREE AVG 232 690 720 2,140 475 ACRE	S - BF HIGH 261 779 933 2,352	#	5	10	1
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0	VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.%	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.%		203 601 507 ,928 417 TREES/A	E TREE AVG 232 690 720 2,140 475 ACRE AVG	S - BF HIGH 261 779 933 2,352 • 533 HIGH	#	452	10	5, INF. POP.
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK	VAR.% 66.2 72.0 51.8 10.6	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2	1	203 601 507 ,928 417 TREES/A	E TREE AVG 232 690 720 2,140 475 ACRE AVG 101	S - BF HIGH 261 779 933 2,352 • 533 HIGH 115	#	452 OF PLOTS	113 REQ.	
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV	VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.%	1	203 601 507 ,928 417 TREES/A	E TREE AVG 232 690 720 2,140 475 ACRE AVG	S - BF HIGH 261 779 933 2,352 • 533 HIGH	#	452 OF PLOTS	113 REQ.	5, INF. POP.
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV	VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7	1	203 601 507 ,928 417 TREES/A	E TREE AVG 232 690 720 2,140 475 ACRE AVG 101 45	S - BF HIGH 261 779 933 2,352 533 HIGH 115 49	#	452 OF PLOTS	113 REQ.	
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR	VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0	1	203 601 507 ,928 417 TREES/ADW 87 41 8 4	E TREE AVG 232 690 720 2,140 475 ACRE AVG 101 45 12 5 3	S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5	#	452 OF PLOTS	113 REQ.	5, INF. POP.
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER	VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4	1	203 601 507 ,928 417 TREES/A W 87 41 8 4 1 2	232 690 720 2,140 475 ACRE AVG 101 45 12 5 3 5	S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7	#	452 OF PLOTS	113 REQ.	5, INF. POP.
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV	VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8	1	203 601 507 ,928 417 TREES/A W 87 41 8 4 1 2 0	232 690 720 2,140 475 ACRE AVG 101 45 12 5 3 5 0	S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1	#	452 OF PLOTS	113 REQ.	5, INF. POP.
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV	VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7	1	203 601 507 ,928 417 TREES/A W 87 41 8 4 1 2	232 690 720 2,140 475 ACRE AVG 101 45 12 5 3 5 0 2	S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4	#	452 OF PLOTS	113 REQ.	5, INF. POP.
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV SNAG SOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE	VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6 547.7	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7 101.7	1	203 601 507 ,928 417 TREES/A W 87 41 8 4 1 2 0	232 690 720 2,140 2,140 475 ACRE AVG 101 45 12 5 3 5 0 2	S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4 2	#	452 OF PLOTS	113 REQ.	5, INF. POP.
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV SSPRUCE CEDLEAV	VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7	LC	203 601 507 ,928 417 TREES/A W 87 41 8 4 1 2 0	232 690 720 2,140 475 ACRE AVG 101 45 12 5 3 5 0 2	S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4	#	452 OF PLOTS	113 REQ.	5 INF. POP. 1
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL	VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6 547.7 547.7	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7 101.7 101.7	LC	203 601 507 ,928 417 TREES/A DW 87 41 8 4 1 2 0 1	E TREE AVG 232 690 720 2,140 475 ACRE AVG 101 45 12 5 3 5 0 2 1 175	S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4 2 2 186	#	452 OF PLOTS 5	113 REQ. 10	5; INF. POP. 1
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV SNAG TOTAL CL: 68.1 % SPRUCE CEDLEAV TOTAL CL: 68.1 %	VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6 547.7 547.7 34.6	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7 101.7 101.7	LC	203 601 507 ,928 417 TREES/A W 87 41 8 4 1 2 0 1	E TREE AVG 232 690 720 2,140 475 ACRE AVG 101 45 12 5 3 5 0 2 1 175	S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4 2 2 186	#	452 OF PLOTS 5	113 REQ. 10	5 INF. POP. 1 INF. POP.
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV SSPRUCE CEDLEAV TOTAL CL: 68.1 % SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK	VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6 547.7 547.7 34.6 COEFF	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7 101.7 101.7 6.4	LC	203 601 507 ,928 417 TREES/A W 87 41 8 4 1 2 0 1	E TREE AVG 232 690 720 2,140 475 ACRE AVG 101 45 12 5 3 5 0 2 1 175 AREA/A	S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4 2 2 186 CRE	#	452 OF PLOTS 5 OF PLOTS	113 REQ. 10	5 INF. POP. 1 INF. POP.
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV SSPRUCELV ALDRLEAV SSPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV	VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6 547.7 547.7 34.6 COEFF VAR.% 69.8 42.0	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7 101.7 101.7 6.4 S.E.% 13.0 7.8	LC	203 601 507 ,928 417 TREES/A W 87 41 8 4 1 2 0 1 1 164 BASAL A W 111 109	232 690 720 2,140 2,140 475 ACRE AVG 101 45 12 5 0 2 1 1 175 AREA/A AVG 128 119	S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4 2 2 186 CRE HIGH 145 128	#	452 OF PLOTS 5 OF PLOTS	113 REQ. 10	1:
SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV SSPRUCE CEDLEAV TOTAL CL: 68.1 % SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK	VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6 547.7 547.7 34.6 COEFF VAR.% 69.8	S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7 101.7 101.7 6.4 S.E.% 13.0	LC	203 601 507 ,928 417 TREES/A W 87 41 8 4 1 2 0 1 1 164 BASAL A W 111	E TREE AVG 232 690 720 2,140 475 ACRE AVG 101 45 12 5 3 5 0 2 1 175 AREA/A AVG 128	S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4 2 2 186 CRE HIGH 145	#	452 OF PLOTS 5 OF PLOTS	113 REQ. 10	50 INF. POP.

TC TST	ATS			S PROJ	STATIS ECT	TICS DONUT			PAGE DATE	2 5/28/2013
TWP	RGE	SECT TRA	ACT	TYPE	E A	CRES	PLOTS	TREES	CuFt	BdFt
04N	08W	20 AR	EA5	OOP	C	43.00	30	241	1	W
CL:	68.1%	COEFF		BASA	L AREA/	ACRE		# OF PLO	TS REQ.	INF. POP.
SD:	1.0	VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
DOUG	3 FIR	355.3	66.0	2	7	11				
R ALI	DER	276.7	51.4	3	7	10				
SPRU	CELV	305.1	56.6	2	4	6				
ALDR	RLEAV	402.6	74.7	1	4	7				
S SPR	UCE	547.7	101.7		1	3				
CEDL	EAV	547.7	101.7		1	3				
TOTA	AL	19.7	3.7	310	321	333		16	4	2
CL:	68.1 %	COEFF		NET I	BF/ACRE		#	OF PLOTS	REQ.	INF. POP.
SD:	1.0	VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
WHEN	MLOCK	68.9	12.8	15,062	17,273	19,483				
HEMI	LEAV	45.8	8.5	18,931	20,692	22,453				
DOUG	GLEAV	166.6	30.9	4,471	6,473	8,475				
SNAG	r									
DOUG	FIR	355.3	66.0	283	832	1,380				
R ALE	DER	276.7	51.4	418	859	1,301				
SPRU	CELV	308.2	57.2	351	821	1,291				
ALDR	LEAV	402.6	74.7	166	656	1,147				
S SPR	UCE	547.7	101.7		65	131				
CEDL	EAV									
TOTA	L	22.2	4.1	45,707	47,672	49,636		20	5	2

TC TSTA	ATS				S' PROJI	TATIS ECT	STICS DONUT			PAGE DATE	1 5/28/2013
TWP	RGE	SECT T	RACT		TYPE		CRES	PLOTS	TREES	CuFt	BdFt
04N	08W		&7		OOPO		10.00	13	99	1	W
						-					
					TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PLOTS	TREES		PER PLO	Т	TREES		TREES		
TOTA	L	13	99		7.6						
CRUIS	SE	13	98		7.5		2,108		4.6		
	COUNT										
REFOI COUN											
BLAN											
100 %											
				STA	ND SUM	IMARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	
3777777	d com	TREES	/ACRE	DBH	LEN	DEN		BF/AC	BF/AC	CF/AC	CF/AC
WHEM HEML	/ILOCK .EAV	52 22	152.9 22.3	13.9 23.6	52 75		160.0 67.7	21,404 13,522	21,159 13,022	5,779 3,072	,
SNAG		13	13.7	24.0	31		43.1	1.0,022	13,022	3,012	5,012
R ALD		7	18.5	14.6	32		21.5	1,736	1,675	506	
DOUG		3	3.2	22.9	91		9.2	1,814	1,814	415	415
CEDLE TOTA		1 98	.2 210.8	56.0 <i>16.3</i>	55 52		3.1 <i>304.6</i>	315 <i>38,791</i>	315 <i>37,985</i>	81 <i>9,853</i>	81 <i>9,853</i>
					32		304.0	30,771	37,703	7,033	7,033
CONF		E LIMITS OF TIMES OUT			WILL B	E WITH	N THE SAMPI	LE ERROR			
CL:	68.1 %	COEFF			SAMPI	LE TRE	ES - RE	#	OF TREES	REO	INF. POP.
	1.0	VAR.%	S.E.%	L	OW OW	AVG	HIGH	"	5	10	15
WHEM	/ILOCK	103.0	14.3		207	242	276				
HEML		61.0	13.3		809	934	1,058				
SNAG R ALD		42.7	17.4		93	113	132				
DOUG		24.1	16.7		489	587	685				
CEDLE	EAV										
TOTA		125.2	12.6		333	382	430		626	156	70
CL:		COEFF				S/ACRE		#	OF PLOTS	REQ.	INF. POP.
	1.0	VAR.%		L	OW	AVG	HIGH		5	10	15
HEML	ILOCK EAV	95.2 73.7	27.5 21.2		111 18	153 22	195 27				
SNAG		132.4	38.2		8	14	19				
R ALD		232.7	67.1		6	18	31				
DOUG		195.0	56.2		1	3	5				
CEDLE TOTAL		360.6 <i>62.0</i>	103.9 <i>17.9</i>		173	0 211	0 248		166	41	18
CL: 6		COEFF	11.2					.11			
	1.0	VAR.%	S.E.%	T	BASAL OW	AREA/ AVG	ACRE HIGH	#	OF PLOTS 5	REQ. 10	INF. POP.
WHEM		79.1	22.8	121	124	160	196			10	13
HEMLI	EAV	28.4	8.2		62	68	73				
SNAG	ED	133.8	38.6		26	43	60 35				
R ALD		209.2 190.0	60.3 54.8		9 4	22 9	35 14				
CEDLE		360.6	103.9		•	3	6				
TOTA	L	27.6	8.0		280	305	329		33	8	4
CL: 6	68.1 %	COEFF			NET B	F/ACRE		#	OF PLOTS	REQ.	INF. POP.
	1.0	VAR.%	S.E.%		WC	AVG	HIGH		5	10	15
WHEM HEMLI		79.8 36.3	23.0 10.5		6,290 1,650	21,159	26,029				
SNAG	Liza V	30.3	10,5	1	1,659	13,022	14,385				
R ALD	ER	206.2	59.4		679	1,675	2,670				
DOUGI		190.2	54.8		819	1,814	2,809				
CEDLE		360.6	103.9	2.0	0.054	315	642		0.1	2.2	10
TOTAL	L	45.9	13.2	32	2,954	37,985	43,016		91	23	10

TC TST	ATS				ST. PROJEC		TICS DONUT			PAGE DATE	2 5/28/2013
TWP 04N	RGE 08W	SECT 33	TRAC 6&7	CT	TYPE OOPC	A	CRES 10.00	PLOTS 13	TREES 99	CuFt 1	BdFt W
CL: SD:	68.1 % 1.0	CO VA	EFF R.	S.E.%	NET BF/	ACRE AVG	HIGH		# OF PLO 5	TS REQ.	INF. POP.

