Timber Sale Appraisal **Donut Combination** Sale 341-14-40 June 10, 2013 **District:** Date: **Astoria** #### cost summary | | Conifer | Hardwood | Total | | |----------------------------|--------------|-------------------|----------------|--| | Gross Timber
Sale Value | \$967,808.48 | \$258,976.55 | \$1,226,785.03 | | | | | Project Work: | \$(370,449.00) | | | | | Advertised Value: | \$856,336.03 | | 6/20/13 1 #### Timber Sale Appraisal Donut Combination Sale 341-14-40 "STEWARDSHIP IN FORESTRY" District: Astoria Date: June 10, 2013 #### timber description Location: Portions of Sections 20, 21, 28, 29 and 33, T4N, R8W,, Clatsop County, Oregon. Stand Stocking: 60% | SpecieName | AvgDBH | Amortization (%) | Recovery (%) | |-----------------------|--------|------------------|--------------| | Douglas - Fir | 22 | 0 | 97 | | Western Hemlock / Fir | 16 | 0 | 97 | | Sitka Spruce | 22 | 0 | 97 | | Red Cedar | 19 | 0 | 97 | | Alder (Red) | 13 | 0 | 96 | | Volume by Grade | 1S | 2S | 3S | 4S | Other | Total | |-----------------------|-----|-------|-------|-----|-------|-------| | Douglas - Fir | 0 | 170 | 38 | 10 | 0 | 218 | | Western Hemlock / Fir | 0 | 1,440 | 984 | 210 | 0 | 2,634 | | Sitka Spruce | 0 | 114 | 57 | 22 | 171 | 364 | | Red Cedar | 0 | 1 | 0 | 0 | 0 | 1 | | Alder (Red) | 200 | 199 | 148 | 258 | 0 | 805 | | Total | 200 | 1,924 | 1,227 | 500 | 171 | 4,022 | ## Timber Sale Appraisal Donut Combination Sale 341-14-40 "STEWARDSHIP IN FORESTRY" District: Astoria Date: June 10, 2013 comments: Pond Values Used: 1st Quarter Calendar Year 2013. Expected Log Markets: Warrenton, Tillamook, Garibaldi, Forest Grove, Clatskanie, Mist and Springfield, OR; Morton and Longview, WA. SCALING COST ALLOWANCE = \$5.00/MBF FUEL COST ALLOWANCE = \$3.00/Gallon HAULING COST ALLOWANCE Hauling Costs equivalent to \$780 daily truck cost. Other Costs (with Profit & Risk to be added): Additional Logging Costs: Branding and Painting: $$1MBF \times 4,022MBF = $4,022$ Log Loader Slash & Landing Piling (includes Move-in and Pile Materials) = \$11,946 (see attached appraisal) Machine washing for noxious weed compliance = \$2,000 Total Other Costs (with Profit & Risk to be added) = \$17,968 Other Costs (No Profit & Risk added) TOTAL Other Costs (No Profit & Risk added) = None NOTE: Sitka spruce has been split apart as follows: Note Volume: SS < 20" Scaling Diameter: Total Volume 193 MBF 2Saw = 114 MBF 3Saw = 57 MBF 4Saw = 22 MBF SS = 20" or > Scaling Diameter *: Total Volume 171 MBF 2Saw = 70 MBF 3Saw = 101 MBF 4Saw = 0 MBF * SS = 20" or > Scaling Diameter was listed as "Other" for grade in this appraisal. This volume was appraised at 1 load per day to Sprinfield, OR. ## Timber Sale Appraisal Donut Combination Sale 341-14-40 "STEWARDSHIP IN FORESTRY" District: Astoria Date: June 10, 2013 #### logging conditions **combination#: 1** Douglas - Fir 68.00% Western Hemlock / Fir 68.00% Sitka Spruce 68.00% Red Cedar 68.00% Alder (Red) 68.00% yarding distance:Medium (800 ft)downhill yarding:Nologging system:ShovelProcess:Stroke Delimbertree size:Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBFloads / day:6.0bd. ft / load:3,500 cost / mbf: \$68.49 machines: Stroke Delimber (B) **combination#: 2** Douglas - Fir 32.00% Western Hemlock / Fir 32.00% Sitka Spruce 32.00% Red Cedar 32.00% Alder (Red) 32.00% yarding distance: Medium (800 ft) downhill yarding: No logging system: Cable: Small Tower <=40 Process: Manual Falling/Delimbing tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF loads / day: 8.0 bd. ft / load: 3,500 cost / mbf: \$96.46 machines: Log Loader (A) Tower Yarder (Small) combination#: 3 yarding distance: Medium (800 ft) downhill yarding: No logging system: Track Skidder Process: Manual Falling/Delimbing tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF loads / day: 11.0 bd. ft / load: 3,500 cost / mbf: \$89.36 machines: Log Loader (B) Track Skidder combination#: 4 6/20/13 "STEWARDSHIP IN FORESTRY" #### Timber Sale Appraisal Donut Combination Sale 341-14-40 District: Astoria Date: June 10, 2013 yarding distance: Medium (800 ft) downhill yarding: No logging system: Cable: Small Tower <=40 Process: Manual Falling/Delimbing tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF loads / day: 6.0 bd. ft / load: 3,700 **cost / mbf**: \$121.67 machines: Log Loader (A) Tower Yarder (Small) Timber Sale Appraisal Donut Combination Sale 341-14-40 "STEWARDSHIP IN FORESTRY" District: Astoria Date: June 10, 2013 #### logging costs Operating Seasons: 2.00 Profit Risk: 12.00% **Project Costs:** \$370,449.00 **Other Costs (P/R):** \$17,968.00 Slash Disposal: \$0.00 Other Costs: \$0.00 #### Miles of Road Road Maintenance: \$6.70 | | Rock | Rock | | | |------|--------------|---------|-------|--| | Dirt | (Contractor) | (State) | Paved | | | 0.0 | 0.0 | 0.0 | 0.0 | | #### Hauling Costs | Species | \$ / MBF | Trips/Day | MBF / Load | |-----------------------|----------|-----------|------------| | Douglas - Fir | \$0.00 | 4.0 | 4.5 | | Western Hemlock / Fir | \$0.00 | 3.0 | 4.0 | | Sitka Spruce | \$0.00 | 2.0 | 5.0 | | Red Cedar | \$0.00 | 2.0 | 3.5 | | Alder (Red) | \$0.00 | 2.0 | 3.5 | #### Local Pond Values | Date | Specie | Grade | Value | |---------|--------------|-------|----------| | 4/22/13 | Sitka Spruce | Other | \$200.00 | Timber Sale Appraisal Donut Combination Sale 341-14-40 "STEWARDSHIP IN FORESTRY" District: Astoria Date: June 10, 2013 #### logging costs breakdown | Logging | Road
Maint | Fire
Protect | Hauling | Other
P/R appl | Profit &
Risk | Slash
Disposal | Scaling | Other | Total | |-------------|---------------|-----------------|----------|-------------------|------------------|-------------------|---------|--------|----------| | Douglas - F | ir | | | | | | | | | | \$77.44 | \$6.90 | \$2.18 | \$39.85 | \$4.47 | \$15.70 | \$0.00 | \$5.00 | \$0.00 | \$151.54 | | Western He | mlock / Fir | | | | | | | | | | \$77.44 | \$6.90 | \$2.18 | \$59.78 | \$4.47 | \$18.09 | \$0.00 | \$5.00 | \$0.00 | \$173.86 | | Sitka Sprud | ce | | | | | | | | | | \$77.44 | \$6.90 | \$2.18 | \$71.73 | \$4.47 | \$19.53 | \$0.00 | \$5.00 | \$0.00 | \$187.25 | | Red Cedar | | | | | | | | | | | \$77.44 | \$6.90 | \$2.18 | \$102.47 | \$4.47 | \$23.22 | \$0.00 | \$5.00 | \$0.00 | \$221.68 | | Alder (Red) |) | | | | | | | | | | \$77.44 | \$6.97 | \$2.18 | \$103.47 | \$4.47 | \$23.34 | \$0.00 | \$5.00 | \$0.00 | \$222.87 | | Specie | Amortization | Pond Value | Stumpage | Amortized | |-----------------------|--------------|------------|----------|-----------| | Douglas - Fir | \$0.00 | \$624.17 | \$472.63 | \$0.00 | | Western Hemlock / Fir | \$0.00 | \$485.07 | \$311.21 | \$0.00 | | Sitka Spruce | \$0.00 | \$308.87 | \$121.62 | \$0.00 | | Red Cedar | \$0.00 | \$1,000.00 | \$778.32 | \$0.00 | | Alder (Red) | \$0.00 | \$544.58 | \$321.71 | \$0.00 | "STEWARDSHIP IN FORESTRY" #### Timber Sale Appraisal Donut Combination Sale 341-14-40 District: Astoria Date: June 10, 2013 #### summary #### Amortized | Specie | MBF | Value | Total | |-----------------------|-----|--------|--------| | Douglas - Fir | 0 | \$0.00 | \$0.00 | | Western Hemlock / Fir | 0 | \$0.00 | \$0.00 | | Sitka Spruce | 0 | \$0.00 | \$0.00 | | Red Cedar | 0 | \$0.00 | \$0.00 | | Alder (Red) | 0 | \$0.00 | \$0.00 | #### Unamortized | Specie | MBF | Value | Total | |-----------------------|-------|----------|--------------| | Douglas - Fir | 218 | \$472.63 | \$103,033.34 | | Western Hemlock / Fir | 2,634 | \$311.21 | \$819,727.14 | | Sitka Spruce | 364 | \$121.62 | \$44,269.68 | | Red Cedar | 1 | \$778.32 | \$778.32 | | Alder (Red) | 805 | \$321.71 | \$258,976.55 | #### **Gross Timber Sale Value** **Recovery:** \$1,226,785.03 **Prepared by:** Bryce Rodgers **Phone:** 503-325-5451 #### **Site Prep Appraisal** Sale Number: 341-14-40 Sale Name: Donut Combo Date: 04/19/2013 | Vegetation
Type/Zone | Type/Zone
Code Code Production Rate (hr/ac) | | Estimated Piles/Acre | | |-------------------------|--|-----|----------------------|--| | Doug-fir | Α | 1.0 | 3.0 | | | Hemlock/Fir | В | 1.5 | 4.5 | | | Hemlock/Spruce | С | 2.0 | 6.0 | | | Hemlock | D | 2.0 | 6.0 | | | Conifer/Hardwood | Е | 1.5 | 4.5 | | | Whole Tree Yarding | F | 0.5 | 0.5 | | | Sale Area | Harvest Type | Veg
Type/Zone | Ground Based
Yarding Acres | Estimated
Piling
Hours/Area | Cost/Hour | Total
Cost/Area | |-----------|--------------|------------------|-------------------------------|-----------------------------------|-----------|--------------------| | 1 | MC | С | 13.0 | 26 | \$110.00 | \$2,860.00 | | 3 | MC | С | 29.0 | 58 | \$110.00 | \$6,380.00 | In-unit Piling Sub Total = \$9,240.00 Number of Landings to be Cost/Landing Number of In-Material Total Piled Pile **Total Cost/Area Unit Piles** Cost/Pile Cost/Area Sale Area 0 \$220.00 \$0.00 26 \$5.00 \$130.00 3 4 \$220.00 \$880.00 58 \$5.00 \$290.00 *Cost includes separating firewood Materials **Sub Total =** \$420.00 Move-In Number of Total Move-In Sub Total = \$880.00 Allowance Move-In's Allowance \$1,406.00 1 \$1,406.00 Move-In Sub Total = \$1,406.00 Grand Total = \$11,946.00 #### DONUT COMBINATION 341-14-40 #### **SUMMARY OF ALL PROJECT COSTS** | SALE NAME | E: Donut Combo | | | | |--------------|--|--|--|--| | ROAD CON | STRUCTION: | | | | | Surfaced | Road segment | <u>Length/Sta</u>
25.75 | <u>Cost</u>
\$20,840 | | | Dirt | 2A-2B, 2C-2D | 11.60 | \$4,132 | | | | TOTALS | 37.35
0.71 | | \$24,972 | | | | 0.71 |
| | | | Road segment 11-12, 13-14, 15-16, 17-18 3-110, 111-112, 113-114 TOTALS | <u>Length/Sta</u>
274.15 | <u>Cost</u>
\$105,670 | \$105,670 | | | miles | 5.19 | | ······································ | | SPECIAL PR | Description PROJECT NO. 3: Fall C | Creek Quarry Development and Crushing
Vacating 20.4 Sta./0.39 miles | Cost
\$220,622
\$7,661
\$3,306 | | | | TOTAL | | **** | \$231,589 | | MOVE IN: | Equipment Dozer (D8) Dump Trucks (12 cy x 6 Dump Trucks (20 cy x 2 F E Loader (C966) Grader (14G) Rubber Tire Skidder (C5 Vibratory Roller Water Truck (2,500 gallo Excavator (C315) Excavator (C330) | (18) | Cost
\$1,406.00
\$978.00
\$382.00
\$778.00
\$778.00
\$717.00
\$778.00
\$190.00
\$805.00
\$1,406.00 | | | | TOTAL | | 778-77 F-10-10-10-10-10-10-10-10-10-10-10-10-10- | \$8,218.00 | | GRAND TOT | AL | | | \$370,449.00 | | Compiled By: | Kraig Kirkpatrick | | Date: _ | 04/20/2013 | #### SUMMARY OF CONSTRUCTION COSTS | | Donut Combina | | | | | ONSTRUCTION: | | | 0.22 M | |----------|------------------|-----------------|-------------|------------------|----------|--------------|---------------|-----------------------|---------| | AD: | (Dirt Sprurs) 2A | A-2B (4+00) | | - | ı | MPROVEMENT: | | STATIONS | M | | INTS: | 2C-2D (7+60) | | | | | | | | | | EARING & | GRUBBING | | | 1 | | | 1 | | | | | Method | | | Acres/amount | X | Rate | = | Cost | | | | | er Outside R/ | N | 1 1 | x | \$1,337 | = | \$1,337.00 | | | | 2E-2F(18+90), | | | | × | | = | | | | | 3C-3D(1+85) F | 2t. 4A(0+00) | | | × | | = | | | | | | | | | x | | = | | 1 | | TOTAL F | OR CLEARING | & GRUBBING | 3 | | | | | | \$1,337 | | | | | | | | | | | | | AVATION | Material | | | Cy/amount | x | Rate | = | Cost | | | | Balanced Cons | | a | 11.60 | × | \$122.00 | = | \$1,415.20 | | | | Dalaricca Corio | 2A-2B, 2C-2 | | 11.00 | x | Ψ122.00 | = | \$1,710.20 | | | | | ZA-ZD, ZO-Z | <u> </u> | | x | | = | | | | | | | | | | | = | | | | | Landing Constr | ruction | | 3.00 | X | \$389.00 | = | \$1,167.00 | | | | Pt. 2B,2C-2D s | | n | 3.00 | X
X | Ψ309.00 | = | φ1,107.00 | | | | Ft. 20,20-20 S | ia. 5+30, Ft. 2 | .0 | | | | = | | | | | | | | - | x | | | | | | | | | | <u> </u> | X | | = | | | | | | | | | x | L | _ | | İ | | TOTAL F | OR EXCAVATION | ON | | | | | | | \$2,582 | | | TERIALS AND I | | | | | l 5: " | | 1 5. 1 | | | ocation | Dia/type | Lineal ft. | Rate | Cost | Location | Dia/type | Lineal ft. | Rate | Cost | | | - | | | | | | | | | | | - | | | · | <u> </u> | | L | | | | | | | | | | | Description | | Quantity | Rate | Cost | | | | Other/miscellan | eous: | Subgrade Pr | ep. 14' Outslope | | 11.60 | \$18.35 | \$212.86 | | | | 01 | | | | | | | | | | | Culvert stakes & | & markers: | TOTAL F | OR CULVERT M | ATERIALS 8 | INSTALLATIO | ON | | | | | \$213 | | | | | | | | | Subtotal of C | Clearing, Exc., Culv. | \$4,132 | #### SUMMARY OF CONSTRUCTION COSTS | SALE NAME: | | | | _ | NEW CC | INSTRUCTION: | W CONSTRUCTION: 25.75 STATIONS IMPROVEMENT: STATIONS | | | | |--|---|---|------------------------------|--|----------|--------------------|--|------------|-----------------|--| | | (Surfaced Sprur | | | | 11 | MPROVEMENT: | | _STATIONS | | | | | 3A-3B(5+00), 30 | C-3D(1+85) Pt | . 4A(0+00) | | | | | | | | | CLEARING & | | | | | | | | | | | | | Method | | | Acres/amount | | Rate | = | Cost | | | | | | er Outside R/W | <u> </u> | 2 | x | \$1,337 | = | \$2,674.00 | | | | | 2E-2F(18+90), | | | | X | | = | | | | | | 3C-3D(1+85) P | t. 4A(0+00) | | | x | | = | | | | | | | | | | X | | = | | | | | | | | | | | | | | | | | SUB TOTAL F | OR CLEARING 8 | & GRUBBING | | | | | | | \$2,674 | | | EXCAVATION | | | | | | | | | | | | | Material | | | Cy/amount | X | Rate | = | Cost | | | | | Balanced Const | | | 19.75 | X | \$122.00 | = | \$2,409.50 | | | | | Drift earth up to | 200' \$\$/sta | | 6 | x | \$190.00 | = | \$1,140.00 | | | | | 2E-2F,3A-3B,3C-3D | | | | x | | = | | | | | | | | | | x | | = | | | | | | Landing Constru | uction | | 2 | X | \$389.00 | = | \$778.00 | | | | | Pt. 3B, Pt. 3D \$ | | | | × | | = | 7 | | | | | | | | | × | | = | | | | | | | | | | x | | = | | | | | | | | | | x | - | = | - | | | | SUB TOTAL F | OR EXCAVATIO | N | | | | | | | \$4,328 | | | CULVERT MA | ERIALS AND IN | STALLATION | | 1 - 1 | | | | | | | | CULVERT MAT | TERIALS AND IN | ISTALLATION
Lineal ft. | Rate | Cost | Location | Dia/type | Lineal ft. | Rate | \$4,328
Cost | | | CULVERT MATA Location 5+00 | FERIALS AND IN Dia/type 18CCP | NSTALLATION
Lineal ft.
30 | Rate
\$19.53 | \$585.90 | Location | Dia/type | Lineal ft. | Rate | | | | CULVERT MAT
Location
5+00
11+70 | TERIALS AND IN
Dia/type
18CCP
18CCP | NSTALLATION
Lineal ft.
30
30 | Rate
\$19.53
\$19.53 | \$585.90
\$585.90 | Location | Dia/type | Lineal ft. | Rate | | | | CULVERT MATA Location 5+00 | FERIALS AND IN Dia/type 18CCP | NSTALLATION
Lineal ft.
30 | Rate
\$19.53 | \$585.90 | Location | Dia/type | Lineal ft. | Rate | | | | CULVERT MAT
Location
5+00
11+70 | TERIALS AND IN
Dia/type
18CCP
18CCP | NSTALLATION
Lineal ft.
30
30 | Rate
\$19.53
\$19.53 | \$585.90
\$585.90 | Location | Dia/type | Lineal ft. | Rate | | | | CULVERT MAT
Location
5+00
11+70 | TERIALS AND IN
Dia/type
18CCP
18CCP | NSTALLATION
Lineal ft.
30
30 | Rate
\$19.53
\$19.53 | \$585.90
\$585.90 | Location | Dia/type | Lineal ft. | Rate | | | | CULVERT MAT
Location
5+00
11+70 | TERIALS AND IN
Dia/type
18CCP
18CCP | NSTALLATION
Lineal ft.
30
30 | Rate
\$19.53
\$19.53 | \$585.90
\$585.90 | Location | Dia/type | Lineal ft. | Rate | | | | CULVERT MAT
Location
5+00
11+70 | TERIALS AND IN
Dia/type
18CCP
18CCP | NSTALLATION
Lineal ft.
30
30 | Rate
\$19.53
\$19.53 | \$585.90
\$585.90 | Location | Dia/type | Lineal ft. | Rate | | | | CULVERT MAT
Location
5+00
11+70 | TERIALS AND IN
Dia/type
18CCP
18CCP | NSTALLATION
Lineal ft.
30
30 | Rate
\$19.53
\$19.53 | \$585.90
\$585.90 | Location | Dia/type | Lineal ft. | Rate | | | | CULVERT MAT
Location
5+00
11+70 | TERIALS AND IN
Dia/type
18CCP
18CCP | NSTALLATION
Lineal ft.
30
30 | Rate
\$19.53
\$19.53 | \$585.90
\$585.90 | Location | Dia/type | Lineal ft. | Rate | | | | CULVERT MAT
Location
5+00
11+70 | TERIALS AND IN
Dia/type
18CCP
18CCP | NSTALLATION
Lineal ft.
30
30 | Rate
\$19.53
\$19.53 | \$585.90
\$585.90 | Location | Dia/type | Lineal ft. | Rate | | | | CULVERT MAT
Location
5+00
11+70 | TERIALS AND IN
Dia/type
18CCP
18CCP | NSTALLATION
Lineal ft.
30
30 | Rate
\$19.53
\$19.53 | \$585.90
\$585.90 | Location | Dia/type | Lineal ft. | Rate | | | | CULVERT MAT
Location
5+00
11+70 | TERIALS AND IN
Dia/type
18CCP
18CCP | NSTALLATION
Lineal ft.
30
30 | Rate
\$19.53
\$19.53 | \$585.90
\$585.90 | Location | Dia/type | Lineal ft. | Rate | | | | CULVERT MAT
Location
5+00
11+70 | TERIALS AND IN
Dia/type
18CCP
18CCP
18CCP | NSTALLATION
Lineal ft.
30
30
30 | Rate
\$19.53
\$19.53 | \$585.90
\$585.90 | Location | Dia/type Dia/type | Lineal ft. | Rate | | | | CULVERT MA* Location 5+00 11+70 17+00 | TERIALS AND IN
Dia/type
18CCP
18CCP | NSTALLATION Lineal ft. 30 30 30 30 | Rate \$19.53 \$19.53 \$19.53 | \$585.90
\$585.90
\$585.90 | | | | | | | SUB TOTAL FOR CULVERT MATERIALS & INSTALLATION \$1,818 **\$8,819** Subtotal of Clearing, Exc., Culv. | SURFACING | | | | | | | | Stations/ | | Rate/ | | | |-----------------------------------|--------------------------------------|--------------------------------|-------------|----------------|------------|-------------------|---------------|-----------|------------------|------------------|--------------|----------| | | Subgrade prep: | | Description | | | | | amount | Х | sta/amt | Cost | | | | | Grade, Shape and D | | | | | | 25.75 | х | \$24.83 | \$639.37 | | | | | Subgrade Compaction | on | | | | | 25.75 | X | \$20.19 | \$519.89 | | | | | | | | | | | | х | | <u> </u> | | | ROAD SEGMENT | 2A to 2B | | | POINT TO | POINT | Sta. to | Sta | | | | l | | | NOAD SCOMENT | ZATOZD | E | Depth of | 2A to | | 0+00 to | | TOTAL | Rate/ | | | | | | Rock Size | | Rock | Volume | | Numb | | VOLUME | Sta./ | Cost | | | | Application | and Type | Location | (inches) | per | ισ., | of | | (CY) | amt. | | | | | Junction Rock | 4"-0" Crushed | 0+00 | N/A | junction | 22 | junctions | 1 | 22 | \$4.58 | \$101 | | | | Total Rock for Road S | | | 2A to 2B | janonon | | janotionoj | <u>'</u> | 22 | Vu | | \$101 | | | ROAD SEGMENT | 2C to 2D | | | POINT TO | POINT | Sta. to | Sta. | | | | | | | | | | Depth of | 2C to | 2D | 0+00 to | | TOTAL | Rate/ | Cost | | | | Application | Rock Size | | Rock | Volume | (CY) | Numb | er | VOLUME | Sta./ | Cost | | | | | and Type | Location | (inches) | per | | of | | (CY) | amt. | | | | | Junction Rock | 4"-0" Crushed | 0+00 | N/A | junction | 22 | junctions | 11 | 22 | \$4.58 | \$101 | | | | Total Rock for Road S | | | 2C to 2D | | | | | 22 | | | \$101 | | | ROAD SEGMENT | 2E to 2F | | | POINT TO | | Sta. to | | | | | | | | | 1 2 | | Depth of |
2E to : | | 0+00 to 1 | | TOTAL | Rate/ | Cost | | | | Application | Rock Size | | Rock | Volume | (CY) | Numb | er | VOLUME | Sta./ | | | | | | and Type | Location | (inches) | per | | of | 40.00 | (CY) | amt. | A 1.000 | | | | Base Rock | 4"-0" Crushed
1 1/2" - 0" Crushed | 0+00 to 18+90
0+00 to 18+90 | 8 | station | 50 | stations | 18.90 | 945 | \$4.58
\$4.19 | \$4,328 | | | | Traction Rock | 4"-0" Crushed | 6+50,12+20,14+40 | 2 | station | 13 | stations | 18.90 | 246 | | \$1,029 | | | | Turnouts Junctions | 4"-0" Crushed | 0+00 | 8
N/A | TO
junction | 22
22 | TO's
junctions | <u>3</u>
1 | 66 | \$4.58
\$4.58 | \$302
\$101 | | | | Junctions | 1 1/2" - 0" Crushed | | N/A | junction | 22 | junctions | 1 | 22 | \$4.19 | \$92 | | | | Total Rock for Road S | | 1 0100 | 2E to 2F | junction | | junctions | | 1,301 | Ψ4.13 | Ψ92 | J
\$5,853 | | | ROAD SEGMENT | 3A to 3B | | 2L (0 2) | POINT TO | POINT | Sta. to | Sta | 1,001 | | 1727 200 | ψο,οοο
 | | | NOND CLOSILLIN | | | Depth of | 3A to 3 | | 0+00 to | | TOTAL | Rate/ | | | | | | Rock Size | | Rock | Volume | | Numb | | VOLUME | Sta./ | Cost | | | | Application | and Type | Location | (inches) | per | | of | | (CY) | amt. | | | | | Base Rock | 4"-0" Crushed | 0+00 to 5+00 | 8 | station | 50 | stations | 5.00 | 250 | \$4.58 | \$1,145 | | | | Turnouts | 4"-0" Crushed | 4+00 | 8 | TO | 22 | TO's | 1.00 | 22 | \$4.58 | | | | | Junctions | 4"-0" Crushed | 0+00 | N/A | junction | 22 | junctions | 1 | 22 | \$4.58 | \$101 | | | | Landing | 6"-0" Pit Run | Pt. 3B | N/A | Landing | 60 | Landings | 1 | 60 | \$3.42 | \$205 | | | | Total Rock for Road So | egment: | | 3A to 3B | | | | | 354 | | | \$1,451 | | | ROAD SEGMENT | 3C to 3D | | | POINT TO | | Sta. to | | 4 | | | | | | | | | Depth of | 3C to 3 | | 0+00 to | | TOTAL | Rate/ | Cost | | | | Application | Rock Size | | Rock | Volume | (CY) | Numb | er | VOLUME | Sta./ | | | | | | and Type | Location | (inches) | per | | of | 4.0- | (CY) | amt. | 0.004 | | | | Base Rock | 4"-0" crushed | 0+00 to 1+85 | 8 | station | 50 | stations | 1.85 | 93 | \$4.58 | \$424 | | | | Landing
Total Rock for Road Se | 6"-0" Pit Run | Pt.3D | N/A | Landing | 60 | Landings | 1 | 60 | \$3.42 | \$205 | # 000 | | | ROAD SEGMENT | Pt. 4A | | 3C to 3D | POINT TO | DOINT | Sta. to | C4- | 153 | | | \$629 | | | ROAD SEGMENT | F L 4A | | Depth of | Pt. 4/ | | 0+00 | | TOTAL | Rate/ | | | | | | Rock Size | | Rock | Volume | | Numb | | VOLUME | Sta./ | Cost | | | | Application | and Type | Location | (inches) | per | (0.1) | of | • | (CY) | amt. | | | | | Landing | 6"-0" Pit Run | Pt. 4A | N/A | Landing | 60 | Landings | 1 | 60 | \$3.42 | \$205 | | | | Total Rock for Road Se | | | Pt. 4A | | | | <u>-</u> | 60 | 40 | 7200 | \$205 | | | | 3 | Processing: | | Description | | | | | No.sta | Rate/sta | Cost | | | | | J | | cess & Compa | act: 4 | "-0" Base Rock | | | 25.75 | \$56.48 | \$1,454 | | | | | | | | | "-0" Traction R | | | 18.90 | \$56.48 | \$1,067 | | | | | | • | | | | | | | | | | | | | | | | 6"-0" | 4"-0" | 1 1/2"-0" | | Total | | | | | | SUB TOTAL FOR | SURFACING | | | 180 | 1,464 | 268 | | 1,911 | 1,911 | | \$12,02 | | | | | | | | | | | | | | | | | SPECIAL PROJEC | CTS | | | | | | | | | | | | | | | | De | escription | | | | Cost | _ | | | | | | | | | | | | | | - | | | | | | | _ | | | | | | | _ | | | | | | | _ | | | | | | | | | | | | SUB TOTAL FOR | SPECIAL PROJECTS | S | of Surfacing & | | \$12,02 | | | | | | | | | | | Subto | tal of Clearing, | Exc.,Culv. | \$8,81 | | | CDAND TOTAL | | | | | | | | | | | 600.04 | | *** | GRAND TOTAL | | | | | | | ~~~ | | | | \$20,840 | | | 0 | D. D. dere | | | | | | | Б. | 04/00/0045 | | | | | Compiled By: | B. Rodgers | | | | | | | Date: | 04/03/2013 | | | #### SUMMARY OF CONSTRUCTION COSTS | | Material | Cy/amount | x | Rate | = | Cost | |-------------|--|-----------|---|----------|---|------------| | l1 - l2 | | | | | | | | l Replaceme | ents 12+75 & 20+25 | | x | | = | | | • | End-haul excavation \$/CY | 690.00 | x | \$4.00 | = | \$2,760.00 | | | Waste material compaction \$/CY | 690.00 | x | \$0.40 | = | \$276.00 | | | Common drift - backfill \$/CY | 830 | x | \$1.80 | = | \$1,494.00 | | | Backfill compaction \$/CY | 830 | x | \$0.70 | = | \$581.00 | | | Fill Armor Placement w/330 \$/hr | 10 | x | \$155.00 | = | \$1,550.00 | | | | | × | | = | | | | Dissipator placement w/315 \$/hr | 1.00 | x | \$101.00 | = | \$101.00 | | 13 - 14 | Construct turnaround w/315 \$/hr | 0.50 | x | \$101.00 | = | \$50.50 | | 17 - 18 | Excavate, load, and haul ditch waste material \$/sta | 55 | x | \$22.92 | = | \$1,260.60 | | l9 - l10 | | | x | | = | | | 1+80-2+80 | Excavate, load, and haul ditch waste material \$/sta | 1.00 | x | \$22.92 | = | \$22.92 | | | Dissipator & ditchline armor placement w/315 \$/hr | 2.00 | x | | | | | Replaceme | nts 40+80 | | x | | = | | | | End-haul excavation \$/CY | 1000 | x | \$4.00 | | \$4,000.00 | | | Waste material compaction \$/CY | 1000 | x | \$0.40 | | \$400.00 | | | Second 330 excavator \$/hr | 16 | | \$155.00 | | \$2,480.00 | | | Common drift - backfill \$/CY | 1200 | x | \$1.80 | | \$2,160.00 | | | Backfill compaction \$/CY | 1,200 | x | \$0.70 | = | \$840.00 | | | Fill Armor Placement w/330 \$/hr | 10 | x | \$155.00 | | \$1,550.00 | | 38+60-40+40 | End-haul excavation \$/CY | 270 | x | \$4.00 | | \$1,080.00 | | | Cut slope rounding \$/sta | 2.00 | x | \$43.00 | = | \$86.00 | | | Sidecast pullback & hauled to waste area \$/sta | 1.00 | × | \$557.00 | = | \$557.00 | | 111 - 112 | Excavate, load, and haul ditch waste material \$/sta | 2.00 | × | \$22.92 | = | \$45.84 | | 113 - 114 | Excavate, load, and haul ditch waste material \$/sta | 2.00 | x | \$22.92 | = | \$45.84 | | Location
11-12
6+25 | Dia/type | Lineal ft. | | | | | | | | |---------------------------|----------|-------------|---------|-------------|----------|----------|------------|---------|------------| | 6+25 | | Lilleal It. | Rate | Cost | Location | Dia/type | Lineal ft. | Rate | Cost | | | | | | | 19-110 | , | | | | | 7.00 | 30" ACSP | 50 | \$34.01 | \$1,700.50 | 6+40 | 18" CPP | 30 | \$19.53 | \$585.90 | | 7+30 | 18" CPP | 30 | \$19.53 | \$585.90 | 15+75 | 18" CPP | 35 | \$19.53 | \$683.55 | | 9+90 | 18" CPP | 30 | \$19.53 | \$585.90 | 40+80 | 24" ACSP | 75 | \$27.04 | \$2,028.00 | | 12+75 | 24" ACSP | 80 | \$27.04 | \$2,163.20 | 41+45 | 18" CPP | 30 | \$19.53 | \$585.90 | | 14+40 | 18" CPP | 30 | \$19.53 | \$585.90 | 45+40 | 18" CPP | 30 | \$19.53 | \$585.90 | | 18+40 | 18" CPP | 30 | \$19.53 | \$585.90 | I13-I14 | | | | | | 20+25 | 24" ACSP | 45 | \$27.04 | \$1,216.80 | 2+40 | 18" CPP | 30 | \$19.53 | \$585.90 | | 22+00 | 18" CPP | 30 | \$19.53 | \$585.90 | | | | | | | 24+00 | 18" CPP | 30 | \$19.53 | \$585.90 | | | | | | | 29+15 | 18" CPP | 40 | \$19.53 | \$781.20 | | | | | | | 13-14 | | | | | | | | | | | 10+00 | 18" CPP | 30 | \$19.53 | \$585.90 | | | | | | | 16+60 | 18" CPP | 30 | \$19.53 | \$585.90 | | | | | | | 26+20 | 18" CPP | 40 | \$19.53 | \$781.20 | | | | | | | 15-16 | | | | | | | | | | | 5+75 | 18" CPP | 40 | \$19.53 | \$781.20 | | | | | | | 16+20 | 18" CPP | 30 | \$19.53 | \$585.90 | | | | | | | 17-18 | | | | | | | | | | | 0+85 | 18" CPP | 30 | \$19.53 | \$585.90 | | | | | | | 12+35 | 18" CPP | 30 | \$19.53 | \$585.90 | | | | | | | 14+50 | 18" CPP | 30 | \$19.53 | \$585.90 | | | | | | | 16+80 | 18" CPP | 30 | \$19.53 | \$585.90 | | | | | | | 25+20 | 18" CPP | 30 | \$19.53 | \$585.90 | | | | | | | 28+60 | 18" CPP | 30 | \$19.53 | \$585.90 | | | | | | | 34+20 | 18" CPP | 30 | \$19.53 | \$585.90 | | | | | | | 36+25 | 18" CPP | 30 | \$19.53 | \$585.90 | | | | | | | 48+55 | 18" CPP | 30 | \$19.53 | \$585.90 | Description | | Quantity | Rate I | Cost | | SUB TOTAL FOR CULVERT MATERIALS & INSTALLATION Culvert stakes & markers: Install @ new culverts Install @ existing culverts Subtotal of Clearing, Exc., Culv. \$560.00 \$140.00 \$20.00 \$20.00 45,066 | SURFACING | Subgrade prep: | Grade, Shape and
Subgrade Compac | | | | | | Stations/
amount
274.15
274.15 | x
x
x | Rate/
sta/amt
\$24.83
\$20.19 | Cost
\$6,807.14
\$5,535.09 | |--|------------------------------------|--|-------------------|--|------------|-----------------------|----------------|---|-----------------------|--|----------------------------------| | | | | | | | | | | _ | | | | ROAD SEGMENT | 11 to 2 | T | Depth of | POINT TO | | | o Sta . | TOTAL | Rate/ | | | | Application | Rock Size | | Rock | Volum | e (CY) | Nur | nber | VOLUME | Sta./ | Cost | | | Subgrade Leveling | and Type
1 1/2"-0" Crushed | Location | (inches)
N/A | pε | er
 | | of | (CY)
121 | \$4.19 | \$507 | | | Surface Rock | 1 1/2"-0" Crushed | 0+00-29+15
6+25, 7+30, 9+90, | 3 | station | 19 | station | 29.15 | 554 | \$4.19 | \$2,321 | | | | | 12+75, 14+40, 18+40,
20+25, 22+00, 24+00, | | | | | | | | | | | Base Rock Replacement | 4"-0" Crushed | 29+15
1+50, 11+65, 17+50, | N/A | | | | | 231 | \$4.58 | \$1,058 | | | Turnouts | 1 1/2"-0" Crushed | 25+60, | 3 | to | 22 | to's | 4 | 88 | \$4.19 | \$369 | | | Fill Replacement Backfill Fill Armor | Screened Reject
24"-6" Rip-rap | 12+75, 20+25
12+75, 20+25 | N/A
N/A | fill
fill | n/a
n/a | fill | n/a
n/a | 830
528 | \$5.29
\$4.85 | \$4,391
\$2,561 | | | Culvert Dissipator | 24"-6" Rip-rap | 22+00, 24+00
6+25, 7+30, 9+90, | N/A | culvert | 11 | culverts | 2 | 22 | \$4.85 | \$107 |] | | | | 14+40, 18+40, | | | | | | | | | | | Culvert Bedding/Backfill | Screened Reject | 22+00, 24+00,
29+15 | N/A | culvert | | culverts |
 297 | \$5.29 | \$1,571 | | | Total Rock for Road Segr
ROAD SEGMENT | nent:
13 to 14 | | I1 to I2 | POINT TO | POINT | Sta. t | o Sta | 2,671 | | | \$12,88 | | ITOND CLOMENT | | | Depth of | 13 to | 14 | 0+00 to | 55+50 | TOTAL | Rate/ | Cost | | | Application | Rock Size and Type | Location | Rock
(inches) | Volum | | | nber
of | VOLUME
(CY) | Sta./ | | | | Subgrade Leveling
Subgrade Leveling | 1 1/2"-0" Crushed
4"-0" Crushed | 0+00-26+20
26+20-55+50 | N/A
N/A | | | | | 132
88 | \$4.19
\$4.58 | \$553
\$403 | | | Surface Rock | 1 1/2"-0" Crushed | 0+00-26+20 | 3 | station | 19 | station | 26.20 | 498 | \$4.19 | \$2,086 | | | Surface Rock | 4"-0" Crushed | 26+20-55+50
1+60, 3+30, 7+10, | 4 | station | 25 | station | 29.30 | 733 | \$4.58 | \$3,355 | 1 | | Turnouts Turnouts | 1 1/2"-0" Crushed
4"-0" Crushed | 13+00, 17+60, 22+80
28+60, 46+00 | 3 4 | to
to | 11 | to's | 6 2 | 66
22 | \$4.19
\$4.58 | \$277
\$101 | - | | Base Replacement | 4"-0" Crushed | 10+00, 16+60,
26+20 | N/A | | | | | | | | | | | | 10+00, 16+60, | | | | | | 33 | \$4.58 | \$151 | | | Culvert Bedding/Backfill Turnarounds | Screened Reject
4"-0" Crushed | 26+20
43+90, 53+50 | N/A
N/A | culvert
TA | 22 | culverts
TA's | 2 | 110
44 | \$5.29
\$4.58 | \$582
\$202 | | | Landings | 6"-0" Pit-run | 55+50 | N/A | Landing | 44 | Landings | 1 | 44 | \$3.42 | \$150 |] | | Total Rock for Road Segn
ROAD SEGMENT | nent:
15 to 16 | | 13 to 14 | POINT TO | POINT | Sta. to | o Sta. | 1,769 | | | \$7,859
] | | | Rock Size | | Depth of Rock | I5 to
Volume | | 0+00 to | 29+90
iber | TOTAL
VOLUME | Rate/
Sta./ | Cost | | | Application | and Type | Location | (inches) | pe | | | f | (CY) | amt. | | | | Subgrade Leveling Traction Rock | 4"-0" Crushed
1 1/2"-0" Crushed | 20+20-23+50 | N/A
2 | station | 13 | station | 3 | 132
44 | \$4.58
\$4.19 | \$605
\$184 | | | Turnouts
Turnarounds | 4"-0" Crushed
4"-0" Crushed | 8+60, 17+70
24+75 | N/A
N/A | to
TA | 11
22 | to's
TA's | 2 | 22
22 | \$4.58
\$4.58 | \$101
\$101 | | | Base Replacement | 4"-0" Crushed | 5+75, 16+20 | N/A | | - 22 | | | 22 | \$4.58 | \$101 | | | Culvert Bedding/Backfill
Total Rock for Road Segr | Screened Reject nent: | 5+75, 16+20 | N/A
I5 to I6 | culvert | | culverts | | 77 · 319 | \$5.29 | \$407 | \$1,499 | | ROAD SEGMENT | 17 to 18 | | Depth of | POINT TO | | Sta. to
0+00 to | | TOTAL | Batal | | | | Application | Rock Size | | Rock | Volume | (CY) | Num | ber | VOLUME | Rate/
Sta./ | Cost | | | Subgrade Leveling | and Type
4"-0" Crushed | Location | (inches)
N/A | pe | r | 0 | f | (CY)
330 | amt.
\$4.58 | \$1,511 | | | Surface Rock | 1 1/2"-0" Crushed | 0+00-55+00
8+00, 20+50, 25+60, | 3 | station | 19 | station | 55 | 1,045 | \$4.19 | \$4,379 | | | Turnouts | 1 1/2"-0" Crushed | 32+45, 35+70, 42+45,
46+35, 52+90 | N/A | TA | 11 | TA's | 8 | 0.0 | 64.40 | #260 | | | Culvert Dissipator | 24"-6" Rip-rap | 14+50, 16+80 | N/A | culvert | 11 | culverts | 2 | 88
22 | \$4.19
\$4.85 | \$369
\$107 | | | | | 0+85, 12+35, 14+50,
16+80, 25+20, 28+60, | | | | | | | | | | | Culvert Bedding/Backfill
Total Rock for Road Segm | Screened Reject | 34+20, 36+25, 48+55 | N/A
17 to 18 | culvert | | culverts | | 297
1,782 | \$5.29 | \$1,571 |
\$7,937 | | ROAD SEGMENT | 19 to 110 | | Depth of | POINT TO | | Sta. to
0+00 to | | | D-4-1 | | 4,,55, | | Application | Rock Size | | Rock | Volume | | Num | ber | TOTAL
VOLUME | Rate/
Sta./ | Cost | | | Subgrade Leveling | and Type
1 1/2"-0" Crushed | Location | (inches)
N/A | pe | r | 0 | f | (CY)
275 | amt.
\$4.19 | \$1,152 | | | Base Rock Replacement | 4"-0" Crushed | 38+60-41+60
38+60-41+60 | 8 | station | 50 | station | 3 | 154 | \$4.58 | \$705 | | | Surface Rock
Check Dam | 1 1/2"-0" Crushed
6"-4" Pit-run | 40+00-40+50 | 3
N/A | station
dam | 19
n/a | station
dam | 3 | 55
33 | \$4.19
\$3.42 | \$230
\$113 | | | Fill Replacement Backfill Fill Armor | Screened Reject
24"-6" Rip-rap | 40+80
40+80 | N/A
N/A | fill
fill | n/a
n/a | fill | n/a
n/a | 1,200
583 | \$5.29
\$4.85 | \$6,348
\$2,828 | | | Ditchout Armor | 24"-6" Rip-rap | 1+80 | N/A | ditchout | 22 | ditchout | 1 | 22 | \$4.85 | \$107 | | | Culvert Dissipator | 24"-6" Rip-rap | 15+75
6+40, 15+75, 41+45, | N/A | culvert | 11 | culverts | 1 | 11 | \$4.85 | \$53 | | | Culvert Bedding/Backfill
Total Rock for Road Segm | Screened Reject nent: | 45+40 | N/A
I9 to I10 | culvert | | culverts | | 132
2,465 | \$5.29 | \$698 | \$12,235 | | ROAD SEGMENT | I11 to I12 | | Depth of | POINT TO | | Sta. to | | | Batal | | | | Application | Rock Size | | Rock | Volume | (CY) | 0+00 to
Num | ber | TOTAL
VOLUME | Rate/
Sta./ | Cost | | | Subgrade Leveling | and Type
4"-0" Crushed | Location | (inches)
N/A | pe | Γ | o
I | f | (CY)
319 | amt.
\$4.58 | \$1,461 | | | Furnouts Frurnarounds | 4"-0" Crushed
4"-0" Crushed | 29+90, 50+75 | N/A | to
TA | 22 | to's | 2 | 44 | \$4.58 | \$202 | | | Total Rock for Road Segm | ent: | 29+90, 50+75 | N/A
I11 to I12 | ······································ | 11 | TA's | 2 | 22
385 | \$4.58 | \$101 | \$1,763 | | ROAD SEGMENT | I13 to I14 | | Depth of | POINT TO | | Sta. to
0+00 to | | TOTAL | Rate/ | | | | Application | Rock Size | La sant | Rock | Volume | (CY) | Num | ber | VOLUME | Sta./ | Cost | | | Subgrade Leveling | and Type
4"-0" Crushed | Location | (inches)
N/A | pei | | O' | | (CY)
44 | amt.
\$4.58 | \$202 | | | Furnouts Culvert Bedding/Backfill | 4"-0" Crushed
Screened Reject | 1+40
2+40 | N/A
N/A | to
culvert | 22 | to's
culverts | 1 | 22
33 | \$4.58
\$5.29 | \$101
\$175 | | | Total Rock for Road Segm | | 2.10 | 113 to 114 | 5017611 | | OGIVOI (O | | 99 | Ψ5.23 | \$175 | \$477 | | | | | | | | | | | | | | | | | Processing: | Water, Proce | Description | act. | | | | No.sta | Rate/sta | Cost | | | | - | vvaler, Proce | os a comp | aul. | | | | 148.65 | \$24.28 | \$3,609 | | | | - | | | | | | | | | |---|-------------------------|----------|----------|-------------|-------|-----------|-----------------|-------------|----------------------------|-----------| | } | | 24"- | 6" 6"-4" | 6"-0"pr | 4"-0" | 1 1/2"-0" | Screened Reject | Total | | | | | SUB TOTAL FOR SURFACIN | IG 1,18 | 38 33 | 44 | 2,284 | 2,966 | 2,976 | 9,490 | 9,490 | \$60,604 | | | | | | | | | | | | | | | SPECIAL PROJECTS | | | | | | | | | | | 1 | | | | Description | | | | Cost | _ | 1 | | 1 | | | | | | | | | - | 1 | | | | | | | | | | | _ | | | | | | | | | | | | | l | | | SUB TOTAL FOR SPECIAL F | PROJECTS | | | | | | | | \$0 | | | | | | | | | | Subtotal of | Surfacing & Spec. Proj. | \$60,604 | | | | | | | | | | Subtota | al of Clearing, Exc.,Culv. | \$45,066 | | | GRAND TOTAL | | | | | | | | | £40E 670 | | | GRAND TOTAL | | | | | | | | | \$105,670 | | | Compiled By: Kraig Kirl | kpatrick | | | | | | Date: | 03/15/2013 | | #### CRUSHED ROCK COST SALE NAME: Donut Combo PROJECT: No. 1 and 2 QUARRY: Sweethome Stockpile DATE: 04/04/2013 BY: Kraig Kirkpatrick | Road | Stations | Cubic | | 1 | | | | AY HAUL IN | | | | Total | |-----------|----------|-------|----|-----|----|-----|---|------------|---------------|------|------|---------| | Segment | | Yards | 50 | MPH | 30 | MPH | 25 MPH | | 15 MPH | | | | | 11 to 12 | 29.15 | 763 | | | | | | 0.30 | 0.75 | 0.50 | 0.10 | 1.65 | | 13 to 14 | 55.50 | 696 | | | | | | 0.30 | 0.90 | 1.00 | 0.10 | 2.30 | | 15 to 16 | 29.90 | 44 | | | | | | 0.30 | 0.90 | 1.25 | 0.10 | 2.55 | | 17 to 18 | 55.00 | 1,133 | | | | | | 0.50 | 1.00 | 0.90 | 0.10 | 2.50 | | 19 to 110 | 45.40 | 330 | | | | | | 0.50 | 1.30 | 1.50 | 0.10 | 3.40 | | 2E to 2F | 18.90 | 268 | | | | | *************************************** | 0.50 | 1.00 | 0.95 | 0.10 | 2.55 |] |] | | | | | | | | | | | | | |] | 1 | OTAL | 233.85 | 3,234 | | | | | | | | | | AVERAGE | | | STA./NO. | | | | | | | | | 1 | | HAUL | | UBIC YARD | | | | | | | 1 | 0.41 | 0.95 | 0.90 | 0.10 | 2.35 | | | | | | | | | A | | d Trip Distar | | 4.71 | | #### **ROCK HAUL:** | Truck type: | D20 | No. trucks: | 2 | | | |-------------|-----|-------------|-----|--------------------------|-----| | Delay min.: | 8 | Efficiency: | 85% | Ave haul: \$3.41 | /cy | | | | | | Load: \$0.30 | /cy | | Truck type: | D12 | No. trucks: | 6 | Spread: \$0.48 | /cy | | Delay min.: | 6 | Efficiency: | 85% | | | | | | | | | | | Truck type: | D10 | No. trucks: | | Production: cy/day = 1,5 | 582 | | Delay min.: | 5 | Efficiency: | 85% | | | | | | | | | | CRUSHED ROCK HAUL COSTS 3,234 cy @ \$4.19 /cy #### SCREENED REJECT FILL MATERIAL COST | SALE NAME: | Donut Combo | | DATE: | 04/05/2013 | |------------|---------------------|---------------------------|-------|-------------| | PROJECT: | No. 2 | MATERIAL: Screened Reject | BY: | Kirkpatrick | | QUARRY: | Sweethome Stockpile | | | | | Road | C4=" | Road Stations Cubic ONE WAY HAUL IN MILES | | | | | | | | | | |------------|----------
---|-------|----------|-----|--|------|----------|--------|-------|---------------| | Segment | Stations | Yards | 50 MF | H 30 | MPH | | | | 10 MPH | 5 MPH | Total
Haul | | I1 to I2 | 29.15 | 1,127 | | | | | 0.50 | 0.55 | 0.50 | 0.10 | 1.65 | | 13 to 14 | 55.50 | 110 | | | | | 0.50 | 0.70 | 1.00 | 0.10 | 2.30 | | 15 to 16 | 29.90 | 77 | | | | | 0.50 | 0.70 | 1.25 | 0.10 | 2.55 | | 17 to 18 | 55.00 | 297 | | | | | 0.50 | 1.00 | 0.90 | 0.10 | 2.50 | | 19 to 110 | 45.40 | 1,365 | | | | | 0.50 | 1.30 | 1.50 | 0.10 | 3.40 | | 113 to 114 | 6.50 | 33 | | | | | 0.50 | 2.10 | 2.20 | 0.10 | 4.90 | | 1181 | | | | | | | | | | | - | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | |] | | | | | | + |] | | | | | | - | | | | | | | - | ┿ | | | | | | | | | | | | | | | | | <u> </u> | | | - | | | | | | | | | | | | | ĺ | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | - | | | | | | | | | | | | | - | 1 | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | + | OTAL | 221.45 | 3,009 | | | | | | | | | AVERAG | | ~ · / \L | STA./NO. | | | | | | | | | | HAUL | | UBIC YARD | WEIGHTED | | | 1 | | | 0.50 | 0.96 | 1.05 | 0.10 | 2.61 | #### ROCK HAUL: | Truck type: | | No. trucks: | | | | |----------------------------|----------|------------------------------|----------|----------------------------------|------------| | Delay min.: | | Efficiency: | | Ave haul: \$3.97
Load: \$0.48 | /cy
/cy | | Truck type:
Delay min.: | D12
6 | No. trucks: _
Efficiency: | 6
85% | Spread: \$0.84 | /cy | | Truck type:
Delay min.: | | No. trucks: _
Efficiency: | | Production: cy/day = | 954 | SCREENED REJECT FILL MATERIAL HAUL COSTS 3,009 cy @ \$5.29 /cy #### CRUSHED ROCK COST SALE NAME: ______ Donut Combination DATE: 04/03/2013 MATERIAL: 4"-0" Crushed PROJECT: No. 1 and 2 BY: Fall Creek QUARRY: | Road | | Cubic | T | | | 0 | NE W | AY HAUL IN | MILES | | | Total | |---------------|--------------------|-------|--------|--------------|----------------|---|------|-------------|---------------|-------------|-------|---------| | Segment | Stations | Yards | 50 MPH | 1 30 | MPH I | | | | | 10 MPH | 5 MPF | | | 2A to 2B | 4.00 | 22 | | | | | | 0.50 | 1.00 | 0.40 | 0.10 | 2.00 | | 2C to 2D | 7.60 | 22 | | | | | | 0.50 | 1.00 | 0.60 | 0.10 | 2.20 | | 2E to 2F | 18.90 | 1,033 | | | | | | 0.50 | 1.00 | 0.95 | 0.10 | 2.55 | | 3A to 3B | 5.00 | 294 | | | | | | 0.50 | 1.00 | 0.85 | 0.10 | 2.45 | | 3C to 3D | 1.85 | 93 | | | | | | 0.50 | 1.00 | 1.25 | 0.10 | 2.85 | | I1 to I2 | 29.15 | 231 | | | | | | 0.30 | 0.75 | 0.50 | 0.10 | 1.65 | | 13 to 14 | 55.50 | 920 | | | | | | 0.30 | 0.90 | 1.00 | 0.10 | 2.30 | | 15 to 16 | 29.90 | 198 | | | | | | 0.30 | 0.90 | 1.25 | 0.10 | 2.55 | | 17 to 18 | 55.00 | 330 | | | | | | 0.50 | 1.00 | 0.90 | 0.10 | 2.50 | | I9 to I10 | 45.40 | 154 | | | | | | 0.50 | 1.30 | 1.50 | 0.10 | 3.40 | | I11 to I12 | 52.70 | 385 | | | | | | 0.50 | 1.70 | 2.00 | 0.10 | 4.30 | | I13 to I14 | 6.50 | 66 | | | | | | 0.50 | 2.10 | 2.20 | 0.10 | 4.90 | 1 | | | | | | | | | | | | | | 1 | | | | | | | | _ | | | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | - | | | | | | | | 1 | | | | | | | | | | | | | | ł | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | <u> </u> | | | | | | | | - | | | | | | \vdash | - | | | | | | | - | | | | | | - | - | | | | | | | - | | | | | | | | | | | | | | - | | ΓΟΤΑL | 211 50 | 3,748 | | | | | | | | | | AVEDACE | | IOTAL | 311.50
STA./NO. | | | | | | l | | | | | AVERAGE | | CLIDIC VADO I | | | | | | | | 040 | 400 | 400 | 0.40 | HAUL | | CUBIC YARD \ | WEIGHTED | HAUL | | | | | | 0.43 | 1.06 | 1.09 | 0.10 | 2.68 | | | | | | | | | A | verage Rour | nd Trip Dista | nce (miles) | 5.36 | | #### ROCK HAUL: | Truck type: | D20 | No. trucks: | 2 | | | |-------------|-----|-------------|-----|---------------------------|------------| | Delay min.: | 8 | Efficiency: | 85% | Ave haul: \$3.80
Load: | /cy
/cy | | Truck type: | D12 | No. trucks: | 6 | Spread: \$0.78 | /cy | | Delay min.: | 6 | Efficiency: | 85% | | | | Truck type: | | No. trucks: | | Production: cy/day = | 1,417 | | Delay min.: | | Efficiency: | | | | CRUSHED ROCK HAUL COSTS 3,748 cy @ \$4.58 /cy #### PIT RUN ROCK COST | SALE NAME: | Donut Combination | | | DATE: | 04/03/2013 | |------------|-------------------|--------------|---------|-------|------------| | PROJECT: | No. 1 and 2 | MATERIAL: | Pit Run | BY: | | | QUARRY: | Fall Creek | (| | | | | Road | Ctations | Cubic | l | | | | <u> </u> | NE W | AY H | AUL IN | MIL | ES | | | | | Total | |------------|----------|-------|---------|-----|----|-----|----------|------|-------|--------|---------|---------|--------|--------|----|-----|---------| | Segment | Stations | Yards | 50 | MPH | 30 | MPH | 25 | MPH | 20 | MPH | 15 | MPH | 10 | MPH | 5 | MPH | Haul | | 3A to 3B | 5.00 | 60 | | | | | | | | | | | | | | | | | 3C to 3B | 1.85 | 60 | | | | | | | | | | | | | | | | | Pt. 4A | | 60 | | | | | | | | | | | | | | |] | | 13 to 14 | 55.50 | 44 | | | | | | | | .30 | | .90 | | 00 | | .10 | 2.30 | | 19 to 110 | 45.40 | 33 | | | | | | | 0. | .50 | 1 | .30 | 1. | 50 | 0 | .10 | 3.40 | - | - | | - | i | • | TOTAL | 107.75 | 257 | | İ | | | | | | | | | | | | | AVERAGE | | OUDIO VADO | STA./NO. | | | | | | | | _ | ,, | _ | . | | _ | _ | | HAUL | | CUBIC YARD | WEIGHTED | HAUL | | | | | | | | 12 | | .32 | 0. | | | .03 | 0.83 | | | | | | | | | | A | verag | e Rour | nd I ri | p Dista | nce (r | niles) | 1. | .66 | | #### ROCK HAUL: | Truck type: | | No. trucks: | | | | |-------------|-----|---------------|-----|----------------------|-----| | Delay min.: | | Efficiency: | | Ave haul: \$1.74 | /cy | | | | | | Load: \$0.60 | /cy | | Truck type: | D12 | No. trucks: _ | 2 | Spread: \$1.08 | /cy | | Delay min.: | 6 | Efficiency: | 85% | | | | Truck type: | | No. trucks: | | Production: cy/day = | 728 | | Delay min.: | | Efficiency: | | | | PIT RUN ROCK HAUL COSTS 257 cy @ \$3.42 /cy #### PIT RUN ROCK COST | SALE NAME: | Donut Combination | | | DATE: | 04/03/2013 | |------------|-------------------|-----------|---------|-------|------------| | PROJECT: | No. 1 and 2 | MATERIAL: | Pit Run | BY: | | | QUARRY: | Fall Creek | | | | | | Road | Τ | Cubic | ONE WAY HAUL IN MILES | | | | | | | | | | | |------------|----------|---------|-----------------------|---------------|----|--------------|----------------|------|----------------|--------|-------|---------------|--| | Segment | Stations | Yards | 50 | мрнІ | 30 | MPH I | | | 15 MPH | 10 MPH | 5 MPH | Total
Haul | | | 3A to 3B | 5.00 | 60 | | | | | | | | | | 7,000 | | | 3C to 3B | 1.85 | 60 | | | | | | | | | | | | | Pt. 4A | | 60 | | | | | | | | | | 1 | | | 13 to 14 | 55.50 | 44 | | | | | | 0.30 | 0.90 | 1.00 | 0.10 | 2.30 | | | 19 to 110 | 45.40 | 33 | | | | | | 0.50 | 1.30 | 1.50 | 0.10 | 3.40 | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | |] | | | | | | | | | | | | | | |] |] | 1 | | | | | | | | | | | | | | | 1 | ļ | - | - | -+ | | | | | | | | { | - | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | -+ | | | | | | | | | | | | | | | | _ | | | | | - | w | | | | | | | | -+ | $\overline{}$ | - | | | | | | | | | | TOTAL | 107.75 | 257 | | | | | | | | | | AVERAGE | | | | STA./NO. | CU. YD. | | | | | | | | | | HAUL | | | CUBIC YARD | WEIGHTED | HAUL | | | | ļ | | 0.12 | 0.32 | 0.36 | 0.03 | 0.83 | | | | | | | | | | A ¹ | | nd Trip Distar | | 1.66 | | | #### **ROCK HAUL:** | Truck type: | | No. trucks: | | | | | |----------------|-----|-------------|-----|----------------------|--------|-----| | Delay min.: | | Efficiency: | | Ave haul: | \$1.74 | /cy | | | | |
| Load: | \$0.60 | /cy | | Truck type: | D12 | No. trucks: | 2 | Spread: | \$1.08 | /cy | | Delay min.: | 6 | Efficiency: | 85% | | | | | Truck type: | | No. trucks: | | Production: cy/day : | _ | 728 | | Delay min.: | | Efficiency: | | - Floudction, cy/day | _ | 120 | | _ 5.5, 1111111 | | 2c/0/10y. | | | | | PIT RUN ROCK HAUL COSTS 257 cy @ \$3.42 /cy #### RIP RAP ROCK COST | SALE NAME: | Donut Combo | | | DATE: | 04/04/2013 | |------------|-------------|-----------|---------|-------|------------| | PROJECT: | No. 2 | MATERIAL: | Rip Rap | BY: | | | QUARRY: | Fall Creek | | | _ | | | Road | I | Cubic ONE WAY HAUL IN MILES | | | | | | | | | | |] Total | |-------------|----------|-----------------------------|----|------|----|-----|--|-------|-------------|---------------|-------------|-------|---------| | Segment | Stations | Yards | 50 | мрнІ | 30 | мен | | | | | 10 MPH | 5 MPH | | | I1 to I2 | 29.15 | 550 | | | | | | .,,,, | 0.30 | 0.75 | 0.50 | 0.10 | 1.65 | | 17 to 18 | 55.00 | 22 | 1 | | | | | | 0.50 | 1.00 | 0.90 | 0.10 | 2.50 | | I9 to I10 | 45.40 | 616 | 1 | | | | | | 0.50 | 1.30 | 1.50 | 0.10 | 3.40 | 1 | | | | | | | | | | | | | | |] | ļ | - | | | | | | | | | | | | | | | | TOTAL | 129.55 | 1,188 | | - 1 | | | | - 1 | ļ | | | | AVERAGE | | | STA./NO. | | | | | | | - 1 | | | | | HAUL | | CUBIC YARD | WEIGHTED | HAUL | | | | | | | 0.41 | 1.04 | 1.03 | 0.10 | 2.57 | | | | | | | | | | A | verage Rour | nd Trip Dista | nce (miles) | 5.15 | | #### **ROCK HAUL:** | Truck type: | D12 | No. trucks: | 4 | | | | |--------------|-----|-------------|-----|-----------|--------|-----| | Delay min.: | 6 | Efficiency: | 85% | Ave haul: | \$3.95 | /cy | | | | | | Load: | \$0.90 | /cy | | Truck type:_ | | No. trucks: | | Develop: | | /cy | | Delay min.: | | Efficiency: | | - | | | Production: cy/day = 640 RIP RAP ROCK HAUL COSTS 1,188 cy @ \$4.85 /cy #### **Donut Combination** #### Project No.4 Road Vacating | | | | C330
Excavator | Labor | Seeding | Straw
Mulch | Total | |-------------|-----------|---|--|---|---|--|---| | | | | | | | | | | 17 hrs | 12 hrs | | | | | | | | | | | 2.5 sta | | | | | | | | 10 | | | | | | | 17 hrs | 12 hrs | 10 | 2.5 | 2 ac | 200 lb | 100 Bales | | | \$155 /hr | \$101 /hr | \$35 ea | \$362 sta | \$628 /ac | \$1.15 /lb | \$10.73 /Bale | | | \$2,635 | \$1,212 | \$350 | \$905 | \$1,256 | \$230 | \$1,073.00 | \$7,661 | | 20/20/00/00 | 17 hrs | Excavator Excavator 17 hrs 12 hrs 17 hrs 12 hrs 155 /hr \$101 /hr | Excavator Excavator Excavator 17 hrs 12 hrs 10 10 17 hrs 12 hrs 10 \$155 /hr \$101 /hr \$35 ea | Excavator Excavator Excavator Excavator 17 hrs 12 hrs 2.5 sta 10 10 2.5 \$155 /hr \$101 /hr \$35 ea \$362 sta | Excavator Excavator Excavator Excavator 17 hrs 12 hrs 2.5 sta 10 2.5 sta 2.5 sta 17 hrs 12 hrs 10 2.5 sta \$155 /hr \$101 /hr \$35 ea \$362 sta \$628 /ac | Excavator Excavator Excavator Excavator 17 hrs 12 hrs 2.5 sta 10 2.5 sta 2.5 sta 17 hrs 12 hrs 10 \$155 /hr \$101 /hr \$35 ea \$362 sta \$628 /ac \$1.15 //b | Excavator Excavator Excavator Excavator Mulch 17 hrs 12 hrs 2.5 sta | Prepared by: Kraig Kirkpatrick Date: 03/15/2013 Fill Armor Computation Sheet | | | (c _Y) | 삼
* | - T | - Carrier | | | 코
왕
즉, | | 14 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 1886 A. | | A188 | | 2000 | 4,475 | | % () () () () () () () () () (| \$ 4 E | Page 2000 | 27.82% | W | 37 | este
A. | |---------------------------|--|------------------------------|------------|----------------------|---|----------------------------|-----------|---------------------------------------|--------------------------|---|----------------------------|------------------------|---|-----------------------|---|-----------------------|-------------------------|----------|--|---
--|--|------------------------|--|------------------| | | | Total (CY) | For Truck | - lan | 0.0000000000000000000000000000000000000 | | | 7 | Section . | 10 M | 984 S | 1000 | 14 miles | \$
19
4 | Sec. 20. 12. | SECTION OF THE | 1. 2. 2. 2. 10 | | 2000-200 | | \$24.040× | 14.55E-1 | | | 发生 | | | | | Total | 418 | 777 | - | 0 | 0 | 0 | 0 | 0. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3 | Armor Thickness (feet): 3 | | 200 | | volumne
237 | 100 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | mor Thickne | | =0 | | Length | 207 | 25 | | \$500 V 450 | ASSIST SAN | | 450 15 15 W | | | A. Selling Commission | 32.05 to 17.06 to | 180 Sept. 180 Sept. | 100 march 100 m | | | \$200 CAS | | | (A) (A) (A) (A) | Section Control | | | Ar | | RIGHT SIDE | Slope | Height | 3 | 12337 | | | | | A STATE OF THE STATE OF | · 图表图形以数 | | S. Children Carbony & | Street of the | 100 CONTRA | A Same | · 医克里克斯氏 | | 10000000 | The second second | 1970 W. S. C. | 中の年上の大学を | Maria Contract Contra | A Charles Bullet | | | | _ | | Height | + | 88.77 B | | · · · · · · · · · · · · · · · · · · · | All probabilities of the | May Color | 1000 May 100 M | TO ALLEY TO THE SECOND | 東京の大学を | ないなくない | | Section of the second | 17日本資本於 | | | | Company of the same | Service Service | The state of the state | THE WORLD | 第6位的时间 | | | | ***** | | | | ·- | | | | | | | | | | | | | | | | | | THE WAY | | | <i>y</i> | Company of the | Town Street Street | | | | | | | | | | | ī | ī | ı | T. | 1 | Т | T | T | ı | ı | T | ī | ī | | | | Walter Strain | | | Volumne | 104 | 49 | 0 | | 0 | | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | | | Walter Strain | 3(| , | -+ | | . 25 49 | 0 3000000 | 0 | 0 | 0 | | | 0 0 | 0 2000 | | | 0 | 0 | 0 | | 14000000 | J. Parket | | 19 % W 3 19 2 19 2 19 2 19 2 19 2 19 2 19 2 19 | \$3.00 JANES 194 | | | By Aware grant | टार्ट्स कर्ना ।
LEFT SIDE | , | Length | c7 | | | 10000 | Section Section Section | Control of the Control | のないのできるのでは | 2 60 C 7 60 60 | Ş | L | | ALL MANAGEMENT | 3. C. M. B. W. J. M. B. | L | | | 14000000 | A STATE OF THE STA | 4 4 4 4 4 | 2000 CA 640 | A459/47/A | | Date: | By Aware grant | | Slope | t Height Length | C7 97 | | | 在24.15mm 是世 | Section Section Section | | 一次 はない できた 高級 一般の しゅうしゅ でき | でのたじをある。たるはのはなる | - でなる。日本の一日、一日の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本 | No. of the Second | 000000000000000000000000000000000000000 | ALL MANAGEMENT | | | | | | Security of the second | | 李章等以表示 李章等人全会 | | | Date: | By Aware grant | | Slope | t Height Length | C7 97 | 5.0 mm 10 5.0 mm 25 5.0 mm | | 在24.15mm 是世 | | | 一次 はない できた 高級 一般の しゅうしゅ でき | でのたじをある。たるはのはなる | である。 はんかつ のうがらない | あるするながないかになる | 000000000000000000000000000000000000000 | | | | · · · · · · · · · · · · · · · · · · · | 新 1 年 1 年 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 | Control of the Contro | 大きのでは、この後の一次は、人ができましている。 | | | | | Date: | By Aware grant | | Slope | t Height Length | C7 97 | 5.0 mm 10 5.0 mm 25 5.0 mm | | 在24.15mm 是世 | | | 一次 はない できた 高級 一般の しゅうしゅ でき | でのたじをある。たるはのはなる | である。 はんかつ のうがらない | あるするながないかになる | 000000000000000000000000000000000000000 | | | | · · · · · · · · · · · · · · · · · · · | 新 1 年 1 年 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 | Control of the Contro | 大きのでは、この後の一次は、人ができましている。 | | | | | | District of the state st | | Fill Slope | Height Height Length | C7 97 | 5.0 mm 10 5.0 mm 25 5.0 mm | | | | | | | | | | | | | 京後 は なん なん なんかん なんかん なんかん なんかん なんかん なんかん な | 一 | | | | | | # Total CY to Apply*: 0 Volumne rounded off to the nearest 10 cubic yard load Fill Armor Computation Sheet | | | Total (CY) | For Truck | Haul* | ************************************** | 40 M M M M M M M M M M M M M M M M M M M | 经验证金额 | (新文学第二字本)等 A | 1880
Sec. 1889 | N. 352 N. 35 | Brown M. March | Kalifornia de Santa | 404 Charles | 4,000 mess 10,000 | Butter Salan Barrell | 11.00 Sept. 2.00 | 医骨骨 医骨骨 | 5. N. S. | M. W. Carlotte | 1.02°200.03° | | | Section of the Control of the | Section of the Contraction | 10 mm 10 mm 12 mg | |---------------------------|--|------------|------------|----------------------|---|--|--|--|---|--|--
--|----------------|---------------------------------------|---|-----------------------|---------------|--|---|-----------------------|-------------------------------|---|---|--|-----------------------| | | | | Totai | <u>ر</u> ک | 579 | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ၉ | Armor Thickness (feet): 3 | | | 100 | Volumne | 404 | 0 | | ırmor Thickn | | IDE | | Length | -: - 40; -: -: | | | | | 25,500 | | | | 17 - 97 Geografie | 2000-500-500 | April 2000 April 2000 | 2014 S. S. S. | Section of the section | | 12.50 100 100 100 100 | | es de Mariena de | A STATE OF STATE | Same Comments | 328 000 05 | | ٩. | | RIGHT SIDE | Slope | Height | 40: | | | | 1968 - 1869 A.B. | 建筑地位的 | | SA BURE OF MY ME | MEN OF THERE | 经分价工品品额 | MANAGE OF THE PROPERTY | 497 | ANTONIO | | Company William | \$60 11 \$1 \$1 \$ cg | Flancour Dis | Carlot Action | (2) 大学の人ではない。 | | | | | | | Ē | Height | < 20 < | 100 Medical | May and wife | ASSAMPLY OF THE | \$500 ex \$500 E | A SAME | 151 15000 | Save See | 900 PA (100 | 200 A 200 | はおり強く | VANCOUS AND IN | W. Synch Jan | W 0.00 TV | *1.40% | A STANSON A | Walter State Co. | M. G. 1813 | MIN MARTIN | Section of the State Sta | #C#867 | | | | | | | 32 | | | | | · Ç | 7 S | 12 | 9 | | de : | - 33 | | | | | | | | 100 | CONTRACTOR OF | | | A STATE OF THE STA | | × | | | | | | | · G | | 19 | | | | | | | | | | | | -Sy | | | | and a section of the segment of the section | | | Volumne | 175 | 0 | 0 | 0 | 0 | · · · · · · · · · · · · · · · · · · · | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Date: | By: "The graph was graded and after a strain | DE | | Length Volumne | 175 | 0 | | 18 18 18 18 18 18 18 18 18 18 18 18 18 1 | 5 miles (10 miles) | 200 mg/mg/mg/ | N. 62 No. 10 No. 1 | 100 mg 10 | 26-25-17-45-45 | 18 ST 48 S | \$600 Page 178 | 0 | | 0 0 | 0 | | Participation and Sal | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 0 488490000 | | s little gravelt gitt | | Date: | | LEFT SIDE | Slope | - | 175 | | All the second of o | | 15 (15%) | | The Market of the Control Con | があるというには * ** ** ** ** ** ** ** ** ** ** ** ** | 33 | 一等意以人名為 名者等持不被軍人為 | | 0 | 0 | | 3. | | Principles and Street Landing | 湯からうな 送ってもちる | 高男子をおける の言をよる 歌 | | | | | | | Fill Slope | Length | 175 | | | 18 18 18 18 18 18 18 18 18 18 18 18 18 1 | 5 miles (10 miles) | 200 mg/mg/mg/ | N. 62 No. 10 No. 1 | 100 mg 10 | 26-25-17-45-45 | 18 ST 48 S | \$600 Page 178 | 0 | | | 3. | | Participation and Sal | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | AND CONTRACTOR OF | | s little gravelt gitt | | | | | _ | Height Height Length | 22/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2 | とはないはないのではないのである | All the second of o | 一般に考めてひかると、変わる でこ | 其一次有一次有一次 一次 人名 | The second secon | The Market of the Control Con | AND THE STATE OF T | | · · · · · · · · · · · · · · · · · · · | まではなるとは、できて、一般ななくないない | 0 | 0 | | - 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 | | お書きなるという 大学 一人をあると なるない | 1000年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の | を表するではれのできましるが、まであるのである。
を表するではれるできます。 | | | | | | | _ | Height Length | 175 175 175 175 175 175 175 175 175 175 | とはないはないのではないのである | All the second of o | 一般に考めてひかると、変わる でこ | 其一次有一次有一次 一次 人名 | The second secon | The Market of the Control Con | があるというには * ** ** ** ** ** ** ** ** ** ** ** ** | | 一等意以人名為 名者等持不被軍人為 | まではなるとは、できて、一般ななくないない | 0 | 0 | | おなる事故の者 得蒙古 · 水水 歌 | | お書きなるという 大学 一人をあると なるない | 湯からうな 送ってもちる | 高男子をおける の言をよる 歌 | | | Total CY to Apply*: 0 * Volumne rounded off to the nearest 10 cubic yard load | SUMMA
PROJEC | | CK DEVELOPI | MENT ANI |
CRUSHIN
Tim | G COSTS
iber Sale Name: | Donut Com | bo | | | |------------------|-------------------|-------------------|-------------|----------------|----------------------------|---------------|------------|---------|----------| | Quarry: | Fall Creek | <u> </u> | | | | Swell: | | | | | Location: | NF 1/4 SE | 1/4, Sec. 20, T4l | N. R8W | | | Shrink: | 16% | | | | County: | Clatsop | | | | | | | | | | By: | d.mellison | | | | | oading Hopper | : Yes | | | | Date: | 03/04/13 | | | | | • | | | | | | | | | | _ | | | | | | | | | | | STOCKPILE | | TRUCK MEAS | | TOTAL | | | ROCK SIZE | E REJECT (| GRADATIO | ON | CU. YDS. | | CU. YDS. | | CU. YDS. | | | 3/4"-0" | | CR | | | | | | | | | 6"-0" | | PR | | | - | 257 | | 257 | | | 4"-0" | 40% | CR _ | | 10,000 | | 3,748 | | 15,348 | | | 4"-0" | 40% | CR | | 3,000 | <u>)</u> | 1 100 | | 3,480 | | | 24"-6" | | RR | | | _ | 1,188 | | 1,188 | | | 36" | • | RR | | | _ | | | | | | TOTAL CU | UBIC YARDS | OF ROCK: | | 13,000 |) | 5,193 | | 20,273 | | | | | | | | | | | | | 1) MOB | ILIZATION | & SET UP: | | | | | | | | | EOM IIII | רדי א ז'יוי | QUANTITY | RATE | COST | EQUIPMENT | | QUANTITY | RATE | COST | | EQUIPM Screening | | 1 | \$553 | \$553 | Off Highway D | | 1 | \$774 | \$774 | | Loading I | | 1 | \$553 | \$553 | 2 Stage Crush | | 1 | \$2,175 | \$2,175 | | D6 Cat | Toppei | 1 1 | \$533 | \$533 | 1 3.035 3.035 | | 1 | | | | | mpressor | 1 | \$1,406 | \$1,406 | | | | | | | Powder | присодог | 1 | \$351 | \$351 | | | | | | | Excavato | | 1 | \$1,406 | \$1,406 | | | | | | | Loader | | 1 | \$805 | \$805 | | | | | | | 10000 | | | - in- | | | | | | | | <u> </u> | SUB TOTA | L FOR MOBIL | IZATION | | | | | | \$8,555 | | | | | | | | • | 1 | | | | | EQUIP <u>ME</u> I | NT SET UP | | | TIMES | | RATE | COST | - | | | 2 Stage Cru | sher | | _ | 1 | _ | \$2,175 | \$2,175 | | | | Screening F | Plants | | - | 1 | _ | \$293 | \$293 | | | | Loading Ho | pper | | | 1 | _ | \$293 | \$293 | | | | Original Cal | ibration | | _ | 1 | <u>.</u> | \$544 | \$544 | | | | | | | _ | | | } | | | | | | | | _ | | _ | | | | | | | | | - |) | | 1 | | | | | | * 505 CERTIF | a co cerc | | | | | \$3,305 | | | | SUB TOTA | L FOR SET U | 2 COS13 | | | | | Ψυ,υου | | | | TOTAL M | OBILIZATIO | N & CET II | P COSTS | • | | | | \$11,860 | | | TOTALM | OBILIZATIO | , CC DEI U | 1 COSID | | | | | | | 2) CLE | ARING & G | RUBBING | | | | | | | | | 2) 000 | DESCRIPT | | | | QUANTITY | UNIT | RATE | COST | _ | | | | | | | | | | | | | | | | | - | | | | | | | | , | | | - | | | | | | | | | | | _ | | | | | | | | | | | - ,
- | | | | | | | | | | | _ | | | | | | | | | | • | | | | | | | | | TOTAL C | LEARING & C | RUBBING | COSTS | | | | | | | 8) STOC | KPILING
STOCKPILE | CITE DEED | AD ATION | | | | | | | | |-----------|---|---------------------------------------|---|-----------------|---|----------------|------------------|---------------------------------|---|-----------| | | Equipment | Hours | Rate | Total | | | | | | | | | Dozer | 1,5 | \$113.00 | \$169.50 | Rock | for Floor (CY) | \$/CY Haul | Total | | | | | Compactor | 1,0 | \$72.00 | Ψ100.00 | 1001 | 10,1,00, (0,2) | 41 0 1 1 1 1 1 1 | | | | | | Grader | 1 | \$90.00 | \$90.00 | | | | <u> </u> | | | | | Excavator | · · · · · · · · · · · · · · · · · · · | \$138.00 | | | | | • | | | | | | | | | \$259.50 | | | | | | | | SUB TOTAL | | | | | | | \$260 | | | | | HAUL & STO | OCKPILE | | 1 | # of | | | | | | | | STOCKPILE | | 1 | SIZE | TRUCKS | CU. YDS. | RATE | COST | | | | 1. | Sweethome | | | 4"-0" | 4 | 11,600 | \$2.99 | \$34,704 | | | | 2. | Fall Creek | | | 4"-0" | 2 | 3,480 | \$1.41 | \$4,897 | | | | 3. | | | | | | | | | | | | 4. | | | | | | | | | | | | 5. | | | ·· | | | | | | • | | | 6. | · | | | | | | | • | | | | | | | | - | | | - | * 20 * 0 * | | | | | SUB TOTAL | | | | | | | \$39,601 | | | | | mom 17 000 | CYZDYT ING | T:COCTO | | | | | | | \$39,860 | | | TOTAL STO | CKPILING | 3 COS18 | | **** | | | | A | \$39,000 | | o) MISCI | ELLANEOUS | COSTS | • | | | • | | | | | | 9) MISCI | DESCRIPTIO | | | | | | | COST | | | | | | | and compact | the reject mate | rial at the waste | e area. | | | | | | | \$2.27 / | | | Cubic yards | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | \$17,096 | | | | | φω | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | • | | | | | | | | | | ** | | • | | | | | | | *************************************** | | | | | • | | | | | | | | | | | | • | • | • | | | | | | | | | TOTAL MIS | CELLANE | OUS COSTS | | | | | · | | \$17,096 | | | | | | | | | | | | | | 10) GRA | ND TOTAL: | | | | | | • | : | | \$220,622 | | | | | | | | <u> </u> | | \$/Cubic Yard | | \$11.72 | | Footnotes | s: | | , | | | | | - | | | | | | | | 1 | # Road Maintenance after completion of Projects Donut Combo 05-Apr-13 Kraig Kirkpatrick Sale: Date: By: | | | | | | | | \$3,306 | |---------------------|------------|------------------------|----------------|-------------------------------|-------------------------------------|--|---------| | Cost | \$1,200 | \$316 | \$332 | \$924 | \$534 | | | | Rate | \$100 | 6/4 | \$83 | \$77 | \$89 | | | | Hours | 12 | 4 | 4 | 12 | 9 | Equipment/Rationale | Grader 14G | Duling 11 uck 1201 X Z | FE Loader C966 | Maintenance Vibratory Roller | Haul Route Water Truck 2,500 gallon | | | | Type | Fibol | ומו - | Road | Maintenance | Haul Route | | Total | | Production Rates | Miles/day | Distance(miles) | Days | |------------------|-----------|-----------------|------| | Grader | 1.5 | 2.0 | 1.3 | | Vibratory Roller | 1.5 | 2.0 | 1.3 | *Project work road maintenance Fall Creek Rd: Quarry to Sweethome Creek Rd Sweethome Creek Rd: Jct of Fall Creek Rd to Pt. 18 #### Road Maintenance Cost Summary (Interim and Post Harvest) Sale: **Donut Combination** MBF: Date: June 10, 2013 \$\$/MBF: Ву: Bryce Rodgers | | | Move-in | | | | | |------------------------------|---|--|-----------------------|-------------------------------------|--|---| | Туре | Equipment/Rationale | Rate | Times | Hours | Rate | Cost | | | Grader 14G | \$778 | 1 | 17 | \$100 | \$2,478 | | Interim | Dump Truck 12CY | \$163 | 2 | 8 | \$79 | \$958 | | Operations