•

TC PSTAT	rs					OJECT S ROJECT		ISTICS NUT			PAGE DATE	1 5/28/2013
TWP R	RGE	SC	TRACT		TYPE		A	CRES	PLOTS	TREES	CuFt	BdFt
04N 08 04N 08	8 8W	20 33	1&3 6&7		R/W TAKE	ΓHR		198.00	230	1,335	1	W
						TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		I	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL			230	1335		5.8						
CRUISE DBH CC REFORE	UNT		88	571		6.5		23,201		2.5		
COUNT			135	718		5.3						
BLANKS	S		7									
100 %												
				•	STA	AND SUM	MARY					
		SA	MPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		7	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
WHEML	OCK		237	65.9	16.1	57		93.7	13,638	13,304	3,460	3,460
R ALDE	R		245	43.3	13.8	41		45.3	4,108		1,245	1,245
S SPRUC	CE		71	4.6	22.2	50		12.4	1,992	1,839	476	476
DOUG F	'IR		11	2.7	22.4	85		7.3	1,121	1,100	299	299
BL MAP			4	.6	12.2	14		.5				
WR CED			3	.0	19.2	24		.0	4		1	1
TOTAL			571	117.2	15.8	51		159.3	20,862	20,315	5,481	5,481
	68	.1 7	TIMES OU	T OF 100 T	HE VOLU	IME WILL	BE WIT	HIN THE SAM	VIPLE ERR	OR		
	8.1	.1 7	COEFF			SAMPL	E TREE	ES - BF		# OF TREES		INF. POP.
SD:	8.1 1.0	.1 7	COEFF VAR.%	S.E.%		SAMPL LOW	E TREE	ES - BF HIGH			REQ. 10	INF. POP.
SD:	8.1 1.0 .OCK	.1 7	COEFF VAR.% 110.9	S.E.% 7.2		SAMPL LOW 498	E TREE AVG 537	ES - BF HIGH 576		# OF TREES		
SD: WHEML R ALDE	8.1 1.0 OCK R	.1 7	COEFF VAR.%	S.E.%		SAMPL LOW	E TREE	ES - BF HIGH		# OF TREES		
SD:	8.1 1.0 OCK R CE	.1 7	COEFF VAR.% 110.9 77.4	S.E.% 7.2 4.9		SAMPL LOW 498 119	E TREE AVG 537 125	ES - BF HIGH 576 131		# OF TREES		
SD: WHEML R ALDE S SPRUC	8.1 1.0 .OCK R CE	.1 7	COEFF VAR.% 110.9 77.4 72.9	S.E.% 7.2 4.9 8.6		SAMPL LOW 498 119 1,978	E TREE AVG 537 125 2,165	ES - BF HIGH 576 131 2,353		# OF TREES		
SD: WHEML R ALDE S SPRUC DOUG F BL MAP WR CED	8.1 1.0 OCK R CE TIR PLE DAR	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1	S.E.% 7.2 4.9 8.6 20.8		SAMPL LOW 498 119 1,978 418 289	E TREE AVG 537 125 2,165 527 727	ES - BF HIGH 576 131 2,353		# OF TREES 5		
SD: WHEML R ALDE S SPRUC DOUG F BL MAP	8.1 1.0 OCK R CE TIR PLE DAR	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8	S.E.% 7.2 4.9 8.6 20.8		SAMPL LOW 498 119 1,978 418	E TREE AVG 537 125 2,165 527	ES - BF HIGH 576 131 2,353 637		# OF TREES		
SD: WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL	8.1 1.0 OCK R CE CIR PLE DAR	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1	S.E.% 7.2 4.9 8.6 20.8		SAMPL LOW 498 119 1,978 418 289	E TREE AVG 537 125 2,165 527 727 560	ES - BF HIGH 576 131 2,353 637 1,165	#	# OF TREES 5	10 276	15
SD: WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL	8.1 1.0 OCK R CE TIR PLE DAR	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2	S.E.% 7.2 4.9 8.6 20.8	I	SAMPL LOW 498 119 1,978 418 289 521	E TREE AVG 537 125 2,165 527 727 560	ES - BF HIGH 576 131 2,353 637 1,165	#	# OF TREES 5 1,102	10 276	15 122
SD: WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL	8.1 1.0 OCK R CE CIR PLE DAR	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9	I	SAMPL _OW	E TREE AVG 537 125 2,165 527 727 560 ACRE	ES - BF HIGH 576 131 2,353 637 1,165 599	#	# OF TREES 5 1,102 # OF PLOTS	276 REQ.	122 INF. POP.
SD: WHEML R ALDER S SPRUCE DOUG F BL MAP WR CED TOTAL CL 68 SD:	8.1 1.0 OCK R CE FIR PLE DAR 8.1 1.0	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.%	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43	ES - BF HIGH 576 131 2,353 637 1,165 599	#	# OF TREES 5 1,102 # OF PLOTS	276 REQ.	122 INF. POP.
SD: WHEML R ALDER S SPRUCE DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDER S SPRUCE	8.1 1.0 OCK R CE FIR PLE DAR 8.1 1.0 OCK R	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6	#	# OF TREES 5 1,102 # OF PLOTS	276 REQ.	122 INF. POP.
SD: WHEML R ALDER S SPRUCE DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDER S SPRUCE DOUG F	8.1 1.0 OCK R CE FIR PLE DAR 8.1 1.0 OCK R CE FIR	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4	#	# OF TREES 5 1,102 # OF PLOTS	276 REQ.	122 INF. POP.
SD: WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDE S SPRUC DOUG F BL MAP	8.1 1.0 OCK R CE FIR PLE DAR 8.1 1.0 OCK R CE FIR PLE		COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1	#	# OF TREES 5 1,102 # OF PLOTS	276 REQ.	122 INF. POP.
WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: U WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED	8.1 1.0 OCK R CE FIR DAR 8.1 1.0 OCK R CE FIR LE DAR		COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0 1304.0	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0	#	# OF TREES 5 1,102 # OF PLOTS 5	276 REQ. 10	122 INF. POP. 15
SD: WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDE S SPRUC DOUG F BL MAP	8.1 1.0 OCK R CE FIR DAR 8.1 1.0 OCK R CE FIR LE DAR	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1	#	# OF TREES 5 1,102 # OF PLOTS 5	276 REQ. 10	122 INF. POP. 15
WHEML R ALDER S SPRUCE DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDER S SPRUCE DOUG F BL MAP WR CED TOTAL CL 68	8.1 1.0 OCK R CE FIR PLE DAR 8.1 1.0 OCK R CE FIR PLE DAR		COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0 1304.0 121.0 COEFF	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127	#	# OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS	276 REQ. 10 146 REQ.	122 INF. POP. 15
WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: CL 68 SPRUC SSPRUC 8.1 1.0 OCK R CE FIR PLE DAR 8.1 1.0 OCK R CE FIR PLE DAR	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0 1304.0 121.0 COEFF VAR.%	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.%	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH	#	# OF TREES 5 1,102 # OF PLOTS 5	276 REQ. 10	122 INF. POP. 15 65 INF. POP.	
SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WR CED TOTAL CL 68 SD: WHEML WR CED TOTAL	8.1 1.0 .OCK R CE FIR PLE DAR 8.1 1.0 .OCK R CE FIR PLE DAR	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0 1304.0 121.0 COEFF VAR.%	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102	#	# OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS	276 REQ. 10 146 REQ.	122 INF. POP. 15 65 INF. POP.
SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC CDUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI R ALDEI R ALDEI R ALDEI R ALDEI	8.1 1.0 OCK R CE FIR PLE DAR 8.1 1.0 OCK R CE FIR PLE DAR 8.1 1.0 OCK R CE OCK R CE OCK R CE OCK OCK OCK OCK OCK OCK OCK OCK	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0 1304.0 121.0 COEFF VAR.%	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52	#	# OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS	276 REQ. 10 146 REQ.	122 INF. POP. 15 65 INF. POP.
SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC SD: WHEML S SPRUC S SPRUC S SPRUC S SPRUC S SPRUC S SPRUC	8.1 1.0 .OCK R CE CIR DAR 8.1 1.0 .OCK R CE DAR 8.1 1.0 .OCK	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0 1304.0 121.0 COEFF VAR.%	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15	#	# OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS	276 REQ. 10 146 REQ.	122 INF. POP. 15
SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC SD: WHEML S SPRUC DOUG F BL MAP WR CED TOTAL	8.1 1.0 .OCK R CE CIR PLE DAR 8.1 1.0 .OCK R CE CIR PLE DAR 8.1 1.0 .OCK R CE CIR CE CIR CE CIR CE CIR COCK C	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0 1304.0 121.0 COEFF VAR.%	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10 4	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 7	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 11	#	# OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS	276 REQ. 10 146 REQ.	122 INF. POP. 15
WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J	8.1 1.0 OCK R CE FIR PLE DAR 8.1 1.0 OCK R CE FIR PLE DAR 8.1 1.0 OCK R CE FIR PLE DAR	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0 1304.0 121.0 COEFF VAR.% 134.1 218.0 277.9 687.4 1493.0	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3 98.4	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15	#	# OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS	276 REQ. 10 146 REQ.	122 INF. POP. 15
SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC SD: WHEML S SPRUC DOUG F BL MAP WR CED TOTAL	8.1 1.0 OCK R CE FIR PLE DAR 8.1 1.0 OCK R CE FIR PLE DAR 8.1 1.0 OCK R CE FIR PLE DAR		COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0 1304.0 121.0 COEFF VAR.%	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10 4 0	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 7 1	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 11 1	#	# OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS	276 REQ. 10 146 REQ.	122 INF. POP. 15 65 INF. POP. 15
SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SSPRUC DOUG F BL MAP WR CED TOTAL R ALDEI S SPRUC DOUG F BL MAP WHEML R ALDEI S SPRUC DOUG F BL MAP	8.1 1.0 OCK R CE TIR PLE DAR 8.1 1.0 OCK R CE TIR PLE DAR 8.1 1.0 OCK R CE TIR PLE DAR	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0 1304.0 121.0 COEFF VAR.% 134.1 218.0 277.9 687.4 1493.0 871.8 104.8	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3 98.4 57.4	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10 4 0 0 148	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 7 1 0 159	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 11 1 0	#	# OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS 5	10 276 REQ. 10 146 REO. 10	122 INF. POP. 15 65 INF. POP. 15
WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68	8.1 1.0 .OCK R CE IR LE DAR 8.1 1.0 .OCK R CE TIR LE DAR 8.1 1.0 .OCK R CE TIR LE DAR		COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0 1304.0 121.0 COEFF VAR.% 134.1 218.0 277.9 687.4 1493.0 871.8 104.8 COEFF	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3 98.4 57.4 6.9	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10 4 0 0 148 NET BF	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 7 1 0 159 /ACRE	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 11 1 0 170	#	# OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS 5	10 276 REQ. 10 146 REO. 10	122 INF. POP. 15 65 INF. POP. 15
WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J	8.1 1.0 .OCK R CE IR LE DAR 8.1 1.0 .OCK R CE TIR LE DAR 8.1 1.0 .OCK R CE TIR LE DAR 8.1 1.0 .OCK R CE TIR DAR	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0 1304.0 121.0 COEFF VAR.% 134.1 218.0 277.9 687.4 1493.0 871.8 104.8 COEFF VAR.%	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3 98.4 57.4 6.9 S.E.%	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10 4 0 0 148 NET BF	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 7 1 0 159 /ACRE AVG	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 11 1 0 170 HIGH	#	# OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS 5	10 276 REQ. 10 146 REQ. 10 110 REQ.	122 INF. POP. 15 65 INF. POP. 15
WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML CD 68 SD: J WHEML CL 68 SD: J	8.1 1.0 .OCK R CE CIR ELE DAR 8.1 1.0 .OCK R CE CIR ELE DAR 8.1 1.0 .OCK R CE CIR ELE DAR	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0 1304.0 121.0 COEFF VAR.% 134.1 218.0 277.9 687.4 1493.0 871.8 104.8 COEFF VAR.%	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3 98.4 57.4 6.9 S.E.% 9.0	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL .OW 85 39 10 4 0 0 148 NET BF LOW 12,103	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 7 1 0 159 /ACRE AVG 13,304	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 11 1 0 170 HIGH 14,505	#	# OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS 5	10 276 REQ. 10 146 REQ. 10 110 REQ.	122 INF. POP. 15 65 INF. POP. 15
WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J	8.1 1.0 .OCK R CE CIR PLE DAR 8.1 1.0 .OCK R CE CIR PLE DAR 8.1 1.0 .OCK R CE CIR PLE DAR 8.1 1.0 .OCK R CE CIR PLE DAR CE CIR CIE CIR CIE CIR CIE CIE CIE CIE CIE CIE CIE CIE	.1 7	COEFF VAR.% 110.9 77.4 72.9 65.8 87.1 166.2 COEFF VAR.% 151.5 233.5 378.0 675.8 1493.0 1304.0 121.0 COEFF VAR.% 134.1 218.0 277.9 687.4 1493.0 871.8 104.8 COEFF VAR.%	S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3 98.4 57.4 6.9 S.E.%	I	SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10 4 0 0 148 NET BF	E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 7 1 0 159 /ACRE AVG	ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 11 1 0 170 HIGH	#	# OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS 5	10 276 REQ. 10 146 REQ. 10 110 REQ.	122 INF. POP. 15 65 INF. POP. 15

TC PS	TATS				PROJEC PROJEC			PAGE DATE	2 5/28/2013		
TWP	RGE	SC	TRACT	TYP	E	A	CRES	PLOTS	TREES	CuFt	BdFt
04N 04N	08 08W	20 33	1&3 6&7	R/W TAKI	THR		198.00	230	1,335	1	W
CL	68.1		COEFF		NET	BF/ACRE			# OF PLOT	ΓS REQ.	INF. POP.
SD:	00.1		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
BL M	IAPLE				1 1.11-3-3-3-3						
WR (CEDAR		1098.0	72.3	1	4	6				
тот	AL						21,762		467	117	52

TC TSTATS				ST. PROJEC	ATIST	FICS DONUT			PAGE DATE 5	1 5/28/2013
TWP RGE	SECT TR	RACT		TYPE		CRES	PLOTS	TREES	CuFt	BdFt
04N 08W	20 18	£3		TAKE		63.00	51	301	1	W
						ESTIMATED	p	ERCENT		
			Т	REES		TOTAL		AMPLE		
	PLOTS	TREES	P	ER PLOT		TREES	T	REES		
TOTAL	51	301		5.9						
CRUISE	17	105		6.2		9,145		1.1		
DBH COUNT										
REFOREST	24	193		5.7						
COUNT BLANKS	34	193		3.7						
100 %										
			STAN	D SUMM	1ARY					
	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
WHEMLOCK	47	53.1	20.1	64		116.9	19,839	19,163	4,653	4,653
R ALDER	43	73.8	14.2	45		80.8	8,307	8,240	2,459	2,459
S SPRUCE	9	9.9	18.7	36		18.8	2,382	2,164	581	581
DOUG FIR BL MAPLE	4 2	6.4 1.9	22.7 12.2	85 14		18.0 1.6	2,880	2,817	741	741
TOTAL	105	145.2	17.3	53		236.1	33,408	32,384	8,435	8,435
								,		
	E LIMITS OF ' TIMES OUT (WILL BE	WITHIN	N THE SAMP	LE ERROR			
CL: 68.1 %	COEFF			SAMPLI	E TREE	S - BF	#	OF TREES	REQ.	INF. POP.
SD: 1.0	VAR.%	S.E.%	LO	W	AVG	HIGH		5	10	15
WHEMLOCK	87.3	12.7		627	718	810				
R ALDER	69.8	10.6		130	145	161				
S SPRUCE DOUG FIR	94.7 17.6	33.4 10.1		706 398	1,060 443	1,414 487				
BL MAPLE	17.0	10.1		390	443	407				
TOTAL	123.0	12.0		430	489	547		604	151	67
CL: 68.1 %	COEFF			TREES/A	ACRE		#	OF PLOTS	REO.	INF. POP.
SD: 1.0	VAR.%	S.E.%	LO		AVG	HIGH	"	5	10	15
WHEMLOCK	82.7	11.6		47	53	59				
R ALDER	148.6	20.8		58	74	89				
S SPRUCE	228.6	32.0		7	10	13				
DOUG FIR	389.9 714.1	54.6 99.9		3 0	6 2	10 4				
BL MAPLE TOTAL	74.1 74.2	10.4		130	145	160		220	55	24
CL: 68.1 %	COEFF	10.7								INF. POP.
	VAR.%	S.E.%	LO	BASAL A	AKEA/A AVG	HIGH	#	OF PLOTS 5	10	15 15
SD: 1.0 WHEMLOCK	75.9	3.E.76 10.6	LO	104	117	129		<u> </u>	10	13
R ALDER	128.5	18.0		66	81	95				
S SPRUCE	171.9	24.0		14	19	23				
DOUG FIR	389.9	54.6		8	18	28				
BL MAPLE	714.1	99.9		0	2	3 250		71	18	8
TOTAL	42.2	5.9		222	236	250				
CL: 68.1 %	COEFF		_	NET BF/		*****	#	OF PLOTS		INF. POP.
SD: 1.0 WHEMLOCK	VAR.% 76.7	S.E.% 10.7	LO 17		AVG 9,163	HIGH 21,219		5	10	15
R ALDER	130.2	10.7			8,240	9,741				
S SPRUCE	177.3	24.8			2,164	2,701				
DOUG FIR	389.9	54.6			2,817	4,354				
BL MAPLE										
TOTAL	40.9	5.7	30,	529 3.	2,384	34,239		67	17	7

TC TST	ATS				S	TATIS'	TICS			PAGE	1
			W. 10		PROJE		DONUT			DATE 5	5/28/2013
TWP	RGE	SECT T	RACT		TYPE	A	CRES	PLOTS	TREES	CuFt	BdFt
04N	08W	20 A	REA2		TAKE		70.00	41	117	1	W
					TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PLOTS	TREES		PER PLO	Γ	TREES		TREES		
TOTA	AL.	41	117		2.9		,				
CRUI		12	34		2.8		6,941		.5		
	COUNT										
	REST										
COUN		26	80		3.1						
BLAN 100 %		3									
100 /0											
					ND SUM						
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
	MLOCK	19	50.9	13.6	46		51.7	5,818		1,569	1,569
R ALI		12	45.4	13.2	35		42.9	2,895		953	953
S SPR TOTA		3 34	2.9	27.4	90		11.7	2,336	•	561	561
1012	XL.		99.2	14.0	42		106.4	11,049	10,748	3,083	3,083
	68.1		F THE SAMPL								
	68.1 %					LE TREE			# OF TREES		INF. POP.
	1.0 MLOCK	VAR.% 117.6	6 S.E.% 27.7	L	OW 171	AVG 237	HIGH 302		5	10	15
R ALI		65.1	19.6		59	73	88				
S SPR		8.4	5.8		728	773	818				
TOTA		124.2	21.3		178	226	275		616	154	68
	68.1 %	COEFF			TREES	170011111111111111111111111111111111111			# OF PLOTS		INF. POP.
	1.0	VAR.%		L	TREES OW	AVG	HIGH		# OF PLOTS	10	11 15
	MLOCK	120.9	18.9		41	51	61				
R ALI	DER	134.6	21.0		36	45	55				
S SPR		247.7	38.7		2	3	4				
TOTA	L	73.4	11.5		88	99	111		215	54	24
CL:	68.1 %	COEFF			BASAL	AREA/A	ACRE		# OF PLOTS	S REQ.	INF. POP.
SD:		VAR.%		L	OW	AVG	HIGH		5	10	15
	MLOCK	112.4	17.5		43	52	61				
R ALI		137.1	21.4		34	43	52				
S SPR		244.5	38.2		7	12	16				
TOTA		65.5	10.2		95	106	117		171	43	19
	68.1 %	COEFF				F/ACRE			# OF PLOTS	S REQ.	INF. POP.
SD:		VAR.%			OW	AVG	HIGH		5	10	15
	MLOCK	118.1	18.4		4,632	5,678	6,724				
R ALE		137.9	21.5		2,241	2,856	3,471				
S SPR		247.8	38.7		1,358	2,214	3,070		214	<i>5 1</i>	2.4
TOTA	N.L.	73.3	11.4	9	0,519	10,748	11,977		214	54	24

TC TST	ΓATS				S' PROJE	TATIS ECT	TICS DONUT			PAGE DATE	1 5/28/2013
TWP	RGE	SECT	TRACT		TYPE	A	CRES	PLOTS	TREES	CuFt	BdFt
04N	08W	29	AREA4		00PC		8.00	3	126	1	W
				Т	REES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PLOTS	TREES	P	ER PLO	Т	TREES		TREES		
	ISE COUNT DREST	3			42.0 42.0		126		100.0		
BLAN 100 %											
				STAN	D SUM	MARY		· w			
		SAMPLE TREES		AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
R ALI		12		14.7	45		18.6	1,945	,	574	
TOTA	AL	12	6 15.8	14.7	45		18.6	1,945	1,923	574	574
CON			OF THE SAMPI UT OF 100 THE		WILL B	E WITHII	N THE SAMP	LE ERROR	_		
CL:	68.1 %	COE	EFF		SAMPI	LE TREE	ES - BF		# OF TREES	REQ.	INF. POP.
SD:	1.0	VAI	R.% S.E.%	LO	W	AVG	HIGH		5	10	15
R ALI		81			113	122	131				
TOTA	AL	81.	5 7.3		113	122	131		265	66	29
CL:	68.1 %	COE	EFF		TREES	S/ACRE			# OF PLOTS	REQ.	INF. POP.
SD:	1.0	VAF	R.% S.E.%	LO	W	AVG	HIGH		5	10	15
R ALI		15.			14	16	17				
TOTA	A L	15.	6 , 10.8		14	16	17		14	4	2
CL:	68.1 %	COE	EFF		BASAL	AREA/A	ACRE		# OF PLOTS	S REQ.	INF. POP.
SD:		VAF		LO		AVG	HIGH		5	10	15
R ALI		30. 30.			15 15	19 19	23 23		54	13	6
	68.1 %	COE							·		
						F/ACRE	шен		# OF PLOTS	•	INF. POP.
SD: R ALI	1.0 DER	VAF 41.		LO	w 371	AVG 1,923	HIGH 2,474		5	10	15
TOTA		41. 41			371 371	1,923 1,923	2,474 2,474		99	25	11
1017	~~	71	20.7	1,,		1,743	4,7/7			23	11

	TATS				ST PROJE	CATIS'	TICS DONUT			PAGE DATE 5	1 5/28/2013
TWP	RGE	SECT TI	RACT		TYPE	A	CRES	PLOTS	TREES	CuFt	BdFt
04N	08W	20 A	REA5		TAKE		43.00	30	107	1	W
					TREES		ESTIMATED TOTAL		ERCENT		
		DI OTE	TDEEC			,			AMPLE		
		PLOTS	TREES		PER PLOT		TREES	1.	REES		··········
TOTA		30	107		3.6				_		
CRUI		10	32		3.2		4,708		.7		
	COUNT										
	REST	1.0	64		2.6						
COUN		18 2	64		3.6						
100 %		2									
100 70	0			C/T A 1	NID CLUM	A A DAZ					
		CANONE	EDEE		ND SUMI		DAGAT	op.ogg	3.177	00000) IEM
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
WITTE	MLOCK				62	DEN					
DOUG		29 1	100.8 2.8	15.3 21.0	82 82		128.0 6.7	17,479 832	17,273 832	4,795 263	4,795 263
R ALI		1	4.8	16.0	56		6.7	859	852 859	203	203
S SPR		1	1.1	15.0	41		1.3	65	65	33	33
TOTA		32	109.5	15.5	62		142.7	19,235	19,029	5,315	5,315
	68.1 %	COEFF			SAMPL	E TREE	S - BF	#	OF TREES	REQ.	INF. POP.
SD:	1.0	VAR.%		LC	OW	AVG	HIGH	#	OF TREES 5	REQ. 10	
SD: WHEN DOUG R ALI	1.0 MLOCK 3 FIR DER		S.E.% 12.5	LC				#			INF. POP. 1
SD: WHEN DOUG R ALI S SPR	1.0 MLOCK 3 FIR DER LUCE	VAR.%		LC	OW	AVG	HIGH	#			1
SD: WHEN DOUG R ALI S SPR TOTA	1.0 MLOCK 3 FIR DER LUCE	VAR.% 66.2	12.5	LC	200 200	AVG 232 227	HIGH 261		5	10	1.
SD: WHEN DOUG R ALE S SPR TOTA CL:	1.0 MLOCK G FIR DER CUCE	VAR.% 66.2	12.5		OW 203	AVG 232 227	HIGH 261		5	10	1 INF. POP.
SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN	1.0 MLOCK G FIR DER EUCE AL 68.1 % 1.0 MLOCK	VAR.% 66.2 66.0 COEFF VAR.% 76.3	12.5 11.7 S.E.% 14.2		200 TREES/	232 227 2ACRE	HIGH 261 253		5 174 OF PLOTS	10 43 REQ.	1 INF. POP.
SD: WHEN DOUG R ALI S SPR TOTA CL: SD: WHEN	1.0 MLOCK G FIR DER EUCE AL 68.1 % 1.0 MLOCK G FIR	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3	12.5 11.7 S.E.% 14.2 66.0		200 TREES/ DW 87 1	227 2ACRE AVG 101 3	HIGH 261 253 HIGH 115 5		5 174 OF PLOTS	10 43 REQ.	1 INF. POP.
SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI	1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7	11.7 S.E.% 14.2 66.0 51.4		200 TREES/ DW 87	227 ACRE AVG 101 3 5	HIGH 261 253 HIGH 115 5 7		5 174 OF PLOTS	10 43 REQ.	1 INF. POP.
SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR	1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7	11.7 S.E.% 14.2 66.0 51.4 101.7		200 TREES/ DW 87 1 2	227 ACRE AVG 101 3 5 1	HIGH 261 253 HIGH 115 5 7 2		5 174 OF PLOTS 5	10 43 REQ. 10	1 INF. POP. 1
SD: WHEN DOUG R ALE S SPR TOTA CL: SD: WHEN DOUG R ALE S SPR TOTA	1.0 MLOCK G FIR DER EUCE AL 68.1 % 1.0 MLOCK G FIR DER UCE AL	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8	11.7 S.E.% 14.2 66.0 51.4		200 TREES/ DW 87 1 2	227 ACRE AVG 101 3 5 1 109	HIGH 261 253 HIGH 115 5 7 2 123	#	5 174 OF PLOTS 5	10 43 REQ. 10	1 INF. POP. 1
SD: WHEN DOUC R ALI S SPR TOTA CL: WHEN DOUC R ALI S SPR TOTA	1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 %	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF	12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4	LC	200 TREES/ DW 87 1 2 96 BASAL	227 ACRE AVG 101 3 5 1 109 AREA/A	HIGH 261 253 HIGH 115 5 7 2 123	#	5 174 OF PLOTS 5 185 OF PLOTS	43 REQ. 10 46 REQ.	INF. POP. 2 INF. POP.
SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: S SPR	1.0 MLOCK G FIR DER CUCE AL 68.1 % 1.0 MLOCK G FIR DER UCE AL 68.1 % 1.0	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.%	12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.%	LC	200 TREES/ DW 87 1 2 96 BASAL DW	227 ACRE AVG 101 3 5 1 109 AREA/A	HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH	#	5 174 OF PLOTS 5	10 43 REQ. 10	
SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: S SPR TOTA	1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK MLOCK	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8	12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0	LC	200 TREES/ DW 87 1 2 96 BASAL DW 111	227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128	HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145	#	5 174 OF PLOTS 5 185 OF PLOTS	43 REQ. 10 46 REQ.	1 INF. POP. 1 2 INF. POP.
SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: S SPR TOTA CL: SD: WHEN DOUC	1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3	12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0	LC	200 TREES/ DW 87 1 2 96 BASAL DW	227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7	HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11	#	5 174 OF PLOTS 5 185 OF PLOTS	43 REQ. 10 46 REQ.	1 INF. POP. 1 2 INF. POP.
SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA	1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8	12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0	LC	200 TREES/ DW 87 1 2 96 BASAL DW 111 2	227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128	HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145	#	5 174 OF PLOTS 5 185 OF PLOTS	43 REQ. 10 46 REQ.	INF. POP. 2 INF. POP.
SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: WHEN DOUC R ALI S SPR WHEN DOUC R ALI S SPR	1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL UCE MLOCK G FIR DER LUCE	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 276.7	12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 51.4	LC	200 TREES/ DW 87 1 2 96 BASAL DW 111 2	227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 7	HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 10	#	5 174 OF PLOTS 5 185 OF PLOTS	43 REQ. 10 46 REQ.	INF. POP. 2 INF. POP.
SD: WHEN DOUG R ALI S SPR TOTA CL: WHEN DOUG R ALI S SPR TOTA CL: SD: WHEN DOUG R ALI S SPR TOTA TOTA	1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL UCE MLOCK G FIR DER LUCE	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 276.7 547.7	12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 51.4 101.7	LC	200 TREES/ DW 87 1 2 96 BASAL DW 111 2 3	227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 7 1 143	HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 10 3	#	5 174 OF PLOTS 5 185 OF PLOTS 5	43 REQ. 10 46 REQ. 10	1 INF. POP. 1 INF. POP. 1
SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN CL: STONE CL: STO	1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 1.0 MLOCK G FIR DER LUCE AL 1.0	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 276.7 547.7 58.3	12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 51.4 101.7	LC	200 TREES/ DW 87 1 2 96 BASAL DW 111 2 3	227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 7 1 143	HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 10 3	#	5 174 OF PLOTS 5 185 OF PLOTS 5	43 REQ. 10 46 REQ. 10	1 INF. POP. 1 INF. POP. 1
SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUG R ALI S SPR TOTA CL: STOTA CL: STOTA CL: STOTA	1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 %	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 276.7 547.7 58.3 COEFF	12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 51.4 101.7 10.8	I.C.	200 TREES/ DW 87 1 2 96 BASAL DW 111 2 3 127 NET BF	227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 7 1 143	HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 10 3 158	#	5 174 OF PLOTS 5 185 OF PLOTS 5	43 REQ. 10 46 REQ. 10 35	1 INF. POP. 1 INF. POP. 1 INF. POP.
SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUG R ALI S SPRI TOTA CL: S SPRI TOTA CL: S SPRI TOTA CL: S SPRI TOTA	1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 276.7 547.7 58.3 COEFF VAR.% 68.9 355.3	12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 51.4 101.7 10.8 S.E.% 12.8 66.0	I.C.	200 TREES/ DW 87 1 2 96 BASAL DW 111 2 3 127 NET BF DW 5,062 283	227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 7 1 143 VACRE AVG 17,273 832	HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 10 3 158 HIGH	#	5 174 OF PLOTS 5 185 OF PLOTS 5	43 REQ. 10 46 REQ. 10 35	1 INF. POP. 1 INF. POP. 1 INF. POP.
SD: WHEN DOUG R ALI S SPR TOTA CL: SD: WHEN DOUG R ALI S SPR TOTA CL: SD: WHEN DOUG R ALI S SPRI TOTA CL: S SPRI TOTA CL: S SPRI TOTA CL: R ALI S SPRI TOTA CL: R ALI S SPRI TOTA CL: R ALI S SPRI TOTA CL: R ALI S SPRI TOTA	1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 276.7 547.7 58.3 COEFF VAR.% 68.9 355.3 276.7	12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 51.4 101.7 10.8 S.E.% 12.8 66.0 51.4	I.C.	200 TREES/ DW 87 1 2 96 BASAL DW 111 2 3 127 NET BF DW 5,062	227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 1 143 VACRE AVG 17,273 832 859	HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 10 3 158 HIGH 19,483 1,380 1,301	#	5 174 OF PLOTS 5 185 OF PLOTS 5	43 REQ. 10 46 REQ. 10 35	1 INF. POP. 1 INF. POP. 1 INF. POP.
SD: WHEN DOUG R ALI S SPR TOTA CL: SD: WHEN DOUG R ALI S SPR TOTA CL: SD: WHEN DOUG R ALI S SPRI TOTA CL: S SPRI TOTA CL: S SPRI TOTA	1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL MLOCK G FIR DER LUCE AL MLOCK G FIR DER LUCE AL MLOCK G FIR DER LUCE MLOCK G FIR DER LUCE MLOCK G FIR DER LUCE	VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 276.7 547.7 58.3 COEFF VAR.% 68.9 355.3	12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 51.4 101.7 10.8 S.E.% 12.8 66.0	LC 15	200 TREES/ DW 87 1 2 96 BASAL DW 111 2 3 127 NET BF DW 5,062 283 418	227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 7 1 143 VACRE AVG 17,273 832	HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 10 3 158 HIGH 19,483 1,380	#	5 174 OF PLOTS 5 185 OF PLOTS 5	43 REQ. 10 46 REQ. 10 35	1 INF. POP. 1 INF. POP. 1