Entries - 1 | FE Loader C966 | \$778 | 1 | 1 | \$83 | \$861 | | Final
Road
Maintenance | Grader 14G Dump Truck 12CY FE Loader C966 Vibratory Roller Water Truck 2,500 gallon Backhoe-small Labor | \$778
\$163
\$778
\$778
\$190
\$321 | 1
2
1
1
1 | 73
8
4
73
20
16
8 | \$100
\$79
\$83
\$108
\$89
\$77
\$40 | \$8,078
\$958
\$1,110
\$8,662
\$1,970
\$1,553
\$320 | | Total | | | | | : | | Interim Operations Road Maintenance | Proc | luction Rates | | Distance (miles) | Days | Hours | |--------|---------------|-----|------------------|------|-------| | Grader | | 3.5 | 6.0 | 1.7 | 17 | Final Road Maintenance | Production Rates | Miles/day | Distance (miles) | Days | Hours | |------------------|-----------|------------------|------|-------| | Process - Grader | 1.5 | 11 | 7.3 | 73 | | Vibratory Roller | 1.5 | 11.0 | 7.3 | 73 | | Process and Compact: North Fork Road, Sweethome Creek Road, Rector Ridge Road, | | |--|--| | And all spurs used during log hauling. | | | | | | | | | | | | TOTAL MILES = 11,0 | | | | | | | | | | | #### Donut Combination TIMBER CRUISE REPORT FY 2013 **Sale Area Location:** Areas 1, 2, 3, 4, 5, 6 and 7 are located in portions of Sections 20, 21, 28, 29 and 33, T4N, R8W, W.M., Clatsop County, Oregon. 2. Fund Distribution: BOF 100% Tax Code 8-01 (100%) 3. Sale Acreage by Area: | Area | Treatment | Gross
Acres | Posted
Buffers | New
R/W | Old R/W | Net
Acres | Survey
Method | |---------|-------------------|----------------|-------------------|------------|---------|--------------|------------------| | 1 | Modified Clearcut | 18 | 2 | 0 | 3 | 13 | GIS | | 2 | Partial Cut | 77 | 0 | 3 | 4 | 70 | GIS | | 3 | Modified Clearcut | 65 | 9 | 1 | 5 | 50 | GIS | | 4 | Partial Cut | 8 | 0 | 0 | 0 | 8 | GIS | | 5 | Partial Cut | 46 | 0 | 0 | 3 | 43 | GIS | | 6 | Retention Cut | 6 | 0 | 0 | 1 | 5 | GIS | | 7 | Retention Cut | 6 | 1 | 0 | 0 | 5 | GIS | | 8 (R/W) | Right of Way | 4 | | | | 4 | LxW | | TOTALS | | 230 | 12 | 4 | 16 | 198 | | - **4. Cruisers and Cruise Dates:** All areas were cruised by Will Lawrence, Jon Long, Ed Holloran, Bryce Rodgers, Derek Bangs, Nick Haile, and Kevin Berry in April 2013. - **5. Cruise Method and Computation:** All cruisers used Corvallis Micro Technology (CMT) data collectors, and were downloaded to the Atterbury <u>Super A.C.E.</u> program at the Astoria District for computing. See the attached <u>Cruise Design</u> for more details on the cruise method. The cruise calculations were processed in the Astoria District office. <u>Areas 1 and 3</u> are modified clearcut units and were variable plot cruised using a 40 BAF. These plots are located on a 5 chain by 2.5 chain grid, with every third plot measured and graded. A total of 51 plots were sampled, with 18 measured and graded plots, and 33 count plots. <u>Area 2</u> is a partial cut and was variable plot cruised using a 40 BAF for conifer and 33.61 BAF for hardwoods. These plots are located on a 5.5 chain by 3 chain grid, with every third plot measured and graded. A total of 41 plots were sampled, with 17
measured and graded plots, and 24 count plots. Area 4 is a partial cut. An individual tree selection cruise was used. 126 trees were 100% cruised. <u>Area 5</u> is a partial cut and was variable plot cruised using a 40 BAF. These plots are located on a 5 chain by 3 chain grid, with every third plot measured and graded. A total of 30 plots were sampled, with 14 measured and graded plots, and 16 count plots. <u>Areas 6 and 7</u> are retention cuts and were variable plot cruised using a 40 BAF. These plots are located on a 3 chain by 2 chain grid, a total of 13 plots were all measured and graded. <u>Area 8 R/W</u> Right-of-way volume was calculated by multiplying the R/W acreage and the average volume per acre from the plots in Areas 1 and 3(MC) and Area 2(PC). Right-of-way totals 4 acres. | AREA | CRUISE | TRACT | TYPE | ACRES | |------------|--------------|-------|------|-------| | 1 and 3 | T04N R08W 20 | 1&3 | TAKE | 63 | | Area 2 | T04N R08W 20 | AREA2 | TAKE | 70 | | Area 4 | T04N R08W 29 | AREA4 | TAKE | 8 | | Area 5 | T04N R08W 20 | AREA5 | TAKE | 43 | | 6 and 7 | T04N R08W 33 | 6&7 | TAKE | 10 | | Area 8 R/W | T04N R08W 20 | R/W | R/W | 4 | #### 6. Timber Description: Areas 1 and 3 are modified clearcut units, approximately 65 to 70 years old, consisting of western hemlock, Sitka spruce, Douglas-fir and red alder. The average western hemlock tree size to be harvested is approximately 20 inches DBH, with an average height of 64 feet to a merchantable top (6 inch d.i.b./40% fp). The average volume per acre to be harvested (net) is 32 MBF. Area 2 is a partial cut unit, approximately 65 to 70 years old, consisting of western hemlock, Sitka spruce, and red alder. The leave stand will have an average Basal Area of 180, and SDI of around 30%, and have approximately 42 trees per acre. The average western hemlock tree size to be harvested is approximately 13 inches DBH, with an average height of 46 feet to a merchantable top (6 inch d.i.b./40% fp). The average volume per acre to be harvested (net) is 10 MBF. Area 4 is a partial cut unit, approximately 60 years old, consisting of red alder. The leave stand will have an average Basal Area of 180. The average red alder tree size to be harvested is approximately 15 inches DBH, with an average height of 45 feet to a merchantable top (6 inch d.i.b./40% fp). The average volume per acre to be harvested (net) is 1.9 MBF. <u>Area 5</u> is a partial cut unit, approximately 65 years old, consisting of western hemlock, Sitka spruce, Douglas-fir and red alder. The leave stand will have an average Basal Area of 160, and SDI of around 31%, and have approximately 60 trees per acre. The average western hemlock tree size to be harvested is approximately 15 inches DBH, with an average height of 62 feet to a merchantable top (6 inch d.i.b./40% fp). The average volume per acre to be harvested (net) is 19 MBF. Areas 6 and 7 are retention cut units, approximately 65 years old, consisting of western hemlock and red alder. The average western hemlock tree size to be harvested is approximately 14 inches DBH, with an average height of 52 feet to a merchantable top (6 inch d.i.b./40% fp). The average volume per acre to be harvested (net) is 22 MBF. Area 8 R/W is similar to the timber description mentioned above for Areas 1, 2 and 3. The average volume (net) is 42 MBF/acre. #### 7. Statistical Analysis and Stand Summary: (See "Statistics" - Type Reports, attached) Statistics for Stand B.F. volumes | Area | Estimated CV | Target SE% | Actual CV | Actual SE% | |-------|--------------|------------|-----------|------------| | 1 & 3 | 60 | 10 | 35.8 | 5 | | 2 | 60 | 12 | 30.1 | 4.7 | | 4 | N/A | N/A | N/A | N/A | | 5 | 40 | 12 | 22.2 | 4.1 | | 6 & 7 | 70 | 12 | 45.9 | 13.2 | 8. Take Volumes by Species and Log Grades for All Sale Areas by MBF: (See "Species, Sort Grade-Board Feet Volumes (Project)", "Statistics (Project)", and the "Stand Table Summary" attached). Volumes do not include "in-growth." The majority of defect and breakage was taken out during the cruise. | Species | DBH | Net Vol. | 2 Saw | 3Saw | 4 Saw | Camp
Run | %
D&B | % Sale | |-------------------|-----|----------|-------|------|-------|-------------|----------|--------| | Douglas-fir | 22" | 218 | 170 | 38 | 10 | | 2 | 5 | | Western Hemlock | 16" | 2,634 | 1,440 | 984 | 210 | | 2 | 65 | | Sitka Spruce | 22" | 193 | 114 | 57 | 22 | | 8 | 5 | | Sitka Spruce 20"+ | * | 171 | | | | | 8 | 4 | | Cedar | 19" | 1 | | 1 | | | 2 | 1 | ^{*} All logs greater or equal to 20" (Scaling End) | Species | DBH | Net Vol. | 12"+ | 10"-11" | 8"-9" | 6"-7" | %
D&B | % Sale | |-----------|-----|----------|------|---------|-------|-------|----------|--------| | Red Alder | 13" | 805 | 200 | 199 | 148 | 258 | 1 | 20 | | T | OTAL | NET | VOLUME | 4,022 | |---|------|-----|--------|-------| |---|------|-----|--------|-------| Alder grades based on scaling end diameter. Diameter break downs for each size class were: 12" + = 1 Saw; 10" - 11" = 2 Saw; 8" - 19" = 3 Saw; 6" - 7" = 4 Saw. These volumes were converted and reported as shown above. 9. Approvals: Prepared by: Bryce Rodgers **Date:** April 17, 2013 Unit Forester Approval: _ Date: MAY 31, 2013 10. Attachments: Cruise Design and Map - 12 pages Volume Report - 7 pages Statistics Report - 23 pages Log Stock Tables - 3 pages Stand Table Summary – 3 pages X:\Sunset Unit\2013 FY Sales\Donut Combination\Sale Prep\Cruise\Cruise_Report.docx #### CRUISE DESIGN ASTORIA DISTRICT | Sale Name: <u>Donut Co</u> | ombo | Areas <u>1 & 3</u> | | |----------------------------|--|--|---| | Harvest Type: (CC) Cle | earcut | | | | Approx. Cruise Acres: _ | 71 Estimated CV% _ | 60 Net BF/Acre SI | E% Objective 10 Net BF/Acre | | Planned Sale Volume : | 5.5 MMBF Estimated | Sale Area Value/ | 'Acre: \$10,000/Ac | | | | unt); (c) Other go | nardwood trees:
pals (<u>X</u> Determine volume and | | Cru
Cru
Cru | F 40.0 (Full point) Half point Ha | th /South)
_ (chains)
? (chains) | | | If a cruise plot ends up | near a buffer adiust whe | re feasible by ½ o | chain. If plot falls clearly inside a | #### C. Tree Measurements: **1. Diameter:** Minimum DBH to cruise is <u>8"</u> for conifers and <u>8"</u> for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". are leave trees. Record all snags as SN. Grade all hardwoods. buffer, and major adjustment is necessary, drop the plot. Take plots as marked on map. All cedar - 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable. - **3. Top Cruise Diameter (TCD):** Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh. - **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87. - 5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merchantable segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. #### 6. Species, Sort, and Grade Codes: - A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red
cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.) - B. Sort: Use code "1" (Domestic). - C. Grade: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; R = Camp Run. - D. Alder Grades: 12" + = 1 Sawmill; 10" 11" = 2 Sawmill; 8"-9" = 3 Sawmill; 6"-7" = 4 Sawmill - 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce. - 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses. - **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint. - **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale. Cruise Design by: Bryce Rodgers Approved by: Jh Tll Date: 03/06/13 #### CRUISE DESIGN ASTORIA DISTRICT | Sale Name:Donut Combination | Area(s)2 | | | | | |--|---|--|--|--|--| | Harvest Type: (PC) "Automark Thinning" | | | | | | | Approx. Cruise Acres: <u>77</u> Estimated CV% <u>60</u> Net BF/A | Acre SE% Objective 12 Net BF/Acre | | | | | | Planned Sale Volume: <u>5.5 MMBF</u> Estimated Sale Area Value/Acre: <u>\$3,000/Ac</u> | | | | | | | A. <u>Cruise Goals</u> : (a) Grade minimum <u>70</u> conifer and <u>(b) Sample 42</u> cruise plots (<u>1</u> grade/ <u>2</u> count); (c) O thinning standards; <u>X</u> Determine log grades for sale tree species and sizes. | ther goals (Determine "automark" | | | | | | B. Cruise Design: 1. Plot Cruises: BAF 40.0 (Conifer) 33.61 (Hardwood Cruise Line Direction(s) (North / South) Cruise Line Spacing 5.5 (chains) Cruise Plot Spacing 3 (chains) Grade/Count Ratio 1/2 | | | | | | | Basal Area leave target is 180 sq. ft. Cruiser needs to sel Cruise all take and leave trees. All conifer less than 8" DE reserved. All Cedar are reserved. Record all snags as SI over 10" DBH. All trees greater than 35" DBH are leave trees. | 3H and all hardwoods less than 10" are N. Grade all alder. Take all hardwoods | | | | | #### C. Tree Measurements: - **1. Diameter:** Minimum DBH to cruise is <u>8"</u> for conifers and <u>8"</u> for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate. - **2. Bole Length:** Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable. - **3. Top Cruise Diameter (TCD):** Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh. - **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87. - **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. - 6. Species, Sort, and Grade Codes: - A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.) - B. Sort: Use code "1" (Domestic). - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; R = Camp Run. - D. Alder Grades: 12" + = 2 Sawmill; 10" 12" = 3 Sawmill; under 10" = 4 Sawmill - 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce. - 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses. - **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint. - **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale. | Cruise Desigr | | Bryce, R | Rodgers | | |---------------|----------|----------|---------|--| | Approved by: | 1/2 | Telle | 3/6/13 | | | Date: | O | 03/06 | /2013 | | ## CRUISE DESIGN ASTORIA DISTRICT | Sa | ale Name: _. | Donut Combination | | Area(s) <u>5</u> | _ | |----|-------------------------|--|---|--|------------------------------------| | Ha | arvest Type | e: (PC) "Automark Thinn | ing" | | | | A | pprox. Crui | se Acres: <u>46</u> Estima | ated CV% <u>40</u> Net BF/A | cre SE% Objectiv | ve <u>12</u> Net BF/Acre | | PI | anned Sale | Volume: 5.5 MMBF | Estimated Sale Area | Value/Acre: \$3,0 | 000/Ac | | Α. | (b) Samplethinning sta | pals: (a) Grade minimum
e_28_ cruise plots (_1_ g
andards;X_ Determin
es and sizes. | rade/ 2 count); (c) Ot | ner goals (D | etermine "automark" | | В. | Cruise De
1. Plot Cr | ruises: BAF <u>40.0 (Coni</u>
Cruise Line Direc
Cruise Line Spac | otion(s) <u>295</u> ing <u>5</u> (chains) ing <u>3</u> (chains) | int) (circle one) | | | | Cruise all t | leave target is 160 sq. ft
ake and leave trees. All o
Record all snags as SN. | conifer less than 8" DB | ect 4 conifer leave
H are reserved. <i>F</i> | e trees per plot.
All Cedar are | | C. | Record trees > | surements:
er: Minimum DBH to cruid
dbh to nearest ½" for tree
24". If tree diameters are
to closest estimate. | es < 1 6 ", to nearest 1" | for trees 16-24", a | and to nearest 2" for | | | | ength: Record bole lengt
ntable height, estimating | | | iter than 100 feet in | | | hardwo | u ise Diameter (TCD): M
ods or <u>40</u> % of dob at
d 40% of dob @ FP for tre | 16' form point. Genera | | | | | measur | actors: (1) Measure or e
ed/graded; OR (2) Measu
on the cruise area, and u | re a minimum of 20 fo | rm factors for eac | h major conifer | 5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each cruise. Hardwood form factors
are a Standard 87. merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. - 6. Species, Sort, and Grade Codes: - A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.) - B. Sort: Use code "1" (Domestic). - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; R = Camp Run. - D. <u>Alder Grades</u>: 12" + = 1 Sawmill; 10" 11" = 2 Sawmill; 8"-9" = 3 Sawmill; 6"-7" = 4 Sawmill - 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce. - 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses. - **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint. - **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale. | Cruise Design by | /: Bryce/Rodgers | | |------------------|------------------|--| | Approved by: | 1 Tillo 4/5/13 | | | Date: | 04/05/2013 | | | • | | | ## CRUISE DESIGN ASTORIA DISTRICT | Sa | ale l | Name: Donut Combination Area(s | 6 & 7 | |----|--------------------|---|--| | На | arve | vest Type: (PC) "Automark Thinning" | , | | | | prox. Cruise Acres: _1_ Estimated CV% _70_Net BF/Acre SE | % Objective <u>12</u> Net BF/Acre | | | | nned Sale Volume: <u>5.5 MMBF</u> Estimated Sale Area Value | | | Α. | (b)
sta | Cruise Goals: (a) Grade minimum _70 conifer and30_ hb) Sample_14_ cruise plot All Grade; (c) Other goals (Destandards;X Determine log grades for sale value; _X Despecies and sizes. | termine "automark" thinning | | B. | 1. | Cruise Design: . Plot Cruises: BAF <u>40.0 (Conifer) (</u> Full point; Half point) (conifer) (Cruise Line Direction(s) <u>310</u> Cruise Line Spacing <u>3</u> (chains) Cruise Plot Spacing <u>2</u> (chains) Grade/Count Ratio <u>All Grade</u> | , and the second | | | <u>all t</u> | Basal Area leave target is 80 sq. ft. Cruiser needs to select 2 co Il take and leave trees. All conifer less than 8" DBH are reserve | nifer leave trees per plot. Cruise
d. All Cedar are reserved. | | C. | <u>Tre</u>
1. [| ree Measurements: Diameter: Minimum DBH to cruise is 8" for conifers and 8" Record dbh to nearest 1/2" for trees < 16", to nearest 1" for tree trees > 24". If tree diameters are estimated (only estimate on record to closest estimate. | es 16-24", and to nearest 2" for | | | 2. | Bole Length: Record bole length to nearest foot at TCD. For merchantable height, estimating to the nearest 5 feet is accept | trees greater than 100 feet in | - 3. Top Cruise Diameter (TCD): Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for - 3. Top Cruise Diameter (TCD): Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh. - **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87. - **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. - 6. Species, Sort, and Grade Codes: - A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.) - B. Sort: Use code "1" (Domestic). - C. Grade: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; R = Camp Run. - D. Alder Grades: 12" + = 1 Sawmill; 10" 11" = 2 Sawmill; 8"-9" = 3 Sawmill; 6"-7" = 4 Sawmill - 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce. - 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses. - **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint. - **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale. | Cruise Design | by: <u>/1 E</u> | Bryce Rodgers | | |---------------|-----------------|---------------|--| | Approved by: | 16 | Tilh | | | Date: | \mathcal{O} | 04/05/2013 | | | |
 | | Species, Sort Grade - Board Foot Volumes (Project) TC PSPCSTGR Project: **DONUT** Page 1 T04N R08W S20 TyR/W Date 4/22/2013 THRU Acres 198.00 T04N R08W S33 TyTAKE Time 11:39:46AM Percent of Net Board Foot Volume Average Log Logs Net S So Gr Bd. Ft. per Acre Total Log Scale Dia. Log Length Ln BdCF/ Per T rt ad BdFt Spp Def% Gross Net Net MBF 4-5 6-11 12-19 20+ 12-20 21-30 31-35 36-99 Ft Lf /Acre Α DOCU 11 0.00 5.0 Α DO1S 24 .6 1,018 1,012 200 79 21 10 42 23 29 24 167 1.48 6.1 Α DO2S 25 1.2 1,015 1,003 199 100 22 3 26 49 35 129 7.8 1.01 DO3S 18 1.0 754 A 747 148 99 22 28 49 29 1 69 10.8 0.80 Α DO4S 33 1.1 1,320 1,305 258 0 100 18 18 15 49 29 44 29.6 0.54 A Totals 20 1.0 4,108 4,068 805 0 80 20 13 27 17 43 28 69 0.74 59.3 **DOCU** S 7 0.00 S DO2S 50 3.3 960 928 184 62 38 5 95 39 633 3.63 1.5 S DO3S 43 13.2 917 796 158 10 26 65 29 2 1 68 35 344 2.70 2.3 S DO4S 7 .2 115 115 282 96 4 55 43 2 22 33 3.5 0.62 9 \mathbf{S} Totals 7.7 1,992 1,839 364 10 43 47 4 3 15 78 28 227 2.13 8.1 Η CU .5 0.00 Η DOCU 10 7.2 0.00 Η DO2S 54 3.2 7,516 7,272 1,440 3 65 32 1 3 12 84 37 353 2.14 20.6 Η DO3S 38 1.3 5,033 4,967 984 92 1 5 1 2 6 27 65 36 94 0.77 53.1 DO4S 8 Η 2.3 1,089 1,065 210 95 5 0 49 37 4 11 22 28 0.42 37.5 H Totals 65 2.4 13,638 13,304 2,634 44 37 18 5 7 17 71 0.97 30 112 118.9 C DOCU 15 0.00 .0 \mathbf{C} DO2S 83 5.6 3 3 1 100 39 61 37 918 .0 6.84 C DO3S 17 1 1 0 100 37 36 64 183 2.07 .0 C Totals 0 4 4 4.7 1 17 83 21 39 61 140 2.03 .0 D DO2S 78 2.3 878 858 170 100 0 100 40 319 1.99 2.7 D DO3S 17 .0 192 192 100 38 19 0 81 38 90 2.1 0.81 D DO4S 5 50 50 10 100 0 100 40 89 0.85 .6 5 D Totals 1.8 1,121 1,100 218 22 0 78 0 0 3 97 39 204 1.42 5.4 M DOCU 15 0.00 .6 M Totals 15 0.00 .6 **Totals** 20,862 20,315 4,022 0 47 37 16 6 10 16 67 29 106 0.97 192.3 | T | TSPCSTG | GR | | | Species | , Sort G
Projec | rade - Boar
et: DO | rd Foot V
NUT | Volui | mes (| Гуре) | | | |] | Page
Date
Fime | 1
4/17/2
7:38: | 013 | |-------------------|---------|----|------|----------|-----------|--------------------|-----------------------|------------------|--------|--------|----------|-------|-------------|-------|-----------------|----------------------|----------------------|-----------| | T04N
Tw
04N | | | Sec | Tract | | Type
TAF | | | | _ | le Tree | es | 1 | CuFt | T04
Bdl
W | | SW S20 | ΓΤΑΚΙ | | | | | % | | | | | Percent | Net B | oard F | oot Vol | ume | | | Av | erage] | Log | Ι. | | | s so | Gr | Net | Bd. | Ft. per A | ore | Total | Log So | rale D | ia. | Lo | g Ler | ngth | | Ln | Bd | CF/ | Log
Pe | | Spp | T rt | ad | BdFt | Def% | Gross | Net | Net MBF | | | 6 17+ | 12-20 | - | _ | 36-99 | Ft | Ft | Lf | /Acı | | Н | DO | CU | | <u> </u> | | | | | | | <u> </u> | | | | 9 | | 0.00 | | | Н | DO | 2S | 77 | 3.8 | 15,344 | 14,760 | 930 | 2 | 40 | 58 | 0 | 4 | 11 | 85 | 37 | 411 | 2.44 | 36 | | Н | DO | 3S | 15 | .6 | 3,069 | 3,051 | 192 | 80 | 14 | 7 | 3 | 18 | 27 | 52 | 34 | 113 | 1.03 | 2 | | Н | DO | 4S | 8 | 5.3 | 1,426 | 1,351 | 85 | 100 | | | 32 | 40 | 3 | 25 | 26 | 42 | 0.51 | 32 | | Н | Totals | | 59 | 3.4 | 19,839 | 19,163 | 1,207 | 21 | 33 | 46 | 3 | 9 | 13 | 76 | 32 | 192 | 1.48 | 9: | | A | DO | CU | | | | | | | | | | | | | 2 | | 0.00 | ١. | | A | DO | 1S | 32 | .6 | 2,691 | 2,674 | 168 | 24 | 76 | | 12 | 48 | 14 | 26 | 28 | 166 | 1.47 | 10 | | Α | DO | 2S | 25 | 1.6 | 2,138 | 2,104 | 133 | 100 | | | 4 | 8 | 19 | 69 | 36 | 130 | 0.99 | 10 | | A | DO | 3S | 7 | 2.7 | 576 | 561 | 35 | 100 | | | 19 | 62 | | 19 | 27 | 67 | 0.83 | ; | | A | DO | 4S | 36 | | 2,902 | 2,902 | 183 | 100 | | | 20 | 10 | 13 | 57 | 29 | 46 | 0.56 | 63 | | A | Totals | | 25 | .8 | 8,307 | 8,240 | 519 | 75 | 25 | | 13 | 25 | 14 | 47 | 28 | 74 | 0.78 | 11 | | S | DO | CU | | | | | | | | | | | | | 7 | | 0.00 |] : | | S | DO | 2S | 36 | 2.1 | 800 | 783 | 49 | | | 100 | | | 16 | 84 | 38 | 721 | 4.05 | | | S | DO | 3S | 52 | 15.0 | 1,339 | 1,137 | 72 | 8 | 8 | 84 | 4 | | 11 | 86 | 34 | 497 | 3.81 | 1 | | S | DO | 4S | 12 | | 244 | 244 | 15 | 100 | | | 39 | 61 | | | 24 | 29 | 0.56 | ; | | S | Totals | | 7 | 9.2 | 2,382 | 2,164 | 136 | 15 | 4 | 80 | 6 | 7 | 11 | 75 | 24 | 154 | 1.72 | 1. | | D | DO | 2S | 77 | 2.8 | 2,247 | 2,185 | 138 | | 100 | | | | | 100 | 40 | 341 | 2.05 | | | D | DO | 3S | 17 | | 478 | 478 | 30 | 100 | | | | | 23 | 77 | 37 | 102 | 0.90 | 4 | | D | DO | 4S | 6 | | 154 | 154 | 10 | 100 | | | | | | 100 | 40 | 90 | 0.85 | | | D | Totals | | 9 | 2.2 | 2,880 | 2,817 | 177 | 22 | 78 | | | | 4 | 96 | 39 | 220 | 1.48 | 1: | | M | DO | CU | | | | | | | | | | | | | 15 | | 0.00 | | | M | Totals | | | | | | | | | | | ····· | | | 15 | | 0.00 | | | Туре Т | Cotale | | | 3.1 | 33,408 | 32,384 | 2.040 | 35 | 33 | 32 | 6 | 12 | 12 | 70 | 30 | 135 | 1.18 | 23 | | ТТ | SPCSTG | R | | 1 | Species | , Sort G
Projec | rade - Boar
t: DO | rd Foot V
NUT | Volu: | mes (T | Гуре) | | | | I | Page
Date
Iime | 1
4/17/2
7:38:3 | 013 | |--------------------|--------|----|------|----------------|-----------|--------------------|----------------------|------------------|--------|---------|---------|------|--------|-------|-----------------|----------------------|-----------------------|-------------| | T04N
Twp
04N | , | ge | Sec | Tract
AREA2 | | Type
TAF | | | | Samp | le Tree | es | C
1 | uFt | T04
BdI
W | | SW S20 T | TAKE | | | | | % | | | | | Percent | Net B | oard Fo | oot Vol | ume | | | Av | erage] | Log | - | | | s so | Gr | Net | Bd. | Ft. per A | cre | Total | Log So | cale D | ia. | Lo | g Le | ngth | | Ln | Bd | CF/ | Logs
Per | | Spp | T rt | ad | BdFt | Def% | Gross | Net | Net MBF | | | 6 17+ | 12-20 | _ | _ | 36-99 | Ft | Ft | Lf | /Acr | | Н | DO | CU | | | | | | | | | | | | | 14 | | 0.00 | 8 | | Н | DO | 2S | 36 | 4.2 | 2,145 | 2,054 | 144 | 20 | 13 | 66 | 11 | | 13 | 76 | 37 | 269 | 1.70 | 7 | | Н | DO | 3S | 52 | 1.6 | 3,040 | 2,991 | 209 | 100 | | | 3 | | 17 | 79 | 37 | 87 | 0.68 | 34 | | Н | DO | 4S | 12 | | 634 | 634 | 44 | 100 | | | 69 | 31 | | | 19 | 21 | 0.39 | 29 | | H | Totals | | 53 | 2.4 | 5,818 | 5,678 | 397 | 71 | 5 | 24 | 13 | 3 | 14 | 69 | 28 | 71 | 0.70 | 79 | | A | DO | CU | | | | | | | | | | | | | 34 | | 0.00 | 3 | | A | DO | 1S | 10 | | 291 | 291 | 20 | | 100 | | | | 100 | | 32 | 160 | 1.50 | 1 | | A | DO | 2S | 12 | | 350 | 350 | 24 | 100 | | | | | 100 | | 32 | 120 | 1.00 | 2 | | A | DO | 3S | 46 | | 1,321 | 1,321 | 92 | 100 | | | 16 | 18 | | 66 | 31 | 73 | 0.79 | 18 | | Α | DO | 4S | 32 | 4.2 | 933 | 894 | 63 | 100 | | | 7 | 41 | 22 | 31 | 30 | 42 | 0.51 | 21 | | A ' | Totals | | 27 | 1.3 | 2,895 | 2,856 | 200 | 90 | 10 | 100 | 10 | 21 | 29 | 40 | 31 | 59 | 0.64 | 48 | | S | DO | 2S | 74 | 3.6 | 1,717 | 1,656 | 116 | | | 100 | | | | 100 | 40 | 579 | 3.35 | 2 | | S | DO | 3S | 22 | 11.3 | 534 | 474 | 33 | 17 | 83 | | | | 83 | 17 | 34 | 165 | 1.52 | 2 | | S | DO | 4S | 4 | | 85 | 85 | 6 | 100 | | | 100 | | | | 17 | 40 | 0.82 | 2 | | S 7 | Totals | | 21 | 5.2 | 2,336 | 2,214 | 155 | 8 | 18 | 75 | 4 | | 18 | 78 | 32 | 282 | 2.26 | 7 | | Type T | otals | | | 2.7 | 11,049 | 10,748 | 752 | 63 | 9 | 28 | 10 | 7 | 19 | 63 | 29 | 79 | 0.78 | 135 | | T | TSPCSTG | R | | ; | Species, | Sort G
Projec | rade - Boar
et: DOM | | olun | nes (T | Type) | | | | I | Page
Date
Sime | 1
4/17/20
7:39:2 | | |-------------------|---------------|----|------|----------------|------------|------------------|------------------------|-----------|--------|--------|----------------|-------|--------|-------|-----------------|----------------------|------------------------|-------| | T04N
Tw
04N | - | ge | Sec | Tract
AREA4 | | Туре | | | | • | le Trees
26 | S | C
1 | uFt | T04
BdF
W | | W S29 T | T00PC | | | | | % | | | | | Percent N | let Bo | ard Fo | ot Volu | ıme | | | Av | erage l | Log | Logs | | | s so | Gr | Net | Bd. | Ft. per Ac | re | Total | Log Sc | ale Di | a. | Log | g Len | gth | | Ln | Bd | CF/ | Per | | Spp | T rt | ad | BdFt | Def% | Gross | Net | Net MBF | 4-5 6-11 | 12-16 | 5 17+ | 12-20 | 21-30 | 31-35 | 36-99 | Ft | Ft | Lf | /Acre | | A | DO | CU | | | | | | | | | | | | | 5 | | 0.00 | 1.5 | | A | DO | 1S | 33 | 1.5 | 656 | 646 | 5 | | 91 | 9 | | 5 | 19 | 76 | 38 | 259 | 1.78 | 2.5 | | Α | DO | 2S | 25 | 1.0 | 486 | 481 | 4 | 100 | | | | 3 | 36 | 60 | 36 | 148 | 1.13 | 3.3 | | A | DO | 3S | 16 | 1.3 | 300 | 296 | 2 | 100 | | | 5 | 4 | 25 | 66 | 34 | 85 | 0.83 | 3.5 | | A | DO | 4S | 26 | .7 | 503 | 499 | 4 | 100 | | | 35 | 20 | 14 | 31 | 25 | 38 | 0.53 | 13.1 | | A | Totals | | 100 | 1.2 | 1,945 | 1,923 | 15 | 66 | 31 | 3 | 10 | 8 | 23 | 59 | 28 | 81 | 0.86 | 23.9 | | Type T | Fotals | | | 1.2 | 1,945 | 1,923 | 15 | 66 | 31 | 3 | 10 | 8 | 23 | 59 | 28 | 81 | 0.86 | 23.9 | | Т | TSPCSTC | GR | | | Species | , Sort G
Projec | rade - Boa
et: DO | rd Fo | oot V | ⁷ oluı | mes (' | Гуре) | | | |] | Page
Date
Fime | 4/17/2
7:38: | 2013 | |-------------------|---------|-------------------|-------------|----------------|---------------------|--------------------|----------------------|----------|---------------|-------------------|--------------|-------------|----------------|----|-------|-----------------|----------------------|-----------------|--------| | T04N
Tw
04N | _ | S20 T
ge
BW | Sec | Tract
AREA5 | | Туре
ТАІ | | | Plot | | Samp | le Tree | es | 1 | CuFt | T04
Bdl
W | | 8W S20 | TTA | | | | | % | | | | | Per | cent l | Vet B | oard F | oot Vol | ume | | | A۱ | erage | Log | T | | Spp | s so | Gr
ad | Net
BdFt | Bd.
Def% | Ft. per Ad
Gross | cre
Net | Total
Net MBF | L
4-5 | og Sc
6-11 | | ia.
6 17+ | Lo
12-20 | g Ler
21-30 | - | 36-99 | Ln
Ft | Bd
Ft | CF/
Lf | L | | Н | | CU | | | | | | | | | | | | | | | | 0.00 | \top | | Н | DO | CU | | | | | | | | | | | | | | 7 | | 0.00 | | | Н | DO | 2S | 30 | .8 | 5,255 | 5,213 | 224 | | | 78 | 22 | | | 19 | 81 | 38 | 262 | 1.69 | | | Н | DO | 3S | 62 | 1.5
| 10,876 | 10,712 | 461 | 2 | 93 | 5 | | 1 | 5 | 34 | 60 | 35 | 94 | 0.78 | 1 | | Н | DO | 4S | 8 | | 1,348 | 1,348 | 58 | 17 | 83 | | | 61 | 31 | 8 | | 21 | 24 | 0.35 | | | H | Totals | | 91 | 1.2 | 17,479 | 17,273 | 743 | 3 | 64 | 27 | 7 | 5 | 6 | 27 | 62 | 29 | 84 | 0.80 | 2 | | D | DO | 2S | 80 | | 665 | 665 | 29 | | | 100 | | | | | 100 | 40 | 240 | 1.78 | | | D | DO | 3S | 20 | | 166 | 166 | 7 | | 100 | | | | | | 100 | 40 | 60 | 0.60 | | | D | Totals | | 4 | | 832 | 832 | 36 | | 20 | 80 | | | | | 100 | 40 | 150 | 1.19 | + | | A | DO | CU | | | | | | | | | | | | | | | | 0.00 | | | A | DO | 2S | 72 | | 621 | 621 | 27 | | 100 | | | | 100 | | | 30 | 130 | 1.13 | | | A | DO | 3S | 28 | | 239 | 239 | 10 | | 100 | | | 100 | | | | 20 | 50 | 0.65 | | | A | Totals | | 5 | | 859 | 859 | 37 | | 100 | | | 28 | 72 | | | 17 | 60 | 0.94 | | | S | DO | 3S | 100 | | 65 | 65 | 3 | | 100 | | | | | | 100 | 40 | 60 | 0.75 | | | S | Totals | | 0 | | 65 | 65 | 3 | | 100 | | | | | 7 | 100 | 40 | 60 | 0.75 | † | | Туре Т | otals | | | 1.1 | 19,235 | 19,029 | 818 | 2 | 64 | 28 | 6 | 6 | 8 | 25 | 61 | 29 | 84 | 0.82 | 2 | | Т | TSPCSTG | GR. | | | Species | , Sort G
Projec | Grade - Boar
et: DO | rd Fo
NUT | ot V | olur | nes (T | Гуре) | | | |] | Page
Date
Time | 1
4/17/2
7:39:4 | 013 | |-----------------|---------|----------|-------------|-------------|---------------------|--------------------|------------------------|--------------|------------|----------------|--------------|---------------|----------------|--------|-------|-----------------|----------------------|-----------------------|----------------------| | T04
Tv
04 | • | | Sec | Tract | | Typo
TAI | | | Plot
13 | | - | le Tree
59 | es | C
1 | uFt | T04
BdI
W | | SW S33 T | ГТАКЕ | | | | | % | | | | | Perc | ent N | let Bo | oard Fo | oot Vol | ume | | | Av | erage | Log | Logg | | Spp | S So | Gr
ad | Net
BdFt | Bd.
Def% | Ft. per Ad
Gross | cre
Net | Total
Net MBF | Lo
4-5 | | ale Di
12-1 | ia.
6 17+ | Lo
12-20 | g Ler
21-30 | ~ | 36-99 | Ln
Ft | Bd
Ft | CF/
Lf | Logs
Per
/Acre | | Н | DO | CU | | | | | | | | | | | | | | 5 | | 0.00 | 6. | | Н | DO | 2S | 40 | 1.6 | 8,772 | 8,632 | 86 | | | 75 | 25 | | | 7 | 93 | 39 | 285 | 1.78 | 30. | | Н | DO | 3S | 50 | 1.0 | 10,694 | 10,589 | 106 | | 96 | 4 | | 0 | 1 | 19 | 80 | 38 | 81 | 0.63 | 130. | | Н | DO | 4S | 10 | | 1,938 | 1,938 | 19 | | 100 | | | 38 | 55 | | 7 | 21 | 27 | 0.38 | 72. | | H | Totals | | 93 | 1.1 | 21,404 | 21,159 | 212 | | 57 | 32 | 10 | 4 | 5 | 13 | 79 | 32 | 88 | 0.75 | 239 | | A | DO | CU | | | | | | | | | | | | | | 4 | | 0.00 | 2. | | A | DO | 1S | 17 | | 293 | 293 | 3 | | | 100 | | | 100 | | | 30 | 150 | 1.30 | 2 | | A | DO | 2S | 47 | 1.8 | 805 | 791 | 8 | | 100 | | | | 70 | | 30 | 32 | 123 | 1.14 | 6 | | A | DO | 3S | 17 | 14.3 | 328 | 281 | 3 | | 39 | 61 | | | 61 | 39 | | 28 | 90 | 1.29 | 3 | | A | DO | 4S | 19 | | 309 | 309 | 3 | | 100 | | | 100 | | | | 17 | 26 | 0.41 | 12 | | A | Totals | | 7 | 3.5 | 1,736 | 1,675 | 17 | | 72 | 28 | | 18 | 61 | 7 | 14 | 22 | 64 | 0.90 | 26 | | Туре | Totals | | | 1.3 | 23,140 | 22,834 | 228 | | 58 | 32 | 9 | 5 | 9 | 12 | 74 | 31 | 86 | 0.76 | 265. | | TC | PSPCSTGR | | | | Sort G | rade - B | oar | d Foo | ot Vo | olum | es (P | roject |) | | | | | | | |-------------|------------------------------|---------------|--------------------|--------------------------|------------------------|--|---------------|-------|---------------|--------------|----------------|--------------|--------------|----------------|----------------|----------------------|----------------------|------------------------------|-----------------------------| | | 4N R08W S20
4N R08W S20 |) TyR/V | | 1.00 | | Project
Acres | : | DO | NUT | | | | | | | | Page
Date
Time | 4/17/20
10:38: | 013 | | <u> </u> | | % | | | | | | Doro | ont of | Not D | oord F | oot Volu | | | | | Avoros | o I o o | Lion | | | S So Gr | Net | Bd. F | t. per Acre | • | Total | | | | ile Dia | | l voiu | Log L | ength | | Ln | Averag
Bd | CF/ | Logs
Per | | Spp | T rt ad | BdFt | Def% | Gross | Net | Net MBF | | | | 12-16 | | 12-20 | | | 36-99 | Ft | Ft | Lf | /Acre | | A | DOCU | | | | | | | | | | ****** | | | | | 22 | | 0.00 | 4.8 | | Α | DO1S | 20 | .5 | 897 | 893 | | 4 | | 18 | 82 | | 9 | 36 | 36 | 20 | 29 | 164 | 1.48 | 5.4 | | A | DO2S | 19 | 1.1 | 804 | 796 | | 3 | | 100 | | | 3 | 5 | 46 | 46 | 35 | 127 | 0.99 | 6.3 | | A
A | DO3S
DO4S | 26
35 | .3
2.0 | 1,163
1,508 | 1,159
1,478 | | 5
6 | 4 | 100
96 | | | 17
17 | 23
24 | 17 | 60
42 | 30 28 | 72
38 | 0.80
0.51 | 16.1
38.7 | | | | | | | | | | | | | | - | | | | | | | | | A 7 | Fotals | 10 | 1.1 | 4,373 | 4,326 | | 17 | 1 | 82 | 17 | | 13 | 23 | 22 | 43 | 28 | 61 | 0.68 | 71.3 | | S
S
S | DOCU
DO2S
DO3S
DO4S | 26
71
3 | 4.7
12.2
2.8 | 4,870
14,250
366 | 4,639
12,506
355 | | 19
50
1 | | 2
37 | 2
5
43 | 98
93
21 | 1
34 | 3
34 | 3
21 | 97
74
32 | 12
39
34
22 | 863
744
71 | 0.00
5.02
5.38
1.07 | 3.2
5.4
16.8
5.0 | | s t | otals | 42 | 10.2 | 19,486 | 17,500 | | 70 | | 2 | 5 | 93 | 2 | 3 | 16 | 79 | 31 | 577 | 4.57 | 30.3 | | Н
Н
Н | DOCU
DO2S
DO3S
DO4S | 74
20
6 | 3.1
2.9
3.2 | 14,396
3,970
1,030 | 13,949
3,857
997 | | 56
15
4 | | 3
88
95 | 28
5
5 | 69
7 | 2
8
50 | 2
6
40 | 9
22
1 | 88
64
8 | 12
38
35
21 | 471
91
28 | 0.00
2.71
0.80
0.44 | 8.4
29.6
42.4
35.8 | | н | Γotals | 45 | 3.1 | 19,397 | 18,803 | | 75 | | 25 | 22 | 53 | 6 | 5 | 11 | 79 | 30 | 162 | 1.31 | 116.2 | | C
C
C | DOCU
DO2S
DO3S | 83
17
0 | 5.6
4.7 | 155
29
184 | 146
29
175 | | 1
0 | | | 100
17 | 100 | | | 39
36
39 | 61
64
61 | 15
37
37
21 | 918
183
140 | 0.00
6.84
2.07
2.03 | .9
.2
.2 | | _ | | 50 | 2.7 | 000 | 010 | | | | | 7.0 | 25 | | | | 100 | | 201 | | | | D
D | DO2S
DO3S | 79
16 | 2.7
2.2 | 938
189 | 913
185 | | 4
1 | | 100 | 73 | 27 | | 10 | 40 | 100
50 | 40
35 | 386
104 | 2.27
0.93 | 2.4
1.8 | | D | DO3S
DO4S | 5 | ۷.۷ | 47 | 47 | | 0 | | 100 | | | 18 | 10 | -70 | 82 | 27 | 55 | 0.76 | .8 | | D T | Totals | 3 | 2.5 | 1,174 | 1,145 | | 5 | | 20 | 58 | 22 | 1 | 2 | 6 | 91 | 36 | 230 | 1.61 | 5.0 | | M | DOCU | | | | | | | | | | | | | | | 15 | | 0.00 | .5 | | | | | | | | | | | | | | | | | | 15 | | 0.00 | | | IVI | Fotals | | | | | | | | | | | | ********** | | | | | | .5 | | Total | ls | | 6.0 | 44,613 | 41,949 | | 168 | 0 | 21 | 15 | 63 | 5 | 6 | 14 | 76 | 30 | 187 | 1.59 | 224.6 | $\overline{}$ = | TC TSTATS | | | | STA
PROJEC | | TICS
DONUT | | | PAGE
DATE 5 | 1
5/28/2013 | |---|--
--|-------------------|---|--|--|----------------|--------------------------------|-------------------------------------|-----------------------| | TWP RGE | SECT | TRACT | | TYPE | | CRES | PLOTS | TREES | CuFt | BdFt | | 04N 08W | | 1&3 | | 00CC | | 63.00 | 51 | 323 | 1 | W | | | | | | TREES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | • | | | | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOTAL | 51 | 323 | | 6.3 | | | | | | | | CRUISE DBH COUNT | 18
Г | 114 | | 6.3 | | 9,284 | | 1.2 | | | | REFOREST
COUNT
BLANKS
100 % | 33 | 196 | | 5.9 | | | | | | | | | | | STA | ND SUMM | ARY | | | | | | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | WHEMLOCK | 4 | 7 53.1 | 20.1 | 64 | | 116.9 | 19,839 | 19,163 | 4,653 | 4,653 | | R ALDER | 4 | | 14.2 | 45 | | 80.8 | 8,307 | | 2,459 | 2,459 | | S SPRUCE | | 9 9.9 | 18.7 | 36 | | 18.8 | 2,382 | | 581 | 581 | | DOUG FIR
SPRUCELV | | 4 6.4
3 .7 | 22.7
50.9 | 85
104 | | 18.0 | 2,880 | , | 741 | 741 | | SNAG | | 3 .7
4 1.2 | 28.6 | 38 | | 9.4
5.5 | 1,707 | 1,596 | 356 | 356 | | HEMLEAV | | 2 .3 | 36.6 | 100 | | 2.4 | 529 | 529 | 102 | 102 | | BL MAPLE | | 2 1.9 | 12.2 | 14 | | 1.6 | 32) | 32) | 102 | 102 | | TOTAL | 11 | 4 147.4 | 17.8 | 53 | | 253.3 | 35,643 | 34,509 | 8,893 | 8,893 | | | CE LIMITS | OF THE SAMPI
JT OF 100 THE | | WILL BE V | WITHIN | N THE SAMPL | E ERROR | | | | | CL: 68.1 % | CE LIMITS TIMES OF | OF THE SAMPI
JT OF 100 THE
FF | VOLUME | SAMPLE | TREE | S - BF | | # OF TREES | | INF. POP. | | CL: 68.1 %
SD: 1.0 | CE LIMITS TIMES OF COR | OF THE SAMPI
JT OF 100 THE
EFF
L% S.E.% | VOLUME | SAMPLE
DW A | TREE
AVG | S - BF
HIGH | | | S REQ.
10 | INF. POP. | | CL: 68.1 % | CE LIMITS TIMES OF COR | OF THE SAMPI
JT OF 100 THE
EFF
2.% S.E.%
3 12.7 | VOLUME | SAMPLE | TREE | S - BF | | # OF TREES | | | | CL: 68.1 % SD: 1.0 WHEMLOCK | CE LIMITS TIMES OF COR VAI | OF THE SAMPLUT OF 100 THE OFF S.W. S.E.% 3 12.7 8 10.6 | VOLUME | SAMPLE
DW A
627
130 | TREE
AVG
718 | S - BF
HIGH
810 | | # OF TREES | | | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR | CE LIMITS TIMES OF COR VAI 87 69 94 17 | OF THE SAMPLUT OF 100 THE SEFF S.% S.E.% 12.7 8 10.6 7 33.4 6 10.1 | VOLUME
LC | SAMPLE
DW A
627
130
706 1
398 | TREE
AVG
718
145
1,060
443 | S - BF
HIGH
810
161
1,414
487 | | # OF TREES | | | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG | CE LIMITS TIMES OF CONTROL 87 69 94 17 51 | OF THE SAMPLUT OF 100 THE SEFF S.% S.E.% 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 | VOLUME
LC | SAMPLE
DW 627
130
706 1
398
2,093 3 | TREE
AVG
718
145
1,060
443
3,267 | S - BF
HIGH
810
161
1,414
487
4,440 | | # OF TREES | | | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE | CE LIMITS TIMES OF VAI 87 69 94 17 51 | OF THE SAMPLUT OF 100 THE SET IN 10.6 THE SET IN 10.6 THE SET IN 10.1 | VOLUME
LC | SAMPLE
DW 627
130
706 1
398
2,093 3 | TREE
AVG
718
145
1,060
443 | S - BF
HIGH
810
161
1,414
487 | | # OF TREES
5 | | | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV | CE LIMITS TIMES OF CONTROL 87 69 94 17 51 | OF THE SAMPLUT OF 100 THE SET IN 10.6 THE SET IN 10.6 THE SET IN 10.1 | VOLUME
LC | SAMPLE DW 627 130 706 1 398 2,093 3 | TREE
AVG
718
145
1,060
443
3,267 | S - BF
HIGH
810
161
1,414
487
4,440 | | # OF TREES | | | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE | CE LIMITS TIMES OF CORRESPONDENCE CO | OF THE SAMPI
JT OF 100 THE
EFF
8.% S.E.%
3 12.7
8 10.6
7 33.4
6 10.1
9 35.9
1 29.1
0 13.0 | VOLUME
LC | SAMPLE DW 627 130 706 1 398 2,093 3 | TREE
AVG
718
145
1,060
443
3,267
1,705 | S - BF
HIGH
810
161
1,414
487
4,440
2,202 | 7 | # OF TREES
5 | 10 | 15 | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE | OF THE SAMPI
JT OF 100 THE
SFF
3 12.7
8 10.6
7 33.4
6 10.1
9 35.9
1 29.1
0 13.0
FF
L% S.E.% | VOLUME
LC
2 | SAMPLE DW 4 627 130 706 1 398 2,093 3 1,208 1 492 TREES/A DW 4 | TREE AVG 718 145 1,060 443 3,267 1,705 566 CRE AVG | S - BF
HIGH
810
161
1,414
487
4,440
2,202
640
HIGH | 7 | # OF TREES
5 | 10 | 15
86 | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAI 82 | OF THE SAMPI
JT OF 100 THE
SFF
3 12.7
8 10.6
7 33.4
6 10.1
9 35.9
1 29.1
0 13.0
FF
% S.E.%
7 11.6 | VOLUME
LC
2 | SAMPLE DW 6 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 4 47 |
TREE AVG 718 145 1,060 443 3,267 1,705 566 CRE AVG 53 | S - BF
HIGH
810
161
1,414
487
4,440
2,202
640
HIGH
59 | 7 | # OF TREES 5 772 # OF PLOTS | 10
193
3 REQ. | 86
INF. POP. | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAI 82 148 | OF THE SAMPI
JT OF 100 THE
S.W. S.E.W.
3 12.7
8 10.6
7 33.4
6 10.1
9 35.9
1 29.1
0 13.0
FF
S.W. S.E.W.
7 11.6
6 20.8 | VOLUME
LC
2 | SAMPLE DW 6 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 4 47 58 | TREE AVG 718 145 1,060 443 3,267 1,705 566 CRE AVG 53 74 | S - BF
HIGH
810
161
1,414
487
4,440
2,202
640
HIGH
59
89 | 7 | # OF TREES 5 772 # OF PLOTS | 10
193
3 REQ. | 86
INF. POP. | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAI 82 148 228 | OF THE SAMPI
JT OF 100 THE
S.W. S.E.W.
3 12.7
8 10.6
7 33.4
6 10.1
9 35.9
1 29.1
0 13.0
FF
S.W. S.E.W.
7 11.6
6 20.8
6 32.0 | VOLUME
LC
2 | SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 | TREE AVG 718 145 1,060 443 3,267 4,705 566 CRE AVG 53 74 10 | S - BF
HIGH
810
161
1,414
487
4,440
2,202
640
HIGH
59
89
13 | 7 | # OF TREES 5 772 # OF PLOTS | 10
193
3 REQ. | 86
INF. POP. | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COF VAI 82 148 228 389 | OF THE SAMPI
JT OF 100 THE
S.W. S.E.W.
3 12.7
8 10.6
7 33.4
6 10.1
9 35.9
1 29.1
0 13.0
FF
S.W. S.E.W.
7 11.6
6 20.8
6 32.0
9 54.6 | VOLUME
LC
2 | SAMPLE DW 6 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 4 47 58 | TREE AVG 718 145 1,060 443 3,267 1,705 566 CRE AVG 53 74 | ES - BF
HIGH
810
161
1,414
487
4,440
2,202
640
HIGH
59
89
13
10 | 7 | # OF TREES 5 772 # OF PLOTS | 10
193
3 REQ. | 86
INF. POP. | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAI 82 148 228 | OF THE SAMPI
JT OF 100 THE S. S.E. S.E. S. 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S. S.E. S.E. S.E. S.E. S.E. S.E. S.E. | VOLUME
LC
2 | SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3 | TREE AVG 718 145 1,060 443 3,267 4,705 CRE AVG 53 74 10 6 | S - BF
HIGH
810
161
1,414
487
4,440
2,202
640
HIGH
59
89
13 | 7 | # OF TREES 5 772 # OF PLOTS | 10
193
3 REQ. | 86
INF. POP. | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COF VAI 82 148 228 389 271 | OF THE SAMPI
JT OF 100 THE S. S.E. S.E. S. 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S. S.E. S. S.E. S. S. S.E. S.E. S. S.E. S.E. S. S.E. S. | VOLUME
LC
2 | SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3 | TREE AVG 718 145 1,060 443 3,267 4,705 CRE AVG 53 74 10 6 1 | ES - BF
HIGH
810
161
1,414
487
4,440
2,202
640
HIGH
59
89
13
10
1 | 7 | # OF TREES 5 772 # OF PLOTS | 10
193
3 REQ. | 86
INF. POP. | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE | CE LIMITS TIMES OF CORRESPONDENCE CO | OF THE SAMPI
JT OF 100 THE S. S.E. S. 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S. S.E. S. 7 11.6 6 20.8 6 32.0 9 54.6 3 38.0 0 36.5 7 57.0 1 99.9 | VOLUME LC LC | SAMPLE DW 4 627 130 706 1398 2,093 3 4,208 1 492 TREES/A DW 4 47 58 7 3 0 1 0 0 | TREE AVG 718 145 1,060 443 3,267 1,705 CRE AVG 53 74 10 6 1 1 0 2 | ES - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 | 7 | # OF TREES 5 772 # OF PLOTS 5 | 10
193
3 REQ. | 86
INF. POP. | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR S SPRUCE DOUG FIR S SPRUCELV SNAG HEMLEAV | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAI 82 148 228 389, 271, 261, 407. | OF THE SAMPI
JT OF 100 THE S. S.E. S. 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S. S.E. S. 7 11.6 6 20.8 6 32.0 9 54.6 3 38.0 0 36.5 7 57.0 1 99.9 | VOLUME LC LC | SAMPLE DW 4 627 130 706 1398 2,093 3 4,208 1 492 TREES/A DW 4 47 58 7 3 0 1 0 0 | TREE AVG 718 145 1,060 443 3,267 1,705 CRE AVG 53 74 10 6 1 1 0 | ES - BF
HIGH
810
161
1,414
487
4,440
2,202
640
HIGH
59
89
13
10
1
2 | 7 | # OF TREES 5 772 # OF PLOTS | 10
193
3 REQ. | 86
INF. POP. | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAI 82 148 228 389 271. 261. 407. 714. 72. | OF THE SAMPLUT OF 100 THE SET IN | VOLUME LC LC | SAMPLE DW 4 627 130 706 1398 2,093 3 4,208 1 492 TREES/A DW 4 47 58 7 3 0 1 0 0 | TREE AVG 718 145 1,060 443 3,267 4,705 566 CRE AVG 53 74 10 6 1 1 0 2 147 | HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 | # | # OF TREES 5 772 # OF PLOTS 5 | 193
3 REO.
10 | 86
INF. POP.
15 | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 0.0 | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COF VAI 82 148 228 389 271 261 407 714 72. COF | OF THE SAMPI
JT OF 100 THE
S.W. S.E.W.
3 12.7
8 10.6
7 33.4
6 10.1
9 35.9
1 29.1
0 13.0
FF
S.E.W.
7 11.6
6 20.8
6 32.0
9 54.6
3 38.0
0 36.5
7 57.0
1 99.9
7 10.2
FF | VOLUME LC LC | SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3 0 1 0 0 132 BASAL A DW A | TREE AVG 718 145 1,060 443 3,267 4,705 566 CRE AVG 53 74 10 6 1 1 0 2 147 REA/A | ES - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 CCRE HIGH | # | # OF TREES 5 772 # OF PLOTS 5 | 193
3 REO.
10 | 86
INF. POP.
15 | | CL: 68.1 % SD: 1.0 WHEWLOCK R ALJER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALJER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK S SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COF VAI 82 148 228 389 271. 261. 407. 714. 72. COF VAF | OF THE SAMPI
JT OF 100 THE
2.% S.E.%
3 12.7
8 10.6
7 33.4
6 10.1
9 35.9
1 29.1
0 13.0
FF
2.% S.E.%
7 11.6
6 20.8
6 32.0
9 54.6
3 38.0
0 36.5
7 57.0
1 99.9
7 10.2
FF | LC LC | SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3 0 1 0 0 132 BASAL A DW A | TREE AVG 718 145 1,060 443 3,267 4,705 CRE AVG 53 74 10 6 1 1 0 2 147 REA/A AVG | ES - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 ACRE HIGH 129 | # | # OF TREES 5 772 # OF PLOTS 5 | 193
3 REO.
10
53
5 REQ. | 86
INF. POP.
15 | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAE 82 148 228 389 271. 261. 407. 714. 72. COE VAE 75. 128. | OF THE SAMPI
JT OF 100 THE
S.W. S.E.W.
3 12.7
8 10.6
7 33.4
6 10.1
9 35.9
1 29.1
0 13.0
FF
S.E.W.
7 11.6
6 20.8
6 32.0
9 54.6
3 38.0
0 36.5
7 57.0
1 99.9
7 10.2
FF | LC LC | SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3 0 1 0 0 132 BASAL A DW 66 | TREE AVG 718 145 1,060 443 3,267 4,705 CRE AVG 53 74 10 6 1 1 0 2 147 REA/A AVG | HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 CCRE HIGH 129 95 | # | # OF TREES 5 772 # OF PLOTS 5 | 193
3 REO.
10
53
5 REQ. | 86
INF. POP.
15 | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE S SPRUCE | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COF VAR 82 148 228 389 271. 261. 407. 714. 72. COF VAF 75. 128. 171. | OF THE SAMPI
JT OF 100 THE
S.W. S.E.%
3 12.7
8 10.6
7 33.4
6 10.1
9 35.9
1 29.1
0 13.0
FF
S.E.%
7 11.6
6 20.8
6 32.0
9 54.6
3 38.0
0 36.5
7 57.0
1 99.9
7 10.2
FF
S.E.%
9 10.6 | LC LC | SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3 0 1 0 0 132 BASAL A DW 66 14 | TREE AVG 718 145 1,060 443 3,267 4,705 CRE AVG 53 74 10 6 1 1 0 2 147 REA/A AVG 117 81 19 | HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 CCRE HIGH 129 95 23 | # | # OF TREES 5 772 # OF PLOTS 5 | 193
3 REO.
10
53
5 REQ. | 86
INF. POP.
15 | | CL: 68.1 % SD: 1.0 WHEWLOCK R ALJER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALJER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD:
1.0 WHEMLOCK R ALJER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALJER S SPRUCE DOUG FIR | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAB 82 148 228. 389. 271. 261. 407. 714. 72. COE VAF 75. 128. 171. 389. | OF THE SAMPI
JT OF 100 THE
S.W. S.E.%
3 12.7
8 10.6
7 33.4
6 10.1
9 35.9
1 29.1
0 13.0
FF
S.E.%
7 11.6
6 20.8
6 32.0
9 54.6
3 38.0
0 36.5
7 57.0
1 99.9
7 10.2
FF
S.E.%
9 10.6
1 99.9
1 0.9
1 0.9 | LC LC | SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3 0 1 0 0 132 BASAL A DW 66 14 8 | TREE AVG 718 145 1,060 443 3,267 .,705 .,705 .,705 .,705 .,706 .,707 .,708 .,708 .,708 .,709 .,7 | ES - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 CCRE HIGH 129 95 23 28 | # | # OF TREES 5 772 # OF PLOTS 5 | 193
3 REO.
10
53
5 REQ. | 86
INF. POP.
15 | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SPRUCELV | CE LIMITS TIMES OF CORRESPONDENCE CO | OF THE SAMPI
JT OF 100 THE
S.W. S.E.%
3 12.7
8 10.6
7 33.4
6 10.1
9 35.9
1 29.1
0 13.0
FF
S.W. S.E.%
7 11.6
6 20.8
6 32.0
9 54.6
3 38.0
0 36.5
7 57.0
1 99.9
7 10.2
FF
S.E.% S.E.%
9 54.6
3 38.0
0 36.5
7 57.0
1 99.9
7 10.2 | LC LC | SAMPLE DW A 627 130 706 1398 2,093 3 4,208 1 492 TREES/A DW A 47 58 7 3 0 1 0 0 132 BASAL A DW A 104 666 14 8 6 | TREE AVG 718 145 1,060 443 3,267 .,705 .,705 .,705 .,705 .,705 .,705 .,707 .,707 .,708 .,708 .,709 .,7 | S - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 CCRE HIGH 129 95 23 28 13 | # | # OF TREES 5 772 # OF PLOTS 5 | 193
3 REO.
10
53
5 REQ. | 86
INF. POP.
15 | | CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR SPRUCELV SNAG HEMLEAV BL MAPLE TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK R ALDER S SPRUCE DOUG FIR | CE LIMITS TIMES OF VAI 87 69 94 17 51 31 139. COE VAB 82 148 228. 389. 271. 261. 407. 714. 72. COE VAF 75. 128. 171. 389. | OF THE SAMPI
JT OF 100 THE S. S.E. S. 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S. S.E. S. 3 12.7 8 10.6 7 33.4 6 10.1 9 35.9 1 29.1 0 13.0 FF S. S.E. S. 7 11.6 6 20.8 6 32.0 9 54.6 3 38.0 0 36.5 7 57.0 1 99.9 7 10.2 FF S. S.E. S. 9 10.6 5 18.0 9 24.0 9 54.6 2 36.8 2 35.4 | LC LC | SAMPLE DW 627 130 706 1 398 2,093 3 4,208 1 492 TREES/A DW 47 58 7 3 0 1 0 0 132 BASAL A DW 66 14 8 | TREE AVG 718 145 1,060 443 3,267 .,705 .,705 .,705 .,705 .,706 .,707 .,708 .,708 .,708 .,709 .,7 | ES - BF HIGH 810 161 1,414 487 4,440 2,202 640 HIGH 59 89 13 10 1 2 1 4 162 CCRE HIGH 129 95 23 28 | # | # OF TREES 5 772 # OF PLOTS 5 | 193
3 REO.
10
53
5 REQ. | 86
INF. POP.
15 | | TC TSTATS | | | | STATIS
JECT | TICS
DONUT | | | PAGE
DATE | 2
5/28/2013 | |------------|----------|-------|--------|----------------|---------------|-------|------------|--------------|----------------| | TWP RGE | SECT TRA | ACT | TYP] | E A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N 08W | 20 1&3 | 3 | 00C | C | 63.00 | 51 | 323 | 1 | W | | CL: 68.1% | COEFF | | BASA | AL AREA/ | ACRE | | # OF PLC | TS REQ. | INF. POP. | | SD: 1.0 | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | TOTAL | 37.2 | 5.2 | 240 | 253 | 267 | | 55 | 14 | 6 | | CL: 68.1 % | COEFF | | NET | BF/ACRE | | î | # OF PLOTS | REQ. | INF. POP. | | SD: 1.0 | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | WHEMLOCK | 76.7 | 10.7 | 17,106 | 19,163 | 21,219 | | | | | | R ALDER | 130.2 | 18.2 | 6,739 | 8,240 | 9,741 | | | | | | S SPRUCE | 177.3 | 24.8 | 1,627 | 2,164 | 2,701 | | | | | | DOUG FIR | 389.9 | 54.6 | 1,280 | 2,817 | 4,354 | | | | | | SPRUCELV | 263.3 | 36.8 | 1,008 | 1,596 | 2,184 | | | | | | SNAG | | | | | | | | | | | HEMLEAV | 404.5 | 56.6 | 229 | 529 | 828 | | | | | | BL MAPLE | | | | | | | | | | | TOTAL | 35.8 | 5.0 | 32,779 | 34,509 | 36,239 | | 51 | 13 | 6 | | TC TSTATS | | | | S'I
PROJE | CT | FICS
DONUT | | | PAGE
DATE | 1
5/28/2013 |
--|---|--|---------------------------|---|--|---|------------------|-----------------------------|---------------------------------|--------------------------| | TWP RGE | SECT TH | RACT | | TYPE | | CRES | PLOTS | TREES | CuFt | BdFt | | 04N 08W | | REA2 | | 00PC | 743 | 70.00 | 41 | 317 | 1 | W | | | | | | | | ECTIMATED. | | | | | | | | | | TREES | | ESTIMATED TOTAL | | PERCENT
SAMPLE | | | | | PLOTS | TREES | | PER PLOT | • | TREES | | REES | | | | TOTAL | 41 | 317 | | 7.7 | | | | | | | | CRUISE | 17 | 111 | | 6.5 | | 9,946 | | 1.1 | | | | DBH COUNT | | | | | | • | | | | | | REFOREST | | | | | | | | | | | | COUNT | 24 | 189 | | 7.9 | | | | | | | | BLANKS | | | | | | | | | | | | 100 % | | | | | | | | | | | | | | | | ND SUM | | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET
DE/AC | GROSS | | | CDDIICEII | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | SPRUCELV
HEMLEAV | 43
22 | 9.6
18.8 | 45.9
25.1 | 99
70 | | 110.2
64.7 | 22,314
13,423 | 19,940
12,982 | 4,838
2,909 | | | WHEMLOCK | | 18.8
50.9 | 13.6 | 70
46 | | 51.7 | 5,818 | 5,678 | 2,909
1,569 | 2,909
1,569 | | R ALDER | 12 | 45.4 | 13.2 | 35 | | 42.9 | 2,895 | 2,856 | 953 | 953 | | S SPRUCE | 3 | 2.9 | 27.4 | 90 | | 11.7 | 2,336 | 2,214 | 561 | 561 | | SNAG | 6 | 1.1 | 35.4 | 63 | | 7.8 | | | | | | ALDRLEAV | 1 | 11.1 | 9.0 | 17 | | 4.9 | 111 | 111 | 45 | 45 | | DOUGLEAV | 2 | .8
1.5 | 26.1 | 96 | | 2.9 | 605 | 587 | 139 | 139 | | | 2 | 1 1 | 19.2 | 24 | | 2.9 | 245 | 234 | 69 | 69 | | | 3 111 CE LIMITS OF TIMES OUT COEFF | <i>142.1</i>
ГНЕ SAMPL | 19.7
Æ | | WITHIN | | | 44,602
OF TREES | 11,082
REQ. | | | CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 | 111 CE LIMITS OF TIMES OUT COEFF VAR.% | 142.1 THE SAMPL DF 100 THE S.E.% | 19.7
LE
VOLUME | WILL BE
SAMPL | E TREE
AVG | I THE SAMPI
S - BF
HIGH | E ERROR | | | INF. POP | | CL: 68.1 % SD: 1.0 SPRUCELV | COEFF VAR.% 53.4 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 | 19.7
E
VOLUME
LC | WILL BE SAMPL DW 2,567 | E TREE
AVG
2,795 | S - BF HIGH 3,022 | E ERROR | OF TREES | REQ. | 11,082
INF. POP | | TOTAL CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV | COEFF VAR.% 53.4 59.5 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 | 19.7
E
VOLUME
LC | SAMPL
DW
2,567
1,110 | E TREE
AVG
2,795
1,275 | N THE SAMPI
S - BF
HIGH
3,022
1,441 | E ERROR | OF TREES | REQ. | INF. POP | | CL: 68.1 % SD: 1.0 SPRUCELV | COEFF VAR.% 53.4 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 | 19.7
E
VOLUME
LC | WILL BE SAMPL DW 2,567 | E TREE
AVG
2,795 | S - BF HIGH 3,022 | E ERROR | OF TREES | REQ. | INF. POP | | CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE | COEFF VAR.% 53.4 59.5 117.6 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 | 19.7
E
VOLUME
LC | WILL BE SAMPL DW 2,567 1,110 171 | E TREE
AVG
2,795
1,275
237 | N THE SAMPI S - BF HIGH 3,022 1,441 302 | E ERROR | OF TREES | REQ. | INF. POP | | CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG | 111 CE LIMITS OF TIMES OUT COEFF VAR.% 53.4 59.5 117.6 65.1 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 | 19.7
E
VOLUME
LC | SAMPL OW 2,567 1,110 171 59 | E TREE
AVG
2,795
1,275
237
73 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 | E ERROR | OF TREES | REQ. | INF. POP | | CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV | COEFF
VAR.%
53.4
59.5
117.6
65.1
8.4 | 142.1
THE SAMPL
DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 | 19.7
E
VOLUME
LC | WILL BE
SAMPL
DW
2,567
1,110
171
59
728 | E TREE
AVG
2,795
1,275
237
73
773 | S - BF
HIGH
3,022
1,441
302
88
818 | E ERROR | OF TREES | REQ. | INF. POP | | CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV | 111 CE LIMITS OF TIMES OUT COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 | 19.7
E
VOLUME
LC | WILL BE
SAMPL
DW
2,567
1,110
171
59
728 | E TREE
AVG
2,795
1,275
237
73
773 | S - BF
HIGH
3,022
1,441
302
88
818 | E ERROR | OF TREES | REQ. | INF. POP | | CONFIDENCE 68.1 % CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG | COEFF
VAR.%
53.4
59.5
117.6
65.1
8.4 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 | J9.7 LO | WILL BE SAMPL DW 2,567 1,110 171 59 728 | E TREE
AVG
2,795
1,275
237
73
773 | S - BF
HIGH
3,022
1,441
302
88
818 | E ERROR | OF TREES
5 | REQ.
10 | INF. POP | | CCI: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 | J9.7 LO | WILL BE
SAMPL
DW
2,567
1,110
171
59
728
225
289
,298 | E TREE
AVG
2,795
1,275
237
73
773
980
727
1,442 | S - BF
HIGH
3,022
1,441
302
88
818 | E ERROR | OF TREES 5 | REQ.
10 | INF. POP | | CL: 68.1 % CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % | 111 CE LIMITS OF TIMES OUT (COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 | J9.7 LO LO | WILL BE SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE | S - BF
HIGH
3,022
1,441
302
88
818
1,735
1,165
1,587 | E ERROR | OF TREES 5 447 OF PLOTS | REQ.
10 | INF. POP | | CL: 68.1 % CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 | J9.7 LO LO | WILL BE
SAMPL
DW
2,567
1,110
171
59
728
225
289
,298 | E TREE
AVG
2,795
1,275
237
73
773
980
727
1,442 | S - BF
HIGH
3,022
1,441
302
88
818 | E ERROR | OF TREES 5 | REQ.
10 | INF. POP | | CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 | J9.7 LO LO | WILL BE SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 | E ERROR | OF TREES 5 447 OF PLOTS | REQ.
10 | INF. POP | | CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3
10.0 S.E.% 12.4 18.1 18.9 | J9.7 LO LO | WILL BE SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 | E ERROR | OF TREES 5 447 OF PLOTS | REQ.
10 | INF. POP | | CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 | J9.7 LO LO | SAMPL
DW
2,567
1,110
171
59
728
225
289
,298
TREES/DW
8
15
41
36 | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 | E ERROR | OF TREES 5 447 OF PLOTS | REQ.
10 | INF. POP | | TOTAL CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 | J9.7 LO LO | SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES/DW 8 15 41 36 2 | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 | E ERROR | OF TREES 5 447 OF PLOTS | REQ.
10 | INF. POP | | TOTAL CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 | J9.7 LO LO | SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 | E ERROR | OF TREES 5 447 OF PLOTS | REQ.
10 | INF. POP | | TOTAL CONFIDENCE 68.1 CL: 68.1 % SD: 1.0 SPRUCELV HEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 | J9.7 LO LO | SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES/DW 8 15 41 36 2 | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 | E ERROR | OF TREES 5 447 OF PLOTS | REQ.
10 | INF. POP | | TOTHEM CCI: 68.1 % SD: 1.0 SPRUCELV HEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTHEM SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV CEDLEAV CEDLEAV | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6 | J9.7 LO LO | SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0 0 | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3 | E ERROR | OF TREES 5 447 OF PLOTS 5 | REQ.
10 | INF. POP | | TOTAL CU: 68.1 % SD: 1.0 SPRUCELV HEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV CEDLEAV | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 58.4 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 | J9.7 LO LO | SAMPL
DW
2,567
1,110
171
59
728
225
289
,298
TREES
DW
8
15
41
36
2
1
5
0 | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 | E ERROR | OF TREES 5 447 OF PLOTS | REQ.
10 | INF. POP 1 INF. POP 1 | | TOTHE STATE OF THE METER ALDER SPRUCE SNAG ALDER SPRUCE SVENT STATE STAT | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6 | J9.7 LO LO | SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0 0 | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 1 142 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3 155 | E ERROR | OF TREES 5 447 OF PLOTS 5 | REQ.
10
112
REQ.
10 | INF. POP 1 INF. POP | | TOTAL CCI: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CLI: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV CEDLEAV TOTAL CLI: 68.1 % SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CCI: 68.1 % SPRUCE SNAG ALDRLEAV DOUGLEAV CEDLEAV TOTAL CCI: 68.1 % SD: 1.0 | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 58.4 COEFF VAR.% | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6 9.1 S.E.% | 19.7 JE VOLUME | SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES/DW 8 15 41 36 2 1 5 0 0 129 BASAL | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 1 142 AREA/A AVG | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3 155 CRE HIGH | E ERROR | OF TREES 5 447 OF PLOTS 5 | REQ.
10
112
REQ.
10 | INF. POP | | $TOT \rightarrow L$ $CONFIDENCY $ | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 58.4 COEFF VAR.% 76.4 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6 9.1 S.E.% 11.9 | 19.7 JE VOLUME | SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0 0 129 BASAL DW 97 | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 1 142 AREA/A AVG 110 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3 155 CRE HIGH 123 | E ERROR | OF TREES 5 447 OF PLOTS 5 | REQ. 10 112 REQ. 10 | INF. POP | | TOT+L $CONFIDENCY (68.1)$ $CL: 68.1 % (68.1)$ $SPRUCEUV$ $HEMLOCK (68.1)$ $SSPRUCE (68.1)$ $CL: 68.1 % (68.1)$ $SPRUCEUV$ $HEMLEAV (68.1)$ $SPRUCEUV$ $HEMLEAV (68.1)$ $SPRUCEUV$ $HEMLEAV (68.1)$ $SPRUCEUV$ $SSPRUCE (68.1)$ $SPRUCE (68.1)$ $CL: 68.1 % (68.1)$ $SPUCE (68.1)$ $CLI | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 58.4 COEFF VAR.% 76.4 91.1 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6 9.1 S.E.% 11.9 14.2 | 19.7 JE VOLUME | SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0 0 129 BASAL DW 97 56 | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 1 142 AREA/A AVG 110 65 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3 155 CRE HIGH 123 74 | E ERROR | OF TREES 5 447 OF PLOTS 5 | REQ. 10 112 REQ. 10 | INF. POP | | TOT+L $CONFIDENCY (68.1)$ $CL: 68.1 % (68.1)$ $SPRUCEUV$ $HEMLEAV$ $WHEMLOCK$ $RALDER$ $SSPUCE$ $SNAG$ $ALDER$ $SD: 1.0$ $SPRUCEUV$ $HEMLEAV$ $WHEMLOCK$ $RALDER$ $SSPRUCE$ $SNAG$ $ALDER$ $SPRUCE$ $SNAG$ $ALDER$ $SPRUCE$ $SPRUCE$ $SPRUCE$ $SPRUCE$ $SPRUCE$ $SNAG$ $SPRUCE$ | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 58.4 COEFF VAR.% 76.4 91.1 112.4 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6 9.1 S.E.% 11.9 14.2 17.5 | 19.7 JE VOLUME | SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0 0 129 BASAL DW 97 56 43 | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 1 142 AREA/A AVG 110 65 52 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3 155 CCRE HIGH 123 74 61 | E ERROR | OF TREES 5 447 OF PLOTS 5 | REQ. 10 112 REQ. 10 | INF. POP | | TOT+L $CONFIDENCY (68.1)$ $CL: 68.1 % (68.1)$ $SPRUCEUV$ $HEMLOCK (68.1)$ $SSPRUCE (68.1)$ $CL: 68.1 % (68.1)$ $SPRUCEUV$ $HEMLEAV (68.1)$ $SPRUCEUV$ $HEMLEAV (68.1)$ $SPRUCEUV$ $HEMLEAV (68.1)$ $SPRUCEUV$ $SSPRUCE (68.1)$ $SPRUCE (68.1)$ $CL: 68.1 % (68.1)$ $SPUCE (68.1)$ $CLI | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 58.4 COEFF VAR.% 76.4 91.1 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6 9.1 S.E.% 11.9 14.2 | 19.7 JE VOLUME | SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0 0 129 BASAL DW 97 56 | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 1 142 AREA/A AVG 110 65 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH
11 22 61 55 4 2 17 1 3 155 CRE HIGH 123 74 | E ERROR | OF TREES 5 447 OF PLOTS 5 | REQ. 10 112 REQ. 10 | INF. POP | | TOTHEM CCI: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV TOTHEM SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDER S SPRUCE SNAG ALDRLEAV TOTHEM CL: 68.1 % SD: 1.0 SPRUCELV HEMLEAV WHEMLOCK R ALDER S SPRUCE SNAG ALDRLEAV CEDLEAV TOTHEM CL: 68.1 % SPRUCELV HEMLEAV WHEMLOCK R ALDER SPRUCELV HEMLEAV WHEMLOCK R ALDER | COEFF VAR.% 53.4 59.5 117.6 65.1 8.4 82.3 87.1 105.7 COEFF VAR.% 79.5 116.3 120.9 134.6 247.7 302.6 360.3 381.5 548.6 58.4 COEFF VAR.% 76.4 91.1 112.4 137.1 | 142.1 THE SAMPL DF 100 THE S.E.% 8.1 13.0 27.7 19.6 5.8 77.0 60.3 10.0 S.E.% 12.4 18.1 18.9 21.0 38.7 47.2 56.2 59.5 85.6 9.1 S.E.% 11.9 14.2 17.5 21.4 | 19.7 JE VOLUME | SAMPL DW 2,567 1,110 171 59 728 225 289 ,298 TREES DW 8 15 41 36 2 1 5 0 0 129 BASAL DW 97 56 43 34 | E TREE AVG 2,795 1,275 237 73 773 980 727 1,442 ACRE AVG 10 19 51 45 3 1 11 1 1 142 AREA/A AVG 110 65 52 43 | N THE SAMPI S - BF HIGH 3,022 1,441 302 88 818 1,735 1,165 1,587 HIGH 11 22 61 55 4 2 17 1 3 155 CRE HIGH 123 74 61 52 | E ERROR | OF TREES 5 447 OF PLOTS 5 | REQ. 10 112 REQ. 10 | INF. POP | | TC TST | ΓATS | | | STATISTICS PROJECT DONUT | | | | PAGE
DATE : | 2
5/28/2013 | | |--------|--------|-------|---------|--------------------------|----------|--------|-------|----------------|----------------|-----------| | TWP | RGE | SECT | TRACT | TYP | E A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 20 | AREA2 | 00PC | <u> </u> | 70.00 | 41 | 317 | 1 | W | | CL: | 68.1% | COE | 7F | BASA | AL AREA | ACRE | | # OF PLO | TS REQ. | INF. POP. | | SD: | 1.0 | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOU | GLEAV | 360.3 | 56.2 | 1 | 3 | 5 | | | | | | CEDI | LEAV | 360.3 | 56.2 | 1 | 3 | 5 | | | | | | TOTA | AL | 28.6 | 4.5 | 287 | 300 | 313 | | 33 | 8 | 4 | | CL: | 68.1 % | COEF | F | NET | BF/ACRE | | | # OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | VAR. | % S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | SPRU | ICELV | 75.5 | 11.8 | 17,591 | 19,940 | 22,288 | | | | | | HEMI | LEAV | 94.9 | 14.8 | 11,059 | 12,982 | 14,905 | | | | | | WHE | MLOCK | 118.1 | 18.4 | 4,632 | 5,678 | 6,724 | | | | | | R ALI | DER | 137.9 | 21.5 | 2,241 | 2,856 | 3,471 | | | | | | S SPR | RUCE | 247.8 | 38.7 | 1,358 | 2,214 | 3,070 | | | | | | SNAC | } | | | | | | | | | | | ALDR | RLEAV | 360.3 | 56.2 | 49 | 111 | 174 | | | | | | DOUG | GLEAV | 366.9 | 57.2 | 251 | 587 | 923 | | | | | | CEDL | EAV | 459.3 | 71.7 | 66 | 234 | 401 | | | | | | TOTA | AL | 30.1 | 4.7 | 42,505 | 44,602 | 46,699 | | 36 | 9 | 4 | | | TATS | | | | ST
PROJE | CATIS | TICS
DONUT | | | PAGE
DATE | 1
5/28/2013 | |--|---|---|---|-------------------------|---|---|--|----------|---|---|---| | TWP | RGE | SECT 7 | ГRАСТ | | TYPE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 29 A | AREA4 | | 00PC | | 8.00 | 3 | 126 | 1 | W | | | | | | | | | ESTIMATED | , | PERCENT | | | | | | | | | TREES | | TOTAL | ; | SAMPLE | | | | | | PLOTS | TREES | | PER PLOT | | TREES | • | TREES | | | | TOTA | L | 3 | 126 | | 42.0 | | | | | | | | CRUIS | SE | 3 | 126 | | 42.0 | | 126 | | 100.0 | | | | DBH (| COUNT | | | | | | | | | | | | REFO | | | | | | | | | | | | | COUN | | | | | | | | | | | | | BLAN | | | | | | | | | | | | | 100 % |) | | | | | | | | | | | | | | | | STA | ND SUMN | MARY | | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROS | S NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | | | R ALE | DER | 126 | 15.8 | 14.7 | 45 | | 18.6 | 1,945 | 1,923 | 57- | 4 574 | | TOTA | AL. | 126 | 15.8 | 14.7 | 45 | | 10.6 | 1.045 | 1,923 | 574 | | | | | | | | 73 | | 18.6 | 1,945 | 1,923 | 3/2 | 4 3/4 | | CONF | FIDENCI
68.1 | E LIMITS OF | F THE SAMPL | E | WILL BE | | N THE SAMPI | LE ERROR | | | | | CONF | 68.1 % | E LIMITS OF
TIMES OUT
COEFI | F THE SAMPL
COF 100 THE | E
VOLUME | WILL BE | E TREE | N THE SAMPI | LE ERROR | OF TREES | S REQ. | | | CONF | FIDENC
68.1
68.1 %
1.0 | E LIMITS OF
TIMES OUT
COEFF
VAR.9 | F THE SAMPL
F OF 100 THE
F
S.E.% | E
VOLUME | WILL BE SAMPLI DW | E TREE
AVG | N THE SAMPI
S - BF
HIGH | LE ERROR | | | INF. POP. | | CONF
CL:
SD:
R ALD | FIDENCE
68.1
68.1 %
1.0
DER | E LIMITS OF
TIMES OUT
COEFF
VAR.9
81.5 | F THE SAMPL
C OF 100 THE
F
6 S.E.%
7.3 | E
VOLUME | WILL BE SAMPLI DW 113 | E TREE
AVG
122 | N THE SAMPI
SS - BF
HIGH
131 | LE ERROR | FOF TREES | S REQ.