TC TST	TATS				S' PROJE	TATIS CT	TICS DONUT			PAGE DATE	1 5/28/2013
TWP	RGE	SECT TF	RACT		TYPE	A	CRES	PLOTS	TREES	CuFt	BdFt
04N	08W	33 68	27		TAKE		10.00	13	59	1	W
				Т	REES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PLOTS	TREES	P	ER PLO	Γ	TREES		TREES		
TOTA	A L	13	59		4.5						
CRUI	SE	11	59		5.4		1,714		3.4		
DBH	COUNT										
l	DREST										
COU	NT										
BLAN		2									
100 %	ó .										
				STAN	D SUM	MARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	S NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
WHE	MLOCK	52	152.9	13.9	52		160.0	21,404	21,159	5,779	5,779
R ALI	DER	7	18.5	14.6	32		21.5	1,736	1,675	506	506
TOTA	A L	59	171.4	13.9	50		181.5	23,140	22,834	6,285	6,285
CL:	68.1 %	TIMES OUT (OF 100 THE			E WITHI LE TREI			# OF TREES	S REO	INF. POP.
	1.0	VAR.%	S.E.%	LO		AVG	HIGH		# O1 TREELS	10	15
	MLOCK	103.0	14.3		207	242	276			10	13
R ALI		42.7	17.4		93	113	132				
TOTA	A L	105.0	13.7		196	226	257		440	110	49
CL:	68.1 %	COEFF			TREES	/ACRE			# OF PLOTS	S REQ.	INF. POP.
	1.0	VAR.%	S.E.%	LO		AVG	HIGH		5	10	15
	MLOCK	95.2	27.5		111	153	195				
R ALI		232.7	67.1		6	18	31		20.4	7.1	22
TOTA	68.1 %	81.1 COEFF	23.4		131	171	211		284	71	32
			0.704			AREA/			# OF PLOTS	-	INF. POP.
	1.0	VAR.%	S.E.%	LO		AVG	HIGH		5	10	15
R ALI	MLOCK	79.1 209.2	22.8 60.3		124 9	160 22	196 35				
TOTA		64.0	18.4		9 148	182	215		177	44	20
	68.1 %	COEFF	10.4			VACRE	213		# OF PLOTS		INF. POP.
	1.0	VAR.%	S.E.%	LO		AVG	HIGH		# OF PLOTS	10	INF. POP.
	MLOCK	79.8	23.0		w 290	21,159	26,029		<u>J</u>	10	13
R ALE		206.2	59.4	-	679	1,675	2,670				
TOTA		69.7	20.1	18,.		22,834	27,421		210	52	23
	-	07.7	20.1	10,2	- • • •	,051	2,,,21		#10°	22	23

TC PS	TATS				DJECT S OJECT		ISTICS NUT			PAGE DATE	1 5/28/2013
TWP	RGE	SC TRACT	Γ	ТҮРЕ		A	CRES	PLOTS	TREES	CuFt	BdFt
04N 04N	08 08W	20 1&3 20 AREA2		R/W R/W			4.00	92	625	1	W
			***		TREES		ESTIMATED TOTAL		PERCENT SAMPLE		(11111111111111111111111111111111111111
		PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA	A L	92	625		6.8						
CRUI		35	215		6.1		568		37.9		
	COUNT										
COU	DREST NT	57	381		6.7						
BLAN		31	501		0.7						
100 %											
<u> </u>				STA	ND SUMN	/IARY				· · · · · · · · · · · · · · · · · · ·	
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
	MLOCK	90	66.6	18.0	54		117.1	19,397	18,803	4,525	4,525
S SPF		58	11.8	39.1	83		98.5	19,486	17,500	4,268	4,268
R AL		56 6	59.7 2.2	13.1 23.7	36 88		56.1 6.7	4,373 1,174	4,326 1,145	1,375 289	1,375 289
	EDAR	3	1.1	19.2	24		2.2	1,174	1,143	52	52
	APLE	2	.5	12.2	14		.4	101	175	32	32
TOT	AL	215	141.9	19.1	49		281.0	44,613	41,949	10,509	10,509
	68	.1 TIMES O	UT OF 100 T	THE VOLU	ME WILL	BE WIT	HIN THE SAN	IPLE ERRO	OR		
CI	68 1	COFFE			SAMPL	r TRFF	S_RF	#	OF TREES	REO	INE POP
CL SD:	68.1	COEFF VAR.%		L	SAMPL OW			#	OF TREES		INF. POP.
SD:	68.1 1.0 MLOCK	COEFF VAR.% 91.5		L	SAMPL OW 700	E TREE AVG 775	S - BF HIGH 849	#	OF TREES	REQ. 10	INF. POP.
SD:	1.0 MLOCK	VAR.%	S.E.%		OW	AVG	HIGH	#			
SD: WHE S SPR R ALI	1.0 MLOCK RUCE DER	VAR.% 91.5 64.2 76.3	S.E.% 9.6 8.4 10.2		700 2,239 115	775 2,445 128	HIGH 849 2,651 140	#			
SD: WHE S SPR R ALI DOUG	1.0 MLOCK RUCE DER G FIR	VAR.% 91.5 64.2 76.3 73.8	S.E.% 9.6 8.4 10.2 32.9		OW 700 2,239 115 417	775 2,445 128 622	HIGH 849 2,651 140 826	#			
SD: WHE S SPR R ALI DOUG WR C	1.0 MLOCK RUCE DER G FIR EEDAR	VAR.% 91.5 64.2 76.3	S.E.% 9.6 8.4 10.2		700 2,239 115	775 2,445 128	HIGH 849 2,651 140	#			
SD: WHE S SPR R ALI DOUG	1.0 MLOCK RUCE DER G FIR CEDAR APLE	VAR.% 91.5 64.2 76.3 73.8	S.E.% 9.6 8.4 10.2 32.9		700 2,239 115 417 289	775 2,445 128 622	HIGH 849 2,651 140 826	#			
SD: WHE S SPR R ALI DOUG WR C BL M TOTA	1.0 MLOCK RUCE DER G FIR CEDAR APLE	VAR.% 91.5 64.2 76.3 73.8 87.1	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4		700 2,239 115 417 289	AVG 775 2,445 128 622 727 1,045	HIGH 849 2,651 140 826 1,165		5	10 153	15
SD: WHEI S SPR R ALL DOUG WR C BL M TOTA CL SD:	1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.%	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.%		700 700 2,239 115 417 289 956 TREES/	AVG 775 2,445 128 622 727 1,045 ACRE AVG	HIGH 849 2,651 140 826 1,165 1,133 HIGH		5	10 153	15
SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI	1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0		700 2,239 115 417 289 956 TREES/	775 2,445 128 622 727 1,045 ACRE AVG	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76		5 613 OF PLOTS	10 153 REQ.	68 INF. POP.
SD: WHE S SPR R ALL DOUG WR C BL M TOTA CL SD: WHEI S SPR	1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK RUCE	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7		700 700 2,239 115 417 289 956 TREES/A	775 2,445 128 622 727 1,045 ACRE AVG 67 12	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13		5 613 OF PLOTS	10 153 REQ.	68 INF. POP.
SD: WHE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI	1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK RUCE DER	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9		700 2,239 115 417 289 956 TREES/	775 2,445 128 622 727 1,045 ACRE AVG 67 12 60	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69		5 613 OF PLOTS	10 153 REQ.	68 INF. POP.
SD: WHE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG	1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK RUCE DER	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7		700 2,239 115 417 289 956 TREES/2 OW 57 10	775 2,445 128 622 727 1,045 ACRE AVG 67 12	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13		5 613 OF PLOTS	10 153 REQ.	68 INF. POP.
SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M	1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR ALL	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9		700 700 2,239 115 417 289 956 TREES/A OW 57 10 50 1	775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3		5 613 OF PLOTS 5	10 153 REQ.	68 INF. POP.
SD: WHE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C	1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR ALL	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8		700 700 2,239 115 417 289 956 TREES/A OW 57 10 50 1	775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2		5 613 OF PLOTS	10 153 REQ.	68 INF. POP.
SD: WHE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA	1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5	L	700 700 2,239 115 417 289 956 TREES/2 OW 57 10 50 1 0 0 128	AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155	#	5 613 OF PLOTS: 5	153 REQ. 10 83 REQ.	68 INF. POP. 15 37 INF. POP.
SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD:	1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.%	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.%	L	700 700 2,239 115 417 289 956 TREES/ OW 57 10 50 1 0 0 128 BASAL	775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH	#	5 613 OF PLOTS 5	153 REQ. 10	68 INF. POP. 15
SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI SD:	1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK MLOCK MLOCK MLOCK MLOCK MLOCK MLOCK MLOCK MLOCK MLOCK MLOCK MLOCK MLOCK MLOCK MLOCK	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3	L	700 700 2,239 115 417 289 956 TREES/ OW 57 10 50 1 0 0 128 BASAL	775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130	#	5 613 OF PLOTS: 5	153 REQ. 10 83 REQ.	68 INF. POP. 15 37 INF. POP.
SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD:	1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE LUCE LUCE LUCE LUCE LUCE LUCE LUCE L	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.%	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.%	L	700 700 2,239 115 417 289 956 TREES/ OW 57 10 50 1 0 0 128 BASAL	775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH	#	5 613 OF PLOTS: 5	153 REQ. 10 83 REQ.	68 INF. POP. 15 37 INF. POP.
SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SP: WHEI S SPR R ALI DOUG	1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9	L	700 700 2,239 115 417 289 956 TREES/ OW 57 10 50 1 0 0 128 BASAL	AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114	#	5 613 OF PLOTS: 5	153 REQ. 10 83 REQ.	68 INF. POP. 15 37 INF. POP.
SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C WR C WR C WR C WR C WR C WR C WR C	1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE G FIR EEDAR APLE G FIR EDAR APLE AL 68.1 1.0	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 547.7	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9 57.0	L	OW 700 2,239 115 417 289 956 TREES/ OW 57 10 50 1 0 0 128 BASAL A OW 104 83 48 4 1	AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 2	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 65 9 3	#	5 613 OF PLOTS: 5	153 REQ. 10 83 REQ.	68 INF. POP. 15 37 INF. POP.
SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA	1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE G FIR EEDAR APLE G FIR EDAR APLE DER G FIR EDAR APLE DER G FIR EDAR APLE	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 547.7 959.2	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9 57.0 99.9	L	700 700 2,239 115 417 289 956 TREES/A OW 57 10 50 1 0 0 128 BASAL A OW 104 83 48 4 1 0	AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 2 0	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 65 9 3 1	#	5 613 OF PLOTS: 5 333 OF PLOTS: 5	10 153 REO. 10 83 REO. 10	68 INF. POP. 15 37 INF. POP. 15
SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA	1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK AL 68.1 1.0 MLOCK AL 68.1 1.0 MLOCK AL 68.1 1.0 MLOCK AL 68.1 1.0 MLOCK AL 68.1 1.0 MLOCK AL 68.1 1.0 MLOCK AL 68.1 1.0 MLOCK AL 68.1 1.0	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 547.7 959.2 75.7	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9 57.0	L	700 700 2,239 115 417 289 956 TREES/ OW 57 10 50 1 0 0 128 BASAL OW 104 83 48 4 1 0 259	AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 2 0 281	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 65 9 3	#	5 613 OF PLOTS: 5 333 OF PLOTS: 5	10 153 REQ. 10 83 REQ. 10	68 INF. POP. 15 37 INF. POP. 15
SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL CL CL CL CL CL CL CL CL CL CL CL CL	1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 547.7 959.2 75.7 COEFF	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9 57.0 99.9 7.9	L	OW 700 2,239 115 417 289 956 TREES/ OW 57 10 50 1 0 0 128 BASAL A OW 104 83 48 4 1 0 259 NET BF/	AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 2 0 281 ACRE	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 65 9 3 1 303	#	5 613 OF PLOTS: 5 333 OF PLOTS: 5	10 153 REO. 10 83 REO. 10 57 REO.	68 INF. POP. 15 37 INF. POP. 15
SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD:	1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 547.7 959.2 75.7 COEFF VAR.%	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9 57.0 99.9 7.9 S.E.%	L.	700 700 2,239 115 417 289 956 TREES/ OW 57 10 50 1 0 0 128 BASAL OW 104 83 48 4 1 0 259 NET BF/	AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 2 0 281 ACRE AVG	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 65 9 3 1 303 HIGH	#	5 613 OF PLOTS: 5 333 OF PLOTS: 5	10 153 REQ. 10 83 REQ. 10	68 INF. POP. 15 37 INF. POP. 15
SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD: CL SD:	1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK REDER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 547.7 959.2 75.7 COEFF	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9 57.0 99.9 7.9	L.	OW 700 2,239 115 417 289 956 TREES/ OW 57 10 50 1 0 0 128 BASAL OW 104 83 48 4 1 0 259 NET BF/ OW 6,686	AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 2 0 281 ACRE	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 65 9 3 1 303	#	5 613 OF PLOTS: 5 333 OF PLOTS: 5	10 153 REO. 10 83 REO. 10 57 REO.	68 INF. POP. 15 37 INF. POP. 15
SD: WHEE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEE SD:	1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK REDAR APLE AL 68.1 1.0 MLOCK REDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK REDAR APLE AL 68.1	VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 547.7 959.2 75.7 COEFF VAR.% 108.1	S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9 57.0 99.9 7.9 S.E.% 11.3	L(OW 700 2,239 115 417 289 956 TREES/OW 57 10 50 1 0 0 128 BASAL OW 104 83 48 4 1 0 259 NET BEOW 6,686 14,747	AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 2 0 281 ACRE AVG 8,803	HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 65 9 3 1 303 HIGH 20,920	#	5 613 OF PLOTS: 5 333 OF PLOTS: 5	10 153 REO. 10 83 REO. 10 57 REO.	68 INF. POP. 15 37 INF. POP. 15

TC PS	TATS			F	PROJEC PROJEC		ISTICS NUT	,		PAGE DATE	2 5/28/2013
TWP	RGE	SC	TRACT	TYPE	,	A	CRES	PLOTS	TREES	CuFt	BdFt
04N 04N	08 08W	20 20	1&3 AREA2	R/W R/W			4.00	92	625	1	W
CL	68.1		COEFF		NET	BF/ACRE			# OF PLOT	S REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
	CEDAR IAPLE		692.4	72.1	49	175	302		-	10 13 11	""
тот	AL		81.0	8.4	38,411	41,949	45,486		262	65	29

TC TST	`ATS				ST PROJE	ATIS	TICS DONUT			PAGE DATE 5	15/28/2013
TWP	RGE	SECT T	TRACT		TYPE		CRES	PLOTS	TREES	CuFt	BdFt
04N	08W		AREA2		LEAV		70.00	41	200	1	W
		PLOTS	TREES		TREES PER PLOT	,	ESTIMATED TOTAL TREES	S	ERCENT AMPLE REES		
TOTA	τ.	41	200		4.9		IKEES	1	KEES		
REFO COUN	SE COUNT DREST NT	17 24	77		4.5		3,005		2.6		
BLAN 100 %											
100 70		·		STA	ND SUMI	MARV					
		SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
SPRU	CELV	43	9.6	45.9	99		110.2	22,314	19,940	4,838	4,838
HEMI SNAG		22 6	18.8 1.1	25.1 35.4	70 63		64.7 7.8	13,423	12,982	2,909	2,909
	LEAV	1	11.1	9.0	17		7.8 4.9	111	111	45	45
	GLEAV	2	.8	26.1	96		2.9	605	587	139	139
CEDL		3	1.5	19.2	24		2.9	245	234	69 7.000	69
TOTA	AL	77	42.9	28.8	61		193.6	36,699	33,854	7,999	7,999
CONI			THE SAMPL OF 100 THE		E WILL BE	WITHI	N THE SAMPI	LE ERROR			
CL:	68.1 %	COEFF	3		SAMPL	E TREI	ES - BF	#	OF TREES	REQ.	INF. POP.
SD:	1.0	VAR.%			OW	AVG	HIGH		5	10	15
SPRU HEML SNAG	LEAV	53.4 59.5	8.1 13.0		2,567 1,110	2,795 1,275	3,022 1,441				
	LEAV	00.0	mm ^		225	000	1.505				
CEDL	GLEAV FAV	82.3 87.1	77.0 60.3		225 289	980 727	1,735 1,165				
TOTA		77.9	8.9		1,803	1,979	2,155		243	61	27
CL:	68.1 %	COEFF	7		TREES	ACRE		#	OF PLOTS	REQ.	INF. POP.
SD:	1.0	VAR.%		L	OW	AVG	HIGH		5	10	15
SPRU		79.5	12.4 18.1		8 15	10 19	11 22				
HEML SNAG		116.3 302.6	47.2		13	19	2				
ALDR		360.3	56.2		5	11	17				
	GLEAV	381.5	59.5		0	1	1				
CEDLE TOTA		548.6 101.3	85.6 15.8		0 <i>36</i>	1 43	3 50		409	102	45
	68.1 %	COEFF									
	1.0	VAR.%		ĭ	BASAL OW	AREA/A	ACRE HIGH	#	OF PLOTS 5	10	INF. POP.
SPRU		76.4	11.9	L	97	110	123			10	13
HEML	LEAV	91.1	14.2		56	65	74				
SNAG		307.9	48.0		4	8	12				
ALDR DOUG	LEAV	360.3 360.3	56.2 56.2		2 1	5 3	8 5				
CEDL		360.3	56.2		1	3	5				
TOTA	L	30.8	4.8		184	194	203		38	9	4
CL:	68.1 %	COEFF	7		NET BF	/ACRE		#	OF PLOTS	REQ.	INF. POP.
SD:		VAR.%			OW	AVG	HIGH		5	10	15
SPRUG		75.5 94.9	11.8 14.8			19,940 12,982	22,288 14,905				
HEML SNAG	t			1	•		•				
ALDR	LEAV	360.3	56.2		49	111	174				

TC TST	TATS				PRO	STATIS OJECT	STICS DONUT			PAGE DATE	2 5/28/2013
TWP	RGE	SECT	TRAC	т	TY	PE A	CRES	PLOTS	TREES	CuFt	BdFt
04N	08W	20	AREA	A2	LE	AV	70.00	41	200	1	W
CL:	68.1%	CO	EFF		NE'	Γ BF/ACRI	E		# OF PLO	TS REQ.	INF. POP.
SD:	1.0	VA	R.	S.E.%	LOW	AVG	HIGH		5	10	15
DOUG	GLEAV	366	5.9	57.2	251	587	923				
CEDI	LEAV	459	0.3	71.7	66	234	401				
TOTA	AL	29.	.8	4.7	32,279	33,854	35,429		35	9	4

TC TSTATS		-		STA PROJECT	TIST	ICS DONUT			PAGE DATE	1 5/28/2013
TWP RGE	SECT TI	RACT		ТҮРЕ	ACI	RES	PLOTS	TREES	CuFt	BdFt
04N 08W	20 A	REA5		LEAV		43.00	30	134	1	W
				REES		ESTIMATED TOTAL	:	PERCENT SAMPLE		
	PLOTS	TREES	P	ER PLOT		TREES		TREES		
TOTAL CRUISE DBH COUNT REFOREST	30 12	134 44		4.5 3.7		2,810		1.6		
COUNT BLANKS 100 %	18	79		4.4						
	WHO I I I		STAN	D SUMM	ARY					
	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
HEMLEAV	31	45.1	22.0	77		118.7	21,233	20,692	5,030	
DOUGLEAV	4	11.5	23.0	87		33.3	6,473	6,473	1,497	•
SNAG	5	5.3	24.5	28		17.3	•	Ť	•	, , , , ,
SPRUCELV	2	.4	43.9	98		4.0	892	821	187	187
ALDRLEAV	1	2.3	18.0	64		4.0	656	656	158	158
CEDLEAV	1	.8	18.0	42		1.3				
TOTAL	44	65.3	22.4	74		178.7	29,254	28,643	6,872	6,872
	E LIMITS OF TIMES OUT			WILL BE W	VITHIN '	THE SAMPI	LE ERROR			
CL: 68.1 %	COEFF			SAMPLE	TREES	- BF	7	OF TREES	S REO.	INF. POP.
SD: 1.0	37.4 D 0/								•	
	VAR.%	S.E.%	LO	W A	AVG	HIGH		5	10	13
HEMLEAV	VAR.% 72.0	S.E.% 12.9		W A 601	AVG 690	HIGH 779		5	10	1;
								5	10	13
HEMLEAV DOUGLEAV	72.0	12.9		601 507	690	779		5	10	15
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV	72.0 51.8	12.9 29.6	1,	601 507 928 2	690 720	779 933		325	10 81	
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV	72.0 51.8 10.6	12.9 29.6 9.9	1,	601 507 928 2 566	690 720 2,140	779 933 2,352	#	325	81	36
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 %	72.0 51.8 10.6 90.2 COEFF	12.9 29.6 9.9	1,	601 507 928 2 566 TREES/A	690 720 2,140 655 CRE	779 933 2,352 <i>744</i>	#	<i>325</i> # OF PLOTS	<i>81</i> S REQ.	36 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0	72.0 51.8 10.6	12.9 29.6 9.9	1,	601 507 928 2 566 TREES/A	690 720 2,140 655 CRE	779 933 2,352	#	325	81	36 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 %	72.0 51.8 10.6 90.2 COEFF VAR.%	12.9 29.6 9.9 13.6	1,	601 507 928 2 566 TREES/AW	690 720 2,140 655 CRE AVG	779 933 2,352 <i>744</i> HIGH	#	<i>325</i> # OF PLOTS	<i>81</i> S REQ.	36 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7	12.9 29.6 9.9 13.6 S.E.% 8.7	1,	601 507 928 2 566 TREES/A W A	690 720 2,140 655 CRE AVG 45	779 933 2,352 744 HIGH 49	#	<i>325</i> # OF PLOTS	<i>81</i> S REQ.	36 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8	1,	601 507 928 2 566 TREES/A W A 41 8	690 720 2,140 655 CRE AVG 45 12 5	779 933 2,352 <i>744</i> HIGH 49 15	#	<i>325</i> # OF PLOTS	<i>81</i> S REQ.	36 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7	1,	601 507 928 2 566 TREES/A W A 41 8 4	690 720 2,140 655 CRE AVG 45 12 5 0 2	779 933 2,352 744 HIGH 49 15 7 1 4	‡	<i>325</i> # OF PLOTS	<i>81</i> S REQ.	36 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8	1,	601 507 928 2 566 TREES/A W A 41 8 4 0	690 720 2,140 655 CRE AVG 45 12 5 0 2	779 933 2,352 744 HIGH 49 15 7 1 4 2	#	<i>325</i> # OF PLOTS	<i>81</i> S REQ.	36 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7	1,	601 507 928 2 566 TREES/A W A 41 8 4 0	690 720 2,140 655 CRE AVG 45 12 5 0 2	779 933 2,352 744 HIGH 49 15 7 1 4	#	<i>325</i> # OF PLOTS	<i>81</i> S REQ.	36 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7	LO	601 507 928 2 566 TREES/A W A 41 8 4 0	690 720 2,140 655 CRE AVG 45 12 5 0 2 1 655	779 933 2,352 744 HIGH 49 15 7 1 4 2 65		<i>325</i> # OF PLOTS	81 S REQ. 10	36 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7	LO	601 507 928 2 566 TREES/A W A 41 8 4 0 1 65 BASAL A	690 720 2,140 655 CRE AVG 45 12 5 0 2 1 655 REA/AC	779 933 2,352 744 HIGH 49 15 7 1 4 2 65		325 # OF PLOTS 5	81 S REQ. 10	36 INF. POP. 15
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7 COEFF VAR.% 42.0	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7	LO	601 507 928 2 566 TREES/A W A 41 8 4 0 1 65 BASAL A W A	690 720 2,140 655 CRE AVG 45 12 5 0 2 1 65 REA/AC	779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128		325 # OF PLOTS 5	81 S REQ. 10	36 INF. POP. 15
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7 COEFF VAR.% 42.0 167.0	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7 S.E.% 7.8 31.0	LO	601 507 928 2 566 TREES/A W A 41 8 4 0 1 65 BASAL A W A 109 23	690 720 2,140 655 CRE AVG 45 12 5 0 2 1 65 REA/AC	779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44		325 # OF PLOTS 5	81 S REQ. 10	36 INF. POP. 15
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7 COEFF VAR.% 42.0 167.0 168.0	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7 S.E.% 7.8 31.0 31.2	LO	601 507 928 2 566 TREES/A W A 0 1 65 BASAL A W A 109 23 12	690 720 2,140 655 CRE AVG 45 12 5 0 2 1 65 REA/AC 119 33 17	779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23		325 # OF PLOTS 5	81 S REQ. 10	36 INF. POP. 15
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7 COEFF VAR.% 42.0 167.0 168.0 305.1	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7 S.E.% 7.8 31.0 31.2 56.6	LO	601 507 928 2 566 TREES/AW 41 8 4 0 1 65 BASAL AW W A 109 23 12 2	690 720 2,140 655 CRE AVG 45 12 5 0 2 1 65 REA/AC 119 33 17 4	779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6		325 # OF PLOTS 5	81 S REQ. 10	36 INF. POP. 15
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV SNAG SPRUCELV ALDRLEAV SNAG SPRUCELV ALDRLEAV SNAG SPRUCELV ALDRLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7 COEFF VAR.% 42.0 167.0 168.0 305.1 402.6	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7 S.E.% 7.8 31.0 31.2 56.6 74.7	LO	601 507 928 2 566 TREES/A W A 0 1 65 BASAL A W A 109 23 12	690 720 2,140 655 CRE AVG 45 12 5 0 2 1 65 REA/AC 119 33 17	779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7		325 # OF PLOTS 5	81 S REQ. 10	36 INF. POP. 15
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV SD: 1.0	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7 COEFF VAR.% 42.0 167.0 168.0 305.1	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7 S.E.% 7.8 31.0 31.2 56.6	LO	601 507 928 2 566 TREES/AW 41 8 4 0 1 65 BASAL AW W A 109 23 12 2 1	690 720 720 655 CRE AVG 45 12 5 0 2 1 65 REA/AC 119 33 17 4 4 1	779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3		325 # OF PLOTS 5	81 S REQ. 10	36 INF. POP. 15
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV CEDLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7 COEFF VAR.% 42.0 167.0 168.0 305.1 402.6 547.7	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7 S.E.% 7.8 31.0 31.2 56.6 74.7	LO	601 507 928 2 566 TREES/AU 41 8 4 0 1 65 BASAL AU W A 109 23 12 2 1	690 720 720 655 CRE AVG 45 12 5 0 2 1 65 REA/AC 119 33 17 4 1 179	779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7	#	325 # OF PLOTS 5 # OF PLOTS	81 S REQ. 10	36 INF. POP. 15
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SD: 1.0 HEMLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 %	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7 COEFF VAR.% 42.0 167.0 168.0 305.1 402.6 547.7	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7 S.E.% 7.8 31.0 31.2 56.6 74.7 101.7	LO	601 507 928 2 566 TREES/A W A 10 65 BASAL A W A 109 23 12 2 1 179 NET BF/A	690 720 720 655 CRE AVG 45 12 5 0 2 1 65 REA/AC 119 33 17 4 4 1 179 ACRE	779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 179	#	325 # OF PLOTS 5 # OF PLOTS 5	81 S REQ. 10 S REQ. 10	INF. POP. 15 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7 COEFF VAR.% 42.0 167.0 168.0 305.1 402.6 547.7 COEFF VAR.%	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7 S.E.% 7.8 31.0 31.2 56.6 74.7 101.7	LO	601 507 928 2 566 TREES/A W A 41 8 4 0 1 65 BASAL A W A 109 23 12 2 1 179 NET BF/A W A	690 720 720 655 CRE AVG 45 12 5 0 2 1 65 REA/AC 119 33 17 4 1 179 ACRE AVG	779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 179 HIGH	#	325 # OF PLOTS 5 # OF PLOTS	81 S REQ. 10	INF. POP. 15 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV CEDLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV CEDLEAV TOTAL	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7 COEFF VAR.% 42.0 167.0 168.0 305.1 402.6 547.7 COEFF VAR.%	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7 S.E.% 7.8 31.0 31.2 56.6 74.7 101.7	LO LO LO	601 507 928 2 566 TREES/A W 41 8 4 0 1 65 BASAL A W 109 23 12 2 1 179 NET BF/A W 931 20	690 720 720 655 CRE AVG 45 12 5 0 2 1 65 REA/AC 119 33 17 4 1 179 ACRE AVG	779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 179 HIGH 22,453	#	325 # OF PLOTS 5 # OF PLOTS 5	81 S REQ. 10 S REQ. 10	INF. POP. 15 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV CEDLEAV TOTAL CL: 68.1 % SO: 1.0 HEMLEAV CEDLEAV TOTAL	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7 COEFF VAR.% 42.0 167.0 168.0 305.1 402.6 547.7 COEFF VAR.%	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7 S.E.% 7.8 31.0 31.2 56.6 74.7 101.7	LO LO LO	601 507 928 2 566 TREES/AN W A 10 65 BASAL AN W A 109 23 12 2 1 179 NET BF/AN W A 931 20	690 720 720 655 CRE AVG 45 12 5 0 2 1 65 REA/AC 119 33 17 4 1 179 ACRE AVG	779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 179 HIGH	#	325 # OF PLOTS 5 # OF PLOTS 5	81 S REQ. 10 S REQ. 10	36 INF. POP. 15 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7 COEFF VAR.% 42.0 167.0 168.0 305.1 402.6 547.7 COEFF VAR.% 45.8 166.6	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7 S.E.% 7.8 31.0 31.2 56.6 74.7 101.7	LO LO 18, 4,	601 507 928 2 566 TREES/A W 41 8 4 0 1 65 BASAL A W 109 23 12 2 1 179 NET BF/A W 931 20 471 6	690 720 720 655 CRE AVG 45 12 5 0 2 1 65 REA/AC 119 33 17 4 1 179 ACRE AVG 0,692 5,473	779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 179 HIGH 22,453 8,475	#	325 # OF PLOTS 5 # OF PLOTS 5	81 S REQ. 10 S REQ. 10	INF. POP. 15 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV CEDLEAV TOTAL CL: 68.1 % SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV SNAG SPRUCELV	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7 COEFF VAR.% 42.0 167.0 168.0 305.1 402.6 547.7 COEFF VAR.% 305.1 402.6 547.7	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7 S.E.% 7.8 31.0 31.2 56.6 74.7 101.7	LO LO 18, 4,	601 507 928 2 566 TREES/A W A 41 8 4 0 1 65 BASAL A W A 109 23 12 2 1 179 NET BF/A W A 931 20 471 6	690 720 720 655 CRE AVG 45 12 5 0 2 1 65 REA/AC 119 33 17 4 1 179 ACRE AVG 0,692 5,473	779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 179 HIGH 22,453 8,475 1,291	#	325 # OF PLOTS 5 # OF PLOTS 5	81 S REQ. 10 S REQ. 10	INF. POP. 15 INF. POP.
HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV CEDLEAV TOTAL	72.0 51.8 10.6 90.2 COEFF VAR.% 46.7 170.5 171.2 306.1 402.6 547.7 COEFF VAR.% 42.0 167.0 168.0 305.1 402.6 547.7 COEFF VAR.% 45.8 166.6	12.9 29.6 9.9 13.6 S.E.% 8.7 31.7 31.8 56.8 74.7 101.7 S.E.% 7.8 31.0 31.2 56.6 74.7 101.7	LO LO 18, 4,	601 507 928 2 566 TREES/A W 41 8 4 0 1 65 BASAL A W 109 23 12 2 1 179 NET BF/A W 931 20 471 6	690 720 720 655 CRE AVG 45 12 5 0 2 1 65 REA/AC 119 33 17 4 1 179 ACRE AVG 0,692 5,473	779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 179 HIGH 22,453 8,475	#	325 # OF PLOTS 5 # OF PLOTS 5	81 S REQ. 10 S REQ. 10	INF. POP.