10 | INF. POP. | | CONF CL: SD: R ALD TOTA | FIDENC:
68.1
68.1 %
1.0
DER | E LIMITS OF
TIMES OUT
COEFF
VAR.9
81.5
81.5 | F THE SAMPL
F OF 100 THE
F
6 S.E.%
7.3
7.3 | E
VOLUME | WILL BE SAMPLI DW | E TREE
AVG | N THE SAMPI
S - BF
HIGH | LE ERROR | OF TREES | S REQ. | INF. POP. | | CONF CL: SD: R ALD TOTA | FIDENCE
68.1
68.1 %
1.0
DER | E LIMITS OF
TIMES OUT
COEFF
VAR.9
81.5 | F THE SAMPL
F OF 100 THE
F
6 S.E.%
7.3
7.3 | E
VOLUME | WILL BE SAMPLI DW 113 | E TREE
AVG
122
122 | N THE SAMPI
SS - BF
HIGH
131 | LE ERROR | FOF TREES | S REQ.
10
66 | INF. POP. 1 | | CL: SD: R ALD TOTA CL: SD: | FIDENCE
68.1 %
1.0
DER
L
68.1 %
1.0 | E LIMITS OF
TIMES OUT
COEFF
VAR.9
81.5
81.5
COEFF
VAR.9 | F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3 F 6 S.E.% | E
VOLUME
LC | WILL BE SAMPLI DW 113 113 TREES/A | E TREE
AVG
122
122
ACRE
AVG | N THE SAMPI
SS - BF
HIGH
131 | LE ERROR | OF TREES 5 | S REQ.
10
66 | INF. POP. 1 2 INF. POP. | | CL: SD: R ALD TOTA CL: SD: R ALD | FIDENCE
68.1 %
1.0
DER
L
68.1 %
1.0
DER | E LIMITS OF TIMES OUT COEFF VAR.9 81.5 81.5 COEFF VAR.9 15.6 | F THE SAMPL
F OF 100 THE
6 S.E.%
7.3
7.3
7.3
F
6 S.E.%
10.8 | E
VOLUME
LC | WILL BE SAMPLI DW 113 113 TREES/A DW 14 | E TREE
AVG
122
122
ACRE
AVG
16 | N THE SAMPI
SS - BF
HIGH
131
// 131
HIGH | LE ERROR | F OF TREES 5 265 F OF PLOTS | S REQ.
10
66
S REQ. | INF. POP. 1 2 INF. POP. | | CCL: SD: R ALD TOTA CL: SD: R ALD TOTA | FIDENCE
68.1 %
1.0
DER
LL
68.1 %
1.0
DER
LL | E LIMITS OF TIMES OUT COEFFE VAR.9 81.5 81.5 COEFFE VAR.9 15.6 15.6 | F THE SAMPL
F OF 100 THE
6 S.E.%
7.3
7.3
7.3
6 S.E.%
10.8
10.8 | E
VOLUME
LC | WILL BE SAMPLI DW 113 113 TREES/A | E TREE
AVG
122
122
ACRE
AVG | N THE SAMPI S - BF HIGH 131 131 HIGH | LE ERROR | F OF TREES 5 265 F OF PLOTS | S REQ.
10
66
S REQ. | INF. POP. 2 INF. POP. | | CL: SD: R ALD TOTA CL: SD: R ALD CL: CL: CL: CL: CL: CL: CL: | 68.1 % 1.0 DER 1.0 68.1 % 1.0 DER | COEFI VAR.% 81.5 81.5 COEFI VAR.% 15.6 15.6 COEFF | F THE SAMPL
F OF 100 THE
F
6 S.E.%
7.3
7.3
7.3
6 S.E.%
10.8
10.8 | E
VOLUME
LC | WILL BE SAMPLI DW 113 113 TREES/A DW 14 | AVG 122 122 ACRE AVG 16 16 | N THE SAMPI
SS - BF
HIGH
131
131
HIGH
17 | E ERROR | # OF TREES
5
265
OF PLOTS
5 | 5 REQ.
10
66
5 REQ.
10 | INF. POP. 1 2 INF. POP. 1 | | CL: SD: R ALD TOTA CL: SD: R ALD CL: | FIDENCE
68.1 %
1.0
DER
LL
68.1 %
1.0
DER
LL
68.1 %
1.0 | E LIMITS OF TIMES OUT COEFFE VAR.% 81.5 81.5 COEFFE VAR.% 15.6 COEFFE VAR.% | F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3 7.3 F 6 S.E.% 10.8 7 6 S.E.% | E
VOLUME
LC | WILL BE SAMPLI DW 113 113 TREES/A DW 14 14 BASAL A | E TREE
AVG
122
122
ACRE
AVG
16
16
AREA/A | N THE SAMPI SS - BF HIGH 131 131 HIGH 17 17 ACRE HIGH | E ERROR | # OF TREES 5 265 # OF PLOTS 5 | 5 REQ.
10
66
5 REQ.
10 | INF. POP. 1 2 INF. POP. 1 | | CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: R ALD CL: R ALD CL: R ALD | FIDENCE
68.1 %
1.0
DER
LL
68.1 %
1.0
DER
LL
68.1 %
1.0
DER | E LIMITS OF TIMES OUT COEFF VAR.% 81.5 81.5 COEFF VAR.% 15.6 COEFF VAR.% 30.6 | F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3 7.3 6 S.E.% 10.8 10.8 7 6 S.E.% 21.2 | E
VOLUME
LC | WILL BE SAMPLI DW 113 113 TREES/A DW 14 14 BASAL A DW 15 | E TREE
AVG
122
122
ACRE
AVG
16
16
AREA/A
AVG
19 | N THE SAMPI SS - BF HIGH 131 131 HIGH 17 17 ACRE HIGH 23 | E ERROR | FOF TREES 5 265 FOF PLOTS 5 14 FOF PLOTS 5 | S REQ.
10
66
S REQ.
10
4
S REQ.
10 | INF. POP. 1 2 INF. POP. 1 | | CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: CC: CC: CC: CC: CC: CC: CC: CC: CC: | FIDENCE
68.1 %
1.0
DER
AL
68.1 %
1.0
DER
AL
68.1 %
1.0
DER
AL | E LIMITS OF TIMES OUT COEFFE VAR.% 81.5 81.5 COEFFE VAR.% 15.6 COEFFE VAR.% | F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3 7.3 F 6 S.E.% 10.8 7 6 S.E.% | E
VOLUME
LC | WILL BE SAMPLI DW 113 113 TREES/A DW 14 14 BASAL A | E TREE
AVG
122
122
ACRE
AVG
16
16
AREA/A | N THE SAMPI SS - BF HIGH 131 131 HIGH 17 17 ACRE HIGH | E ERROR | # OF TREES 5 265 # OF PLOTS 5 14 | 5 REQ.
10
66
5
REQ.
10
4
5 REQ. | INF. POP. 1 INF. POP. 1 INF. POP. | | CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: SD: TOTA | FIDENCE
68.1 %
1.0
DER
LL
68.1 %
1.0
DER
LL
68.1 %
1.0
DER | E LIMITS OF TIMES OUT COEFF VAR.% 81.5 81.5 COEFF VAR.% 15.6 COEFF VAR.% 30.6 | F THE SAMPL
F OF 100 THE
F
6 S.E.%
7.3
7.3
F
6 S.E.%
10.8
10.8
F
6 S.E.%
21.2
21.2 | E
VOLUME
LC | WILL BE SAMPLI DW 113 113 TREES/A DW 14 14 BASAL A DW 15 | E TREE
AVG
122
122
ACRE
AVG
16
16
AREA/A
AVG
19 | N THE SAMPI SS - BF HIGH 131 131 HIGH 17 17 ACRE HIGH 23 | LE ERROR | FOF TREES 5 265 FOF PLOTS 5 14 FOF PLOTS 5 | S REQ.
10
66
S REQ.
10
4
S REQ.
10 | INF. POP. 1 2 INF. POP. 1 INF. POP. | | CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: SD: R ALD TOTA | FIDENCE
68.1 %
1.0
DER
LL
68.1 %
1.0
DER
LL
68.1 %
1.0
DER
LL
68.1 %
1.0 | E LIMITS OF TIMES OUT COEFF VAR.% 81.5 81.5 COEFF VAR.% 15.6 COEFF VAR.% 30.6 30.6 COEFF VAR.% | F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3 F 6 S.E.% 10.8 10.8 7 6 S.E.% 21.2 21.2 7 6 S.E.% | E
VOLUME
LC | WILL BE SAMPLI DW 113 113 TREES/A DW 14 14 BASAL A DW 15 15 NET BF/ | E TREE
AVG
122
122
ACRE
AVG
16
16
AREA/A
AVG
19 | N THE SAMPI SS - BF HIGH 131 131 HIGH 17 17 ACRE HIGH 23 | LE ERROR | # OF TREES 5 265 # OF PLOTS 5 14 # OF PLOTS 5 5 54 | S REQ.
10
66
S REQ.
10
4
S REQ.
10 | INF. POP. 1 INF. POP. 1 INF. POP. 1 INF. POP. 1 | | CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: SD: R ALD TOTA CL: CL: CC: CC: CC: CC: CC: CC: CC: CC: | FIDENCE
68.1 %
1.0
DER
LL
68.1 %
1.0
DER
LL
68.1 %
1.0
DER
LL
68.1 %
1.0
DER
LL | E LIMITS OF TIMES OUT COEFF VAR.% 81.5 81.5 COEFF VAR.% 15.6 15.6 COEFF VAR.% 30.6 30.6 COEFF | F THE SAMPL F OF 100 THE F 6 S.E.% 7.3 7.3 F 6 S.E.% 10.8 10.8 7 6 S.E.% 21.2 21.2 | E
VOLUME
LC
LC | WILL BE SAMPLI DW 113 113 TREES/A DW 14 14 BASAL A DW 15 15 NET BF/ DW | E TREE
AVG
122
122
ACRE
AVG
16
16
AREA/A
AVG
19
19 | N THE SAMPI S - BF HIGH 131 131 HIGH 17 17 ACRE HIGH 23 23 | LE ERROR | # OF TREES 5 265 # OF PLOTS 5 14 # OF PLOTS 5 54 | 5 REQ.
10
66
5 REQ.
10
4
5 REQ.
10
13 | INF. POP. 1 INF. POP. 1 INF. POP. | | TC TSTATS | | | | ST
PROJE | `ATIS'
CT | FICS
DONUT | | | PAGE
Date 5 | 1
5/28/2013 | |--|--|--|--------------|--|---|--|----------------|-------------------------|-------------------|----------------------------------| | TWP RGE | SECT TI | RACT | | TYPE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N 08W | 20 A) | REA5 | | OOPC | | 43.00 | 30 | 241 | 11 | W | | | | | | TREES | | ESTIMATED
TOTAL | | PERCENT
AMPLE | | | | | PLOTS | TREES | • | PER PLOT | | TREES | | REES | | | | TOTAL | 30 | 241 | | 8.0 | | | | | | | | CRUISE | 14 | 76 | | 5.4 | | 7,517 | | 1.0 | | | | DBH COUNT | | | | | | | | | | | | REFOREST | | | | | | | | | | | | COUNT | 16 | 128 | | 8.0 | | | | | | | | BLANKS
100 % | | | | | | | | | | | | 100 70 | | | C/TC A 2 | AID CEDM | W A TOXY | | | | | | | | CAMDLE | TDEEC | | ND SUM | | DAGAI | CDOGG | NET | CP CGG |) IFT | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | WHEMLOCK | 29 | 100.8 | 15.3 | 62 | אויוע | 128.0 | 17,479 | 17,273 | 4,795 | 4,795 | | HEMLEAV | 31 | 45.1 | 22.0 | 77 | | 118.7 | 21,233 | 20,692 | 5,030 | 4,795
5,030 | | DOUGLEAV | 4 | 11.5 | 23.0 | 87 | | 33.3 | 6,473 | 6,473 | 1,497 | 1,497 | | SNAG | 5 | 5.3 | 24.5 | 28 | | 17.3 | * * | • | Ž • | , | | DOUG FIR | 1 | 2.8 | 21.0 | 82 | | 6.7 | 832 | 832 | 263 | 263 | | R ALDER | 1 | 4.8 | 16.0 | 56 | | 6.7 | 859 | 859 | 224 | 224 | | SPRUCELV | 2 | .4 | 43.9 | 98 | | 4.0 | 892 | 821 | 187 | 187 | | ALDRLEAV | 1 | 2.3 | 18.0 | 64 | | 4.0 | 656 | 656 | 158 | 158 | | S SPRUCE
CEDLEAV | 1 | 1.1
.8 | 15.0
18.0 | 41
42 | | 1.3
1.3 | 65 | 65 | 33 | 33 | | TOTAL | 76 | .o
174.8 | 18.0
18.4 | 42
66 | | 321.3 | 48,490 | 47,672 | 12,188 | 12,188 | | 68.1 | TIMES OUT (| OF 100 THE | VOLUME | WILL BE | WITHIN | J THE SAMPI | E ERROR | | | | | CT . CO 1 9/ | COEEE | | ************ | | | | | | | | | CL: 68.1 % | COEFF | | 1.0 | SAMPL | E TREE | S - BF | | OF TREES | | | | SD: 1.0 | VAR.% | S.E.% | LC |)W | E TREE
AVG | S - BF
HIGH | | OF TREES | REQ. | | | | | | LC | | E TREE | S - BF | | | | | | SD: 1.0
WHEMLOCK | VAR.%
66.2 | S.E.%
12.5 | LC | 0W
203 | E TREE
AVG
232 | S - BF HIGH 261 | | | | | | SD: 1.0 WHE™LOCK HE™LEAV DOUGLEAV SNAG | VAR.%
66.2
72.0 | S.E.%
12.5
12.9 | LC | 203
601 | E TREE
AVG
232
690 | S - BF
HIGH
261
779 | | | | | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR | VAR.%
66.2
72.0 | S.E.%
12.5
12.9 | LC | 203
601 | E TREE
AVG
232
690 | S - BF
HIGH
261
779 | | | | | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER | VAR.%
66.2
72.0
51.8 | S.E.%
12.5
12.9
29.6 | | 203
601
507 | E TREE
AVG
232
690
720 | S - BF
HIGH
261
779
933 | | | | | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV | VAR.%
66.2
72.0 | S.E.%
12.5
12.9 | | 203
601 | E TREE
AVG
232
690 | S - BF
HIGH
261
779 | | | | | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER | VAR.%
66.2
72.0
51.8 | S.E.%
12.5
12.9
29.6 | | 203
601
507 | E TREE
AVG
232
690
720 | S - BF
HIGH
261
779
933 | | | | | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV | VAR.%
66.2
72.0
51.8 | S.E.%
12.5
12.9
29.6 | | 203
601
507 | E TREE
AVG
232
690
720 | S - BF
HIGH
261
779
933 | | | | | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV | VAR.%
66.2
72.0
51.8 | S.E.%
12.5
12.9
29.6 | | 203
601
507 | E TREE
AVG
232
690
720 | S - BF
HIGH
261
779
933 | | | | 1 | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % | VAR.% 66.2 72.0 51.8 10.6 | S.E.% 12.5 12.9 29.6 | 1 | 203
601
507
,928
417
TREES/ | E TREE
AVG
232
690
720
2,140
475
ACRE | S - BF
HIGH
261
779
933
2,352 | # | 5 | 10 | 1 | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 | VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% | | 203
601
507
,928
417
TREES/A | E TREE
AVG
232
690
720
2,140
475
ACRE
AVG | S - BF
HIGH
261
779
933
2,352
•
533
HIGH | # | 452 | 10 | 5,
INF. POP. | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK | VAR.% 66.2 72.0 51.8 10.6 | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 | 1 | 203
601
507
,928
417
TREES/A | E TREE AVG 232 690 720 2,140 475 ACRE AVG 101 | S - BF
HIGH
261
779
933
2,352
•
533
HIGH
115 | # | 452
OF PLOTS | 113
REQ. | | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV | VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% | 1 | 203
601
507
,928
417
TREES/A | E TREE
AVG
232
690
720
2,140
475
ACRE
AVG | S - BF
HIGH
261
779
933
2,352
•
533
HIGH | # | 452
OF PLOTS | 113
REQ. | 5,
INF. POP. | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV | VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 | 1 | 203
601
507
,928
417
TREES/A | E TREE AVG 232 690 720 2,140 475 ACRE AVG 101 45 | S - BF
HIGH 261 779 933 2,352 533 HIGH 115 49 | # | 452
OF PLOTS | 113
REQ. | | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR | VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 | 1 | 203
601
507
,928
417
TREES/ADW 87
41
8
4 | E TREE AVG 232 690 720 2,140 475 ACRE AVG 101 45 12 5 3 | S - BF
HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 | # | 452
OF PLOTS | 113
REQ. | 5,
INF. POP. | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER | VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2
355.3 276.7 | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 | 1 | 203
601
507
,928
417
TREES/A
W 87
41
8
4
1
2 | 232
690
720
2,140
475
ACRE
AVG
101
45
12
5
3
5 | S - BF
HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 | # | 452
OF PLOTS | 113
REQ. | 5,
INF. POP. | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV | VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 | 1 | 203
601
507
,928
417
TREES/A
W 87
41
8
4
1
2
0 | 232
690
720
2,140
475
ACRE
AVG
101
45
12
5
3
5
0 | S - BF
HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 | # | 452
OF PLOTS | 113
REQ. | 5,
INF. POP. | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV | VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6 | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7 | 1 | 203
601
507
,928
417
TREES/A
W 87
41
8
4
1
2 | 232
690
720
2,140
475
ACRE
AVG
101
45
12
5
3
5
0
2 | S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4 | # | 452
OF PLOTS | 113
REQ. | 5,
INF. POP. | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV SNAG SOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE | VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6 547.7 | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7 101.7 | 1 | 203
601
507
,928
417
TREES/A
W 87
41
8
4
1
2
0 | 232
690
720
2,140
2,140
475
ACRE
AVG
101
45
12
5
3
5
0
2 | S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4 2 | # | 452
OF PLOTS | 113
REQ. | 5,
INF. POP. | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV SSPRUCE CEDLEAV | VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6 | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7 | LC | 203
601
507
,928
417
TREES/A
W 87
41
8
4
1
2
0 | 232
690
720
2,140
475
ACRE
AVG
101
45
12
5
3
5
0
2 | S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4 | # | 452
OF PLOTS | 113
REQ. | 5
INF. POP.
1 | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL | VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6 547.7 547.7 | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7 101.7 101.7 | LC | 203
601
507
,928
417
TREES/A
DW 87
41
8
4
1
2
0
1 | E TREE AVG 232 690 720 2,140 475 ACRE AVG 101 45 12 5 3 5 0 2 1 175 | S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4 2 2 186 | # | 452
OF PLOTS
5 | 113
REQ.
10 | 5;
INF. POP.
1 | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV SNAG TOTAL CL: 68.1 % SPRUCE CEDLEAV TOTAL CL: 68.1 % | VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6 547.7 547.7 34.6 | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7 101.7 101.7 | LC | 203
601
507
,928
417
TREES/A
W 87
41
8 4
1
2
0
1 | E TREE AVG 232 690 720 2,140 475 ACRE AVG 101 45 12 5 3 5 0 2 1 175 | S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4 2 2 186 | # | 452
OF PLOTS
5 | 113
REQ.
10 | 5
INF. POP.
1
INF. POP. | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV SSPRUCE CEDLEAV TOTAL CL: 68.1 % SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK | VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6 547.7 547.7 34.6 COEFF | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7 101.7 101.7 6.4 | LC | 203
601
507
,928
417
TREES/A
W 87
41
8 4
1
2
0
1 | E TREE AVG 232 690 720 2,140 475 ACRE AVG 101 45 12 5 3 5 0 2 1 175 AREA/A | S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4 2 2 186 CRE | # | 452 OF PLOTS 5 OF PLOTS | 113 REQ. 10 | 5
INF. POP.
1
INF. POP. | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV SSPRUCELV ALDRLEAV SSPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV | VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6 547.7 547.7 34.6 COEFF VAR.% 69.8 42.0 | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7 101.7 101.7 6.4 S.E.% 13.0 7.8 | LC | 203
601
507
,928
417
TREES/A
W
87
41
8
4
1
2
0
1
1
164
BASAL A
W
111
109 | 232
690
720
2,140
2,140
475
ACRE
AVG
101
45
12
5
0
2
1
1
175
AREA/A
AVG
128
119 | S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4 2 2 186 CRE HIGH 145 128 | # | 452 OF PLOTS 5 OF PLOTS | 113 REQ. 10 | 1: | | SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK HEMLEAV DOUGLEAV SNAG DOUG FIR R ALDER SPRUCELV ALDRLEAV SSPRUCE CEDLEAV TOTAL CL: 68.1 % SPRUCELV ALDRLEAV S SPRUCE CEDLEAV TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK | VAR.% 66.2 72.0 51.8 10.6 106.3 COEFF VAR.% 76.3 46.7 170.5 171.2 355.3 276.7 306.1 402.6 547.7 547.7 34.6 COEFF VAR.% 69.8 | S.E.% 12.5 12.9 29.6 9.9 12.2 S.E.% 14.2 8.7 31.7 31.8 66.0 51.4 56.8 74.7 101.7 101.7 6.4 S.E.% 13.0 | LC | 203
601
507
,928
417
TREES/A
W
87
41
8
4
1
2
0
1
1
164
BASAL A
W
111 | E TREE AVG 232 690 720 2,140 475 ACRE AVG 101 45 12 5 3 5 0 2 1 175 AREA/A AVG 128 | S - BF HIGH 261 779 933 2,352 533 HIGH 115 49 15 7 5 7 1 4 2 2 186 CRE HIGH 145 | # | 452 OF PLOTS 5 OF PLOTS | 113 REQ. 10 | 50
INF. POP. | | TC TST | ATS | | | S
PROJ | STATIS
ECT | TICS
DONUT | | | PAGE
DATE | 2
5/28/2013 | |--------|-----------|----------|------------|-----------|---------------|---------------|-------|----------|--------------|----------------| | TWP | RGE | SECT TRA | ACT | TYPE | E A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 20 AR | EA5 | OOP | C | 43.00 | 30 | 241 | 1 | W | | CL: | 68.1% | COEFF | | BASA | L AREA/ | ACRE | | # OF PLO | TS REQ. | INF. POP. | | SD: | 1.0 | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | 3 FIR | 355.3 | 66.0 | 2 | 7 | 11 | | | | | | R ALI | DER | 276.7 | 51.4 | 3 | 7 | 10 | | | | | | SPRU | CELV | 305.1 | 56.6 | 2 | 4 | 6 | | | | | | ALDR | RLEAV | 402.6 | 74.7 | 1 | 4 | 7 | | | | | | S SPR | UCE | 547.7 | 101.7 | | 1 | 3 | | | | | | CEDL | EAV | 547.7 | 101.7 | | 1 | 3 | | | | | | TOTA | AL | 19.7 | 3.7 | 310 | 321 | 333 | | 16 | 4 | 2 | | CL: | 68.1 % | COEFF | | NET I | BF/ACRE | | # | OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | WHEN | MLOCK | 68.9 | 12.8 | 15,062 | 17,273 | 19,483 | | | | | | HEMI | LEAV | 45.8 | 8.5 | 18,931 | 20,692 | 22,453 | | | | | | DOUG | GLEAV | 166.6 | 30.9 | 4,471 | 6,473 | 8,475 | | | | | | SNAG | r | | | | | | | | | | | DOUG | FIR | 355.3 | 66.0 | 283 | 832 | 1,380 | | | | | | R ALE | DER | 276.7 | 51.4 | 418 | 859 | 1,301 | | | | | | SPRU | CELV | 308.2 | 57.2 | 351 | 821 | 1,291 | | | | | | ALDR | LEAV | 402.6 | 74.7 | 166 | 656 | 1,147 | | | | | | S SPR | UCE | 547.7 | 101.7 | | 65 | 131 | | | | | | CEDL | EAV | | | | | | | | | | | TOTA | L | 22.2 | 4.1 | 45,707 | 47,672 | 49,636 | | 20 | 5 | 2 | | TC TSTA | ATS | | | | S'
PROJI | TATIS
ECT | STICS
DONUT | | | PAGE
DATE | 1
5/28/2013 | |----------------|----------------|--------------------------|----------------------|---------------------|--------------------|--------------|---------------------|----------------------|----------------------|--------------------|--------------------| | TWP | RGE | SECT T | RACT | | TYPE | | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | | &7 | | OOPO | | 10.00 | 13 | 99 | 1 | W | | | | | | | | - | | | | | | | | | | | | TREES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | | PLOTS | TREES | | PER PLO | Т | TREES | | TREES | | | | TOTA | L | 13 | 99 | | 7.6 | | | | | | | | CRUIS | SE | 13 | 98 | | 7.5 | | 2,108 | | 4.6 | | | | | COUNT | | | | | | | | | | | | REFOI
COUN | | | | | | | | | | | | | BLAN | | | | | | | | | | | | | 100 % | | | | | | | | | | | | | | | | | STA | ND SUM | IMARY | | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | | | 3777777 | d com | TREES | /ACRE | DBH | LEN | DEN | | BF/AC | BF/AC | CF/AC | CF/AC | | WHEM
HEML | /ILOCK
.EAV | 52
22 | 152.9
22.3 | 13.9
23.6 | 52
75 | |
160.0
67.7 | 21,404
13,522 | 21,159
13,022 | 5,779
3,072 | , | | SNAG | | 13 | 13.7 | 24.0 | 31 | | 43.1 | 1.0,022 | 13,022 | 3,012 | 5,012 | | R ALD | | 7 | 18.5 | 14.6 | 32 | | 21.5 | 1,736 | 1,675 | 506 | | | DOUG | | 3 | 3.2 | 22.9 | 91 | | 9.2 | 1,814 | 1,814 | 415 | 415 | | CEDLE
TOTA | | 1
98 | .2
210.8 | 56.0
<i>16.3</i> | 55
52 | | 3.1
<i>304.6</i> | 315
<i>38,791</i> | 315
<i>37,985</i> | 81
<i>9,853</i> | 81
<i>9,853</i> | | | | | | | 32 | | 304.0 | 30,771 | 37,703 | 7,033 | 7,033 | | CONF | | E LIMITS OF
TIMES OUT | | | WILL B | E WITH | N THE SAMPI | LE ERROR | | | | | CL: | 68.1 % | COEFF | | | SAMPI | LE TRE | ES - RE | # | OF TREES | REO | INF. POP. | | | 1.0 | VAR.% | S.E.% | L | OW OW | AVG | HIGH | " | 5 | 10 | 15 | | WHEM | /ILOCK | 103.0 | 14.3 | | 207 | 242 | 276 | | | | | | HEML | | 61.0 | 13.3 | | 809 | 934 | 1,058 | | | | | | SNAG
R ALD | | 42.7 | 17.4 | | 93 | 113 | 132 | | | | | | DOUG | | 24.1 | 16.7 | | 489 | 587 | 685 | | | | | | CEDLE | EAV | | | | | | | | | | | | TOTA | | 125.2 | 12.6 | | 333 | 382 | 430 | | 626 | 156 | 70 | | CL: | | COEFF | | | | S/ACRE | | # | OF PLOTS | REQ. | INF. POP. | | | 1.0 | VAR.% | | L | OW | AVG | HIGH | | 5 | 10 | 15 | | HEML | ILOCK
EAV | 95.2
73.7 | 27.5
21.2 | | 111
18 | 153
22 | 195
27 | | | | | | SNAG | | 132.4 | 38.2 | | 8 | 14 | 19 | | | | | | R ALD | | 232.7 | 67.1 | | 6 | 18 | 31 | | | | | | DOUG | | 195.0 | 56.2 | | 1 | 3 | 5 | | | | | | CEDLE
TOTAL | | 360.6
<i>62.0</i> | 103.9
<i>17.9</i> | | 173 | 0
211 | 0
248 | | 166 | 41 | 18 | | CL: 6 | | COEFF | 11.2 | | | | | .11 | | | | | | 1.0 | VAR.% | S.E.% | T | BASAL
OW | AREA/
AVG | ACRE
HIGH | # | OF PLOTS
5 | REQ.
10 | INF. POP. | | WHEM | | 79.1 | 22.8 | 121 | 124 | 160 | 196 | | | 10 | 13 | | HEMLI | EAV | 28.4 | 8.2 | | 62 | 68 | 73 | | | | | | SNAG | ED | 133.8 | 38.6 | | 26 | 43 | 60
35 | | | | | | R ALD | | 209.2
190.0 | 60.3
54.8 | | 9
4 | 22
9 | 35
14 | | | | | | CEDLE | | 360.6 | 103.9 | | • | 3 | 6 | | | | | | TOTA | L | 27.6 | 8.0 | | 280 | 305 | 329 | | 33 | 8 | 4 | | CL: 6 | 68.1 % | COEFF | | | NET B | F/ACRE | | # | OF PLOTS | REQ. | INF. POP. | | | 1.0 | VAR.% | S.E.% | | WC | AVG | HIGH | | 5 | 10 | 15 | | WHEM
HEMLI | | 79.8
36.3 | 23.0
10.5 | | 6,290
1,650 | 21,159 | 26,029 | | | | | | SNAG | Liza V | 30.3 | 10,5 | 1 | 1,659 | 13,022 | 14,385 | | | | | | R ALD | ER | 206.2 | 59.4 | | 679 | 1,675 | 2,670 | | | | | | DOUGI | | 190.2 | 54.8 | | 819 | 1,814 | 2,809 | | | | | | CEDLE | | 360.6 | 103.9 | 2.0 | 0.054 | 315 | 642 | | 0.1 | 2.2 | 10 | | TOTAL | L | 45.9 | 13.2 | 32 | 2,954 | 37,985 | 43,016 | | 91 | 23 | 10 | | TC TST | ATS | | | | ST.
PROJEC | | TICS
DONUT | | | PAGE
DATE | 2
5/28/2013 | |------------|---------------|------------|-------------|-------|---------------|-------------|---------------|-------------|---------------|--------------|----------------| | TWP
04N | RGE
08W | SECT
33 | TRAC
6&7 | CT | TYPE
OOPC | A | CRES
10.00 | PLOTS
13 | TREES
99 | CuFt
1 | BdFt
W | | CL:
SD: | 68.1 %
1.0 | CO
VA | EFF
R. | S.E.% | NET BF/ | ACRE
AVG | HIGH | | # OF PLO
5 | TS REQ. | INF. POP. | • | TC PSTAT | rs | | | | | OJECT S
ROJECT | | ISTICS
NUT | | | PAGE
DATE | 1
5/28/2013 | |--|--|----------|---|---|----------|---|--|--|-----------|--|---|---| | TWP R | RGE | SC | TRACT | | TYPE | | A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N 08
04N 08 | 8
8W | 20
33 | 1&3
6&7 | | R/W TAKE | ΓHR | | 198.00 | 230 | 1,335 | 1 | W | | | | | | | | TREES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | | I | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOTAL | | | 230 | 1335 | | 5.8 | | | | | | | | CRUISE
DBH CC
REFORE | UNT | | 88 | 571 | | 6.5 | | 23,201 | | 2.5 | | | | COUNT | | | 135 | 718 | | 5.3 | | | | | | | | BLANKS | S | | 7 | | | | | | | | | | | 100 % | | | | | | | | | | | | | | | | | | • | STA | AND SUM | MARY | | | | | | | | | SA | MPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | 7 | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | WHEML | OCK | | 237 | 65.9 | 16.1 | 57 | | 93.7 | 13,638 | 13,304 | 3,460 | 3,460 | | R ALDE |
R | | 245 | 43.3 | 13.8 | 41 | | 45.3 | 4,108 | | 1,245 | 1,245 | | S SPRUC | CE | | 71 | 4.6 | 22.2 | 50 | | 12.4 | 1,992 | 1,839 | 476 | 476 | | DOUG F | 'IR | | 11 | 2.7 | 22.4 | 85 | | 7.3 | 1,121 | 1,100 | 299 | 299 | | BL MAP | | | 4 | .6 | 12.2 | 14 | | .5 | | | | | | WR CED | | | 3 | .0 | 19.2 | 24 | | .0 | 4 | | 1 | 1 | | TOTAL | | | 571 | 117.2 | 15.8 | 51 | | 159.3 | 20,862 | 20,315 | 5,481 | 5,481 | | | 68 | .1 7 | TIMES OU | T OF 100 T | HE VOLU | IME WILL | BE WIT | HIN THE SAM | VIPLE ERR | OR | | | | | 8.1 | .1 7 | COEFF | | | SAMPL | E TREE | ES - BF | | # OF TREES | | INF. POP. | | SD: | 8.1
1.0 | .1 7 | COEFF
VAR.% | S.E.% | | SAMPL
LOW | E TREE | ES - BF
HIGH | | | REQ.
10 | INF. POP. | | SD: | 8.1
1.0
.OCK | .1 7 | COEFF
VAR.%
110.9 | S.E.%
7.2 | | SAMPL
LOW
498 | E TREE
AVG
537 | ES - BF
HIGH
576 | | # OF TREES | | | | SD:
WHEML
R ALDE | 8.1
1.0
OCK
R | .1 7 | COEFF
VAR.% | S.E.% | | SAMPL
LOW | E TREE | ES - BF
HIGH | | # OF TREES | | | | SD: | 8.1
1.0
OCK
R
CE | .1 7 | COEFF
VAR.%
110.9
77.4 | S.E.%
7.2
4.9 | | SAMPL LOW 498 119 | E TREE
AVG
537
125 | ES - BF
HIGH
576
131 | | # OF TREES | | | | SD:
WHEML
R ALDE
S SPRUC | 8.1
1.0
.OCK
R
CE | .1 7 | COEFF
VAR.%
110.9
77.4
72.9 | S.E.%
7.2
4.9
8.6 | | SAMPL
LOW
498
119
1,978 | E TREE
AVG
537
125
2,165 | ES - BF
HIGH
576
131
2,353 | | # OF TREES | | | | SD: WHEML R ALDE S SPRUC DOUG F BL MAP WR CED | 8.1
1.0
OCK
R
CE
TIR
PLE
DAR | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1 | S.E.%
7.2
4.9
8.6
20.8 | | SAMPL
LOW
498
119
1,978
418
289 | E TREE
AVG
537
125
2,165
527
727 | ES - BF
HIGH
576
131
2,353 | | # OF TREES
5 | | | | SD: WHEML R ALDE S SPRUC DOUG F BL MAP | 8.1
1.0
OCK
R
CE
TIR
PLE
DAR | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8 | S.E.%
7.2
4.9
8.6
20.8 | | SAMPL
LOW
498
119
1,978
418 | E TREE
AVG
537
125
2,165
527 | ES - BF
HIGH
576
131
2,353
637 | | # OF TREES | | | | SD: WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL | 8.1
1.0
OCK
R
CE
CIR
PLE
DAR | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1 | S.E.%
7.2
4.9
8.6
20.8 | | SAMPL
LOW
498
119
1,978
418
289 | E TREE
AVG
537
125
2,165
527
727
560 | ES - BF
HIGH
576
131
2,353
637
1,165 | # | # OF TREES
5 | 10
276 | 15 | | SD: WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL | 8.1
1.0
OCK
R
CE
TIR
PLE
DAR | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2 | S.E.%
7.2
4.9
8.6
20.8 | I | SAMPL LOW 498 119 1,978 418 289 521 | E TREE
AVG
537
125
2,165
527
727
560 | ES - BF
HIGH
576
131
2,353
637
1,165 | # | # OF TREES
5
1,102 | 10
276 | 15
122 | | SD: WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL | 8.1
1.0
OCK
R
CE
CIR
PLE
DAR | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 | I | SAMPL _OW | E TREE
AVG
537
125
2,165
527
727
560
ACRE | ES - BF
HIGH
576
131
2,353
637
1,165
599 | # | # OF TREES
5
1,102
OF PLOTS | 276 REQ. | 122
INF. POP. | | SD: WHEML R ALDER S SPRUCE DOUG F BL MAP WR CED TOTAL CL 68 SD: | 8.1
1.0
OCK
R
CE
FIR
PLE
DAR
8.1
1.0 | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.% | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW | E TREE
AVG
537
125
2,165
527
727
560
ACRE
AVG
66
43 | ES - BF
HIGH
576
131
2,353
637
1,165
599 | # | # OF TREES
5
1,102
OF PLOTS | 276 REQ. | 122
INF. POP. | | SD: WHEML R ALDER S SPRUCE DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDER S SPRUCE | 8.1
1.0
OCK
R
CE
FIR
PLE
DAR
8.1
1.0
OCK
R | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0 | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 | E TREE
AVG
537
125
2,165
527
727
560
ACRE
AVG
66
43
5 | ES - BF
HIGH
576
131
2,353
637
1,165
599
HIGH
72
50
6 | # | # OF TREES
5
1,102
OF PLOTS | 276 REQ. | 122
INF. POP. | | SD: WHEML R ALDER S SPRUCE DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDER S SPRUCE DOUG F | 8.1
1.0
OCK
R
CE
FIR
PLE
DAR
8.1
1.0
OCK
R
CE
FIR | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8 | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 | E TREE
AVG
537
125
2,165
527
727
560
ACRE
AVG
66
43
5
3 | ES - BF
HIGH
576
131
2,353
637
1,165
599
HIGH
72
50
6
4 | # | # OF TREES
5
1,102
OF PLOTS | 276 REQ. | 122
INF. POP. | | SD: WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDE S SPRUC DOUG F BL MAP | 8.1
1.0
OCK
R
CE
FIR
PLE
DAR
8.1
1.0
OCK
R
CE
FIR
PLE | | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0 | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 | E TREE
AVG
537
125
2,165
527
727
560
ACRE
AVG
66
43
5
3
1 | ES - BF
HIGH
576
131
2,353
637
1,165
599
HIGH
72
50
6
4
1 | # | # OF TREES
5
1,102
OF PLOTS | 276 REQ. | 122
INF. POP. | | WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: U WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED | 8.1
1.0
OCK
R
CE
FIR
DAR
8.1
1.0
OCK
R
CE
FIR
LE
DAR | | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0
1304.0 | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 | E TREE
AVG
537
125
2,165
527
727
560
ACRE
AVG
66
43
5
3
1
0 | ES - BF
HIGH
576
131
2,353
637
1,165
599
HIGH
72
50
6
4
1
0 | # | # OF TREES 5 1,102 # OF PLOTS 5 | 276 REQ. 10 | 122
INF. POP.