TC TST	TATS				ST PROJE		TICS DONUT			PAGE DATE 5	2 5/28/2013
TWP 04N	RGE 08W	SECT 20	TRAC	_	TYPE LEAV	A	CRES 43.00	PLOTS 30	TREES 134	CuFt	BdFt W
CL: SD:	68.1 % 1.0	COE VAR		S.E.%	NET BF LOW	V ACRE AVG	HIGH		# OF PLO 5	TS REQ.	INF. POP.

TC TST	ΓATS				ST	ATIS	STICS			PAGE	1
					PROJE		DONUT			DATE :	5/28/2013
TWP	RGE	SECT	TRACT		TYPE	A	CRES	PLOTS	TREES	CuFt	BdFt
04N	08W	33	E		LEAV		10.00	13	40	1	W
					TREES		ESTIMATED TOTAL		ERCENT AMPLE		
		PLOTS	TREES		PER PLOT	•	TREES	Т	REES		
TOTA	AL	13	40		3.1						
	COUNT PREST NT NKS	13	39		3.0		394		9.9		
				STA	ND SUM	MARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
HEML		22		23.6	75		67.7	13,522	13,022	3,072	3,072
SNAG		13		24.0	31		43.1				
DOUG	GLEAV	3		22.9	91		9.2	1,814	1,814	415	415
TOTA		1 39		56.0 23.9	55 <i>61</i>		3.1	315	315	81	81
1017	XL.	39	39.4	23.9	01		123.1	15,651	15,151	3,568	3,568
CONI			OF THE SAMPL TT OF 100 THE		WILL BE	WITHI	N THE SAMPL	E ERROR			
CL:	68.1 %	COE	FF		SAMPL	E TREI	ES - BF	#	OF TREES	REO.	INF. POP.
SD:	1.0	VAR	.% S.E.%	LC)W	AVG	HIGH		5	10	15
HEML		61.0	13.3		809	934	1,058				
SNAG DOUG CEDLI	GLEAV	24.1	16.7		489	587	685				
TOTA		102.9	16.5		515	617	718		423	106	47
CL:	68.1 %	COE					710				
	1.0	VAR.		1.0	TREES		HIOH	#	OF PLOTS		INF. POP.
HEML		73.7		LC	18	AVG 22	HIGH 27		5	10	15
SNAG		132.4			8	14	19				
DOUG		195.0			1	3	5				
CEDLE		360.6				0	0				
TOTA	L	47.6	13.7		34	39	45		98	24	11
CL:	68.1 %	COEF	FF		BASAL	AREA/	ACRE	#	OF PLOTS	REO	INF. POP.
	1.0	VAR.	% S.E.%	LC		AVG	HIGH	π'	5	10	15
HEML	EAV	28.4			62	68	73			10	13
SNAG		133.8			26	43	60				
DOUG		190.0			4	9	14				
CEDLE		360.6				3	6				
TOTA		42.9	12.4		108	123	138		80	20	9
CL:	68.1 %	COEF	F		NET BF/	ACRE		# (OF PLOTS	REQ.	INF. POP.
SD:				LO		AVG	IIIOII		5	10	
	1.0	VAR.	% S.E.%	LU	VY	71 7 0	HIGH		J	10	1.5
HEMLI		VAR. 36.3				3,022	14,385			10	15
HEMLI SNAG	EAV	36.3	10.5	11,	,659 1	3,022	14,385			10	15
HEMLI SNAG DOUGI	EAV LEAV	36.3 190.2	10.5 54.8	11,	,659 1	3,022 1,814	14,385 2,809			10	15
HEMLI SNAG	EAV LEAV EAV	36.3	10.5 54.8 103.9	11,	,659 1 819	3,022	14,385		22	5	2

s	So Gr			 Def	NT 4	%			No4 \$7-1-	L-	Co-1!	- D!	neter in 1	[m.a.l				
Spp T	1			Dei %	Net MBF	Spc	2-3	4-5	6-7	<u>1me by</u> 8-9	10-11		14-15		20-23	24-29	30-39	40+
A	DO 1S			70	4		2-3	4-3	0-7	0-9	10-11	4	14-13	10-19	20-23	24-29	30-39	40+
A	DO 1S				16						8	8						
A	DO 1S				21	i					10	11						
A	DO 1S				63	7.9					24	39	0					
A	DO 1S			2.4	46						2-7	22	25					
A	DO 1S			2.1	49							2	16	31				
11					.,								10					
A	DO 2S	20	5		5	.7					5							
A	DO 2S	30	. 44		44	5.4					44							
A	DO 2S	32	52		52	6.5					52							
A	DO 2S	40	100	2.3	98	12.1				24	74							
A	DO 3S	16	0		0	.0				0								
A	DO 3S				33	4.1				33								
A	DO 3S				23	2.8				21		2						
A	DO 3S	30	19	5.1	18	2.3				9	10							
A	DO 3S	32	2	17.5	2	.2				2								
A	DO 3S	34	0		0	.0				0								
A	DO 3S	36	0		0	.0				0								
A	DO 3S	38	7		. 7	.9				7								
A	DO 3S	40	65		65	8.1				65								
Α	DO 4S	10	1		1	.1			1									
Α	DO 4S	14	0		0	.0			0									
Α	DO 4S	16	26		26	3.3		0	20	0	6							
Α	DO 4S	18	4		4	.5			4	0								
Α	DO 4S	20	15		15	1.9			15									
Α	DO 4S	24	9		9	1.1			9	0								
Α	DO 4S	30	37		37	4.6			37									
A	DO 4S	32	25		25	3.1			25									
Α	DO 4S	34	17	16.6	14	1.8			14									
Α	DO 4S	36	0		0	.0			0									
Α	DO 4S	40	127		127	15.7			115	12								
Α	Totals		813		805			0	240	172	232	88	41	31				
S	DO 2S	ı	9		8								0	8				
S	DO 2S	40	181	3.2	175	48.1								106	37	28	4	0
S	DO 3S	16	2	19.1	1	.4						0	0	1	0			
s	DO 3S	18	2		2	.5					0	2		0	0			
s	DO 3S	22	0		0	.0							0					

TC PLOGSTVB

Log Stock Table - MBF

T04N R08W S20 TyR/W THRU T04N R08W S33 TyTAKE

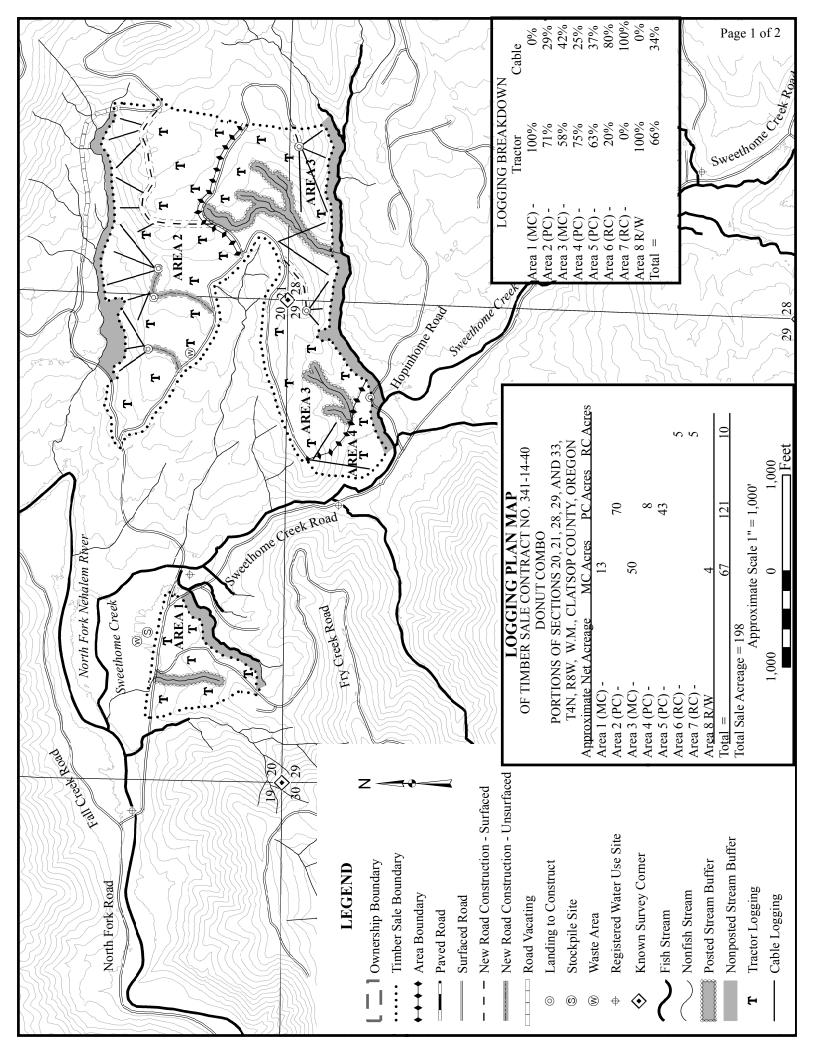
Project: Acres DONUT 198.00 Page 2
Date 5/28/2013
Time 8:43:48AM