15 | | SD: WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDE S SPRUC DOUG F BL MAP | 8.1
1.0
OCK
R
CE
FIR
DAR
8.1
1.0
OCK
R
CE
FIR
LE
DAR | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0 | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 | E TREE
AVG
537
125
2,165
527
727
560
ACRE
AVG
66
43
5
3
1 | ES - BF
HIGH
576
131
2,353
637
1,165
599
HIGH
72
50
6
4
1 | # | # OF TREES 5 1,102 # OF PLOTS 5 | 276 REQ. 10 | 122
INF. POP.
15 | | WHEML R ALDER S SPRUCE DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDER S SPRUCE DOUG F BL MAP WR CED TOTAL CL 68 | 8.1
1.0
OCK
R
CE
FIR
PLE
DAR
8.1
1.0
OCK
R
CE
FIR
PLE
DAR | | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0
1304.0
121.0
COEFF | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL | E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A | ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 | # | # OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS | 276 REQ. 10 146 REQ. | 122
INF. POP.
15 | | WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: CL 68 SPRUC SSPRUC SSPRU | 8.1
1.0
OCK
R
CE
FIR
PLE
DAR
8.1
1.0
OCK
R
CE
FIR
PLE
DAR | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0
1304.0
121.0
COEFF
VAR.% | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW | E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A | ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH | # | # OF TREES 5 1,102 # OF PLOTS 5 | 276 REQ. 10 | 122
INF. POP.
15
65
INF. POP. | | SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WR CED TOTAL CL 68 SD: WHEML WR CED TOTAL | 8.1
1.0
.OCK
R
CE
FIR
PLE
DAR
8.1
1.0
.OCK
R
CE
FIR
PLE
DAR | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0
1304.0
121.0
COEFF
VAR.% | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 | E TREE AVG
537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 | ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 | # | # OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS | 276 REQ. 10 146 REQ. | 122
INF. POP.
15
65
INF. POP. | | SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC CDUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI R ALDEI R ALDEI R ALDEI R ALDEI | 8.1
1.0
OCK
R
CE
FIR
PLE
DAR
8.1
1.0
OCK
R
CE
FIR
PLE
DAR
8.1
1.0
OCK
R
CE
OCK
R
CE
OCK
R
CE
OCK
OCK
OCK
OCK
OCK
OCK
OCK
OCK | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0
1304.0
121.0
COEFF
VAR.% | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 | E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 | ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 | # | # OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS | 276 REQ. 10 146 REQ. | 122
INF. POP.
15
65
INF. POP. | | SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC SD: WHEML S SPRUC S SPRUC S SPRUC S SPRUC S SPRUC S SPRUC | 8.1
1.0
.OCK
R
CE
CIR
DAR
8.1
1.0
.OCK
R
CE
DAR
8.1
1.0
.OCK | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0
1304.0
121.0
COEFF
VAR.% | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10 | E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 | ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 | # | # OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS | 276 REQ. 10 146 REQ. | 122
INF. POP.
15 | | SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC SD: WHEML S SPRUC DOUG F BL MAP WR CED TOTAL | 8.1
1.0
.OCK
R
CE
CIR
PLE
DAR
8.1
1.0
.OCK
R
CE
CIR
PLE
DAR
8.1
1.0
.OCK
R
CE
CIR
CE
CIR
CE
CIR
CE
CIR
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
COCK
C | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0
1304.0
121.0
COEFF
VAR.% | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10 4 | E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 7 | ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 11 | # | # OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS | 276 REQ. 10 146 REQ. | 122
INF. POP.
15 | | WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J | 8.1
1.0
OCK
R
CE
FIR
PLE
DAR
8.1
1.0
OCK
R
CE
FIR
PLE
DAR
8.1
1.0
OCK
R
CE
FIR
PLE
DAR | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0
1304.0
121.0
COEFF
VAR.%
134.1
218.0
277.9
687.4
1493.0 | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3 98.4 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10 | E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 | ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 | # | # OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS | 276 REQ. 10 146 REQ. | 122
INF. POP.
15 | | SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC SD: WHEML S SPRUC DOUG F BL MAP WR CED TOTAL | 8.1
1.0
OCK
R
CE
FIR
PLE
DAR
8.1
1.0
OCK
R
CE
FIR
PLE
DAR
8.1
1.0
OCK
R
CE
FIR
PLE
DAR | | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0
1304.0
121.0
COEFF
VAR.% | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10 4 0 | E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 7 1 | ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 11 1 | # | # OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS | 276 REQ. 10 146 REQ. | 122 INF. POP. 15 65 INF. POP. 15 | | SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SSPRUC DOUG F BL MAP WR CED TOTAL R ALDEI S SPRUC DOUG F BL MAP WHEML R ALDEI S SPRUC DOUG F BL MAP | 8.1 1.0 OCK R CE TIR PLE DAR 8.1 1.0 OCK R CE TIR PLE DAR 8.1 1.0 OCK R CE TIR PLE DAR | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0
1304.0
121.0
COEFF
VAR.%
134.1
218.0
277.9
687.4
1493.0
871.8
104.8 | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3 98.4 57.4 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10 4 0 0 148 | E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 7 1 0 159 | ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 11 1 0 | # | # OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS 5 | 10 276 REQ. 10 146 REO. 10 | 122
INF. POP.
15
65
INF. POP.
15 | | WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 | 8.1
1.0
.OCK
R
CE
IR
LE
DAR
8.1
1.0
.OCK
R
CE
TIR
LE
DAR
8.1
1.0
.OCK
R
CE
TIR
LE
DAR | | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0
1304.0
121.0
COEFF
VAR.%
134.1
218.0
277.9
687.4
1493.0
871.8
104.8
COEFF | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3 98.4 57.4 6.9 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10 4 0 0 148 NET BF | E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 7 1 0 159 /ACRE | ES - BF HIGH 576 131
2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 11 1 0 170 | # | # OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS 5 | 10 276 REQ. 10 146 REO. 10 | 122 INF. POP. 15 65 INF. POP. 15 | | WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J | 8.1
1.0
.OCK
R
CE
IR
LE
DAR
8.1
1.0
.OCK
R
CE
TIR
LE
DAR
8.1
1.0
.OCK
R
CE
TIR
LE
DAR
8.1
1.0
.OCK
R
CE
TIR
DAR | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0
1304.0
121.0
COEFF
VAR.%
134.1
218.0
277.9
687.4
1493.0
871.8
104.8
COEFF
VAR.% | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3 98.4 57.4 6.9 S.E.% | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10 4 0 0 148 NET BF | E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 7 1 0 159 /ACRE AVG | ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 11 1 0 170 HIGH | # | # OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS 5 | 10 276 REQ. 10 146 REQ. 10 110 REQ. | 122
INF. POP.
15
65
INF. POP.
15 | | WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDEI S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML CD 68 SD: J WHEML CL 68 SD: J | 8.1
1.0
.OCK
R
CE
CIR
ELE
DAR
8.1
1.0
.OCK
R
CE
CIR
ELE
DAR
8.1
1.0
.OCK
R
CE
CIR
ELE
DAR | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0
1304.0
121.0
COEFF
VAR.%
134.1
218.0
277.9
687.4
1493.0
871.8
104.8
COEFF
VAR.% | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3 98.4 57.4 6.9 S.E.% 9.0 | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL .OW 85 39 10 4 0 0 148 NET BF LOW 12,103 | E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 7 1 0 159 /ACRE AVG 13,304 | ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 11 1 0 170 HIGH 14,505 | # | # OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS 5 | 10 276 REQ. 10 146 REQ. 10 110 REQ. | 122 INF. POP. 15 65 INF. POP. 15 | | WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J WHEML R ALDE S SPRUC DOUG F BL MAP WR CED TOTAL CL 68 SD: J | 8.1
1.0
.OCK
R
CE
CIR
PLE
DAR
8.1
1.0
.OCK
R
CE
CIR
PLE
DAR
8.1
1.0
.OCK
R
CE
CIR
PLE
DAR
8.1
1.0
.OCK
R
CE
CIR
PLE
DAR
CE
CIR
CIE
CIR
CIE
CIR
CIE
CIE
CIE
CIE
CIE
CIE
CIE
CIE | .1 7 | COEFF
VAR.%
110.9
77.4
72.9
65.8
87.1
166.2
COEFF
VAR.%
151.5
233.5
378.0
675.8
1493.0
1304.0
121.0
COEFF
VAR.%
134.1
218.0
277.9
687.4
1493.0
871.8
104.8
COEFF
VAR.% | S.E.% 7.2 4.9 8.6 20.8 60.3 6.9 S.E.% 10.0 15.4 24.9 44.5 98.4 85.9 8.0 S.E.% 8.8 14.4 18.3 45.3 98.4 57.4 6.9 S.E.% | I | SAMPL LOW 498 119 1,978 418 289 521 TREES/ LOW 59 37 3 1 0 0 108 BASAL LOW 85 39 10 4 0 0 148 NET BF | E TREE AVG 537 125 2,165 527 727 560 ACRE AVG 66 43 5 3 1 0 117 AREA/A AVG 94 45 12 7 1 0 159 /ACRE AVG | ES - BF HIGH 576 131 2,353 637 1,165 599 HIGH 72 50 6 4 1 0 127 ACRE HIGH 102 52 15 11 1 0 170 HIGH | # | # OF TREES 5 1,102 # OF PLOTS 5 584 # OF PLOTS 5 | 10 276 REQ. 10 146 REQ. 10 110 REQ. | 122 INF. POP. 15 65 INF. POP. 15 | | TC PS | TATS | | | | PROJEC
PROJEC | | | PAGE
DATE | 2 5/28/2013 | | | |------------|-----------|----------|------------|-------------|------------------|---------|--------|--------------|--------------------|---------|-----------| | TWP | RGE | SC | TRACT | TYP | E | A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N
04N | 08
08W | 20
33 | 1&3
6&7 | R/W
TAKI | THR | | 198.00 | 230 | 1,335 | 1 | W | | CL | 68.1 | | COEFF | | NET | BF/ACRE | | | # OF PLOT | ΓS REQ. | INF. POP. | | SD: | 00.1 | | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | BL M | IAPLE | | | | 1 1.11-3-3-3-3 | | | | | | | | WR (| CEDAR | | 1098.0 | 72.3 | 1 | 4 | 6 | | | | | | тот | AL | | | | | | 21,762 | | 467 | 117 | 52 | | TC TSTATS | | | | ST.
PROJEC | ATIST | FICS
DONUT | | | PAGE
DATE 5 | 1
5/28/2013 | |--------------------------|------------------------------|----------------|--------------|---------------|---------------|----------------|----------|---------------|----------------|----------------| | TWP RGE | SECT TR | RACT | | TYPE | | CRES | PLOTS | TREES | CuFt | BdFt | | 04N 08W | 20 18 | £3 | | TAKE | | 63.00 | 51 | 301 | 1 | W | | | | | | | | ESTIMATED | p | ERCENT | | | | | | | Т | REES | | TOTAL | | AMPLE | | | | | PLOTS | TREES | P | ER PLOT | | TREES | T | REES | | | | TOTAL | 51 | 301 | | 5.9 | | | | | | | | CRUISE | 17 | 105 | | 6.2 | | 9,145 | | 1.1 | | | | DBH COUNT | | | | | | | | | | | | REFOREST | 24 | 193 | | 5.7 | | | | | | | | COUNT
BLANKS | 34 | 193 | | 3.7 | | | | | | | | 100 % | | | | | | | | | | | | | | | STAN | D SUMM | 1ARY | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | WHEMLOCK | 47 | 53.1 | 20.1 | 64 | | 116.9 | 19,839 | 19,163 | 4,653 | 4,653 | | R ALDER | 43 | 73.8 | 14.2 | 45 | | 80.8 | 8,307 | 8,240 | 2,459 | 2,459 | | S SPRUCE | 9 | 9.9 | 18.7 | 36 | | 18.8 | 2,382 | 2,164 | 581 | 581 | | DOUG FIR
BL MAPLE | 4 2 | 6.4
1.9 | 22.7
12.2 | 85
14 | | 18.0
1.6 | 2,880 | 2,817 | 741 | 741 | | TOTAL | 105 | 145.2 | 17.3 | 53 | | 236.1 | 33,408 | 32,384 | 8,435 | 8,435 | | | | | | | | | | , | | | | | E LIMITS OF '
TIMES OUT (| | | WILL BE | WITHIN | N THE SAMP | LE ERROR | | | | | CL: 68.1 % | COEFF | | | SAMPLI | E TREE | S - BF | # | OF TREES | REQ. | INF. POP. | | SD: 1.0 | VAR.% | S.E.% | LO | W | AVG | HIGH | | 5 | 10 | 15 | | WHEMLOCK | 87.3 | 12.7 | | 627 | 718 | 810 | | | | | | R ALDER | 69.8 | 10.6 | | 130 | 145 | 161 | | | | | | S SPRUCE
DOUG FIR | 94.7
17.6 | 33.4
10.1 | | 706
398 | 1,060
443 | 1,414
487 | | | | | | BL MAPLE | 17.0 | 10.1 | | 390 | 443 | 407 | | | | | | TOTAL | 123.0 | 12.0 | | 430 | 489 | 547 | | 604 | 151 | 67 | | CL: 68.1 % | COEFF | | | TREES/A | ACRE | | # | OF PLOTS | REO. | INF. POP. | | SD: 1.0 | VAR.% | S.E.% | LO | | AVG | HIGH | " | 5 | 10 | 15 | | WHEMLOCK | 82.7 | 11.6 | | 47 | 53 | 59 | | | | | | R ALDER | 148.6 | 20.8 | | 58 | 74 | 89 | | | | | | S SPRUCE | 228.6 | 32.0 | | 7 | 10 | 13 | | | | | | DOUG FIR | 389.9
714.1 | 54.6
99.9 | | 3
0 | 6
2 | 10
4 | | | | | | BL MAPLE
TOTAL | 74.1
74.2 | 10.4 | | 130 | 145 | 160 | | 220 | 55 | 24 | | CL: 68.1 % | COEFF | 10.7 | | | | | | | | INF. POP. | | | VAR.% | S.E.% | LO | BASAL A | AKEA/A
AVG | HIGH | # | OF PLOTS
5 | 10 | 15 15 | | SD: 1.0
WHEMLOCK | 75.9 | 3.E.76
10.6 | LO | 104 | 117 | 129 | | <u> </u> | 10 | 13 | | R ALDER | 128.5 | 18.0 | | 66 | 81 | 95 | | | | | | S SPRUCE | 171.9 | 24.0 | | 14 | 19 | 23 | | | | | | DOUG FIR | 389.9 | 54.6 | | 8 | 18 | 28 | | | | | | BL MAPLE | 714.1 | 99.9 | | 0 | 2 | 3
250 | | 71 | 18 | 8 | | TOTAL | 42.2 | 5.9 | | 222 | 236 | 250 | | | | | | CL: 68.1 % | COEFF | | _ | NET BF/ | | ***** | # | OF PLOTS | | INF. POP. | | SD: 1.0
WHEMLOCK | VAR.%
76.7 | S.E.%
10.7 | LO
17 | | AVG
9,163 | HIGH
21,219 | | 5 | 10 | 15 | | R ALDER | 130.2 | 10.7 | | | 8,240 | 9,741 | | | | | | S SPRUCE | 177.3 | 24.8 | | | 2,164 | 2,701 | | | | | | DOUG FIR | 389.9 | 54.6 | | | 2,817 | 4,354 | | | | | | BL MAPLE | | | | | | | | | | | | TOTAL | 40.9 | 5.7 | 30, | 529 3. | 2,384 | 34,239 | | 67 | 17 | 7 | | TC TST | ATS | | | | S | TATIS' | TICS | | | PAGE | 1 | |---------------|--------------|----------------|-----------------|------|-------------|---|--------------------|--------|-------------------|------------|-----------| | | | | W. 10 | | PROJE | | DONUT | | | DATE 5 | 5/28/2013 | | TWP | RGE | SECT T | RACT | | TYPE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 20 A | REA2 | | TAKE | | 70.00 | 41 | 117 | 1 | W | | | | | | | TREES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | | PLOTS | TREES | | PER PLO | Γ | TREES | | TREES | | | | TOTA | AL. | 41 | 117 | | 2.9 | | , | | | | | | CRUI | | 12 | 34 | | 2.8 | | 6,941 | | .5 | | | | | COUNT | | | | | | | | | | | | | REST | | | | | | | | | | | | COUN | | 26 | 80 | | 3.1 | | | | | | | | BLAN
100 % | | 3 | | | | | | | | | | | 100 /0 | | | | | | | | | | | | | | | | | | ND SUM | | | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | | MLOCK | 19 | 50.9 | 13.6 | 46 | | 51.7 | 5,818 | | 1,569 | 1,569 | | R ALI | | 12 | 45.4 | 13.2 | 35 | | 42.9 | 2,895 | | 953 | 953 | | S SPR
TOTA | | 3
34 | 2.9 | 27.4 | 90 | | 11.7 | 2,336 | • | 561 | 561 | | 1012 | XL. | | 99.2 | 14.0 | 42 | | 106.4 | 11,049 | 10,748 | 3,083 | 3,083 | | | 68.1 | | F THE SAMPL | | | | | | | | | | | 68.1 % | | | | | LE TREE | | | # OF TREES | | INF. POP. | | | 1.0
MLOCK | VAR.%
117.6 | 6 S.E.%
27.7 | L | OW
171 | AVG
237 | HIGH
302 | | 5 | 10 | 15 | | R ALI | | 65.1 | 19.6
| | 59 | 73 | 88 | | | | | | S SPR | | 8.4 | 5.8 | | 728 | 773 | 818 | | | | | | TOTA | | 124.2 | 21.3 | | 178 | 226 | 275 | | 616 | 154 | 68 | | | 68.1 % | COEFF | | | TREES | 170011111111111111111111111111111111111 | | | # OF PLOTS | | INF. POP. | | | 1.0 | VAR.% | | L | TREES
OW | AVG | HIGH | | # OF PLOTS | 10 | 11 15 | | | MLOCK | 120.9 | 18.9 | | 41 | 51 | 61 | | | | | | R ALI | DER | 134.6 | 21.0 | | 36 | 45 | 55 | | | | | | S SPR | | 247.7 | 38.7 | | 2 | 3 | 4 | | | | | | TOTA | L | 73.4 | 11.5 | | 88 | 99 | 111 | | 215 | 54 | 24 | | CL: | 68.1 % | COEFF | | | BASAL | AREA/A | ACRE | | # OF PLOTS | S REQ. | INF. POP. | | SD: | | VAR.% | | L | OW | AVG | HIGH | | 5 | 10 | 15 | | | MLOCK | 112.4 | 17.5 | | 43 | 52 | 61 | | | | | | R ALI | | 137.1 | 21.4 | | 34 | 43 | 52 | | | | | | S SPR | | 244.5 | 38.2 | | 7 | 12 | 16 | | | | | | TOTA | | 65.5 | 10.2 | | 95 | 106 | 117 | | 171 | 43 | 19 | | | 68.1 % | COEFF | | | | F/ACRE | | | # OF PLOTS | S REQ. | INF. POP. | | SD: | | VAR.% | | | OW | AVG | HIGH | | 5 | 10 | 15 | | | MLOCK | 118.1 | 18.4 | | 4,632 | 5,678 | 6,724 | | | | | | R ALE | | 137.9 | 21.5 | | 2,241 | 2,856 | 3,471 | | | | | | S SPR | | 247.8 | 38.7 | | 1,358 | 2,214 | 3,070 | | 214 | <i>5 1</i> | 2.4 | | TOTA | N.L. | 73.3 | 11.4 | 9 | 0,519 | 10,748 | 11,977 | | 214 | 54 | 24 | | TC TST | ΓATS | | | | S'
PROJE | TATIS
ECT | TICS
DONUT | | | PAGE
DATE | 1
5/28/2013 | |---------------|-----------------------|-----------------|-------------------------------|------------|--------------|----------------|--------------------|----------------|-------------------|----------------|----------------| | TWP | RGE | SECT | TRACT | | TYPE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 29 | AREA4 | | 00PC | | 8.00 | 3 | 126 | 1 | W | | | | | | Т | REES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | | PLOTS | TREES | P | ER PLO | Т | TREES | | TREES | | | | | ISE
COUNT
DREST | 3 | | | 42.0
42.0 | | 126 | | 100.0 | | | | BLAN
100 % | | | | | | | | | | | | | | | | | STAN | D SUM | MARY | | · w | | | | | | | SAMPLE
TREES | | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | R ALI | | 12 | | 14.7 | 45 | | 18.6 | 1,945 | , | 574 | | | TOTA | AL | 12 | 6 15.8 | 14.7 | 45 | | 18.6 | 1,945 | 1,923 | 574 | 574 | | CON | | | OF THE SAMPI
UT OF 100 THE | | WILL B | E WITHII | N THE SAMP | LE ERROR | _ | | | | CL: | 68.1 % | COE | EFF | | SAMPI | LE TREE | ES - BF | | # OF TREES | REQ. | INF. POP. | | SD: | 1.0 | VAI | R.% S.E.% | LO | W | AVG | HIGH | | 5 | 10 | 15 | | R ALI | | 81 | | | 113 | 122 | 131 | | | | | | TOTA | AL | 81. | 5 7.3 | | 113 | 122 | 131 | | 265 | 66 | 29 | | CL: | 68.1 % | COE | EFF | | TREES | S/ACRE | | | # OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | VAF | R.% S.E.% | LO | W | AVG | HIGH | | 5 | 10 | 15 | | R ALI | | 15. | | | 14 | 16 | 17 | | | | | | TOTA | A L | 15. | 6 , 10.8 | | 14 | 16 | 17 | | 14 | 4 | 2 | | CL: | 68.1 % | COE | EFF | | BASAL | AREA/A | ACRE | | # OF PLOTS | S REQ. | INF. POP. | | SD: | | VAF | | LO | | AVG | HIGH | | 5 | 10 | 15 | | R ALI | | 30.
30. | | | 15
15 | 19
19 | 23
23 | | 54 | 13 | 6 | | | 68.1 % | COE | | | | | | | · | | | | | | | | | | F/ACRE | шен | | # OF PLOTS | • | INF. POP. | | SD:
R ALI | 1.0
DER | VAF
41. | | LO | w
371 | AVG
1,923 | HIGH 2,474 | | 5 | 10 | 15 | | TOTA | | 41.
41 | | | 371
371 | 1,923
1,923 | 2,474
2,474 | | 99 | 25 | 11 | | 1017 | ~~ | 71 | 20.7 | 1,, | | 1,743 | 4,7/7 | | | 23 | 11 | | | TATS | | | | ST
PROJE | CATIS' | TICS
DONUT | | | PAGE
DATE 5 | 1
5/28/2013 | |--|---|--|---|--------------|---|--|--|----------------|---------------------------------------|----------------------------|---------------------------------------| | TWP | RGE | SECT TI | RACT | | TYPE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 20 A | REA5 | | TAKE | | 43.00 | 30 | 107 | 1 | W | | | | | | | TREES | | ESTIMATED
TOTAL | | ERCENT | | | | | | DI OTE | TDEEC | | | , | | | AMPLE | | | | | | PLOTS | TREES | | PER PLOT | | TREES | 1. | REES | | ·········· | | TOTA | | 30 | 107 | | 3.6 | | | | _ | | | | CRUI | | 10 | 32 | | 3.2 | | 4,708 | | .7 | | | | | COUNT | | | | | | | | | | | | | REST | 1.0 | 64 | | 2.6 | | | | | | | | COUN | | 18
2 | 64 | | 3.6 | | | | | | | | 100 % | | 2 | | | | | | | | | | | 100 70 | 0 | | | C/T A 1 | NID CLUM | A A DAZ | | | | | | | | | CANONE | EDEE | | ND SUMI | | DAGAT | op.ogg | 3.177 | 00000 |) IEM | | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | WITTE | MLOCK | | | | 62 | DEN | | | | | | | DOUG | | 29
1 | 100.8
2.8 | 15.3
21.0 | 82
82 | | 128.0
6.7 | 17,479
832 | 17,273
832 | 4,795
263 | 4,795
263 | | R ALI | | 1 | 4.8 | 16.0 | 56 | | 6.7 | 859 | 852
859 | 203 | 203 | | S SPR | | 1 | 1.1 | 15.0 | 41 | | 1.3 | 65 | 65 | 33 | 33 | | TOTA | | 32 | 109.5 | 15.5 | 62 | | 142.7 | 19,235 | 19,029 | 5,315 | 5,315 | | | 68.1 % | COEFF | | | SAMPL | E TREE | S - BF | # | OF TREES | REQ. | INF. POP. | | SD: | 1.0 | VAR.% | | LC | OW | AVG | HIGH | # | OF TREES
5 | REQ.
10 | | | SD:
WHEN
DOUG
R ALI | 1.0
MLOCK
3 FIR
DER | | S.E.%
12.5 | LC | | | | # | | | INF. POP.
1 | | SD:
WHEN
DOUG
R ALI
S SPR | 1.0
MLOCK
3 FIR
DER
LUCE | VAR.% | | LC | OW | AVG | HIGH | # | | | 1 | | SD:
WHEN
DOUG
R ALI
S SPR
TOTA | 1.0
MLOCK
3 FIR
DER
LUCE | VAR.%
66.2 | 12.5 | LC | 200
200 | AVG 232 227 | HIGH
261 | | 5 | 10 | 1. | | SD: WHEN DOUG R ALE S SPR TOTA CL: | 1.0
MLOCK
G FIR
DER
CUCE | VAR.%
66.2 | 12.5 | | OW 203 | AVG 232 227 | HIGH
261 | | 5 | 10 | 1 INF. POP. | | SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN | 1.0
MLOCK
G FIR
DER
EUCE
AL
68.1 %
1.0
MLOCK | VAR.% 66.2 66.0 COEFF VAR.% 76.3 | 12.5 11.7 S.E.% 14.2 | | 200
TREES/ | 232
227
2ACRE | HIGH 261 253 | | 5
174
OF PLOTS | 10
43
REQ. | 1 INF. POP. | | SD: WHEN DOUG R ALI S SPR TOTA CL: SD: WHEN | 1.0
MLOCK
G FIR
DER
EUCE
AL
68.1 %
1.0
MLOCK
G FIR | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 | 12.5 11.7 S.E.% 14.2 66.0 | | 200 TREES/ DW 87 1 | 227 2ACRE AVG 101 3 | HIGH 261 253 HIGH 115 5 | | 5
174
OF PLOTS | 10
43
REQ. | 1 INF. POP. | | SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI | 1.0
MLOCK
G FIR
DER
LUCE
AL
68.1 %
1.0
MLOCK
G FIR
DER | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 | 11.7 S.E.% 14.2 66.0 51.4 | | 200 TREES/ DW 87 | 227 ACRE AVG 101 3 5 | HIGH 261 253 HIGH 115 5 7 | | 5
174
OF PLOTS | 10
43
REQ. | 1 INF. POP. | | SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR | 1.0
MLOCK
G FIR
DER
LUCE
AL
68.1 %
1.0
MLOCK
G FIR
DER
LUCE | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 | 11.7 S.E.% 14.2 66.0 51.4 101.7 | | 200
TREES/
DW 87
1 2 | 227 ACRE AVG 101
3 5 1 | HIGH 261 253 HIGH 115 5 7 2 | | 5
174
OF PLOTS
5 | 10
43
REQ.
10 | 1 INF. POP. 1 | | SD: WHEN DOUG R ALE S SPR TOTA CL: SD: WHEN DOUG R ALE S SPR TOTA | 1.0 MLOCK G FIR DER EUCE AL 68.1 % 1.0 MLOCK G FIR DER UCE AL | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 | 11.7 S.E.% 14.2 66.0 51.4 | | 200
TREES/
DW 87
1
2 | 227 ACRE AVG 101 3 5 1 109 | HIGH 261 253 HIGH 115 5 7 2 123 | # | 5
174
OF PLOTS
5 | 10
43
REQ.
10 | 1 INF. POP. 1 | | SD: WHEN DOUC R ALI S SPR TOTA CL: WHEN DOUC R ALI S SPR TOTA | 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF | 12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 | LC | 200 TREES/ DW 87 1 2 96 BASAL | 227 ACRE AVG 101 3 5 1 109 AREA/A | HIGH 261 253 HIGH 115 5 7 2 123 | # | 5 174 OF PLOTS 5 185 OF PLOTS | 43 REQ. 10 46 REQ. | INF. POP. 2 INF. POP. | | SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: S SPR | 1.0 MLOCK G FIR DER CUCE AL 68.1 % 1.0 MLOCK G FIR DER UCE AL 68.1 % 1.0 | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% | 12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% | LC | 200 TREES/ DW 87 1 2 96 BASAL DW | 227 ACRE AVG 101 3 5 1 109 AREA/A | HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH | # | 5
174
OF PLOTS
5 | 10
43
REQ.
10 | | | SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: S SPR TOTA | 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK MLOCK | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 | 12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 | LC | 200 TREES/ DW 87 1 2 96 BASAL DW 111 | 227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 | HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 | # | 5 174 OF PLOTS 5 185 OF PLOTS | 43 REQ. 10 46 REQ. | 1 INF. POP. 1 2 INF. POP. | | SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: S SPR TOTA CL: SD: WHEN DOUC | 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 | 12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 | LC | 200 TREES/ DW 87 1 2 96 BASAL DW | 227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 | HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 | # | 5 174 OF PLOTS 5 185 OF PLOTS | 43 REQ. 10 46 REQ. | 1 INF. POP. 1 2 INF. POP. | | SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA | 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 | 12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 | LC | 200 TREES/ DW 87 1 2 96 BASAL DW 111 2 | 227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 | HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 | # | 5 174 OF PLOTS 5 185 OF PLOTS | 43 REQ. 10 46 REQ. | INF. POP. 2 INF. POP. | | SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: WHEN DOUC R ALI S SPR WHEN DOUC R ALI S SPR | 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL UCE MLOCK G FIR DER LUCE | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 276.7 | 12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 51.4 | LC | 200 TREES/ DW 87 1 2 96 BASAL DW 111 2 | 227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 7 | HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 10 | # | 5 174 OF PLOTS 5 185 OF PLOTS | 43 REQ. 10 46 REQ. | INF. POP. 2 INF. POP. | | SD: WHEN DOUG R ALI S SPR TOTA CL: WHEN DOUG R ALI S SPR TOTA CL: SD: WHEN DOUG R ALI S SPR TOTA TOTA | 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL UCE MLOCK G FIR DER LUCE | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 276.7 547.7 | 12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 51.4 101.7 | LC | 200 TREES/ DW 87 1 2 96 BASAL DW 111 2 3 | 227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 7 1 143 | HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 10 3 | # | 5 174 OF PLOTS 5 185 OF PLOTS 5 | 43 REQ. 10 46 REQ. 10 | 1 INF. POP. 1 INF. POP. 1 | | SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN CL: STONE STO | 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 1.0 MLOCK G FIR DER LUCE AL 1.0 | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 276.7 547.7 58.3 | 12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 51.4 101.7 | LC | 200 TREES/ DW 87 1 2 96 BASAL DW 111 2 3 | 227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 7 1 143 | HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 10 3 | # | 5 174 OF PLOTS 5 185 OF PLOTS 5 | 43 REQ. 10 46 REQ. 10 | 1 INF. POP. 1 INF. POP. 1 | | SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUG R ALI S SPR TOTA CL: STOTA CL: STOTA CL: STOTA | 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 276.7 547.7 58.3 COEFF | 12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 51.4 101.7 10.8 | I.C. | 200 TREES/ DW 87 1 2 96 BASAL DW 111 2 3 127 NET BF | 227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 7 1 143 | HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 10 3 158 | # | 5 174 OF PLOTS 5 185 OF PLOTS 5 | 43 REQ. 10 46 REQ. 10 35 | 1 INF. POP. 1 INF. POP. 1 INF. POP. | | SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUC R ALI S SPR TOTA CL: SD: WHEN DOUG R ALI S SPRI TOTA CL: S SPRI TOTA CL: S SPRI TOTA CL: S SPRI TOTA | 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 276.7 547.7 58.3 COEFF VAR.% 68.9 355.3 | 12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 51.4 101.7 10.8 S.E.% 12.8 66.0 | I.C. | 200 TREES/ DW 87 1 2 96 BASAL DW 111 2 3 127 NET BF DW 5,062 283 | 227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 7 1 143 VACRE AVG 17,273 832 | HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 10 3 158 HIGH | # | 5 174 OF PLOTS 5 185 OF PLOTS 5 | 43 REQ. 10 46 REQ. 10 35 | 1 INF. POP. 1 INF. POP. 1 INF. POP. | | SD: WHEN DOUG R ALI S SPR TOTA CL: SD: WHEN DOUG R ALI S SPR TOTA CL: SD: WHEN DOUG R ALI S SPRI TOTA CL: S SPRI TOTA CL: S SPRI TOTA CL: R ALI S SPRI TOTA CL: R ALI S SPRI TOTA CL: R ALI S SPRI TOTA CL: R ALI S SPRI TOTA | 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 276.7 547.7 58.3 COEFF VAR.% 68.9 355.3 276.7 | 12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 51.4 101.7 10.8 S.E.% 12.8 66.0 51.4 | I.C. | 200 TREES/ DW 87 1 2 96 BASAL DW 111 2 3 127 NET BF DW 5,062 | 227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 1 143 VACRE AVG 17,273 832 859 | HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 10 3 158 HIGH 19,483 1,380 1,301 | # | 5 174 OF PLOTS 5 185 OF PLOTS 5 | 43 REQ. 10 46 REQ. 10 35 | 1 INF. POP. 1 INF. POP. 1 INF. POP. | | SD: WHEN DOUG R ALI S SPR TOTA CL: SD: WHEN DOUG R ALI S SPR TOTA CL: SD: WHEN DOUG R ALI S SPRI TOTA CL: S SPRI TOTA CL: S SPRI TOTA | 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL 68.1 % 1.0 MLOCK G FIR DER LUCE AL MLOCK G FIR DER LUCE AL MLOCK G FIR DER LUCE AL MLOCK G FIR DER LUCE MLOCK G FIR DER LUCE MLOCK G FIR DER LUCE | VAR.% 66.2 66.0 COEFF VAR.% 76.3 355.3 276.7 547.7 66.8 COEFF VAR.% 69.8 355.3 276.7 547.7 58.3 COEFF VAR.% 68.9 355.3 | 12.5 11.7 S.E.% 14.2 66.0 51.4 101.7 12.4 S.E.% 13.0 66.0 51.4 101.7 10.8 S.E.% 12.8 66.0 | LC
15 | 200 TREES/ DW 87 1 2 96 BASAL DW 111 2 3 127 NET BF DW 5,062 283 418 | 227 ACRE AVG 101 3 5 1 109 AREA/A AVG 128 7 7 1 143 VACRE AVG 17,273 832 | HIGH 261 253 HIGH 115 5 7 2 123 ACRE HIGH 145 11 10 3 158 HIGH 19,483 1,380 | # | 5 174 OF PLOTS 5 185 OF PLOTS 5 | 43 REQ. 10 46 REQ. 10 35 | 1 INF. POP. 1 INF. POP. 1 | | TC TST | TATS | | | | S'
PROJE | TATIS
CT | TICS
DONUT | | | PAGE
DATE | 1
5/28/2013 | |--------|------------|---------------|--------------|------|-------------|-----------------|--------------------|--------|-------------------|--------------|----------------| | TWP | RGE | SECT TF | RACT | | TYPE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 33 68 | 27 | | TAKE | | 10.00 | 13 | 59 | 1 | W | | | | | | Т | REES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | | PLOTS | TREES | P | ER PLO | Γ | TREES | | TREES | | | | TOTA | A L | 13 | 59 | | 4.5 | | | | | | | | CRUI | SE | 11 | 59 | | 5.4 | | 1,714 | | 3.4 | | | | DBH | COUNT | | | | | | | | | | | | l | DREST | | | | | | | | | | | | COU | NT | | | | | | | | | | | | BLAN | | 2 | | | | | | | | | | | 100 % | ó . | | | | | | | | | | | | | | | | STAN | D SUM | MARY | | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | S NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | WHE | MLOCK | 52 | 152.9 | 13.9 | 52 | | 160.0 | 21,404 | 21,159 | 5,779 | 5,779 | | R ALI | DER | 7 | 18.5 | 14.6 | 32 | | 21.5 | 1,736 | 1,675 | 506 | 506 | | TOTA | A L | 59 | 171.4 | 13.9 | 50 | | 181.5 | 23,140 | 22,834 | 6,285 | 6,285 | | CL: | 68.1 % | TIMES OUT (| OF 100 THE | | | E WITHI LE TREI | | | # OF TREES | S REO | INF. POP. | | | 1.0 | VAR.% | S.E.% | LO | | AVG |
HIGH | | # O1 TREELS | 10 | 15 | | | MLOCK | 103.0 | 14.3 | | 207 | 242 | 276 | | | 10 | 13 | | R ALI | | 42.7 | 17.4 | | 93 | 113 | 132 | | | | | | TOTA | A L | 105.0 | 13.7 | | 196 | 226 | 257 | | 440 | 110 | 49 | | CL: | 68.1 % | COEFF | | | TREES | /ACRE | | | # OF PLOTS | S REQ. | INF. POP. | | | 1.0 | VAR.% | S.E.% | LO | | AVG | HIGH | | 5 | 10 | 15 | | | MLOCK | 95.2 | 27.5 | | 111 | 153 | 195 | | | | | | R ALI | | 232.7 | 67.1 | | 6 | 18 | 31 | | 20.4 | 7.1 | 22 | | TOTA | 68.1 % | 81.1
COEFF | 23.4 | | 131 | 171 | 211 | | 284 | 71 | 32 | | | | | 0.704 | | | AREA/ | | | # OF PLOTS | - | INF. POP. | | | 1.0 | VAR.% | S.E.% | LO | | AVG | HIGH | | 5 | 10 | 15 | | R ALI | MLOCK | 79.1
209.2 | 22.8
60.3 | | 124
9 | 160
22 | 196
35 | | | | | | TOTA | | 64.0 | 18.4 | | 9
148 | 182 | 215 | | 177 | 44 | 20 | | | 68.1 % | COEFF | 10.4 | | | VACRE | 213 | | # OF PLOTS | | INF. POP. | | | 1.0 | VAR.% | S.E.% | LO | | AVG | HIGH | | # OF PLOTS | 10 | INF. POP. | | | MLOCK | 79.8 | 23.0 | | w
290 | 21,159 | 26,029 | | <u>J</u> | 10 | 13 | | R ALE | | 206.2 | 59.4 | - | 679 | 1,675 | 2,670 | | | | | | TOTA | | 69.7 | 20.1 | 18,. | | 22,834 | 27,421 | | 210 | 52 | 23 | | | - | 07.7 | 20.1 | 10,2 | - • • • | ,051 | 2,,,21 | | #10° | 22 | 23 | | TC PS | TATS | | | | DJECT S
OJECT | | ISTICS
NUT | | | PAGE
DATE | 1
5/28/2013 | |--|--|---|---|--------------|--|---|---|----------------|------------------------------------|---|---| | TWP | RGE | SC TRACT | Γ | ТҮРЕ | | A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N
04N | 08
08W | 20 1&3
20 AREA2 | | R/W
R/W | | | 4.00 | 92 | 625 | 1 | W | | | | | *** | | TREES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | (11111111111111111111111111111111111111 | | | | PLOTS | TREES | | PER PLOT | | TREES | | TREES | | | | TOTA | A L | 92 | 625 | | 6.8 | | | | | | | | CRUI | | 35 | 215 | | 6.1 | | 568 | | 37.9 | | | | | COUNT | | | | | | | | | | | | COU | DREST
NT | 57 | 381 | | 6.7 | | | | | | | | BLAN | | 31 | 501 | | 0.7 | | | | | | | | 100 % | | | | | | | | | | | | | <u> </u> | | | | STA | ND SUMN | /IARY | | | | · · · · · · · · · · · · · · · · · · · | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | | MLOCK | 90 | 66.6 | 18.0 | 54 | | 117.1 | 19,397 | 18,803 | 4,525 | 4,525 | | S SPF | | 58 | 11.8 | 39.1 | 83 | | 98.5 | 19,486 | 17,500 | 4,268 | 4,268 | | R AL | | 56
6 | 59.7
2.2 | 13.1
23.7 | 36
88 | | 56.1
6.7 | 4,373
1,174 | 4,326
1,145 | 1,375
289 | 1,375
289 | | | EDAR | 3 | 1.1 | 19.2 | 24 | | 2.2 | 1,174 | 1,143 | 52 | 52 | | | APLE | 2 | .5 | 12.2 | 14 | | .4 | 101 | 175 | 32 | 32 | | TOT | AL | 215 | 141.9 | 19.1 | 49 | | 281.0 | 44,613 | 41,949 | 10,509 | 10,509 | | | 68 | .1 TIMES O | UT OF 100 T | THE VOLU | ME WILL | BE WIT | HIN THE SAN | IPLE ERRO | OR | | | | CI | 68 1 | COFFE | | | SAMPL | r TRFF | S_RF | # | OF TREES | REO | INE POP | | CL
SD: | 68.1 | COEFF
VAR.% | | L | SAMPL
OW | | | # | OF TREES | | INF. POP. | | SD: | 68.1
1.0
MLOCK | COEFF
VAR.%
91.5 | | L | SAMPL
OW
700 | E TREE
AVG
775 | S - BF
HIGH
849 | # | OF TREES | REQ.
10 | INF. POP. | | SD: | 1.0
MLOCK | VAR.% | S.E.% | | OW | AVG | HIGH | # | | | | | SD:
WHE
S SPR
R ALI | 1.0
MLOCK
RUCE
DER | VAR.%
91.5
64.2
76.3 | S.E.%
9.6
8.4
10.2 | | 700
2,239
115 | 775
2,445
128 | HIGH
849
2,651
140 | # | | | | | SD:
WHE
S SPR
R ALI
DOUG | 1.0
MLOCK
RUCE
DER
G FIR | VAR.%
91.5
64.2
76.3
73.8 | S.E.%
9.6
8.4
10.2
32.9 | | OW
700
2,239
115
417 | 775
2,445
128
622 | HIGH
849
2,651
140
826 | # | | | | | SD:
WHE
S SPR
R ALI
DOUG
WR C | 1.0
MLOCK
RUCE
DER
G FIR
EEDAR | VAR.%
91.5
64.2
76.3 | S.E.%
9.6
8.4
10.2 | | 700
2,239
115 | 775
2,445
128 | HIGH
849
2,651
140 | # | | | | | SD:
WHE
S SPR
R ALI
DOUG | 1.0
MLOCK
RUCE
DER
G FIR
CEDAR
APLE | VAR.%
91.5
64.2
76.3
73.8 | S.E.%
9.6
8.4
10.2
32.9 | | 700
2,239
115
417
289 | 775
2,445
128
622 | HIGH
849
2,651
140
826 | # | | | | | SD: WHE S SPR R ALI DOUG WR C BL M TOTA | 1.0
MLOCK
RUCE
DER
G FIR
CEDAR
APLE | VAR.%
91.5
64.2
76.3
73.8
87.1 | S.E.%
9.6
8.4
10.2
32.9
60.3
8.4 | | 700
2,239
115
417
289 | AVG
775
2,445
128
622
727
1,045 | HIGH
849
2,651
140
826
1,165 | | 5 | 10
153 | 15 | | SD: WHEI S SPR R ALL DOUG WR C BL M TOTA CL SD: | 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% | S.E.%
9.6
8.4
10.2
32.9
60.3
8.4
S.E.% | | 700
700
2,239
115
417
289
956
TREES/ | AVG
775
2,445
128
622
727
1,045
ACRE
AVG | HIGH 849 2,651 140 826 1,165 1,133 HIGH | | 5 | 10
153 | 15 | | SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI | 1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 | | 700
2,239
115
417
289
956
TREES/ | 775
2,445
128
622
727
1,045
ACRE
AVG | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 | | 5
613
OF PLOTS | 10
153
REQ. | 68
INF. POP. | | SD: WHE S SPR R ALL DOUG WR C BL M TOTA CL SD: WHEI S SPR | 1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK RUCE | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 | | 700
700
2,239
115
417
289
956
TREES/A | 775
2,445
128
622
727
1,045
ACRE
AVG
67
12 | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 | | 5
613
OF PLOTS | 10
153
REQ. | 68
INF. POP. | | SD: WHE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI | 1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK RUCE DER | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 | | 700
2,239
115
417
289
956
TREES/ | 775
2,445
128
622
727
1,045
ACRE
AVG
67
12
60 | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 | | 5
613
OF PLOTS | 10
153
REQ. | 68
INF. POP. | | SD: WHE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG | 1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK RUCE DER | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 | | 700
2,239
115
417
289
956
TREES/2
OW
57
10 | 775
2,445
128
622
727
1,045
ACRE
AVG
67
12 | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 | | 5
613
OF PLOTS | 10
153
REQ. | 68
INF. POP. | | SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M | 1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR ALL | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 | | 700
700
2,239
115
417
289
956
TREES/A
OW
57
10
50
1 | 775
2,445
128
622
727
1,045
ACRE
AVG
67
12
60
2 | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 | | 5
613
OF PLOTS
5 | 10
153
REQ. | 68
INF. POP. | | SD: WHE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C | 1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR ALL | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 | | 700
700
2,239
115
417
289
956
TREES/A
OW
57
10
50
1 | 775
2,445
128
622
727
1,045
ACRE
AVG
67
12
60
2 | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 | | 5
613
OF PLOTS | 10
153
REQ. | 68 INF. POP. | | SD: WHE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA | 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 |
L | 700
700
2,239
115
417
289
956
TREES/2
OW
57
10
50
1
0
0
128 | AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 | # | 5 613 OF PLOTS: 5 | 153 REQ. 10 83 REQ. | 68 INF. POP. 15 37 INF. POP. | | SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: | 1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% | L | 700
700
2,239
115
417
289
956
TREES/
OW
57
10
50
1
0
0
128
BASAL | 775
2,445
128
622
727
1,045
ACRE
AVG
67
12
60
2
1
0
142
AREA/A | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH | # | 5
613
OF PLOTS
5 | 153
REQ.
10 | 68
INF. POP.
15 | | SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI SD: | 1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 | L | 700
700
2,239
115
417
289
956
TREES/
OW
57
10
50
1
0
0
128
BASAL | 775
2,445
128
622
727
1,045
ACRE
AVG
67
12
60
2
1
0
142
AREA/A
AVG
117 | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 | # | 5 613 OF PLOTS: 5 | 153 REQ. 10 83 REQ. | 68 INF. POP. 15 37 INF. POP. | | SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: | 1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE LUCE LUCE LUCE LUCE LUCE LUCE LUCE L | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% | L | 700
700
2,239
115
417
289
956
TREES/
OW
57
10
50
1
0
0
128
BASAL | 775
2,445
128
622
727
1,045
ACRE
AVG
67
12
60
2
1
0
142
AREA/A | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH | # | 5 613 OF PLOTS: 5 | 153 REQ. 10 83 REQ. | 68 INF. POP. 15 37 INF. POP. | | SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SP: WHEI S SPR R ALI DOUG | 1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9 | L | 700
700
2,239
115
417
289
956
TREES/
OW
57
10
50
1
0
0
128
BASAL | AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 | # | 5 613 OF PLOTS: 5 | 153 REQ. 10 83 REQ. | 68 INF. POP. 15 37 INF. POP. | | SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C | 1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE G FIR EEDAR APLE G FIR EDAR APLE AL 68.1 1.0 | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 547.7 | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9 57.0 | L | OW 700 2,239 115 417 289 956 TREES/ OW 57 10 50 1 0 0 128 BASAL A OW 104 83 48 4 1 | AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 2 | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 65 9 3 | # | 5 613 OF PLOTS: 5 | 153 REQ. 10 83 REQ. | 68 INF. POP. 15 37 INF. POP. | | SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA | 1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE G FIR EEDAR APLE G FIR EDAR APLE DER G FIR EDAR APLE DER G FIR EDAR APLE | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 547.7 959.2 | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9 57.0 99.9 | L | 700 700 2,239 115 417 289 956 TREES/A OW 57 10 50 1 0 0 128 BASAL A OW 104 83 48 4 1 0 | AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 2 0 | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 65 9 3 1 | # | 5 613 OF PLOTS: 5 333 OF PLOTS: 5 | 10 153 REO. 10 83 REO. 10 | 68 INF. POP. 15 37 INF. POP. 15 | | SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA | 1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 547.7 959.2 75.7 | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9 57.0 | L | 700 700 2,239 115 417 289 956 TREES/ OW 57 10 50 1 0 0 128 BASAL OW 104 83 48 4 1 0 259 | AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 2 0 281 | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 65 9 3 | # | 5 613 OF PLOTS: 5 333 OF PLOTS: 5 | 10 153 REQ. 10 83 REQ. 10 | 68 INF. POP. 15 37 INF. POP. 15 | | SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL | 1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 547.7 959.2 75.7 COEFF | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9 57.0 99.9 7.9 | L | OW 700 2,239 115 417 289 956 TREES/ OW 57 10 50 1 0 0 128 BASAL A OW 104 83 48 4 1 0 259 NET BF/ | AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 2 0 281 ACRE | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 65 9 3 1 303 | # | 5 613 OF PLOTS: 5 333 OF PLOTS: 5 | 10 153 REO. 10 83 REO. 10 57 REO. | 68 INF. POP. 15 37 INF. POP. 15 | | SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: | 1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 547.7 959.2 75.7 COEFF VAR.% | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9 57.0 99.9 7.9 S.E.% | L. | 700 700 2,239 115 417 289 956 TREES/ OW 57 10 50 1 0 0 128 BASAL OW 104 83 48 4 1 0 259 NET BF/ | AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 2 0 281 ACRE AVG | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 65 9 3 1 303 HIGH | # | 5 613 OF PLOTS: 5 333 OF PLOTS: 5 | 10 153 REQ. 10 83 REQ. 10 | 68 INF. POP. 15 37 INF. POP. 15 | | SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEI S SPR R ALI DOUG WR C BL M TOTA CL SD: | 1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK REDER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 547.7 959.2 75.7 COEFF | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.% 11.3 15.4 15.2 40.9 57.0 99.9 7.9 | L. | OW 700 2,239 115 417 289 956 TREES/ OW 57 10 50 1 0 0 128 BASAL OW 104 83 48 4 1 0 259 NET BF/ OW 6,686 | AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 2 0 281 ACRE | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 65 9 3 1 303 | # | 5 613 OF PLOTS: 5 333 OF PLOTS: 5 | 10 153 REO. 10 83 REO. 10 57 REO. | 68 INF. POP. 15 37 INF. POP. 15 | | SD: WHEE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEE S SPR R ALI DOUG WR C BL M TOTA CL SD: WHEE SD: | 1.0 MLOCK RUCE DER G FIR EEDAR AL 68.1 1.0 MLOCK RUCE DER G FIR EEDAR APLE AL 68.1 1.0 MLOCK REDAR APLE AL 68.1 1.0 MLOCK REDAR APLE AL 68.1 1.0 MLOCK RUCE DER G FIR EDAR APLE AL 68.1 1.0 MLOCK REDAR APLE AL 68.1 | VAR.% 91.5 64.2 76.3 73.8 87.1 123.9 COEFF VAR.% 134.0 131.5 152.2 412.2 823.7 959.2 91.3 COEFF VAR.% 108.2 147.8 145.5 392.9 547.7 959.2 75.7 COEFF VAR.% 108.1 | S.E.% 9.6 8.4 10.2 32.9 60.3 8.4 S.E.% 14.0 13.7 15.9 42.9 85.8 99.9 9.5 S.E.%
11.3 15.4 15.2 40.9 57.0 99.9 7.9 S.E.% 11.3 | L(| OW 700 2,239 115 417 289 956 TREES/OW 57 10 50 1 0 0 128 BASAL OW 104 83 48 4 1 0 259 NET BEOW 6,686 14,747 | AVG 775 2,445 128 622 727 1,045 ACRE AVG 67 12 60 2 1 0 142 AREA/A AVG 117 99 56 7 2 0 281 ACRE AVG 8,803 | HIGH 849 2,651 140 826 1,165 1,133 HIGH 76 13 69 3 2 1 155 ACRE HIGH 130 114 65 9 3 1 303 HIGH 20,920 | # | 5 613 OF PLOTS: 5 333 OF PLOTS: 5 | 10 153 REO. 10 83 REO. 10 57 REO. | 68 INF. POP. 15 37 INF. POP. 15 | | TC PS | TATS | | | F | PROJEC
PROJEC | | ISTICS
NUT | , | | PAGE
DATE | 2 5/28/2013 | |------------|----------------|----------|--------------|------------|------------------|---------|---------------|-------|-----------|--------------|--------------------| | TWP | RGE | SC | TRACT | TYPE | , | A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N
04N | 08
08W | 20
20 | 1&3
AREA2 | R/W
R/W | | | 4.00 | 92 | 625 | 1 | W | | CL | 68.1 | | COEFF | | NET | BF/ACRE | | | # OF PLOT | S REQ. | INF. POP. | | SD: | 1.00 | | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | | CEDAR
IAPLE | | 692.4 | 72.1 | 49 | 175 | 302 | | - | 10 13 11 | "" | | тот | AL | | 81.0 | 8.4 | 38,411 | 41,949 | 45,486 | | 262 | 65 | 29 | | TC TST | `ATS | | | | ST
PROJE | ATIS | TICS
DONUT | | | PAGE
DATE 5 | 15/28/2013 | |----------------------|----------------------------|-----------------|-------------------------|--------------|--------------------|------------------|-----------------------------|----------------|-------------------------|----------------|--------------| | TWP | RGE | SECT T | TRACT | | TYPE | | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | | AREA2 | | LEAV | | 70.00 | 41 | 200 | 1 | W | | | | PLOTS | TREES | | TREES
PER PLOT | , | ESTIMATED
TOTAL
TREES | S | ERCENT
AMPLE
REES | | | | TOTA | τ. | 41 | 200 | | 4.9 | | IKEES | 1 | KEES | | | | REFO
COUN | SE
COUNT
DREST
NT | 17
24 | 77 | | 4.5 | | 3,005 | | 2.6 | | | | BLAN
100 % | | | | | | | | | | | | | 100 70 | | · | | STA | ND SUMI | MARV | | | | | | | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | SPRU | CELV | 43 | 9.6 | 45.9 | 99 | | 110.2 | 22,314 | 19,940 | 4,838 | 4,838 | | HEMI
SNAG | | 22
6 | 18.8
1.1 | 25.1
35.4 | 70
63 | | 64.7
7.8 | 13,423 | 12,982 | 2,909 | 2,909 | | | LEAV | 1 | 11.1 | 9.0 | 17 | | 7.8
4.9 | 111 | 111 | 45 | 45 | | | GLEAV | 2 | .8 | 26.1 | 96 | | 2.9 | 605 | 587 | 139 | 139 | | CEDL | | 3 | 1.5 | 19.2 | 24 | | 2.9 | 245 | 234 | 69
7.000 | 69 | | TOTA | AL | 77 | 42.9 | 28.8 | 61 | | 193.6 | 36,699 | 33,854 | 7,999 | 7,999 | | CONI | | | THE SAMPL
OF 100 THE | | E WILL BE | WITHI | N THE SAMPI | LE ERROR | | | | | CL: | 68.1 % | COEFF | 3 | | SAMPL | E TREI | ES - BF | # | OF TREES | REQ. | INF. POP. | | SD: | 1.0 | VAR.% | | | OW | AVG | HIGH | | 5 | 10 | 15 | | SPRU
HEML
SNAG | LEAV | 53.4
59.5 | 8.1
13.0 | | 2,567
1,110 | 2,795
1,275 | 3,022
1,441 | | | | | | | LEAV | 00.0 | mm ^ | | 225 | 000 | 1.505 | | | | | | CEDL | GLEAV
FAV | 82.3
87.1 | 77.0
60.3 | | 225
289 | 980
727 | 1,735
1,165 | | | | | | TOTA | | 77.9 | 8.9 | | 1,803 | 1,979 | 2,155 | | 243 | 61 | 27 | | CL: | 68.1 % | COEFF | 7 | | TREES | ACRE | | # | OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | VAR.% | | L | OW | AVG | HIGH | | 5 | 10 | 15 | | SPRU | | 79.5 | 12.4
18.1 | | 8
15 | 10
19 | 11
22 | | | | | | HEML
SNAG | | 116.3
302.6 | 47.2 | | 13 | 19 | 2 | | | | | | ALDR | | 360.3 | 56.2 | | 5 | 11 | 17 | | | | | | | GLEAV | 381.5 | 59.5 | | 0 | 1 | 1 | | | | | | CEDLE
TOTA | | 548.6
101.3 | 85.6
15.8 | | 0
<i>36</i> | 1
43 | 3
50 | | 409 | 102 | 45 | | | 68.1 % | COEFF | | | | | | | | | | | | 1.0 | VAR.% | | ĭ | BASAL
OW | AREA/A | ACRE
HIGH | # | OF PLOTS 5 | 10 | INF. POP. | | SPRU | | 76.4 | 11.9 | L | 97 | 110 | 123 | | | 10 | 13 | | HEML | LEAV | 91.1 | 14.2 | | 56 | 65 | 74 | | | | | | SNAG | | 307.9 | 48.0 | | 4 | 8 | 12 | | | | | | ALDR
DOUG | LEAV | 360.3
360.3 | 56.2
56.2 | | 2
1 | 5
3 | 8
5 | | | | | | CEDL | | 360.3 | 56.2 | | 1 | 3 | 5 | | | | | | TOTA | L | 30.8 | 4.8 | | 184 | 194 | 203 | | 38 | 9 | 4 | | CL: | 68.1 % | COEFF | 7 | | NET BF | /ACRE | | # | OF PLOTS | REQ. | INF. POP. | | SD: | | VAR.% | | | OW | AVG | HIGH | | 5 | 10 | 15 | | SPRUG | | 75.5
94.9 | 11.8
14.8 | | | 19,940
12,982 | 22,288
14,905 | | | | | | HEML
SNAG | t | | | 1 | • | | • | | | | | | ALDR | LEAV | 360.3 | 56.2 | | 49 | 111 | 174 | | | | | | TC TST | TATS | | | | PRO | STATIS
OJECT | STICS
DONUT | | | PAGE
DATE | 2
5/28/2013 | |--------|-------|------|------|-----------|--------|-----------------|----------------|-------|----------|--------------|----------------| | TWP | RGE | SECT | TRAC | т | TY | PE A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 20 | AREA | A2 | LE | AV | 70.00 | 41 | 200 | 1 | W | | CL: | 68.1% | CO | EFF | | NE' | Γ BF/ACRI | E | | # OF PLO | TS REQ. | INF. POP. | | SD: | 1.0 | VA | R. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | GLEAV | 366 | 5.9 | 57.2 | 251 | 587 | 923 | | | | | | CEDI | LEAV | 459 | 0.3 | 71.7 | 66 | 234 | 401 | | | | | | TOTA | AL | 29. | .8 | 4.7 | 32,279 | 33,854 | 35,429 | | 35 | 9 | 4 | | TC TSTATS | | - | | STA
PROJECT | TIST | ICS
DONUT | | | PAGE
DATE | 1
5/28/2013 | |--|---|---|----------------|---|---|---|----------|------------------------------------|------------------------------------|---------------------------| | TWP RGE | SECT TI | RACT | | ТҮРЕ | ACI | RES | PLOTS | TREES | CuFt | BdFt | | 04N 08W | 20 A | REA5 | | LEAV | | 43.00 | 30 | 134 | 1 | W | | | | | | REES | | ESTIMATED TOTAL | : | PERCENT
SAMPLE | | | | | PLOTS | TREES | P | ER PLOT | | TREES | | TREES | | | | TOTAL CRUISE DBH COUNT REFOREST | 30
12 | 134
44 | | 4.5
3.7 | | 2,810 | | 1.6 | | | | COUNT
BLANKS
100 % | 18 | 79 | | 4.4 | | | | | | | | | WHO I I I | | STAN | D SUMM | ARY | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | HEMLEAV | 31 | 45.1 | 22.0 | 77 | | 118.7 | 21,233 | 20,692 | 5,030 | | | DOUGLEAV | 4 | 11.5 | 23.0 | 87 | | 33.3 | 6,473 | 6,473 | 1,497 | • | | SNAG | 5 | 5.3 | 24.5 | 28 | | 17.3 | • | Ť | • | , , , , , | | SPRUCELV | 2 | .4 | 43.9 | 98 | | 4.0 | 892 | 821 | 187 | 187 | | ALDRLEAV | 1 | 2.3 | 18.0 | 64 | | 4.0 | 656 | 656 | 158 | 158 | | CEDLEAV | 1 | .8 | 18.0 | 42 | | 1.3 | | | | | | TOTAL | 44 | 65.3 | 22.4 | 74 | | 178.7 | 29,254 | 28,643 | 6,872 | 6,872 | | | E LIMITS OF
TIMES OUT | | | WILL BE W | VITHIN ' | THE SAMPI | LE ERROR | | | | | CL: 68.1 % | COEFF | | | SAMPLE | TREES | - BF | 7 | OF TREES | S REO. | INF. POP. | | SD: 1.0 | 37.4 D 0/ | | | | | | | | • | | | | VAR.% | S.E.% | LO | W A | AVG | HIGH | | 5 | 10 | 13 | | HEMLEAV | VAR.%
72.0 | S.E.%
12.9 | | W A
601 | AVG
690 | HIGH
779 | | 5 | 10 | 1; | | | | | | | | | | 5 | 10 | 13 | | HEMLEAV
DOUGLEAV | 72.0 | 12.9 | | 601
507 | 690 | 779 | | 5 | 10 | 15 | | HEMLEAV
DOUGLEAV
SNAG
SPRUCELV
ALDRLEAV | 72.0
51.8 | 12.9
29.6 | 1, | 601
507
928 2 | 690
720 | 779
933 | | 325 | 10
81 | | | HEMLEAV
DOUGLEAV
SNAG
SPRUCELV
ALDRLEAV
CEDLEAV | 72.0
51.8
10.6 | 12.9
29.6
9.9 | 1, | 601
507
928 2
566 | 690
720
2,140 | 779
933
2,352 | # | 325 | 81 | 36 | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % | 72.0
51.8
10.6
90.2
COEFF | 12.9
29.6
9.9 | 1, | 601
507
928 2
566
TREES/A | 690
720
2,140
655
CRE | 779
933
2,352
<i>744</i> | # | <i>325</i>
OF PLOTS | <i>81</i>
S REQ. | 36
INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 | 72.0
51.8
10.6 | 12.9
29.6
9.9 | 1, | 601
507
928 2
566
TREES/A | 690
720
2,140
655
CRE | 779
933
2,352 | # | 325 | 81 | 36
INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % | 72.0
51.8
10.6
90.2
COEFF
VAR.% | 12.9
29.6
9.9
13.6 | 1, | 601
507
928 2
566
TREES/AW | 690
720
2,140
655
CRE
AVG | 779
933
2,352
<i>744</i>
HIGH | # | <i>325</i>
OF PLOTS | <i>81</i>
S REQ. | 36
INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7 | 12.9
29.6
9.9
13.6
S.E.%
8.7 | 1, | 601
507
928 2
566
TREES/A
W A |
690
720
2,140
655
CRE
AVG
45 | 779
933
2,352
744
HIGH
49 | # | <i>325</i>
OF PLOTS | <i>81</i>
S REQ. | 36
INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8 | 1, | 601
507
928 2
566
TREES/A
W A
41
8 | 690
720
2,140
655
CRE
AVG
45
12
5 | 779
933
2,352
<i>744</i>
HIGH
49
15 | # | <i>325</i>
OF PLOTS | <i>81</i>
S REQ. | 36
INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7 | 1, | 601
507
928 2
566
TREES/A
W A
41
8
4 | 690
720
2,140
655
CRE
AVG
45
12
5
0
2 | 779 933 2,352 744 HIGH 49 15 7 1 4 | ‡ | <i>325</i>
OF PLOTS | <i>81</i>
S REQ. | 36
INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8 | 1, | 601
507
928 2
566
TREES/A
W A
41
8
4
0 | 690
720
2,140
655
CRE
AVG
45
12
5
0
2 | 779
933
2,352
744
HIGH
49
15
7
1
4
2 | # | <i>325</i>
OF PLOTS | <i>81</i>
S REQ. | 36
INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7 | 1, | 601
507
928 2
566
TREES/A
W A
41
8
4
0 | 690
720
2,140
655
CRE
AVG
45
12
5
0
2 | 779 933 2,352 744 HIGH 49 15 7 1 4 | # | <i>325</i>
OF PLOTS | <i>81</i>
S REQ. | 36
INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7 | LO | 601
507
928 2
566
TREES/A
W A
41
8
4
0 | 690
720
2,140
655
CRE
AVG
45
12
5
0
2
1
655 | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 | | <i>325</i>
OF PLOTS | 81
S REQ.
10 | 36
INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7 | LO | 601
507
928 2
566
TREES/A
W A
41
8
4
0
1
65
BASAL A | 690
720
2,140
655
CRE
AVG
45
12
5
0
2
1
655
REA/AC | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 | | 325
OF PLOTS
5 | 81
S REQ.
10 | 36
INF. POP.
15 | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7
COEFF
VAR.%
42.0 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7 | LO | 601
507
928 2
566
TREES/A
W A
41
8
4
0
1
65
BASAL A
W A | 690
720
2,140
655
CRE
AVG
45
12
5
0
2
1
65
REA/AC | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 | | 325
OF PLOTS
5 | 81
S REQ.
10 | 36
INF. POP.
15 | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7
COEFF
VAR.%
42.0
167.0 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7
S.E.%
7.8
31.0 | LO | 601
507
928 2
566
TREES/A
W A
41
8
4
0
1
65
BASAL A
W A
109
23 | 690
720
2,140
655
CRE
AVG
45
12
5
0
2
1
65
REA/AC | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 | | 325
OF PLOTS
5 | 81
S REQ.
10 | 36
INF. POP.
15 | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7
COEFF
VAR.%
42.0
167.0
168.0 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7
S.E.%
7.8
31.0
31.2 | LO | 601
507
928 2
566
TREES/A
W A
0
1
65
BASAL A
W A
109
23
12 | 690
720
2,140
655
CRE
AVG
45
12
5
0
2
1
65
REA/AC
119
33
17 | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 | | 325
OF PLOTS
5 | 81
S REQ.
10 | 36
INF. POP.
15 | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7
COEFF
VAR.%
42.0
167.0
168.0
305.1 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7
S.E.%
7.8
31.0
31.2
56.6 | LO | 601
507
928 2
566
TREES/AW
41
8
4
0
1
65
BASAL AW
W A
109
23
12
2 | 690
720
2,140
655
CRE
AVG
45
12
5
0
2
1
65
REA/AC
119
33
17
4 | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 | | 325
OF PLOTS
5 | 81
S REQ.
10 | 36
INF. POP.
15 | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV SNAG SPRUCELV ALDRLEAV SNAG SPRUCELV ALDRLEAV SNAG SPRUCELV ALDRLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7
COEFF
VAR.%
42.0
167.0
168.0
305.1
402.6 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7
S.E.%
7.8
31.0
31.2
56.6
74.7 | LO | 601
507
928 2
566
TREES/A
W A
0
1
65
BASAL A
W A
109
23
12 | 690
720
2,140
655
CRE
AVG
45
12
5
0
2
1
65
REA/AC
119
33
17 | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 | | 325
OF PLOTS
5 | 81
S REQ.
10 | 36
INF. POP.
15 | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV SD: 1.0 | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7
COEFF
VAR.%
42.0
167.0
168.0
305.1 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7
S.E.%
7.8
31.0
31.2
56.6 | LO | 601
507
928 2
566
TREES/AW
41
8
4
0
1
65
BASAL AW
W A
109
23
12
2
1 | 690
720
720
655
CRE
AVG
45
12
5
0
2
1
65
REA/AC
119
33
17
4
4
1 | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 | | 325
OF PLOTS
5 | 81
S REQ.
10 | 36
INF. POP.
15 | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV CEDLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7
COEFF
VAR.%
42.0
167.0
168.0
305.1
402.6
547.7 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7
S.E.%
7.8
31.0
31.2
56.6
74.7 | LO | 601
507
928 2
566
TREES/AU
41
8
4
0
1
65
BASAL AU
W A
109
23
12
2
1 | 690
720
720
655
CRE
AVG
45
12
5
0
2
1
65
REA/AC
119
33
17
4
1
179 | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 | # | 325
OF PLOTS
5 # OF PLOTS | 81
S REQ.
10 | 36
INF. POP.
15 | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SD: 1.0 HEMLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7
COEFF
VAR.%
42.0
167.0
168.0
305.1
402.6
547.7 |
12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7
S.E.%
7.8
31.0
31.2
56.6
74.7
101.7 | LO | 601
507
928 2
566
TREES/A
W A
10
65
BASAL A
W A
109
23
12
2
1
179
NET BF/A | 690
720
720
655
CRE
AVG
45
12
5
0
2
1
65
REA/AC
119
33
17
4
4
1
179
ACRE | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 179 | # | 325 # OF PLOTS 5 # OF PLOTS 5 | 81
S REQ.
10
S REQ.
10 | INF. POP. 15 INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7
COEFF
VAR.%
42.0
167.0
168.0
305.1
402.6
547.7
COEFF
VAR.% | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7
S.E.%
7.8
31.0
31.2
56.6
74.7
101.7 | LO | 601
507
928 2
566
TREES/A
W A
41
8
4
0
1
65
BASAL A
W A
109
23
12
2
1
179
NET BF/A
W A | 690
720
720
655
CRE
AVG
45
12
5
0
2
1
65
REA/AC
119
33
17
4
1
179
ACRE
AVG | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 179 HIGH | # | 325
OF PLOTS
5 # OF PLOTS | 81
S REQ.
10 | INF. POP. 15 INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV CEDLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV CEDLEAV TOTAL | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7
COEFF
VAR.%
42.0
167.0
168.0
305.1
402.6
547.7
COEFF
VAR.% | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7
S.E.%
7.8
31.0
31.2
56.6
74.7
101.7 | LO LO LO | 601 507 928 2 566 TREES/A W 41 8 4 0 1 65 BASAL A W 109 23 12 2 1 179 NET BF/A W 931 20 | 690
720
720
655
CRE
AVG
45
12
5
0
2
1
65
REA/AC
119
33
17
4
1
179
ACRE
AVG | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 179 HIGH 22,453 | # | 325 # OF PLOTS 5 # OF PLOTS 5 | 81
S REQ.
10
S REQ.
10 | INF. POP. 15 INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV CEDLEAV TOTAL CL: 68.1 % SO: 1.0 HEMLEAV CEDLEAV TOTAL | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7
COEFF
VAR.%
42.0
167.0
168.0
305.1
402.6
547.7
COEFF
VAR.% | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7
S.E.%
7.8
31.0
31.2
56.6
74.7
101.7 | LO LO LO | 601
507
928 2
566
TREES/AN
W A
10
65
BASAL AN
W A
109
23
12
2
1
179
NET BF/AN
W A
931 20 | 690
720
720
655
CRE
AVG
45
12
5
0
2
1
65
REA/AC
119
33
17
4
1
179
ACRE
AVG | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 179 HIGH | # | 325 # OF PLOTS 5 # OF PLOTS 5 | 81
S REQ.
10
S REQ.
10 | 36 INF. POP. 15 INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7
COEFF
VAR.%
42.0
167.0
168.0
305.1
402.6
547.7
COEFF
VAR.%
45.8
166.6 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7
S.E.%
7.8
31.0
31.2
56.6
74.7
101.7 | LO LO 18, 4, | 601 507 928 2 566 TREES/A W 41 8 4 0 1 65 BASAL A W 109 23 12 2 1 179 NET BF/A W 931 20 471 6 | 690
720
720
655
CRE
AVG
45
12
5
0
2
1
65
REA/AC
119
33
17
4
1
179
ACRE
AVG
0,692
5,473 | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 179 HIGH 22,453 8,475 | # | 325 # OF PLOTS 5 # OF PLOTS 5 | 81
S REQ.
10
S REQ.
10 | INF. POP. 15 INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV CEDLEAV TOTAL CL: 68.1 % SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV SNAG SPRUCELV | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7
COEFF
VAR.%
42.0
167.0
168.0
305.1
402.6
547.7
COEFF
VAR.%
305.1
402.6
547.7 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7
S.E.%
7.8
31.0
31.2
56.6
74.7
101.7 | LO LO 18, 4, | 601 507 928 2 566 TREES/A W A 41 8 4 0 1 65 BASAL A W A 109 23 12 2 1 179 NET BF/A W A 931 20 471 6 | 690
720
720
655
CRE
AVG
45
12
5
0
2
1
65
REA/AC
119
33
17
4
1
179
ACRE
AVG
0,692
5,473 | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 179 HIGH 22,453 8,475 1,291 | # | 325 # OF PLOTS 5 # OF PLOTS 5 | 81
S REQ.
10
S REQ.
10 | INF. POP. 15 INF. POP. | | HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV DOUGLEAV SNAG SPRUCELV ALDRLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV CEDLEAV TOTAL CL: 68.1 % SD: 1.0 HEMLEAV CEDLEAV TOTAL | 72.0
51.8
10.6
90.2
COEFF
VAR.%
46.7
170.5
171.2
306.1
402.6
547.7
COEFF
VAR.%
42.0
167.0
168.0
305.1
402.6
547.7
COEFF
VAR.%
45.8
166.6 | 12.9
29.6
9.9
13.6
S.E.%
8.7
31.7
31.8
56.8
74.7
101.7
S.E.%
7.8
31.0
31.2
56.6
74.7
101.7 | LO LO 18, 4, | 601 507 928 2 566 TREES/A W 41 8 4 0 1 65 BASAL A W 109 23 12 2 1 179 NET BF/A W 931 20 471 6 | 690
720
720
655
CRE
AVG
45
12
5
0
2
1
65
REA/AC
119
33
17
4
1
179
ACRE
AVG
0,692
5,473 | 779 933 2,352 744 HIGH 49 15 7 1 4 2 65 CRE HIGH 128 44 23 6 7 3 179 HIGH 22,453 8,475 | # | 325 # OF PLOTS 5 # OF PLOTS 5 | 81
S REQ.
10
S REQ.
10 | INF. POP. | | TC TST | TATS | | | | ST
PROJE | | TICS
DONUT | | | PAGE
DATE 5 | 2
5/28/2013 | |------------|---------------|------------|------|-------|----------------------|----------------------|---------------|-------------|---------------|----------------|----------------| | TWP
04N | RGE
08W | SECT 20 | TRAC | _ | TYPE
LEAV | A | CRES
43.00 | PLOTS
30 | TREES 134 | CuFt | BdFt
W | | CL:
SD: | 68.1 %
1.0 | COE
VAR | | S.E.% | NET BF
LOW | V ACRE
AVG | HIGH | | # OF PLO
5 | TS REQ. | INF. POP. | | TC TST | ΓATS | | | | ST | ATIS | STICS | | | PAGE | 1 | |------------------------|-----------------------------|---------------|-------------------------------|--------------|-----------------|----------------|--------------------|--------------|-----------------|--------|-----------| | | | | | | PROJE | | DONUT | | | DATE : | 5/28/2013 | | TWP | RGE | SECT | TRACT | | TYPE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 33 | E | | LEAV | | 10.00 | 13 | 40 | 1 | W | | | | | | | TREES | | ESTIMATED
TOTAL | | ERCENT
AMPLE | | | | | | PLOTS | TREES | | PER PLOT | • | TREES | Т | REES | | | | TOTA | AL | 13 | 40 | | 3.1 | | | | | | | | | COUNT
PREST
NT
NKS | 13 | 39 | | 3.0 | | 394 | | 9.9 | | | | | | | | STA | ND SUM | MARY | | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | HEML | | 22 | | 23.6 | 75 | | 67.7 | 13,522 | 13,022 | 3,072 | 3,072 | | SNAG | | 13 | | 24.0 | 31 | | 43.1 | | | | | | DOUG | GLEAV | 3 | | 22.9 | 91 | | 9.2 | 1,814 | 1,814 | 415 | 415 | | TOTA | | 1
39 | | 56.0
23.9 | 55
<i>61</i> | | 3.1 | 315 | 315 | 81 | 81 | | 1017 | XL. | 39 | 39.4 | 23.9 | 01 | | 123.1 | 15,651 | 15,151 | 3,568 | 3,568 | | CONI | | | OF THE SAMPL
TT OF 100 THE | | WILL BE | WITHI | N THE SAMPL | E ERROR | | | | | CL: | 68.1 % | COE | FF | | SAMPL | E TREI | ES - BF | # | OF TREES | REO. | INF. POP. | | SD: | 1.0 | VAR | .% S.E.% | LC |)W | AVG | HIGH | | 5 | 10 | 15 | | HEML | | 61.0 | 13.3 | | 809 | 934 | 1,058 | | | | | | SNAG
DOUG
CEDLI | GLEAV | 24.1 | 16.7 | | 489 | 587 | 685 | | | | | | TOTA | | 102.9 | 16.5 | | 515 | 617 | 718 | | 423 | 106 | 47 | | CL: | 68.1 % | COE | | | | | 710 | | | | | | | 1.0 | VAR. | | 1.0 | TREES | | HIOH | # | OF PLOTS | | INF. POP. | | HEML | | 73.7 | | LC | 18 | AVG
22 | HIGH
27 | | 5 | 10 | 15 | | SNAG | | 132.4 | | | 8 | 14 | 19 | | | | | | DOUG | | 195.0 | | | 1 | 3 | 5 | | | | | | CEDLE | | 360.6 | | | | 0 | 0 | | | | | | TOTA | L | 47.6 | 13.7 | | 34 |
39 | 45 | | 98 | 24 | 11 | | CL: | 68.1 % | COEF | FF | | BASAL | AREA/ | ACRE | # | OF PLOTS | REO | INF. POP. | | | 1.0 | VAR. | % S.E.% | LC | | AVG | HIGH | π' | 5 | 10 | 15 | | HEML | EAV | 28.4 | | | 62 | 68 | 73 | | | 10 | 13 | | SNAG | | 133.8 | | | 26 | 43 | 60 | | | | | | DOUG | | 190.0 | | | 4 | 9 | 14 | | | | | | CEDLE | | 360.6 | | | | 3 | 6 | | | | | | TOTA | | 42.9 | 12.4 | | 108 | 123 | 138 | | 80 | 20 | 9 | | CL: | 68.1 % | COEF | F | | NET BF/ | ACRE | | # (| OF PLOTS | REQ. | INF. POP. | | SD: | | | | LO | | AVG | IIIOII | | 5 | 10 | | | | 1.0 | VAR. | % S.E.% | LU | VY | 71 7 0 | HIGH | | J | 10 | 1.5 | | HEMLI | | VAR.