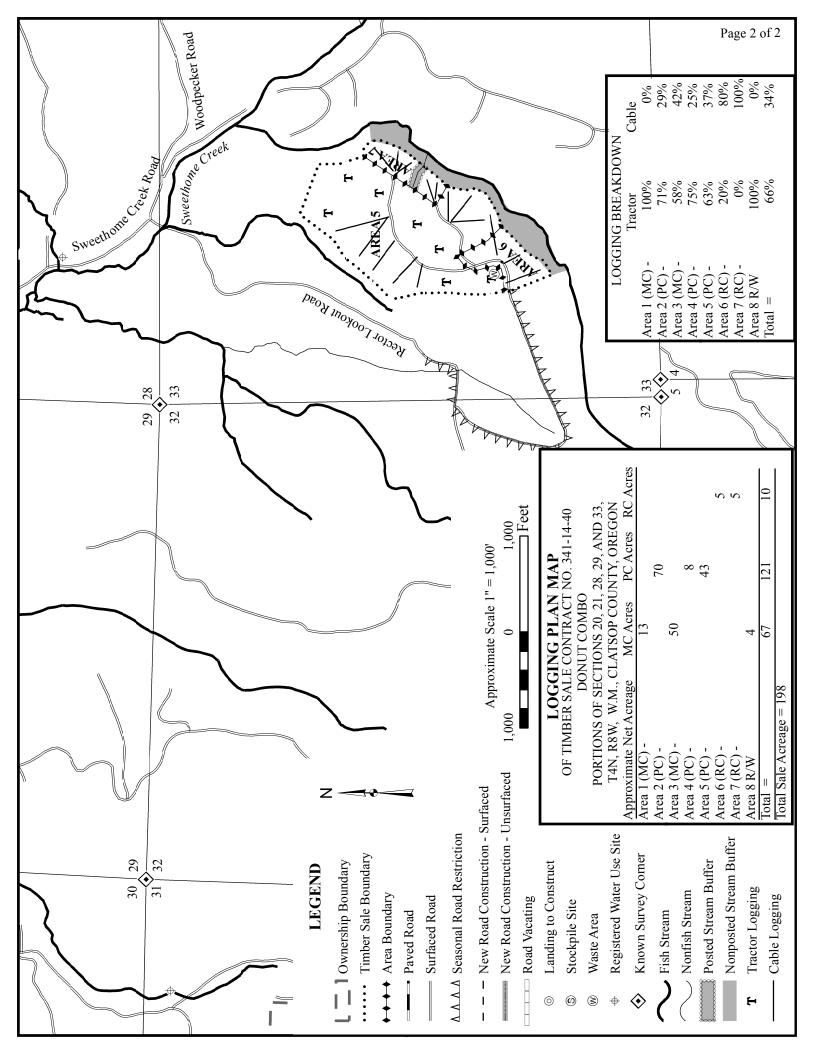
So Gr Log % Gross Def Net Volume by Scaling Diameter in Inches Net Len rt de **MBF MBF** Spp % Spc 2-3 4-5 8-9 10-11 12-13 14-15 20-23 24-29 30-39 40+ S DO 3S 24 1 3.9 0 .3 0 0 0 S DO 3S 0 26 .0 0 S DO 3S 30 0 .0 0 S DO 3S 32 48 13.7 41 11.3 12 16 1 1 9 1 1 S DO 3S 34 22.0 1.2 5 2 0 2 1 \mathbf{S} DO 3S 36 7 27.8 5 1.3 0 2 2 S DO 3S 38 0 0 .0 S DO 3S 40 116 12.0 102 28.1 3 10 0 0 2 13 30 41 4 DO 4S 2 0 S 14 2 1.3 2 .6 S DO 4S 18 0 .0 0 0 \mathbf{S} DO 4S 20 10 10 2.7 4 6 S DO 4S 24 0 0 .1 0 S DO 4S 26 0 .0 0 S DO 4S 28 3 .9 3 S DO 4S 30 6 1.7 6 S DO 4S 36 0 2.4 .1 0 0 S Totals 394 7.7 364 9.1 19 16 2 14 122 51 67 7 20 46 Н DO 2S 13 1 .1 1 Η DO 2S 16 2 2 2 .1 Η DO 2S 18 0 5.6 0. Н 20 DO 2S 19.1 16 20 .6 16 Н DO 2S 0 24 0 .0 0 Η DO 2S 26 21 21 .8 21 Η DO 2S 30 17 6.7 16 .6 16 Η DO 2S 32 175 2.6 171 6.5 16 99 17 18 21 Η DO 2S 40 1,249 3.1 1,211 46.0 8 23 197 122 456 205 169 31 Η DO 2S 43 1 19.1 .0 1 Н DO 3S 9 0 0 .0 0 Η DO 3S 12 0 25.0 .0 0 Η DO 3S 14 1 .0 1 9 Η DO 3S 16 12 23.9 0 .3 9 0 Η DO 3S 18 1 2.1 .0 0 1 Η DO 3S 20 5 .2 0 2 Н DO 3S 22 5 .2 3 3 Н DO 3S 24 6 .2 3 3 Η DO 3S 26 0 .0 DO 3S Η 27 4 .1 4

 TC PLOGSTVB
 Log Stock Table - MBF

 T04N R08W S20 TyR/W THRU T04N R08W S33 TyTAKE
 Project: DONUT Acres 198.00
 Page 3 Date 5/28/2013 Time 8:43:48AM

S	So Gr			Gross	Def	Net	%]	Net Vol	ume by	Scalin	g Dian	neter in	Inches				
Spp T	· ·			MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11			16-19	20-23	24-29	30-39	40+
Н	DO 3	S	28	3		3	.1			1	3								
Н	DO 3	S	30	43		43	1.6			7	5	31			0				
Н	DO 3	S	32	272	1.9	267	10.1		4	49	114	78	9			14			
Н	DO 35	S	34	1		1	.0				1								
Н	DO 35	S	36	11		11	.4			8	3								
Н	DO 35	3	38	12		12	.5			7		5							
Н	DO 35	S	40	620		615	23.3			148	178	251	27	12					
Н	DO 45	3	12	3		3	.1			3									
Н	DO 45	3	14	0	23.2	0	.0						0						
Н	DO 48	3	16	53		53	2.0			48	5								
Н	DO 48	5	18	28		28	1.1			23	4								
Н	DO 48	5	20	19		19	.7			17	2		0						
Н	DO 48	3	22	8		8	.3			8							1		
H	DO 4S	}	24	8		8	.3			8									
Н	DO 4S	,	26	12		12	.5			12									
Н	DO 4S		28	10		10	.4		5	5									
Н	DO 4S		30	39		39	1.5			39									
Н	DO 4S		32	7		7	.3		5	3									
Н	DO 4S		36	14	33.3	10	.4			10									
Η	DO 4S		40	13		13	.5			13									
H	Tota	ls		2,700	2.4	2,634	65.5		20	416	319	417	352	156	474	257	191	31	
C	DO 2S		32	0	6.5	0	32.5										0		
2	DO 2S		40	0	5.0	0	50.9			NUMBER OF THE PROPERTY OF THE							0		
C	DO 3S		32	0		0	6.0						0						
C	DO 3S		40	0		0	10.6						0						
	Total	s		1	4.7	1	.0						0			-	1		
)	DO 2S		40	174	2.3	170	78.0						29	104	37		1		
)	DO 3S	-	26	0		0	.0	-				0						2,02,044	
)	DO 3S		32	7		7	3.3				7	0							
)	DO 3S		40	31		31	14.1			7	10	14							
)	DO 4S	_	14	0		0	.0			0									
)	DO 4S		40	10		10	4.5				10								
)	Total	s		222	1.8	218	5.4			7	27	14	29	104	37		1		
otal	All Speci	es		4,131	2.6	4,022	100.0		20	682	535	666	484	320	665	308	259	77	


TC PSTNDSUM	Stand Table Summary	Page 1 Date: 4/17/2013
T04N R08W S20 TyR/W THRU	Project DONUT	Time: 8:38:28AM
T04N R08W S33 TVTAKE	Acres 198.00	Grown Year:


104	104N R08W S33 TYTAKE								190.0	, ,			Grown 16		
				Tot		,,		Averag	e Log		Net	Net			
5	1	Sample	FF	Av	Trees/	BA/	Logs	Net	Net	Tons/	Cu.Ft.			Totals	
Spc 7	DBH	Trees	16'	Ht	Acre		Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
Н	8	1	85	20	.445	.16	.45	5.0	20.0		2	9		4	2
H	9	4	85	20	4.797	2.12	4.80	5.0	20.0		24	96		47	19
Н	10	11	87	31	6.736	3.48	6.74	8.2	26.8		55	180		109	36
Н	11	13	89	70	7.875	5.20	9.33	15.4	53.0		144	495		284	98
H	12 13	18 9	87 89	77	9.000	6.98	15.19	14.9	50.4		227	766		449	152
H H	14	8	89 87	79 84	3.008 5.380	2.69 5.75	5.51 10.76	16.6 19.7	60.6		91	334		181	66
H	15	5	90	99	2.508	3.73	5.02	26.5	69.6 101.9		212 133	749 511		421	148
H	16	19	87	94	5.893	8.23	11.79	26.8	98.6		316	1,163		263 626	101
Н	17	20	88	93	6.466	10.19	12.42	31.6	111.9		392	1,389		776	230 275
Н	18	9	82	95	2.651	4.68	4.28	34.5	117.5		148	503		292	100
Н	19	6	87	90	1.482	2.92	2.96	39.5	132.0		117	391		232	77
Н	20	2	84	99	.511	1.11	1.02	46.0	149.2		47	152		93	30
Н	21	6	88	105	.406	.98	.85	53.6	212.5		45	180		90	36
Н	22	15	88	98	2.120	5.60	4.85	50.0	199.8		242	969		480	192
Н	23	8	86	109	.943	2.72	2.72	47.0	180.5		128	491		253	97
Н	24	2	88	112	.256	.80	.51	63.5	260.0		32	133		64	26
Н	25	5	87	96	.576	1.96	1.20	68.3	249.9		82	299		162	59
Н	26 27	5	87	95	.344	1.27	.69	68.2	263.2		47	181		93	36
Н	28	8 9	86 88	110 96	1.088	4.33	2.58	67.3	290.7		174	750		344	149
H H	29	9 7		101	.881 .579	3.77 2.66	1.81 .98	84.3	341.8		153	618		302	122
Н	30	5		107	.379	2.66 1.65	.68	92.2 81.9	337.8 320.4		91	332		179	66
H	31	3		116	.161	.85	.48	90.0	419.5		56 44	218 203		110	43
Н	32	4		121	.179	1.00	.54	87.3	442.1		47	238		86	40
Н	33	3	88	98	.143	.85	.29	125.1	481.4		37	141		93 72	47 28
Н	34	8		120	.423	2.67	.98	95.3	437.3		94	430		185	85
Н	35	3	86	123	.019	.13	.06	115.4	545.6		7	32		13	6
Н	38	6	89	121	.215	1.69	.64	137.4	706.0		89	455		175	90
Н	40	5	87		.186	1.62	.37	199.4	947.1		74	353		147	70
Н	41	4	87		.175	1.61	.44	170.2	792.0		75	347		148	69
Н	42	2	83	- 1	.084	.80	.25	124.3	650.0		31	163		62	32
Н	45	2	73		.008	.09	.02	125.7	633.3		3	15		6	3
H	48	1	82		.003	.04	.01	201.0	910.0		2	9		4	2
Н	50	1	82	122	.003	.04	.01	174.7	900.0		2	9		3	2
Н	Totals	237	87	77	65.882	93.71	111.23	31.1	119.6		3,460	13,304		6,851	2,634
A	8	2	87	30	.010	.00	.01	5.5	20.0		0	0		0	0
A	9	14	87	45	3.434	1.44	3.43	7.9	32.8		27	113		54	22
Α	10	15	86	53	2.393	1.36	2.39	12.9	39.9		31	95		61	19
A	11	15	87	59	4.887	3.17	4.89	15.3	51.7		75	253		148	50
A	12	20	86	57	4.131	3.19	4.15	19.7	55.8		82	232		162	46
A	13 14	34 23	87 87	46	7.160	6.60 5.01	5.75	18.9	50.0		109	287		215	57
A	15	23 35	87 86	66	4.732 6.950	5.01 8.49	6.49	22.9	67.4		149	438		295	87
A A	16	26	87	71	5.498	8.49 7.68	8.30	23.1 28.5	78.8 93.4		261	892		517	177
A	17	14	87	79	.915	1.44	1.73	28.3	107.2		236 49	775 185		468	154
A	18	12	86	73	.728	1.29	1.45	27.1	100.5		39	146		97 78	37 29
A	19	11	87	58	1.162	2.29	1.49	40.2	130.8		60	195		78 119	39
A	20	12	87	81	.663	1.45	1.52	34.2	123.8		52	189		103	37
Α	21	4	87	86	.263	.63	.53	47.4	164.6		25	86		49	17
Α	22	1	87	82	.005	.01	.01	87.0	400.0		0	2		1	0
A	23	2	87	88	.010	.03	.02	55.3	205.0		1	4		2	1
Α	24	4	87	83	.387	1.21	.77	61.5	225.0		48	174		94	34
						-									

TC PSTNDSUM	Stand Table Summary	Page 2 Date: 4/17/2013
T04N R08W S20 TyR/W THRU	Project DONUT	Time: 8:38:28AM
TO4N R08W S33 TyTAKE	Acres 198.00	Grown Year:

A Totals 245 87 61 43.332 45.31 54.26 22.9 75.0 1,245 4,068 2,464 805 S 9 2 86 43 1.533 .68 1.53 8.0 20.0 12 31 24 6 S 14 2 85 41 .634 .68 .63 22.0 50.0 14 32 28 6 S 15 3 85 47 .788 .97 .79 22.3 39.0 18 31 35 6	T04N	T04N R08W S33 TyTAKE						Acres			Grown Year:			
No.	1	İ			Av	1			Net	Net	Cu.Ft.	Bd.Ft.		MBF
S	A	27	1	87	77	.005	.02	.01	67.5	235.0	1	2	1	0
S	Α	Totals	245	87	61	43.332	45.31	54.26	22.9	75.0	 1,245	4,068	2,464	805
S	S	9	2	86	43	1.533	.68	1.53	8.0	20.0	12	31	24	6
S	I .					i			1	50.0	14	32		6
S	1					1			ł	i		31		6
S	1					l .			ı					118
S	I .								I					
S	1					1								
S						l .			1					
S	1	35				1			ı					
S	S	37	3	83	113	.092	.69	.28	1			1		
S	S			89		.005	.04	.02	139.7	613.3	2	9	4	
S 42 1 83 122 .004 .04 .01 223.5 1005.0 2 8 4 2 S 445 3 77 109 .068 .72 .14 156.3 722.2 22 20 101 43 20 S 46 1 83 122 .003 .04 .01 2279.0 1175.0 2 8 4 2 S 50 1 68 132 .003 .04 .01 219.7 766.7 2 7 4 1 S 51 1 69 148 .003 .04 .01 219.7 766.7 2 7 4 4 2 S 52 2 70 142 .005 .08 .02 246.2 980.0 4 16 8 3 S 50 3 75 .01 .008 .12 .02						l .		.21	i		25	92	49	18
S						1						1	8	
S 45 2 73 117 .007 .08 .02 140.8 556.7 3 122 6 2 S 46 1 83 122 .003 .04 .01 279.0 1175.0 2 8 4 2 S 50 1 68 132 .003 .04 .01 279.0 1175.0 2 8 4 2 S 50 1 68 132 .003 .04 .01 229.7 7 4 4 2 S 51 1 69 148 .003 .04 .01 291.7 766.7 2 11 5 5 53 1 89 132 .003 .04 .01 291.1 1376.7 2 11 5 23 10 .5 5 5 3 71 10 .04 .00 226.7 101.1 10 .04 <td>1 1</td> <td></td>	1 1													
S						1								
S 50 1 68 132 .003 .04 .01 219.7 766.7 2 7 4 1 S 51 1 69 148 .003 .04 .01 245.3 953.3 2 8 4 2 S 52 2 70 142 .005 .08 .02 246.2 980.0 4 16 8 3 S 53 1 89 132 .003 .04 .01 291.7 1376.7 2 111 5 22 S 55 3 75 110 .043 .72 .09 226.7 910.1 20 81 40 16 S 56 1 72 131 .002 .04 .01 278.7 1020.0 2 7 4 11 15 2 S 66 1 76 16 .047 .84 .11														
S 51 1 69 148 .003 .04 .01 245.3 953.3 2 8 4 2 S 52 2 70 142 .005 .08 .02 246.2 980.0 4 16 8 3 S 53 1 89 132 .003 .04 .01 291.7 1376.7 2 11 5 23 S 54 3 74 134 .008 .12 .02 231.7 1011.1 5 23 10 .55 55 3 75 110 .043 .72 .09 226.7 910.1 20 81 40 16 S 56 1 72 131 .002 .04 .01 233.3 101.8 39 144 77 29 S 60 1 69 148 .002 .04 .01 337.3 1323.3										1		ı	4	
S 52 2 70 142 .005 .08 .02 2462 980.0 4 16 8 3 S 53 1 89 132 .003 .04 .01 291.7 1376.7 2 111 5 2 S 54 3 74 134 .008 1.2 .02 231.7 1011.1 5 23 100 5 S 55 3 75 110 .043 .72 .09 226.7 910.1 20 81 .40 16 S 56 1 72 131 .002 .04 .01 278.7 1020.0 2 7 4 4 16 S 66 1 68 148 .002 .04 .01 337.3 1323.3 2 8 4 4 2 S 61 1 711 .000 .01 .003 21	i I												4	
S 53 1 89 132 .003 .04 .01 291.7 1376.7 2 11 5 2 S 54 3 74 134 .008 .12 .02 231.7 1011.1 5 23 10 5 S 55 3 75 110 .043 .72 .09 226.7 910.1 .20 81 40 16 S 56 1 72 131 .002 .04 .01 278.7 1020.0 2 7 4 1 S 60 1 69 148 .002 .04 .01 337.3 1323.3 2 8 4 2 S 60 1 69 148 .002 .04 .01 306.2 1176.0 3 11 6 3 1 6 3 1 5 2 S 66 1 73		52	2	70		.005	.08						8	
S	S	53	1	89	132	.003	.04	.01	291.7	1376.7	2			
S 56 1 72 131 .002 .04 .01 278.7 1020.0 2 7 4 1 S 57 6 76 116 .047 .84 .14 273.3 1017.8 39 144 77 29 S 60 1 69 148 .002 .04 .01 337.3 1323.3 2 8 4 2 S 61 1 71 127 .002 .04 .01 393.3 1 6 3 11 S 64 2 70 119 .004 .08 .01 306.2 1176.0 3 111 5 5 2 S 65 3 76 131 .005 .12 .02 311.7 1372.2 5 22 10 4 2 S 66 1 83 122 .002 .05 .01 308.5<	S	54	3	74	134	.008	.12	.02	231.7	1011.1	5	23	10	5
S 57 6 76 116 .047 .84 .14 273.3 1017.8 39 144 77 29 S 60 1 69 148 .002 .04 .01 337.3 1323.3 2 8 4 2 S 61 1 71 127 .002 .04 .01 340.3 953.3 1 6 3 1 S 64 2 70 119 .004 .08 .01 306.2 1176.0 3 111 5 5 S 65 3 76 131 .005 .12 .02 311.7 1372.2 5 22 10 4 2 S 66 1 83 122 .002 .04 .00 255.0 1326.7 0 2 9 3 2 S 68 1 71 12 .00 .04 .00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20</td> <td>81</td> <td>40</td> <td>16</td>											20	81	40	16
S 60 1 69 148 .002 .04 .01 337.3 1323.3 2 8 4 2 S 61 1 71 127 .002 .04 .01 240.3 953.3 1 6 3 1 S 64 2 70 119 .004 .08 .01 306.2 1176.0 3 11 5 22 G 65 3 76 131 .005 .12 .002 .01 .100 .01 .00 .01 .000 .01 .400 .1833.3 2 9 4 2 2 9 4 2 2 6 8 1 71 127 .000 .01 .00 255.0 1326.7 0 2 1 0 3 2 9 3 2 2 9 3 2 1 0 2 1 0 2 1													4	- 1
S 61 1 71 127 .002 .04 .01 240.3 953.3 1 6 3 1 S 64 2 70 119 .004 .08 .01 306.2 1176.0 3 11 5 2 S 65 3 76 131 .005 .12 .02 311.7 1372.2 5 22 10 4 S 66 1 83 122 .002 .04 .01 400.0 1833.3 2 9 4 2 S 68 1 71 127 .000 .01 .00 255.0 1326.7 0 2 9 4 2 S 69 2 70 136 .002 .05 .01 308.5 1581.0 2 9 3 2 S 70 1 66 126 .001 .04 .00 257.7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>77</td> <td></td>													77	
S 64 2 70 119 .004 .08 .01 306.2 1176.0 3 11 5 2 S 65 3 76 131 .005 .12 .02 311.7 1372.2 5 22 10 4 S 66 1 83 122 .002 .04 .01 400.0 1833.3 2 9 4 2 S 66 1 83 122 .000 .01 .00 255.0 1326.7 0 2 9 4 2 S 69 2 70 136 .002 .05 .01 308.5 1581.0 2 9 3 2 S 70 1 66 148 .002 .04 .00 257.7 1540.0 1 7 2 1 S 71 1 66 126 .001 .04 .00 533.7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>i i</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>2</td>								i i				1		2
S 65 3 76 131 .005 .12 .02 311.7 1372.2 5 22 10 4 S 66 1 83 122 .002 .04 .01 400.0 1833.3 2 9 4 2 S 68 1 71 127 .000 .01 .00 255.0 1326.7 0 2 9 3 2 S 69 2 70 136 .002 .05 .01 308.5 1581.0 2 9 3 2 S 70 1 66 126 .001 .04 .00 257.7 1540.0 1 7 2 1 8 2 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2 1 3 3 2 1 3 3 3 4 2<					- 1					i i				1
S 66 1 83 122 .002 .04 .01 400.0 1833.3 2 9 4 2 S 68 1 71 127 .000 .01 .00 255.0 1326.7 0 2 1 0 S 69 2 70 136 .002 .05 .01 308.5 1581.0 2 9 3 2 S 70 1 66 148 .002 .04 .00 257.7 1540.0 1 7 2 1 S 71 1 66 126 .001 .04 .00 242.3 1366.7 1 6 2 1 S 75 1 85 67 4.631 12.41 7.30 65.2 251.9 476 1,839 943 364 D 21 1 83 103 .602 1.45 1.20 47.5														
S 68 1 71 127 .000 .01 .00 255.0 1326.7 0 2 1 0 S 69 2 70 136 .002 .05 .01 308.5 1581.0 2 9 3 2 S 70 1 66 148 .002 .04 .00 257.7 1540.0 1 7 2 1 S 71 1 66 126 .001 .04 .00 242.3 1366.7 1 6 2 1 S 75 1 83 129 .001 .04 .00 533.7 2463.3 2 10 4 2 S Totals 71 85 67 4.631 12.41 7.30 65.2 251.9 476 1,839 943 364 D 21 1 83 103 .602 1.45 1.20 47.5												i i		1
S 69 2 70 136 .002 .05 .01 308.5 1581.0 2 9 3 2 S 70 1 66 148 .002 .04 .00 257.7 1540.0 1 7 2 1 S 71 1 66 126 .001 .04 .00 242.3 1366.7 1 6 2 1 S 75 1 83 129 .001 .04 .00 533.7 2463.3 2 10 4 2 S Totals 71 85 67 4.631 12.41 7.30 65.2 251.9 476 1,839 943 364 D 21 1 83 103 .602 1.45 1.20 47.5 150.0 57 181 113 36 D 22 5 87 108 1.113 2.94 2.23 54.5 206.7 122 462 241 91 D 23 2								I				1	4	
S 70 1 66 148 .002 .04 .00 257.7 1540.0 1 7 2 1 S 71 1 66 126 .001 .04 .00 242.3 1366.7 1 6 2 1 S 75 1 83 129 .001 .04 .00 533.7 2463.3 2 10 4 2 S Totals 71 85 67 4.631 12.41 7.30 65.2 251.9 476 1,839 943 364 D 21 1 83 103 .602 1.45 1.20 47.5 150.0 57 181 113 36 D 22 5 87 108 1.113 2.94 2.23 54.5 206.7 122 462 241 91 D 23 2 86 97 .505 1.46 1.01 <t< td=""><td>ı</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>3</td><td></td></t<>	ı							1					3	
S 71 1 66 126 .001 .04 .00 242.3 1366.7 1 6 2 1 S 75 1 83 129 .001 .04 .00 533.7 2463.3 2 10 4 2 S Totals 71 85 67 4.631 12.41 7.30 65.2 251.9 476 1,839 943 364 D 21 1 83 103 .602 1.45 1.20 47.5 150.0 57 181 113 36 D 22 5 87 108 1.113 2.94 2.23 54.5 206.7 122 462 241 91 D 23 2 86 97 .505 1.46 1.01 55.5 195.0 56 197 111 39 D 24 2 89 116 .464 1.46 .93 67.5 275.0 63 255 124 51 D Totals	s	70	1	66	148	.002	.04							1
S 75 1 83 129 .001 .04 .00 533.7 2463.3 2 10 4 2 S Totals 71 85 67 4.631 12.41 7.30 65.2 251.9 476 1,839 943 364 D 21 1 83 103 .602 1.45 1.20 47.5 150.0 57 181 113 36 D 22 5 87 108 1.113 2.94 2.23 54.5 206.7 122 462 241 91 D 23 2 86 97 .505 1.46 1.01 55.5 195.0 56 197 111 39 D 24 2 89 16 .464 1.46 .93 67.5 275.0 63 255 124 51 D 30 1 86 106 2.687 7.32 5.39	S	71	1	66	126	.001	.04	.00	242.3	1366.7	1	6		1
D 21 1 83 103 .602 1.45 1.20 47.5 150.0 57 181 113 36 D 22 5 87 108 1.113 2.94 2.23 54.5 206.7 122 462 241 91 D 23 2 86 97 .505 1.46 1.01 55.5 195.0 56 197 111 39 D 24 2 89 116 .464 1.46 .93 67.5 275.0 63 255 124 51 D 34 1 86 140 .004 .02 .01 110.7 516.7 1 5 2 1 D Totals 11 86 106 2.687 7.32 5.39 55.5 204.2 299 1,100 592 218 C 12 1 74 17 .019 .01 .01	S	75	1	83	129	.001	.04	.00	533.7	2463.3	2	10		2
D 22 5 87 108 1.113 2.94 2.23 54.5 206.7 122 462 241 91 D 23 2 86 97 .505 1.46 1.01 55.5 195.0 56 197 111 39 D 24 2 89 116 .464 1.46 .93 67.5 275.0 63 255 124 51 D 34 1 86 140 .004 .02 .01 110.7 516.7 1 5 2 1 D Totals 11 86 106 2.687 7.32 5.39 55.5 204.2 299 1,100 592 218 C 12 1 74 17 .019 .01 .00 158.5 580.0 1 2 1 0 C 45 1 71 88 .001 .01 .00 170.5	S	Totals	71	85	67	4.631	12.41	7.30	65.2	251.9	 476	1,839	943	364
D 22 5 87 108 1.113 2.94 2.23 54.5 206.7 122 462 241 91 D 23 2 86 97 .505 1.46 1.01 55.5 195.0 56 197 111 39 D 24 2 89 116 .464 1.46 .93 67.5 275.0 63 255 124 51 D 34 1 86 140 .004 .02 .01 110.7 516.7 1 5 2 12 1 D Totals 11 86 106 2.687 7.32 5.39 55.5 204.2 299 1,100 592 218 C 12 1 74 17 .019 .01 .00 158.5 580.0 1 2 1 0 C 45 1 71 88 .001 .01 .	D	21	1	83	103	.602	1.45	1.20	47.5	150.0	57	181	113	36
D 24 2 89 116	D							2.23		1	122	462		
D 34 1 86 140 .004 .02 .01 110.7 516.7 1 5 2 1 D Totals 11 86 106 2.687 7.32 5.39 55.5 204.2 299 1,100 592 218 C 12 1 74 17 .019 .01 C 38 1 83 111 .002 .01 .00 158.5 580.0 1 2 1 2 1 0 C 45 1 71 88 .001 .01 .00 170.5 510.0 0 1 1 0 C Totals 3 75 29 .022 .04 .01 163.5 550.9 1 4 2 2 1 M 11 2 87 17 .384 .25	1				- 1							197	111	39
D Totals 11 86 106 2.687 7.32 5.39 55.5 204.2 299 1,100 592 218 C 12 1 74 17 .019 .01 C 38 1 83 111 .002 .01 .00 158.5 580.0 C 45 1 71 88 .001 .01 .00 170.5 510.0 C Totals 3 75 29 .022 .04 .01 163.5 550.9 M 11 2 87 17 .384 .25														51
C 12 1 74 17 .019 .01 C 38 1 83 111 .002 .01 .00 158.5 580.0 1 2 1 0 C 45 1 71 88 .001 .01 .00 170.5 510.0 0 1 1 0 C Totals 3 75 29 .022 .04 .01 163.5 550.9 1 4 2 1 M 11 2 87 17 .384 .25 .25	D	34	1	86	140	.004	.02	.01	110.7	516.7	1	5	2	1
C 38 1 83 11 .002 .01 .00 158.5 580.0 1 2 1 0 C 45 1 71 88 .001 .01 .00 170.5 510.0 0 1 1 0 C Totals 3 75 29 .022 .04 .01 163.5 550.9 1 4 2 1 M 11 2 87 17 .384 .25 .25 .20	D	Totals	11	86	106	2.687	7.32	5.39	55.5	204.2	299	1,100	592	218
C 45 1 71 88 .001 .01 .00 170.5 510.0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0														
C Totals 3 75 29 .022 .04 .01 163.5 550.9 1 4 2 1 M 11 2 87 17 .384 .25								- 1						0
M 11 2 87 17 .384 .25						.001	.01	.00	170.5	510.0	 0	I	1	0
	С						.04	.01	163.5	550.9	1	4	2	1
M 14 2 87 17 .237 .25										İ		- 1		
	M	14	2	87	17	.237	.25					l		

TC			Stand Table Summary								3 4/17/20	3 4/17/2013			
T04N R08W S20 TyR/W THRU T04N R08W S33 TyTAKE						Project DONUT Acres 198,00							Time: Grown Ye	8:38:28AM ear:	
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Averag Net Cu.Ft.	Net	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
M	Totals	4	87	17	.621	.51									
Totals		571	87	71	117.175	159.30	178.19	30.8	114.0		5,481	20,315		10,852	4,022