36.3 | | | | 3,022 | 14,385 | | | 10 | 15 | | HEMLI
SNAG | EAV | 36.3 | 10.5 | 11, | ,659 1 | 3,022 | 14,385 | | | 10 | 15 | | HEMLI
SNAG
DOUGI | EAV
LEAV | 36.3
190.2 | 10.5
54.8 | 11, | ,659 1 | 3,022
1,814 | 14,385
2,809 | | | 10 | 15 | | HEMLI
SNAG | EAV
LEAV
EAV | 36.3 | 10.5
54.8
103.9 | 11, | ,659 1
819 | 3,022 | 14,385 | | 22 | 5 | 2 | | s | So Gr | | |
Def | NT 4 | % | | | No4 \$7-1- | L- | Co-1! | - D! | neter in 1 | [m.a.l | | | | | |-------|--------|----|------|----------|------------|------|-----|-----|------------|----------------------|-------|------|------------|--------|-------|-------|-------|-----| | Spp T | 1 | | | Dei
% | Net
MBF | Spc | 2-3 | 4-5 | 6-7 | <u>1me by</u>
8-9 | 10-11 | | 14-15 | | 20-23 | 24-29 | 30-39 | 40+ | | A | DO 1S | | | 70 | 4 | | 2-3 | 4-3 | 0-7 | 0-9 | 10-11 | 4 | 14-13 | 10-19 | 20-23 | 24-29 | 30-39 | 40+ | | A | DO 1S | | | | 16 | | | | | | 8 | 8 | | | | | | | | A | DO 1S | | | | 21 | i | | | | | 10 | 11 | | | | | | | | A | DO 1S | | | | 63 | 7.9 | | | | | 24 | 39 | 0 | | | | | | | A | DO 1S | | | 2.4 | 46 | | | | | | 2-7 | 22 | 25 | | | | | | | A | DO 1S | | | 2.1 | 49 | | | | | | | 2 | 16 | 31 | | | | | | 11 | | | | | ., | | | | | | | | 10 | | | | | | | A | DO 2S | 20 | 5 | | 5 | .7 | | | | | 5 | | | | | | | | | A | DO 2S | 30 | . 44 | | 44 | 5.4 | | | | | 44 | | | | | | | | | A | DO 2S | 32 | 52 | | 52 | 6.5 | | | | | 52 | | | | | | | | | A | DO 2S | 40 | 100 | 2.3 | 98 | 12.1 | | | | 24 | 74 | | | | | | | | | A | DO 3S | 16 | 0 | | 0 | .0 | | | | 0 | | | | | | | | | | A | DO 3S | | | | 33 | 4.1 | | | | 33 | | | | | | | | | | A | DO 3S | | | | 23 | 2.8 | | | | 21 | | 2 | | | | | | | | A | DO 3S | 30 | 19 | 5.1 | 18 | 2.3 | | | | 9 | 10 | | | | | | | | | A | DO 3S | 32 | 2 | 17.5 | 2 | .2 | | | | 2 | | | | | | | | | | A | DO 3S | 34 | 0 | | 0 | .0 | | | | 0 | | | | | | | | | | A | DO 3S | 36 | 0 | | 0 | .0 | | | | 0 | | | | | | | | | | A | DO 3S | 38 | 7 | | . 7 | .9 | | | | 7 | | | | | | | | | | A | DO 3S | 40 | 65 | | 65 | 8.1 | | | | 65 | | | | | | | | | | Α | DO 4S | 10 | 1 | | 1 | .1 | | | 1 | | | | | | | | | | | Α | DO 4S | 14 | 0 | | 0 | .0 | | | 0 | | | | | | | | | | | Α | DO 4S | 16 | 26 | | 26 | 3.3 | | 0 | 20 | 0 | 6 | | | | | | | | | Α | DO 4S | 18 | 4 | | 4 | .5 | | | 4 | 0 | | | | | | | | | | Α | DO 4S | 20 | 15 | | 15 | 1.9 | | | 15 | | | | | | | | | | | Α | DO 4S | 24 | 9 | | 9 | 1.1 | | | 9 | 0 | | | | | | | | | | Α | DO 4S | 30 | 37 | | 37 | 4.6 | | | 37 | | | | | | | | | | | A | DO 4S | 32 | 25 | | 25 | 3.1 | | | 25 | | | | | | | | | | | Α | DO 4S | 34 | 17 | 16.6 | 14 | 1.8 | | | 14 | | | | | | | | | | | Α | DO 4S | 36 | 0 | | 0 | .0 | | | 0 | | | | | | | | | | | Α | DO 4S | 40 | 127 | | 127 | 15.7 | | | 115 | 12 | | | | | | | | | | Α | Totals | | 813 | | 805 | | | 0 | 240 | 172 | 232 | 88 | 41 | 31 | | | | | | S | DO 2S | ı | 9 | | 8 | | | | | | | | 0 | 8 | | | | | | S | DO 2S | 40 | 181 | 3.2 | 175 | 48.1 | | | | | | | | 106 | 37 | 28 | 4 | 0 | | S | DO 3S | 16 | 2 | 19.1 | 1 | .4 | | | | | | 0 | 0 | 1 | 0 | | | | | s | DO 3S | 18 | 2 | | 2 | .5 | | | | | 0 | 2 | | 0 | 0 | | | | | s | DO 3S | 22 | 0 | | 0 | .0 | | | | | | | 0 | | | | | | TC PLOGSTVB ## Log Stock Table - MBF T04N R08W S20 TyR/W THRU T04N R08W S33 TyTAKE Project: Acres DONUT 198.00 Page 2 Date 5/28/2013 Time 8:43:48AM So Gr Log % Gross Def Net Volume by Scaling Diameter in Inches Net Len rt de **MBF MBF** Spp % Spc 2-3 4-5 8-9 10-11 12-13 14-15 20-23 24-29 30-39 40+ S DO 3S 24 1 3.9 0 .3 0 0 0 S DO 3S 0 26 .0 0 S DO 3S 30 0 .0 0 S DO 3S 32 48 13.7 41 11.3 12 16 1 1 9 1 1 S DO 3S 34 22.0 1.2 5 2 0 2 1 \mathbf{S} DO 3S 36 7 27.8 5 1.3 0 2 2 S DO 3S 38 0 0 .0 S DO 3S 40 116 12.0 102 28.1 3 10 0 0 2 13 30 41 4 DO 4S 2 0 S 14 2 1.3 2 .6 S DO 4S 18 0 .0 0 0 \mathbf{S} DO 4S 20 10 10 2.7 4 6 S DO 4S 24 0 0 .1 0 S DO 4S 26 0 .0 0 S DO 4S 28 3 .9 3 S DO 4S 30 6 1.7 6 S DO 4S 36 0 2.4 .1 0 0 S Totals 394 7.7 364 9.1 19 16 2 14 122 51 67 7 20 46 Н DO 2S 13 1 .1 1 Η DO 2S 16 2 2 2 .1 Η DO 2S 18 0 5.6 0. Н 20 DO 2S 19.1 16 20 .6 16 Н DO 2S 0 24 0 .0 0 Η DO 2S 26 21 21 .8 21 Η DO 2S 30 17 6.7 16 .6 16 Η DO 2S 32 175 2.6 171 6.5 16 99 17 18 21 Η DO 2S 40 1,249 3.1 1,211 46.0 8 23 197 122 456 205 169 31 Η DO 2S 43 1 19.1 .0 1 Н DO 3S 9 0 0 .0 0 Η DO 3S 12 0 25.0 .0 0 Η DO 3S 14 1 .0 1 9 Η DO 3S 16 12 23.9 0 .3 9 0 Η DO 3S 18 1 2.1 .0 0 1 Η DO 3S 20 5 .2 0 2 Н DO 3S 22 5 .2 3 3 Н DO 3S 24 6 .2 3 3 Η DO 3S 26 0 .0 DO 3S Η 27 4 .1 4 TC PLOGSTVB Log Stock Table - MBF T04N R08W S20 TyR/W THRU T04N R08W S33 TyTAKE Project: DONUT Acres 198.00 Page 3 Date 5/28/2013 Time 8:43:48AM | S | So Gr | | | Gross | Def | Net | % | |] | Net Vol | ume by | Scalin | g Dian | neter in | Inches | | | | | |-------|-----------|----|----|-------|------|-------|-------|-----|-----|---|--------|--------|--------|----------|--------|-------|-------|----------|-----| | Spp T | · · | | | MBF | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | | | 16-19 | 20-23 | 24-29 | 30-39 | 40+ | | Н | DO 3 | S | 28 | 3 | | 3 | .1 | | | 1 | 3 | | | | | | | | | | Н | DO 3 | S | 30 | 43 | | 43 | 1.6 | | | 7 | 5 | 31 | | | 0 | | | | | | Н | DO 3 | S | 32 | 272 | 1.9 | 267 | 10.1 | | 4 | 49 | 114 | 78 | 9 | | | 14 | | | | | Н | DO 35 | S | 34 | 1 | | 1 | .0 | | | | 1 | | | | | | | | | | Н | DO 35 | S | 36 | 11 | | 11 | .4 | | | 8 | 3 | | | | | | | | | | Н | DO 35 | 3 | 38 | 12 | | 12 | .5 | | | 7 | | 5 | | | | | | | | | Н | DO 35 | S | 40 | 620 | | 615 | 23.3 | | | 148 | 178 | 251 | 27 | 12 | | | | | | | Н | DO 45 | 3 | 12 | 3 | | 3 | .1 | | | 3 | | | | | | | | | | | Н | DO 45 | 3 | 14 | 0 | 23.2 | 0 | .0 | | | | | | 0 | | | | | | | | Н | DO 48 | 3 | 16 | 53 | | 53 | 2.0 | | | 48 | 5 | | | | | | | | | | Н | DO 48 | 5 | 18 | 28 | | 28 | 1.1 | | | 23 | 4 | | | | | | | | | | Н | DO 48 | 5 | 20 | 19 | | 19 | .7 | | | 17 | 2 | | 0 | | | | | | | | Н | DO 48 | 3 | 22 | 8 | | 8 | .3 | | | 8 | | | | | | | 1 | | | | H | DO 4S | } | 24 | 8 | | 8 | .3 | | | 8 | | | | | | | | | | | Н | DO 4S | , | 26 | 12 | | 12 | .5 | | | 12 | | | | | | | | | | | Н | DO 4S | | 28 | 10 | | 10 | .4 | | 5 | 5 | | | | | | | | | | | Н | DO 4S | | 30 | 39 | | 39 | 1.5 | | | 39 | | | | | | | | | | | Н | DO 4S | | 32 | 7 | | 7 | .3 | | 5 | 3 | | | | | | | | | | | Н | DO 4S | | 36 | 14 | 33.3 | 10 | .4 | | | 10 | | | | | | | | | | | Η | DO 4S | | 40 | 13 | | 13 | .5 | | | 13 | | | | | | | | | | | H | Tota | ls | | 2,700 | 2.4 | 2,634 | 65.5 | | 20 | 416 | 319 | 417 | 352 | 156 | 474 | 257 | 191 | 31 | | | C | DO 2S | | 32 | 0 | 6.5 | 0 | 32.5 | | | | | | | | | | 0 | | | | 2 | DO 2S | | 40 | 0 | 5.0 | 0 | 50.9 | | | NUMBER OF THE PROPERTY | | | | | | | 0 | | | | C | DO 3S | | 32 | 0 | | 0 | 6.0 | | | | | | 0 | | | | | | | | C | DO 3S | | 40 | 0 | | 0 | 10.6 | | | | | | 0 | | | | | | | | | Total | s | | 1 | 4.7 | 1 | .0 | | | | | | 0 | | | - | 1 | | | |) | DO 2S | | 40 | 174 | 2.3 | 170 | 78.0 | | | | | | 29 | 104 | 37 | | 1 | | | |) | DO 3S | - | 26 | 0 | | 0 | .0 | - | | | | 0 | | | | | | 2,02,044 | | |) | DO 3S | | 32 | 7 | | 7 | 3.3 | | | | 7 | 0 | | | | | | | | |) | DO 3S | | 40 | 31 | | 31 | 14.1 | | | 7 | 10 | 14 | | | | | | | | |) | DO 4S | _ | 14 | 0 | | 0 | .0 | | | 0 | | | | | | | | | | |) | DO 4S | | 40 | 10 | | 10 | 4.5 | | | | 10 | | | | | | | | | |) |
Total | s | | 222 | 1.8 | 218 | 5.4 | | | 7 | 27 | 14 | 29 | 104 | 37 | | 1 | | | | otal | All Speci | es | | 4,131 | 2.6 | 4,022 | 100.0 | | 20 | 682 | 535 | 666 | 484 | 320 | 665 | 308 | 259 | 77 | | | TC PSTNDSUM | Stand Table Summary | Page 1 Date: 4/17/2013 | |-----------------------------|---------------------|------------------------| | T04N R08W S20 TyR/W
THRU | Project DONUT | Time: 8:38:28AM | | T04N R08W S33 TVTAKE | Acres 198.00 | Grown Year: | | 104 | 104N R08W S33 TYTAKE | | | | | | | | 190.0 | , , | | | Grown 16 | | | |--------|----------------------|----------|----------|-----------|----------------|--------------|---------------|--------------|----------------|-------|------------|------------|-------------|-------------|------------| | | | | | Tot | | ,, | | Averag | e Log | | Net | Net | | | | | 5 | 1 | Sample | FF | Av | Trees/ | BA/ | Logs | Net | Net | Tons/ | Cu.Ft. | | | Totals | | | Spc 7 | DBH | Trees | 16' | Ht | Acre | | Acre | Cu.Ft. | Bd.Ft. | Acre | Acre | Acre | Tons | Cunits | MBF | | Н | 8 | 1 | 85 | 20 | .445 | .16 | .45 | 5.0 | 20.0 | | 2 | 9 | | 4 | 2 | | H | 9 | 4 | 85 | 20 | 4.797 | 2.12 | 4.80 | 5.0 | 20.0 | | 24 | 96 | | 47 | 19 | | Н | 10 | 11 | 87 | 31 | 6.736 | 3.48 | 6.74 | 8.2 | 26.8 | | 55 | 180 | | 109 | 36 | | Н | 11 | 13 | 89 | 70 | 7.875 | 5.20 | 9.33 | 15.4 | 53.0 | | 144 | 495 | | 284 | 98 | | H | 12
13 | 18
9 | 87
89 | 77 | 9.000 | 6.98 | 15.19 | 14.9 | 50.4 | | 227 | 766 | | 449 | 152 | | H
H | 14 | 8 | 89
87 | 79
84 | 3.008
5.380 | 2.69
5.75 | 5.51
10.76 | 16.6
19.7 | 60.6 | | 91 | 334 | | 181 | 66 | | H | 15 | 5 | 90 | 99 | 2.508 | 3.73 | 5.02 | 26.5 | 69.6
101.9 | | 212
133 | 749
511 | | 421 | 148 | | H | 16 | 19 | 87 | 94 | 5.893 | 8.23 | 11.79 | 26.8 | 98.6 | | 316 | 1,163 | | 263
626 | 101 | | Н | 17 | 20 | 88 | 93 | 6.466 | 10.19 | 12.42 | 31.6 | 111.9 | | 392 | 1,389 | | 776 | 230
275 | | Н | 18 | 9 | 82 | 95 | 2.651 | 4.68 | 4.28 | 34.5 | 117.5 | | 148 | 503 | | 292 | 100 | | Н | 19 | 6 | 87 | 90 | 1.482 | 2.92 | 2.96 | 39.5 | 132.0 | | 117 | 391 | | 232 | 77 | | Н | 20 | 2 | 84 | 99 | .511 | 1.11 | 1.02 | 46.0 | 149.2 | | 47 | 152 | | 93 | 30 | | Н | 21 | 6 | 88 | 105 | .406 | .98 | .85 | 53.6 | 212.5 | | 45 | 180 | | 90 | 36 | | Н | 22 | 15 | 88 | 98 | 2.120 | 5.60 | 4.85 | 50.0 | 199.8 | | 242 | 969 | | 480 | 192 | | Н | 23 | 8 | 86 | 109 | .943 | 2.72 | 2.72 | 47.0 | 180.5 | | 128 | 491 | | 253 | 97 | | Н | 24 | 2 | 88 | 112 | .256 | .80 | .51 | 63.5 | 260.0 | | 32 | 133 | | 64 | 26 | | Н | 25 | 5 | 87 | 96 | .576 | 1.96 | 1.20 | 68.3 | 249.9 | | 82 | 299 | | 162 | 59 | | Н | 26
27 | 5 | 87 | 95 | .344 | 1.27 | .69 | 68.2 | 263.2 | | 47 | 181 | | 93 | 36 | | Н | 28 | 8
9 | 86
88 | 110
96 | 1.088 | 4.33 | 2.58 | 67.3 | 290.7 | | 174 | 750 | | 344 | 149 | | H
H | 29 | 9
7 | | 101 | .881
.579 | 3.77
2.66 | 1.81
.98 | 84.3 | 341.8 | | 153 | 618 | | 302 | 122 | | Н | 30 | 5 | | 107 | .379 | 2.66
1.65 | .68 | 92.2
81.9 | 337.8
320.4 | | 91 | 332 | | 179 | 66 | | H | 31 | 3 | | 116 | .161 | .85 | .48 | 90.0 | 419.5 | | 56
44 | 218
203 | | 110 | 43 | | Н | 32 | 4 | | 121 | .179 | 1.00 | .54 | 87.3 | 442.1 | | 47 | 238 | | 86 | 40 | | Н | 33 | 3 | 88 | 98 | .143 | .85 | .29 | 125.1 | 481.4 | | 37 | 141 | | 93
72 | 47
28 | | Н | 34 | 8 | | 120 | .423 | 2.67 | .98 | 95.3 | 437.3 | | 94 | 430 | | 185 | 85 | | Н | 35 | 3 | 86 | 123 | .019 | .13 | .06 | 115.4 | 545.6 | | 7 | 32 | | 13 | 6 | | Н | 38 | 6 | 89 | 121 | .215 | 1.69 | .64 | 137.4 | 706.0 | | 89 | 455 | | 175 | 90 | | Н | 40 | 5 | 87 | | .186 | 1.62 | .37 | 199.4 | 947.1 | | 74 | 353 | | 147 | 70 | | Н | 41 | 4 | 87 | | .175 | 1.61 | .44 | 170.2 | 792.0 | | 75 | 347 | | 148 | 69 | | Н | 42 | 2 | 83 | - 1 | .084 | .80 | .25 | 124.3 | 650.0 | | 31 | 163 | | 62 | 32 | | Н | 45 | 2 | 73 | | .008 | .09 | .02 | 125.7 | 633.3 | | 3 | 15 | | 6 | 3 | | H | 48 | 1 | 82 | | .003 | .04 | .01 | 201.0 | 910.0 | | 2 | 9 | | 4 | 2 | | Н | 50 | 1 | 82 | 122 | .003 | .04 | .01 | 174.7 | 900.0 | | 2 | 9 | | 3 | 2 | | Н | Totals | 237 | 87 | 77 | 65.882 | 93.71 | 111.23 | 31.1 | 119.6 | | 3,460 | 13,304 | | 6,851 | 2,634 | | A | 8 | 2 | 87 | 30 | .010 | .00 | .01 | 5.5 | 20.0 | | 0 | 0 | | 0 | 0 | | A | 9 | 14 | 87 | 45 | 3.434 | 1.44 | 3.43 | 7.9 | 32.8 | | 27 | 113 | | 54 | 22 | | Α | 10 | 15 | 86 | 53 | 2.393 | 1.36 | 2.39 | 12.9 | 39.9 | | 31 | 95 | | 61 | 19 | | A | 11 | 15 | 87 | 59 | 4.887 | 3.17 | 4.89 | 15.3 | 51.7 | | 75 | 253 | | 148 | 50 | | A | 12 | 20 | 86 | 57 | 4.131 | 3.19 | 4.15 | 19.7 | 55.8 | | 82 | 232 | | 162 | 46 | | A | 13
14 | 34
23 | 87
87 | 46 | 7.160 | 6.60
5.01 | 5.75 | 18.9 | 50.0 | | 109 | 287 | | 215 | 57 | | A | 15 | 23
35 | 87
86 | 66 | 4.732
6.950 | 5.01
8.49 | 6.49 | 22.9 | 67.4 | | 149 | 438 | | 295 | 87 | | A
A | 16 | 26 | 87 | 71 | 5.498 | 8.49
7.68 | 8.30 | 23.1
28.5 | 78.8
93.4 | | 261 | 892 | | 517 | 177 | | A | 17 | 14 | 87 | 79 | .915 | 1.44 | 1.73 | 28.3 | 107.2 | | 236
49 | 775
185 | | 468 | 154 | | A | 18 | 12 | 86 | 73 | .728 | 1.29 | 1.45 | 27.1 | 100.5 | | 39 | 146 | | 97
78 | 37
29 | | A | 19 | 11 | 87 | 58 | 1.162 | 2.29 | 1.49 | 40.2 | 130.8 | | 60 | 195 | | 78
119 | 39 | | A | 20 | 12 | 87 | 81 | .663 | 1.45 | 1.52 | 34.2 | 123.8 | | 52 | 189 | | 103 | 37 | | Α | 21 | 4 | 87 | 86 | .263 | .63 | .53 | 47.4 | 164.6 | | 25 | 86 | | 49 | 17 | | Α | 22 | 1 | 87 | 82 | .005 | .01 | .01 | 87.0 | 400.0 | | 0 | 2 | | 1 | 0 | | A | 23 | 2 | 87 | 88 | .010 | .03 | .02 | 55.3 | 205.0 | | 1 | 4 | | 2 | 1 | | Α | 24 | 4 | 87 | 83 | .387 | 1.21 | .77 | 61.5 | 225.0 | | 48 | 174 | | 94 | 34 | | | | | | | | - | | | | | | | | | | | TC PSTNDSUM | Stand Table Summary | Page 2 Date: 4/17/2013 | |-----------------------------|---------------------|------------------------| | T04N R08W S20 TyR/W
THRU | Project DONUT | Time: 8:38:28AM | | TO4N R08W S33 TyTAKE | Acres 198.00 | Grown Year: | | A Totals 245 87 61 43.332 45.31 54.26 22.9 75.0 1,245 4,068 2,464 805 S 9 2 86 43 1.533 .68 1.53 8.0 20.0 12 31 24 6 S 14 2 85 41 .634 .68 .63 22.0 50.0 14 32 28 6 S 15 3 85 47 .788 .97 .79 22.3 39.0 18 31 35 6 | T04N | T04N R08W S33 TyTAKE | | | | | | Acres | | | Grown Year: | | | | |---|------|----------------------|-----|----|-----|--------|-------|-------|-------|--------|-------------|--------|-------|-----| | No. | 1 | İ | | | Av | 1 | | | Net | Net | Cu.Ft. | Bd.Ft. | | MBF | | S | A | 27 | 1 | 87 | 77 | .005 | .02 | .01 | 67.5 | 235.0 | 1 | 2 | 1 | 0 | | S | Α | Totals | 245 | 87 | 61 | 43.332 | 45.31 | 54.26 | 22.9 | 75.0 |
1,245 | 4,068 | 2,464 | 805 | | S | S | 9 | 2 | 86 | 43 | 1.533 | .68 | 1.53 | 8.0 | 20.0 | 12 | 31 | 24 | 6 | | S | I . | | | | | i | | | 1 | 50.0 | 14 | 32 | | 6 | | S | 1 | | | | | 1 | | | ł | i | | 31 | | 6 | | S | 1 | | | | | l . | | | ı | | | | | 118 | | S | I . | | | | | | | | I | | | | | | | S | 1 | | | | | 1 | | | | | | | | | | S | | | | | | l . | | | 1 | | | | | | | S | 1 | 35 | | | | 1 | | | ı | | | | | | | S | S | 37 | 3 | 83 | 113 | .092 | .69 | .28 | 1 | | | 1 | | | | S | S | | | 89 | | .005 | .04 | .02 | 139.7 | 613.3 | 2 | 9 | 4 | | | S 42 1 83 122 .004 .04 .01 223.5 1005.0 2 8 4 2 S 445 3 77 109 .068 .72 .14 156.3 722.2 22 20 101 43 20 S 46 1 83 122 .003 .04 .01 2279.0 1175.0 2 8 4 2 S 50 1 68 132 .003 .04 .01 219.7 766.7 2 7 4 1 S 51 1 69 148 .003 .04 .01 219.7 766.7 2 7 4 4 2 S 52 2 70 142 .005 .08 .02 246.2 980.0 4 16 8 3 S 50 3 75 .01 .008 .12 .02 | | | | | | l . | | .21 | i | | 25 | 92 | 49 | 18 | | S | | | | | | 1 | | | | | | 1 | 8 | | | S 45 2 73 117 .007 .08 .02 140.8 556.7 3 122 6 2 S 46 1 83 122 .003 .04 .01 279.0 1175.0 2 8 4 2 S 50 1 68 132 .003 .04 .01 279.0 1175.0 2 8 4 2 S 50 1 68 132 .003 .04 .01 229.7 7 4 4 2 S 51 1 69 148 .003 .04 .01 291.7 766.7 2 11 5 5 53 1 89 132 .003 .04 .01 291.1 1376.7 2 11 5 23 10 .5 5 5 3 71 10 .04 .00 226.7 101.1 10 .04 <td>1 1</td> <td></td> | 1 1 | | | | | | | | | | | | | | | S | | | | | | 1 | | | | | | | | | | S 50 1 68 132 .003 .04 .01 219.7 766.7 2 7 4 1 S 51 1 69 148 .003 .04 .01 245.3 953.3 2 8 4 2 S 52 2 70 142 .005 .08 .02 246.2 980.0 4 16 8 3 S 53 1 89 132 .003 .04 .01 291.7 1376.7 2 111 5 22 S 55 3 75 110 .043 .72 .09 226.7 910.1 20 81 40 16 S 56 1 72 131 .002 .04 .01 278.7 1020.0 2 7 4 11 15 2 S 66 1 76 16 .047 .84 .11 | | | | | | | | | | | | | | | | S 51 1 69 148 .003 .04 .01 245.3 953.3 2 8 4 2 S 52 2 70 142 .005 .08 .02 246.2 980.0 4 16 8 3 S 53 1 89 132 .003 .04 .01 291.7 1376.7 2 11 5 23 S 54 3 74 134 .008 .12 .02 231.7 1011.1 5 23 10 .55 55 3 75 110 .043 .72 .09 226.7 910.1 20 81 40 16 S 56 1 72 131 .002 .04 .01 233.3 101.8 39 144 77 29 S 60 1 69 148 .002 .04 .01 337.3 1323.3 | | | | | | | | | | 1 | | ı | 4 |
 | S 52 2 70 142 .005 .08 .02 2462 980.0 4 16 8 3 S 53 1 89 132 .003 .04 .01 291.7 1376.7 2 111 5 2 S 54 3 74 134 .008 1.2 .02 231.7 1011.1 5 23 100 5 S 55 3 75 110 .043 .72 .09 226.7 910.1 20 81 .40 16 S 56 1 72 131 .002 .04 .01 278.7 1020.0 2 7 4 4 16 S 66 1 68 148 .002 .04 .01 337.3 1323.3 2 8 4 4 2 S 61 1 711 .000 .01 .003 21 | i I | | | | | | | | | | | | 4 | | | S 53 1 89 132 .003 .04 .01 291.7 1376.7 2 11 5 2 S 54 3 74 134 .008 .12 .02 231.7 1011.1 5 23 10 5 S 55 3 75 110 .043 .72 .09 226.7 910.1 .20 81 40 16 S 56 1 72 131 .002 .04 .01 278.7 1020.0 2 7 4 1 S 60 1 69 148 .002 .04 .01 337.3 1323.3 2 8 4 2 S 60 1 69 148 .002 .04 .01 306.2 1176.0 3 11 6 3 1 6 3 1 5 2 S 66 1 73 | | 52 | 2 | 70 | | .005 | .08 | | | | | | 8 | | | S | S | 53 | 1 | 89 | 132 | .003 | .04 | .01 | 291.7 | 1376.7 | 2 | | | | | S 56 1 72 131 .002 .04 .01 278.7 1020.0 2 7 4 1 S 57 6 76 116 .047 .84 .14 273.3 1017.8 39 144 77 29 S 60 1 69 148 .002 .04 .01 337.3 1323.3 2 8 4 2 S 61 1 71 127 .002 .04 .01 393.3 1 6 3 11 S 64 2 70 119 .004 .08 .01 306.2 1176.0 3 111 5 5 2 S 65 3 76 131 .005 .12 .02 311.7 1372.2 5 22 10 4 2 S 66 1 83 122 .002 .05 .01 308.5< | S | 54 | 3 | 74 | 134 | .008 | .12 | .02 | 231.7 | 1011.1 | 5 | 23 | 10 | 5 | | S 57 6 76 116 .047 .84 .14 273.3 1017.8 39 144 77 29 S 60 1 69 148 .002 .04 .01 337.3 1323.3 2 8 4 2 S 61 1 71 127 .002 .04 .01 340.3 953.3 1 6 3 1 S 64 2 70 119 .004 .08 .01 306.2 1176.0 3 111 5 5 S 65 3 76 131 .005 .12 .02 311.7 1372.2 5 22 10 4 2 S 66 1 83 122 .002 .04 .00 255.0 1326.7 0 2 9 3 2 S 68 1 71 12 .00 .04 .00 <td></td> <td>20</td> <td>81</td> <td>40</td> <td>16</td> | | | | | | | | | | | 20 | 81 | 40 | 16 | | S 60 1 69 148 .002 .04 .01 337.3 1323.3 2 8 4 2 S 61 1 71 127 .002 .04 .01 240.3 953.3 1 6 3 1 S 64 2 70 119 .004 .08 .01 306.2 1176.0 3 11 5 22 G 65 3 76 131 .005 .12 .002 .01 .100 .01 .00 .01 .000 .01 .400 .1833.3 2 9 4 2 2 9 4 2 2 6 8 1 71 127 .000 .01 .00 255.0 1326.7 0 2 1 0 3 2 9 3 2 2 9 3 2 1 0 2 1 0 2 1 | | | | | | | | | | | | | 4 | - 1 | | S 61 1 71 127 .002 .04 .01 240.3 953.3 1 6 3 1 S 64 2 70 119 .004 .08 .01 306.2 1176.0 3 11 5 2 S 65 3 76 131 .005 .12 .02 311.7 1372.2 5 22 10 4 S 66 1 83 122 .002 .04 .01 400.0 1833.3 2 9 4 2 S 68 1 71 127 .000 .01 .00 255.0 1326.7 0 2 9 4 2 S 69 2 70 136 .002 .05 .01 308.5 1581.0 2 9 3 2 S 70 1 66 126 .001 .04 .00 257.7 <td></td> <td>77</td> <td></td> | | | | | | | | | | | | | 77 | | | S 64 2 70 119 .004 .08 .01 306.2 1176.0 3 11 5 2 S 65 3 76 131 .005 .12 .02 311.7 1372.2 5 22 10 4 S 66 1 83 122 .002 .04 .01 400.0 1833.3 2 9 4 2 S 66 1 83 122 .000 .01 .00 255.0 1326.7 0 2 9 4 2 S 69 2 70 136 .002 .05 .01 308.5 1581.0 2 9 3 2 S 70 1 66 148 .002 .04 .00 257.7 1540.0 1 7 2 1 S 71 1 66 126 .001 .04 .00 533.7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>i i</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>2</td> | | | | | | | | i i | | | | 1 | | 2 | | S 65 3 76 131 .005 .12 .02 311.7 1372.2 5 22 10 4 S 66 1 83 122 .002 .04 .01 400.0 1833.3 2 9 4 2 S 68 1 71 127 .000 .01 .00 255.0 1326.7 0 2 9 3 2 S 69 2 70 136 .002 .05 .01 308.5 1581.0 2 9 3 2 S 70 1 66 126 .001 .04 .00 257.7 1540.0 1 7 2 1 8 2 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2 1 3 3 2 1 3 3 3 4 2< | | | | | - 1 | | | | | i i | | | | 1 | | S 66 1 83 122 .002 .04 .01 400.0 1833.3 2 9 4 2 S 68 1 71 127 .000 .01 .00 255.0 1326.7 0 2 1 0 S 69 2 70 136 .002 .05 .01 308.5 1581.0 2 9 3 2 S 70 1 66 148 .002 .04 .00 257.7 1540.0 1 7 2 1 S 71 1 66 126 .001 .04 .00 242.3 1366.7 1 6 2 1 S 75 1 85 67 4.631 12.41 7.30 65.2 251.9 476 1,839 943 364 D 21 1 83 103 .602 1.45 1.20 47.5 | | | | | | | | | | | | | | | | S 68 1 71 127 .000 .01 .00 255.0 1326.7 0 2 1 0 S 69 2 70 136 .002 .05 .01 308.5 1581.0 2 9 3 2 S 70 1 66 148 .002 .04 .00 257.7 1540.0 1 7 2 1 S 71 1 66 126 .001 .04 .00 242.3 1366.7 1 6 2 1 S 75 1 83 129 .001 .04 .00 533.7 2463.3 2 10 4 2 S Totals 71 85 67 4.631 12.41 7.30 65.2 251.9 476 1,839 943 364 D 21 1 83 103 .602 1.45 1.20 47.5 | | | | | | | | | | | | i i | | 1 | | S 69 2 70 136 .002 .05 .01 308.5 1581.0 2 9 3 2 S 70 1 66 148 .002 .04 .00 257.7 1540.0 1 7 2 1 S 71 1 66 126 .001 .04 .00 242.3 1366.7 1 6 2 1 S 75 1 83 129 .001 .04 .00 533.7 2463.3 2 10 4 2 S Totals 71 85 67 4.631 12.41 7.30 65.2 251.9 476 1,839 943 364 D 21 1 83 103 .602 1.45 1.20 47.5 150.0 57 181 113 36 D 22 5 87 108 1.113 2.94 2.23 54.5 206.7 122 462 241 91 D 23 2 | | | | | | | | I | | | | 1 | 4 | | | S 70 1 66 148 .002 .04 .00 257.7 1540.0 1 7 2 1 S 71 1 66 126 .001 .04 .00 242.3 1366.7 1 6 2 1 S 75 1 83 129 .001 .04 .00 533.7 2463.3 2 10 4 2 S Totals 71 85 67 4.631 12.41 7.30 65.2 251.9 476 1,839 943 364 D 21 1 83 103 .602 1.45 1.20 47.5 150.0 57 181 113 36 D 22 5 87 108 1.113 2.94 2.23 54.5 206.7 122 462 241 91 D 23 2 86 97 .505 1.46 1.01 <t< td=""><td>ı</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>3</td><td></td></t<> | ı | | | | | | | 1 | | | | | 3 | | | S 71 1 66 126 .001 .04 .00 242.3 1366.7 1 6 2 1 S 75 1 83 129 .001 .04 .00 533.7 2463.3 2 10 4 2 S Totals 71 85 67 4.631 12.41 7.30 65.2 251.9 476 1,839 943 364 D 21 1 83 103 .602 1.45 1.20 47.5 150.0 57 181 113 36 D 22 5 87 108 1.113 2.94 2.23 54.5 206.7 122 462 241 91 D 23 2 86 97 .505 1.46 1.01 55.5 195.0 56 197 111 39 D 24 2 89 116 .464 1.46 .93 67.5 275.0 63 255 124 51 D Totals | s | 70 | 1 | 66 | 148 | .002 | .04 | | | | | | | 1 | | S 75 1 83 129 .001 .04 .00 533.7 2463.3 2 10 4 2 S Totals 71 85 67 4.631 12.41 7.30 65.2 251.9 476 1,839 943 364 D 21 1 83 103 .602 1.45 1.20 47.5 150.0 57 181 113 36 D 22 5 87 108 1.113 2.94 2.23 54.5 206.7 122 462 241 91 D 23 2 86 97 .505 1.46 1.01 55.5 195.0 56 197 111 39 D 24 2 89 16 .464 1.46 .93 67.5 275.0 63 255 124 51 D 30 1 86 106 2.687 7.32 5.39 | S | 71 | 1 | 66 | 126 | .001 | .04 | .00 | 242.3 | 1366.7 | 1 | 6 | | 1 | | D 21 1 83 103 .602 1.45 1.20 47.5 150.0 57 181 113 36 D 22 5 87 108 1.113 2.94 2.23 54.5 206.7 122 462 241 91 D 23 2 86 97 .505 1.46 1.01 55.5 195.0 56 197 111 39 D 24 2 89 116 .464 1.46 .93 67.5 275.0 63 255 124 51 D 34 1 86 140 .004 .02 .01 110.7 516.7 1 5 2 1 D Totals 11 86 106 2.687 7.32 5.39 55.5 204.2 299 1,100 592 218 C 12 1 74 17 .019 .01 .01 | S | 75 | 1 | 83 | 129 | .001 | .04 | .00 | 533.7 | 2463.3 | 2 | 10 | | 2 | | D 22 5 87 108 1.113 2.94 2.23 54.5 206.7 122 462 241 91 D 23 2 86 97 .505 1.46 1.01 55.5 195.0 56 197 111 39 D 24 2 89 116 .464 1.46 .93 67.5 275.0 63 255 124 51 D 34 1 86 140 .004 .02 .01 110.7 516.7 1 5 2 1 D Totals 11 86 106 2.687 7.32 5.39 55.5 204.2 299 1,100 592 218 C 12 1 74 17 .019 .01 .00 158.5 580.0 1 2 1 0 C 45 1 71 88 .001 .01 .00 170.5 | S | Totals | 71 | 85 | 67 | 4.631 | 12.41 | 7.30 | 65.2 | 251.9 |
476 | 1,839 | 943 | 364 | | D 22 5 87 108 1.113 2.94 2.23 54.5 206.7 122 462 241 91 D 23 2 86 97 .505 1.46 1.01 55.5 195.0 56 197 111 39 D 24 2 89 116 .464 1.46 .93 67.5 275.0 63 255 124 51 D 34 1 86 140 .004 .02 .01 110.7 516.7 1 5 2 12 1 D Totals 11 86 106 2.687 7.32 5.39 55.5 204.2 299 1,100 592 218 C 12 1 74 17 .019 .01 .00 158.5 580.0 1 2 1 0 C 45 1 71 88 .001 .01 . | D | 21 | 1 | 83 | 103 | .602 | 1.45 | 1.20 | 47.5 | 150.0 | 57 | 181 | 113 | 36 | | D 24 2 89 116 | D | | | | | | | 2.23 | | 1 | 122 | 462 | | | | D 34 1 86 140 .004 .02 .01 110.7 516.7 1 5 2 1 D Totals 11 86 106 2.687 7.32 5.39 55.5 204.2 299 1,100 592 218 C 12 1 74 17 .019 .01 C 38 1 83 111 .002 .01 .00 158.5 580.0 1 2 1 2 1 0 C 45 1 71 88 .001 .01 .00 170.5 510.0 0 1 1 0 C Totals 3 75 29 .022 .04 .01 163.5 550.9 1 4 2 2 1 M 11 2 87 17 .384 .25 | 1 | | | | - 1 | | | | | | | 197 | 111 | 39 | | D Totals 11 86 106 2.687 7.32 5.39 55.5 204.2 299 1,100 592 218 C 12 1 74 17 .019 .01 C 38 1 83 111 .002 .01 .00 158.5 580.0 C 45 1 71 88 .001 .01 .00 170.5 510.0 C Totals 3 75 29 .022 .04 .01 163.5 550.9 M 11 2 87 17 .384 .25 | | | | | | | | | | | | | | 51 | | C 12 1 74 17 .019 .01 C 38 1 83 111 .002 .01 .00 158.5 580.0 1 2 1 0 C 45 1 71 88 .001 .01 .00 170.5 510.0 0 1 1 0 C Totals 3 75 29 .022 .04 .01 163.5 550.9 1 4 2 1 M 11 2 87 17 .384 .25 .25 | D | 34 | 1 | 86 | 140 | .004 | .02 | .01 | 110.7 | 516.7 | 1 | 5 | 2 | 1 | | C 38 1 83 11 .002 .01 .00 158.5 580.0 1 2 1 0 C 45 1 71 88 .001 .01 .00 170.5 510.0 0 1 1 0 C Totals 3 75 29 .022 .04 .01 163.5 550.9 1 4 2 1 M 11 2 87 17 .384 .25 .25 .20 | D | Totals | 11 | 86 | 106 | 2.687 | 7.32 | 5.39 | 55.5 | 204.2 | 299 | 1,100 | 592 | 218 | | C 45 1 71 88 .001 .01 .00 170.5 510.0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 | | | | | | | | | | | | | | | | C Totals 3 75 29 .022 .04 .01 163.5 550.9 1 4 2 1 M 11 2 87 17 .384 .25 | | | | | | | | - 1 | | | | | | 0 | | M 11 2 87 17 .384 .25 | | | | | | .001 | .01 | .00 | 170.5 | 510.0 |
0 | I | 1 | 0 | | | С | | | | | | .04 | .01 | 163.5 | 550.9 | 1 | 4 | 2 | 1 | | M 14 2 87 17 .237 .25 | | | | | | | | | | İ | | - 1 | | | | | M | 14 | 2 | 87 | 17 | .237 | .25 | | | | | l | | | | TC | | | Stand Table Summary | | | | | | | | 3
4/17/20 | 3
4/17/2013 | | | | |---|--------|-----------------|---------------------|-----------------|----------------|----------------------------|--------------|-------------------------|-------|---------------|-----------------------|-----------------------|-------------------|-------------------|-------| | T04N R08W S20 TyR/W
THRU
T04N R08W S33 TyTAKE | | | | | | Project DONUT Acres 198,00 | | | | | | | Time:
Grown Ye | 8:38:28AM
ear: | | | S
Spc T | DBH | Sample
Trees | FF
16' | Tot
Av
Ht | Trees/
Acre | BA/
Acre | Logs
Acre | Averag
Net
Cu.Ft. | Net | Tons/
Acre | Net
Cu.Ft.
Acre | Net
Bd.Ft.
Acre | Tons | Totals
Cunits | MBF | | M | Totals | 4 | 87 | 17 | .621 | .51 | | | | | | | | | | | Totals | | 571 | 87 | 71 | 117.175 | 159.30 | 178.19 | 30.8 | 114.0 | | 5,481 | 20,315 |
 10,852 | 4,022 |